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2.4 Interface coherency

When two phases are present they will have an interface that raise the total energy of

the crystal. The chemical bondings between two different chemical elements is often

weaker than the bonding between same type of elements, or the different structures of

the phases can reduce the number of bondings across the interface. The free energy

from the mismatch can be divided in two parts. The chemical interface energy (in

bondings) and the strain energy (from lattice distortions). When the two phases possess

different lattice parameters the atomic coloumns will not have entirely perfect match.

It can be solved if the lattice of both phases stretches to match over the interface.

When doing this one can obtain semi-coherency (see figure 2.2). When the two lattice

parameters are fairly similar in lengths, the interface is coherent. This mean that we

have complete matching between atoms across the interface. For a coherent interface

the only contibution to the interface energy is the chemical, γch , which comes from the

difference in binding energy between the two phases.

If the lattice parameters of the unstrained equillibrium precipitate phase and matrix

are a′
β

and aα respectively, the unconstrained misfit d is

d =
a′
β
−aα

aα
(2.4)

where a′
β
> aα. This is called the disregistry and decides the length between dislocations,

D . The dislocation length can easily be shown to be

D =
a′
β

δ
=

aαa′
β

aα−a′
β

. (2.5)

When the dislocation length is longer than 1000 Å one say the interface is coherent (it is

approximately the length of a θ′-precipitate). When d > 0.25, i.e., one dislocation for

every four interplanar spacings, the interface turns to be incoherent.

A semi-coherent interface can in some cases be a coherent interface. If the energy

caused by strain from slight misfit is smaller than the formation energy of an edge dislo-

cation the interface becomes coherent. This can happen in a precipitate which is thiner

than the critical thickness L′
c after which the interface becomes semi-coherent[15].
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Chapter 3

Electronic structure calculations

Density functional theory (DFT) has long been the mainstay of electronic structure

calculations in solid-state physics. In the 1990’s it became very popular in quantum

chemistry. This is because approximate functionals were shown to provide a useful

balance between accuracy and computational cost. This allowed much larger systems to

be treated than by traditional ab initio methods, while retaining much of their accuracy.

DFT is not just another way of solving the Schrödinger equation. Density functional the-

ory is a completely different way of approaching any interacting problem, by mapping

it exactly to a much easier-to-solve non-interacting problem.

In this chapter the main principles and equations that led up to the birth of DFT is

presented systematically. We start with the several approximations, and simplifications.

Then we mention functionals and the Kohn-Sham equation is presented. The approxi-

mation of the potentials are explained and a possible extension to finite temperature is

discussed.

3.1 Introduction

Given a system of particles consisting of atoms with nucleons and electrons, according

to the theory of quantum mechanics, the physical state of this system can be described

by the Schrödinger equation:

HΨ ({RI ;ri }) = EΨ ({RI ;ri }) , (3.1)

13



14 CHAPTER 3. ELECTRONIC STRUCTURE CALCULATIONS

whereΨ is the quantum mechanical wave function, E is the energy and Ri and ri is the

positions of the ions and the electrons respectively. H is the Hamiltonian of the system:

H =−∑
i

ħ2

2me
∇2

ri
−∑

I

ħ2

2MZ
∇2

Ri
− 1

4πε0

∑
I ,i

ZI e2

|RI − ri |

+ 1

4πε0

∑
i , j>i

e2∣∣ri − r j
∣∣ + 1

4πε0

∑
I ,J>I

ZI ZJ e2∣∣RI −RJ
∣∣

(3.2)

The first to terms represent the kinetic energy of the electrons and nucleons, Te and Tn .

The third term represents the electrostatic attraction between the electrons and nuclei,

Vne . The fourth term represents the electrostatic repulsion between the electrons, Vee ,

and the last term between the nuclei, Vnn . me is the mass of the electrons, and MZ the

mass of the cores. ZI is the number of protons in each core, I .

3.1.1 The Born Oppenheimer Approximation

Since the mass of an electron is so small compared to the nuclei, electrons will move

much faster than the cores and very rapidly find its ground state configuration. The fact

that they relax almost instantly is called “The adiabatic approximation”. In this case the

dynamics of the electrons won’t be affected by the movement of the cores, and relative

to the electrons one can regard the positions of the nuclei as static. We can then neglect

the kinetic energy Tn of the cores. Also, since the cores are viewed as fixed, the term Vnn

will be constant and only shift the eigenvalues by a constant, therefore it is normally left

out of the equation. We then get this effective Hamiltonian for the electrons:

He (r,R) =−1

2

∑
i
∇2

ri
−∑

I ,i

ZI

|RI − ri |
+ ∑

i , j>i

1∣∣ri − r j
∣∣ (3.3)

where we have introduced Hartree atomic units: e = me =ħ= 4πε= 1. The energy unit

is now in Hartrees (1H = 27.2114 eV= 627.5 kcal/mol) and all distances are given in Bohr

radii (a0 = 0.529Å). By using the wave function Ψ(r,R) = φ(r,R)φ(R) and solving the

Schrödinger equation

He (r,R)φ(r,R) = Ee (R)φ(r,R) (3.4)

with static R one obtain a potential energy surface for the electrons, Ee (R). We then

reintroduce the nuclear kinetic energy to solve the Schrödinger equation with the
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nuclear motion:

[Tn +Ee (R)]φ(R) = Eφ(R) (3.5)

where φ(R) is the wave function of the nucleus, and E is the total energy of the system.

These two equations are called the Born Oppenheimer approximation [16]. It is still

hard to solve the equations because of the coupling between the electrons, Vee , in the

last term of equation 3.3. This can be circumfered by assuming the electrons are single

particle states subjected to an average force from all the other electrons, a mean-field

approximation proposed by Douglas Hartree in 1928[17].

3.1.2 The Hartree Approximation

In the Hartree approximation [17] one assumes that the electronic wawefunction can

be expressed as a product of non-interacting single particle wave functions:

Ψ({ri }) =
N∏
i
φi (ri ), (3.6)

where φi (ri ) are the single particle wave functions and N is the number of electrons.

The total energy of the system will be

E = 〈Ψ|H |Ψ〉

=−∑
i

〈
φi

∣∣1

2
∇2

r +
∑

I

ZI

|RI − ri |
∣∣φi

〉+ ∑
i , j>i

〈
φiφ j

∣∣ 1∣∣ri − r j
∣∣ ∣∣φiφ j

〉 (3.7)

where we use Dirac’s braket-notation for simplicity. We apply the variational principle 1

to get the single particle eigenvalue equations

[
−1

2
∇2

r −
∑

I

ZI

|RI − ri |
+ ∑

i 6= j

〈
φ j

∣∣ 1∣∣ri − r j
∣∣ ∣∣φ j

〉]
φi (r) = εiφi (r), (3.8)

where εi represent the eignevalues. The third term inside the brackets is the Hartree

potential, V H
ee . This equation has the form of a nonlinear set of equations for the

eigenfunctions {φi }, and is usually solved by iterative methods.

1 Refere to a textbook in basic Quantum mechanics ex: Griffiths: “Introduction to Quantum Mechanics”
(1995)
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3.1.3 The Hartree-Fock Approximation

The next step is to take into account the exchange interacion between the electrons.

For fermionic systems, when two like particles exchange states, the total wave function

changes sign. In order to incorporate this into the equations, we introduce a “Slater-

determinant” [18] for the wave functions:

Ψ({ri }) = 1p
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(r1) φ1(r2) · · · φ1(rN )

φ2(r1) φ2(r2) · · · φ2(rN )

· · ·
· · ·
· · ·

φN (r1) φN (r2) · · · φN (rN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3.9)

where N is the number of electrons. This form has the fermionic property, since in-

terchanging two single particle states is equivalent to interchanging two rows in the

determinant, which leads to a change in sign for the total wave function. It also makes

it impossible for two particles to be at the same location, since this would make the

determinant zero. One can use the same formalism as for the Hartree approximation to

get the total energy:

E =〈Ψ|H |Ψ〉

=−∑
i

〈
φi

∣∣1

2
∇2

r +
∑

I

ZI

|RI − ri |
∣∣φi

〉
+ 1

2

∑
i j (i 6= j )

〈
φiφ j

∣∣ 1∣∣ri − r j
∣∣ ∣∣φiφ j

〉− 1

2

∑
i j (i 6= j )

〈
φiφ j

∣∣ 1∣∣ri − r j
∣∣ ∣∣φ jφi

〉 (3.10)

and the single particle eigenvalue equations

[
−1

2
∇2

r −
∑

I

ZI

|RI − ri |
+ ∑

i 6= j

〈
φ j

∣∣ 1∣∣ri − r j
∣∣ ∣∣φ j

〉]
φi (r)− ∑

i 6= j

〈
φ j

∣∣ 1∣∣ri − r j
∣∣ ∣∣φi

〉
φ j (r) = εiφi (r)

(3.11)

To get the last term on the form V X
i (r)φi (r), we will need to introduce the single particle

exchange density

nX
i (r′,r) = ∑

i 6= j

φi (r′)φ∗
i (r)φ j (r)φ∗

j (r′)

φi (r)φ∗
i (r)

(3.12)
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from which we can construct the exchange potential

V X
i (r) =−

∫ nX
i (r′,r)

|r− r′| dr′ (3.13)

and we get the usual form for a system of eigen equations

[
Te (r)+Ve n(r)+V H

ee (r)+V X
i (r)

]
φi (r) = εiφi (r) (3.14)

This is the Hartree-Fock approximation [19]. The effect of the exchange interaction is to

ensure that no two electrons occupy the same single particle eigenstate. Similar to the

Hartree potential, the exchange potential is repulsive. One of the complications of this

exchange potential is that each state, φi , sees a different effective potential, because

they are a function of i .

3.2 Density Functional Theory

Although the Hartree-Fock method is commonly used for atomic and molecular cal-

culations, it is not easily applied to solid state calculations, mainly because of the

complicated form of the exchange interaction 3.13. In a series of seminal papers in the

60s, Hohenberg, Kohn and Sham started development of Density Functional Theory

(DFT), a method which in an ingenious way resolves some of these problems. Instead

of beginning with an explicit expression for the wave function, as in the Hartree-Fock

method, DFT is based on a reformulation of the equations depending on the electron

density.

3.2.1 Many-body problems

When there is more than one particle in the system, the Hamiltonian and the wave

function include one coordinate for each particle. Furthermore, electrons have two

possible spin states, up or down, and so the wave function is a function both of spatial

coordinates and spin coordinates. A general principle of many-electron quantum

mechanics is that the wave function must be antisymmetric under interchange of any

two sets of coordinates [20]. In such a quantum system, the repeated interactions

between particles create quantum correlations, or entanglement[21]. As a consequence,
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θ

π

0

π/2

3π/2

Figure 3.1: A 2D curve which is generated by a function r = r (θ)

the wave function of the system is a complicated object holding a large amount of

information, which usually makes exact or analytical calculations impractical or even

impossible.

3.2.2 Functionals

A function maps one number to another. A functional assigns a number to a function.

For example, consider all functions r (θ) , 0 ≤ θ ≤ 2π, which are periodic, i.e., r (θ+2π) =
r (θ). Such functions describe shapes in two-dimensions such as in fig 3.1. For every

such curve, we can define A as the area enclosed by it. One write A[r (θ)] to indicate this

functional dependence. Note that, even if we don’t know the relation explicitly, we do

know it exists. A functional is called local when one needs only to know the function

right at a single point to evaluate the contribution to the functional from that point. On

the other hand it is a semi-local functional if it depends not only on r , but δr /δθ. How

do you find extremes of a functional? For example, we might want to know what is the

minimum area we can enclose inside a loop of string with radius larger than r0. Thus we

need to minimize A[r ], subject to the constraint that r0 ≤ r . What function r (θ) solves

this?
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3.2.3 Energy functional

One of the two theorems of Hohenberg and Kohn [22] is that the ground-state total

energy functional of an observable with hamiltonian H , is universal and uniquely

defined by V , and takes this form:

E [n(r)] = F [n(r)]+
∫

n(r)V (r)dr (3.15)

V is the external potential, and in most cases it is the same as Vne in equation 3.2. The

purpose of DFT is to find the functional [n(r)]F . The first attempts of finding it was

done by Thomas and Fermi independently in 1927. They used a statistical model to

approximate the distribution of electrons. They assumed that electrons are distributed

unifomely in space with two electrons in every h3 of volume. With n(r) = 8π
3h3 p3

f (r) solved

for p f , and combined with the classical expression for the electron density interacion

we get the functional:

F T F [n(r)] = As

∫
n5/3(r)dr+ 1

2

∫ ∫
n(r)n(r′)
|r− r′| drdr′ (3.16)

with As = 3
10

( 3
8π

) 2
3 ?or ? 3

10

(
3π2

) 2
3 . The Thomas-Fermi model is correct only in the limit of

an infinite nuclear charge. Using the approximation for realistic systems yields poor

quantitative predictions, even failing to reproduce some general features of the density

such as shell structure in atoms. This is because of the inaccurate description of the

kinetic energy of the electrons and the lack of a repulsive correlation term and the

errors in the exchange term. Using the DFT formulation we can get the Hartree-Fock

approximation by using the functional:

