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Licinius, trust a seaman’s lore:
Steer not too boldly to the deep,

Nor, fearing storms, by treacherous shore
Too closely creep.

Who makes the golden mean his guide,
Shuns miser’s cabin, foul and dark,

Shuns gilded roofs, where pomp and pride
Are envy’s mark.

With fiercer blasts the pine’s dim height
Is rock’d; proud towers with heavier fall
Crash to the ground; and thunders smite

The mountains tall.

In sadness hope, in gladness fear
’Gainst coming change will fortify

Your breast. The storms that Jupiter
Sweeps o’er the sky

He chases. Why should rain today
Bring rain tomorrow? Python’s foe

Is pleased sometimes his lyre to play,
Nor bends his bow.

Be brave in trouble; meet distress
With dauntless front; but when the gale
Too prosperous blows, be wise no less,

And shorten sail.

Book II, Odes X, Horace
(Conington, 1882)
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Abstract

The compacting reservoir embedded in a homogeneous, isotropic and elastic
medium, known as Geertsma’s model, is a model commonly used in feasibility
studies for forecasting time-lapse changes due to hydrocarbon production. The
scope of the thesis is to include a rigid basement to Geertsma’s formulation,
and to study how breaking the model symmetry affects the estimated changes
in reservoir monitoring. The objective of introducing the rigid basement is
to capture a general increase in rock stiffness with depth. In this way, the
model narrows the gap between the analytical modelling and the effective
deformation of the rocks surrounding the reservoir . The ultimate goal is
to get a better estimation of the time-lapse changes expected from reservoir
compaction.

An analytical solution for the displacement field caused by the compacting
reservoir above a rigid basement is derived. The analytical model is introduced
in a forward model for forecasting time-lapse changes in seismic monitoring
and gravity monitoring. The results obtained in this way are compared with
those obtained using Geertsma’s model for the same forward model.

The most visible effects of the presence of the rigid basement are the increase
of subsidence and the lowering of the top reservoir. Relevance should be
also given to the increase of vertical stretching in the overburden and a cor-
responding stretching decrease in the underburden. In the time-lapse seismic
modelling, these effects result in higher time-shifts in the overburden and lower
in the underburden. In the time-lapse gravity modelling, the redistribution of
the rocks around the compacting reservoir above the rigid basement causes a
visible change in gravity, otherwise negligible in the homogeneous half-space.

By extending Geertsma’s solution with a rigid basement below the compact-
ing reservoir, the thesis provides a model that can reproduce the geomechan-
ical behaviour of a subsurface where rock stiffness increases with depth. The
model needs few parameters, and it can be implemented in a code that uses
Geertsma’s solution. A feasibility study that includes the rigid basement
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sidade Católica in Rio de Janeiro, for giving me the opportunity to join them
and research temporarily in their department. A special thanks is for Nelson
Inoue, who gave me valuable guidance in finite-element modelling.

I am grateful to Torkjell Stenvold for critical review of the paper included
in Chapter 5. His comments gave me input for valuable improvement of the
research method and the results presentation.

I thank Statoil for giving me access to some data on Kristin field. Understand-
ing some of the problems related to real data manipulation will be very useful
in my future career.

vii

Acknowledgements

I am deeply grateful to my supervisors, Professor Martin Landrø and Professor
Erling Fjær, for all help and recommendation through my Ph.D. path. Walk-
ing the Ph.D. path side by side with them, I discovered how scientific research
is the result not only of a scrupulous application of the scientific method, but
also a formulation of new ideas through an “artistically creative imagination”
(Planck, 1949).

Acknowledgements go to Total E&P Norge for financial support of my Ph.D.
work. Ottar Minsaas, Pascal Morin, Ying Guo, Jon Kleppe are acknowledged
for interesting meetings between Total and NTNU, Norwegian University of
Science and Technology.

Financial support has been also provided by the Norwegian Research Council
through the Strategic University Program “ROSE”, and the Project “History
Matching using 4D Seismics and Production Data”.

I acknowledge NTNU too for financial support through the Project “History
Matching using 4D Seismics and Production Data”.

I would like to thank Professor Sergio Fontura and his colleagues at the Group
of Petroleum Technology and Engineering (GTEP) of the Pontificia Univer-
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ŷz Stress component, yz-plane
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Chapter 1

Introduction

The scope of my four years research is explained in the following sections.
The summary of the main literature review related to my research leads to
the motivation and the objectives of my work. The introduction continues
with the research method used in the investigation and a summary of the
results obtained. The chapter concludes with the outline of the dissertation
and a summary of the contribution of each authors to the attached papers.

1.1 Scope of the thesis

Reservoir compaction is a rock mechanical phenomenon often observed during
pressure depletion due to hydrocarbon production. The consequences of it
affects different areas of hydrocarbon production and reservoir management.
First, under given conditions, compaction can result in visible free surface sub-
sidence, arising safety issues related to platform stability and environmental
impact. Second, the rock adjustment to the change in reservoir volume, causes
a stress and strain redistribution of the subsurface, often leading to collapse
of well casing. Third, stress and strain redistribution increases the noise ob-
served in geophysical monitoring. Forth, reservoir compaction can represent
an important mechanism for hydrocarbon production.

One of the conditions for visible compaction is the significant reduction of
pore pressure into a loose or weakly cemented rock, as observed in Groningen
field (Mobach and Gussinklo, 1994). Another one is pressure depletion of high
pressure high temperature reservoir (HPHT), as observed in Elgin-Franklin
field (Hawkins et al., 2007). A further condition for compaction is the chemical
interaction between reservoir formation and injected water, as observed in the

1

Chapter 1

Introduction

The scope of my four years research is explained in the following sections.
The summary of the main literature review related to my research leads to
the motivation and the objectives of my work. The introduction continues
with the research method used in the investigation and a summary of the
results obtained. The chapter concludes with the outline of the dissertation
and a summary of the contribution of each authors to the attached papers.

1.1 Scope of the thesis

Reservoir compaction is a rock mechanical phenomenon often observed during
pressure depletion due to hydrocarbon production. The consequences of it
affects different areas of hydrocarbon production and reservoir management.
First, under given conditions, compaction can result in visible free surface sub-
sidence, arising safety issues related to platform stability and environmental
impact. Second, the rock adjustment to the change in reservoir volume, causes
a stress and strain redistribution of the subsurface, often leading to collapse
of well casing. Third, stress and strain redistribution increases the noise ob-
served in geophysical monitoring. Forth, reservoir compaction can represent
an important mechanism for hydrocarbon production.

One of the conditions for visible compaction is the significant reduction of
pore pressure into a loose or weakly cemented rock, as observed in Groningen
field (Mobach and Gussinklo, 1994). Another one is pressure depletion of high
pressure high temperature reservoir (HPHT), as observed in Elgin-Franklin
field (Hawkins et al., 2007). A further condition for compaction is the chemical
interaction between reservoir formation and injected water, as observed in the

1

Chapter 1

Introduction

The scope of my four years research is explained in the following sections.
The summary of the main literature review related to my research leads to
the motivation and the objectives of my work. The introduction continues
with the research method used in the investigation and a summary of the
results obtained. The chapter concludes with the outline of the dissertation
and a summary of the contribution of each authors to the attached papers.

1.1 Scope of the thesis

Reservoir compaction is a rock mechanical phenomenon often observed during
pressure depletion due to hydrocarbon production. The consequences of it
affects different areas of hydrocarbon production and reservoir management.
First, under given conditions, compaction can result in visible free surface sub-
sidence, arising safety issues related to platform stability and environmental
impact. Second, the rock adjustment to the change in reservoir volume, causes
a stress and strain redistribution of the subsurface, often leading to collapse
of well casing. Third, stress and strain redistribution increases the noise ob-
served in geophysical monitoring. Forth, reservoir compaction can represent
an important mechanism for hydrocarbon production.

One of the conditions for visible compaction is the significant reduction of
pore pressure into a loose or weakly cemented rock, as observed in Groningen
field (Mobach and Gussinklo, 1994). Another one is pressure depletion of high
pressure high temperature reservoir (HPHT), as observed in Elgin-Franklin
field (Hawkins et al., 2007). A further condition for compaction is the chemical
interaction between reservoir formation and injected water, as observed in the

1

Chapter 1

Introduction

The scope of my four years research is explained in the following sections.
The summary of the main literature review related to my research leads to
the motivation and the objectives of my work. The introduction continues
with the research method used in the investigation and a summary of the
results obtained. The chapter concludes with the outline of the dissertation
and a summary of the contribution of each authors to the attached papers.

1.1 Scope of the thesis

Reservoir compaction is a rock mechanical phenomenon often observed during
pressure depletion due to hydrocarbon production. The consequences of it
affects different areas of hydrocarbon production and reservoir management.
First, under given conditions, compaction can result in visible free surface sub-
sidence, arising safety issues related to platform stability and environmental
impact. Second, the rock adjustment to the change in reservoir volume, causes
a stress and strain redistribution of the subsurface, often leading to collapse
of well casing. Third, stress and strain redistribution increases the noise ob-
served in geophysical monitoring. Forth, reservoir compaction can represent
an important mechanism for hydrocarbon production.

One of the conditions for visible compaction is the significant reduction of
pore pressure into a loose or weakly cemented rock, as observed in Groningen
field (Mobach and Gussinklo, 1994). Another one is pressure depletion of high
pressure high temperature reservoir (HPHT), as observed in Elgin-Franklin
field (Hawkins et al., 2007). A further condition for compaction is the chemical
interaction between reservoir formation and injected water, as observed in the

1



Chapter 1. Introduction

Ekofisk field (Teufel et al., 1991; Janssen et al., 2006; Guilbot and Smith, 2002)
and in the Valhall field the North sea (Barkved et al., 2005).

Through the formulation and the solution of the theory of poro-elasticity,
Geertsma (1966, 1973a,b) presents a simple method for the estimation of the
reservoir compaction and the accompanying subsidence. The method, known
as Geertsma’s model, is based on the concept of nucleus of strain, a solu-
tion approach borrowed from thermo-elastic (Nowacki, 1986). The assump-
tions behind the model are that the reservoir is embedded in a homogeneous,
isotropic, elastic medium and that the reservoir and the surroundings have the
same elastic properties.

One of the main advantages of Geertsma’s model is the low number of pa-
rameters required for the computation of displacements. Another one is the
property of summation of the nucleus of strain that allows to cover all shapes
of reservoirs (Geertsma and Van Opstal, 1973). However, an important lim-
itation of the model is the assumption of homogeneity and linear elasticity,
conditions not always found in sedimentary rocks.

A way to break the homogeneity of Geertsma’s model is to introduce a rigid
basement at arbitrary depth below the compacting reservoir. For this case, van
Opstal (1974) provides the mathematical formulas for reservoir compaction
and free surface subsidence. The extension of van Opstal (1974)’s formulas
to the whole subsurface can be found in the work by Tempone et al. (2010a),
included in the Chapter 3 of this thesis. The alternative to the analytical solu-
tion is the numerical modelling, for example using the finite-element method
(FEM). The advantage of the numerical modelling is the flexibility of the
model settings, however the main drawback is the increase in time for model
building and computation.

Geophysical monitoring provides reservoir management with important infor-
mation of changes happening inside a producing reservoir, in space and time.
The risk related to geophysical monitoring is partly assessed through a fea-
sibility study, that models the geophysical changes that are expected from
production, and determines whether and how the changes can be observed.
Once the time-lapse data are available, the same models can be updated and
constrained to match the data, providing useful information to the reservoir
engineers.

Although the initial application of Geertsma’s model is the prediction of free
surface subsidence, it has been very useful to improve the knowledge in the area
of geophysical monitoring of a compacting reservoir. Important applications
of the model for this purpose are in seismic and gravity monitoring.
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1.2. Motivation and objectives

In time-lapse seismic, Hatchell and Bourne (2005b) used the model to demon-
strate the relation between the observed time-lapse changes in seismic travel-
time to overburden stretching due to reservoir compaction. Another useful
application is the integration of Geertsma’s model into an inversion algorithm
aimed to map pressure changes inside the producing reservoir using the ob-
served time-lapse seismic time-shifts (Hodgson et al., 2007).

In time-lapse gravity, measured subsidence are compared with that one pre-
dicted by Geertsma’s model with the purpose of detecting anomalous surface
displacements and of inverting for reservoir compressibility (Stenvold et al.,
2008; Stenvold, 2008; Eiken et al., 2008). This procedure leads ultimately to a
better estimation of time-lapse gravity response, hence an improved knowledge
of the reservoir changes at the reservoir level.

1.2 Motivation and objectives

One of the main limitations of Geertsma’s model, as previously stated, is the
assumption of homogeneity of the medium. This dissertation is motivated by
a desire to include an heterogeneous component to Geertsma’s model, and to
study how this heterogeneity affects time-lapse geophysical modelling.

Existing time-lapse geophysical models prefer the use of analytical solutions
because of the low number of parameters needed for the computation. Based
on this observation, I decided to use an analytical solution to address the
problem of the heterogeneity of the subsurface.

