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”If you are careful, ” Garp wrote, ”if you use good ingredients, and you don’t take any

shortcuts, then you can usually cook something very good. Sometimes it is the only

worthwhile product you can salvage from a day; what you make to eat. With writing, I

find, you can have all the right ingredients, give plenty of time and care, and still get

nothing. Also true of love. Cooking, therefore, can keep a person who tries hard sane.”

The World According To Garp, John Irving
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This thesis goal is to assess whether penalized complexity priors can be used successfully

in a joint disease modeling framework and have similar properties as when used for

modeling only one disease. Penalized complexity priors have never been used in models

considering more than one disease at once and dealing with this is the core of this thesis.

This thesis also has a didactic purpose, and is made so that the reader sees the progress

that have been made throughout the ten months this thesis took to complete. This thesis

shows that under certain simplifying assumptions, and with an educated choice of model

that penalized complexity priors provide encouraging results when jointly modeling two

diseases. Further work would be required to assess the exact extent of these results.
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Chapter 1

Introduction

Disease mapping refers to the analysis of the spatial patterns in disease risk across

several areal units. Interest lies for example in detecting regions with elevated risks

so that suitable measures can be taken [Lawson, 2013]. Often related diseases such

as cancers of respiratory organs are likely to be affected by the same risk factors such

as smoked tobacco and alcohol so that it seems suitable to analyse the data jointly.

Thinking of two diseases Knorr-Held and Best [2001] proposed to introduce a shared

spatial component in the linear predictor of both diseases weighted by a disease-specific

gradient and an additional component for the residual variation, specific to only one

of them. Recently, a new framework for specifying hyperpriors in hierarchical models,

the penalised complexity (PC) approach, has been proposed [Simpson et al., 2015].

This approach allows to consider a model where both diseases have the same spatial

field that depicts the least assuming spatial structure e.g. a very simple one with for

instance a constant risk surface across the considered area called a base model, and

define consequently priors to allow to blend in disease specific variations if required.

1.1 Project Aim

The project aims to investigate the use of PC priors when modeling jointly more than

one disease and evaluate their relevance in that framework. Joint disease mapping has

been widely covered in past publications in Knorr-Held and Best [2001] and in Held

et al. [2005], however the use of penalized complexity priors in this framework is yet to

be studied. Data from oral cavities, lung, oesophagus, and larynx cancers in Germany

from 1986 to 1990 [Held et al., 2005] will be relied upon to assess the relevance of

penalized complexity priors when applied to joint disease mapping.

1



2

Project Plan

The project is divided essentially into two parts. In the first part (chapter 1 and 2),

models with one disease are studied. The idea is to start with a rather simple model

and progressively extend and refine it to deal with different situations. Extending and

refining the model requires more and more skills and knowledge of the field. This process

is meant to help gain experience in the field of disease mapping, and ultimately to get

the required perspective and skills to successfully carry out the framework’s extension

to two diseases in the second part of the project. As this first part has a didactic

purpose, each model is implemented in R and the results are compared to R-INLA [Rue

et al., 2009] to assess their correctness. The last model considered in that part is the

one that is going to be relied upon to extend the use of penalized complexity priors to

joint disease mapping in the second part. In the second part, the use of PC priors is

extended to joint disease modeling with two diseases. The goal is to assess whether the

PC priors can have the same attractive properties that motivated their development for

one disease [Simpson et al., 2015]. As approximations were made to obtain the results,

it is important that the latter are analyzed taking the approximations into account.

1.2 Cancer data

The data used in this project considers disease counts for male from oral, lung, larynx,

and oesophagus cancers in the 544 districts of Germany from 1986 to 1990 . In order

to come up with plausible models and be able to analyze the results, being aware of

what increases the chances of a person getting a specific disease is paramount. These

risk factors as they are called are different for each disease. The following paragraphs

detail, according to www.cancer.org, the risk factors for each of the four cancers in the

data set.

• Oral cancer The strongest risk factors for oral cancer are tobacco and alcohol

use. The risk is even greater in people who combine both. Heavy smokers and

drinkers face the highest risk.

• Oesophagus cancer Tobacco product is one of the major risk factors. The more

and the longer they are used, the higher the risk. Alcohol also increases the risk of

getting oesophagus cancer, and the risk increases with the consumption. Similarly

to oral cancer, the combination of both alcohol and tobacco rather multiplies than

adds the risks.
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• Larynx cancer Tobacco use is the strongest risk factor for larynx cancer. Mod-

erate and heavy drinking also increase the risk of getting larynx cancer. The

combination of tobacco and alcohol is, similarly to oral and oesophagus cancer,

synergetic, their combined use multiplies the risk of getting larynx cancer.

• Lung cancer Smoking tobacco is the strongest risk factor by quite a comfortable

margin.

It appears then tobacco is a risk factor shared by all four cancers, and is also the main

risk factor. Oral oesophagus and larynx cancer also have alcohol consumption as risk

factor. It is important to bear in mind the main risk factors for each cancer since the

goal is to assess whether the penalized complexity priors can help identify a geographical

pattern induced by either of the risk factors . The data consists of the number of cases

yi and the expected number of cases ei for each of the 544 german districts. The ei’s are

computed as follows : it is assumed that the number of disease cases yi are independent

and follow a binomial distribution yi ∼ Bin(πi, ni), ni denoting the number of person-

years at risk in the i-th district. Then it is assumed that the πi’s are small πi � 1, which

is not unrealistic since cancers are quite common but the odds of getting one specific

cancer are quite low overall. Let Myi(t) denote the moment generating function of the

random variable yi. Then it follows that:

Myi(t) =
(
πie

t + (1− πi)
)n
i
,

=eniln(πie
t+(1−π)),

=eniln(1+πi(e
t−1)),

≈eniπi(et−1) with πi � 1.

Hence, under the assumption that πi � 1, yi ∼ Poisson(niπi). Let p denote the

probability of getting the disease in all of 544 districts. The mean of the poisson is often

considered as the product of two terms [Knorr-Held and Becker, 1999]:

• the expected number of death ei = nip.

• the relative risk λi = πi
p .

Thus the yi|λi’s follow a Poisson distribution yi|λi ∼ Poisson(eiλi).

1.2.1 Standardized mortality ratio

The standardized mortality ratio (SMR) is the maximum likelihood estimator (MLE) of

λi. Let f denote the density of yi|λi. The MLE is obtained by computing the maximum
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of the log-likelihood:

∂(ln(f(yi|λi))
∂λi

=0.

Let λ̂i denote the MLE of yi|λi. Then it follows that:

λ̂i =yi/ei.

Thus λ̂i is the standardized mortality ratio, and is often used in disease mapping but has

some limitations [Wakefield, 2007], namely when the counts are low it does not perform

too well. Indeed it can be shown that the variance of the estimator λ̂i = yi/ei is inversely

proportional to population count ni in the i-th district:

Var(λ̂i) =
λ̂i
nip

.

Thus the estimate can be quite far off if ni is small causing then the variance to be large.

Besides the SMR alone cannot account for any underlying spatial structure.

This is rendered in Figures 1.1,1.2,1.3,1.4. There are not any discernible spatial patterns

except for Figure 1.4, which can be explained since lung cancer is far more common and

there are seldom low counts, as is shown in Table 1.1.

disease cases

Oral 15466
Oesophagus 12835

Larynx 7283
Lung 134820

Table 1.1: Dead counts for each cancer type in Germany, 1986-1990

Besides, when having a close look at the count distribution for each disease, the count

distributions show for oral, larynx and oesophagus in Figures 1.5, 1.6, 1.7 many very

lows counts, trend that is not found for lung cancer, see Figure 1.8. The low counts make

the SMR’s poor indicators as said previously and explain the lack of spatial structure

in Figure 1.1, 1.2, 1.3. The above consideration led to models that smooth the SMR

using random effect that allow spatial variations to provide better spatial pattern iden-

tification. Models like that, allowing spatial and non spatial variability, will be studied

in chapter two.
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Figure 1.2: Oesophagus cancer
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Figure 1.3: Larynx cancer SMR
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Figure 1.4: Lung SMR

Normal Approximation

The point of this thesis is not to work on which joint disease mapping model to adopt

but rather how to use PC prior in these models. This is why, for simplicity’s sake, the

square root of the SMR zi =
√
yi/ei are assumed to be independent and follow a normal

distribution zi|µi ∼ N(µi, σ
2) where σ2 = 1

4 . The models below mainly differ by the

way µi is built.
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Figure 1.6: Oesophagus cancer
count distribution

disease counts

fr
eq

ue
nc

y

0 50 100 150 200

0
20

40
60

80

Figure 1.7: Larynx cancer count
distribution

disease counts

fr
eq

ue
nc

y

0 200 400 600 800 1000

0
20

40
60

80
10

0
12

0

Figure 1.8: Lung cancer count dis-
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Chapter 2

First Models and PC priors

The project is built such that the first models are very simple in order to understand

what these models do, and why they are built the way they are. The goal is to learn by

doing so that the leap in complexity is not too important when going from one model

to the next one. It is not so much that the models gain in complexity but rather that

they progressively require more and more skills and an understanding of what is going

on in the previous models. Eventually successfully using the penalized complexity priors

is what this part of the project aims for. The methodology used is very simple here.

Since what is covered has been implemented on R-INLA [Rue et al., 2009], the results

obtained are simply compared to the ones provided by INLA. Coding even the simplest

results is a stance, taken mostly to get the hang of the coding skills required to carry

out the more complex coding to come, and also as it has been said before, because this

project has a didactic purpose, that is to understand some more about disease mapping

and the PC priors.

2.1 First Model

The first model considered is one of the most used one. As said before the zi’s are

assumed to be independent and follow a normal distribution with mean µi and variance

σ2 = 1
4 . Besides, it is reasonable to assume that the disease has a more similar impact

on close by districts than on remote ones. Closeness is defined as sharing a border i ∼ j,
in other words districts with a common border are hit by the disease more similarly than

districts than do not share a common border. In order to allow for spatial structure, the

µi = ui’s are assumed to follow a first order intrinsic Gaussian Markov Random Field

(GMRF) first introduced by Besag et al. [1991]. The conditional distribution for the

7
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ui’s is:

ui|u−i, τ ∼ N(
1

n∂i
Σj∈∂iuj ,

1

nδiτ
), (2.1)

with ∂i denoting the set of neighboring district of district i, and n∂i the number of

neighbor district of district i. The mean of ui is the mean of the effects over the neighbors

and the precision is proportional the the number of neighbors.The joint distribution for

u|τ is then:

π(u|τ) ∝ τ
n−1
2 e−

τ
2
u>Ru. (2.2)

Let i ∼ j denote that district i and district j are neighbors e.g. they share a border

together. Then the precision matrix R in Equation 2.2 is:

Rij =ni if i = j,

Rij =− 1 if i ∼ j,

Rij =0 else.

