
Conditional Sampling from a Gamma
Distribution given Sufficient Statistics

Marius Fagerland

Master of Science in Physics and Mathematics

Supervisor: Bo Henry Lindqvist, MATH

Department of Mathematical Sciences

Submission date: June 2016

Norwegian University of Science and Technology

i

Problem description
• Give an introduction to stochastic simulation in parametric distributions.

• Give an introduction to sufficiency of statistics in parametric models.

• Present and study algorithms for simulation of samples from conditional
distributions of data given sufficient statistics, in particular the gamma distri-
bution.

• Illustrate the theory by simulated examples.

NTNU, January 18, 2016

Bo Lindqvist
Supervisor

iii Preface

Preface
The motivation for this paper comes from my specialization project. From my spec-
ialization project, I could use the Gibbs sampler to study the gamma distribution
and its sufficient statistics. This way I could use the Gibbs sampler to compare other
sampling methods for the gamma distribution. Algorithm 1 became a particular
interest because of the NTNU’s previous research of this algorithm.

For guiding me through the process, I would like to thank my supervisor Bo Henry
Lindqvist.

Preface iv

Abstract

This thesis is an analysis of conditional sampling from a gamma distribution
given sufficient statistics. Several sampling algorithms are considered. An
algorithm similar to direct sampling is discussed in particular. This algorithm
uses parameter adjustments to meet conditions of sufficient statistics. However,
this algorithm is influenced by a pivotal condition. How this condition affects
algorithm 1 is presented. A Gibbs sampler is assumed to give correct samples,
and will be used in comparison to the other samplers. Several data sets are
used, and all of them follow the case of 3 data points.

v

Sammendrag

Denne oppgave er en analyse av betinget simulering av data fra en gam-
mafordeling gitt suffisiente observatorer. Flere algoritmer for å generer data
er anvendt. En algoritme som likner på direkte generering av data er sett på
spesielt. Denne algoritmen justerer parameterne slik at kravene til suffisiente-
ne er møtt. En betingelse til denne algoritmen kalles for pivotal betingelsen.
Denne oppgaven ser nærmere på hvordan denne betingelsen påvirker denne
algoritmen. Gibbs sampler er en annen algoritme som er brukt. Denne er antatt
å gi riktige data. For å teste de ulike algoritmene er flere datasett benyttet. Alle
datasett har benyttet 3 datapunkter.

Contents vi

Contents
1 Introduction 11

2 Introduction to theory 33
2.1 Gamma distribution . 33
2.2 Algorithm 1 . 44
2.3 Weighted sampling, algorithm 2 . 55
2.4 Gibbs sampler with Metropolis-Hastings step. 66
2.5 Naive sampler . 88
2.6 Overview of the samplers . 99

3 Goodness of fit 1111
3.1 Test statistics . 1111
3.2 Expectation of a chosen function φ 1111

4 Implementation 1515
4.1 Inverse of cumulative Gamma function. 1515
4.2 Estimation of derivate of inverse gamma cumulative function. . . . 1616
4.3 Solving for alpha and beta. 1616

5 Results and discussion of samplers 1919
5.1 Data sets . 1919
5.2 Discussion and comparison of samplers 3333

6 Concluding remarks 3535
6.1 Performance of samplers . 3535
6.2 Further work . 3535

Bibliography 3737

Theory 3939
Finding sufficient statistics . 3939
Tranformation of variables . 3939
Sampling with sufficient statistics . 3939
P-Value . 4040
Likelihood and estimators . 4141

R script 4343

1 Introduction

1 Introduction
In this paper sampling from a gamma distribution given sufficient statistics is stud-
ied. The gamma distribution is often used in lifetime analysis [1414] and is a very
flexible distribution. This distribution will be introduced later. First, the subject of
sampling given sufficient statistics will be presented. Information about this topic
can be found in my specialization project.

A statistic is a function that returns a summary of the data. Examples of this
can be mean value and standard deviation of the sample. Let’s assume our data is
from a distribution depending on some parameters Θ. The statistics we are inter-
ested in are those who contain information about the parameters Θ. This leads us to
sufficient statistics. A sufficient statistic is a statistic that captures all information
about the parameters Θ and discards the rest. From [22] we have the following.

Definition 1 (Sufficient statistic definition) A statistic T (X) is sufficient statistic for Θ
if the conditional distribution of sample X gives the value for T (X) does not depend on Θ.

The meaning behind this is that we can use the information from the statistics to
generate new samples, and generate new samples with the same sufficient statistics.
For instance, the sufficient statistics of gamma distribution are the sum and product
of a sample. This will be shown later. By generating new samples given sufficient
one can guarantee that the new samples will have the same sum and product as the
original sample. In this paper several ways to simulate new samples from gamma
distribution given sufficient statistics will be studied.

The main algorithm of interest is denoted algorithm 1. The specifics of this al-
gorithm will be introduced later. This algorithm has a particular condition to be
sure to generate samples from the correct distribution. The condition is called a
pivotal condition and is as follows. The sufficient statistics τ(u,θ) depends only on
u through a function r(u). The function r(u) has a unique representation by solving
τ(u,θ) = t. This condition will be studied to see if it has any effect on the gamma
distribution. The theory for this can be found in paper [1010].

To analyze the algorithms, several goodness of fit tests will be applied. Test statistics
will be used to determine if the samples are from the correct distribution. However
since the gamma distribution is flexible, there might not be easy to determine if
samples are from the wrong distribution. Furthermore, a goodness of fit test will be
used to determine differences in the samples between the different algorithms.

3 Introduction to theory

2 Introduction to theory
In this chapter the gamma distribution and its sufficient statistics will be introduced.
Furthermore, the methodology of the different samples will be shown.

2.1 Gamma distribution
From [1414] consider a number of events that follow a homogeneous Poisson process
with rate parameter 1/β. Denote the time intervals between the events X1, ...,Xα.
The total time of the events is given by

X = X1 + · · ·+Xα .

Then X is gamma distributed with parameters (α,β). The probability density
function for the gamma distribution is given as follows.

f (x;α,β) =
xα−1

Γ (α)βα
e
−x
β (2.1)

The function Γ (α) is called the gamma function and is given by

Γ (α) =
∫ ∞

0
tα−1e−tdt.

Furthermore α > 0, β > 0 and X > 0. The equation 2.12.1 is also the definition of a
gamma distribution when α > 0 is not an integer. Next the sufficient statistic in a
gamma distribution is found.

Sufficient statistics in gamma distribution
To find the sufficient statistics of a gamma distribution one can find the joint
distribution and use the factorization theorem. For the gamma distribution the joint
distribution becomes

f (x1, ...,xn;α,β) =
n∏
i=1

xi
α−1

Γ (α)βα
e−

xi
β .

This expression can be rearranged to

e−
∑n
i=1 xi
β

Γ (α)nβαn

n∏
i=1

xi
α

xi
.

Algorithm 1 4

From the factorization theorem the sufficient statistics are

 n∑
i=1

xi ,
n∏
i=1

xi

. By trans-

forming the sufficient statistics they become


1
n

n∑
i=1

xi ,

 n∏
i=1

xi


1
n

1
n

n∑
i=1

xi


. This transforma-

tion can be done because of [11]. These sufficient statistics will make it easier for
some of the samplers. With the sufficient statistics, we can generate samples from
the distribution.

2.2 Algorithm 1
Algorithm 1 is the first algorithm to be used for generating samples. This algorithm
is found in paper [88]. The general setup is that we have dataX and sufficient statistics
T . An assumption is a random vector U with known distribution. Furthermore
consider functions (χ(·, ·), τ(·, ·)) such that

(χ(U,θ), τ(U,θ)) θ∼ (X,T).

For instance, the vector U could be from a uniform distribution between 0 and
1, while χ(U,θ) is the inverse of the cumulative distribution and τ(U,θ) is the
sufficient statistics. This is the idea for algorithms 1. To estimate θ one could solve
τ(U,θ) = t, where t is the values for sufficient statistics for a data set. An overview of
algorithm 1 is shown in section 2.62.6. As mentioned in the introduction this algorithm
has a condition to guarantee samples from right distribution. The condition is as
follows. τ(u,θ) is only dependent on u in a function r(u). However, this condition
does not need to be met to give samples from the right distribution. To simulate
from a gamma distribution, a trick is used. It is easier to simulate from a gamma
distribution where β = 1. Hence, we have that

Y =
X
β
,

where X has the distribution in equation 2.12.1. Then a gamma sample can be found
by first simulating Y and then set X = βY . Now the χ(U,θ) becomes

χ(u,α,β) = βF−1(u;α), (2.2)

where

F(y;α) =
γ(y;α,1)
Γ (α)

.

5

The function γ is the incomplete gamma function. The inverse function F−1(y;α)
cannot be found analytically and must be obtained numerically. Furthermore the
τ(U,θ) becomes

τ1(u,α,β) =
β

n

n∑
i=1

F−1(u;α). (2.3)

τ2(u,α,β) =

(∏n
i=1F

−1(u;α)
) 1
n

1
n

∑n
i=1F

−1(u;α)
(2.4)

Since τ1 and τ2 is defined the pivotal condition can be studied. As mentioned in
the introduction the pivotal condition is met when the sufficient statistics τ(u,θ)
depends only on u through a function r(u). This can be shown as τ(u,θ) = τ̃(r(u),θ).
From equations 2.32.3 and 2.42.4 the pivotal condition is not met for a gamma distribution.
To generate sample one would first solve the equation τ2(α) = t2 to estimate α.
Furthermore, solve equation τ1(α̂,β) = t1 for β. Then use equation equation 2.22.2 to
generate a sample. An overview of this algorithm can be found in section 2.62.6.