F HF [n(r)] = 1

8

∫ |∇n(r)|2
n(r)

dr+ 1

4

∫ ∫
n(r)n(r′)
|r− r′| drdr′ (3.17)

3.2.4 Kohn-Sham Equations

With the HK-definition 3.15 and using the Born Oppenheimer approximation, one

introduce a set of fictive non-interacting fermionic particles with single particle orbitals
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called Kohn-Sham orbitals, φi (r) related to the electron density n(r) by

n(r) =∑
i

fi
∣∣φi (r)

∣∣2 (3.18)

where fi is the occupation number of state i . If we express the many-body wave function,

Ψ({ri }), in the form of a Slater determinant of the Kohn-Sham orbitals, we arrive upon

the following expression for F [n(r)] of equation 3.15:

F [n(r)] = T [n(r)]+ 1

2

∫ ∫
n(r)n(r′)
|r− r′| drdr′+E XC [n(r)] (3.19)

where

T [n(r)] =−∑
i

〈
φi

∣∣1

2
∇2

r

∣∣φi
〉

(3.20)

is the Kohn-Sham kinetic energy. Applying the variational method to minimize the

energyfunctional, we obtain the single particle eigenequations:

[
−1

2
∇2

r +V K S[r,n(r)]

]
φi (r) = εiφi (r) (3.21)

with

V K S[r,n(r)] =V (r)+
∫

n(r′)
|r− r′| dr′+ δE XC [n(r)]

δn(r)
(3.22)

The first term is the external potential, the second term is the single particle exchange

potential, from Hartree-Fock theory (3.13). The last term is a potential representing the

many-body effects of the system in the form of a functional derivative of the exchange-

correlation energy, E XC , with respect to the density, n(r). Equations 3.21 and 3.22

together with the expression for the density (3.18) are collectively known as the Kohn-

Sham equations [23]. Since V K S depends on n(r), which depends on the φi , which in

turn depend on V K S , the problem of solving the Kohn–Sham equation has to be done

in a self-consistent (i.e., iterative) way. Usually one starts with an initial guess for n(r),

then calculates the corresponding V K S and solves the Kohn–Sham equations for the

φi . From these one calculates a new density and starts again. This procedure is then

repeated until convergence is reached. A non-iterative approximate formulation called

Harris functional DFT [24] is an alternative approach to this.
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3.2.5 Exchange-correlation potential

In general the exchange-correlation potential (V XC ) can be written as:

δE XC [n(r)]

δn(r)
= f [n(r),∇n(r),∇(∇n(r)), . . . ] (3.23)

This means that the XC-potential, which is a functional derivative of E XC with respect

to the local density, n(r), will not only depend on the value of the density at r, but also

on the gradients of the density at r. Here the first approximation in DFT comes in.

3.2.6 LDA and GGA approximations

For a homogeneous electron gas, the gradient terms in 3.23 will vanish. In the Local

Density Approximation (LDA), one assumes the following form for the XC-energy:

E XC [n(r)] =
∫

n(r)εxc [n(r)]dr (3.24)

where εxc is the XC-energy per particle of a homogeneous electron gas with density n(r).

This amounts to assuming that for each point, r, with density n(r), the XC-energy is

the same as for a homogeneous electron gas with a constant density, n. The XC-energy

density is decomposed in exchange and correlation terms linearly. The exchange term

is found analytically, but the correlation isn’t known analytically. However very accurate

quantum Monte Carlo simulations have been done for various densities, and the results

are interpolated in different ways, resulting in many LDA methods. A natural extension

of the LDA is the inclusion of terms depending on the derivatives of n. When including

the gradient of the density one usually get very accurate solutions for the ground state

energies and molecular geometries[25]. We get the Generalized Gradient Approximation

(GGA):

E XC [n(r)] =
∫

n(r)εxc [n(r),∇n(r)]dr (3.25)

GGA[26] in general performs better than LDA. One example being that LDA frequently

underestimates the lattice parameters and bulk modulus by a few percent with respect

to GGA and experimentally derived values in solid state calculations [27]. Potentially

more accurate solutions can be obtained by including the second derivative of the

density (the Laplacian), and some use hybrid functionals, where the exchange part
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of the energy is found by solving Hartree-Fock equation (3.14). Some popular LDA

and GGA methods are Perdew-Zunger (PZ81)[28] and Perdew-Wang (PW92)[29] and

Perdew-Burke-Ernzerhof (PBE)(1996)[30] to name a few.

3.3 Solving the Kohn-Sham Equations

There are tons of algorithms for solving the various steps of the equations and also

several choise of basis set for the single particle wave functions, {φi (r)}. The main issues

is that with an infinite system, the number of wave functions becomes infinite. And

since the electronic wave functions have to extend over the entire space, with the system

being infinite, an infinite basis set is required to represent it. To overcome this we apply

periodic boundary conditions and use Bloch waves to represent our ionic structure.

3.3.1 Pseudopotentials

The many electron Schrödinger equation can be very much simplified if electrons are

divided in two groups: valence electrons and inner core electrons. The electrons in

the inner shells are strongly bound and do not play a significant role in the chemical

binding of atoms; they also partially screen the nucleus, thus forming with the nucleus

an almost inert core. Binding properties are almost completely due to the valence

electrons, especially in metals and semiconductors. This separation suggests that inner

electrons can be ignored in a large number of cases, thereby reducing the atom to an

ionic core that interacts with the valence electrons. The use of an effective interaction, a

pseudopotential, that approximates the potential felt by the valence electrons, was first

proposed by Hellmann in 1935 [31] and Fermi in 1936 [32].

Norm-conserving and ultrasoft are the two most common forms of pseudopotential

used in modern plane-wave electronic structure codes [33]. They allow a basis-set with

a significantly lower cut-off (the frequency of the highest Fourier mode) to be used to

describe the electron wave functions and so allow proper numerical convergence with

reasonable computing resources. An alternative would be to augment the basis set

around nuclei with atomic-like functions, as is done in Linear Augmented-Plane-Wave

methods (LAPW), first proposed by Slater in 1937[34].

The projector augmented wave method (PAW)[35] is a technique used in ab initio
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b1

b2

k1

k2
k3

Figure 3.2: The three inequivalent k-points in a quadratic 2-dimensional lattice with 4x4
point density.

electronic structure calculations. It is a generalization of the pseudopotential and LAPW,

and allows for density functional theory calculations to be performed with greater

computational efficiency. The computer code used in this work implements the PAW

method.

3.3.2 k-point sampling

When calculating different properties as the desity of states and electron charge density,

one integrate over the Brillouin-zone, and in a computer one has to do this discretely.

So one have to choose a density of k-points to sample from. The idéa of Monkhorst

and Pack [36] is to use a homogeneous mesh which centers on the atom cores and use

symmetry to cut down on number of terms of the integral. The Monkhorst-Pack grid is

defined by:

k(n1,n2,n3) = ∑
i=1,2,3

2ni −Ni −1

2Ni
bi (3.26)

where ni = 1,2, . . . , Ni and Ni is the number of k-points in i direction. bi is the reciprocal

lattice-vectors. As an example a quadratic 2-dimensional lattice with 4 k-points gives

16 points to evaluate. By using the symmetry of the quadratic lattice (3.2), on see that

there are only three inequivalent points. Then we can approximate the integral by

1

ΩB Z

∫
B Z

F (k)dk ≈ 1

4
F (k1)+ 1

4
F (k2)+ 1

2
F (k3) (3.27)
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whereΩB Z is the volume of the Brillouin-zone (BZ). Thus breaking it down to only three

terms as illustrated in figure 3.2.



Chapter 4

Atomistic modelling

To simulate a realistic environment including dislocations and strain from plate edges

and so on, we should do the simulations on a whole precipitate with a lot of aluminium

around, to adjust for misfit strains. Such a system would contain thousands of atoms.

Due to restrictions in computational power, it is not possible for us to do this, because

it would take such long time. It might howewer be possible to calculate on say 2000

atoms, if one was to use the whole supercompter for this specific task. But because

of the busyness and nature of the supercomputer, waiting lines and limitations, we

need to look for a smart solution instead. First we need to narrow our model down to a

few hundred atoms. For a typical relaxation of a simple metal slice with 270 atoms, it

takes about 17 hours on a 64-core’s multithread computer. And the computation-time

scales exponentially with number of atoms. One have to choose between good precision

versus shorter computation-time. Typicaly one does a set of calculations and look at

the results, does some adjustments and start them over again, then come back and look

at the results, comparing them and look for convergence. It can take a long time if not

experienced and used to it. Therefore we will explain how to do it.

4.1 VASP

The computer code that were used for the simulations was the Vienna Ab initio Sim-

ulation Package (VASP) [37]. It utillizes “Desity Functional Theory (DFT), solving the

Kohn-Sham equations, to find an approximate solution to the many-body Schrödinger

equation. The interaction between the electron charge densities is described using the

25
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PAW method. To determine the electronic groundstate, VASP makes use of efficient

iterative matrix diagonalisation techniques, like the residual minimisation method

with direct inversion of the iterative subspace (RMM-DIIS)[38] or blocked Davidson

algorithms[39]. The code make use of 4 input files: the POSCAR-, INCAR-, KPOINTS-,

and the POTCAR-file. The POSCAR file contains the atom positions and the supercell

geometry. The INCAR file holds the parameters used for the calculations such as energy

cutoff and precision for the orbitals (more details in). The KPOINTS file defines a grid

of k-points where the calculated values are assigned to. The POTCAR file is our choice

of pseudopotential for the different atoms. The simulations are done by running the

INCAR-file IN1 first for relaxation and IN2 afterwards for high precision energy output

(see Appendix B for details about the files). The different running-modes are decided

with the isif-tag. If set to three VASP calculates both the volume and the internal posi-

tions of the atoms. If set to two it calculates only the internal structure and keeps the

volume fixed. If set to seven the volume is varying but the crystalstructure is fixed.

4.2 The supercell

The POSCAR files are made with a python package called ASE - Atomic Simulation Envi-

ronment [40]. This package lets us build a supercell atom by atom, and has a graphical

interface for measurement of angels and bond lengths between the atoms. To ensure

reproductivity and consistency the supercells were constructed using a script written

in python and using the ASE package. The script can be found in Appendix D. The

models we use are cross sections of a precipitate plate seen in one of the two equivallent

directions [100] or [010]. So the slab is a 2x2 aluminium atom thick rectangular rod

several atoms high going from the aluminium on one side through the precipitate to

the aluminium on the other side. The slab is periodically repeated in all directions

during calculations. Therefore it is important that the aluminium on both sides is thick

enough to avoid that the interface interact with itself. The different precipitates and

their interfaces are shown in figure 4.1.
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Figure 4.1: The four models used in the simulations. Al-Cu, Al-Cu-Ag, Al-Cu-Li, and
Al-Cu-Mg-Si. These are plates laying in the xy-plane (001), and the drawing showing the
cross-section of the plates.

4.2.1 Parameters

We need to define the several parameters that we use in the script to generate the

calculation supercells. First we have the precipitate thicknes. We define it from the

conventional tetragonal unit cell of θ′ in figure 4.4. It has the composition Al4Cu2 and

when we have a precipitate with this composition in the crossection that is two Cu

atomlayers thick we call it a 1c thick preipitate. We can have half integer thick θ′-cells

from 0.5c up to 6c in this study.

We have a matrix around the precipitate that we need to take into account, and

therefore we fix the length of the slab, L to a integer number times a. The total length

defines the parameter n that is the precipitate thickness in a’s:

L = (#Al ·2+n) ·a (4.1)

where #Al is the number of Al unit cells on one side of the precipitate (see figure 4.2).

Which number n to use we discuss in subsection 4.4.1.
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Figure 4.2: The figure marks the lengths defined in this study. In this case it is a 1.5c
thick slab with normal interface (Cu) and parameters #Cu = 5 and #Al = 6.

4.3 Calculations

All the results must be justifyed in order to be valid for discussions. People must know

where they come from, be able to reproduce them and draw their own conclusions.

Therefore comes a section of definitions and equations used to produce the numbers

found in the tables and figures.

4.3.1 Precipitate misfit

The tables under section 5.3 have many symbols representing different lengths in the

structure. According to figure 4.2, the interface thickness is τx where x is the different in-

terfaces, x ∈ (Cu, Ag ,Li ,C ). The reference is the thickness with no interface: τ, basically

half of a, from one atom column to the next. lθ′ is the thickness of the precipitate with

no interface. The lattice misfit is defined as:

∆lδ =
lδ−n ·a

n ·a
(4.2)

where lδ is the thickness of the precipitate and the interface after relaxation, lδ = lθ′+2·τx

(see figure 4.2). This is called the in situ misfit and is measured at the incoherent

interface opposed to the disregistry which is at the coherent interface. Another misfit

parameter is the c-distortion ∆c̄. That is the relative shift in lattice parameter c. It tells

how much the precipitate has been compressed or extended. For thick precipitates a

big c-distortion means a lot of strain energy absorbed because of big misfit.