Note that:

∑
i

Rij = 0 ∀j,

thus the precision matrix R has a non empty kernel, namely the 1-vector, hence the

density is invariant to adding a constant to u. This is why the precision τ in Equation

2.2 is to the power n−1
2 instead of n

2 . It accounts for the rank deficiency of the precision

matrix. The rank deficiency would be even higher if islands were included in the graphs.

The likelihood is then as follows:

π(z|u) =

n∏
i=1

(
1

2πσ
)

n
2

e
1

2σ2
(ui−zi)>(ui−zi).

The precision parameter τ is for now set constant, later it will be assigned a prior

distribution, but the first model is meant to be as simple as possible. The quantity of

interest is the posterior marginal for u, that is:

π(u|z) ∝ π(z|u, τ)π(u|τ).

The probability density function of the posterior marginal of u, π(u|z), is proportional

to the product of two multivariate normal probability density functions and as such also

follows a multivariate normal distribution. The mean and the variance of the posterior
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marginal of u are derived using the following formulas:

u|τ ∼N(µ1,Σ1),

z|u, σ2 ∼N(µ2,Σ2),

u|z ∼N(µ3,Σ3).

Where:

Σ3 = (Σ1
−1 + Σ2

−1)
−1
, (2.3)

µ3 = Σ3Σ1
−1µ1 + Σ3Σ2

−1µ2. (2.4)

With:

µ1 =0,

µ2 =z,

Σ1 =(τR)−1,

Σ2 =σ2I,

Σ3 =(τR+
I

σ2
)
−1
,

µ3 =(τR+
I

σ2
)
−1 I

σ2
z.

Note that for this model, the results are exact since no approximation were made to

compute the posterior marginal for u. Considering the simplicity of the model studied,

the computation (code in Appendix A.1.1) are done only for oral cancer.

2.1.1 Model results and comparison to R-INLA for oral cancer

Figure 2.1 displays a smooth spatial pattern with areas of increased risk in the south

west and north east of Germany, however, according to Riebler et al. [2016] the model

does not allow for spatially unstructured variability. In other word, µi = ui does not

have a multivariate normal component with mean 0 and a precision matrix proportional

to the identity. As a consequence unstructured random error in each district that has

no spatial structure is identified as spatial correlation, leading to misinterpretation. For

simplicity’s sake, and for consistency with the methodology for the models to come, we

only compare the mode of the posterior marginal given by the implementation (code

in Appendix A.1.1) to the one provided by R-INLA. The code using R-INLA is found

below:

1 g = system . f i l e ("demodata/germany . graph" , package="INLA" )
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Figure 2.1: Mode of the posterior marginal for u for oral cancer

2 # Generating the precision matrix R

3 g=i n l a . read . graph ( g )

4 myQ=i n l a . graph2matrix ( g )

5 myQ = −myQ

6 diag (myQ) = g$nnbs

7 # Getting the data

8 Germany = or

9 Germany$z = sqrt ( or$V3)

10 # structured random effect

11 formula = z ∼ −1 + f ( reg ion , model="besag" , graph=g , cons t r=FALSE,

12 hyper=l i s t ( prec=l i s t ( i n i t i a l =2, f i x e d=TRUE) ) )

13 # The intercept is removed

14 r e s u l t = i n l a ( formula , family="gaussian" ,data=Germany ,

15 control . family=l i s t ( hyper=l i s t ( prec=l i s t ( i n i t i a l=log (4 ) ,

f i x e d=TRUE) ) ) )

16 # the log precision is fixed since tau is constant

17 # INLA plot check

18 a=u−r e s u l t $mode$x [ 1 : 5 4 4 ] # u is the result of the implementation

19 p r i n t f i g ( ’ check1 ’ ) # printfig is a function that store the plot in

the figure folder
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20 plot ( a , xlab = ’ d i s t r i c t index ’ , y lab=’ D i f f e r e n c e ’ )

21 invis ib le (dev . of f ( ) )

22
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Figure 2.2: Difference at the mode between R-INLA and the simulation

As is seen in Figure 2.2, the difference between the implementation results and the ones

produced by R-INLA is not significant.

2.2 Second model : the Besag York Mollie(BYM) model

Still assuming that zi ∼ N(µi, σ
2), Besag et al. [1991] proposed a model that accounts

for spatial variations using a spatially structured effect, see Equation 2.1 and an un-

structured effect. The point of the project is not to explain why this model is relevant,

but to implement a model that has proved its relevance, thus for more detail see Besag

et al. [1991]. The model is as follow:

µi =ui + vi, (2.5)

with u ∼ N(0, R−1) the structured effect from the previous model, see Equation 2.1,

here R−1 is actually the generalized inverse of R since R has not full rank, and v|κ ∼
N(0, κ−1I). The conditional distribution for u is then the same as is shown in Equation
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2.1 and is as follows:

π(u|τ) ∝ τ
n−1
2 e−

τ
2
u>Ru.

2.2.1 Without the hyperpriors

Hyper-priors will be taken into account later on, let κ = 0.5 and τ = e2 be constant for

now . The quantity of interest is still the posterior marginal, but this time for u and v:

π(u, v|z) ∝ π(z|u, v)π(u|τ)π(v|κ),

the probability density function of posterior marginal is proportional to a product of

multivariate normal probability density function a and as such will also have a multi-

variate normal probability density function. As a consequence, the mode of the latter

is derived to obtain its mean. Thus, the natural logarithm of the posterior marginal is

differentiated with respect to u and v:

∂ log(π(u, v|z))
∂u

= −u− (z − v)

σ2
− τRu,

∂ log(π(u, v|z))
∂v

= −v − (z − u)

σ2
− κv.

After setting both equations to 0, it follows that:

(
I

σ2
+ τR)u =

z − v
σ2

, (2.6)

(κ+
1

σ2
)v =

z − u
σ2

. (2.7)

Thus:

v =
z − u

σ2(κ+ 1
σ2 )

. (2.8)

Hence, after substituting the latter expression for v in 2.6, it follows that:

(
I

σ2
+ τR)u =

z − z−u
σ2(κ+ 1

σ2
)

σ2
,

((
I

σ2
+ τR)− I

σ4(κ+ 1
σ2 )

)u =(
1

σ2
− 1

σ4(κ+ 1
σ2 )

)z.

Equation 2.9 can be rewritten as:

u =
( 1
σ2 − 1

σ4(κ+ 1
σ2

)
)z

(( I
σ2 + τR)− I

σ4(κ+ 1
σ2

)
)
.
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Once u is computed, it is plugged in Equation 2.8, and the result for v follows. There

is no need to derive the algebraic formula for v, considering how big the formulas are

getting. Since the mode of a multivariate normal distribution is its mean, the mean

of the posterior marginal has been derived. In principle, the variance could be derived

using twice Equation 2.3, but it proves to be tedious, and the comparison to R-INLA

is only made at the mode. Similarly, rather than using Equation 2.4 twice to obtain

the mode, which is tedious, it seemed easier to look for a maximum, considering the

properties of the multivariate normal distribution. It is interesting to note that the

results obtained through implementation are once again exact. The computations are

only done for oral cancer(code in Appendix A.2.1).

0.90

0.95

1.00

1.05

Figure 2.3: posterior marginal
mode for u for Oral cancer

−0.4

−0.2

0.0

0.2

0.4

Figure 2.4: posterior marginal
mode for v for Oral cancer

It can be seen in Figure 2.3 that there is an area of increased risk in the western part

of Germany, while eastern Germany is rather an area of low risk. Figure 2.4 shows the

unstructured effect, and it seems that at the mode of the posterior marginal this effect is

quite significant even its scale is not as big as the one of the structured effect. It makes

sense with what had been said on the previous model that did not allow for unstructured

noise. Indeed with this new model, a clearer spatial pattern is obtained possibly because

the unstructured effect “gets the randomness” out of the structure effect to leave the

latter only with the underlying pattern. Figures 2.5, 2.6 show the difference between the

results of the implementation and the results produced by R-INLA. The results obtained

with the implementation check out with R-INLA. Indeed there are not any significant

differences. The code used to generate the results with R-INLA is given below:

1 g = system . f i l e ("demodata/germany . graph" , package="INLA" )

2 # Get the neighbors matrix

3 g=i n l a . read . graph ( g )

4 myQ=i n l a . graph2matrix ( g )
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Figure 2.5: Difference between the
posterior marginal mode from R-
INLA and the implementation for

the structured effect
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Figure 2.6: Difference between the
posterior marginal mode from R-
INLA and the implementation for

the unstructured effect

5 myQ = −myQ

6 diag (myQ) = g$nnbs

7 # Structure for the unstructured effect

8 Oral [ " r eg i on . unstruc" ] ← 1 :544

9 # Getting the data

10 Germany = or

11 Germany$z = sqrt ( or$V3)# Structured and unstructured effect

12 formula1 = z ∼ −1 + f ( reg ion , model="besag" , graph=g , cons t r=FALSE,

13 hyper=l i s t ( prec=l i s t ( i n i t i a l =2, f i x e d=TRUE) ) )+f ( Oral$ r eg i on . unstruc

, model=" i i d " ,

14 hyper=l i s t ( prec=l i s t ( i n i t i a l=log ( 0 . 5 ) , f i x e d=TRUE) ) )

15 # fixed precision

16 r e s u l t 1 = i n l a ( formula1 , family="gaussian" ,data=Germany ,

17 control . family=l i s t ( hyper=l i s t ( prec=l i s t ( i n i t i a l=log (4 ) ,

f i x e d=TRUE) ) ) )

2.2.2 With the hyper-priors

Now κ and τ are not considered to be constants anymore, it is assumed that they both

follow a gamma distribution. Following Besag et al. [1991]:

κ ∼ γ(ακ, βκ),

τ ∼ γ(ατ , βτ ),

with ακ = ατ = 3 and βκ = βτ = 1 as default settings.
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2.2.2.1 Derivation of the posterior marginal

The posterior marginal for u and v has now a different expression that accounts for

the hyper-priors, and it can be derived as directly as before, the method used below is

the one that is going to be used throughout the rest of the project to approximate the

posterior marginal for the parameters of interest, here u and v, let θ = (κ, τ):

π(u, v|z) ∝
∫
π(u, v|z, θ)π(θ|z)dθ, (2.9)

π(u, v|z) ≈
∑
k

π(u, v|z, θk)π(θk|z)∆k, (2.10)

where θk, k = (1, ...,K) correspond to representative points of θ|z and ∆k are the corre-

sponding weights (equal to one if points are equidistant). Equation 2.10 is rather time

consuming to implement and compute. Besides, this method is going to be used later

on for jointly modeling two diseases using PC priors, which has never quite been done

before and, developing something new is something one feels more comfortable doing in

a simplified set up rather than working with a more accurate approximation in order to

focus on the novelty and not be stuck with anterior technicalities. Thus the posterior

marginal is approximated as follows:

π(u, v|z) ≈ π(u, v|z, θmode). (2.11)

It might seem dire, but it is actually reasonable since most of the mass of π(θ|z) is at its

mode. Note that this is similar to an empirical Bayes strategy. Note also that Equation

2.11 can only be used for so long and if the results in later stages of the project turned

out to be promising, the models would need to be implemented using Equation 2.10.

Now, in order to compute Equation 2.11, the mode of the posterior marginal for θ has

to be computed. In order to do so, note that:

π(θ|z) ∝ π(u, v, z|θ)π(θ)

π(u, v|z, θ)
. (2.12)

Here the upsides of using zi’s that follow a normal distribution rather than Poisson

appear quite clearly. Indeed both π(u, v, z|θ) and π(u, v|z, θ) are multivariate normal

which would not be the case if the yi’s followed a Poisson distribution, for more details

see Rue and Held [2005]. Equation 2.12 can be rewritten as:

π(κ, τ |z) ∝ π(z|u, v, κ, τ)π(u|κ)π(v|τ)π(κ)π(τ)

π(u, v|z, κ, τ)
. (2.13)
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While π(u, v, z|κ, τ) ∝ π(z|u, v, κ, τ)π(u|κ)π(v|τ) clearly follows a multivariate normal

distribution, it is not as obvious for π(u, v|z, κ, τ). To prove it, the π(u, v, z|k, t)’s dis-

tribution has to be derived as in Rue and Held [2005]:

π(u, v, z|κ, τ) ∝ π(z|u, v, κ, τ)π(u|τ)π(v|κ)

π(u, v, z|κ, τ) is a GMRF with precision Q and mean 0. The precision matrix Q is

defined as follows:

Q =


Quu Quv Quz

Qvu Qvv Qvz

Qzu Qzv Qzz

 . (2.14)

The expression for each block of the block matrix Q in Equation 2.14 is then derived

using:

π(z|u, v, κ, τ) ∝ exp (− 1

2σ2

n∑
i=1

(zi − ui − vi)2),

π(u|τ) ∝τ
n−1
2 e−

τ
2
u>Ru,

π(v|κ) ∼N(0, κ−1I).

Thus:

Quu =τR+
I

σ2
,

Qvv =κI +
I

σ2
,

Quv =
I

σ2
,

Qvu =
I

σ2
,

Quz =− I

σ2
,

Qvz =− I

σ2
.

Now that the distribution for u, v, z|κ, τ , the only thing left to do is to use it to derive

u, v|z, κ, τ .

Theorem 2.1. Let x ∼ Nc(b,Q),with x =

(
xA

xB

)
and Q =

[
QAA QAB

QBA QBB

]

and x =

(
bA

bB

)
then, xA|xB ∼ Nc(bA − QABxB, QAA). See Rue and Held [2005] for

more details.



17

From there using Theorem 2.1 allows rather easily to obtain the distribution of the

posterior marginal:

π(u, v|z, κ, τ) ∼ Nc(b = −

[
Quz

Qvz

](
z

z

)
, Q1 =

[
Quu Quv

Qvu Qvv

]
).

Now in order to make finding κmode, τmode = arg maxκ,τ π(κ, τ |z) easier, it helps noticing

that π(κ, τ |z) does not depend on u and v. Thus let u = 0 and v = 0. This choice of

u and v makes the full conditional of κ and τ as easy to implement as possible. Then

Equation 2.13 becomes:

π(κ, τ |z) ∝π(z|u = 0, v = 0, κ, τ)π(u = 0|κ)π(v = 0|τ)π(κ)π(τ)

π(u = 0, v = 0|z, κ, τ)
, (2.15)

π(κ, τ |z) ∝
τ
n−1
2 ( κ

2π )
n
2∣∣∣Q1

∣∣∣ e− 1
2
µ>1 Q1µ1

, (2.16)

with µ1 = Q−11 b. Now κmode, τmode = argmaxκ,τπ(κ, τ |z) can be obtained using the

R built in function optim(code in Appendix A.3.1). The results obtained in Table 2.1

Implementation R-INLA

τmax 18.02 18.02
κmax 28.38 28.39

Table 2.1: argmax of the posterior marginal π(κ, τ |z)

clearly show that the implementation’s results are corroborated by R-INLA. Now using

Equation 2.11, it is easy to obtain the mode of the posterior marginal for u and v,

and then compare it to R-INLA. It seems (code in Appendix A.3.2) that oral cancer

in Figure 2.7, oesophagus cancer in Figure 2.8, and larynx cancer in Figure 2.9 have a

rather similar structured effect component with area of increased risk in western and

north eastern Germany. As has been said in Section 1.2, tobacco and alcohol are the main

risk factors for these three cancers, it only makes sense that these three diseases have

a similar structured effect. The differences between these three spatial patterns show

essentially that tobacco and alcohol are not the only risk factor at play. Lung cancer,

however, as is seen in Figure 2.10, seems to have an altogether different structured

effect. It makes sense for oral oesophagus and larynx are mostly caused both alcohol

and tobacco consumption while tobacco is by far the risk factor to blame for most lung

cancer as has been said in Section 1.2. The obtained results seem to add up, feeling

confirmed when looking at the difference between the results from R-INLA and the

implementation for oral cancer in Figures 2.11, 2.12, it all but fits. The code used to

generate the R-INLA results is given below and commented:

1 # Precision matrix
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Figure 2.7: spatially structured ef-
fect at the mode for oral cancer
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Figure 2.8: spatially structured ef-
fect at the mode for oesophagus can-
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Figure 2.9: spatially structured ef-
fect at the mode for larynx cancer
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Figure 2.10: spatially structured
effect at the mode for lung cancer

2 g = system . f i l e ("demodata/germany . graph" , package="INLA" )

3 g=i n l a . read . graph ( g )

4 myQ=i n l a . graph2matrix ( g )

5 myQ = −myQ

6 diag (myQ) = g$nnbs

7 Oral [ " r eg i on . unstruc" ] ← 1 :544 #v

8 # hyperprior for the structured effect

9 hyper u = l i s t ( prec = l i s t ( p r i o r = "loggamma" , param = c (3 , 1) ) )

10 # hyperprior for the unstructred effect

11 hyper v = l i s t ( prec = l i s t ( p r i o r = "loggamma" , param = c (3 , 1) ) )

12 Germany = or # data for oral cancer

13 Germany$z = sqrt ( or$V3) # sqrt of the SMR
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Figure 2.11: Difference between
R-INLA and the implementation for
the spatially structured component
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Figure 2.12: Difference between
R-INLA and the implementation for

the unstructured component

14 formula2 = z ∼ −1 + f ( reg ion , model="besag" , graph=g , cons t r=FALSE,

15 # besag for the structured effect

16 hyper=hyper u)+f ( Oral$ r eg i on . unstruc , model=" i i d " ,

17 # iid for the unstructured effect

18 hyper=hyper v )

19 r e s u l t 2= i n l a ( formula2 , family="gaussian" ,data=Germany ,

20 control . i n l a = l i s t ( i n t . s t r a t e g y="eb" ) ,

21 # empirical bayes stategy to use the same method as in the

implementation

22 control . p r e d i c t o r = l i s t ( compute=TRUE) ,

23 control . family=l i s t ( hyper=l i s t ( prec=l i s t ( i n i t i a l=log (4 ) ,

f i x e d=TRUE) ) ) )

2.3 Disease mapping with penalized complexity priors

Some of the most popular disease mapping models have now been covered, and it is

time to introduce penalized complexity priors in the models to come. In order to do

so, a short introduction to PC priors is given together with a four principled method to

derive them.

2.3.1 Preliminary Definitions

To understand fully what the PC priors are about it is paramount to comprehend the

notions of base and flexible model.
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Definition 2.2. Considering a model component with a probability density function

π(x|ξ) controlled by a flexibility parameter ξ, the base model denote the simplest model

possible, in other word the value of ξ that makes the model as simple as possible. For

clarity sake, the base model is the model for which ξ = 0. In terms of interpretation,the

flexibility parameter ξ is chosen so that the base model “happens” when ξ = 0, not the

other way around.

Now when ξ 6= 0, π(x|ξ) can be interpreted as a flexible extension of the base model : a

flexible model. As ξ increases, so does the deviation from the base model. For a more

comprehensive definition see Simpson et al. [2015].

2.3.2 Penalized complexity priors

As explained in Simpson et al. [2015], penalized complexity priors have been designed

for additive hierarchical model and built so that they satisfy the following criteria:

• The prior should not be non informative.

• Model structure aware prior.

• Changes in the model should impact the prior.

• An over specified model should see it’s flexibility limited by the prior.

• The prior should control what a parameter does, rather than its numerical value.

• Computational feasibility of the prior.

• Theory consistent prior.

Then again the focus of this project is not to explain why these priors are built the

way they are, but rather to try and extend their use to joint disease mapping given

that they have show promising results when using models with one disease and that

they are designed for the very thing this project actually focuses on: additive models.