2.3 Weighted sampling, algorithm 2
This algorithm is very similar to algorithm 1, and is also found in paper [88]. However
weights Wt(u) for the vector U is proposed. This is to yield samples from the right
distribution. The weights can be found by

Wt(u) = π{θ̂(u,t)}|det∂tθ̂(u,t)| = | π(θ)
det∂θτ(u,θ)

|θ=θ̂(u,t).

The function π(θ) can be chosen freely. Some popular choices are a constant and
Jeffreys prior. To generate a sample one would generate a sample V proportional
to Wt(u)f (u) and use this to get a sample from χ(V ,θ̂(V ,t)). An overview of the
algorithm can be found in section 2.62.6. For the Gamma distribution we have that

det∂θτ(u,θ) =

∣∣∣∣∣∣∣
∂τ1
∂α

∂τ1
∂β

∂τ2
∂α

∂τ2
∂β

∣∣∣∣∣∣∣ =
∣∣∣∣∣∂τ1

∂β
∂τ2

∂α

∣∣∣∣∣
To find ∂τ2

∂α a trick is proposed. The trick is as follows.

∂ logτ2

∂α
=
∂τ2

∂α
1
τ2
.

Furthermore we get
∂τ2

∂α
= τ2

∂ logτ2

∂α
.

Gibbs sampler withMetropolis-Hastings step. 6

From equation 2.42.4 we get the equation

logτ2 =
1
n

n∑
i=1

logF−1(ui ,α)− log
1
n

n∑
i=1

F−1(ui ,α).

Then ∂ logτ2
∂α becomes

∂ logτ2

∂α
=

1
n

n∑
i=1

h(ui ,α)
F−1(ui ,α)

−
∑n
i=1h(ui ,α)∑n
i=1F

−1(ui ,α)
,

where h(ui ,α) is the derivative of F−1(ui ,α) with respect to α. The variables t1 and
t2 is the observed values of τ1 and τ2. Finally det∂θτ(u,θ) becomes

det∂θτ(u,θ) =
t1t2
β

∂ logτ2

∂α
.

The function π(θ) can be chosen such that t1t2/β vanishes when calculating weights.
Another addition to the π function is to set it to 0 for specific α-values. In our case
we set π = 0 for α < 0.2 and α > 200. This is because the inverse gamma cumulative
function becomes difficult for small α-values. This can be seen in figure 4.24.2. The
upper limit is to narrow down the search limit for a numerical solution. This leads
to weights as shown below.

Wt =
1

1
n

∑n
i=1

h(ui ,α)
F−1(ui ,α) −

∑n
i=1 h(ui ,α)∑n
i=1 F

−1(ui ,α)

, 0.2 ≤ α ≤ 200.

This sampling algorithm is very similar to algorithm 1. In the u values are weighted
and denoted v. To find the v values, a Metropolis-Hastings step is used. Since
a uniform distribution is used to draw v values, the alpha value in Metropolis-
Hastings is found by

α = min(1,
Wt(uproposal)

Wt(ucurrent)
).

Then the rest is as with algorithm 1. A sample X is found by βY .

2.4 Gibbs sampler withMetropolis-Hastings step.
Since the values of the sufficient statistics cannot differ from the original data set,
the sampler must generate new samples with the same values for the sufficient
statistics. Given a sample with N points and number of sufficient statistics, one can
draw three arbitrary points and draw a new value for one of the points given the
two others. By setting one of the points, one can calculate the two others. This is
where the Metropolis-Hastings step is used to draw a new value. Further, when this
new value is drawn the two other values must be adjusted to fulfill the sufficient

7

statistics. This should be done several times for each sample. The reason for this is
to make the samples independent.

Assume we have chosen three points (X1,X2,X3) from our sample. It is these three
points that are going to be updated. The idea is to draw a new value for one of them.
To draw a new value we need to use the transformation of variables from appendix
6.26.2. The transformation is

(Z1,Z2,Z3) = (
3∑
i=1

Xi ,
3∏
i=1

Xi ,X3).

This will yield the probability density fZ1,Z2,Z3
(z1, z2, z3). However we are interested

in fZ3|Z1,Z2
(z3|z1, z2), where Z3 = X3 is the variable drawn from this distribution.

Fortunately from Bayes rule [22] the distribution becomes

fZ3|Z1,Z2
(z3|z1, z2) ∝ fZ1,Z2,Z3

(z1, z2, z3).

Further we continue with transformation of variables. The determinant of the
Jacobian matrix then becomes

|J | = X3(X2 −X1).

We also have the following relations from the tranformation, where we have put
a = Z1 and b = Z2

X1 +X2 +X3 = a

X1 +X2 = a−X3

X1 ·X2 ·X3 = b

X1 ·X2 =
b
X3
.

Then X1 and X2 are the roots of

X2 − (a−X3)X2 +
b
X3

= 0,

which are

X(1,2) =
(a−X3)±

√
(a−X3)2 − 4b

X3

2
.

From this the jacobian becomes

|J | = X3

√
(a−X3)2 − 4b

X3
.

Naive sampler 8

From paper [1212] the determinant of the inverse jacobian is

|J |−1 =
1

X3

√
(a−X3)2 − 4b

X3

.

We also have that

fX1,X2,X3
(x1,x2,x3) =

3∏
i=1

xi
α−1

Γ (α)βα
e−

xi
β ., 0 ≤ xi ≤ a for all i,

the density to draw new values for X3 becomes

Π ∝
fX1,X2,X3

(x1,x2,x3)

X3

√
(a−X3)2 − 4b

X3

.

This is where the Metropolis-Hastings step is used. The requirements for this density
are listed below.

0 ≤ X3 ≤ a (2.5)

(a−X3)2 − 4b
X3
≥ 0 (2.6)

(a−X3) +

√
(a−X3)2 − 4b

X3
≤ a. (2.7)

So when we draw from a proposal density like a uniform distribution, we need to
make sure that the new X3 fulfills these requirements. If the requirements are not
met, then the probability of accepting this new value is zero. If the requirements
are met then, the acceptance probability is defined as,

α̃ = min
(
1,

Π(Xprop)

Π(Xcurr)

)
. (2.8)

From this we see that the term fX1,X2,X3
(x1,x2,x3) will vanish. This is because of

the sufficient statistics where sum and product should be the same for all samples.
Which one of the data points who will be X1, X2 and X3 can be chosen at random.
An overview of the algorithm is section 2.62.6. A related algorithm for Gibbs sampling
for the gamma distribution is given in [1212]. The idea of considering three variables
at a time is, however, apparently new.

2.5 Naive sampler
The idea behind this sampler is to use only the samples where the sufficient statistics
match. It is a lot easier to simulate from a gamma distribution when the samples
are independent of sufficient statistics. To create samples with the right distribution

9

one would only use samples where the sufficient statistics match the original data.
This can be difficult in practice. To make this easier, we allow a small error in sum
and product of the samples.

|
n∑
i=1

xi − t1| < ε1

|
n∏
i=1

xi − t2| < ε2,

where x = (x1, ...,xn) is the generated samples, t1 and t2 is the sum and product of
original data. Finally ε1 and ε2 are the allowed errors. Even with well assigned
ε values the acceptance rate for a sample might be very low. An overview of the
algorithm can be found in 33.

2.6 Overview of the samplers
In this section, the overview of the different samplers is shown. They only show the
very basics of each algorithm.

Algorithm 1 Generate new samples with algorithm 1.
Draw U from a known distribution.
Find θ such that τ(U,θ) = t.
A sample is given by Xt(U) = χ{U,θ̂(U,t)}.

Algorithm 2 Generate new samples with algorithm 2.
Draw V from a distribution proportional to Wt(u)f (u) .
Find θ such that τ(V ,θ) = t.
A sample is given by Xt(V) = χ{V ,θ̂(V ,t)}.

Algorithm 3 Generate new samples with naive sampling.
Draw X from Gamma(α,β) .

Accept sample if |
n∑
i=1

xi − t1| < ε1 and |
n∏
i=1

xi − t2| < ε2

Overview of the samplers 10

Algorithm 4 Generate new samples with Gibbs sampler.
Draw 3 arbitrary indices from {1,2, ...,n}
Caclulate sum a and product b of the corresponding X’s.
Draw a proposal X3 from U [0, a].
Check requirements in equations 2.52.5, 2.62.6 and 2.72.7.
Calculate X1 and X2.
Calculate α̃ from equation 4.24.2.
Accept with probability α̃
Repeat from top desired times to make sample approximately independent.

11 Goodness of fit

3 Goodness of fit
In this chapter goodness of fit testing will be introduced. A goodness of fit is how
well the observed data match a model. First test statistics will be introduced and
how data fits a data model. Furthermore, a goodness of fit is presented to compare
differences between algorithms.

3.1 Test statistics
A test statistic is a function to test a certain attribute. Most of this information can
also be found in my specialization project. For a gamma distribution, the Cramer-
von Mises test [1515] can be used. This test judges the goodness of fit of a cumulative
distribution to an empirical distribution. The test is as follows.

ω2 =
1

12n

n∑
i=1

(2i − 1
2n

−F(xi ; α̂, β̂)
)2
,

where xi values are ordered. Here α̂ and β̂ are estimated from samples. One way
to do this is to find the maximum likelihood estimators. How to find maximum
likelihood estimators can be found in appendix 6.26.2. In R you an use the built in
function f itdistr to calculate maximum likelihood estimators. Documentation of
this is shown in [66]. A test statistic is used in hypothesis testing. This is where you
test two hypotheses against each other. The first hypothesis is denoted the null
hypothesis and the second hypothesis denoted alternative hypothesis. The null
hypothesis is assumed to be correct. In this case, the null hypothesis is that the
original samples come from a gamma distribution. The alternative hypothesis is
that the original samples do not come from a gamma distribution. A measurement
of when to reject the null hypothesis is a p-value. The definition and calculation of
a p-value are found in appendix 6.26.2. In this case, the null hypothesis is expected to
hold. This is because we are studying samples with only 3 data points. Hence, this
gives room for the gamma distribution model to fit the data points.