4.3. CALCULATIONS 29

4.3.2 Interface energy

Interface energy comes from a mismatch in the bondings between phase 1 and phase 2.

When the interface is between two different phases there are usally three contributions

to the free energy. The chemical- and lattice strain-energy, and the cohesive energy of

the separate phases, Ec . To compute the interface energy, γ we must compute the total

energy of the slab and subtract the constituents from it until we are left with the excess

strain energy from the misfit, and the chemical interface energy. We combine them into

one because the strain energy is a big portion of the total γ and pretty much affect the

total free energy that controls the structure. The interface energy is defined as

γ= Es

2a2
. (4.3)

When only the pure θ′ phase is present with no interface we get

Es = Etot −2 ·#Al ·E Al −#c ·Eθ′ (4.4)

where E Al is the energy of one fcc cell aluminium (four atoms), Eθ′ is the energy of a

unit cell of θ′ and #c is the number of θ′-cells. When we add copper to the interface we

need to subtract two extra Cu atoms:

ECu
s = Etot −2 ·#Al ·E Al − (#c +1) ·Eθ′ −2ECu . (4.5)

We have defined this precipitate so that its thickness is set without the two outermost

Cu-layers. We then need to subtract the energy of (#c +1) times a θ′-cell. If we add Ag

outside of the Cu layer we must subtract extra two Ag unit-cells (one on each side):

E Ag
s = Etot −2 ·#Al ·E Al − (#c +1) ·Eθ′ −2ECu −2E Ag (4.6)

C-phase at interface:

EC
s = Etot −2 ·#Al ·E Al −#c ·Eθ′ −EτC

c−phase . (4.7)

Lithium is a special case as the script is implemented a bit odd. We subtract (#Al +1)

as that is the correct number of Al-unit cells (including Li atoms) on one side of the
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precipitate. We subtract the energy of substituting two Li atoms in a mesh similar to

figure 4.3:

E Li
s = Etot −2 · (#Al +1) ·E Al −#c ·Eθ′ −2ELi (4.8)

Note that either the c-phase case or the lithium case has the copper layer as we see in

Ag and pure Al-Cu case.

Figure 4.3: Model of Al38Li2 used to fin the Al-Li substitution energy, showing the
positions of Lithium atoms.

4.3.3 Matrix lattice parameter

An important size to compute is the aluminium lattice constant, aAl = a at 0 K. This will

be the structure of the matrix surrouding the precipitate, and will impose constraines

on the θ′ phase. It is important that this is correct to avoid track errors. Normally

a will deviate from the experimental value, aexp due to thermal expansion at finite

temperature. Often the experimental value in reference tables are extrapolated to

represent the system at 0 K. The method used to find it is by running a energy sweep over

fixed volumes calculating the energy of equivallent conventional unit cells containing

four atoms with fixed positions. Since we know the crystal structure is FCC we just vary

the volumes (V = a3) around the initial guess V exp and fit the results to an equation

of state, E(V ). Firstly done with a large span and few points just to get an estimate of

were the minima is located. From this we can find an approximate minima to use in a

following high-accuracy sweep, closing in at the minima. The equation of state (EOS)

mostly used in material science is the Murnaghan’s EOS. But we want to use the more

accurate Birch-Murnaghan EOS [41]:

E(V ) = E0 + 9V0B0

16


[(

V0

V

) 2
3 −1

]3

B ′
0 +

[(
V0

V

) 2
3 −1

]2 [
6−4

(
V0

V

) 2
3

] (4.9)
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4,04Å

Figure 4.4: The unit cell for the precipitate, θ′ and for aluminium, showing the equillib-
rium lattice constants. A conventional fcc-cell of aluminium contains four Al atoms. A
tetragonal unit cell of θ′ contains two Cu atoms and four Al atoms.

where E0 is the equillibrium energy, V0 is the equillibrium unit cell volume, B0 is the

bulk modulus, and B ′
0 is the derivative of the bulk modulus with respect to preassure.

The parameters from the BM curve fitting of the data are compared to M fit parameters.

4.3.4 Cell size c-phase

Figure 4.5: Observed structure of the interphase of Al-Cu-Mg-Si alloys.
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Figure 4.6: Bulk Cphase for reference. This is found by Torsæter et al. [6]

For the cphase case we need to diffrentiate between what is part of the interface-

phase (interphase) and what is part of the precipitate and matrix. The model in figure

4.5 shows the structure that is observed in the interphase. It differs from the com-

plete c-phase shown in figure 4.6. A complete c-phase has a chemical composition

Mg8Al2Si6Cu2, but at the interface it is observed a Mg8Al12Si4Cu4 which is only a part of

the bulk c-phase. The atomic positions of the interphase can be found in Appendix E.

The elastic response of the partial c-phase were calculated using the different lattice

constants, d = τC found after relaxation of the supercell slabs. The atomic positions

were held fixed, and the cell doubled and mirrored to become like the model in figure

4.5. And then it was done a static energy calculation (isif=2) on the different structures

and the data fit to a curve.

4.4 Convergence

In order to secure reliable results with minimized error, we need to calibrate our tool

and figure out the boundaries of our simulation. It is important to use the equillibrim

parameters that we obtain with the constraines of our system and not take for granted

that the experimental value can be used. Moreover we need to know the approximate

error in energy from slightly wrong calculated atomic posistions.
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4.4.1 Strain Effects

Strain is introduced when there is a force limiting free adjustment in one direction,

as with the precipitate inside the aluminium matrix. If the relaxed precipitate does

not match the matrix, there will be strain both in the precipitate phase and in the

aluminium outside from the interface. The strainlength, ls depends on the relative

hardness between the precipitate and the aluminium. One can think of the atoms as a

chain of springs. When you exdend the chain the new positions is determined by the

total energy of the springs. And it is not uniform, because you have smaller springs

between the atoms near the interface, so the strain is gradually decreasing out from the

interface. We need to know how long our slab needs to be to avoid edge-effects that

comes from when the strainlength is longer than the length of aluminium in our slab.

We did a test to show how this would affect the results of interface energy and precipitate

thickness. Figure 4.7 shows a slab with number of aluminium cells, #Al vaying from 1 to

13.

(a) Interface energy, γ

(eVÅ−2) (b) Misfit of precipitate (%)
(c) Outermost Al-cell lattice
parameter, a (Å)

Figure 4.7: Strain Effects from to short slabs.

We see the interfacial energy goes up because of the strain energy in the aluminium

alone. It affects the misfit reading, and we can potentially end up pointing out the wrong

alloy as test winner.
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Chapter 5

Results and Discussion

Results are mainly presented in tables and figures. For a overview see the “List of

Figures” and “List of Tables” sections in the front. The first results are the equillibrium

values for bulk aluminium. Then comes the results for the equillibrium values for

θ′ both as a separate phase but also as incorporated in the aluminium matrix. The

same was calculated for silver. These phases are relaxed and curve-fitted and shown

in separate figures in each subsection, with an associated table with parameters for

each. Then comes the special interfaces with interstitial copper at the outermost layer

of the precipitate, the lithium substitutions in two layers, and the partial c-phase at the

interface. These five interfaces have several parameters varying with θ′-thickness. All

the structural distances (described in section 4.2) are listed in separate tables under

each subsection in section 5.3. The interface energies including the strainenergies are

listed in separate tables under each subsection of section 5.4. Then the different values

are compared in graphs and discussed if there are correlations between them. Special

considerations are discussed in the end of the chapter and some conclusions drawn.

Table 5.1: Bulk properties for aluminium, copper, silver and θ′.

Crystals Al Cu θ′ Ag

Property DFT Exp DFT Exp DFT Exp DFT Exp

Lattice constant
(Å)

4.0397 4.04 3.63 3.61
4.085
5.803

4.041

5.801 4.16 4.09

Cohesive energy
(eV/at.)

-3.74 -3.39 -3.72 -3.49 -23.47 - -2.83 -2.95

Bulk modulus
(GPa)

76.92 76.93 - 137 - - 101.6 100.7

35
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Figure 5.1: Free energy of aluminium unit cell on a large scale. One see that Birch-
Murnaghan EOS fits perfectly to the data as opposed to a quadratic curve (the blue
dashed line). There is not much differense between M and BM. Minimum is located
near 66 Å3

.

Table 5.2: Murnaghan and Birch-Murnaghan parameters from the big aluminium sweep
dataset.

EOS Energy (eV) B0 (GPa) B ′
0 (-) V

(
Å3) a (Å)

Murnaghan −14.9771 74.7484 734.0703 66.0501 4.0423
Birch-Murnaghan −14.9804 76.9221 750.1290 66.0011 4.0413

5.1 Bulk properties

The bulk properties of aluminium, copper, θ′ and silver where computed according to

the method described in subsection 4.3.3. The results are shown in table 5.1. They are

fully relaxed fcc unit cells. When adding them in the aluminium matrix, some strain is

asserted to them and the lattice parameters and total energy changes a little. They will

be computed one by one in the following chapters.
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Figure 5.2: Free energy of aluminium unit cell.

5.1.1 Finding aluminium lattice parameter

Bulk aluminium, copper and silver were simulated using a conventional fcc unit cell

with four atoms. A plot of the free energy per atom versus cell volume is shown for

aluminium in figure 5.1. This series was done with a large intervall to get an estimation

of where the minima is located. It also gives the best result for the bulk modulus. The

parameters from the curvefitting of the data is shown in table 5.3. The data can be

found in in table C.1 in Appendix C. The bulk modulus value of B0 = 76.92 GPa is a very

good value, compared to the experimental value of 76.93 GPa. The lattice parameter is

near a = 4.04 Å but can be found more accurate. We can enlarge the scale and do a new

sweep in a smaller intervall around 4.04 Å. Figure 5.2 shows the plot of the free energy

of aluminium near the miniumum value. The data is found in table C.2 in Appendix C.

The parameters from the curvefitting is shown in table 5.3.

The value a = 4.0397 Å is very close to the expected observed value of 4.04 Å at 0 K.

At room temperature one can expect to see a value of 4.05 Å or more due to thermal

expansion. One see that the BM curve fits much better than a quadratic plot for V ’s far

from V0. Near the miniumum the curve is almost quadratic.

1 Observed in aluminium.
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Table 5.3: Murnaghan and BM parameters from the aluminium small-scale sweep
dataset.

EOS Energy (eV) B0 (GPa) B ′
0 (-) V

(
Å3) a (Å)

Murnaghan −14.9771 78.2221 1628.6751 66.0501 4.0397
Birch-Murnaghan −14.9845 78.2911 1616.7067 65.9237 4.0397

Figure 5.3: Free energy of θ′ unit cell.

5.1.2 θ′ lattice parameters

Table 5.4: Murnaghan and BM parameters from θ′ sweep dataset.

EOS Energy (eV) B0 (GPa) B ′
0 (-) V

(
Å3) a (Å)

Murnaghan −23.4681 214.6138 8445.6818 95.7723 5.8704
Birch-Murnaghan −23.4681 216.4924 8096.4235 95.7728 5.8705

The lattice parameters of the θ′ precipitate were found by doing a full degree of

freedom relaxation with one unit cell of Al4Cu2 with the ISIF = 3 tag. The result is

shown in table 5.1. We see that the short-side parameter bθ′ is a tiny bit larger than

aAl and gives a disregistry of δ = bθ′−aAl
aa l = 1.1% and a dislocation length of D = aθ′

δ ≈
367 Å, approximately 90 columns of aluminium. That means one might find three times

three dislocations in a precipitate with diameter about 1µm, given that lθ′ > L′
c . In this

study we look at thicknesses up to 6 θ′ cells (6c), about 35 Å which is relatively short and
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therefore we might expect the precipitate to have a completely coherent interface.

Now we keep the short parameter of θ′, constrained to the matrix (a = b) and

calculate the new long tetragonal lattice constant when in the aluminium. This will

be the reference in the energy calculations. It is not implemented in VASP to fix only

two sides and relax in the third, so we need to do a volum sweep, with fixed b = a and

varying c from 5.80 to 5.90 and isif = 2. If one was to use isif = 3 the thickness would vary

freely to minimize the energy, but we want to keep it fixed to the matrix. The results

are given in table C.3 and plotted in figure 5.3. The parameters from the fitting is found

in table 5.4. We get a value of c = 5.87 Å. The energy Eθ′ = −23.4680 eV is used in the

interface calculations.

5.1.3 Silver parameters and relaxation

Figure 5.4: Free energy of bulk silver. Three of the points are divergent but still gives
usable results.

Table 5.5: Murnaghan and BM parameters from the free silver curvefitting.