The analysis of the underlying motivation for the list of criteria given above that led to

the four principled constructive definition given in Simpson et al. [2015] is beyond the

scope of this project, for more details see Simpson et al. [2015]. The aforementioned

four principled constructive definition (from Simpson et al. [2015]) is as follows:

• First Principle: Occam’s razor. Following the principle of parsimony, a sim-

pler model should be preferred over a more complex one until there is enough
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support, which means that the prior should penalize deviations from base model,

see Definition 2.2, since π(x, ξ) extends π(x|ξ = 0), the prior for ξ should penalize

the increase in complexity brought in by ξ ≥ 0. The mode of the prior should be

at the base model. In other words, the prior, without support, should favor the

base model and the prior should decrease as a function of a measure of increased

complexity between the flexible and the base model.

• Second Principle: Measure of complexity. In order to measure the increased

complexity between the flexible model and the base model, the Kullback-Leibler

divergence (KLD) defined in Kullback and Leibler [1951] is used. The KLD be-

tween the flexible model density f and the base model density g is defined as:

KLD(f ||g) =

∫ +∞

−∞
f(x)log(

f(x)

g(x)
)dx.

The distance between the two model is then d(f ||g) =
√

2KLD(f ||g). As said in

Definition 2.2, for a model component x with a flexibility parameter ξ, the density

base model is defined as f(x) = π(x|ξ = 0), ∀x, while the density of the flexible

model is defined as g(x) = π(x|ξ),∀x for an arbitrary ξ. Hence d(f ||g) is a function

of ξ and will be further referred to as d(ξ).

• Third Principle: Constant rate penalization. To penalize the deviation from

the base model that is parametrized with d, a constant decay rate r is used and

satisfies:

πd(d+ δ) = rδ, 0 ≤ r ≤ 1, δ ≥ 0.

Besides, the mode of the prior is at d = 0, i.e. the base model which implies

π(d) = λe−λd with r = e−λ. This corresponds to the following prior on the

original space :

π(ξ) = λe−λd(ξ)
∣∣∣∣∂d(ξ)

∂ξ

∣∣∣∣ .
When d does not go to infinity as ξ goes to its upper bound, a truncated exponential

is used.

• Fourth Principle: User-defined scaling. The fourth and final principle re-

quired to fully construct the prior selects λ and uses the user’s idea of a sensible

size for the parameter. It can be done by controlling the prior mass in the tail:

Prob(Q(ξ) ≥ U) = α.
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whereQ(ξ) is an interpretable transformation of the parameter, U is an user defined

upper bound that specifies what is meant by “tail event”, and α is the weight that

is put on this “tail event”. This basically indicates how informative the prior is.

2.3.3 New model with PC priors

The previous model raises two main concerns according to Simpson et al. [2015], if the

priors are to agree with Section 2.3.2:

• the marginal variance R−1ii of the spatial structured effect is not standardized

which prevents from transferring the prior from one graph ( say Germany’s graph)

to another one ( an other country) since the aforementioned marginal variance

depends on the graph as said in Simpson et al. [2015].

• the structured u and unstructured v components should not be dealt with inde-

pendently. Indeed according to Simpson et al. [2015], in the event that there are

not any spatial dependency, it turns out that the unstructured effect is included

in the structured effect.

The proposed re-parametrization that solve the two aforementioned main issues is found

in Simpson et al. [2015]:

µi = µ+
1√
τ

(
√

1− φvi +
√
φu∗i ).

Let µ denote the intercept that is assumed to follow a normal distribution with a large

variance(σ2max = 100). Let v denote the unstructured effect that follows a multivariate

normal distribution with mean 0 and precision I : v ∼ N(0, I). The precision matrix R

of the structured effect in Equation 2.2 has a non empty kernel, namely the 1-vector,

hence the density is invariant to adding a constant to u. The spatially structured effect

needs a sum to zero constraint 1Tu = 0 to prevent confounding it with the intercept

µ. Finally let u∗ denote the intrinsic gaussian markov random field with a sum to zero

constraint and a scaled covariance matrix Q∗. Q∗ scaled according to Sorbye and Rue

[2014] to facilitate prior assignment, for more details refer to Sorbye and Rue [2014].

The spatially structured component u∗ is an intrinsic GMRF, it is going to be referred

to as

u∗ ∼N(0, Q∗−1),

even though it is rather improper because of the rank deficiency of the precision matrix

Q∗. The INLA built in function inla.scale.model does the scaling, scaling that allows
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prior interpretation to remain the same even if the graph is different, for more details see

Riebler et al. [2016]. This way, τ represents the precision of the marginal deviation from

the null space while φ and 1−φ represent respectively the part of the variance explained

by the spatially structured effect u∗ and the unstructured effect v (for more details, see

Simpson et al. [2015]). According to Simpson et al. [2015], κ and τ are orthogonal in

terms of interpretation, which allows for an independent specification of their priors.

2.3.4 Derivation of the penalized prior for τ

The following derivation is done in Simpson et al. [2015].

Theorem 2.3. The Kullback-Leibler divergence from N1
p (µ1,Σ1) to the base case N0

p (µ0 =

0,Σ0) is

KLD(N1
p ||N0

p ) =
1

2
(tr(Σ−10 Σ1) + (µ0 − µ1)>Σ−10 (µ0 − µ1)− p− ln(

|Σ1|
|Σ0|

)). (2.17)

The prior for τ is derived using the four principled definition in Section 2.3.2. The base

model is defined to be when there is no spatial effect, that is when τ −→ ∞. Thus τ0,

the precision for the base model is set such that τ0 � 1, and later on brought to +∞.

The flexible model has finite τ . For notation clarity, let A denote φQ∗−1 + (1 − φ)I

where φ is arbitrary. Then using Theorem 2.3 the Kullback-Leibler divergence between

the flexible model N1
p (µ1 = 0,Σ1 = A/τ) and the base case N0

p (µ0 = 0,Σ0 = A/τ0) is:

KLD(N1
p ||N0

p ) =
1

2
(tr(Σ−10 Σ1) +−p− ln(

|Σ1|
|Σ0|

)),

=
1

2
(
τ0
τ
tr(I) +−p− ln(

τ

τ0
)),

=
p

2

τ0
τ

(1− τ

τ0
− τ

τ0
log(

τ

τ0
)).

Now let τ0
τ >> 1, then:

KLD(N1
p ||N0

p ) =
p

2

τ0
τ
.

Thus:

d(τ) =

√
pτ0
τ
.

With a constant penalization rate, it follows that:

π(d) = λ exp(−λd).
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Using the change of variable formula:

π(τ) = λ exp(−λ
√
pτ0
τ

)|∂d
∂τ
|.

π(τ) =
λ

2

√
pτ0τ

− 3
2 exp(−λ

√
pτ0
τ

).

Let θ = λ
√
pτ0, then:

π(τ) =
θ

2
τ−

3
2 exp(−θτ−

1
2 ). (2.18)

The prior for τ thus follows a type-2 Gumbel distribution. Now is time to apply the user

defined scaling principle to get a value for λ. The parameters (U,α) are to be chosen

such that large deviations are unlikely:

P (
1√
τ
≥ U) =α,

P (

√
pτ0√
τ
≥ U√pτ0) =α,

P (d ≥ U√pτ0) =α,

1− Fd(U
√
pτ0) =α.

Thus θ = −ln(α)/U . Eventually:

π(τ) =
θ

2
τ−

3
2 exp(−θτ−

1
2 ), (2.19)

with θ = −ln(α)/U . It is useful, and eventually time saving to notice that the prior’s

nature does not depend on A. Thus further derivations of such spatial variance priors

should be fairly similar. As a rule of thumb [Simpson et al., 2015], if α = 0.01 then the

standard deviation of the random component is approximately 0.31U, it thus explains

the choice of α = 0.01 and U = 0.2/0.31.

2.3.5 Derivation of the PC prior for φ

The following derivation is done in Simpson et al. [2015]. The base case φ = 0 is when

all the variance is explained by the unstructured effect , that is when no spatial pattern

can be found. The KLD between the base model µ0 = 0, Σ0 = I and the flexible

model µ1 = 0,Σ1 = (1− φ)I + φR−1. It then follows from Theorem 2.3 that:

2KLD(φ) = nφ(
1

n
tr(Q∗−1)− 1)− log

∣∣(1− φ)I + φQ∗−1
∣∣ .
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Let the γi’s be the eigenvalues of Q∗. Let ηi = 1
γi

. Then it can be seen that:

∣∣(1− φ)I + φQ∗−1
∣∣ =

n∏
i=1

(1− φ− φηi).

Note that ifQ∗ is not invertible, we just consider the non zero eigenvalues! Then applying

the third principle and its exponential decay rate principle, and the change of variable

formula:

π(φ) = λ exp(−λd(φ))

∣∣∣∣∂d(φ)

∂φ

∣∣∣∣ .
Since φ has to lie between 0 and 1, the exponential distribution has to be truncated as

follows:

π(φ) =
λe−λd(φ)

Π(1)−Π(0)

∣∣∣∣∂d(φ)

∂φ

∣∣∣∣ .
Thus:

π(φ) =
λ exp(−λd(φ))

1− exp(−λd(1))

∣∣∣∣∂d(φ)

∂φ

∣∣∣∣ .
To determine λ, we set the degree of penalization to be P (φ ≤ U) = α, thus:

P (φ ≤ U) = α,

1

1− exp(−λd(1))

∫ U

0
λexp(−λd(φ))

∣∣∣∣∂d(φ)

∂φ

∣∣∣∣ dφ = α,

1

1− exp(−λd(1))

∫ d(U)

d(0)
λexp(−λz)dz = α,

1− exp(−λd(U))

1− exp(−λd(1))
= α.

In practice however, the truncated exponential is used only if needed, that is only is

1− exp(−λd(1)) 6= 1. Then if 1− exp(−λd(1)) = 1 then the truncation is not required,

and λ is easier to compute:

π(φ) = λ exp(−λd(φ))

∣∣∣∣∂d(φ)

∂φ

∣∣∣∣ , (2.20)

with λ = − log(1−α)
d(U) .