3.2 Expectation of a chosen functionφ
To do goodness of fit testing one could calculate E{φ(X)|T = t}. This can be used to
compare the different algorithms with each other. The φ(X) is chosen to give a value
for a given sample X. In our samples, we assume that each sample has 3 data points.
Hence, φ functions involving 3 data points have been chosen. The first φ function
to be tested is

φ(X) =
1
3

3∑
i=1

I(xi > a), (3.1)

Expectation of a chosen functionφ 12

where a is a chosen value. The second chosen φ function is

φ(X) = I(
x1x2

x3
> a). (3.2)

Since we have the product of x1 and x2 in the numerator, this φ function might not
be a 1-1 function. A plot of this function given a data set is shown in figure 3.13.1. The
third φ function is

φ(X) = I
((
x1

x2

)x3

> a

)
. (3.3)

A plot of this function given a data set is shown in figure 3.13.1. From the figure, we
see that this function is almost a 1-1 function. This could make it easier to compare
samples. To calculate E{φ(X)|T = t} one would calculate φ(X) for every sample and
find the average value.

Figure 3.1: Plot of second φ function for x1 values given sufficient statistics. Those values
that are zero are invalid values. Data set shown in table 5.65.6.

13

Figure 3.2: Plot of third φ function for x1 values given sufficient statistics. Those values
that are zero are invalid values. Data set shown in table 5.65.6.

15 Implementation

4 Implementation
This chapter is about implementation and discussion about how to implement
sections of the samplers.

4.1 Inverse of cumulative Gamma function.
The inverse of the cumulative gamma distribution cannot be found analytically and
must be found numerically. Since we would want to find a value t such that

F−1(u) = t,

for a given u ∈U [0,1] one can instead find t such that

F(t) = u.

In R programming it can be easier to use a minimizer function to minimize

|F(t)−u|, (4.1)

since the minimum of this will be zero. This can be solved by other methods too. By
keeping u fixed and plotting the inverse cumulative distribution with respect to α
we get the figure shown in 4.14.1. Since this is a 1-1 function equation 4.14.1 only has one
solution.

Figure 4.1: Plot of inverse cumulative distribution function with respect to α. This is plotted
for u = 0.5.

Solving for alpha and beta. 16

4.2 Estimation of derivate of inverse gamma cumulative
function.

To find the derivate of the inverse gamma cumulative function one can use first
order forward difference. This is given as

f ′(x) ≈
f (x+ h)− f (x)

h
,

where h is a small step forward. This scheme can be found in [77] and [1616].The
estimated derivate of the inverse gamma cumulative function for a fixed u is shown
in figure 4.24.2.

Figure 4.2: Plot of derivative of inverse cumulative distribution function with respect to α.
This is plotted for u = 0.5.

4.3 Solving for alpha and beta.
To solve for alpha we have the same situation as the inverse of the cumulative
Gamma function. From the figure 4.34.3 we see that the function τ2 is a 1-1 function.
Hence alpha can be found numerically. α can be found by minimizing

|τ2 −n

(∏n
i=1F

−1(ui ,α)
)1/n∑n

i=1F
−1(ui ,α)

|, (4.2)

and β can be found by

β = n
τ1∑n

i=1F
−1(ui ,α)

. (4.3)

17

The alpha to be used in equation 4.34.3 is the one from equation 4.24.2

Figure 4.3: Plot of τ2 function for α-values.

19 Results and discussion of samplers

5 Results and discussion of samplers
In this chapter, the results from the different algorithms will be presented.The Gibbs
algorithm is assumed to give right samples. This is because this algorithm as been
used in my specialization project and a modified version in paper [1212]. Thus, this
algorithm will be the one to compare the other algorithms. The results have been
split into several data sets. Each data set has 105 samples for each algorithm and for
the φ functions in equations 3.13.1, 3.23.2 and 3.33.3.

5.1 Data sets
Some of the data sets have used a gamma distribution to generate data. One data set
have been selected out of memory to try to create other results. And final data sets
are from a ball bearing failure data set.

5.1.1 Data set 1
The first data set is shown in table 5.15.1. From this table we see that all the data points
are below 1. This may cause sensitivity issues for the naive sampler. The reason for
this is that the product of the sample becomes a low number. Hence, the ε value
needs to be lower than usual. The results for this data set are given in tables 5.35.3, 5.45.4
and 5.55.5. From these tables we see that the algorithm 1 is the one closest to the Gibbs
algorithm. For this data set algorithm 1 might not be influenced by not fulfilling the
pivotal condition. The naive sampler gets close to the Gibbs sampler for some of the
cases. The reason for the variance might be because of the ε-value. The variance in
algorithm 2 may result from numerical approximations. The p-values for this data
set are shown in table 5.25.2, and plots of the Cramer-von Mises test statistic are shown
in figures 5.15.1, 5.25.2, 5.35.3 and 5.45.4. The figures are somewhat similar to each other.

Table 5.1: Data set 1 generated from a gamma distribution.

0.5772030 0.4340237 0.4212959

Table 5.2: P-values with Cramver-von Mises test statistic for data set 1.

Algorithm Cramer-von Mises
Algorithm 1 0.155
Algorithm 2 0.178
Gibbs 0.155
Naive 0.153

Data sets 20

Table 5.3: E[φ(X)|T = t] for data set 1 with φ as shown in equation 3.13.1 and a = 0.5

Algorithm E[φ(X)|T = t]
Algorithm 1 0.4159
Algorithm 2 0.4087
Gibbs 0.4163
Naive 0.3974

Table 5.4: E[φ(X)|T = t] for data set 1 with φ as shown in equation 3.23.2 and a = 0.5

Algorithm E[φ(X)|T = t]
Algorithm 1 0.4497
Algorithm 2 0.5000
Gibbs 0.4510
Naive 0.4372

Table 5.5: E[φ(X)|T = t] for data set 1 with φ as shown in equation 3.33.3 and a = 1.0

Algorithm E[φ(X)|T = t]
Algorithm 1 0.5015
Algorithm 2 0.4985
Gibbs 0.5020
Naive 0.4999

Figure 5.1: Plot of Cramer-Von Mises test statistics for naive sampler of data set 1. The
vertical line is the observed Cramer-Von Mises value from original data set.

21

Figure 5.2: Plot of Cramer-Von Mises test statistics for Gibbs sampler of data set 1. The
vertical line is the observed Cramer-Von Mises value from original data set.

Figure 5.3: Plot of Cramer-Von Mises test statistics for algorithm 1 of data set 1. The vertical
line is the observed Cramer-Von Mises value from original data set.

Data sets 22

Figure 5.4: Plot of Cramer-Von Mises test statistics for algorithm 2 of data set 1. The vertical
line is the observed Cramer-Von Mises value from original data set.

5.1.2 Data set 2
This is another data set from a gamma distribution. The data points are shown in
table 5.65.6. For this data set, the data points are above 1. Hence, the ε-value might
not be sensitive to the product of the data set. The results for this data set are shown
in tables 5.85.8, 5.95.9 and 5.105.10. From these tables, we see that the naive sampler is much
closer to the Gibbs sampler. As mentioned earlier the ε-value is not as sensitive
for the product of data set. The variance for algorithm 2 in this data set is also
high compared to the others. Algorithm 1 is for this data set also very close to the
Gibbs sampler. However not as much as the naive sampler. The p-values are shown
in table 5.75.7. All of the p-values are above the significance levels. Hence, the null
hypothesis is kept. The p-values are very close to each other. It is only algorithm
2 which is lower than the rest. From figure 5.85.8, we see that algorithm 2 generates
some extreme values.

Table 5.6: Data set 2 generated from a gamma distribution.

1.621813 1.059797 1.554334

23

Table 5.7: P-values with Cramver-von Mises test statistic for data set 2.

Algorithm Cramer-von Mises
Algorithm 1 0.183
Algorithm 2 0.118
Gibbs 0.185
Naive 0.185

Table 5.8: E[φ(X)|T = t] for data set 2 with φ as shown in equation 3.13.1 and a = 1.4

Algorithm E[φ(X)|T = t]
Algorithm 1 0.4953
Algorithm 2 0.5153
Gibbs 0.4963
Naive 0.4961

Table 5.9: E[φ(X)|T = t] for data set 2 with φ as shown in equation 3.23.2 and a = 1.3

Algorithm E[φ(X)|T = t]
Algorithm 1 0.5294
Algorithm 2 0.5624
Gibbs 0.5336
Naive 0.5307

Table 5.10: E[φ(X)|T = t] for data set 2 with φ as shown in equation 3.33.3 and a = 1.0

Algorithm E[φ(X)|T = t]
Algorithm 1 0.5024
Algorithm 2 0.5131
Gibbs 0.5008
Naive 0.5009

Figure 5.5: Plot of Cramer-Von Mises test statistics for naive sampler of data set 2. The
vertical line is the observed Cramer-Von Mises value from original data set.

Data sets 24

Figure 5.6: Plot of Cramer-Von Mises test statistics for Gibbs sampler of data set 2. The
vertical line is the observed Cramer-Von Mises value from original data set.

Figure 5.7: Plot of Cramer-Von Mises test statistics for algorithm 1 of data set 2. The vertical
line is the observed Cramer-Von Mises value from original data set.

25

Figure 5.8: Plot of Cramer-Von Mises test statistics for algorithm 2 of data set 2. The vertical
line is the observed Cramer-Von Mises value from original data set.