The heterogeneity studied in this dissertation is represented by a step increase
of rock stiffness at an arbitrary depth, and deformation is not allowed below
this rigid layer. In reality, it is difficult to find rigid surface in the Earth
subsurface, however this model may fairly reproduce the displacement of a
subsurface where stiffness increases with depth.

A further motivation that oriented the research is the interesting set that
Geertsma’s model and the Rigid basement model form together. Although
both models are idealized geologies, they may be considered two extremes
of the reality behaviour. The Rigid Basement model, for example, may be
considered the upper bound for the subsidence, and Geertsma’s model the
lower bound. This statement is, however, limited by the know assumptions of
elasticity and isotropy used in both models.

Based on the discussion above, the research aims to achieve the following main
objectives:
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Chapter 1. Introduction

• To provide formulas for displacement and stress of the subsurface rocks
due to a compacting reservoir above a rigid basement.

• To introduce the Rigid Basement model into a forward model for pre-
diction of time-lapse time-shifts and time-lapse gravity changes.

• To compare the results predicted with Geertsma’s model and the Rigid
Basement model.

1.3 Research method

The formulas for the Rigid Basement model are derived following the method
presented by Sharma and Pilani (1956). Due to a hidden error in the men-
tioned paper, the formulas needed to be checked and re-derived, see also van
Opstal (1974). The mathematical software Maple 11, distributed by Maple-
soft, was one of the tools employed for helping in this purpose.

The numerical computation of the results is achieved implementing the equa-
tions of Geertsma’s model and the Rigid Basement model in a MATLAB
code. The results are validated using the solution for subsidence by van Op-
stal (1974) and a finite element model. The same code include the forward
modelling of time-lapse time-shifts and time-lapse gravity changes. Time-lapse
time-shifts are predicted through the strain model proposed by Hatchell and
Bourne (2005a) and Røste et al. (2007, 2006), summarized in the next chap-
ter. Changes in gravity are computed using the point mass approximation,
explained more in detail in the next chapter.

1.4 Principal results and validation

The most visible effects of the presence of the rigid basement are the increase of
subsidence and the lowering of the top reservoir, see the sketch in Fig. 1.1. The
increased subsidence is confirmed by the results obtained with the formulas
proposed by van Opstal (1974) and with a finite element modelling of the
reservoir above a rigid basement, see Chapter 3 and Chapter 4 for more details.

Relevance should also be given to the increase of vertical stretching in the
overburden and decrease in the underburden. In the time-lapse seismic mod-
elling, these effects results in higher time-shifts in the overburden and lower
in the underburden. A decrease in time-shifts in the underburden is observed
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1.5. Thesis outline

Geertsma Rigid basement

Figure 1.1: Sketch of rock displacements due to reservoir compaction
in Geertsma’s model and in the Rigid Basement model.

in Shearwater field by Staples et al. (2007), and a decrease in velocity in the
underburden has been observed in the Valhall field by Hossein Mehdizadeh
(personal communication, 2010).

In the time-lapse gravity modelling, the redistribution of the rocks around
the compacting reservoir above the rigid basement causes a visible change in
gravity, otherwise negligible in the homogeneous half-space (Bonaccorso et al.,
2005; Battaglia et al., 2008). The finding of this dissertation are in agreement
with those presented by Currenti et al. (2007).

1.5 Thesis outline

This chapter provides a brief overview of the background material, leading
to the motivation and objectives of this research. The introduction continues
with the research method and a summary of the results.

Chapter 2 summarizes the theory applied in the chapters that are coming.
An overview of the geomechanical models relevant for the thesis is presented.
This include Geertsma’s model and finite element method. A summary of the
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Chapter 1. Introduction

most common theories of rock physics is included, with the purpose of showing
the link between reservoir production and geophysical changes. A description
of the two geophysical monitoring methods used in the thesis, seismic and
gravity, is given.

Chapter 3 presents the formulas for displacement and stress of the model ex-
tension of Geertsma’s solution by adding a rigid layer beneath the compacting
reservoir. The derivation includes the correction of an error found in the paper
written by Sharma and Pilani (1956). The research included in Chapter 3 is
published in Applied Mathematical Modelling, with the article title “Improved
Solution of Displacements due to a Compacting Reservoir over a Rigid Base-
ment”. The paper was submitted in March 2009, and the revised version was
submitted in February 2010. The first author derived and implemented the
formulas for the Rigid Basement model, and wrote the article; the second and
the third author supervised critically the research work; the question posed
by the third author “What if we have a rigid basement?” gave the idea for
the work.

Chapter 4 contains the paper “Effects on Time-lapse Seismic of a Hard Rock
Layer beneath a Compacting Reservoir” by Tempone et al. (2009). This work
was prepared for presentation at the 2009 SPE EUROPEC/EAGE Annual
Conference and Exhibition held in Amsterdam, The Netherlands, 8–11 June
2009. The work describe how the analytical solution presented in Chapter 3
can be applied to model seismic time-shifts. The first author implemented the
forward model for seismic monitoring, and wrote the article; the second and
the third author supervised critically the research work; the forth author gave
useful guidance in finite element modelling.

Chapter 5 contains the paper “4D Gravity Response of Compacting Reser-
voirs” by Tempone et al. (2010b), submitted to Geophysics in September 2010.
The work includes the geomechanical modelling formulated in Chapter 3 in
forward modelling for the estimation of change in gravity due to reservoir com-
paction. A parametric study on geometrical and geomechanical parameters is
included. The first author defined the research method, implemented the for-
ward model for gravity monitoring, and wrote the article; the second author
gave the idea for the work; the third author provided fundamental guidance in
defining the rock physical method; the second and the third author supervised
critically the research work.

Chapter 7 closes the thesis with the conclusions and some closing remarks on
the work presented in the previous chapters.
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critically the research work.

Chapter 7 closes the thesis with the conclusions and some closing remarks on
the work presented in the previous chapters.
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Chapter 2

Literature review

The prediction of the 4D signal of repeated seismic or gravity surveys due to
reservoir compaction, requires the application of a set of theoretical or empir-
ical models that represent the behavior of the subsurface. Three disciplines
are the source of the models used in this research: geomechanics, rock physics
and geophysics.

Geomechanics is the science that studies the mechanical behavior of soils and
rock masses under forces and stress fields. In this research, geomechanics
provides the theory and the tools for the estimation of the stress and the strain
fields of the rocks of the subsurface due to reservoir compaction. Rock physics
links the physical properties of the rocks and the geophysical observables. It
provides the principles and the models to relate strain field and 4D seismic
and 4D gravity. Geophysics, then, studies the physics of the Earth and its
surroundings. Seismic and gravity theories have been used in the research in
order to predict the 4D signal.

The following sections summarize the main concepts and the models of these
disciplines that form the fundation of the PhD research.

2.1 Modelling of reservoir compaction

Hydrocarbon withdrawal causes depletion of fluid pressure inside the reser-
voir. If the rocks are loose and weak, the increase of effective stress may lead
to compaction of the reservoir formation. Furthermore, propagation of the
compaction through the surrounding rocks may result in visible free surface
subsidence.
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Chapter 2. Literature review

Prediction of reservoir compaction and surrounding deformations is a problem
of rock mechanics, which has been solved with different methods within the
petroleum industry. The following sections are aimed to summarize some of
the known approaches for modelling reservoir compaction.

Ground deformation is an observed phenomena in volcano monitoring too.
Solution for ground deformation provided in this discipline, can be very similar
to those used in reservoir rock mechanics. Section 2.1.3 aims to point out some
modelling similarities.

2.1.1 Uniaxial compaction

The simplest model for the estimation of reservoir change in volume is the uni-
axial compaction model. It takes into consideration a reservoir that compact
only vertically, as sketched in Fig. 2.1. Under the assumption of linear poro-
elasticity, homogeneity and isotropy of the reservoir rocks, a simple expression
for the change in vertical thickness, ΔH, can be formulated as:

ΔH = Δp · Cm ·H (2.1)

where Δp is the pressure drop, and H is the initial thickness of the reservoir.
Cm is the uniaxial compaction coefficient defined as:

Cm =
1

Efr
· (1 + νfr) · (1− 2νfr)

1− νfr
(2.2)

where Efr and νfr are the Young’s modulus and the Poisson’s ratio of the
rock frame, respectively.

The formula Eq. 2.1 can be used for the estimation of the free surface subsi-
dence, if we assume constant vertical stress acting on the reservoir. However,
observation shows that subsidence is lower than the reservoir change in thick-
ness, leading to the conclusion that the uniaxial reservoir compaction oversim-
plifies the geomechanical problem. An attempt to address the problem in an
analytical way is represented by the poro-elastic theory outlined and solved
by Geertsma (1966), and summarized in the following section.

2.1.2 Nucleus of strain method

The poro-elastic theory, formulated by Geertsma (1957, 1966), addresses the
rock mechanical problem of reservoir compaction due to production pressure
depletion through the stress–strain relation:

σij = 2G ·
(
εij +

ν

1− 2ν
· εvol · δij

)
− (1− β) · p · δij (2.3)
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2.1. Modelling of reservoir compaction

Figure 2.1: Uniaxial compaction model.

where σij is the stress component, εij is the strain component, εvol is the
volumetric strain, G is the shear modulus, ν is the Poisson’s ratio, β is the
ratio between frame compressibility and bulk rock compressibility, and δij is
the Kronecker delta. p is the pore-fluid pressure.

The mathematical description of Eq. 2.3 for the theory of poro-elasticity is
similar to that one used for the theory of thermo-elasticity, see Nowacki (1986).
Geertsma takes advantage of this similarity using mathematical techniques
already applied to solve thermo-elastic problems. The preferred method is
that one that uses the concept of the nucleus of strain (Geertsma, 1973b,
1966, 1957).

The problem to be solved with the concept of the nucleus of strain is consti-
tuted by a compacting reservoir embedded in an homogeneous, isotropic and
linear-elastic half space. Because the local change in strain and stress due to
compaction, that is our main interest, leaves the gravity stress field unaffected,
gravity load is neglected in the formulation and solution of the problem.

The method requires the discretization of the reservoir in element volumes,
that contain a shrinking nucleus of strain. The displacement vector, uG,
around a nucleus of poro-elastic strain of volume V at depth of burial c expe-

9

2.1. Modelling of reservoir compaction

Figure 2.1: Uniaxial compaction model.

where σij is the stress component, εij is the strain component, εvol is the
volumetric strain, G is the shear modulus, ν is the Poisson’s ratio, β is the
ratio between frame compressibility and bulk rock compressibility, and δij is
the Kronecker delta. p is the pore-fluid pressure.

The mathematical description of Eq. 2.3 for the theory of poro-elasticity is
similar to that one used for the theory of thermo-elasticity, see Nowacki (1986).
Geertsma takes advantage of this similarity using mathematical techniques
already applied to solve thermo-elastic problems. The preferred method is
that one that uses the concept of the nucleus of strain (Geertsma, 1973b,
1966, 1957).

The problem to be solved with the concept of the nucleus of strain is consti-
tuted by a compacting reservoir embedded in an homogeneous, isotropic and
linear-elastic half space. Because the local change in strain and stress due to
compaction, that is our main interest, leaves the gravity stress field unaffected,
gravity load is neglected in the formulation and solution of the problem.

The method requires the discretization of the reservoir in element volumes,
that contain a shrinking nucleus of strain. The displacement vector, uG,
around a nucleus of poro-elastic strain of volume V at depth of burial c expe-

9

2.1. Modelling of reservoir compaction

Figure 2.1: Uniaxial compaction model.

where σij is the stress component, εij is the strain component, εvol is the
volumetric strain, G is the shear modulus, ν is the Poisson’s ratio, β is the
ratio between frame compressibility and bulk rock compressibility, and δij is
the Kronecker delta. p is the pore-fluid pressure.

The mathematical description of Eq. 2.3 for the theory of poro-elasticity is
similar to that one used for the theory of thermo-elasticity, see Nowacki (1986).
Geertsma takes advantage of this similarity using mathematical techniques
already applied to solve thermo-elastic problems. The preferred method is
that one that uses the concept of the nucleus of strain (Geertsma, 1973b,
1966, 1957).

The problem to be solved with the concept of the nucleus of strain is consti-
tuted by a compacting reservoir embedded in an homogeneous, isotropic and
linear-elastic half space. Because the local change in strain and stress due to
compaction, that is our main interest, leaves the gravity stress field unaffected,
gravity load is neglected in the formulation and solution of the problem.

The method requires the discretization of the reservoir in element volumes,
that contain a shrinking nucleus of strain. The displacement vector, uG,
around a nucleus of poro-elastic strain of volume V at depth of burial c expe-

9

2.1. Modelling of reservoir compaction

Figure 2.1: Uniaxial compaction model.

where σij is the stress component, εij is the strain component, εvol is the
volumetric strain, G is the shear modulus, ν is the Poisson’s ratio, β is the
ratio between frame compressibility and bulk rock compressibility, and δij is
the Kronecker delta. p is the pore-fluid pressure.