26

2.3.6 Derivation of the posterior marginal π(u, v, µ|z)

The quantity of interest is the posterior marginal π(u∗, v, µ|z) as in Section 2.2.2.1. Out

of convenience, the method used to derive it is also the same as in Section 2.2.2.1, that

is:

π(u∗, v, µ|z) ≈ π(u∗, v, µ|z, (φ, τ)mode),

where (φ, τ)mode denotes the mode of the posterior marginal π(φ, τ |z). Out of conve-

nience, the sum to zero constraint is omitted for now, the obtained formula will be

adjusted a posteriori. The posterior marginal for φ, τ is then:

π(φ, τ |z) ∝ π(z|u, v, µ, φ, τ)π(u|φ, τ)π(v|φ, τ)π(φ)π(τ)π(µ)

π(u, v, µ|z, φ, τ)
.

Then similarly to what has been done in Section 2.2.2.1, the numerator is known and

the denominator π(u, v, µ|z, φ, τ) is a GMRF with a mean and a precision yet to be

determined. It is going to be done using the following:

π(u, v, µ, z|φ, τ) ∝ π(z|u, v, µ, φ, τ)π(u|φ, τ)π(v|φ, τ)π(µ|σmax2),

π(z|u, v, µ, κ, τ) ∝ e
(− 1

2σ2

∑n
i=1(zi−

√
φ√
τ
ui−

√
1−φ√
τ
vi−µ)2),

π(u|τ) ∝ e−
u>Ru

2 ,

π(v|φ) ∼N(0, I),

π(µ|σmax2) ∼N(0, σmax
2).

Thus π(u, v, µ, z|φ, τ) is as in Section 2.2.2.1 a GMRF, with mean 0 precision Q2. The

precision matrix Q2 is defined as follows:

Q2 =


Quu Quv Quµ Quz

Qvu Qvv Qvµ Qvz

Qµu Qµv Qµµ Qµz

Qzu Qzv Qzµ Qzz

 .

The content of Q2’s block matrices is found in Appendix B.1 From there, using Theorem

2.1, one can derive π(u, v, µ|z, φ, τ):

u, v, µ|z, φ, τ ∼ Nc(b = −


Quz

Qvz

Qµz



z

z

z

 , Q1 =


Quu Quv Quµ

Qvu Qvv Qvµ

Qµu Qµv Qµµ

).
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However, the sum to zero constraint was omitted from the proof for simplicity. u, v, µ1, 1
Tu =

0|z, κ, τ actual mean and precision is obtain using the following theorem from Rue and

Held [2005]:

Theorem 2.4. Let x ∼ N(µ,Q−11 ), then x|Ax = e ∼ N(µ∗, Q∗−11 ) where

µ∗ =µ−Q−11 AT (AQ−11 AT )
−1
Aµ,

Σ∗ =Q−11 −Q
−1
1 AT (AQ−11 AT )

−1
AQ−11 ,

where µ∗ = Q∗−11 b and µ = Q−11 b.

Since π(φ, τ |z) does not depend on u, v, µ. Then u, v, µ are chosen in a way that simplifies

the function to maximize, namely u = 0, v = 0, µ = 0. The multiplicative constants

that will not change the result of the optimization are taken out of the equation. It then

simplifies to:

π(φ, τ |z) ∝ π(φ)π(τ)

π(0, 0, 0|z, φ, τ)
.

The R optim function then compute (φ, τ)mode. Now since:

π(u∗, v, µ|z) ≈ π(u∗, v, µ|z, (φ, τ)mode),

then u∗, v, µ|z ∼ N(µ∗,Σ∗) where µ∗,Σ∗ are evaluated at the mode. Since the goal of

this project is not to focus on the user define scaling choice, the values for α and U are

taken from Riebler et al. [2016]:

ατ =0.01, Uτ =0.2/0.31,

αφ =0.5, Uφ =2/3.

2.3.7 Implementation tricks and difficulties

When implementing this model in R, two issues were encountered:

• When using the optim function in R, the BFGS method was used as the go to

method, however with larger problem in later models, the use of BFGS causes the

machine to overflow. Hence the use of the L-BFGS-B method, that is a limited

memory quasi Newton method that essentially stores only a few vectors that de-

scribe the Hessian implicitly rather than storing a dense Hessian matrix as said in

Nocedal and Wright [2006], that does not cause the machine to overflow. It was
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quite surprising to find out that that 5 variables to optimize caused the machine

to overflow, but since L-BFGS-S brought an efficient solution to the problem, the

problem was not looked further into since optimization is not in the scope of the

project.

• When trying to maximize the posterior marginal π(φ, τ |z), the parameter space is

constrained as follows:

τ ∈]0,+∞[,

φ ∈[0, 1].

Besides a constrained parameter space requires constrained optimization technique

rather than plain optimization ones. This is a rather unnecessary complication.

To get past it, let:

x = log(τ) ∀τ,

y = logit(φ) ∀φ,

then:

log(τ) ∈]−∞,+∞[,

logit(φ) ∈]−∞,+∞[.

With this change of variables, the parameter space is not constraint anymore.

Then obviously the change of variable formula has to be applied to probability

density function of the parameters as seen in Appendix A.3.3.

πX(x) =πτ (expx)

∣∣∣∣∂ expx

∂x

∣∣∣∣ ,
πY (y) =πφ(

exp y

1 + exp y
)

∣∣∣∣∣∂
exp y

1+exp y

∂y

∣∣∣∣∣ .
However when analyzing results, the internal scale does not provide easily in-

terpretable results, only a basis for comparison between the implementation and

R-INLA whereas the original scale does, so the latter is use for analysis. Even

though the original scale is used, the values at the mode are those of x and y.

They are just transformed back to the original scale. In other words the values are

those given by arg maxπ(log(τ), logit(φ)|z) and not arg maxπ(τ, φ|z), but they are

often transformed back to the original scale to be more easily interpreted. In later

models, this method is also used, so whenever a parameter has a domain comprised
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between 0 and 1 a logit transformation is applied and whenever a parameter has

for domain the positive real numbers, a log transformation is applied.

2.3.8 Results and comparison to R-INLA

R-INLA Implementation

Log(τ) 7.15 7.15
Logit(φ) -0.64 -0.64

Table 2.2: argmax of the posterior marginal π(φ, τ |z) for oral cancer

When comparing the results from the maximization(code in Appendix A.3.3) of the

posterior marginal π(logit(φ), log(τ)|z) to R-INLA’s result, see Table 2.2, it is seen that

they are identical. The code used to obtain the R-INLA results is given below.

1 Germany = or #data for oral cancer

2 Germany$z ← sqrt ( or$V3)

3 z = sqrt ( or$V3)

4 formula3 = z ∼ f ( reg ion , model="bym2" , graph=g ,

5 scale . model = TRUE, # scaled matrix

6 rankdef = 1 , # rank deficiency set to 1

7 hyper = l i s t ( prec = l i s t ( p r i o r="pc . prec" , param=

prec . par , i n i t i a l =5) ,

8 theta2 = l i s t ( p r i o r = "pc" , param=

phi . par ,

9 i n i t i a l = −3) ) , cons t r

= TRUE) ,# constrained spatial effect

10 r e s u l t 3=i n l a ( formula3 , family="gaussian" ,data=Germany ,

11 control . i n l a = l i s t ( s t r a t e g y="gaussian" ,

12 i n t . s t r a t e g y="eb" , # empirical bayes strategy

13 # to fit the method that’s been used in the

implementation.

14 t o l e r a n c e = 1e−12, h=1e−4) ,

15 control . family=l i s t ( hyper=l i s t ( prec=l i s t ( i n i t i a l=log (4 ) ,

f i x e d=TRUE) ) ) ,

16 control . f i x e d=l i s t ( prec . i n t e r c e p t =(prec .mean) ) )

Similarly, it is seen in Figure 2.13 that the difference at the mode of the posterior

marginal π(u, v, µ|z) between R-INLA and the implementation is not significant, and

thus R-INLA’s results check out the implementation’s. As in shown in Figure 2.13,

there is an area of high risk in southern Germany and an area of moderate risk in north

eastern Germany.
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Figure 2.13: 1√
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√
φu∗i ) difference at the mode be-
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Chapter 3

Joint disease mapping with

penalized complexity priors

In the previous chapter, models taking only one disease into account have been reviewed.

In this chapter, the goal is to model two diseases jointly. Following Held et al. [2005], a

shared spatial component is introduced together with disease specific component. The

shared spatial component acts as a surrogate for an unobserved spatially structured

covariate that affects both diseases, while the disease specific component acts as a sur-

rogate for an unobserved structured covariate that affects only one of the disease. In

practice, when considering oral cancer and lung cancer jointly, the shared component

represents the common risk factors of these two diseases, which is mainly smoked to-

bacco, see Section 1.2, and any other risk factor they have in common. Besides, as

alcohol consumption seems to be a risk factor only for lung cancer, the disease specific

component of lung cancer would account for alcohol consumption. PC priors have not

yet been used in such a setting, and the underlying idea is to try and assess whether PC

priors can be successfully used for joint disease mapping. Riebler et al. [2016] shows that

the univariate disease mapping model presented in Section 2.3 (under the assumption

that the yi’s follow a poisson distribution) behaves at least as well as the other popular

models and possesses an ability to shrink to a simpler model when the data requires it,

in other words, the mean value of the posterior marginal of a parameter can go to zero if

the data suggests that the component this parameter scales should not be there. Finding

evidence that a model using PC priors and models jointly two diseases can behave as

convincingly and possesses such a shrinking property is what this chapter ideally aims

for.

31
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For all the models considered in this chapter it is assumed that:

z1,i ∼N(η1,i, σ
2
1),

z2,i ∼N(η2,i, σ
2
2),

where z1,i denotes the squared root of the SMR for the i-th disease. As said before, since

the work done on the use of PC priors when jointly modeling two disease has not been

done before, it is assumed that the square root of the SMR follow a normal distribution.

If the results under that assumption show encouraging promises, modeling using Poisson

distributions should then be done.

3.1 First proposed model with PC priors

The following model combines the model presented in Section 2.3 and the shared-specific

components mentioned in Held et al. [2005]. This model is designed for two diseases who

share a common risk factor, with one of the diseases having an additional risk factor

that the other does not have. Thus it would be well suited to jointly model lung and

any of the other cancers, but not to model diseases that have two common risk factors,

namely any pairing of larynx oral and oesophagus cancer, not that it would not work

but it would be impossible to obtain the spatial patterns corresponding the each of the

two diseases. Rather the spatial pattern of the two disease combined would be obtained.