5.1.3 Data set 3
This data set consists of integer values from a uniform distribution between 0 and
20. The data set is shown in table 5.115.11. Because of the high variance in this data
set, it creates a problem for the naive sampler. This makes the naive sampler slow
and makes it hard to generate many samples. Because of this results from the naive
sampler have not been added to the following results. Results for this data set are
shown in tables 5.135.13, 5.145.14 and 5.155.15. As seen for the previous data sets algorithm 1
is again close to the Gibbs sampler. While algorithm 2 seems to vary how close it
is to the Gibbs sampler. The p-values are shown in table 5.125.12. From the p-values,
the null hypothesis is not rejected for this data set. All of the p-values are above
significance level 5% and 10%. Here the test statistic plots are quite similar to each
other.

Table 5.11: Data set 3

5 15 13

Data sets 26

Table 5.12: P-values with Cramver-von Mises test statistic for data set 3.

Algorithm Cramer-von Mises
Algorithm 1 0.271
Algorithm 2 0.255
Gibbs 0.269
Naive

Table 5.13: E[φ(X)|T = t] for data set 3 with φ as shown in equation 3.13.1 and a = 11.0

Algorithm E[φ(X)|T = t]
Algorithm 1 0.4652
Algorithm 2 0.4557
Gibbs 0.4658
Naive

Table 5.14: E[φ(X)|T = t] for data set 3 with φ as shown in equation 3.23.2 and a = 7.0

Algorithm E[φ(X)|T = t]
Algorithm 1 0.5678
Algorithm 2 0.5678
Gibbs 0.5691
Naive

Table 5.15: E[φ(X)|T = t] for data set 3 with φ as shown in equation 3.33.3 and a = 0.0118

Algorithm E[φ(X)|T = t]
Algorithm 1 0.6519
Algorithm 2 0.6647
Gibbs 0.6547
Naive

Figure 5.9: Plot of Cramer-Von Mises test statistics for Gibbs sampler of data set 3. The
vertical line is the observed Cramer-Von Mises value from original data set.

27

Figure 5.10: Plot of Cramer-Von Mises test statistics for algorithm 1 of data set 3. The
vertical line is the observed Cramer-Von Mises value from original data set.

Figure 5.11: Plot of Cramer-Von Mises test statistics for algorithm 2 of data set 3. The
vertical line is the observed Cramer-Von Mises value from original data set.

5.1.4 Data set 4
This data set retrieved from the ball bearing failure data set. The ball bearing failure
data set can be found in [1717]. Only three of the data points from the ball bearing
data set have been chosen. This is because the focus of this paper is samplers with
three data points. The data points chosen are shown in table 5.165.16. The results for

Data sets 28

this data set is shown in tables 5.185.18, 5.195.19 and 5.205.20. From these tables we see that
the results are very much the same as in data set 3. The p-values are shown in table
5.175.17.

Table 5.16: Data set 4 from ball bearing failure data.

17.88 28.92 33.00

Figure 5.12: Plot of Cramer-Von Mises test statistics for Gibbs sampler of data set 4. The
vertical line is the observed Cramer-Von Mises value from original data set.

Table 5.17: P-values with Cramver-von Mises test statistic for data set 4.

Algorithm Cramer-von Mises
Algorithm 1 0.429
Algorithm 2 0.455
Gibbs 0.427
Naive

29

Table 5.18: E[φ(X)|T = t] for data set 4 with φ as shown in equation 3.13.1 and a = 27.0

Algorithm E[φ(X)|T = t]
Algorithm 1 0.4678
Algorithm 2 0.4995
Gibbs 0.4677
Naive

Table 5.19: E[φ(X)|T = t] for data set 4 with φ as shown in equation 3.23.2 and a = 21.0

Algorithm E[φ(X)|T = t]
Algorithm 1 0.5795
Algorithm 2 0.5694
Gibbs 0.5802
Naive

Table 5.20: E[φ(X)|T = t] for data set 4 with φ as shown in equation 3.33.3 and a = 0.0118

Algorithm E[φ(X)|T = t]
Algorithm 1 0.5946
Algorithm 2 0.6224
Gibbs 0.5978
Naive

Figure 5.13: Plot of Cramer-Von Mises test statistics for algorithm 1 of data set 4. The
vertical line is the observed Cramer-Von Mises value from original data set.

Data sets 30

Figure 5.14: Plot of Cramer-Von Mises test statistics for algorithm 2 of data set 4. The
vertical line is the observed Cramer-Von Mises value from original data set.

5.1.5 Data set 5
This data set is to see what happens when data points are close to each other. The
reason for small values is to be able to use the naive sampler too. The data set is
shown in table 5.215.21. Results of calculating E{φ(X)|T = t} are shown in tables 5.235.23,
5.245.24 and 5.255.25. The p-values for this data set are shown in table 5.225.22. The null
hypothesis won’t be rejected for this data set either.

Table 5.21: Data set 5.

0.40 0.42 0.43

Table 5.22: P-values with Cramver-von Mises test statistic for data set 5.

Algorithm Cramer-von Mises
Algorithm 1 0.622
Algorithm 2 0.608
Gibbs 0.619
Naive 0.623

31

Table 5.23: E[φ(X)|T = t] for data set 5 with φ as shown in equation 3.13.1 and a = 0.42

Algorithm E[φ(X)|T = t]
Algorithm 1 0.4373
Algorithm 2 0.4125
Gibbs 0.4375
Naive 0.4720

Table 5.24: E[φ(X)|T = t] for data set 5 with φ as shown in equation 3.23.2 and a = 0.407

Algorithm E[φ(X)|T = t]
Algorithm 1 0.5777
Algorithm 2 0.4930
Gibbs 0.5763
Naive 0.5053

Table 5.25: E[φ(X)|T = t] for data set 5 with φ as shown in equation 3.33.3 and a = 0.42

Algorithm E[φ(X)|T = t]
Algorithm 1 0.4664
Algorithm 2 0.4776
Gibbs 0.4653
Naive 0.4773

Figure 5.15: Plot of Cramer-Von Mises test statistics for naive sampler of data set 5. The
vertical line is the observed Cramer-Von Mises value from original data set.

Data sets 32

Figure 5.16: Plot of Cramer-Von Mises test statistics for Gibbs sampler of data set 5. The
vertical line is the observed Cramer-Von Mises value from original data set.

Figure 5.17: Plot of Cramer-Von Mises test statistics for algorithm 1 of data set 5. The
vertical line is the observed Cramer-Von Mises value from original data set.

33

Figure 5.18: Plot of Cramer-Von Mises test statistics for algorithm 2 of data set 5. The
vertical line is the observed Cramer-Von Mises value from original data set.

5.2 Discussion and comparison of samplers
All of the samplers gets high enough p-values to keep the null hypothesis for the
data sets. This is expected because of the flexibility of the gamma distribution.
Since a sample is only 3 data points, this makes it easier to keep the null hypothesis.
Another note on the p-value results is that the algorithm 2 results vary compared to
the other samplers. By studying the test statistics plots for the data sets, we see that
the distribution of the test statistics values between algorithm 1 and Gibbs sampler
are very close to each other. While algorithm 2 has somewhat the same shape but is
different. Algorithm 2 seems to get some extreme distribution values. This is seen
especially in data set 5. The naive sampler is close to algorithm 1 and the Gibbs
sampler. However for the larger test statistic values they seem to differ. This may be
the result of numerical error.

For the results presented regarding E[φ(X)|T = t] there are some characteristics
in every data set. One of the characteristics is that algorithm 1 always is close to
the Gibbs sampler. Hence, this may lead to that algorithm 1 generates samples
with the right distribution or close to the right distribution. While algorithm 2
seems to vary some with the results. The reason for this would mostly go to the
numerical approximation of the weights. First of all algorithm 2 has the numerical
approximation of the inverse gamma cumulative. This is the same as in algorithm
1. Furthermore, there is a numerical approximation of the derivate of the inverse
gamma cumulative. This will lead to an enhanced error in the calculation of weights.
This might also lead to the error in the p-values. When it comes to the naive sampler,

Discussion and comparison of samplers 34

this method is very sensitive to the size of the data points. For small data points,
the ε-value must be very small. However, the number of options for data points are
limited. Hence, it doesn’t take a long time to find correct samples. For larger values
the options for data points increases and the sampler takes significantly more time
to run.

35 Concluding remarks

6 Concluding remarks
In this chapter the results of the samplers are summarized, and what further work
could be done.

6.1 Performance of samplers
All of the samplers generate samples from the right distribution. However, the naive
sampler works best for small data points. Algorithm 2 generates samples from the
right distribution or close to the right distribution. When it comes to algorithm 1 it
seems that the pivotal condition has little or no effect. Then algorithm 1 would be
to preferred compared to algorithm 2. For the gamma distribution algorithm 1 and
the Gibbs sampler would be recommended. This is for sampling for 3 data points.

6.2 Further work
Further work would be to look close at the naive sampler. For instance try to analyze
more the effects of the ε-value for small and large data points. Further, investigate
the performances of the samplers for data points greater than 3. The Gibbs sampler
will become slower as larger thinning might be required. The subject of thinning
can be found in [1313]. This is done in my specialization project. The naive sampler
is expected to become much slower. This is because of the increased number of
options for a sample. For algorithm 1 and 2, the increased data points will cause
the algorithms to become slower. This is because they have to calculate inverse
cumulative distribution for each new data point. However, this is also an advantage
compared to naive sampling. The speed loss compared to the naive sampler won’t
be great. One interesting point is to see how the increased data points affect the
pivotal condition for algorithm 1.

One could also try other distributions to find examples where the pivotal con-
dition is not met, and algorithm 1 generates samples from the wrong distribution.
One example is the truncated exponential distribution. This is done in paper [1111].

37 Bibliography

Bibliography
[1] E. B. Andersen. «Sufficient statistics and latent trait models».