EOS Energy (eV) B0 (GPa) B ′
0 (-) V

(
Å3) a (Å)

Murnaghan −11.3126 98.0591 −5143.2412 72.1730 4.1635
Birch-Murnaghan −11.3127 101.5809 −4601.5016 72.1647 4.1633
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Bulk silver properties were computed with ISIF = 7, the same way as for Cu. The

results are shown in table 5.1. It was also attempted to do a volume sweep, howewer

some of the points would not converge so it affected the results somewhat. Newertheless

we got the value aAg = 4.16 Å for the lattice constant of bulk silver. Figure 5.4 shows

the plot of the dataset in table C.4. The bulk parameter is extracted from the curve fit

with the parameters shown in table 5.5. The value of aAg = 4.16 Å is a bit larger than the

experimental value aexp
Ag = 4.09 Å, in fact 1.7 % larger. But the bulk modulus of B Ag

0 =

101.6 GPa is almost correct. It could have been even better with a sweep over a larger

intervall. The discrepancy is probably due to the choice of pseudopotential.

Now we limit the degree of freedom to one by constraining to sides to the aluminium

matrix as we did for θ′, and do a energy-volume sweep again. The results are shown in

figure 5.5, and the parameters in table 5.6. The data from the fitting can be found in

C.5. The equillibrium energy has a value of E Ag = −11.2791 eV. This value is used in the

interfacial energy calculations in section 5.4.

Figure 5.5: Free energy of silver, when constrained to the aluminium lattice. The blue
point is a bit off the graph and is not used in the curve fitting.
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Table 5.6: Murnaghan and BM parameters from the constrained silver curve fitting.

EOS Energy (eV) B0 (GPa) B ′
0 (-) V

(
Å3) a (Å)

Murnaghan −11.2792 121.0689 1166.1284 70.7469 4.3365
Birch-Murnaghan −11.2792 121.2347 1212.1688 70.7438 4.3363

5.2 Special interfaces

The special structures of the copper interface and the lithium interface is not separate

phases and must be threated differently. The copper interface is a normal Al-Cu interface

with an extra interstitial Cu atom. In the Li-case some Al atoms are substituted with Li.

And the distance between them are so short that they interact with each other, therefore

we must calculate the difference in energy between a aluminum slab with and without

Li substitutions. In the Cu-case we must take the difference between a long θ′ slab with

and without the extra Cu atom.

5.2.1 Adding copper to the interface

Bulk copper properties were calculated using isif=7 tag, since we already know the

spacegroup. The volume relaxation gave the parameters in table 5.1. They are not used

to anything but to test the accuracy of the potential. The lattice constant of aCu = 3.63 Å

is fairly close to the experimental value aE xp
Cu = 3.61 Å. We did not get the chance to do a

energy sweep to find the bulk modulus.

The energy needed to put a copper atom in the interstitial position at the interface

in a relaxed thetacell is calculated using a slab of four unit cells with a total of eight Cu

atoms and comparing with the same slab with an extra interstitial Cu atom. The length

of the slab is to ensure the extra Cu atom does not see itself in the [001] direction and

interact with itself because of the periodicity of the cell. The calculation was also done

with one,two and three cells as well for comparison. Table 5.7 shows convergence for

the longest slab. We also use the same k-point density for the longest slab. The energy is

ECu = −3.6199 eV per atom.
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Table 5.7: Energy of θ′ slabs with n number of unit cells stacked in [001] direction and
one extra interstitial Cu atom in each. Also the energy of the same slabs without the
extra Cu atom is computed.

n k-points Enθ′+Cu (eV) dE (eV) Enθ′ (eV) dE (eV) ECu (eV)

1 775 −26.9911 0.2×10−7 −23.4672 −0.8×10−10 −3.5239
2 773 −50.5151 0.4×10−8 −46.9052 0.3×10−5 −3.6098
3 772 −73.9928 −0.1×10−5 −70.3827 0.4×10−6 −3.6101
4 772 −97.4657 −0.3×10−6 −93.8458 −0.6×10−6 −3.6199

Table 5.8: Values from the Li substitution calculation.

Composition Energy (eV) dE (eV)

Al38Li2 −146.9012 2.94E-05
Al40 −149.8616 2.99E-06

Difference 2.9603 -

5.2.2 Lithium substitutions

The energy needed to substitute two aluiminium atoms with lithim atoms in the way

shown in figure 4.3, is found by doing a static energy calculation on a Al38Li2 slab and a

Al40. The difference in energy is the value we subtract in the interface calculations. The

result from table 5.8 is ELi = 2.9603 eV total for the two atoms. Notice that it is positive.

The energy of dissolving two Li atom is 2.9 eV higher than dissolving two Al atoms.

5.2.3 C-phase parameters and relaxation

Table 5.9: Murnaghan and BM parameters from the partial c-phase curve fitting.

EOS Energy (eV) B0 (GPa) B ′
0 (-) V

(
Å3) d (Å)

Murnaghan −96.5140 236.0670 74.5486 244.8356 15.0074
Birch-Murnaghan −96.5139 235.7802 123.3609 244.8251 15.0068

The results from the curve fitting of the data retrieved as explained in subsection 4.3.4

were plotted in figure 5.6. The parameters of the curve can be found in table 5.9, and

the dataplots are found in table C.6. One point (3.5c) is off the graph and is not used in

the curve fitting. It is howewer used in the interface energy calculation to subtract the

correct value. The reason it is off could be that the internal structure of the cell is altered

for some reason. We see in table C.6 that the calculation stopped when the energy
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Figure 5.6: Free energy of the partial c-phase, with volume varying with extension in
[001]-direction. The blue point is a bit off the graph and is not used in the curve fitting.

between the iterations were 10−4 eV and not 10−7 eV as for the others. The reason to

that might be either the walltime (the calculation were aborted by the job-moderator

computer), or the number of iteration exceded our maximum limit. The curve from

the datafit show the strain energy in the phase as the interface thickness varies. We use

the actual data points in the calculations to subtract the correct energy of the phase

including strain energy. So we actually don’t include the strain energy of the c-phase in

the interfaceenergy, γ.

5.3 Lattice misfits

Here comes the structures after relaxation. The different interfaces are in separate tables

under each subsection.

5.3.1 Theoretical unstrained misfit

The theoretical relationship between aluminium lattice constant and θ′-long-lattice

constant is listed in table 5.10. It can help predict which thickness to expect for the

precipitate. One see from the plot (5.7) that the misfit alternates between negative and
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Table 5.10: Theoretical relationship between θ′-precipitate and al-matrix

θ′ thickness cu layers n (al layers) ∆lθ′ (Å) ∆lθ′(%) c̄ (Å) ∆c̄ (%)

0.5c 1 1 1.104 27.3 8.078 37.6
1c 2 1 -1.831 -45.3 4.039 -31.2
1.5c 3 2 -0.727 -9.0 5.385 -8.3
2c 4 3 0.377 3.1 6.059 3.2
2.5c 5 4 1.481 9.2 6.463 10.1
3c 6 4 -1.454 -9.0 5.385 -8.3
3.5c 7 5 -0.350 -1.7 5.770 -1.7
4c 8 6 0.755 3.1 6.059 3.2
4.5c 9 7 1.859 6.6 6.283 7.0
5c 10 7 -1.076 -3.8 5.655 -3.7
5.5c 11 8 0.028 0.1 5.875 0.1
6c 12 9 1.132 3.1 6.059 3.2
6.5c 13 9 -1.803 -5.0 5.593 -4.7
7c 14 10 -0.699 -1.7 5.770 -1.7
7.5c 15 11 0.405 0.9 5.924 0.9
8c 16 12 1.509 3.1 6.059 3.2
8.5c 17 12 -1.425 -2.9 5.702 -2.9
9c 18 13 -0.322 -0.6 5.834 -0.6
9.5c 19 14 0.782 1.4 5.952 1.4
10c 20 15 1.887 3.1 6.059 3.2
10.5c 21 15 -1.049 -1.7 5.770 -1.7
11c 22 16 0.056 0.1 5.875 0.1

positive values. One can expect the points 3.5c, 5.5c, 7.5c and 11c to have good fit, and

have a lower interface energy and better stability. One might find more precipitates of

these sizes than of other sizes. For thicker precipitates we se the relative misfit is lower

and that is because the precipitate have more room. The more cells the less strain each

cell has to make up for.

Figure 5.7: Theoretical relationship between θ′-precipitate and al-matrix. It’s the relative
misfit with respect to aAl .
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We notice the lower misfit for 3.5c opposed to 3c, and this is supporting the findings

of Stobbs et al. [42] where they found that there is a tendency to form precipitates of 3.5

rather than 3 cells in thickness. It is possible to compare these theoretical values to the

DFT calculated ones.

5.3.2 Pure interface (no cu)

Table 5.11: Calculated distances l in Al-Cu with no atoms at interface.

θ′ thickness cu n (al layers) lθ′ [Å] ∆lθ′ [Å] ∆lθ′ [%] c̄[Å] ∆c̄[%] τ[Å] ls [Å]

0.5c 1 1 3,073 -0,966 -23,9 6,146 4,7 2,960 24
1c 2 1 5,657 1,618 40,0 5,657 -3,6 2,814 47
1.5c 3 2 8,633 0,555 6,9 5,755 -2,0 2,854 28
2c 4 3 11,810 -0,307 -2,6 5,905 0,6 2,975 8
2.5c 5 4 15,198 -0,958 -5,9 6,079 3,6 2,973 20
3c 6 4 17,038 0,882 5,5 5,679 -3,2 2,833 36
3.5c 7 5 20,360 0,165 0,81 5,817 -0,9 2,886 30
4c 8 6 23,745 -0,490 -2,0 5,936 1,1 2,925 16
4.5c 9 7 27,364 -0,910 -3,2 6,081 3,6 2,963 24
5c 10 7 28,659 0,385 1,4 5,732 -2,4 2,863 32
5.5c 11 8 32,250 -0,063 -0,19 5,864 -0,1 2,898 20
6c 12 9 35,941 -0,411 -1,1 5,990 2,0 2,930 14

The relaxed structures of precipitates with no copper-interface is found in table

5.11. We see the points 2c, 3.5c and 5.5c have low misfit as expected by the theoretical

predictions. We expect these to have low interface energy as well. We see a good

connection with the strainlegth as well. It is low for good fit and high for bad fit. It is

interesting that not only is the misfit low for these thicknesses. The c-distortion is also

low. That means almost no strain energy is absorbed by the lattice or the precipitate.

We can expect low interface values for these points.

5.3.3 Normal interface (with cu)

The results for the case with interstitial copper is found in table 5.12. It shows that 1c,

3c, 3.5c, 4.5c, 5c and 6c has low misfit with respect to the lattice. However the thinnest

one is only one cell and that one cell has a big c-distortion. That means much strain in

the precipitate. Of the two 3c and 3.5c the the smallest one has the lowest c-distortion,

and 4.5c have the same distortion. That leaves 5c and 6c. Of the two 5c have almost no
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Table 5.12: Calculated distances l in Al-Cu with Cu at interface

θ′ thickness cu n lδ[Å] ∆lδ[Å] ∆lδ[%] c̄[Å] ∆c̄[%] lθ′ [Å] τCu[Å] ls [Å]

0.5c 3 2 9,303 1,225 15,2 5,650 -3,7 2,825 3,239 >56
1c 4 3 12,294 0,177 1,5 5,742 -2,2 5,742 3,276 30
1.5c 5 4 15,514 -0,642 -4,0 5,881 0,2 8,822 3,346 26
2c 6 5 19,067 -1,129 -5,6 6,089 3,7 12,177 3,445 21
2.5c 7 5 20,559 0,364 1,8 5,652 -3,7 14,134 3,212 36
3c 8 6 24,081 -0,154 -0,63 5,824 -0,8 17,472 3,305 8
3.5c 9 7 27,709 -0,564 -2,0 5,988 2,0 20,958 3,374 20
4c 10 7 28,969 0,695 2,5 5,640 -3,9 22,560 3,205 24
4.5c 11 8 30,711 -1,602 -4,9 5,454 -7,0 24,543 3,084 39
5c 12 9 35,916 -0,436 -1,2 5,855 -0,2 29,277 3,320 40
5.5c 13 10 40,077 -0,314 -0,8 6,062 3,3 33,343 3,367 8
6c 14 10 40,900 0,509 1,3 5,733 -2,3 34,396 3,252 52

c-distortion and the strainlength is short. 5c with copper interface corresponds to six

θ′-cells.

5.3.4 Ag at interface

Table 5.13: Calculated distances l in Al-Cu-Ag with Ag (and Cu) at interface.