The mathematical description of Eq. 2.3 for the theory of poro-elasticity is
similar to that one used for the theory of thermo-elasticity, see Nowacki (1986).
Geertsma takes advantage of this similarity using mathematical techniques
already applied to solve thermo-elastic problems. The preferred method is
that one that uses the concept of the nucleus of strain (Geertsma, 1973b,
1966, 1957).

The problem to be solved with the concept of the nucleus of strain is consti-
tuted by a compacting reservoir embedded in an homogeneous, isotropic and
linear-elastic half space. Because the local change in strain and stress due to
compaction, that is our main interest, leaves the gravity stress field unaffected,
gravity load is neglected in the formulation and solution of the problem.

The method requires the discretization of the reservoir in element volumes,
that contain a shrinking nucleus of strain. The displacement vector, uG,
around a nucleus of poro-elastic strain of volume V at depth of burial c expe-

9



Chapter 2. Literature review

Figure 2.2: Sketch of the nucleus of strain concept.

riencing a pore pressure reduction Δp amounts to:

uG =
Cm ·Δp · V

4π
·
{
R1

R3
1

+
(3− 4ν) ·R2

R3
2

− 6z · (z + c)

R5
2

−

− 2k

R2
· [(3− 4ν) · (z + c)− z]

} (2.4)

where Cm is the uniaxial compaction coefficient, ν is the Poisson’s ratio
of the material, R1 is the distance

√
r2 + (z − c)2, and R2 is the distance√

r2 + (z + c)2. The free surface subsidence, u0,G, becomes:

u0,G =
Cm ·Δp · V

π
· (1− ν) · c

(r2 + c2)3/2
(2.5)

Eq. (2.4) is defined in a cylindrical coordinate system, where r is distance on
the radial axis and z is the depth. k is the unit vector in z-direction, and it is
positive downward. The displacement field of a compacting reservoir is equal
to the integration of Eq. (2.4) over the reservoir volume.

Geertsma’s model predicts a lowering of overburden and an uplift of the un-
derburden, as shown in Fig. 2.3(a). The top and the bottom of the reservoir
displace almost equally downward and upward, respectively. The rock above
the tips of the reservoir displace toward the centre of symmetry, as shown
in Fig. 2.3(b). The overburden and the underburden are stretched vertically,
whereas the sideburdens are compressed vertically.

The integration over the reservoir volume can be analytical or numerical. The
analytical solution is available only for few geometrical configurations, e.g.
cylindrical reservoirs. The alternative method is resorting to the numerical
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2.1. Modelling of reservoir compaction

integration of the contribution of small parts in which the reservoir volume
can be discretized (Geertsma and Van Opstal, 1973). The accuracy of the
numerical integration is dependent on the discretization size of the reservoir
(Lewis et al., 1983).
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Chapter 2. Literature review

to get the estimation of compaction, subsidence and stress changes of the
subsurface. However, the assumptions of homogeneity, isotropy and linear
elasticity limits the range of application of the model. A way to address this
problem is to introduce some condition of heterogeneity, like a stiffness contrast
between reservoir and surroundings or a rigid basement below the reservoir.

An extension of Geertsma’s model is provided by van Opstal (1974). The
author incorporates a rigid basement at an arbitrary depth below the com-
pacting reservoir. The formula representing the free surface subsidence in this
condition is:

u0,RB =
1− ν

2π
· Cm · 2 · c

(r2 + c2)3/2

1− ν

2π · √r
· Cm ·

∫
∞

0

λ−1/2 · C · (λ · r)1/2 J0 (λ · r) dλ
(2.6)

where:

C =
λ

2 ·Δ
{
eλ·c · (2λ · k + 1)− e−λ·c ·

[
4λ2 · k2 + 2λ · k + (3− 4ν)2

]
+

− (3− 4ν) ·
(
e−λ(2k+c) − e−λ(2k−c)

)}
(2.7)

Δ = (1− 2ν)2 + λ2 · k2 + (1− 4ν) · cosh2 (λ · k) (2.8)

and where k is the depth of the rigid basement, c is the depth of the reservoir,
ν is Poisson’s ratio, Cm is the uniaxial compaction coefficient, and r is the
radial coordinate of an arbitrary point lying on the free surface. The formulas
for the deformation of van Opstal (1974) are extended to the whole subsurface
in Chapter 3.

The problem solved with poro-elasticity in reservoir rock mechanics is very
similar to the problem of ground deformation observed in volcano monitoring.
The following section is aimed to point out the similarities in the solution of
the two field of application. The most important analytical solutions are listed
and shortly compared to Geertsma’s solution.

2.1.3 Analogies with volcano uplift modelling

The deformation of the free surface is a phenomenon observed in volcano
monitoring too. Estimating surface deformation is an important tool necessary
to discriminate magma transport at depth. Analytical models are traditionally
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2.1. Modelling of reservoir compaction

used for this purposes, and the most common is Mogi’s point source (Mogi,
1958).

Mogi’s point source solves the problem represented by an expanding or con-
tracting magma chamber embedded in a homogeneous, isotropic and elastic
half-space. The source of deformation is represented by a sphere with a radius
significantly smaller than its depth. For this problem, the deformation of the
free surface, u0,M , is represented by the following formula:

u0,M =
3Δp

4G
· a3 · c

(r2 + c2)3/2
(2.9)

where c is the depth of the point source, a is the radius of the source, Δp is the
pressure change, G is the shear modulus of the model medium, and r is the
radial coordinate of an arbitrary point on the free surface. Eq. 2.9 assumes a
Poisson’s ratio equal to 0.25.

The assumption that the source radius is small compared to the depth is ad-
dressed by McTigue (1987). The author provides an approximated analytical
solution for displacement and stress. The mathematical method used for this
purpose is the method of reflection, a known method in mechanical engineer-
ing. In this case, the formula for the displacement at the free surface, u0,MT ,
is (Battaglia et al., 2008):

u0,MT = (1− ν) · Δp · a3
G

· c

(r2 + c2)3/2
·

·
{
1−

(a
c

)3
·
[

1 + ν

2 (7− 5ν)
− 15 (2− ν)

4 (7− 5ν)
· c2

(r2 + c2)

]} (2.10)

where the notation is the same as explained in Eq. 2.9.

The difference between Geertsma’s solution for the subsidence, Eq. 2.5, and
Mogi’s one in Eq.2.9 is quantified by a factor dependent on Poisson’s ratio,
and is equal to:

α =
1− 2ν

2 (1− ν)
(2.11)

However, the solutions for the displacement of an arbitrary point in the sub-
surface are derived with different mathematical approaches, see Mindlin and
Cheng (1950) for Geertsma’s model and McTigue (1987) for Mogi’s source.
This difference may lead to differences in the predicted displacement and stress
field due to pressure change of the source. It would be interesting to compare
the general formulas for displacement and stress, though time constrains the
research objectives.
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Chapter 2. Literature review

An example of subsidence estimated with both Geertsma’s and Mogi’s models
is presented in Fig. 2.4. The example consider a shrinking point source under
a negative change in pressure of −10 MPa. The source is buried at 500 m
and has a radius of 50 m. The model medium has Poisson’s ratio equal to
0.25 and shear modulus equal to 1 GPa. It can be observed that graphs differ
only in magnitude, while keeping the same shape, as already mentioned in the
previous paragraph.

The assumptions lying behind the analytical solutions by Geertsma and Mogi
introduce errors in the representation of reality, and they limit the range of
application to simple geologies. A way to study complex geologies is to nu-
merically model it, using finite element method for example. Next section
summarizes the basic concept of this numerical tool.
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Figure 2.4: Subsidence obtained with Geertsma’s model and Mogi’s
point source model.

2.1.4 Finite element method

The Finite Element Method (FEM) is a computational method for approxi-
mate solution of complex engineering problems. The basic concept of FEM
is the decomposition of the domain of the problem into a finite number of
elements interconnected by nodes. The unknowns related to each element are
approximated through interpolation functions.

The linear spring system is a simple mechanical problem that can be used for
the illustration of the FEM approach. In the one-dimensional domain, the
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2.1. Modelling of reservoir compaction

spring is composed by one element and two nodes, as schematized in Fig. 2.5.
The nodes are displacing due to axial loads, f1 and f2. The deformation of
the element, ue, as function of the displacements of the nodes, u1 and u2, is
expressed as:

ue = u1 − u2 (2.12)

The force acting on node 1 is related to the deformation of the element and
its stiffness, ke, by:

f1 = ke · ue = ke · (u1 − u2) (2.13)

The system is in equilibrium if:

f2 = −f1 = ke · (u2 − u1) (2.14)

The system of equations can be written in matrix form as:[
ke −ke
−ke ke

]
·
{

u1
u2

}
=

{
f1
f2

}
(2.15)

Solving the system of equations 2.15 means estimating the displacement of the
nodes 1 and 2, that is the objective of the modelling.

In the reservoir compaction problem, FEM is often coupled with a reservoir
modelling of fluid flow. In this way, the reservoir rock deformation is directly
linked to the pore volume change through a pore volume compressibility co-
efficient. In addition, the coupling is able to recreate the time dependent
component of rock deformation related to fluid flow.

The advantage of the FEM model is the ability to take into consideration
the spatial variation of the geomechanical properties of the rocks, inside and
outside the reservoir. In order to exploit the modelling at its maximum, the
geology and the spatial distribution of the rock properties in the subsurface
has to be recreated as closely as possible to reality. On the other side, the
time invested in model building and computation, increases side by side with
the increase of details in the geomechanical model.

Geertsma’s model, Mogi’s model and FEM modelling are all geomechanical
tools that can be used to estimate of the displacement and stress caused by
reservoir compaction. However, ground deformation is only one of the time-
lapse observations that we can collect to monitor the subsurface changes. Fur-
ther observations come from seismic and gravity monitoring. In order to fore-
cast such time-lapse changes due to compaction, we need models that link
subsurface deformation to geophysical response. Rock physics is the discipline
that provides those models. A summary of some of the rock physical models
available is presented in the next section.
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The system of equations can be written in matrix form as:[
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Solving the system of equations 2.15 means estimating the displacement of the
nodes 1 and 2, that is the objective of the modelling.

In the reservoir compaction problem, FEM is often coupled with a reservoir
modelling of fluid flow. In this way, the reservoir rock deformation is directly
linked to the pore volume change through a pore volume compressibility co-
efficient. In addition, the coupling is able to recreate the time dependent
component of rock deformation related to fluid flow.

The advantage of the FEM model is the ability to take into consideration
the spatial variation of the geomechanical properties of the rocks, inside and
outside the reservoir. In order to exploit the modelling at its maximum, the
geology and the spatial distribution of the rock properties in the subsurface
has to be recreated as closely as possible to reality. On the other side, the
time invested in model building and computation, increases side by side with
the increase of details in the geomechanical model.

Geertsma’s model, Mogi’s model and FEM modelling are all geomechanical
tools that can be used to estimate of the displacement and stress caused by
reservoir compaction. However, ground deformation is only one of the time-
lapse observations that we can collect to monitor the subsurface changes. Fur-
ther observations come from seismic and gravity monitoring. In order to fore-
cast such time-lapse changes due to compaction, we need models that link
subsurface deformation to geophysical response. Rock physics is the discipline
that provides those models. A summary of some of the rock physical models
available is presented in the next section.
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Figure 2.5: Sketch of a linear spring element.

2.2 Rock physics models

Rock physics is the science that aims to relate the geological properties of a
rock at certain physical conditions, like pressure and temperature, with the
corresponding elastic and seismic properties. For example, porosity, lithology
and saturation are some of the geological properties, and elastic modulus,
velocity and impedance are seismic properties.

The rock physics relations are used in seismic modelling, for example, to pre-
dict the elastic properties from geology, or in seismic inversion to predict
geology from elastic observations. Rock physics is particularly useful when
analysing time-lapse seismic as it allows the prediction of reservoir properties
at various production states.

During production, the properties of the reservoir rocks vary in time due
to a number of factors, like fluid substitution or pore pressure change. In
the following sections, the most important relations that link density and
elastic properties to change in pore pressure and fluid saturation are presented
(Mavko et al., 1998; Calvert, 2005; Fjær et al., 2008).

2.2.1 Fluid substitution effects

Hydrocarbon production causes the flow of the reservoir fluids through the
porous formation. The fluid displacement causes a change in saturation of the
fluids within the pore volume. If we know the initial condition of the reservoir
rocks and the final properties of the fluid, we are able to predict the final
density and elastic properties of the rocks.
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2.2. Rock physics models

Density change The replacement of hydrocarbons with another fluid causes
the change of the density of the reservoir rock. The initial density of a rock is
expressed as:

ρ = ρf · φ+ (1− φ) · ρs (2.16)

where ρf is the density of the fluid, ρs is the density of the solid part of the
rock, that is assumed to be constant in time, and φ is the porosity of the rock.
The pore fluid density is the weighted sum of the fluid components, expressed
as:

ρf =
∑
i

Si · ρf,i (2.17)

where ρf,i is the density of component i present with saturation Si. Assuming
that the porosity is constant, the simplest expression for the change in density,
Δρ, is :

Δρ = φ · (ρf,fin − ρf,ini) (2.18)

where ρf,ini and ρf,fin are initial and final density of the pore fluid, respec-
tively.