In: Psychometrika 42.1 (1977), pp. 69–81 (cit. on p. 44).

[2] G. Casella and R. L. Berger. Statistical inference. Vol. 2.
Duxbury Pacific Grove, CA, 2002 (cit. on pp. 11, 77, 4040, 4141).

[3] G. Casella and E. I. George. «Explaining the Gibbs sampler».
In: The American Statistician 46.3 (1992), pp. 167–174 (cit. on p. 3939).

[4] M. Fagerland. «Nonhomogenous Poisson process sampling with combined
log-linear and power-law rate functions».
Specialization project. Departement of Mathematical Sciences, NTNU. 2015
(cit. on p. 3939).

[5] W. R. Gilks, N. Best, and K. Tan.
«Adaptive rejection Metropolis sampling within Gibbs sampling».
In: Applied Statistics (1995), pp. 455–472 (cit. on p. 3939).

[6] M. Kohl, P. Ruckdeschel, et al.
«R Package distrMod: S4 Classes and Methods for Probability Models».
In: Journal of Statistical Software 35.10 (2010), pp. 1–27 (cit. on p. 1111).

[7] R. J. LeVeque. Finite difference methods for ordinary and partial differential
equations: steady-state and time-dependent problems. Vol. 98. Siam, 2007
(cit. on p. 1616).

[8] B. H. Lindqvist and G. Taraldsen.
«Conditional Monte Carlo based on sufficient statistics with applications».
In: Advances in statistical modeling and inference. Essays in Honor of Kjell A.
Doksum (2007). Ed. by V. Nair, pp. 545–562 (cit. on pp. 44, 55).

[9] B. H. Lindqvist and G. Taraldsen. «Exact Statistical Inference for Some
Parametric Nonhomogeneous Poisson Processes».
In: Journal of Iranian Statistical Society 12.1 (2013), pp. 113–126 (cit. on p. 4141).

[10] B. H. Lindqvist and G. Taraldsen.
«Monte Carlo conditioning on a sufficient statistic».
In: Biometrika 92.2 (2005), pp. 451–464 (cit. on p. 11).

[11] B. H. Lindqvist, G. Taraldsen, M. Lillegård, and S. Engen.
«A counterexample to a claim about stochastic simulations».
In: Biometrika 90.2 (2003), pp. 489–490 (cit. on p. 3535).

[12] R. A. Lockhart, F. J. O’Reilly, and M. A. Stephens.
«Use of the Gibbs sampler to obtain conditional tests, with applications».
In: Biometrika 94.4 (2007), pp. 992–998 (cit. on pp. 88, 1919).

Bibliography 38

[13] A. E. Raftery and S. M. Lewis. «Implementing mcmc».
In: Markov chain Monte Carlo in practice (1996), pp. 115–130 (cit. on p. 3535).

[14] M. Rausand and A. Høyland.
System reliability theory: models, statistical methods, and applications. Vol. 396.
John Wiley & Sons, 2004 (cit. on pp. 11, 33).

[15] M. A. Stephens. «Use of the Kolmogorov-Smirnov, Cramér-Von Mises and
related statistics without extensive tables». In: Journal of the Royal Statistical
Society. Series B (Methodological) (1970), pp. 115–122 (cit. on p. 1111).

[16] E. Süli and D. F. Mayers. An introduction to numerical analysis.
Cambridge university press, 2003 (cit. on p. 1616).

[17] D. R. Thoman, L. J. Bain, and C. E. Antle.
«Inferences on the parameters of the Weibull distribution».
In: Technometrics 11.3 (1969), pp. 445–460 (cit. on p. 2727).

39 Theory

Theory
In this chapter general theory needed are explained. Most of this theory is also
gathered from my specialization project [44].

Finding sufficient statistics
To find sufficient statistics can be difficult, however one can use the factorization
theorem to find the statistics. The theorem is as follows.

Theorem 1 (Factorization theorem) Let f (x|Θ) denote the joint pdf or pmf of a sample
X . A statistic T (X) is a sufficient statistic for Θ if and only if there exist functions g(t|Θ)
and h(x) such that, for all sample points x and all parameter points Θ,

f (x|Θ) = g(T (x)|Θ)h(x).

h(x) should not be dependent on Θ. Then the remaining part will be g(T (x)|Θ) and
from this we can see the sufficient statistic.

Tranformation of variables
For tranformation of variables in distribution the following theorem is presented.

Theorem 2 Let X have pdf fX(x), let Y = g(X), where g is a monotone function. Let
X = {x : fX(x) > 0} and Y = {y : y = g(x) for some x ∈ X}. Suppose that fx(x) is continuous
on X and that g−1(y) has a continuous derivative on Y. Then the pdf of Y is given by

fY (y) =

fX(g−1(y))
∣∣∣∣ ddy g−1(y)

∣∣∣∣ y ∈ Y
0 otherwise.

Sampling with sufficient statistics
This section will go in depth of generating samples given sufficient statistics. The
main focus will be a Gibbs sampler with a Metropolis-Hastings step. Information
about this topic can be found in [55].

Gibbs sampler
The Gibbs sampler is Markov chain Monte Carlo (MCMC) sampler. A MCMC
sampler is a way to sample from a distribution by constructing a Markov chain with
spesific equilibrium. From [33] we have that the Gibbs sampler is used when direct
sampling is difficult or cannot be done. This sampler samples from a conditional
distribution. This can be done with sufficient statistics.

P-Value 40

Metropolis-Hastings sampler
This is also a MCMC sampler where direct sampling is difficult. However this is
used when the conditional posterior is unknown. Hence this uses a proportional
density instead, and has an acceptance rejection step to determine if the new sample
is from the desired distribution. Let Xprop be from proposal density p(x). Then the
acceptance probability is given as

α = min
(
1,
π(xprop)p(xcurr)

π(xcurr)p(xprop)

)
,

where π(x) is the posterior distribution to sample from.

P-Value
A p-value can give the result of a hypothesis test. The following defintion and
theorem can be found in [22]. First we are going to define a valid p-value.

Definition 2 A p-value p(X) is a test statistic satisfying 0 ≤ p(x) ≤ 1 for every sample
point x. Small values of p(X) give evidence that H1 is true. A p-value is valid if, for every
θ ∈Θ0 and every 0 ≤ α ≤ 1,

Pθ(p(X ≤ α)) ≤ α. (.1)

Then a p-value is as follows.

Theorem 3 Let W (X) be a test statistic such that large values of W give evidence that
H1 is true. For each sample point x, define

p(x) = sup
θ∈Θ0

Pθ(W (X) ≥W (x)).

Then, p(X) is a valid p-value.

The Θ0 is the subset of the parameter space for the null model. P-values can also be
defined by using sufficient statistics. A p-value is then defined as

p(x) = P (W (X) ≥W (x)|S(X) = S(x)), (.2)

where S(x) is a sufficient statistic under the null hypothesis. By this definition the
p-value given a sufficient statistic is valid as shown below

Pθ(p(X) ≤ α) =
∑
x

P (p(X) ≤ α|S(X) = s)Pθ(S(X) = s) ≤
∑
s

αPθ(S(X) = s) = α.

This result is for discrete S(X). However for the continuous case the one can replace
the sums with integrals.

41

For a two-sided hypothesis test the p-value is found by the equation below,

p(x) = 2(min(P (W (X) ≥W (x)), P (W (X) ≤W (x)))).

To calculate the p-value in equation .2.2 we refer to [99]. From this paper we have that
the p-value can be estimated by

p̂ = #{W ∗ ≥Wobs}/M,

where W ∗ is a test statistic for a sample, Wobs is the observed test statistic from
original data and M is the number of samples.

Likelihood and estimators
In this section likelihood and its estimators are introduced. To summarize data
the likelihood function can be used. The theory presented here is from [22]. The
likelihood function is defined in the following definiton.

Definition 3 Let f (x|Θ) denote the joint pdf or pmf of the sample X = (X1, ...,Xn). Then,
given that X = x is observed, the function Θ is defined by

L(Θ|x) = f (x|Θ) (.3)

is called the likelihood function.

By using this function one can find estimators for Θ. These estimators are the ones
that maximizes the likelihood function. Furthermore these estimators are most
likely. Hence the they are given the name maximum likelihood estimators. The
formal definition is as follows

Definition 4 For each sample point x, let Θ̂(x) be parameter value at which L(Θ|x)
attains its maximum as a function of Θ, with x held fixed. A maximum likelihood
estimator(MLE) of the parameter Θ based on a sample X is Θ̂(X).

The maximum of the likelihood can be found analytically or numerically. Analyti-
cally it is recommended to take the log of the likelihood function. This for easier
differentiation. Hence it is recommended to solve

∂ logL(Θ|x)
∂Θi

= 0, i = 1, ..., k.

This will give the MLE of Θ.