θ′ thickness n lδ[Å] ∆lδ [Å] ∆lδ[%] c̄[Å] ∆c̄[%] lθ′ [Å] τAg [Å] ls [Å]

0.5c 2 21,072 0,877 4,3 5,574 -5,0 2,787 6,319 36
1c 3 24,374 0,140 0,57 5,694 -3,0 5,694 6,471 16
1.5c 4 27,767 -0,507 -1,8 5,787 -1,4 8,680 6,588 53
2c 5 31,070 -1,243 -3,9 5,881 0,2 11,175 6,660 65
2.5c 5 32,689 0,376 1,2 5,677 -3,3 14,192 6,399 28
3c 6 36,496 0,144 0,4 5,837 -0,6 17,513 6,551 24
3.5c 7 40,201 -0,190 -0,5 5,967 1,7 20,886 6,647 20
4c 8 43,158 -1,272 -2,9 5,937 1,1 23,746 6,691 65
4.5c 8 44,743 0,313 0,7 5,770 -1,7 25,967 6,486 56
5c 9 48,464 -0,005 0,01 5,881 0,2 29,406 6,573 13
5.5c 9 49,001 0,532 1,1 5,593 -4,7 30,766 6,212 24
6c 10 52,722 0,214 0,4 5,707 -2,8 34,242 6,393 24

The results for the silver case is shown in table 5.13. 3c, 3.5c, 4.5c, 5c and 6c all have

good latticefit. But only 3c and 5c have low c-distortion. They also have low strainlength,

and caan be expected to have low interface energy.
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Table 5.14: Calculated distances l in Al-Cu-Li with Li at interface.

θ′ thickness n lδ[Å] ∆lδ [Å] ∆lδ[%] c̄[Å] ∆c̄[%] lθ′ [Å] τLi [Å] ls [Å]

0.5c 1 19,514 -0,682 -3,4 6,076 3,5 3,038 8,238 45
1c 1 21,253 1,058 5,2 5,729 -2,4 5,729 7,762 >60
1.5c 2 24,359 0,124 0,5 5,773 -1,7 8,660 7,849 24
2c 3 27,984 -0,290 -1,0 5,918 0,8 11,835 8,074 28
2.5c 4 31,861 -0,452 -1,4 6,124 4,3 15,310 8,276 28
3c 4 32,684 0,371 1,1 5,722 -2,5 17,167 7,759 34
3.5c 5 36,267 -0,085 -0,2 5,821 -0,8 20,375 7,946 22
4c 6 40,090 -0,301 -0,7 5,971 1,7 23,885 8,102 28
4.5c 6 40,680 0,289 0,7 5,636 -4,0 25,361 7,660 24
5c 7 44,401 -0,029 -0,07 5,736 -2,3 28,682 7,859 24
5.5c 8 48,325 -0,144 -0,3 5,87 0 32,318 8,003 24
6c 9 52,192 -0,316 -0,6 5,997 2,2 35,979 8,106 30

5.3.5 Li at interface

Results for the lithium interface relaxations are listed in table 5.14. Here 1.5c, 3.5c

and 5.5c stands out with low misfit and distortion. This interface does not contain

copper at outermost layer of θ′ as in Cu- and Ag-interface-cases. 3.5c corresponds to the

same number of cells as 3.5c in the pure form with no interface. It is also the predicted

theoretical value and the one found by Stobbs [42]. 5.5c has the same lattice constant, c

as the theoretical one and can be expected to hav every low interface energy.

5.3.6 Mg and Si at interface

Table 5.15: Calculated distances l in Al-Cu-Mg-Si with partial c-phase at interface.

θ′ thickness n lδ[Å] ∆lδ[Å] ∆lδ[%] c̄[Å] ∆c̄[%] lθ′ [Å] τC [Å] ls [Å]

0.5c 5 18,609 -1,587 -7,9 6,324 7,7 3,162 7,740 39
1c 5 20,488 0,293 1,4 5,732 -2,4 5,732 7,330 33?
1.5c 6 23,927 -0,307 -1,27 5,965 1,6 8,948 7,517 26
2c 7 27,470 -0,804 -2,8 6,035 2,8 12,069 7,657 29
2.5c 7 28,710 0,436 1,5 5,716 -2,6 14,291 7,222 33
3c 8 32,189 -0,124 -0,38 5,789 -1,4 17,359 7,366 45
3.5c 9 35,713 -0,639 -1,7 5,921 0,9 20,723 7,495 >30
4c 10 38,841 -1,550 -3,8 5,909 0,66 23,635 7,553 >35
4.5c 10 40,647 0,256 0,6 5,78 -1,5 26,020 7,317 32
5c 11 44,135 -0,300 -0,68 5,836 -0,58 29,179 7,424 26
5.5c 11 45,001 0,571 1,28 5,601 -4,6 30,805 7,107 26
6c 12 48,593 0,124 0,26 5,670 -3,4 34,019 7,240 10

Results of the Mg-Si slabs relaxations are found in table 5.15. We can find 3c, 4.5c,
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5c and 6c to have low misfit, but only 5c have significally lower c-distortion and can be

expected to be the lowest point on the interface energy-plot.

5.4 Interface energies

5.4.1 Energy of no interface Al-θ′

Figure 5.8: The energy of Al ∥ θ′ interface with no interstitial Cu at the interface.

Table 5.16: Al-θ′ interfac energy for different θ′ thickness no cu at interface.

#Cu (at.) #c #a Etot (eV) Es (eV) γ (eVÅ−2) #Al

1 0,5 1 −610.769 0.341 0.010 20
2 1 1 −622.021 0.823 0.025 20
3 1,5 2 −424.341 0.456 0.014 13
4 2 3 −226.426 0.323 0.010 6
5 2,5 4 −537.645 0.526 0.016 16
6 3 4 −669.082 0.698 0.021 20
7 3,5 5 −531.283 0.387 0.012 15
8 4 6 −692.882 0.367 0.011 20
9 4,5 7 −524.459 0.711 0.022 14
10 5 7 −716.167 0.549 0.017 20
11 5,5 8 −578.225 0.382 0.012 15
12 6 9 −499.875 0.560 0.017 12

The interface energy is calculated in table 5.16 and ploted in figure 5.8. The points

0.5c, 2c, 3.5c, 4c and 5.5c are the lowest points. We see 3c is a top-point.

5.4.2 Energy of Al-θ′ with Cu at interface

The interface energy for the Cu-interface-case is found in table 5.17 and ploted in figure

5.9. The points 1c, 1.5c, 3c, 4.5c and 5c are minima. 5c was the point expected to be
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Figure 5.9: The energy of Al ∥ θ′ interface with interstitial Cu at the interface.

Table 5.17: Al-θ′ interfac energy for different θ′ thickness with interstitial Cu atoms at
interface.

#Cu (at.) #c #a Etot (eV) Es (eV) γ (eVÅ−2) #Al

3 0,5 2 −462.233 −0.228 −0.007 14
4 1 3 −414.263 −0.462 −0.014 12
5 1,5 4 −306.110 −0.449 −0.014 8
6 2 5 −497.340 −0.133 −0.004 14
7 2,5 5 −509.231 −0.290 −0.009 14
8 3 6 −521.154 −0.478 −0.015 14
9 3,5 7 −592.659 −0.312 −0.010 16
10 4 7 −724.037 −0.081 −0.002 20
11 4,5 8 −496.346 −0.407 −0.012 12
12 5 9 −508.123 −0.449 −0.014 12
13 5,5 10 −579.395 −0.050 −0.002 14
14 6 10 −591.331 −0.251 −0.008 14

lowest.

5.4.3 Energy of Al-θ′ with Ag at interface

The interface energy for the Ag-case are found in table 5.18 and ploted in 5.10. Points

1.5c, 3c, 4.5c and 5c are the lowest ones. 3c and 5c were predicted from the misfit table.

The point 5.5c might be explained by that it was held to the wrong n, that is number of

aluminium cells across the precipitate thickness. It might give a high value if it contains

much strain. In the misfit table we see it has a lot of c-distortion.

5.4.4 Energy of Al-θ′ with Li at interface

The lithium interface-case is in table 5.19 and ploted in 5.11. The points 1.5c, 2c, 3.5c,

5c and 5.5c are minima. We predicted 5.5 to be the lowest point. And the point 3.5 keeps

coming up as one of the most stable points for all interfaces.



50 CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.10: The energy of Al ∥ θ′ interface in Al-Cu-Ag.

Table 5.18: Al-θ′ interfac energy for different θ′ thickness in Al-Cu-Ag.

#Cu (at.) #c #a Etot (eV) Es (eV) γ (eVÅ−2) #Al

3 0,5 2 −485.370 −0.806 −0.025 14
4 1 3 −497.467 −1.170 −0.036 14
5 1,5 4 −599.256 −1.318 −0.040 17
6 2 5 −610.840 −1.168 −0.036 17
7 2,5 5 −412.733 −1.109 −0.034 10
8 3 6 −544.490 −1.257 −0.039 14
9 3,5 7 −376.236 −1.082 −0.033 8
10 4 8 −657.653 −1.045 −0.032 17
11 4,5 8 −639.566 −1.192 −0.037 16
12 5 9 −411.545 −1.188 −0.036 8
13 5,5 9 −542.465 −0.499 −0.015 12
14 6 10 −674.537 −0.961 −0.029 16

Figure 5.11: The energy of Al ∥ θ′ interface in Al-Cu-Li.
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Table 5.19: Al-θ′ interfac energy for different θ′ thickness in Al-Cu-Li.

#Cu (at.) #c #a Etot (eV) Es (eV) γ (eVÅ−2) #Al

1 1 0,5 −634.840 0.318 0.010 21
2 1 1 −466.791 0.289 0.009 15
3 2 1,5 −298.850 0.150 0.005 9
4 3 2 −310.596 0.139 0.004 9
5 4 2,5 −681.624 0.470 0.014 21
6 4 3 −333.891 0.312 0.010 9
7 5 3,5 −345.782 0.154 0.005 9
8 6 4 −357.381 0.290 0.009 9
9 6 4,5 −668.512 0.580 0.018 19
10 7 5 −620.671 0.218 0.007 17
11 8 5,5 −392.711 0.162 0.005 9
12 9 6 −404.222 0.385 0.012 9

Figure 5.12: The energy of Al ∥ θ′ interface in Al-Cu-Mg-Si.

5.4.5 Energy of Al-θ′ with Mg and Si at interface

Results from the Mg-Si (partial c-phase) case are given in table 5.20 and plotted in figure

5.12. The datapoint marked in blue, did only converge to within 10−2 eV but is still

representable for the 2c thickness. The points 1.5c, 3c and 5c are the lowest ones, or the

local minima at least. Points 3c and 5c were predicted to be low points.

5.4.6 Comparing the interfacial energies

The interface energy for all the different configurations for the five cases are plotted

together in figure 5.13. We see that the no-copper (no interface) configuration is the

least beneficial of them all. Then comes the one with copper proving what Bourgeois

found [4]. The most stable structure is in fact the on with silver on the outside of the

copper enriched θ′-phase. The silver significantly lowers the misfit. The points 5.5c is

not representative for the Ag and Mg-Si cases.
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Table 5.20: Al-θ′ interfac energy for different θ′ thickness in Al-Cu-Mg-Si.

#Cu (at.) #c #a Etot (eV) Es (eV) γ (eVÅ−2) #Al Ec−phase (eV)

1 0,5 5 −958.643 0.287 0.009 14 −96.335
2 1 5 −982.518 −0.034 −0.001 14 −96.421
3 1,5 6 −1006.111 −0.064 −0.002 14 −96.517
4 2 7 −1029.315 0.127 0.004 14 −96.443
5 2,5 7 −1112.386 0.278 0.009 15 −96.259
6 3 8 −1076.489 −0.215 −0.007 14 −96.339
7 3,5 9 −740.442 −0.151 −0.005 8 −96.514
8 4 10 −823.685 0.004 0.000 9 −96.506
9 4,5 10 −1146.647 0.086 0.003 14 −96.395
10 5 11 −990.598 −0.115 −0.004 11 −96.488
11 5,5 11 −1012.141 1.323 0.041 11 −96.001
12 6 12 −976.811 0.467 0.014 10 −96.285

Figure 5.13: Interface energy [meV/Å2] in the four cases.
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5.5 Parameter relations

Figure 5.14: Comparing.
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In figure 5.14 we see that some of the parameters follow each other. If there is big

misfit, there is usually a big c-distortion (misfit in c), that gives a long strainlength that

results in high interfacial energy.

5.5.1 Strain energy considerations

We observe that the bulk modulus (the double derivative of energy vs volume) that

dictates the amont of enery absorbed in the distortion of bondings from their equil-

librium length, is much larger when we constrain the phases to one direction of free-

dom. Silver has a bulkmodulus of B si l ver
0 = 101.6GPa when separate, but it increases

to B si l ver
0,constr ai ned = 121.2GPa when held to the aluminium lattice constant in two di-

rections. The same with θ′, which we expect to have a bulk modulus intermediate

between B Al
0 and BCu

0 , Bθ′
0 ∈ (76.9,137). But when constrained to aluminium we get

Bθ′
0,constr ai ned = 216.5GPa. This means that the θ′ phase is very “hard” compared to

the aluminium. Hard materials absorb more energy per volume than soft materials. It

means that the precipitate will resist the forces that come from the matrix misfit at the

expence of the aluminium. If the misfit is large, then there will be a longer length of

distortion in the aluminium around, and vice versa.