Gassmann’s substitution method Fluid substitution results in changes
of bulk modulus of the rock, hence in changes of compressional wave velocity.
The most widely used method for the estimation of the bulk modulus value
due to fluid substitution is the Gassmann substitution method (Gassmann,
1951). The model estimates the bulk modulus, K, of a rock constituted by an
assembly of grains through the equation:

K = Kfr +

(
1− Kfr

Ks

)2

φ

Kf
+

1− φ

Ks
− Kfr

K2
s

(2.19)

where Kfr is the frame modulus, Kf is the fluid bulk modulus, and Ks is the
bulk modulus of the solid part of the rock. The fluid bulk modulus of a fluid
mix is dependent on the saturation, Si, and on the bulk modulus, Kf,i, of the
component i present in the rock:

1

Kf
=

∑
i

Si

Kf,i
(2.20)

Eq. (2.19) can be used to estimate the bulk modulus before and after produc-
tion in various production scenarios just substituting the initial and final bulk
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modulus of the fluid mix. Once the bulk modulus is known, compressional,
Vp, and shear, Vs, velocities can be computed from:

Vp =

√√√√K +
4

3
·G

ρ
and Vs =

√
G

ρ

(2.21)

where G is the shear modulus, that is independent from the fluid composi-
tion at low seismic frequencies. The velocities coming from Eq. (2.21) can
be introduced in a synthetic seismic modelling for predicting time-shifts and
amplitude changes due to production.

2.2.2 Pressure effects

Changes of fluid pressure causes redistribution of the effective stress inside
the reservoir. Depending on the rock properties of the formation, compaction
of the reservoir may occur causing a redistribution of the stress field of the
surrounding rocks too. Different models are available for the prediction of the
change in seismic properties caused by pressure changes.

Granular medium model The granular medium model is suitable for the
determination of the bulk modulus of a rock composed by solid grains as
function of external pressure. The theory has been first formulated by Hertz
(1882), and then extended by Mindlin (1949) providing the basis for the Hertz-
Mindlin contact model. The model provides with a formulation that relates
the growth of the contact area a between two spheres, and the external load
F , see Fig. 2.6 :

u =
3

√
9 · (1− ν2s

) · F 2

2 ·E2
s ·Rs

(2.22)

where u is the vertical displacement, Es and νs are the elastic modulus and the
Poisson’s ratio of the spheres respectively, and Rs is the radius of the sphere.
The model involve the calculation of the bulk modulus and shear modulus
of two adjacent spheric grains as function of their radius and elastic moduli.
Through averaging (Walton, 1987), then, the bulk modulus, K, of a pack of
grains can be expressed by:

K = 3

√
N2

c · (1− φ)2 · E2
s · σp

72 · π2 · (1− ν2s )
2 (2.23)
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and shear modulus, G, can be expressed by:

G =
5− 4 · νs

10 · (2− νs)
· 3

√
3 ·N2

c · (1− φ)2 · E2
s · σp

π2 · (1− ν2s )
2 (2.24)

where Nc is the average number of contact per sphere, φ is the porosity, and
σp is the external hydrostatic pressure.

F

F

Rs

a

u

Figure 2.6: Sketch of the Hertz-Mindlin contact model.

Inclusion model The inclusion models is suitable for the representation
of a continuous rock interrupted by holes or fractures with different shapes,
as sketched in Fig. 2.7 (Fjær et al., 2008). In the isotropic case, the bulk
modulus, K, and the shear modulus, G, can be expressed as functions of
inclusion concentration by:

K = Ks · (1−QK · ζ) (2.25)

G = Gs · (1−QG · ζ) (2.26)

where Ks and Gs are , respectively, the bulk modulus and shear modulus of
the solid material. If the inclusions are flat cracks, the term ζ is known as
crack density and defined as the average:

ζ =
2 · n
π

·
〈
A2

Π

〉
(2.27)
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where A and Π are the area and perimeter of a crack, respectively, and n

is the number of cracks per unit volume. QK and QG are terms that take
into consideration the impact of the inclusions on the solid rock. For cracks
randomly oriented and filled with fluid, an expression for QK and QG is given
by Budiansky and O’connell (1976):

QK =
16

9
· 1− ν2s
1− 2νs

·D (2.28)

QG =
32

45
(1− νs) ·

(
D +

3

2− νs

)
(2.29)

where νs is the Poisson’s ratio of the solid material, and D is expressed as

1

D
= 1 +

4

3π · γ · 1− ν2s
1− 2νs

· Kf

Ks
(2.30)

where γ is the ratio between thickness and diameter of the cracks, and Kf

is the bulk modulus of the pore fluid. The inclusion model can be extended
to include stress dependency of the bulk modulus and shear modulus (Fjær,
2006).

Figure 2.7: Inclusion model.

Empirical models Strain as result of changes of reservoir volume can di-
rectly impact velocity parameters inside and outside the reservoir. Hatchell
and Bourne (2005b) and Røste et al. (2007, 2006) found that a factor, called
dilation factor R, is a convenient link between relative change in velocity, Vp,
and vertical strain, εz in the overburden:

ΔVp

Vp
= R · εz (2.31)
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2.3. Geophysical monitoring

Values for the dilation factor have been found empirically. According to
Hatchell and Bourne (2005b), the dilation factor estimated from time-lapse
seismic surveys is close to 5 if the rocks stretch, and between 1–3 if the rock
compact. However, Holt et al. (2008) shows that the dilation factor estimated
with lab measurements may be very different and strongly depend on the stress
path applied to the core.

2.3 Geophysical monitoring

Geophysical reservoir monitoring permits us to estimate the changes in prop-
erties of hydrocarbon producing reservoirs, in space and in time. As the water
takes the place of the hydrocarbons and as the pressure of the reservoir for-
mation changes, the seismic velocity and the density of the rocks change.
Repeated geophysical surveys of the reservoir before and during production,
can capture when and where those changes are happening. Through an accu-
rate analysis of the time-lapse surveys, we can estimate the changes inside the
reservoir.

The knowledge of the place and the moment when changes take place inside
the reservoir is the major objective of reservoir monitoring. Thanks to this
knowledge, indeed, a better management plan of the reservoir can be defined
and a recovery improvement is ultimately possible (Calvert, 2005). The opti-
mal production of hydrocarbon reserves is becoming a crucial point of interest
in a world where energy consumption is increasing exponentially and where
new hydrocarbon resources are hard to be found (Lakatos and Lakatos-Szabo,
2009; Rogner, 1997).

Time-lapse technology includes different tools able to monitor the reservoir
changes due to production. In the list of those tools are: time-lapse reflection
seismic, microseismicity, time-lapse gravity, electromagnetic monitoring, and
others. In my research work, I have been modelling the change of some of the
reservoir parameters that may be detected in time-lapse seismics and time-
lapse gravity. These two monitoring techniques are shortly described in the
following subsections.

2.3.1 Time-lapse seismics

Repeated seismic surveys, before and during production, can provide impor-
tant information on changes happening at the reservoir level. The measure-
ment of the changes can be evaluated looking at the amplitude difference, δA,
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or at the time-shift, δt, between base and monitor, see Fig. 2.8. However, the
success of time-lapse seismics is dependent on accurate feasibility study and
on data processing.

δt

δA

t

A

ρbVb ρmVm

Figure 2.8: Changes in a seismic wave due to changes in rock proper-
ties.

Before the acquisition of the repeated surveys, a feasibility study should be
carried out for the reservoir to be monitored, as summarized by Lumley et al.
(1997). A number of parameters must be taken into consideration: reservoir
parameters, such as depth and pore pressure, rock properties, such as porosity
and rock bulk modulus, fluid properties, such as saturation change and density,
seismic parameters, such as resolution and repeatability.

Feasibility modelling is a quantitative tool used to predict the magnitude of
the time-lapse changes. We are interested in determining if the producing
reservoir and its surrounding are prone to give visible changes.In order to
succeed in our goal, we need relationships between rock properties changes
and seismic properties, examples of such relations are listed in Section 2.2.

Amplitude difference By differentiating the monitor and the base surveys,
we obtain the amplitude difference volume. The amplitude difference is a
convenient method used in time-lapse interpretation, that permits to highlight
changes at reservoir level by subtracting strong constant-in-time geological
events. Changes are highlighted even in thin reservoirs. The display of the
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2.3. Geophysical monitoring

map of the amplitude change at the reservoir level is a tool to detect where
the fluids are moving (Eiken et al., 2000).

The measurement of the amplitude changes is also an important source of
information for quantitative estimation of the change in fluid pressure and
saturation inside the producing reservoir (Tura and Lumey, 1999; Landrø,
2001). Both pre-stack and post-stack data are useful for this purpose. Landrø
(2001), for example, proposes approximate expressions for the estimation of
saturation and pressure as function of Amplitude Versus Offset (AVO).

Time-shifts Because reservoir production causes change in rock velocity,
the time needed by the waves to propagate within the Earth is different be-
tween base and monitor. Measuring the time-shifts and the correlation be-
tween the repeated surveys can be an important source of information for the
discrimination of the changes localized at the reservoir level.

In the case of a compacting reservoir, for example, the seismic properties of
the rock in the surrounding of the reservoir changes due to the arching effect.
As a consequence of the rock deformation, the waves travel with a different
speed already in the overburden, see Fig. 2.9. The time-shifts, Δt, due to
the arching effect in the overburden, can be estimated through the formula
proposed by Landrø and Stammeijer (2004):

Δt

t
=

Δz

z
+

ΔVp

Vp
(2.32)

where t is the wave travel time, z is the depth of the reflector, Δz is the
change in depth of the reflector, Vp is the P-wave velocity of the rock above the
reflector, and ΔVp is the change in P-wave velocity due to rock redistribution in
the reservoir surroundings. By correlating the base and the monitor surveys, it
is possible to measure the time-shift differences above and below the reservoir.
The changes localized inside the reservoir interval can be recognized, and a
more accurate interpretation of the measurements can be carried out.

2.3.2 Time-lapse gravity

The total gravity change, Δg, at an observation point P0(x0, y0, z0), can be
expressed as the sum of four terms:

Δg (P0) = Δgres +ΔgFA +Δgdef +Δgwt (2.33)

where Δgres is the change in gravity due to mass substitution and redistri-
bution at the reservoir level, ΔgFA is the change in gravity dependent on
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tween the repeated surveys can be an important source of information for the
discrimination of the changes localized at the reservoir level.

In the case of a compacting reservoir, for example, the seismic properties of
the rock in the surrounding of the reservoir changes due to the arching effect.
As a consequence of the rock deformation, the waves travel with a different
speed already in the overburden, see Fig. 2.9. The time-shifts, Δt, due to
the arching effect in the overburden, can be estimated through the formula
proposed by Landrø and Stammeijer (2004):

Δt

t
=

Δz

z
+

ΔVp

Vp
(2.32)

where t is the wave travel time, z is the depth of the reflector, Δz is the
change in depth of the reflector, Vp is the P-wave velocity of the rock above the
reflector, and ΔVp is the change in P-wave velocity due to rock redistribution in
the reservoir surroundings. By correlating the base and the monitor surveys, it
is possible to measure the time-shift differences above and below the reservoir.
The changes localized inside the reservoir interval can be recognized, and a
more accurate interpretation of the measurements can be carried out.

2.3.2 Time-lapse gravity

The total gravity change, Δg, at an observation point P0(x0, y0, z0), can be
expressed as the sum of four terms:

Δg (P0) = Δgres +ΔgFA +Δgdef +Δgwt (2.33)

where Δgres is the change in gravity due to mass substitution and redistri-
bution at the reservoir level, ΔgFA is the change in gravity dependent on
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Figure 2.9: Empirical model linking seismic changes to overburden re-
distribution.

change in ground elevation, Δgdef is the change in gravity due to subsurface
deformation, and Δgwt is the change in gravity due to change in hight of the
groundwater-table.

The first term, Δgres, can be estimated using a forward model that includes
reservoir modelling. The second term of Eq. 2.33, known as free air correction,
can be approximated on land as:

ΔgFA,l = 3.086 μGal/cm (2.34)

and in water as:

ΔgFA,w = 2.66 μGal/cm (2.35)

The term Δgdef takes into consideration the effect of the displacement of the
rock in the subsurface, and the change in density due to the compressibility of
the material. In order to estimate the amount of this term, a forward model
that includes geomechanical modelling is required. This is one of the main
objective of this thesis. The last term in Eq. 2.33 is only present in land
gravity monitoring, and it can be approximated by (Battaglia et al., 2008):

Δgwt = 2π · G · ρw · φ ·Δz (2.36)

where G is the gravitational constant, φ is the ground porosity, ρw is the water
density, and Δz is the change in depth of the groundwater-table.