43 R script

R script
Here the R code for the master thesis is shown.

l i b r a r y (MASS)

calcWeight <− funct ion (u , alpha) {
C a l c u l a t e s weight f o r g iven u and alpha .
#
Args :
u : A v e c t o r .
a lpha : A s c a l a r .
#
Returns :
The weight va lue . A s c a l a r .
gammaInv = rep (0 , length (u))
diffGammaInv = rep (0 , length (u))
fo r (i in 1 : length (u)) {

gammaInv [i] = invGammaCumulative (u [i] , alpha)
diffGammaInv [i] = diffAlphaInvGammaCumulative (u [i] , alpha)

}
pi = getPiValue ()
weight = pi / ((1 / length (gammaInv)) * (sum(diffGammaInv/gammaInv)) − sum(

diffGammaInv) /sum(gammaInv))
return (weight)

}

getPiValue <− funct ion () {
g e t va lue o f p i f u n c t i o n t o be used in c a l c u l a t i o n o f w e i g h t s .
#
Returns :
A s c a l a r va lue .
i f (piValue == " constant ") {

return (1)
} e l s e i f (piValue == " j e f f r e y ") {

Return j e f f r e y p r i o r
return (s q r t ((1 / (estAlpha [sampleIndex]^2)) + (1/(2 − (exp (estAlpha [
sampleIndex]) + exp(− estAlpha [sampleIndex]))))))

} e l s e i f (piValue == " betaOption ") {
return (e s tBe ta)

} e l s e i f (piValue == " alphaOption ") {
return (estAlpha [sampleIndex])

}
}

ca lcPhi <− funct ion (u , alpha) {
xValue = rep (0 , length (u))
fo r (i in 1 : length (u)) {

xValue [i] = invGammaCumulative (u [i] , alpha)
}
return (calcPhiGivenX (xValue))

Likelihood and estimators 44

}

calcPhiGivenX <− funct ion (x) {
Calc phi va lue f o r a v e c t o r x .
#
Args :
x : A v e c t o r o f data .
#
Returns :
A s c a l a r .

i f (phiOption == " probValueOption ") {
phiPoint = rep (0 , length (x))
for (i in 1 : length (x)) {

phiPoint [i] = getPhiValue (x [i])
}
return (sum(phiPoint) / length (phiPoint))

} e l s e i f (phiOption == " x1x2divX3Option ") {
return (getPhiValue (x [1] *x [2] / x [3]))

} e l s e i f (phiOption == " x1divx2powx3Option ") {
return (getPhiValue ((x [1] / x [2]) ^x [3]))

} e l s e i f (phiOption == " s inusfunct ion ") {
return (s in (x [1]) + s in (x [2]) + s in (x [3]))

}
return (−1)

}

getPhiValue <− funct ion (xValue) {
C a l c u l a t e s phi f o r an e l ement o f an x v e c t o r .
#
Args :
xValue : A s c a l a r va lue .
#
Returns :
#
return (xValue > probValue)

}

optimInvGammaCumulative <− funct ion (u , alpha) {
Use optim f u n c t i o n t o f i n d i n v e r s e o f cumula t ive d i s t r i b u t i o n
r e s u l t = optim (c (1 0 . 1) , invGammaAbsFunction , u=u , alpha=alpha , lower =0 ,

upper=100 , method=" Brent ")
return (r e s u l t)

}

invGammaAbsFunction <− funct ion (x , u , alpha) {
return (abs (pgamma(x , shape=alpha , s c a l e =1) − u))

}

invGammaCumulative <− funct ion (u , alpha) {
Finds t h e i n v e r s e o f t h e cumula t ive gamma .
#

45 R script

Args :
u : S c a l a r va lue .
a lpha : S c a l a r va lue .
#
Returns :
A s c a l a r . The i n v e r s e va lue g iven u and alpha .
x = 0
s t e p S i z e = 0.1
t o l e r a n c e = 0.00001
d i r e c t i o n = 1
integra lValue = 0

while (abs (in tegra lValue − u) > t o l e r a n c e) {
x = x + d i r e c t i o n * s t e p S i z e
i f (x<0) {

x = 0
d i r e c t i o n = 1

}

i f (method == " i n t e g r a t e ") {
i n t e g r a l v = i n t e g r a t e (gammaDensity , 0 , x)
in tegra lValue = i n t e g r a l $ valuev

} e l s e i f (method == "pgamma") {
i n t e g r a l v = pgamma(x , shape=alpha , s c a l e =1)
integra lValue = i n t e g r a l v

}

Going l e f t and p a s s t h e p o i n t
i f ((u > integra lValue) && (d i r e c t i o n == −1)) {

s t e p S i z e = s t e p S i z e /2
d i r e c t i o n = 1

}

Going r i g h t and p a s s t h e p o i n t
i f ((u < integra lValue) && (d i r e c t i o n == 1)) {

s t e p S i z e = s t e p S i z e /2
d i r e c t i o n = −1

}
}
return (x)

}

diffAlphaInvGammaCumulative <− funct ion (u , alpha) {
D e r i v a t i v e o f gamma d i s t r i b u t i o n with r e s p e c t t o a lpha .
#
Args :
u : S c a l a r between 0 and 1 .
a lpha : S c a l a r l a r g e r than 0 .
#
Returns :
S c a l a r va lue . D e r i v a t i v e a t p o i n t a lpha .
f i r s t P o i n t = invGammaCumulative (u , alpha)

Likelihood and estimators 46

secondPoint = invGammaCumulative (u , alpha + alphaHStep)
return ((secondPoint − f i r s t P o i n t) / alphaHStep)

}

ca lcDer ivateFunct ion <− funct ion (u , alphaValue) {
A n a l y t i c a l l y f i n d t h e d e r i v a t i v e o f cumula t ive i n v e r s e .
#
Args :
u : S c a l a r va lue between 0 and 1 .
alphaValue : S c a l a r va lue .
#
Returns :
A s c a l a r va lue .
largeFInv = invGammaCumulative (u , alphaValue)
i n t e g r a l P a r t = i n t e g r a t e (integra lFunct ion , 0 , largeFInv)
return ((digamma (alphaValue) *u − i n t e g r a l P a r t $ value) *gamma(alphaValue)

/ ((largeFInv ^(alphaValue − 1)) *exp(− largeFInv)))
}

in te gra lF un ct i on <− funct ion (y) {
Funct ion t o be i n t e g r a t e d .
return (log (y) * (y^(alphaValue − 1)) *exp(−y) /gamma(alphaValue))

}

optimfindAlpha <− funct ion (u , s2) {
Use optim f u n c t i o n f o f i n d a lpha va lue .
i f ((calcValueTau2 (u , alphaUpperBound) < s2) | | (calcValueTau2 (u ,

alphaLowerBound) > s2)) {
return (−1)

}
s o l u t i o n = optim (c (0 . 1) , optimFunction , u=u , lower=alphaLowerBound ,

upper=alphaUpperBound , method=" Brent ")
return (s o l u t i o n $par)

}

optimFunction <− funct ion (alpha , u) {
Funct ion minimize t o f i n d a lpha .
return (abs (s2−calcValueTau2 (u , alpha)))

}

f indBeta <− funct ion (s1 , u , alphaValue) {
C a l c u l a t e s b e t a
#
Args :
s1 : S c a l a r va lue .
u : Vec tor o f v a l u e s between 0 and 1 .
alphaValue : S c a l a r va lue .
#
Returns :
A s c a l a r va lue .
largeFInv = rep (0 , length (u))
fo r (i in 1 : length (u)) {

largeFInv [i] = invGammaCumulative (u [i] , alphaValue)

47 R script

}
return (s1 * length (u) / (sum(largeFInv)))

}

calcValueTau2 <− funct ion (u , alphaValue) {
largeFInv = rep (0 , length (u))
fo r (i in 1 : length (u)) {

largeFInv [i] = invGammaCumulative (u [i] , alphaValue)
}
return (length (u) * ((prod (largeFInv)) ^(1/ length (u))) /sum(largeFInv))

}

calcValueTau2Method2 <− funct ion (x) {
return (length (x) * ((prod (x)) ^(1/ length (x))) /sum(x))

}

gibbsSampling <− funct ion (x I n i t) {

Used f o r t h i n n i n g
NUM_ITERATIONS = 5000
xCurrent = x I n i t
fo r (i in 1 :NUM_ITERATIONS) {

randomXpos = sample (length (xCurrent) , s i z e =3)
sumX = xCurrent [randomXpos [1]] + xCurrent [randomXpos [2]] + xCurrent [
randomXpos [3]]
prodX = xCurrent [randomXpos [1]] * xCurrent [randomXpos [2]] * xCurrent [
randomXpos [3]]
x1 = runi f (1) *sumX
i f (isValidX1Proposal (x1 , sumX, prodX)) {

r o o t s = findRoots (x1 , sumX, prodX)
x2 = r o o t s [1]
x3 = r o o t s [2]

A e x t r a c h ec k f o r i l l e g a l v a l u e s .
i f (i s . nan (x2) | | i s . nan (x3)) {

pr in t ((x1^3 − 2*sumX*x1^2 + (sumX^2) *x1 − 4*prodX))
}
xProposal = xCurrent
xProposal [randomXpos [1]] = x1
xProposal [randomXpos [2]] = x2
xProposal [randomXpos [3]] = x3
alphaMetHastings = findAlphaMetHastings (c (xCurrent [randomXpos [1]] ,

xCurrent [randomXpos [2]] , xCurrent [randomXpos [3]]) , c (xProposal [
randomXpos [1]] , xProposal [randomXpos [2]] , xProposal [randomXpos [3]]))

acceptProb = runi f (1)
i f (acceptProb <= alphaMetHastings) {

xCurrent = xProposal
}

}
}
return (xCurrent)

}

Likelihood and estimators 48

i sVal idX1Proposal <− funct ion (x1 , sumX, prodX) {
return ((x1^3 − 2*sumX*x1^2 + (sumX^2) *x1 − 4*prodX) > 0)

}

f indRoots <− funct ion (x1 , sumX, prodX) {
root1 = ((sumX − x1) + s q r t ((sumX − x1) ^2 − 4*prodX/x1)) /2
root2 = ((sumX − x1) − s q r t ((sumX − x1) ^2 − 4*prodX/x1)) /2
return (c (root1 , root2))

}

findAlphaMetHastings <− funct ion (xCurrent , xProposal) {
piProp = 1/(xProposal [1] * s q r t ((sum(xProposal) − xProposal [1]) ^2 − 4*

prod (xProposal) / xProposal [1]))
piCurrent = 1/(xCurrent [1] * s q r t ((sum(xCurrent) − xCurrent [1]) ^2 − 4*

prod (xCurrent) / xCurrent [1]))
return (min (1 , piProp / piCurrent))