We also notice that the aluminium is harder when expanded than when compressed.

In figure 5.15 we have ploted the free energy of an aluminium cell held constant in two

directions and relaxed in the third. This means that a precipitate that is too large for

the aluminium lattice will give a higher interface energy than a corresponing too small

precipitate with same absolute misfit. We see that this holds for the 1.5c vs 6c/4c case in

the no-cu-case, 5c vs 2c in the same case. We also see this for the 6c vs 1.5c/3.5c case

with copper-interface. Also comparing 5c/1.5c and 1c/4.5c for the cu-case.

5.6 Conclusions

We have found that the different misfits and strains are connected to the stability of

the precipitate, in the sense that a low misfit gives a short strainlegth, which in turn

lowers the strain energy part of the interface energy. The more low-energy thicknesses

are stable for thin precipitates the more there are of them. This should also be found

experimentally for the cases studied here to confirm it. As is done by Stobbs et al. We
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Figure 5.15: Plot of free energy of aluminium cell held constant in two directions and
relaxed in the third. The curve is steeper when expanding the cell than when compress-
ing.

also found the θ′-precipitate in the Al-Cu-Ag alloy to have the lowest chemical interface

energy. And we found the Litium case to be not very beneficial.
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A



Appendix A

Acronyms

DFT Density Functional Theory

VASP Vienna Abinitio Simulation Package

ASE Atomic Simulation Evironment

LDA Local Density Approximation

XC-energy Exchange-correlation energy

GGA Generalized Gradient Approximation

EOS Equation Of State

M Murnaghan EOS

BM Birch-Murnaghan EOS

QCC Quantum Chemistry Computing

PAW Projector Augmented Wave -method

LAPW Linear Augmented Plane Wave -method
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Appendix B

The VASP input files (to be written)

INCAR for ionic relaxation

1 INCAR for ionic relaxation ,

3 ! Electronic relaxat ion

ALGO = Fast ! Algorithm for electronic relaxat ion

5 NELMIN = 4 ! Minimum # of electronic steps

EDIFF = 1E−5 ! Accuracy for electronic groundstate

7 ENCUT = 350 ! Cut−o f f energy for plane wave expansion

PREC = High ! Normal/ Accurate /High

9 LREAL = Auto ! Projection in reciprocal space ?

ISMEAR = 1 ! Smearing of p a r t i a l occupancies . Metals : 1 ; e lse < 1 .

11 SIGMA = 0.2 ! Smearing width

ISPIN = 1 ! Spin polarizat ion ?

13

! Ionic relaxat ion

15 EDIFFG = +0.0001 ! Tolerance for ions

NSW = 200 ! Max # of ionic steps

17 MAXMIX = 80 ! Keep d i e l e c t r i c function between ionic movements

IBRION = 1 ! Algorithm for ions . 0 : MD, 1 : QN/DIIS , 2 : CG, 6 : e l a s t i c

19 ISIF = 2 ! 7 : vol r e l a x 2 : ions 3 : ions+ c e l l

! ADDGRID= .TRUE. ! More accurate forces with PAW

21

! Output options

23 NWRITE = 1 ! Write electronic convergence at f i r s t step only

59
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25 ! Memory handling

NPAR = 4

27 LPLANE = .TRUE.

LSCALU = . FALSE

29 NSIM = 4

./INCAR1.fil

INCAR for energy calculation

1 INCAR for high−accuracy t o t a l energy calculat ion .

3 ! Electronic relaxat ion

ALGO = Fast ! Algorithm for electronic relaxat ion

5 NELMIN = 4 ! Minimum # of electronic steps

EDIFF = 1E−7 ! Accuracy for electronic groundstate

7 ENCUT = 350 ! Cut−o f f energy for plane wave expansion

PREC = High ! Normal/ Accurate /High

9 LREAL = Auto ! Projection in reciprocal space ?

ISMEAR = −5 ! Smearing of p a r t i a l occupancies . k−points >2: −5; else 0

11 SIGMA = 0.2 ! Smearing width

ISPIN = 1 ! Spin polarizat ion ?

13

! Ionic relaxat ion

15 NSW = 0 ! Final high−accuracy calculat ion without relaxat ion

17 ! Output options

LWAVE = . FALSE . ! Write WAVECAR?

19 LCHARG = . FALSE . ! Write CHGCAR?

!NEDOS = 2101 ! Number of grid points for DOS

21 !EMIN = −9 ! Minimum energy for evaluation of DOS

!EMAX = 12 ! Maximum energy for evaluation of DOS

23 ! RWIGS = 1.0 1.0 ! Wigner−S e i t z r a d i i ; for LDOS

! LELF = .TRUE. ! Electron l o c a l i z a t i o n function

25 ! LORBIT = 10 ! Write LDOS to DOSCAR + PROCAR

27 ! Memory handling

NPAR = 4
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29 LPLANE = .TRUE.

LSCALU = . FALSE

31 NSIM = 4

./INCAR2.fil

B.1 KPOINTS file

1 Max k−point distance : 0.250000

0

3 Gamma

7 7 1

5 0 0 0

./KPOINTS.fil
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Appendix C

Raw data tables

Table C.1: Computed free energy for varying lattice parameter of aluminium, with large
interval.

a (Å) E (eV) dE (eV) E (eV/at.) V
(
Å3)

3,7 −13.5675 −5.0×10−7 −3.3919 50.6530
3,8 −14.3368 −1.2×10−6 −3.5842 54.8720
3,9 −14.7806 −6.2×10−7 −3.6952 59.3190
4,0 −14.9704 2.8×10−8 −3.7426 64.0000
4,1 −14.9536 4.5×10−9 −3.7384 68.9210
4,2 −14.7858 −5.5×10−7 −3.6965 74.0880
4,3 −14.5108 −9.6×10−8 −3.6277 79.5070
4,4 −14.1574 1.5×10−6 −3.5393 85.1840
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Table C.2: Computed free energy for varying lattice parameter for aluminium.

a (Å) E (eV) dE (eV) E (eV/at.) V
(
Å3)

4,02 −14.9808 2.8×10−7 −3.7452 64.9648
4,025 −14.9825 3.2×10−7 −3.7456 65.2075
4,03 −14.9836 −1.3×10−5 −3.7459 65.4508
4,035 −14.9843 3.9×10−7 −3.7461 65.6947
4,04 −14.9844 4.3×10−7 −3.7461 65.9393
4,045 −14.9842 4.5×10−7 −3.7461 66.1844
4,05 −14.9836 4.9×10−7 −3.7459 66.4301
4,055 −14.9824 5.2×10−7 −3.7456 66.6765
4,06 −14.9809 5.4×10−7 −3.7452 66.9234

Table C.3: Computed free energy of θ′ for varying c, and keeping b = aAl

c (Å) E (eV) dE (eV) V
(
Å3)

5,84 −23.4662 -1,80E-07 95.2757
5,85 −23.4672 -3,55E-08 95.4388
5,86 −23.4679 3,32E-05 95.6020
5,87 −23.4681 -1,76E-10 95.7651
5,88 −23.4680 5,33E-08 95.9283
5,89 −23.4674 -8,97E-10 96.0914
5,90 −23.4666 -8,99E-10 96.2545
5,91 −23.4655 1,46E-10 96.4177
5,92 −23.4642 1,76E-10 96.5808

Table C.4: Computed free energy of free bulk silver with fcc structure.

a (Å) E (eV) dE (eV) V
(
Å3)

4,135 −11.3048 4.9×10−5 70.7012
4,140 −11.3075 −7.6×10−4 70.9589
4,145 −11.3094 −3.2×10−6 71.2153
4,150 −11.3106 −3.2×10−6 71.4734
4,155 −11.3115 5.0×10−5 71.7320
4,160 −11.3127 1.2×10−7 71.9913
4,165 −11.3158 ? 72.2512
4,170 −11.3012 7.1×10−7 72.5127
4,175 −11.3208 ? 72.7739
4,180 −11.3070 −2.4×10−7 73.0356
4,185 −11.3049 −7.3×10−8 73.2970
4,190 −11.3031 −2.9×10−6 73.5601
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Table C.5: Computed free energy of silver constrained to the matrix.

a (Å) E (eV) dE (eV) V
(
Å3)

4,0891 −11.1770 −4.0×10−6 66.7109
4,1141 −11.1974 6.3×10−8 67.1188
4,1391 −11.2155 8.2×10−8 67.5266
4,1641 −11.2315 1.1×10−7 67.9345
4,1891 −11.2450 1.2×10−7 68.3424
4,2141 −11.2561 1.7×10−7 68.7502
4,2391 −11.2655 1.9×10−7 69.1581
4,2641 −11.2725 2.3×10−7 69.5659
4,2891 −11.2691 −7.6×10−4 69.9738
4,3141 −11.2778 −3.2×10−7 70.3816
4,3391 −11.2788 −3.3×10−7 70.7895
4,3641 −11.2779 −3.1×10−7 71.1974
4,3891 −11.2754 −8.9×10−6 71.6052
4,4141 −11.2710 −1.8×10−7 72.0131
4,4391 −11.2651 −6.7×10−6 72.4209
4,4641 −11.2580 −5.4×10−8 72.8288
4,4891 −11.2490 −3.7×10−9 73.2367

Table C.6: Computed free energy of the partial c-phase found at the interface of Al-Cu-
Mg-Si the alloy.

d (Å) E (eV) dE (eV) V
(
Å3)

7,24 −96.2852 8.8×10−7 236.2315
7,107 −96.0011 7.3×10−7 231.8919
7,424 −96.4881 2.6×10−6 242.2352
7,317 −96.3946 2.7×10−6 238.7439
7,149 −96.0999 −7.8×10−7 233.2623
6,998 −95.6646 −8.8×10−7 228.3353
7,366 −96.3388 −6.7×10−7 240.3427
7,222 −96.2589 −4.1×10−8 235.6442
7,657 −96.4433 3.6×10−7 249.8376
7,517 −96.5166 9.3×10−7 245.2696
7,33 −96.4212 −4.8×10−7 239.1681
7,74 −96.3352 −2.6×10−7 252.5458
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Appendix D

The python/ASE script

1 # ! / usr /bin/env python

# −*− coding : utf−8 −*−
3

################################################

5 ### Script for building supercel ls of AL−Cu ###

### with i n t e r f a c e s : Cu, Ag , C−phase (Mg, Si ) ###

7 ### and Li . ###

### Written by Phi l ip O e s t l i ###

9 ### ======================================== ###

11 from __future__ import print_function

from __future__ import divis ion

13

import numpy as np

15 import ase

import ase . io

17 from ase . u t i l s import geometry

from ase . v i s u a l i z e import view

19 from ase . l a t t i c e . spacegroup import c r y s t a l

#np . set_printoptions ( suppress=True )

21

def primitive_from_conventional_cell ( atoms , spacegroup =1 , s e t t i n g =1) :

23 """ Returns primitive c e l l given an Atoms object for a

conventional c e l l and i t ’ s spacegroup . """

25 from ase . l a t t i c e . spacegroup import Spacegroup

from ase . u t i l s . geometry import cut

27 sg = Spacegroup ( spacegroup , s e t t i n g )

67
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prim_cell = sg . s ca l e d _ pr i m i t i v e _ ce l l

29 return cut ( atoms , a=prim_cell [ 0 ] , b=prim_cell [ 1 ] , c=prim_cell [ 2 ] )

31 #Aluminium FCC unit c e l l

a = 4.0391

33

Al = c r y s t a l ( symbols =[ ’ Al ’ ] , basis = ( 0 . 0 , 0 . 0 , 0 . 0 ) , spacegroup=225 ,

35 c e l l p a r =a )

Al . write ( ’ Al .POSCAR ’ )

37 #view ( Al )

39 # Primitive aluminium c e l l :

alprim = primitive_from_conventional_cell ( Al , 225)

41 alprim . write ( ’ Alprimitive .POSCAR ’ )

#view ( alprim )

43

#Copper unit c e l l

45 a_cu = 3.632

Cu = c r y s t a l ( symbols =[ ’Cu ’ ] , basis = ( 0 . 0 , 0 . 0 , 0 . 0 ) ,

47 spacegroup=225 , c e l l p a r =a_cu )

Cu. write ( ’Cu.POSCAR ’ )

49 #view (Cu)

51 # S i l v e r FCC unit c e l l

a_Ag = 4.145

53 Ag= c r y s t a l ( symbols =[ ’Ag ’ ] , basis = ( 0 . 0 , 0 . 0 , 0 . 0 ) ,

spacegroup=225 , c e l l p a r =a_Ag )

55 Ag . write ( ’Ag .POSCAR ’ )

#view (Ag)

57

#Slab for Li substitusion :

59 longAl = Al . repeat ( ( 1 , 1 , 1 0 ) )

longAl . numbers [ 0 ] = ase . data . atomic_numbers [ ’ Li ’ ]

61 longAl . numbers [ 4 ] = ase . data . atomic_numbers [ ’ Li ’ ]

longAl . write ( ’ Al38Li2 .POSCAR ’ )