By subtracting the the last three terms from the observed gravity change, an
estimate of the change at the reservoir level is possible. The terms ΔgFA and
Δgwt can be monitored directly, but not the term Δgdef . The consequence is
that a forward modelling is needed to get an estimated value to be subtracted
from the observation.
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2.3. Geophysical monitoring

Numerical modelling of gravity The calculation of the gravity potential
of the Earth is often performed dividing the subsurface in element volumes,
computing the volume integral, and, finally, summing the gravity contribution
of each element volume.

The simplest approach to evaluate the integral of the Newton’s law, is using the
point-mass approximation. The subsurface is discretized in element volumes
of the same size. The gravity potential is evaluated for each volume, assuming
that the mass of the volume is concentrated at the centre of mass of the
volume:

g = G · ρV
r2c

(2.37)

where rc is the distance of the centre of mass of the volume V from the
observation point. The total gravity potential is the sum of the contribution
of each element volume.

The advantage of the point mass approximation is the low computational time
needed for the computation of the gravity potential. On the other hand, there
are restrictions on the validity of the expression Eq. 2.37 near the computation
point.

The right rectangular parallelepiped approximation is a well know approach
for solving the volume integral of the Newton’s law (Nagy, 2000, 1966):

g (P0) = G · ρ
∫ z2

z1

∫ y2

y1

∫ x2

x1

dx · dy · dz
r

(2.38)

where G is the gravitational constant, P0 is the observation point, x1, x2, y1,
y2, z1,and z2 represent the coordinates of the corners of the rectangular prism,
and r is the distance

√
x2 + y2 + z2. A sketch of the rectangular parallelepiped

is provided in Fig. 2.10. Eq. 2.38 can be approximated in the following way:

g (P0) = G·
∣∣∣∣∣∣∣∣∣xy ln (z + r) + yz ln (x+ r) + zx ln (y + r)
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(2.39)

The vertical component of gravity can be approximated in the following form:

gz (P0) = G·
∣∣∣∣∣∣∣∣∣x ln (y + r) + y ln (x+ r)− z tan−1 xy

zr

∣∣∣x2

x1

∣∣∣y2
y1

∣∣∣z2
z1

(2.40)

The advantage of Nagy’s approximation is that it is valid on the whole domain
of integration, outside of or on the boundary of the prism. On the other hand,

25

2.3. Geophysical monitoring

Numerical modelling of gravity The calculation of the gravity potential
of the Earth is often performed dividing the subsurface in element volumes,
computing the volume integral, and, finally, summing the gravity contribution
of each element volume.

The simplest approach to evaluate the integral of the Newton’s law, is using the
point-mass approximation. The subsurface is discretized in element volumes
of the same size. The gravity potential is evaluated for each volume, assuming
that the mass of the volume is concentrated at the centre of mass of the
volume:

g = G · ρV
r2c

(2.37)

where rc is the distance of the centre of mass of the volume V from the
observation point. The total gravity potential is the sum of the contribution
of each element volume.

The advantage of the point mass approximation is the low computational time
needed for the computation of the gravity potential. On the other hand, there
are restrictions on the validity of the expression Eq. 2.37 near the computation
point.

The right rectangular parallelepiped approximation is a well know approach
for solving the volume integral of the Newton’s law (Nagy, 2000, 1966):

g (P0) = G · ρ
∫ z2

z1

∫ y2

y1

∫ x2

x1

dx · dy · dz
r

(2.38)

where G is the gravitational constant, P0 is the observation point, x1, x2, y1,
y2, z1,and z2 represent the coordinates of the corners of the rectangular prism,
and r is the distance

√
x2 + y2 + z2. A sketch of the rectangular parallelepiped

is provided in Fig. 2.10. Eq. 2.38 can be approximated in the following way:

g (P0) = G·
∣∣∣∣∣∣∣∣∣xy ln (z + r) + yz ln (x+ r) + zx ln (y + r)

−x2

2
tan−1 yz

xr
− y2

2
tan−1 zx

yr
− z2

2
tan−1 xy

zr

∣∣∣x2

x1

∣∣∣y2
y1

∣∣∣z2
z1

(2.39)

The vertical component of gravity can be approximated in the following form:

gz (P0) = G·
∣∣∣∣∣∣∣∣∣x ln (y + r) + y ln (x+ r)− z tan−1 xy

zr

∣∣∣x2

x1

∣∣∣y2
y1

∣∣∣z2
z1

(2.40)

The advantage of Nagy’s approximation is that it is valid on the whole domain
of integration, outside of or on the boundary of the prism. On the other hand,

25

2.3. Geophysical monitoring

Numerical modelling of gravity The calculation of the gravity potential
of the Earth is often performed dividing the subsurface in element volumes,
computing the volume integral, and, finally, summing the gravity contribution
of each element volume.

The simplest approach to evaluate the integral of the Newton’s law, is using the
point-mass approximation. The subsurface is discretized in element volumes
of the same size. The gravity potential is evaluated for each volume, assuming
that the mass of the volume is concentrated at the centre of mass of the
volume:

g = G · ρV
r2c

(2.37)

where rc is the distance of the centre of mass of the volume V from the
observation point. The total gravity potential is the sum of the contribution
of each element volume.

The advantage of the point mass approximation is the low computational time
needed for the computation of the gravity potential. On the other hand, there
are restrictions on the validity of the expression Eq. 2.37 near the computation
point.

The right rectangular parallelepiped approximation is a well know approach
for solving the volume integral of the Newton’s law (Nagy, 2000, 1966):

g (P0) = G · ρ
∫ z2

z1

∫ y2

y1

∫ x2

x1

dx · dy · dz
r

(2.38)

where G is the gravitational constant, P0 is the observation point, x1, x2, y1,
y2, z1,and z2 represent the coordinates of the corners of the rectangular prism,
and r is the distance

√
x2 + y2 + z2. A sketch of the rectangular parallelepiped

is provided in Fig. 2.10. Eq. 2.38 can be approximated in the following way:

g (P0) = G·
∣∣∣∣∣∣∣∣∣xy ln (z + r) + yz ln (x+ r) + zx ln (y + r)

−x2

2
tan−1 yz

xr
− y2

2
tan−1 zx

yr
− z2

2
tan−1 xy

zr

∣∣∣x2

x1

∣∣∣y2
y1

∣∣∣z2
z1

(2.39)

The vertical component of gravity can be approximated in the following form:

gz (P0) = G·
∣∣∣∣∣∣∣∣∣x ln (y + r) + y ln (x+ r)− z tan−1 xy

zr

∣∣∣x2

x1

∣∣∣y2
y1

∣∣∣z2
z1

(2.40)

The advantage of Nagy’s approximation is that it is valid on the whole domain
of integration, outside of or on the boundary of the prism. On the other hand,

25

2.3. Geophysical monitoring

Numerical modelling of gravity The calculation of the gravity potential
of the Earth is often performed dividing the subsurface in element volumes,
computing the volume integral, and, finally, summing the gravity contribution
of each element volume.

The simplest approach to evaluate the integral of the Newton’s law, is using the
point-mass approximation. The subsurface is discretized in element volumes
of the same size. The gravity potential is evaluated for each volume, assuming
that the mass of the volume is concentrated at the centre of mass of the
volume:

g = G · ρV
r2c

(2.37)

where rc is the distance of the centre of mass of the volume V from the
observation point. The total gravity potential is the sum of the contribution
of each element volume.

The advantage of the point mass approximation is the low computational time
needed for the computation of the gravity potential. On the other hand, there
are restrictions on the validity of the expression Eq. 2.37 near the computation
point.

The right rectangular parallelepiped approximation is a well know approach
for solving the volume integral of the Newton’s law (Nagy, 2000, 1966):

g (P0) = G · ρ
∫ z2

z1

∫ y2

y1

∫ x2

x1

dx · dy · dz
r

(2.38)

where G is the gravitational constant, P0 is the observation point, x1, x2, y1,
y2, z1,and z2 represent the coordinates of the corners of the rectangular prism,
and r is the distance

√
x2 + y2 + z2. A sketch of the rectangular parallelepiped

is provided in Fig. 2.10. Eq. 2.38 can be approximated in the following way:

g (P0) = G·
∣∣∣∣∣∣∣∣∣xy ln (z + r) + yz ln (x+ r) + zx ln (y + r)

−x2

2
tan−1 yz

xr
− y2

2
tan−1 zx

yr
− z2

2
tan−1 xy

zr

∣∣∣x2

x1

∣∣∣y2
y1

∣∣∣z2
z1

(2.39)

The vertical component of gravity can be approximated in the following form:

gz (P0) = G·
∣∣∣∣∣∣∣∣∣x ln (y + r) + y ln (x+ r)− z tan−1 xy

zr

∣∣∣x2

x1

∣∣∣y2
y1

∣∣∣z2
z1

(2.40)

The advantage of Nagy’s approximation is that it is valid on the whole domain
of integration, outside of or on the boundary of the prism. On the other hand,

25



Chapter 2. Literature review

Figure 2.10: Sketch of the rectangular parallelepiped.

the computational time needed to evaluate the integral is such that it may
be infeasible to use this method for integrating big volumes or fine discretized
volumes.

Nagi’s approximation is one of the techniques used to benchmark the forward
model presented for the estimation of 4D gravity. The forward model requires
the estimation of deformation and density change from a geomechanical model
as input of the gravity model. The gravity model gives as output the estimate
of change in gravity due to reservoir compaction. Further discussion on the
application of Nagi’s approximation is presented in Chapter 5.

2.4 Summary

The literature review described how reservoir compaction is a phenomenon
that is an object of attention of different disciplines. Rock mechanics aims
to forecast the displacement field and stress distribution inside and outside
the depleting reservoir. Rock physics focus on the relation between physi-
cal changes and rock property changes. Geophysical monitoring observes the
Earth to capture the changes in the subsurface. The three disciplines cooper-
ate together to optimize the knowledge of the reservoir and its changes. The
works reviewed in this chapter are those that directly influenced my research.
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3.1 Abstract

Geertsma’s analytical method is often used to compute strain and stress
changes around a compacting geological reservoir. The present work extends
Geertsma’s solution by adding a rigid layer beneath the compacting reservoir.
Analytical formulae are presented for all the components of displacement of
a point in the subsurface. Our derivation includes the correction of an error
found in the paper written by Sharma in 1956.
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Chapter 3. Displacements due to a rigid basement

3.2 Introduction

Reservoir compaction due to hydrocarbon production causes changes in dis-
placement, stress and strain fields in the subsurface. The propagation of the
compaction to the surface may result in visible subsidence and changes in the
seismic response. Some examples of compacting reservoirs are the Valhall field
(Barkved and Kristiansen, 2005), the Shearwater field (Staples et al., 2007),
and the Dan field (Hatchell et al., 2007), all located in the North Sea. Forward
models for predicting geomechanical changes due to pressure depletion are of
interest for monitoring subsidence, for estimating 4D seismic changes, and for
understanding the potential of induced seismicity.

Various authors have studied the effects of hydrocarbon production on subsi-
dence or displacement, strain and stress fields. In the group of the analytical
methods, Geertsma is one of the most cited. In 1973, Geertsma (Geertsma,
1973a) proposed a solution for displacements and stresses based on the theory
of poro-elasticity. He used as basis for his formulation the concept of nu-
cleus of strain in analogy with the theory of thermo-elasticity (Nowacki, 1986;
Goodier, 1937; Mindlin and Cheng, 1950). His model consists of a circular
compacting reservoir buried in a homogeneous and linear elastic half space.
In 1974, van Opstal (van Opstal, 1974) studied the vertical displacement at
the free surface adding a rigid basement to Geertsma’s model. Later, Fokker
and Orlic (Fokker and Orlic, 2006) proposed a semi-analytical model for the
prediction of subsidence in a multi-layered visco-elastic subsurface.

The alternative to the analytical solution is the use of numerical codes, based
for instance on finite element methods. One method is explicit coupling, where
changes in the pore-pressure coming from a conventional fluid simulator in-
duce changes in stresses and strains in the geomechanical code (Minkoff et al.,
1999). Another one is the full coupling of flow simulation and geomechan-
ical modeling, as proposed by Settari in 2001 (Settari and Walters, 2001).
These methods are more flexible with respect to geometry and heterogeneity
of the subsurface, material constitutive behaviour, fluid properties and flow
behaviour; however, the complexity of the models cause an increase in the
time needed for the construction and the computation.

The present paper extends Geertsma’s solution to the case of a compacting
reservoir over a rigid basement. The method proposed here stresses the link
between the presence of a rigid basement and its consequences on the dis-
placement field created by the compacting reservoir. The rigid basement, for
example, could represent crystalline basement rocks underlying a sedimen-
tary basin; or a relatively stiff carbonate sequence underlying a soft clastic
sequence.
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3.2. Introduction

Figure 3.1: Rigid basement sketch. Sketch of the problem formulated
for a nucleus of strain buried at depth c and lying over a
hard basement.