Spatial pattern that the model in Section 2.3 already provides. The model is the result

of a discussion whose point was to determine how to build a model that would allow the

joint modeling of two diseases and the use of the PC priors. It was not designed to be

perfect but to provide a good basis on which to further elaborate. The parameters τ1

and τ2 model the marginal deviation from the null space for each of the two considered

diseases. The parameter φ1 models the part of the variance explained by the disease

specific structured effect for the first disease while 1 − φ1 represents the part of the

variance explained by the shared component. The parameters γ and 1 − γ represent

the part of the variance explained by respectively the structured effect of the shared

component and the unstructured effect of the shared component. As for φ2 and 1− φ2,
they represent respectively the part of the variance explained by the structured and

unstructured effect for the second disease. As in Section 2.3, the precision parameters

and the weights are considered to be independent in interpretation and which allows for



33

independent specifications of the priors. The model is thus as follows:

η1 =µ1 +
1
√
τ1

(√
1− φ1(

√
γu∗1 +

√
1− γv1)) +

√
φ1u

∗
2

)
, (3.1)

η2 =µ2 +
1
√
τ2

(√
φ2u

∗
1 +

√
1− φ2v1

)
, (3.2)

where µ1 and µ2 are the disease specific intercepts , and follow a normal distribution

with a large variance and mean zero, u∗1, the shared component, is a scaled intrinsic

GMRF with a sum to zero constraint, u∗2, the disease specific component, is a scaled

intrinsic GMRF with a sum to zero constraint. The component v1 ∼ N(0, I) is the

unstructured component for both diseases.

3.1.1 Penalized complexity priors derivation

When deriving the density of a prior, the other parameters are set arbitrarily.

PC prior for τ1

The parameter τ1 represents the deviation from the null space for the first disease and

can be derived independently of the second disease. The prior for τ1 is derived using

the four principled definition in Section 2.3.2. The base model is defined as the least

complex model, that is when τ0 −→ ∞. The flexible model has finite τ1. Let A denote

((1 − φ1)γ + φ1Q
∗−1) + (1 − φ1)(1 − γ)I. The choice of the other parameters, here γ

and φ1, do not change the formula for the prior as the prior is derived considering an

arbitrary γ and φ1. As said in Section 2.3.4, the prior specification does not depend on

A, thus the prior for τ1 is:

π(τ1) =
θ1
2
τ1
− 3

2 e(−θ1τ
− 1

2
1 ),

with θ1 = − log(α1)/U1. The user define scaling is chosen identical to that of τ in Section

2.3.4 with α1 = 0.01 and U1 = 0.2/0.31.

PC prior for τ2

The precision parameter τ2 represents the deviation from the null space for the second

disease and can be derived independently of the first disease. What was said for τ1 is

also true for τ2, thus:

π(τ2) =
θ2
2
τ2
− 3

2 e(−θ2τ
− 1

2
2 ),

with θ2 = − log(α2)/U2 where α2 = 0.01 and U2 = 0.2/0.31.
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Penalized complexity prior for φ1

When φ1 = 0, the base model assumption is that both diseases share the same risk

factor. When φ1 6= 1, the flexible model allow for disease 1 to have spatial structured

specific risk factors. The prior is derived following the method used in Section 2.3.2:

• Base case N(0,Σ0 = γQ∗−1 + (1− γ)I).

• Flexible case N(0,Σ1 = ((1− φ1)γ + φ1)Q
∗−1 + (1− φ1)(1− γ)I).

Where γ is arbitrary. Using Equation 2.3, the KLD between the base model and the

flexible one is then:

KLD(φ1) =
1

2
(tr(Σ−10 Σ1)− n− ln(

|Σ1|
|Σ0|

)).

Hence:

d(φ1) =

√
(tr(Σ−10 Σ1)− n− ln(

|Σ1|
|Σ0|

)).

The rest is the same as in Section 2.3.5, thus :

π(φ1) =
λ3exp(−λ3d(φ))

1− e−λ3d(1)

∣∣∣∣∂d(φ)

∂φ

∣∣∣∣ .

where 1−exp(−λ3d(U3))
1−exp(−λd(1)) = α3 with some probability α3 and an upper bound U3. Practice

has shown that this prior needs to be truncated, e.g 1−expλ3d(1) 6= 1,however for com-

putational reasons, namely computational speed, rather than solving 1−exp(−λd(U3))
1−exp(−λd(1)) =

α3, λ3 is computed as if the prior did not need to be truncated as in Section 2.3.5 and

then a posteriori divided by 1− exp(−λ3d(1)). This is further detailed in Section 3.1.3.

The prior now depends on γ, and so does λ3 and it thus cannot be overlooked anymore

when computing the mode of the posterior marginal π(γ, φ1, φ2, τ1, τ2|z).

Penalized complexity prior for φ2

The second disease with no disease specific component is the same as in Section 2.3,

thus the penalized complexity prior for φ2 is the same as for φ in Section 2.3:

π(φ2) = λ4exp(−λ4d(φ2))

∣∣∣∣∂d(φ2)

∂φ2

∣∣∣∣ ,
where λ4 = − ln(1−α4)

d(U4)
with some probability α4 and an upper bound U4.
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Penalized Complexity prior for γ

When γ = 0, the base model assumption is that the two diseases have no shared spatially

structured component.

• Base case N(0,Σ0 = (1− φ1)I + φ1Q
∗−1).

• Flexible case N(0,Σ0 = ((1− φ1)γ + φ1)Q
∗−1 + (1− φ1)(1− γ)I),

where φ1 is arbitrary. Using Equation 2.3, the KLD from the base model to the flexible

one is then :

KLD(φ2) =
1

2
(tr(Σ−10 Σ1)− n− ln(

|Σ1|
|Σ0|

)).

Hence :

d(φ2) =

√
(tr(Σ−10 Σ1)− n− ln(

|Σ1|
|Σ0|

)).

Then :

π(γ) =
λ5exp(−λ5d(γ))

1− exp(−λ5d(1)
)

∣∣∣∣∂d(γ)

∂φ

∣∣∣∣ .

where 1−exp(−λ5d(U5))
1−exp(−λ5d(1)) = α3 with some probability α5 and an upper bound U5. To

compute λ5 the method used is the same as the one use for φ1.

3.1.2 Posterior marginal π(u, v, µ|z)

The quantity of interest is the same as before π(u∗1, u
∗
2, v1, µ|z), and its derivation is done

using the material in Section 2.2.2.1. Let u1 and u2 denote the scaled intrinsic GMRF,

and u∗1 and u∗2 the scale intrinsic GMRF with the sum to zero constraint. Let z1,: denote

(z1,1, . . . , z1,544) and z2,: denote (z2,1, . . . , z2,544).

π(u∗1, u
∗
2, v1, µ|z) ≈ π(u∗1, u

∗
2, v1, µ|z, (τ1, τ2, φ1, φ2, γ)mode). (3.3)

where (τ1, τ2, φ1, φ2, γ)mode = arg maxτ1,τ2,φ1,φ2,γ π(τ1, τ2, φ1, φ2, γ|z1, z2) with

π(τ1, τ2, φ1, φ2, γ|z1,:, z2,:) ∝π(z1,:| . . .)π(z2,:| . . .)

×
π(u∗1,2| . . . )π(v1| . . . )π(µ1,2)π(τ1, τ2, φ1, φ2, γ)

π(u∗1, u
∗
2, v1, µ|z, τ1, τ2, φ1, φ2, γ)

.
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Let u1 and u2 denote the scaled intrinsic GMRF without the sum to zero constraint.

Then it follows that π(u1, u2, v1, µ, z|τ1, τ2, φ1, φ2, γ) is a GMRF with mean 0 and pre-

cision Q. Then Theorem 2.1 gives the following result:

u1, u2, v1|z, τ1, τ2, φ1, φ2, γ ∼ Nc(b,QGMRF ),

where

QGMRF =



Qu1u1 Qu1u2 Qu1v1 Qu1µ1 Qu1µ2

Qu2u2 Qu2v1 Qu2µ1 Qu2µ2

Qv1v1 Qv1µ1 Qv1µ2

Qµ1µ1 Qµ1µ2

Qµ2µ2


.

The content of the block matrix is detailed in Appendix B.2. The linear term is:

b =



τε1

√
(1−φ1)γ√
τ1

y1 + τε2

√
φ2√
τ2
y2

τε1

√
φ1y1√
τ1

τε1

√
(1−γ)(1−φ1)y1√

τ1
+ τε2

y2√
τ2

τε1Σz1,i

τε2Σz2,i


.

Now that the GMRF for the unconstrained effect has been derived, it is easy to derived

the same GMRF with the sum to zero constraints on the spatially structured effect using

Theorem 2.4. Let

A



u1

u2

v1

µ1

µ2


=

(
1Tu1

1Tu2

)
= 0,

and µ = Q−1GMRF b. Then:

π(u∗1, u
∗
2, v1|z, τ1, τ2, φ1, φ2, γ) ∼ Nc(µ∗, Q∗GMRF ),

where

µ∗ =µ−Q−1GMRFA
T (AQ−1GMRFA

T )
−1
Aµ,

Q∗−1GMRF =Q−1GMRF −Q
−1
GMRFA

T (AQ−1GMRFA
T )
−1
AQ−1GMRF .
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The optimization is done by setting u1 = u2 = v1 = v2 = µ = 0 . Then the function to

optimize to obtain (τ1, τ2, φ1, φ2, γ)mode reduce to :

f(τ1, τ2, φ1, φ2, γ) =
π(τ1, τ2, φ1, φ2, γ)

π(u∗1 = 0, u∗2 = 0, v1 = 0, µ = 0|z, τ1, τ2, φ1, φ2, γ)
.

After maximizing f, the only thing left do to is to plug (τ1, τ2, φ1, φ2, γ)mode in Equation

3.3 to get the posterior marginal π(u∗1, u
∗
2, v1, µ|z)

3.1.3 Scaling and computing the priors

When the model considered only one disease at a time, truncating was not relevant be-

cause “λ” and d(1) did not depend on any other parameter, so as far as the maximization

of the posterior marginal for the parameters was concerned, dividing by 1−exp(−λd(1))

came down to dividing by a constant which did not impact on the result of the optimiza-

tion. However now that the model considers two diseases, 1 − exp(−λd(1)) is actually

a function of γ ( or φ1 depending on which prior is considered) and as such cannot be

overlooked.