}

findGammaAlphaMetHastings <− funct ion (xCurrent , xProposal) {
piProp = 1/(xProposal [1] * s q r t ((sum(xProposal) − xProposal [1]) ^2 − 4*

prod (xProposal) / xProposal [1]))
piCurrent = 1/(xCurrent [1] * s q r t ((sum(xCurrent) − xCurrent [1]) ^2 − 4*

prod (xCurrent) / xCurrent [1]))
i f (i s . nan (piCurrent)) {

pr in t (xCurrent)
}
return (min (1 , piProp / piCurrent))

}

cramerVonMisesValueTest <− funct ion (x , alpha , beta) {
C a l c u l a t e s t h e va lue f o r a Cramer−von Mises t e s t .
#
Args :
x : A v e c t o r sample .
#
Returns :
A s c a l a r va lue .
x = s o r t (x)
cramerSum = 0
fo r (i in 1 : length (x)) {

cramerSum = cramerSum + (((2 * i − 1) /(2 * length (x))) − pgamma(x [i] ,
shape=alpha , r a t e=beta)) ^2

}

cramer = (1/(12 * length (x))) *cramerSum

return (cramer)
}

findGammaMLE <− funct ion (x) {
s o l u t i o n = optim (c (1 , 1) , negativeLogLikelihoodGamma , x=x)
return (s o l u t i o n $par)

49 R script

}

negativeLogLikelihoodGamma <− funct ion (par , x) {
C a l c u l a t e s t h e n e g a t i v e log − l i k e l i h o o d f o r a gamma d i s t r i b u t i o n .
#
Args :
par : A v e c t o r o f s i z e 2 . F i r s t e l ement i s a lpha and second e l ement

i s b e t a .
x : Data t o c a l c u l a t e log − l i k e l i h o o d from . A v e c t o r .
#
Returns :
The log − l i k e l i h o o d va lue . A s c a l a r
alpha = par [1]
beta = par [2]
logLikel ihood = −((alpha − 1) *sum(log (x)) − (1/ beta) *sum(x) − length (x)
* log (gamma(alpha)) − alpha * length (x) * log (beta))

return (logLikel ihood)
}

calcAveragPhiValueForData <− funct ion (mydata) {
sumData = sum(mydata)
prodData = prod (mydata)
t o l e r a n c e = 0.03
minValue = min (mydata) − 2* t o l e r a n c e
maxValue = max(mydata) + 2* t o l e r a n c e
sampleNumber = 1
NUM_ITERATIONS = 10000
sumPhi = 0
while (sampleNumber <= NUM_ITERATIONS) {

x = runi f (3 , max = sumData)
i f ((abs (sum(x) − sumData) < t o l e r a n c e) && (abs (prod (x) − prodData) <
t o l e r a n c e)) {

sumPhi = sumPhi + calcPhiGivenX (x)
sampleNumber = sampleNumber + 1
pr int (sampleNumber)

}
}
return (sumPhi / (sampleNumber−1))

}

algorithm2Sampling <− funct ion (NUM_ALG2_SAMPLES) {
cramerNum = 0
cramerStat = rep (0 , NUM_ALG2_SAMPLES)
vCurr = runi f (NUM_POINTS)
alphaCurr = optimfindAlpha (vCurr , s2)
while (alphaCurr==−1) {

vCurr = runi f (NUM_POINTS)
alphaCurr = optimfindAlpha (vCurr , s2)

}
piCurr = calcWeight (vCurr , alphaCurr)
phiSum = 0

fo r (i in 1 :NUM_ALG2_SAMPLES) {

Likelihood and estimators 50

pr int (i)
vProp = runi f (NUM_POINTS)
alphaProp = optimfindAlpha (vProp , s2)
piProp = 0
i f (alphaProp != −1) {

piProp = calcWeight (vProp , alphaProp)
}
alphaMetHastings = min (1 , piProp / piCurr)
uProb = runi f (1)
i f (uProb <= alphaMetHastings) {

vCurr = vProp
alphaCurr = alphaProp
piCurr = piProp

}
betaCurr = findBeta (s1 , vCurr , alphaCurr)
xSample = rep (0 , length (vCurr))
for (j in 1 : length (vCurr)) {

xSample [j] = betaCurr * invGammaCumulative (vCurr [j] , alphaCurr)
}
phiSum = phiSum + calcPhiGivenX (xSample)
cramerStat [i] = cramerVonMisesValueTest (xSample , mleAlpha , mleBeta)
i f (cramerStat [i] >= cramerObs) {

cramerNum = cramerNum + 1
}

}

h i s t (cramerStat , breaks =200 , main=" " , xlab=" Cramer values " , cex . lab =1.5)
ab l ine (v = cramerObs , co l=" red ")
alg2sampCramer <<− cramerStat

pr int ((cramerNum/NUM_ALG2_SAMPLES))
alg2pvalue <<− (cramerNum/NUM_ALG2_SAMPLES)
return (phiSum/NUM_ALG2_SAMPLES)

}

algorithm1Sampling <− funct ion (NUM_ALG1_SAMPLES) {
phiSum = 0
cramerNum = 0
cramerStat = rep (0 , NUM_ALG1_SAMPLES)
fo r (i in 1 :NUM_ALG1_SAMPLES) {

pr int (i)
u = runi f (NUM_POINTS)
alphavalue = optimfindAlpha (u , s2)
while (alphavalue == −1) {

u = runi f (NUM_POINTS)
alphavalue = optimfindAlpha (u , s2)

}
betavalue = findBeta (s1 , u , alphavalue)
xSample = rep (0 , length (u))
for (j in 1 : length (u)) {

xSample [j] = betavalue * invGammaCumulative (u [j] , alphavalue)
}
phiSum = phiSum + calcPhiGivenX (xSample)

51 R script

cramerStat [i] = cramerVonMisesValueTest (xSample , mleAlpha , mleBeta)
p r i n t (c ramerS ta t [i])
i f (cramerStat [i] >= cramerObs) {

cramerNum = cramerNum + 1
}

}
pr in t (" here ")
pr in t ((cramerNum/NUM_ALG1_SAMPLES))
h i s t (cramerStat , breaks =200 , main=" " , xlab=" Cramer values " , cex . lab =1.5)
ab l ine (v = cramerObs , co l=" red ")
alg1sampCramer <<− cramerStat
alg1pvalue <<− (cramerNum/NUM_ALG1_SAMPLES)
return (phiSum/NUM_ALG1_SAMPLES)

}

naiveSampling <− funct ion (myData , to lerance , mleAlpha , mleBeta) {
NUM_NAIVE_SAMPLES = NUM_SAMPLES
sumData = sum(myData)
prodData = prod (myData)
sampleNumber = 0
sumPhi = 0
i t e r a t i o n s = 0
cramerNum = 0
cramerStat = rep (0 , NUM_NAIVE_SAMPLES)
while (sampleNumber<NUM_NAIVE_SAMPLES) {

x = rgamma(3 , shape = mleAlpha , r a t e = mleBeta)
i t e r a t i o n s = i t e r a t i o n s + 1
i f ((abs (sum(x) − sumData) < t o l e r a n c e) && (abs (prod (x) − prodData) <
t o l e r a n c e)) {

sumPhi = sumPhi + calcPhiGivenX (x)
sampleNumber = sampleNumber + 1
cramerStat [sampleNumber] = cramerVonMisesValueTest (x , mleAlpha ,

mleBeta)
i f (cramerStat [sampleNumber] >= cramerObs) {

cramerNum = cramerNum + 1
}
pr int (sampleNumber)

}
}

h i s t (cramerStat , breaks =200 , main=" " , xlab=" Cramer values " , cex . lab =1.5)
ab l ine (v = cramerObs , co l=" red ")

acceptRate = sampleNumber/ i t e r a t i o n s
averagePhi = sumPhi/sampleNumber
pr int ((cramerNum/NUM_NAIVE_SAMPLES))
naivePvalue <<− (cramerNum/NUM_NAIVE_SAMPLES)
naiveCramers <<− cramerStat
return (c (acceptRate , averagePhi))

}

S p e c i f i c v a r i a b l e s .
alpha = 1

Likelihood and estimators 52

beta = 1
hStep = 0.01
alphaHStep = 0.01
method = "pgamma"
NUM_SAMPLES = 100000
NUM_POINTS = 3
alphaUpperBound = 200
alphaLowerBound = 0.05
Pi i s used in c a l c u l a t i o n o f w e i g h t s
Options ar e :
" c o n s t a n t "
" be taOpt ion "
" j e f f r e y "
" alphaOption "
piValue = " constant "

phi = rep (0 , NUM_SAMPLES)
Phi o p t i o n s :
x l a r g e r than a : " probValueOption "
x1 t i me s x2 div x3 : " x1x2divX3Option "
x1 div x2 pow x3 : " x1divx2powx3Option "
phiOption = " x1x2divX3Option "
Phi i s t h e prob t h a t X>probValue . In r a p o r t t h i s i s j u s t denoted "a " .
probValue = 0.42

Data g e n e r a t i o n o p t i o n s :
pgamma g e n e r a t e d : "pgamma"
Bo data : " bo "
Custom data : " custom "
Custom data2 : " custom2 "
. . .
dataGenOption = " custom4 "

Generate data
gammaData = 0
i f (dataGenOption == "pgamma") {

gammaData = rgamma(NUM_POINTS , shape=alpha , s c a l e = beta)
} e l s e i f (dataGenOption == " bo ") {

NUM_POINTS = 6
alphaUpperBound = 1.2
alphaLowerBound = 0.8
gammaData = c (4 . 3 9 9 , 1 .307 , 0 .085 , 0.7910 , 0.2345 , 0 .1915)