The main objective is to create a tool which could easily be added to a code
based on Geertsma’s solution, and maintain the low computational effort.
Formulae for all the components of displacement for a point buried in the half
space are derived based on the derivation proposed by Sharma (Sharma and
Pilani, 1956), who solved the analogous thermal problem. Here, we repeat his
derivation, correct an error and derive the solutions for all three displacements
components. The same path was followed by van Opstal (van Opstal, 1974)
who, as noted above, derived an expression for the vertical displacement of
the free surface.
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Chapter 3. Displacements due to a rigid basement

3.3 Model and basic equations

The paper derives the analytical solution of the displacements due to a system
consisting of a compacting reservoir and a rigid basement. As in Geertsma’s
model, the medium inside the reservoir and between the free surface and the
rigid basement in linear elastic and has uniform and isotropic deformation
properties. The displacement inside the basement is zero. We assume that
production cause a uniform pore pressure change, Δp, within the reservoir, and
none in the surroundings. The reservoir is discretized in N blocks of volume
V each. The centre of each block represents the coordinate of a nucleus of
poro-elastic strain, which causes a displacement field due to the pressure drop
Δp. The sketch of the system solved for a single nucleus buried at depth c is
represented in Fig. 3.1. In our system of reference, the positive side of the
vertical axis is inside the ground. The summation of the displacement fields
of all nuclei of the discretization gives the solution of the problem.

The derivation of the solution for the single nucleus is developed in three steps:

1. Firstly, the systems for stress and displacement are found for the poro-
elastic nucleus in the infinite domain;

2. Then, the stresses acting through the free surface are nullified by super-
imposing a second system of stress due to an image nucleus at the point
(0, 0,−c). The sum of the two systems determines stress and displace-
ment fields due to the nucleus in a semi-infinite domain;

3. Finally, a third system is found in such a way that keeps the surface at
z = 0 free of stresses and satisfies the rigidity of the basement at z = k.

The problem has to be physically possible in an elastic solid, thus the con-
sistency equations and the equilibrium equations have to be satisfied by each
system s. Following the method proposed by Sharma (Sharma and Pilani,
1956), our problem must satisfy Beltrami’s equations (Beltrami, 1902):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂zs = − z

2 (1 + ν)

∂θs

∂x
+ ψs1

ŷzs = − z

2 (1 + ν)

∂θs

∂y
+ ψs2

ẑzs = − z

2 (1 + ν)

∂θs

∂z
+ ψs3

(3.1)
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ŷzs = − z

2 (1 + ν)

∂θs

∂y
+ ψs2
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3.4. Solution of the problem

the equations of equilibrium:

∂θs

∂z
= 2 (1 + ν)

{
∂ψs1

∂x
+

∂ψs2

∂y
+

∂ψs3

∂z

}
(3.2)

and the generalized Hooke’s law for an elastic medium:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂us

∂z
=

1

E
[(1 + ν) ẑzs − ν θs]

∂vs

∂z
+

∂us

∂y
=

2 (1 + ν)

E
ŷzs

∂ws

∂z
+

∂us

∂x
=

2 (1 + ν)

E
x̂zs

(3.3)

where u, v, w are the displacement components, x̂zs, ŷzs, ẑzs are the stress
components, θs is the first stress invariant,ψs1, ψs2, ψs3 are harmonic functions
(see Goodier (1937) and Nowacki (1986) for the definition of these functions).
E and ν are Young’s modulus and Poisson’s ratio of the drained framework
of the material between the free surface and the rigid basement.

3.4 Solution of the problem

3.4.1 System 1 – Nucleus of strain in the infinite space

The first step of the derivation is to define the displacement field due to the
nucleus in the infinite space. Considering that the medium of the model is
poro-elastic, we can apply the displacement potential formulated by Geertsma
through the following equation:

Φ = −Cm V Δp

4π R1
(3.4)

where R1 =
√

x2 + y2 + (z − c)2 is the distance from the point (x, y, z) to the
nucleus, V is the volume of the nucleus, and Δp is the pressure drop. Cm is
the uniaxial compaction coefficient defined as (Geertsma, 1966):

Cm =
1

E
· (1 + ν) · (1− 2ν)

1− ν
(3.5)
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Chapter 3. Displacements due to a rigid basement

The gradient of Eq. (3.4) gives the solution for the displacements:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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∂Φ
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Ag (1 + ν)

E

∂V 1

∂x
=

=
Ag (1 + ν)

E

∫
∞
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eλ ε(z−c)∂J0 (λ r)
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λ ε eλ ε(z−c)J0 (λ r)

]
dλ

(3.6)

where

r =
√

x2 + y2 (3.7)

ε =

{
−1 if z > c

+1 if z < c
(3.8)

Ag = −Cm V EΔp

4π (1 + ν)
(3.9)

and where the following formulation is used as an alternative and convenient

way of expressing the singularity
1

R1
:

V 1 =
1

R1
=

∫
∞

0

e−λε(z−c)J0 (λ r) dλ (3.10)

Later on, indeed, it will be shown that this Bessel function is common for all
the systems, and will cancel while solving the last system of linear equations.
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3.4. Solution of the problem

Given the displacement of Eq. (3.6), the stresses can be calculated as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂z1 = Ag
∂2V 1

∂x∂z
= −Ag

∫
∞

0
λ e−λ ε (z−c)∂J0 (λ r)

∂x
dλ

ŷz1 = Ag
∂2V 1

∂y∂z
= −Ag

∫
∞

0
λ e−λ ε (z−c)∂J0 (λ r)

∂y
dλ

ẑz1 = Ag
∂2V 1

∂z2
= Ag

∫
∞

0
λ2 e−λ ε (z−c)J0 (λ r)dλ

(3.11)

3.4.2 System 2 – Image nucleus

In order to find displacement and stress fields of the nucleus buried in the half
space, we need to add the effect of an image nucleus positioned in such a way
that the sum of System 1 and System 2 satisfies the boundary conditions at
the free surface:

x̂z1 + x̂z2 = ŷz1 + ŷz2 = ẑz1 + ẑz2 = 0, at z = 0 (3.12)

This is fulfilled if:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ21 = Ag
∂2V 2

∂x∂z

ψ22 = Ag
∂2V 2

∂y∂z

ψ23 = −Ag
∂2V 2

∂z2

(3.13)

where

V 2 =
1

R2
=

∫
∞

0

e−λ(z+c)J0 (λ r) dλ (3.14)

and R2 =
√

x2 + y2 + (z + c)2, that is the distance from the point (x, y, z) to
the image nucleus. The formula for the first stress invariant is derived from
Eq. (3.2):

θ2 = − 4Ag (1 + ν)
∂2V 2

∂z2
(3.15)
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Chapter 3. Displacements due to a rigid basement

Then, substituting this value in Eq. (3.1), we find the formulae for the stresses
in the second system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂z2 = 2Ag z
∂3V 2

∂x∂z2
−Ag

∂2V 2

∂x∂z

ŷz2 = 2Ag z
∂3V 2

∂y∂z2
−Ag

∂2V 2

∂y∂z

ẑz2 = 2Ag z
∂3V 2

∂z3
−Ag

∂2V 2

∂z2

(3.16)

Writing Eq. (3.17) in terms of Bessel functions, we have:
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x̂z2 = Ag

∫
∞

0
[2 z λ− 1]λ e−λ(z+c)∂J0 (λ r)

∂x
dλ

ŷz2 = Ag

∫
∞

0
[2 z λ− 1]λ e−λ(z+c)∂J0 (λ r)

∂y
dλ

ẑz2 = −Ag

∫
∞

0
[2 z λ+ 1]λ2 e−λ(z+c)J0 (λ r) dλ

(3.17)

The derivation of the displacement is now possible. For the vertical compo-
nent, we first need to substitute Eq. (3.15) and the third line of Eq. (3.17)
into the first line of Eq. (3.3):

∂u2

∂z
=

Ag (1 + ν)

E

{
2 z

∂3V 2

∂z3
− (3 − 4 ν)

∂2V 2

∂z2

}
(3.18)

Then, integrating over z and simplifying, we obtain the vertical displacement
as follow:

u2 =
As (1 + ν)

E

{
2 z

∂2V 2

∂z2
− (3− 4 ν)

∂V 2

∂z

}
(3.19)

At this point, we observe that Eq. (3.19) differs from the formula derived by
Sharma in 1956 (Sharma and Pilani, 1956). This discrepancy is due to an
error in Sharma’s derivation as mentioned by van Opstal in 1974 (van Opstal,
1974). Including this correction in the solution of the second and the third
equation of system Eq. (3.3), we find the components of the displacement for
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂z2 = Ag

∫
∞

0
[2 z λ− 1]λ e−λ(z+c)∂J0 (λ r)

∂x
dλ

ŷz2 = Ag

∫
∞

0
[2 z λ− 1]λ e−λ(z+c)∂J0 (λ r)

∂y
dλ

ẑz2 = −Ag

∫
∞

0
[2 z λ+ 1]λ2 e−λ(z+c)J0 (λ r) dλ

(3.17)

The derivation of the displacement is now possible. For the vertical compo-
nent, we first need to substitute Eq. (3.15) and the third line of Eq. (3.17)
into the first line of Eq. (3.3):

∂u2

∂z
=

Ag (1 + ν)

E

{
2 z

∂3V 2

∂z3
− (3 − 4 ν)

∂2V 2

∂z2

}
(3.18)

Then, integrating over z and simplifying, we obtain the vertical displacement
as follow:

u2 =
As (1 + ν)

E

{
2 z

∂2V 2

∂z2
− (3− 4 ν)

∂V 2

∂z

}
(3.19)

At this point, we observe that Eq. (3.19) differs from the formula derived by
Sharma in 1956 (Sharma and Pilani, 1956). This discrepancy is due to an
error in Sharma’s derivation as mentioned by van Opstal in 1974 (van Opstal,
1974). Including this correction in the solution of the second and the third
equation of system Eq. (3.3), we find the components of the displacement for
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3.4. Solution of the problem

the second system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w2 = Ag
(1 + ν)

E

∫
∞

0
[3− 4 ν − 2 z λ] e−λ(z+c)∂J0 (λ r)

∂x
dλ

v2 = Ag
(1 + ν)

E

∫
∞

0
[3− 4 ν − 2 z λ] e−λ(z+c)∂J0 (λ r)

∂y
dλ

u2 = Ag
(1 + ν)

E

∫
∞

0
[3− 4 ν + 2 z λ]λ e−λ(z+c)J0 (λ r) dλ

(3.20)

3.4.3 System 1 + 2 – Nucleus of strain in the half space

Stresses and displacements for the nucleus of strain buried in the half space
come from the sum of the solution of the previous two systems. Hence the
stresses are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂z1 + x̂z2 = Ag

∫
∞

0
λ
[
e−λ ε (z−c) + (1− 2 z λ) e−λ(z+c)

] ∂J0 (λ r)
∂x

dλ

ŷz1 + ŷz2 = Ag

∫
∞

0
λ
[
e−λ ε (z−c) + (1− 2 z λ) e−λ(z+c)

] ∂J0 (λ r)
∂y

dλ

ẑz1 + ẑz2 = −Ag

∫
∞

0
λ2

[
e−λ ε (z−c) − (1 + 2 z λ) e−λ(z+c)

]
J0 (λ r) dλ

(3.21)

and the displacements are:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1 + w2 =

Ag
(1 + ν)

E

∫
∞

0

[
eλ ε (z−c) + (3− 4 ν − 2 z λ) e−λ(z+c)

] ∂J0 (λ r)
∂x

dλ

v1 + v2 =

Ag
(1 + ν)

E

∫
∞

0

[
eλ ε (z−c) + (3− 4 ν − 2 z λ) e−λ(z+c)

] ∂J0 (λ r)
∂y

dλ

u1 + u2 =

−Ag
(1 + ν)

E

∫
∞

0
λ

[
ε eλ ε (z−c) + (3− 4 ν + 2 z λ) e−λ(z+c)

]
J0 (λ r) dλ

(3.22)
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Chapter 3. Displacements due to a rigid basement

The solution proposed here for the displacements, Eq. (3.22), is consistent
with the one derived by Geertsma in 1973. The only difference is the way the
singularity is expressed mathematically.