Scaling the prior for φ1

0.0 0.2 0.4 0.6 0.8 1.0

0.
5

1.
0

1.
5

2.
0

phi

de
ns

ity

Figure 3.1: Distribution of φ before scaling (red) and after scaling (black) for γ = 0.5
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As said in Section 3.1.1, the prior for φ1 requires truncation since 1− exp(−λd(1)) 6= 1

for an arbitrary γ. Since the problem is not addressed by solving

1− exp(−λd(U3))

1− exp(−λd(1))
= α3 (3.4)

numerically, but rather by dividing by 1− exp(−λd(1)) after having computed the value

for λ using λ = − ln(1−α)
d(U) , it seems only natural to check whether the proposed method

works. As seen in Figure 3.1 there is a substantial offset between the scaled and the

unscaled prior. As a matter of fact, to check that the scaling does what it is meant to

unscaled scaled

value 0.91 0.99

Table 3.1: Integral of the prior for φ1from 0 to 1 with γ = 0.5

do, the integral of the prior is computed using the middle point method, see Appendix

A.4.1, and as is shown by Table 3.1 scaling does force the integral of the prior to 1.

Scaling the prior for γ

unscaled scaled

value 0.91 0.99

Table 3.2: Integral of the prior for γ from 0 to 1 with φ1 = 0.5

Table 3.2 shows evidence that the scaling method that is used (see Appendix A.4.2)

also produce satisfying result for the prior for γ. In further models, this will not be

covered again. It just seemed important to at least show once that the method used was

accurate enough.

Computing the priors

Computing the priors for φ1 and γ is the most (and only) time consuming part of the

computation mainly because for each prior density call, there are four calls of the KLD

computing function and these prior densities have to be computed for each iteration of

the optimization loop. And each KLD call requires to compute tr(Σ−10 Σ1). The prior

for γ is taken as an example, roughly the same applies to the prior for φ1, and for φ1 φ2

and γ in the ulterior model in Section 3.2. In order to compute the prior for γ, where:

Σ0 =(1− φ1)γI + φ1Q
∗−1,

Σ1 =((1− φ1)γ + φ1)Q
∗−1 + (1− φ1)(1− γ) ∗ I),
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Thus tr(Σ−10 Σ1) has to be computed. The problem is that Σ0 is not sparse, and classical

computationally efficient sparse matrix inversion method cannot be used. Thus the

algorithm resorts to the all but usual solve built in function in R.

1 phi1 = 0 .3

2 gamma = 0.6

3 # inv is the generalized inverse of Q

4 Ident = diag (544)

5 sigma 0 = (1−phi1 )∗ Ident+phi1∗ inv

6 sigma 1 = (1−phi1 )∗(1−gamma)∗ Ident + ((1−phi1 )∗gamma+phi1 )∗ inv

7 ptm ← proc . time ( )

8 t r M = sum( diag ( solve ( sigma 0)%∗%sigma 1) )

9 proc . time ( ) − ptm

10 user system time spent

11 0 .441 0 .004 0 .450

As is seen in the above code excerpt, it takes roughly half a second which is far too

much. If a method were to be found to compute this efficiently the code would become

substantially faster.

3.1.4 Results

The code used in this section can be found in Appendix A.4.3. The parameters are

chosen as follows:

α3:5 =0.5,

U3:5 =2/3.

Spatial pattern for the shared component

From Figures 3.2, 3.3, 3.4, it seems that the shared spatial components between lung

cancer and the other three cancers are fairly similar which only makes sense, since all

these cancers have tobacco as a risk factor as said in Section 1.2, and a major one at

this. So it is expected that the shared components for all these pairings be similar. The

shared component for oral and lung cancer, seen in Figure 3.2, presents with an area of

increased risk in southern Germany, which the other pairings do not, see Figures 3.3,

3.4. As the similarity of the spatial patterns for Figures 3.2, 3.3, 3.4 are explained by

the main risk factor they all have in common, namely tobacco, the differences of the

spatial patterns can be explained by risk factors they do not all share. Thus this area
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0.0

0.2

0.4

Figure 3.2: Shared spatial compo-
nent for oral and lung cancers at the

mode
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0.6

Figure 3.3: Shared spatial compo-
nent for oesophagus and lung can-

cers at the mode

−0.4

−0.2

0.0

0.2

0.4

Figure 3.4: Shared spatial compo-
nent for larynx and lung cancers at

the mode

of increased risk might be evidence that there is a risk factor that only oral and lung

cancer share.

Spatial pattern for the disease specific component

Alcohol consumption is said to be one of the two (tobacco is the other) main risk factors

for oral, larynx and oesophagus cancer, but not for lung cancer as said in Section 1.2.

From Figures 3.5, 3.6, 3.7, it is seen that all three disease specific component have

fairly different patterns, which seems to suggest that alcohol consumption is not the

only disease specific significant risk factor at play. If it were true, then Figures 3.5,
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Figure 3.5: Disease specific com-
ponent of oral cancer with lung can-

cer at the mode
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Figure 3.6: Disease specific com-
ponent of oesophagus cancer with

lung cancer at the mode
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Figure 3.7: Disease specific com-
ponent of larynx cancer with lung

cancer at the mode

3.6, 3.7 would be fairly similar because then the disease specific component would only

account for alcohol. These spatial patterns are quite similar to those obtained in Held

et al. [2005]. An in-depth analysis of these spatial patterns is beyond the scope of this

project, however an epidemiologist might want to look further into it.

3.1.4.1 Tests and analysis

In order to further assess whether the model is capable of identifying correctly the compo-

nent, a new data set is artificially created using the modes of the posterior marginals for

u1, u2, v1, v2, µ1, µ2 and logit(φ1), logit(φ2), log(τ1), log(τ2), logit(γ) for Oral-Lung cancer.
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The observations are generated as follows:

z1,i,new =η1,i,mode,

z2,i,new =η2,i,mode,

where

η1,m =µ1,m +
1

√
τ1,m

(√
1− φ1,m(

√
γmu

∗
1,m +

√
1− γmv1,m)) +

√
φ1,mu

∗
2,m

)
,

η2,m =µ2,m +
1

√
τ2,m

(√
φ1,mu

∗
1,m +

√
1− φ1,mv1,m

)
,

with:

(u1, u2, v1, v2, µ1, µ2)m = arg maxπ(u1, u2, v1, v2, µ1, µ2|z1, z2),

(logit(φ1), logit(φ2), log(τ1), log(τ2), logit(γ))m = arg maxπ(logit(φ1), logit(φ2),

log(τ1), log(τ2), logit(γ)|z1, z2).

Then, the posterior marginal for the parameters π(logit(φ1), logit(φ2), log(τ1), log(τ2),

logit(γ)|z1, z2) is computed. It is expected that this “back estimation” produces results

close to (logit(φ1), logit(φ2), log(τ1), log(τ2), logit(γ))mode thus proving the capacity of

the model to identify the underlying spatial structures. The results are displayed in

Table 3.6. As is seen in the last column of Table 3.4, the back estimates underestimate

argmax back est ratio back est / argmax√
φ1 0.56 0.64 0.87√
φ2 0.46 0.48 0.96√
τ1 50.98 29.41 1.73√
τ2 50.75 47.25 1.07√
γ 0.56 0.61 0.92

Table 3.3: Column 1 : Argmax of the posterior marginal Oral-Lung Cancer, Column
2 : argmax of the posterior marginal back estimation, Column 3 : Ratio of the latter

columns

φ1, φ2, φ3, greatly overestimate τ1 and overestimate τ2. More noticeably, the back esti-

mate for the second disease, namely φ2, τ2 are rather good while the estimates for the

first disease φ1, τ1, γ are quite off. This denote the model’s difficulties to identify prop-

erly what is going one for the first disease. This does not bide well for the chances of

this model to produce conclusive results despite producing acceptable spatial patterns.

Besides, as in seen in Table 3.4, the weights of the structured effect at the mode for Oral-

Lung, Oesophagus-Lung, and Larynx-Lung seem to suggest that the disease specific
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Oral Oesophagus Larynx Lunglung

Shared γ(1− φ1) 0.47 0.47 0.47 0.56
Specific φ1 0.64 0.64 0.59 0.57

Table 3.4: Weights of the structured effects at the mode of the posterior marginal for
the parameters. Oral oesophagus and larynx modeled jointly with lung cancer

component (alcohol consumption and potentially some others minor risk factors) has a

stronger impact than the shared component that supposedly represent smoking which is

expected to be the main risk cause. This does not corroborate what was said in Section

1.2. The last column represents the result from the posterior marginal when modeling

lung cancer jointly with itself. It is then expected that smoking, the main risk factor,

denoted by the shared component outweighs the disease specific component. It is not

what is seen in Table 3.4. It is all the more suspicious since there is nothing in lung

cancer that cannot be explained by lung cancer, thus it is expected that the disease

specific component goes to 0. It thus seems that this model has serious shortcomings,

and further work is required to successfully extend the use of penalized complexity priors

to joint disease mapping. Besides, it seems unlikely that the shortcomings of this model

are caused by the two major approximations made to derive the quantities of interest

(normally distributed observations, method used to compute the posterior marginal)

considering the discrepancies between what is expected and what is obtained.

3.2 Second Model with PC priors

This model is a modified version of the previous one. It was modified following sug-

gestions from Patrick Brown from the University of Toronto who works with many

researchers interested in disease mapping. There are essentially two main changes. First

of all, the coefficient φ1 for the shared disease component is now the same for both

diseases. Besides the disease specific component is now given an unstructured effect.

These changes are made in an effort to address the shortcomings of the previous model.

Giving the same weight φ1 to the shared component should make identifying the spatial

pattern an easier task and better the shrinking property of the model, while giving the

disease specific component an unstructured is meant to provide the first disease with

unstructured error that is not shared with the second disease. The model is defined as

follows:
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η1 =µ1 +
1
√
τ1

(
√

1− γ(
√
φ1u

∗
1 +

√
1− φ1v1) +

√
γ(
√
φ2u

∗
2 +

√
1− φ2v2)), (3.5)

η2 =µ2 +
1
√
τ2

(
√
φ1u

∗
1 +

√
1− φ1v1), (3.6)

where

• The structured effects u1 and u2 are scaled GMRF and a sum to zero constraint

with mean 0 and precision Q∗.