} e l s e i f (dataGenOption == " custom ") {
gammaData = c (0.5772030 , 0.4340237 , 0.4212959)

} e l s e i f (dataGenOption == " custom2 ") {
gammaData = c (1.621813 , 1.059797 , 1.554334)

} e l s e i f (dataGenOption == " custom3 ") {
gammaData = c (5 , 15 , 13)

} e l s e i f (dataGenOption == " b a l l 1 ") {
gammaData = c (1 7 . 8 8 , 28.92 , 33 .00)

} e l s e i f (dataGenOption == " b a l l 2 ") {

53 R script

gammaData = c (4 1 . 5 2 , 42.12 , 45 .60)
} e l s e i f (dataGenOption == " b a l l 3 ") {

gammaData = c (4 8 . 4 0 , 51.84 , 51 .96)
} e l s e i f (dataGenOption == " b a l l 4 ") {

gammaData = c (5 4 . 1 2 , 55.56 , 67 .80)
} e l s e i f (dataGenOption == " b a l l 5 ") {

gammaData = c (6 8 . 6 4 , 68.64 , 68 .88)
} e l s e i f (dataGenOption == " b a l l 6 ") {

gammaData = c (8 4 . 1 2 , 93.12 , 98 .64)
} e l s e i f (dataGenOption == " b a l l 7 ") {

gammaData = c (105 .12 , 105.84 , 127.92)
} e l s e i f (dataGenOption == " custom4 ") {

gammaData = c (0 . 4 0 , 0 .42 , 0 . 4 3)
} e l s e i f (dataGenOption == " custom5 ") {

gammaData = c (0 . 7 2 , 0 .72 , 0 . 8 5)
}

17.88 28.92 33.00 41.52 42.12 45.60 48.40 51.84
51.96 54.12 55.56 67.80 68.64 68.64 68.88 84.12
93.12 98.64 105.12 105.84 127.92 128.04 173.40

h i s t (gammaData)
C a l c u l a t i o n o f s t a t i s t i c s
s1 = sum(gammaData) /NUM_POINTS
s2 = NUM_POINTS* ((prod (gammaData)) ^(1/NUM_POINTS)) /sum(gammaData)
Log− l i k e l i h o o d
mleEstimators = f i t d i s t r (gammaData , "gamma")
mleAlpha = mleEstimators $ est imate [1]
Beta i s t h e r a t e parameter , o p p o s i t e o f d e f i n i t i o n o f gamma d i s t r in

r e p o r t .
mleBeta = mleEstimators $ est imate [2]
Observed cramer−von mise s
cramerObs = cramerVonMisesValueTest (gammaData , mleAlpha , mleBeta)

Naive sampler . Uses one t o l e r a n c e va lue f o r both s u f f i c i e n t s t a t i s t i c s
in na ive sampling .

t o l e r a n c e = 0.0001
These v a r i a b l e s w i l l be s e t in naiveSampl ing f u n c t i o n .
naiveCramers = rep (0 ,100000)
naivePvalue = 0

naiveSampler = naiveSampling (gammaData , to lerance , mleAlpha , mleBeta)

P l o t o f cramer−von mise s from naive sampl ing
h i s t (naiveCramers , breaks =200 , main=" " , xlab=" Cramer values " , cex . lab =1.5)
ab l ine (v = cramerObs , co l=" red ")

Gibbs sampling
NUM_GIBBS_SAMPLES = NUM_SAMPLES
xSample = gammaData
phiGibbs = rep (0 , NUM_GIBBS_SAMPLES)

Likelihood and estimators 54

gibbsObslargerWObs = 0
cramerNum = 0
cramerStatGibbs = rep (0 , NUM_GIBBS_SAMPLES)
fo r (i in 1 :NUM_GIBBS_SAMPLES) {

xSample = gibbsSampling (xSample)
phiGibbs [i] = calcPhiGivenX (xSample)
i f (phiGibbs [i] >= wObs) {

gibbsObslargerWObs = gibbsObslargerWObs + 1
}
cramerStatGibbs [i] = cramerVonMisesValueTest (xSample , mleAlpha , mleBeta

)
p r i n t (c ramerS ta t)
i f (cramerStatGibbs [i] >= cramerObs) {

cramerNum = cramerNum + 1
}
pr int (i)

}
gibbsS1 = sum(xSample) /NUM_POINTS
gibbsS2 = NUM_POINTS* ((prod (xSample)) ^(1/NUM_POINTS)) /sum(xSample)
gibbsPvalue = gibbsObslargerWObs /NUM_GIBBS_SAMPLES
averagePhiGibbs = sum(phiGibbs) /NUM_GIBBS_SAMPLES
P−v a l u e s
gibbsPValue = cramerNum/NUM_GIBBS_SAMPLES

h i s t (cramerStatGibbs , breaks =200 , main=" " , xlab=" Cramer values " , cex . lab
=1.5)

ab l ine (v = cramerObs , co l=" red ")

These v a r i a b l e s w i l l be s e t in a l g o r i t h m 1 and 2 f u n c t i o n s .
alg2sampCramer = rep (1 , 100000)
alg1sampCramer = rep (1 , 100000)
alg2pvalue = 0
alg1pvalue = 0

system . time ({ a lg1Resul ts2 = algorithm1Sampling (NUM_SAMPLES) })
system . time ({ a lg2Resul ts2 = algorithm2Sampling (NUM_SAMPLES) })

h i s t (alg1sampCramer , breaks =200 , main=" " , xlab=" Cramer values " , cex . lab
=1.5)

ab l ine (v = cramerObs , co l=" red ")

h i s t (alg2sampCramer , breaks =200 , main=" " , xlab=" Cramer values " , cex . lab
=1.5)

ab l ine (v = cramerObs , co l=" red ")

The next commented s e c t i o n i s f o r multi − t h r e a d i n g a l g o r i t h m 1 and 2 . P−
v a l u e s and cramer−von mise s w i l l not be saved in v a r i a b l e s .

Only e x p e c t e d phi v a l u e s w i l l be saved .

l i b r a r y (" p a r a l l e l ")
l i b r a r y (" f o r e a c h ")
l i b r a r y (" d o P a r a l l e l ")

55 R script

#
c l = makeCluster (d e t e c t C o r e s () − 1)
r e g i s t e r D o P a r a l l e l (c l , c o r e s = d e t e c t C o r e s () − 1)
workers = 10
s t im e = system . t ime ({
r e s = f o r e a c h (i =1: workers ,
. combine = rb ind) %dopar% {
t r y ({
r e s u l t 1 = algor i thm1Sampl ing (100000/ workers)
})
}
})
s t o p C l u s t e r (c l)
#
a l g 1 R e s u l t s 3 = (sum (r e s [, 1])) / workers
#
c l = makeCluster (d e t e c t C o r e s () − 1)
r e g i s t e r D o P a r a l l e l (c l , c o r e s = d e t e c t C o r e s () − 1)
workers = 10
s t im e = system . t ime ({
r e s = f o r e a c h (i =1: workers ,
. combine = rb ind) %dopar% {
t r y ({
r e s u l t 1 = algor i thm2Sampl ing (100/ workers)
})
}
})
s t o p C l u s t e r (c l)
#
a l g 2 R e s u l t s 3 = (sum (r e s [, 1])) / workers
#

P l o t o f phi f u n c t i o n s
sumData = 4.23
prodData = 2.67
x1Seq = seq (1 . 0 1 , 2 , 0 .001)
phi2 = rep (0 , length (x1Seq))
phi3 = rep (0 , length (x1Seq))
for (i in 1 : length (x1Seq)) {

i f (isValidX1Proposal (x1Seq [i] , sumData , prodData)) {
r o o t s = findRoots (x1Seq [i] , sumData , prodData)
phi2 [i] = phi2Function (x1Seq [i] , r o o t s [1] , r o o t s [2])
phi3 [i] = phi3Function (x1Seq [i] , r o o t s [1] , r o o t s [2])

}

}

phi2Function <− funct ion (x1 , x2 , x3) {
return ((x1 *x2/x3))

}

phi3Function <− funct ion (x1 , x2 , x3) {
return ((x1/x2)^x3)

Likelihood and estimators 56

}

p lot (x1Seq , phi2)
plot (x1Seq , phi3)

P l o t o f F i n v e r s e
u = 0.5
alphaRange = seq (0 . 0 1 , 4 , 0 .001)
fInv = rep (0 , length (alphaRange))
fo r (i in 1 : length (fInv)) {

f Inv [i] = invGammaCumulative (u , alphaRange [i])
}
p lot (alphaRange , fInv , type=" l ")

d i f f F = rep (0 , length (fInv))
fo r (i in 1 : length (d i f f F)) {

d i f f F [i] = diffAlphaInvGammaCumulative (u , alphaRange [i])
}

p lot (alphaRange , di f fF , type=" l ")

save . image (f i l e =" scen33 . RData ")

	Titlepage
	Sammendrag
	Preface
	Contents
	Introduction
	Introduction to theory
	Gamma distribution
	Algorithm 1
	Weighted sampling, algorithm 2
	Gibbs sampler with Metropolis-Hastings step.
	Naive sampler
	Overview of the samplers

	Goodness of fit
	Test statistics
	Expectation of a chosen function

	Implementation
	Inverse of cumulative Gamma function.
	Estimation of derivate of inverse gamma cumulative function.
	Solving for alpha and beta.

	Results and discussion of samplers
	Data sets
	Discussion and comparison of samplers

	Concluding remarks
	Performance of samplers
	Further work

	Bibliography
	Theory
	Finding sufficient statistics
	Tranformation of variables
	Sampling with sufficient statistics
	P-Value
	Likelihood and estimators

	R script