3.4.4 System 3 – Rigid basement

The next step is finding the solution for the system that accounts for the effects
of the rigid basement. As proposed by Sharma (Sharma and Pilani, 1956), we
can express the Eq. (3.1) in the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂z3 = − z

2 (1 + ν)

∂θ3

∂x

∫
∞

0
B sinh (zλ)

∂J0 (λ r)

∂x
dλ

ŷz3 = − z

2 (1 + ν)

∂θ3

∂y

∫
∞

0
B sinh (zλ)

∂J0 (λ r)

∂y
dλ

ẑz3 = − z

2 (1 + ν)

∂θ3

∂z

∫
∞

0
C sinh (zλ) J0 (λ r) dλ

(3.23)

where B and C are unknown functions of λ. Written in this form, the stresses
of the third system are zero at z = 0; thus we shall now define B and C such
that the displacement at the basement vanishes.
From Eq. (3.2), the first stress invariant for the third system becomes:

θ3 = 2 (1 + ν)

∫
∞

0

λ [C cosh (zλ)−B sinh (zλ)] J0 (λ r) dλ (3.24)

and substituting Eq. (3.24) in Eq. (3.23), we can write the stresses as follow:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂z3 =∫
∞

0

{−λ z [C sinh (zλ)−B cosh (zλ)] +B sinh (zλ)}∂J0 (λ r)
∂x

dλ

ŷz3 =∫
∞

0

{−λ z [C sinh (zλ)−B cosh (zλ)] +B sinh (zλ)}∂J0 (λ r)
∂y

dλ

ẑz3 =∫
∞

0

{−λ2 z [C cosh (zλ)−B sinh (zλ)] + λC sinh (zλ)}J0 (λ r) dλ
(3.25)
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3.4. Solution of the problem

Then, using Eq. (3.3) again, we obtain the displacement of the third system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w3 =
(1 + ν)

E

∫
∞

0
{B
λ
[2 (1− ν) cosh (zλ) + λ z sinh (zλ)]−

C

λ
[(1− 2 ν) sinh (zλ) + λ z cosh (zλ)]} ∂J0 (λ r)
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Chapter 3. Displacements due to a rigid basement

for the displacement are:⎧⎪⎨⎪⎩
ut = u1 + u2 + u3

vt = v1 + v2 + v3

wt = w1 + w2 +w3

(3.33)

The impact of the rigid basement is illustrated in Fig. 3.2(b), showing the
vertical displacement above and below a single shrinking nucleus, both for the
Rigid Basement model (System 1+2+3), the Geertsma model (System 1+2)
and the basement correction (System 3). The nucleus is sitting at 800 m depth
and the rigid basement is at 1000 m depth. The nucleus is 100 m thick and
it has a base area of 1100 m2. The results are due to a pressure depletion
of 10 MPa. The uniaxial compaction coefficient is 2.5·10−4 MPa−1, and the
Poisson’s ratio is 0.25.

In the overburden, the presence of the rigid basement is seen to induce a larger
downwards movement, i.e. larger subsidence. In the underburden, the vertical
displacement is vanishing at the rigid basement, hence the displacement is less
than predicted by the Geertsma model. Note that System 1 + 2 and System
1+2+3 are only valid outside the nucleus, therefore the curves are truncated
at the boundary of the nucleus. Since the displacements are proportional to
the product of the volume of the nucleus times the pressure drop (see Eq.
3.9), we will get the same displacement outside the nucleus if the volume of
the nucleus is reduced by a given factor and the pressure drop is increased by
the same factor.

3.5 Extension to arbitrary reservoir shape

The displacement due to the compaction of an arbitrary shaped reservoir can
be found by dividing the reservoir into an arbitrary number of volumes and
assuming a nucleus of poro-elastic strain into each volume. As addressed by
Geertsma and Van Opstal (1973) and Lewis et al. (Lewis et al., 1983), special
care is needed in choosing the number of discretization volumes, which is
geometry dependent. The displacement can then be found by summation as
follow:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

U res (x, y, z) =
∑N

i=1 ut,i (x, y, z)

V res (x, y, z) =
∑N

i=1 vt,i (x, y, z)

W res (x, y, z) =
∑N

i=1wt,i (x, y, z)

(3.34)
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3.5. Extension to arbitrary reservoir shape
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Figure 3.2: a) overburden and b) underburden displacement due to
a single nucleus of strain. Vertical displacement versus
depth as predicted by the Rigid Basement model (System
1 + 2 + 3), the Geertsma’s model (System 1 + 2) and the
basement correction (System 3), due to a shrinking nucleus
sitting at 800 m depth and a rigid basement at 1000 m
depth. Note that the signs of the displacements for System
1 + 2 + 3 and System 1 + 2 have been changed in the
underburden due to the logarithmic axis.
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Chapter 3. Displacements due to a rigid basement
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Figure 3.3: Free surface subsidence. Subsidence of the free surface
computed using both van Opstal’s solution and Rigid
Basement solution.

The strain components can be found numerically as:

εij =
1

2

(
ΔUres,i

Δxj
+

ΔUres,j

Δxi

)
(3.35)

and, from Hooke’s law, the stresses:

σij =
E

1 + ν

[
εij +

ν

1− 2 ν
ε δij

]
(3.36)

where ε is the volumetric strain and δij is the Kronecker delta.

The solution provided by these models is only valid outside the reservoir. In
order to get an indication of what is happening inside the reservoir, we take
linear interpolations of the displacements at the boundaries of the reservoir
to represent the displacements inside the reservoir. This implies that the
deformation of the reservoir is assumed to be uniform in the vertical direction.
Note that our analyses in the following are focused on the rock around the
reservoir, and that the stresses, strains and displacements shown inside the
reservoir are only estimates based on this assumption.

The same method of summation and interpolation has been used in the next
section to compute the solutions for Geertsma’s model, that is for the case of
a reservoir buried in a semi-infinite space (see Section 3.4.3).
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Note that our analyses in the following are focused on the rock around the
reservoir, and that the stresses, strains and displacements shown inside the
reservoir are only estimates based on this assumption.

The same method of summation and interpolation has been used in the next
section to compute the solutions for Geertsma’s model, that is for the case of
a reservoir buried in a semi-infinite space (see Section 3.4.3).
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3.6 Results

The presented method has been used to compare displacements, stresses and
strains due to a compacting reservoir with and without rigid basement. As
already stated, the solution of the case without the basement coincide with
the solution proposed by Geertsma.

The reservoir analysed in this section is a cylinder with a vertical axis, with a
radius of 500 m and a length of 100 m. It is positioned at a depth of 800 m, and,
when present, the rigid basement is 150 m under the bottom of the reservoir.
All results are due to a pressure depletion of 10 MPa. The uniaxial compaction
coefficient is 2.5·10−4 MPa−1, and Poisson’s ratio is 0.25. Each nucleus is 100
m thick and it has a base area of 1100 m2, for a total of 715 nuclei. We define
the vertical axis as positive downwards, thus downward movement is positive
and uplift is negative. Stretching and tension are positive, while compaction
and compression are negative.

The number of nuclei has been chosen such to be sufficiently high to give satis-
fying errors in displacement and strain, and to reduce the computational time.
The source of the errors is the mathematical representation of the nucleus of
strain, that is discontinuous at the centre of the nucleus. The errors are mainly
localized close to the reservoir horizontal plan of symmetry of the reservoir,
where the nucleus centres are positioned. The choice of the number of nu-
clei is arbitrary, and it depends on the accuracy required from the problem
formulation. In our example, the error of the subsidence values found using
the analytical solution by van Opstal (1974) and the semi-analytical solution
presented in Section 3.5 is about 0.01 %.

In order to assess the correctness of the previous derivation, we benchmarked
our method against the derivation for the displacement at the free surface
found by van Opstal (van Opstal, 1974). As shown in Fig. 3.3, the subsidence
of the free surface found using the two methods coincides; thus we assume
that our derivation and results are valid.

Fig. 3.4 compares the results for free surface subsidence and vertical displace-
ment of the top and bottom of the reservoir for Geertsma’s and the Rigid
Basement models. We observe that the free surface displacement is larger
with a rigid basement than without; this is expected since the rigid basement
will act as force keeping all movements downwards. The rigid basement also
imposes an additional positive displacement to the top and bottom of the
reservoir. Furthermore we observe that the deformed area at the free surface
is larger than the deformed area of the top of the reservoir.
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Figure 3.4: Vertical movement of the layers. Subsidence and vertical
displacement of top and bottom of the reservoir due to
pressure depletion ΔP with (Rigid Basement) and without
(Geertsma) the effects of the rigid basement. According
to our system of reference, the displacement is positive
downwards.

The results for displacement, strain and stress are presented as 2D contour
plots in Fig. 3.5(d) - Fig. 3.6(d). Both solutions are gathered in the same
plot: Geertsma is on the right side and Rigid Basement is on the left side.
In general, we observe an increase of the value of vertical displacement in
the overburden and a decrease in the underburden. Looking at the radial
displacements, we observe that the rocks of the overburden are pushed more
toward the axis of symmetry when the rigid basement is present. On the
other hand, the underburden moves less in the horizontal direction because the
basement is closer. Moreover, vertical strain increases both in the overburden
and in the underburden, while horizontal strain increases in the overburden
and decreases in the underburden. This results in higher vertical stretching
of the overburden and underburden, and higher horizontal compression of the
overburden. The Rigid Basement model predicts a positive volumetric strain
of the rock above and below the reservoir, while the Geertsma’s model predicts
almost no change in the volumetric strain around the reservoir. The values
of the octahedral shear stress are higher in the overburden and lower in the
underburden in the case with a rigid basement.

42

Chapter 3. Displacements due to a rigid basement

0 500 1000 1500 2000

−0.10

−0.05

0

0.05

0.10

0.15

0.20

Horizontal position [m]

V
er

tic
al

 d
is

pl
ac

em
en

t [
m

]

Subsidence − Geertsma
Subsidence − Rigid layer
Top − Geertsma
Top − Rigid layer
Bottom − Geertsma
Bottom − Rigid layer

Figure 3.4: Vertical movement of the layers. Subsidence and vertical
displacement of top and bottom of the reservoir due to
pressure depletion ΔP with (Rigid Basement) and without
(Geertsma) the effects of the rigid basement. According
to our system of reference, the displacement is positive
downwards.

The results for displacement, strain and stress are presented as 2D contour
plots in Fig. 3.5(d) - Fig. 3.6(d). Both solutions are gathered in the same
plot: Geertsma is on the right side and Rigid Basement is on the left side.
In general, we observe an increase of the value of vertical displacement in
the overburden and a decrease in the underburden. Looking at the radial
displacements, we observe that the rocks of the overburden are pushed more
toward the axis of symmetry when the rigid basement is present. On the
other hand, the underburden moves less in the horizontal direction because the
basement is closer. Moreover, vertical strain increases both in the overburden
and in the underburden, while horizontal strain increases in the overburden
and decreases in the underburden. This results in higher vertical stretching
of the overburden and underburden, and higher horizontal compression of the
overburden. The Rigid Basement model predicts a positive volumetric strain
of the rock above and below the reservoir, while the Geertsma’s model predicts
almost no change in the volumetric strain around the reservoir. The values
of the octahedral shear stress are higher in the overburden and lower in the
underburden in the case with a rigid basement.

42

Chapter 3. Displacements due to a rigid basement

0 500 1000 1500 2000

−0.10

−0.05

0

0.05

0.10

0.15

0.20

Horizontal position [m]

V
er

tic
al

 d
is

pl
ac

em
en

t [
m

]

Subsidence − Geertsma
Subsidence − Rigid layer
Top − Geertsma
Top − Rigid layer
Bottom − Geertsma
Bottom − Rigid layer

Figure 3.4: Vertical movement of the layers. Subsidence and vertical
displacement of top and bottom of the reservoir due to
pressure depletion ΔP with (Rigid Basement) and without
(Geertsma) the effects of the rigid basement. According
to our system of reference, the displacement is positive
downwards.

The results for displacement, strain and stress are presented as 2D contour
plots in Fig. 3.5(d) - Fig. 3.6(d). Both solutions are gathered in the same
plot: Geertsma is on the right side and Rigid Basement is on the left side.
In general, we observe an increase of the value of vertical displacement in
the overburden and a decrease in the underburden. Looking at the radial
displacements, we observe that the rocks of the overburden are pushed more
toward the axis of symmetry when the rigid basement is present. On the
other hand, the underburden moves less in the horizontal direction because the
basement is closer. Moreover, vertical strain increases both in the overburden
and in the underburden, while horizontal strain increases in the overburden
and decreases in the underburden. This results in higher vertical stretching
of the overburden and underburden, and higher horizontal compression of the
overburden. The Rigid Basement model predicts a positive volumetric strain
of the rock above and below the reservoir, while the Geertsma’s model predicts
almost no change in the volumetric strain around the reservoir. The values
of the octahedral shear stress are higher in the overburden and lower in the
underburden in the case with a rigid basement.

42

Chapter 3. Displacements due to a rigid basement

0 500 1000 1500 2000

−0.10

−0.05

0

0.05

0.10

0.15

0.20

Horizontal position [m]

V
er

tic
al

 d
is

pl
ac

em
en

t [
m

]

Subsidence − Geertsma
Subsidence − Rigid layer
Top − Geertsma
Top − Rigid layer
Bottom − Geertsma
Bottom − Rigid layer

Figure 3.4: Vertical movement of the layers. Subsidence and vertical
displacement of top and bottom of the reservoir due to
pressure depletion ΔP with (Rigid Basement) and without
(Geertsma) the effects of the rigid basement. According
to our system of reference, the displacement is positive
downwards.