63 #view ( longAl )

65 # thetaprime unit c e l l

c = 5.87
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67 thetap = c r y s t a l ( symbols =[ ’ Al ’ , ’ Al ’ , ’Cu ’ ] ,

basis = [ ( 0 . 0 , 0 . 0 , 0 . 0 ) ,

69 ( 0 . 0 , 0 . 0 , 0 . 5 ) ,

( 0 . 0 , 0 . 5 , 0 .25) ] ,

71 spacegroup= ’ I −4 m2 ’ ,

c e l l p a r =[a , a , c , 90.0 , 90.0 , 9 0 . 0 ] )

73 thetap . write ( ’ thetap .POSCAR ’ )

#view ( thetap )

75

#Long theta ’ slab with one i n t e r s t i t i a l Cu atom

77 thetapcu = thetap . repeat ( ( 1 , 1 , 4) )

Cu1 = ase . Atom( ’Cu ’ , [ 0 . 5 *a , 0 , 0.25 * c ] )

79 thetapcu = thetapcu + Cu1

thetapcu = geometry . sort ( thetapcu )

81 thetapcu . write ( ’ thetapcu .POSCAR ’ )

#view ( thetapcu )

83

# C−phase ( complete )

85 CphaseC = c r y s t a l ( symbols= ’ Si , Si , Si ,Mg,Mg,Mg, Cu, Al ,Mg’ . s p l i t ( ’ , ’ ) ,

basis =[ ( 0 . 5 , 0 . 5 , 0 .25) , # Si

87 ( 0 . 8 3 , 0 . 5 , 0 .08) , # Si

( 0 . 8 3 , 0 . 5 , 0 .58) , # Si

89 ( 0 . 6 1 , 0 . 0 , 0 .03) , # Mg

( 0 . 6 1 , 0 . 0 , 0 .53) , # Mg

91 ( 0 . 9 4 , 0 . 0 , 0 .36) , # Mg

( 0 . 6 8 , 0 . 5 , 0 .31) , # Cu

93 ( 0 . 6 8 , 0 . 5 , 0 .81) , # Al

( 0 . 9 4 , 0 . 0 , 0 .86) ] , # Mg

95 spacegroup =4 ,

c e l l p a r =[a* 0.5 *np . sqrt (26) , a , a* 2 , 9 0 . 0 , 1 0 0 . 9 , 9 0 . 0 ] )

97 CphaseC . write ( ’CphaseC .POSCAR ’ )

#view (CphaseC)

99

#Cphase ( complete ) a f t e r relaxat ion

101 Cphase = ase . io . read ( ’Cphase .CONTCAR’ )

#view ( Cphase )

103

105 ##########################################
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### Al / thetaprime i n t e r f a c e structures ###

107 ### ================================== ###

109 ################## a l − theta ’ ###########################

111 #### parameters ####

alrows = 10 #number of aluminium c e l l s outside i n t e r f a c e

113 ntheta = 3 # integer number of theta ’ s

nthetahalf = 0 #true i f half−numbered theta ’ s 0/1

115 n = 5 # p r e c i p i t a t e cross section in number of a ’ s

vw = 0 # 1 − view 2 − write 3 − view CONTCAR

117 ####################

119 dc = n*a / ( ntheta + nthetahalf /2)

121 thetap = c r y s t a l ( symbols =[ ’ Al ’ , ’ Al ’ , ’Cu ’ ] ,

basis = [ ( 0 . 0 , 0 . 0 , 0 . 0 ) ,

123 ( 0 . 0 , 0 . 0 , 0 . 5 ) ,

( 0 . 0 , 0 . 5 , 0 .25) ] ,

125 spacegroup= ’ I −4 m2 ’ ,

c e l l p a r =[a , a , dc , 90.0 , 90.0 , 9 0 . 0 ] )

127

sthetap = c r y s t a l ( symbols =[ ’ Al ’ , ’ Al ’ , ’Cu ’ ] ,

129 basis = [ ( 0 . 0 , 0 . 0 , 0 . 0 ) ,

( 0 . 0 , 0 . 0 , 0 . 5 ) ,

131 ( 0 . 0 , 0 . 5 , 0 .25) ] ,

spacegroup= ’ I −4 m2 ’ ,

133 c e l l p a r =[a , a , dc , 90.0 , 90.0 , 9 0 . 0 ] )

ind2remove = range ( 1 , 3 , 1 )

135 ind2remove . append ( 5 )

L = dc/2

137 sthetap . s e t _ c e l l ( [ a , a , L ] , scale_atoms=False )

del sthetap [ ind2remove ]

139

t e s t s l a b = Al . repeat ( ( 1 , 1 , alrows ) )

141

i f ( ntheta >0) :

143 t e s t s l a b = geometry . stack (

tests lab ,
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145 thetap . repeat ( ( 1 , 1 , ntheta ) ) ,

ax is =2)

147

i f ( nthetahalf ) :

149 t e s t s l a b = geometry . stack ( tests lab , sthetap , axis =2)

151 t e s t s l a b = geometry . stack ( tests lab , Al . repeat ( ( 1 , 1 , alrows ) ) , axis =2)

t e s t s l a b = geometry . sort ( t e s t s l a b )

153

i f (vw == 1) :

155 view ( t e s t s l a b )

e l i f (vw == 2) :

157 t e s t s l a b . write ( ’POSCAR ’ )

e l i f (vw == 3) :

159 r f i l e = ase . io . read ( ’CONTCAR’ )

view ( r f i l e )

161

############################## END al−theta ’ #####################

163

################ slab 1 ### Al − Cu − Theta ’ ####################

165

#### parameters ####

167 alrows = 20 #number of aluminium rows outside i n t e r f a c e

ntheta = 4 # integer number of theta ’ s

169 nthetahalf = 1 #true i f half−numbered theta ’ s

n = 8 # p r e c i p i t a t e cross section in number of a ’ s

171 vw = 0 # 1 − view 2 − write 3 − view CONTCAR

####################

173

dc = n*a/(1+ ntheta + nthetahalf /2)

175

thetap = c r y s t a l ( symbols =[ ’ Al ’ , ’ Al ’ , ’Cu ’ ] ,

177 basis = [ ( 0 . 0 , 0 . 0 , 0 . 0 ) ,

( 0 . 0 , 0 . 0 , 0 . 5 ) ,

179 ( 0 . 0 , 0 . 5 , 0 .25) ] ,

spacegroup= ’ I −4 m2 ’ ,

181 c e l l p a r =[a , a , dc , 90.0 , 90.0 , 9 0 . 0 ] )

183 sthetap = c r y s t a l ( symbols =[ ’ Al ’ , ’ Al ’ , ’Cu ’ ] ,
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basis = [ ( 0 . 0 , 0 . 0 , 0 . 0 ) ,

185 ( 0 . 0 , 0 . 0 , 0 . 5 ) ,

( 0 . 0 , 0 . 5 , 0 .25) ] ,

187 spacegroup= ’ I −4 m2 ’ ,

c e l l p a r =[a , a , dc , 90.0 , 90.0 , 9 0 . 0 ] )

189 ind2remove = range ( 1 , 3 , 1 )

ind2remove . append ( 5 )

191 L = dc/2

sthetap . s e t _ c e l l ( [ a , a , L ] , scale_atoms=False )

193 del sthetap [ ind2remove ]

195

slab1 = Al . repeat ( ( 1 , 1 , alrows ) )

197

slab1 = geometry . stack (

199 slab1 ,

thetap . repeat ( ( 1 , 1 , ntheta +1) ) ,

201 axis =2)

203 i f ( nthetahalf ) :

slab1 = geometry . stack ( slab1 , sthetap , axis =2)

205

207 slab1 = geometry . stack ( slab1 , Al . repeat ( ( 1 , 1 , alrows ) ) , axi s =2)

slab1 = geometry . sort ( slab1 )

209

num = len ( slab1 )

211

# I n s e r t additional Cu atoms at i n t e r f a c e

213 Cu1 = ase . Atom( ’Cu ’ ,

[ 0 . 5 *a , 0 . 0 , slab1 . posit ions [num−2−2* ntheta−nthetahalf , 2 ] ] )

215 i f nthetahalf :

Cu2 = ase . Atom( ’Cu ’ , [ 0 . 5 *a , 0.0 , slab1 . positions [num−1, 2 ] ] )

217 else :

Cu2 = ase . Atom( ’Cu ’ , [ 0 . 0 , 0.5 *a , slab1 . positions [num−1, 2 ] ] )

219 slab1 = slab1 + Cu1 + Cu2

slab1 = geometry . sort ( slab1 )

221

i f (vw == 1) :
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223 view ( slab1 )

e l i f (vw == 2) :

225 slab1 . write ( ’POSCAR ’ )

#Al . repeat ( ( 1 , 1 , 12) ) . write ( ’POSCAR ’ , vasp5=True )

227 e l i f (vw == 3) :

r f i l e = ase . io . read ( ’CONTCAR’ )

229 view ( r f i l e )

231 #################### END Al − Cu − Theta ’ ######################

233 ################# slab 2 ### Al − Ag − Theta ’ ##############

235 #### parameters ####

alrows = 12 #number of aluminium rows outside i n t e r f a c e

237 ntheta = 5 # integer number of theta ’ s

nthetahalf = 0 #true i f half−numbered theta ’ s

239 n = 9 # p r e c i p i t a t e thickness in # of a ’ s with Cu X2

vw = 0 # 1 − view 2 − write 3 − view CONTCAR

241 ####################

243 ncs = ( ntheta + nthetahalf /2)

dc = n*a /( ncs+1)

245 precithick = n*a

border1 = ( alrows +1) *a

247 border2 = border1+precithick

249 thetap = c r y s t a l ( symbols =[ ’ Al ’ , ’ Al ’ , ’Cu ’ ] ,

basis = [ ( 0 . 0 , 0 . 0 , 0 . 0 ) ,

251 ( 0 . 0 , 0 . 0 , 0 . 5 ) ,

( 0 . 0 , 0 . 5 , 0 .25) ] ,

253 spacegroup= ’ I −4 m2 ’ ,

c e l l p a r =[a , a , dc , 90.0 , 90.0 , 9 0 . 0 ] )

255

sthetap = c r y s t a l ( symbols =[ ’ Al ’ , ’ Al ’ , ’Cu ’ ] ,

257 basis = [ ( 0 . 0 , 0 . 0 , 0 . 0 ) ,

( 0 . 0 , 0 . 0 , 0 . 5 ) ,

259 ( 0 . 0 , 0 . 5 , 0 .25) ] ,

spacegroup= ’ I −4 m2 ’ ,

261 c e l l p a r =[a , a , dc , 90.0 , 90.0 , 9 0 . 0 ] )
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ind2remove = range ( 1 , 3 , 1 )

263 ind2remove . append ( 5 )

L = dc/2

265 sthetap . s e t _ c e l l ( [ a , a , L ] , scale_atoms=False )

del sthetap [ ind2remove ]

267

slab2 = Al . repeat ( ( 1 , 1 , alrows +1) )

269

i f ( 1 ) : #ntheta >0) :

271 slab2 = geometry . stack (

slab2 ,

273 thetap . repeat ( ( 1 , 1 , ntheta +1) ) , axis =2)

275 i f ( nthetahalf ) :

slab2 = geometry . stack ( slab2 , sthetap , axis =2)

277

slab2 = geometry . stack ( slab2 , Al . repeat ( ( 1 , 1 , alrows +1) ) , axis =2)

279 slab2 = geometry . sort ( slab2 )

281 # Replace some Al atoms with Ag

z = slab2 . positions [ : , 2]

283

mask = ( z>border1−a−1)* ( z < border1−1)

285 slab2 . numbers [mask] = ase . data . atomic_numbers [ ’Ag ’ ]

287 mask = ( z > border2 +1) * ( z<border2+a+1)

slab2 . numbers [mask] = ase . data . atomic_numbers [ ’Ag ’ ]

289

slab2 = geometry . sort ( slab2 )

291

# I n s e r t additional Cu atoms at i n t e r f a c e

293 num = len ( slab2 )

Cu1 = ase . Atom( ’Cu ’ ,

295 [ 0 . 5 *a , 0 . 0 , slab2 . posit ions [num−2−2* ntheta−nthetahalf , 2 ] ] )

i f nthetahalf :

297 Cu2 = ase . Atom( ’Cu ’ , [ 0 . 5 *a , 0.0 , slab2 . positions [num−1, 2 ] ] )

e lse :

299 Cu2 = ase . Atom( ’Cu ’ , [ 0 . 0 , 0.5 *a , slab2 . positions [num−1, 2 ] ] )

slab2 = slab2 + Cu1 + Cu2
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301

slab2 = geometry . sort ( slab2 )

303 i f (vw == 1) :

view ( slab2 )

305 e l i f (vw == 2) :

slab2 . write ( ’POSCAR ’ )