The results for displacement, strain and stress are presented as 2D contour
plots in Fig. 3.5(d) - Fig. 3.6(d). Both solutions are gathered in the same
plot: Geertsma is on the right side and Rigid Basement is on the left side.
In general, we observe an increase of the value of vertical displacement in
the overburden and a decrease in the underburden. Looking at the radial
displacements, we observe that the rocks of the overburden are pushed more
toward the axis of symmetry when the rigid basement is present. On the
other hand, the underburden moves less in the horizontal direction because the
basement is closer. Moreover, vertical strain increases both in the overburden
and in the underburden, while horizontal strain increases in the overburden
and decreases in the underburden. This results in higher vertical stretching
of the overburden and underburden, and higher horizontal compression of the
overburden. The Rigid Basement model predicts a positive volumetric strain
of the rock above and below the reservoir, while the Geertsma’s model predicts
almost no change in the volumetric strain around the reservoir. The values
of the octahedral shear stress are higher in the overburden and lower in the
underburden in the case with a rigid basement.

42



3.7. Conclusions

3.7 Conclusions

The present work extends Geertsma’s model taking into account the effects
of a rigid basement. The formulae derived for the three components of the
displacement due to the presence of the basement can be easily implemented in
a code based on Geertsma’s solution, maintaining low computational efforts.

This simple analytical approach can serve as a help to understand and quickly
evaluate the effect of introducing a more rigid basement close to a compacting
reservoir. The more visible effects are the increase of subsidence and lowering
of top reservoir, and the decrease of the uplift of bottom reservoir. Relevance
should be also given to the increase of volumetric strain and stress in the
underburden, which could be relevant for 4D seismic interpretation.
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Figure 3.5: Contour plot for displacement and strain. Results for: a)
vertical and b) horizontal displacement, c) vertical and d)
horizontal strain. Each plot includes the results for the two
models: Geertsma on the right side and Rigid Basement
on the left side.
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Figure 3.6: Contour plot for stress and strain. Results for: a) ver-
tical and b) horizontal stress, c) volumetric strain, and
d) octahedral shear stress. Each plot includes the results
for the two models: Geertsma on the right side and Rigid
Basement on the left side.
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Chapter 6

Discussion

In the previous chapters, is has been demonstrated that the Rigid Basement
model is a convenient tool to be used for feasibility studies on displacement
and strain fields, and on 4D seismic and 4D gravity changes due to reservoir
compaction. However, an interesting discussion arises when we consider the
assumptions lying behind the model and its possible applications. This chapter
contains a discussion on the limitation of the model, and a suggestion for
further work on the model.

The assumption of linear elastic medium is generally accepted for the rocks
faraway from the compacting reservoir. However, this may not be true near
and inside the reservoir, where the rocks can behave plastically. In these
areas, displacement and strain could be underestimated, causing a wrong es-
timation of 4D seismic and 4D gravity changes. Because of this observation,
the two models can be considered as helpful tools for the prediction of the low
frequency changes happening outside the reservoir, while alternative models
may be considered inside the reservoir.

Furthermore, the rigid interface is the only heterogeneity considered by the
model. Further changes of density and rock properties in vertical and hor-
izontal directions are neglected, oversimplifying the geological section. The
displacement and the strain, in this case, are underestimated in weaker lay-
ers and overestimated in harder layers. If a hard chalk layer is present in the
overburden, for example, the displacement tends to disappear toward the layer
and nullify inside and above the layer. Hence, subsidence and strain near the
free surface would be negligible, and 4D gravity changes due to subsurface
displacement would decrease substantially.

Another important heterogeneity of the subsurface is represented by reacti-
vated faults. This event is possible when the faults fall into an area of strong
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Chapter 6. Discussion

shear stress caused by reservoir compaction and redistribution of the sub-
surface. The reactivation adds a further stress field around the fault plane,
that can affect 4D seismic and 4D gravity depending on the magnitude of the
displacement and strain field generated.

The medium between the rigid layer and the surface is also considered to be
isotropic. However, the depositional history of the sediments and the shapes of
the grains are generally creating anisotropy in the geomechanical and geophys-
ical properties of the rocks. Shale, for example, has the maximum component
of stiffness perpendicular to the clay bedding, causing smaller deformation in
this direction.

The reservoir geometry studied in the research work is limited to the verti-
cal cylinder and vertical elliptical cylinder. However, natural reservoirs have
complex shapes and thickness, and reservoir formations and basements can
be tilted. An arbitrary shape of the reservoir can be model by both models,
thanks to the versatile additivity property of the nucleus of strain. Geertsma’s
model can be also easily implemented to represent tilted reservoirs. On the
case of the Rigid Basement model, however, the analytical formulation may
limit its use to the case of horizontal reservoir and basement, even if this
limitation has not been proven.

The limitations of the Rigid Basement model can be overcome by using a more
complex numerical model, like a Finite Element Method model, a Discrete El-
ement Method model, or a combination of the two. The numerical modelling is
able to cope with more details present in the real geological section. However
it needs more time to set up the model and to obtain the results. The com-
putational time needed often direct the decision to model a 2D model. When
a 3D modelling is necessary, the machine used for the computation increases
in size and cost.

The results coming from Chapter 5 suggest further interesting studies on the
4D gravity technique. A comparison of real 4D gravity data and the results
coming from the 4D gravity forward model including the rigid basement model,
would be an example. Such comparison would prove the sensitivity of the
4D gravity technique to subsurface rock redistribution due to reservoir com-
paction.

A comparison between 4D seismic modelling and real data could provide useful
knowledge too. One of the main conclusions of Chapter 4, indeed, is that the
fast decrease in vertical strain in the underburden causes the fast decrease
in time-shift observed in some field of the North Sea. However, a structured
comparison between modelled results and real data could provide further proof
to this statement.
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Another idea for further studies comes from the non-linear behaviour of 4D
gravity change versus depth and radius of the reservoir above the rigid base-
ment. This behaviour suggests that there are combinations of reservoir depths
and radii that would provide maximum 4D gravity change. A wide sensitiv-
ity study on these parameters could provide a map showing where high 4D
gravity changes are expected. Such a map may be a useful tool for reservoir
management and 4D gravity risk assessment.
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Chapter 7

Conclusions

The PhD research achieved successfully the objective initially stated. First,
the formulae for displacement and stress of an arbitrary point of the subsurface
are derived for the case of a compacting reservoir above a rigid basement.
Second, the formulae for the Rigid Basement model are introduced into a
forward model for prediction of 4D seismic time-shifts and 4D gravity changes.
Third, the results coming from the Rigid Basement model are compared with
those coming from the well known Geertsma’s model.

The formulae of the Rigid Basement model introduce an heterogeneity to
Geertsma’s model. The model clearly demonstrates the impact of heterogene-
ity in rock stiffness on geomechanical modeling, keeping low the number of
the parameters needed for the estimation of the displacement. The use of
the Rigid Basement model, indeed, resulted very handy and computationally
fast during the sensitivity study presented in Chapter 5. This characteristic
makes the RB model a convenient geomechanical model to be introduced in
feasibility studies of compacting reservoirs.

From 4D seismic point of view, the Rigid Basement model predicts a de-
crease in velocity of the rocks in the underburden. This observation may be
the explanation of the decrease in time-shifts in the underburden observed in
Shearwater field by Staples et al. (2007), and in the decrease in velocity in
the underburden observed in Valhall field by Hossein Mehdizadeh (personal
communication, 2010). Including the Rigid Basement model in a 4D seismic
forward model, may be a useful tool for the interpretation of slow-down below
a compacting reservoir.

The change of gravity due to the subsurface deformation predicted using the
Rigid Basement model, results above the current intra survey accuracy of 3–
5 μGal. This finding agrees with other studies carried out with numerical

97

Chapter 7

Conclusions

The PhD research achieved successfully the objective initially stated. First,
the formulae for displacement and stress of an arbitrary point of the subsurface
are derived for the case of a compacting reservoir above a rigid basement.
Second, the formulae for the Rigid Basement model are introduced into a
forward model for prediction of 4D seismic time-shifts and 4D gravity changes.
Third, the results coming from the Rigid Basement model are compared with
those coming from the well known Geertsma’s model.

The formulae of the Rigid Basement model introduce an heterogeneity to
Geertsma’s model. The model clearly demonstrates the impact of heterogene-
ity in rock stiffness on geomechanical modeling, keeping low the number of
the parameters needed for the estimation of the displacement. The use of
the Rigid Basement model, indeed, resulted very handy and computationally
fast during the sensitivity study presented in Chapter 5. This characteristic
makes the RB model a convenient geomechanical model to be introduced in
feasibility studies of compacting reservoirs.

From 4D seismic point of view, the Rigid Basement model predicts a de-
crease in velocity of the rocks in the underburden. This observation may be
the explanation of the decrease in time-shifts in the underburden observed in
Shearwater field by Staples et al. (2007), and in the decrease in velocity in
the underburden observed in Valhall field by Hossein Mehdizadeh (personal
communication, 2010). Including the Rigid Basement model in a 4D seismic
forward model, may be a useful tool for the interpretation of slow-down below
a compacting reservoir.

The change of gravity due to the subsurface deformation predicted using the
Rigid Basement model, results above the current intra survey accuracy of 3–
5 μGal. This finding agrees with other studies carried out with numerical

97

Chapter 7

Conclusions

The PhD research achieved successfully the objective initially stated. First,
the formulae for displacement and stress of an arbitrary point of the subsurface
are derived for the case of a compacting reservoir above a rigid basement.
Second, the formulae for the Rigid Basement model are introduced into a
forward model for prediction of 4D seismic time-shifts and 4D gravity changes.
Third, the results coming from the Rigid Basement model are compared with
those coming from the well known Geertsma’s model.

The formulae of the Rigid Basement model introduce an heterogeneity to
Geertsma’s model. The model clearly demonstrates the impact of heterogene-
ity in rock stiffness on geomechanical modeling, keeping low the number of
the parameters needed for the estimation of the displacement. The use of
the Rigid Basement model, indeed, resulted very handy and computationally
fast during the sensitivity study presented in Chapter 5. This characteristic
makes the RB model a convenient geomechanical model to be introduced in
feasibility studies of compacting reservoirs.

From 4D seismic point of view, the Rigid Basement model predicts a de-
crease in velocity of the rocks in the underburden. This observation may be
the explanation of the decrease in time-shifts in the underburden observed in
Shearwater field by Staples et al. (2007), and in the decrease in velocity in
the underburden observed in Valhall field by Hossein Mehdizadeh (personal
communication, 2010). Including the Rigid Basement model in a 4D seismic
forward model, may be a useful tool for the interpretation of slow-down below
a compacting reservoir.

The change of gravity due to the subsurface deformation predicted using the
Rigid Basement model, results above the current intra survey accuracy of 3–
5 μGal. This finding agrees with other studies carried out with numerical

97

Chapter 7

Conclusions

The PhD research achieved successfully the objective initially stated. First,
the formulae for displacement and stress of an arbitrary point of the subsurface
are derived for the case of a compacting reservoir above a rigid basement.
Second, the formulae for the Rigid Basement model are introduced into a
forward model for prediction of 4D seismic time-shifts and 4D gravity changes.
Third, the results coming from the Rigid Basement model are compared with
those coming from the well known Geertsma’s model.

The formulae of the Rigid Basement model introduce an heterogeneity to
Geertsma’s model. The model clearly demonstrates the impact of heterogene-
ity in rock stiffness on geomechanical modeling, keeping low the number of
the parameters needed for the estimation of the displacement. The use of
the Rigid Basement model, indeed, resulted very handy and computationally
fast during the sensitivity study presented in Chapter 5. This characteristic
makes the RB model a convenient geomechanical model to be introduced in
feasibility studies of compacting reservoirs.

From 4D seismic point of view, the Rigid Basement model predicts a de-
crease in velocity of the rocks in the underburden. This observation may be
the explanation of the decrease in time-shifts in the underburden observed in
Shearwater field by Staples et al. (2007), and in the decrease in velocity in
the underburden observed in Valhall field by Hossein Mehdizadeh (personal
communication, 2010). Including the Rigid Basement model in a 4D seismic
forward model, may be a useful tool for the interpretation of slow-down below
a compacting reservoir.

The change of gravity due to the subsurface deformation predicted using the
Rigid Basement model, results above the current intra survey accuracy of 3–
5 μGal. This finding agrees with other studies carried out with numerical

97



Chapter 7. Conclusions

modelling (Currenti et al., 2007); however, it goes against the often used as-
sumption that subsurface deformation may be neglected. Because of the low
number of parameters needed, the Rigid Basement model qualifies to be a very
useful and handy geomechanical model for broadening the knowledge on the
effect of the subsurface deformation on 4D gravity.

In conclusion, the work presented in the thesis is demonstrating the impact
of heterogeneity in the rock stiffness, it is narrowing the gap between the well
known Geertsma’s analytical model and Nature, and it is giving a useful tool
for 4D seismic interpretation and 4D gravity prediction.
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