307 e l i f (vw == 3) :

r f i l e = ase . io . read ( ’CONTCAR’ )

309 view ( r f i l e )

311 ######################### END Ag Ag Ag #########################

313 ################ slab 3 ### Al − Cphase − Theta ’ ###########

315 #### parameters ####

alrows = 9 #number of aluminium rows outside i n t e r f a c e

317 ntheta = 5 # integer number of theta ’ s

nthetahalf = 1 #true i f half−numbered theta ’ s

319 n = 12 # p r e c i p i t a t e thickness in # of a ’ s i c l Clayer X2

vw = 0 # 1 − view 2 − write 3 − view CONTCAR

321 ####################

323 T_c = 5.7 # Chase layer thickness

T_c2 = 7.72

325 N = (8 *2+n)

L = N*a

327

# Make a p a r t i a l cphase layer to ad to i n t e r f a c e

329

# Remove the top/bottom Mg and Si atoms from the C−phase

331 Clayer = Cphase . copy ( )

scaled = Cphase . get_scaled_positions ( )

333 x = scaled [ : , 0]

mask = ( x < 0 . 2 ) + ( x > 1.0 − 0 . 2 )

335 del Clayer [mask]

337 # Rotate the structure such that the c_C // a_Al and b_C // b_Al

geometry . rotate ( Clayer , Clayer . c e l l [ 2 ] ,

339 [ 1 , 0 , 0 ] , Clayer . c e l l [ 1 ] , [ 0 , 1 , 0 ] )
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341 # Replace the c e l l with an orthorombic one f i t t i n g the Al l a t t i c e

Clayer . s e t _ c e l l ( [ [ 2 * a , 0 , 0 ] ,

343 [ 0 , a , 0 ] ,

[ 0 , 0 , T_c ] ] )

345 Clayer . positions −= Clayer . positions [ 6 ] − ( 1 , 1 , 0 . 4 )

Clayer . set_scaled_posit ions ( Clayer . get_scaled_positions ( ) )

347 Clayer . positions −= ( 1 , 1 , 0 . 4 )

Clayer . positions [ 0 , 0 ] = 0

349 Clayer . positions [ 0 , 1 ] = 0

Clayer . positions [ 9 , 0 ] = 0

351 Clayer . positions [ 3 , 1 ] = +0

Clayer . write ( ’ Clayer .POSCAR ’ )

353 #view ( Clayer )

355 # Make a second Cprime layer and adjust i t in x− and y−direction

Clayer2 = Clayer . copy ( )

357 i f ( nthetahalf == 1) :

Clayer2 . positions += [ 0 , a/2 , 0]

359 else :

Clayer2 . positions += [ a/2 , 0 , 0]

361 Clayer2 . set_scaled_posit ions ( Clayer2 . get_scaled_positions ( ) )

363 # Make theta

thetathick = a*n − 2*T_c2

365 dc = thetathick / ( ntheta + nthetahalf /2)

367

thetap = c r y s t a l ( symbols =[ ’ Al ’ , ’ Al ’ , ’Cu ’ ] ,

369 basis = [ ( 0 . 0 , 0 . 0 , 0 . 0 ) ,

( 0 . 0 , 0 . 0 , 0 . 5 ) ,

371 ( 0 . 0 , 0 . 5 , 0 .25) ] ,

spacegroup= ’ I −4 m2 ’ ,

373 c e l l p a r =[a , a , dc , 90.0 , 90.0 , 9 0 . 0 ] )

375 sthetap = c r y s t a l ( symbols =[ ’ Al ’ , ’ Al ’ , ’Cu ’ ] ,

basis = [ ( 0 . 0 , 0 . 0 , 0 . 0 ) ,

377 ( 0 . 0 , 0 . 0 , 0 . 5 ) ,

( 0 . 0 , 0 . 5 , 0 .25) ] ,
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379 spacegroup= ’ I −4 m2 ’ ,

c e l l p a r =[a , a , dc , 90.0 , 90.0 , 9 0 . 0 ] )

381 ind2remove = range ( 1 , 3 , 1 )

ind2remove . append ( 5 )

383 L = dc/2

sthetap . s e t _ c e l l ( [ a , a , L ] , scale_atoms=False )

385 del sthetap [ ind2remove ]

387 # stack theta

i f ( ntheta >0) :

389 at2 = thetap . copy ( )

at2 = at2 . repeat ( ( 1 , 1 , ntheta ) )

391 i f ( nthetahalf ) :

at2 = geometry . stack ( at2 , sthetap , axis =2)

393 else :

at2 = sthetap . copy ( )

395

# f i t theta with Clayer

397 at2 = at2 . repeat ( ( 2 , 1 , 1 ) )

at2 . positions += [ 0 . 5 * a , 0.5 * a , 0 . 0 ]

399 at2 . set_scaled_posit ions ( at2 . get_scaled_positions ( ) )

401 #add a l layer at end

at2 = geometry . stack ( at2 ,

403 geometry . cut ( Al , a =(2 ,0 ,0) ,b=(0 ,1 ,0) , c = ( 0 , 0 , 0 . 5 ) ) )

405 ## build ##

407 # Stack Al matrix

slab3 = Al . repeat ( ( 2 , 1 , alrows ) )

409

# Stack midslab containing theta and 2 clayers

411 midslab = geometry . stack ( Clayer , at2 )

midslab = geometry . stack ( midslab , Clayer2 )

413

slab3 = geometry . stack ( slab3 , midslab )

415

#add h a l f a l layer to f i t

417 a l l a y e r = geometry . cut ( Al , a =(2 , 0 , 0) , b=(0 , 1 , 0) , c =(0 , 0 , 0 . 5 ) )
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a l l a y e r . posit ions += [ a /2 ,0 ,0]

419 a l l a y e r . set_scaled_posit ions ( a l l a y e r . get_scaled_positions ( ) )

slab3 = geometry . stack ( slab3 , a l l a y e r )

421

#append aluminium at end

423 slab3 = geometry . stack ( slab3 , Al . repeat ( ( 2 , 1 , alrows ) ) )

425 slab3 = geometry . sort ( slab3 )

i f (vw == 1) :

427 view ( slab3 )

e l i f (vw == 2) :

429 slab3 . write ( ’POSCAR ’ )

e l i f (vw == 3) :

431 r f i l e = ase . io . read ( ’CONTCAR’ )

view ( r f i l e )

433

###################### END C C C C C phase #####################

435

################### slab 4 ### Al − Li − Theta ’ #################

437

#### parameters ####

439 alrows = 20 #number of aluminium rows ouside i n t e r f a c e

ntheta = 0 # integer number of theta ’ s

441 nthetahalf = 1 #true i f half−numbered theta ’ s

n = 1 #theta thickness in # of a ’ s

443 vw = 3 # 1 − view 2 − write 3 − view CONTCAR

####################

445

dc = n*a / ( ntheta + nthetahalf /2)

447 precithick = a*n

border1 = ( alrows +1) *a

449 border2 = border1+precithick

451 thetap = c r y s t a l ( symbols =[ ’ Al ’ , ’ Al ’ , ’Cu ’ ] ,

basis = [ ( 0 . 0 , 0 . 0 , 0 . 0 ) ,

453 ( 0 . 0 , 0 . 0 , 0 . 5 ) ,

( 0 . 0 , 0 . 5 , 0 .25) ] ,

455 spacegroup= ’ I −4 m2 ’ ,

c e l l p a r =[a , a , dc , 90.0 , 90.0 , 9 0 . 0 ] )
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457

sthetap = c r y s t a l ( symbols =[ ’ Al ’ , ’ Al ’ , ’Cu ’ ] ,

459 basis = [ ( 0 . 0 , 0 . 0 , 0 . 0 ) ,

( 0 . 0 , 0 . 0 , 0 . 5 ) ,

461 ( 0 . 0 , 0 . 5 , 0 .25) ] ,

spacegroup= ’ I −4 m2 ’ ,

463 c e l l p a r =[a , a , dc , 90.0 , 90.0 , 9 0 . 0 ] )

ind2remove = range ( 1 , 3 , 1 )

465 ind2remove . append ( 5 )

L = dc/2

467 sthetap . s e t _ c e l l ( [ a , a , L ] , scale_atoms=False )

del sthetap [ ind2remove ]

469

slab4 = Al . repeat ( ( 1 , 1 , alrows +1) )

471

i f ( ntheta >0) :

473 slab4 = geometry . stack (

slab4 ,

475 thetap . repeat ( ( 1 , 1 , ntheta ) ) , ax is =2)

477 i f ( nthetahalf ) :

slab4 = geometry . stack ( slab4 , sthetap , axis =2)

479 slab4 = geometry . stack ( slab4 , Al . repeat ( ( 1 , 1 , alrows +1) ) , axis =2)

slab4 = geometry . sort ( slab4 )

481

num = len ( slab4 )

483

# Replace some Al atoms with Li

485 x = slab4 . positions [ : , 0]

z = slab4 . positions [ : , 2]

487 mask = ( x <1) * ( ( z>border1−2*a+1) *

( z<border1−a−1) + ( z>border1−a+1) * ( z<border1−1) )

489 slab4 . numbers [mask] = ase . data . atomic_numbers [ ’ Li ’ ]

491 i f ( nthetahalf ) :

mask = ( x <1) * ( ( z > border2 +1) *

493 ( z<border2+a−1) + ( z>border2+a+1) * ( z<border2+2*a−1) )

e lse :

495 mask = ( x >1) * ( ( z > border2 +1) *
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( z<border2+a−1) + ( z>border2+a+1) * ( z<border2+2*a−1) )

497

slab4 . numbers [mask] = ase . data . atomic_numbers [ ’ Li ’ ]

499

slab4 = geometry . sort ( slab4 )

501 i f (vw == 1) :

view ( slab4 )

503 e l i f (vw == 2) :

slab4 . write ( ’POSCAR ’ )

505 #Al . repeat ( ( 1 , 1 , 12) ) . write ( ’POSCAR ’ , vasp5=True )

e l i f (vw == 3) :

507 r f i l e = ase . io . read ( ’CONTCAR’ )

view ( r f i l e )

509

######################## END LI ############################

../mkposcar.py
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Cphase/POSCAR file

Si Mg Cu Al Mg

2 1.00000000000000

10.2977248586763093 0.0000000000000000 0.0000000000000000

4 0.0000000000000002 4.0391000000000004 0.0000000000000000

−1.5275508075609407 0.0000000000000006 7.9324588729044114

6 Si Mg Cu Al Mg

6 6 2 2 2

8 Direct

0.4880001572195170 0.5000000000000000 0.2479616815621668

10 0.5119998427804830 0.0000000000000000 0.7520383184378332

0.8289965254399192 0.5000000000000000 0.0729221947589878

12 0.1710034745600808 0.0000000000000000 0.9270778052410122

0.8342099448141411 0.5000000000000000 0.5913961402392403

14 0.1657900551858589 0.0000000000000000 0.4086038597607597

0.6347372648772236 0.0000000000000000 0.0810722486370068

16 0.3652627351227764 0.5000000000000000 0.9189277513629861

0.6384108533112567 0.0000000000000000 0.4875558923780687

18 0.3615891466887504 0.5000000000000000 0.5124441076219313

0.9022066367592743 0.0000000000000000 0.3414215157560818

20 0.0977933632407257 0.5000000000000000 0.6585784842439182

0.7217442349405516 0.5000000000000000 0.3066290234965976

22 0.2782557650594484 0.0000000000000000 0.6933709765034024

0.6702587545049425 0.5000000000000000 0.7919659205699929

24 0.3297412454950575 0.0000000000000000 0.2080340794300071

0.9031693624205914 0.0000000000000000 0.8569105459737116

26 0.0968306375794086 0.5000000000000000 0.1430894540262884
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28 0.00000000E+00 0.00000000E+00 0.00000000E+00

0.00000000E+00 0.00000000E+00 0.00000000E+00

30 0.00000000E+00 0.00000000E+00 0.00000000E+00

0.00000000E+00 0.00000000E+00 0.00000000E+00

32 0.00000000E+00 0.00000000E+00 0.00000000E+00

0.00000000E+00 0.00000000E+00 0.00000000E+00

34 0.00000000E+00 0.00000000E+00 0.00000000E+00

0.00000000E+00 0.00000000E+00 0.00000000E+00

36 0.00000000E+00 0.00000000E+00 0.00000000E+00

0.00000000E+00 0.00000000E+00 0.00000000E+00

38 0.00000000E+00 0.00000000E+00 0.00000000E+00

0.00000000E+00 0.00000000E+00 0.00000000E+00

40 0.00000000E+00 0.00000000E+00 0.00000000E+00

0.00000000E+00 0.00000000E+00 0.00000000E+00

42 0.00000000E+00 0.00000000E+00 0.00000000E+00

0.00000000E+00 0.00000000E+00 0.00000000E+00

44 0.00000000E+00 0.00000000E+00 0.00000000E+00

0.00000000E+00 0.00000000E+00 0.00000000E+00

../cphase.CONTCAR
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