• The intercept µ1 and µ2 follow a normal distribution with a large variance σ2 =

100.

• The unstructured effects v1 and v2 follow a multivariate normal distributionN(0, I).

3.2.1 Priors

When deriving the density of a prior, the other parameters are set arbitrarily.

Priors for τ1 and τ2

Since the precision matrix of the spatially structured effect is scaled, τ1 and τ2 represent

the marginal deviation from the null space for each disease. The prior for τ1 and τ2 in

Equation 3.5 are the same as for Equation 3.1. They follow a type 2 gumbel distribution

with the same parameters as in Equation 3.5:

π(τi) =
θi
2
τi
− 3

2 exp(−θiτ
− 1

2
i ),

with θi = −ln(αi)/Ui.

3.2.2 Prior for φ1

The parameter φ1 represents the part of the variance of the shared component explained

by the spatially structured effect. For this model the priorfor φ1 is different from before

since φ1 is present in both η1 and η2. The two disease are then considered jointly in

order to derive the prior for φ1.
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Base case

The base model, when φ1 = 0, is when the shared component is only unstructured, in

other words the shared risk factors do not have a spatial structure. It is still assumed

that the precision priors and the weights can be derived independently. The base case

is thus:

s1,0 =
√

1− γv1 +
√
γ(
√
φ2u2 +

√
1− φ2v2),

s2,0 =v1.

It can be rewritten as:(
s1,0

s2,0

)
=

[√
1− γ √

γ

1 0

](
v1

√
φ2u2 +

√
1− φ2v2

)
.

Let Qbase denote the precision of

(
v1

√
φ2u2 +

√
1− φ2v2

)
:

Qbase
−1 =

[
I 0

0 φ2Q
−1 + (1− φ2)I

]
.

Let A denote

[√
1− γ √

γ

1 0

]
Then

(
s1,0

s2,0

)
∼ N(0,Σ0

−1 = AQbaseA
T ).

Flexible case and derivation of the prior

Similarly we derive the distribution for the flexible model, eg. φ1 6= 0. The flexible

model is as follows:

s1,f lex =(
√

1− γ(
√
φ1u1 +

√
1− φ1v1) +

√
γ(
√
φ2u2 +

√
1− φ2v2)),

s2,f lex =(
√
φ1u1 +

√
1− φ1v1).

Which can be rewritten as:(
s1,f lex

s2,f lex

)
=

[√
1− γ √

γ

1 0

](√
φ1u1 +

√
1− φ1v1

√
φ2u2 +

√
1− φ2v2

)
.
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Let Qflex denote the precision of

(√
φ1u1 +

√
1− φ1v1

√
φ2u2 +

√
1− φ2v2

)
:

Qflex
−1 =

[
φ1Q

−1 + (1− φ1)I 0

0 φ2Q
−1 + (1− φ2)I

]
.

Then: (
s1,f lex

s2,f lex

)
∼ N(0,Σ1

−1 = AQflexA
T ).

Then using:

KLD(Nflex
n ||N base

n ) =
1

2
(tr(Σ−10 Σ1) + (µ0 − µ1)>Σ−10 (µ0 − µ1)− n− ln(

|Σ1|
|Σ0|

)). (3.7)

It follows that:

KLD(Nflex
n ||N base

n ) =
1

2
(tr(Σ−10 Σ1)− n− ln(

|Σ1|
|Σ0|

)),

KLD(Nflex
n ||N base

n ) =
1

2
(tr(AQbaseQ

−1
flexA

−1)− n− ln(
|Q−1flex|
|Q−1base|

)).

Now using Tr(AB) = Tr(BA), it follows that:

KLD(Nflex
n ||N base

n ) =
1

2
(tr(Q−1flexQbase)− n− ln(

|Q−1flex|
|Q−1base|

)).

Note then that the prior does not depend on γ. Then:

d(φ1) =

√√√√tr(Q(φ1)
−1
flexQbase)− n− ln(

|Q(φ1)
−1
flex|

|Q−1base|
),

π(φ1) = λ1
exp(−λ1d(φ1))

1− exp (−λ1d(1))

∣∣∣∣∂d(φ1)

∂φ1

∣∣∣∣ ,
where 1−exp(−λd(U1))

1−exp(−λ1d(1)) = α1 with α1 = 0.5, U1 = 2/3. Note that A is not invertible when

γ = 0, the base case is then:

s1,0 =v1,

s2,0 =v1.
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And the flexible case is then:

s1,f lex =(
√
φ1u1 +

√
1− φ1v1),

s2,f lex =(
√
φ1u1 +

√
1− φ1v1).

Thus the prior for φ1 when γ = 0 is the same as the prior for φ in Section 2.3.3.

Prior for φ2

The parameter φ2 represents the part of the variance of the disease specific component

explained by the spatially structured effect.

Base case: The base model, when φ2 = 0, is when the shared component is only

unstructured, in other words the disease specific risk factors does not have any spatial

structure. The base model is as follows:

s1,0 =
√

1− γ(
√
φ1u1 +

√
1− φ1v1) +

√
γv2.

Flexible model:

s1,f lex =
√

1− γ(
√
φ1u1 +

√
1− φ1v1) +

√
γ(
√
φ2u1 +

√
1− φ2v2).

Thus:

d(φ2) =

√
(tr(Σ−10 Σ1)− n− ln(

|Σ1|
|Σ0|

)),

where:

Σ0 =(1− γ)φ1Q
−1 + (1− φ1 + γ)I,

Σ1 =((1− γ)φ1 + γφ2)Q
−1 + ((1− γ)(1− φ1) + γ(1− φ2))I,

Hence:

π(φ2) =
λ2 exp(−λ2d(φ))

1− exp (−λ2d(1))

∣∣∣∣∂d(φ2)

∂φ2

∣∣∣∣ ,

where 1−exp(−λd(U2))
1−exp(−λ2d(1)) = α2 with α2 = 0.5, U2 = 2/3.
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Prior for γ

The parameter γ is the part of the variance explained by the disease specific component.

The base case γ = 0 is when there is not any disease specific component. Let γ = 0,

then the base model is as follows:

s1,0 =(
√
φ1u1 +

√
1− φ1v1),

and the flexible model:

s1,f lex =
√

1− γ(
√
φ1u1 +

√
1− φ1v1) +

√
γ(
√
φ2u1 +

√
1− φ2v2).

Thus:

d(γ) =

√
(tr(Σ−10 Σ1)− n− ln(

|Σ1|
|Σ0|

)),

where:

Σ0 =φ1Q
−1 + (1− φ1)I,

Σ1 =((1− γ)φ1 + γφ2)Q
−1 + ((1− γ)(1− φ1) + γ(1− φ2))I.

Hence:

π(γ) =
λ3 exp(−λ3d(γ))

1− exp (−λ3d(1))

∣∣∣∣∂d(γ)

∂γ

∣∣∣∣ ,

where 1−exp(−λd(U3))
1−exp(−λ3d(1)) = α3 with α3 = 0.5, U3 = 2/3.

3.2.3 Posterior marginal π(u∗1, v1, u
∗
2, v2, µ1, µ2)

The method to obtain the posterior marginal π(u∗1, v1, u
∗
2, v2, µ1, µ2|z1,:, z2,:) has been

done repeatedly throughout the project. Here are only displayed the results. The poste-

rior marginal without the sum to zero constraints on u1 and u2 π(u1, v1, u2, v2, µ1, µ2|z1,:, z2,:)
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is a GMRF such that u1, v1, u2, v2, µ1, µ2|z1,:, z2,: ∼ Nc(b,QGMRF ) where:

Q∗GMRF =



Qu1u1 Qu1u2 Qu1v1 Qu1v2 Qu1µ1 Qu1µ2

Qu2u2 Qu2v1 Qu2v2 Qu2µ1 Qu2µ2

Qv1v1 Qv1v2 Qv1µ1 Qv1µ2

Qv2v2 Qv2µ1 Qv2µ2

Qµ1µ1 Qµ1µ2

Qµ2µ2


.

Details about QGMRF are found in Appendix B.3 and :

b =



τε1

√
φ1(1−γ)√
τ1

y1 + τε2

√
φ1√
τ2
y2

τε1

√
γφ2y1√
τ1

τε1

√
(1−γ)(1−φ1)y1√

τ1
+ τε2

√
1−φ1
τ2

y2

τε2

√
γ(1−φ2)y2√

τ2

τε1Σy1,i

τε2Σy2,i


,

where µ = Q∗−1GMRF b. Thus the posterior marginal with the sum to zero constraints is

π(u1, u2, v1, v2, µ1, µ2|..., 1Tu1 = 0, 1Tu2 = 0) ∼ N(µ∗,Σ∗) with:

µ∗ =µ−Q∗−1GMRFA
T (AQ∗−1GMRFA

T )
−1
Aµ,

Σ∗ =Q∗−1GMRF −Q
∗−1
GMRFA

T (AQ∗−1GMRFA
T )
−1
AQ∗−1GMRF ,

where:

A



u1

u2

v1

v2

µ1

µ2


= 1Tu = 0.

With this it is easy to maximise π(φ1, φ2, τ1, τ2|z) and then compute the posterior

marginal approximation for π(u1, v1, u2, v2, µ1, µ2|z1,:, z2,:). The implementation is found

in Appendix A.4.4.
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3.2.4 Results

Results for oral oesphagus larynx and lung cancer

The code is found in Appendix A.4.5. Figures 3.8, 3.9, 3.10 show the shared components
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Figure 3.8: Shared spatial compo-
nent for oral and lung cancers at the

mode
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Figure 3.9: Shared spatial compo-
nent for oesophagus and lung can-

cers at the mode
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Figure 3.10: Shared spatial com-
ponent for larynx and lung cancers

at the mode

for Oral-Lung, Larynx - Lung, and Oesophagus-Lung. They are very similar to those

obtained with the previous model which might mean that the spatial patterns for the

disease specific and shared component are not too difficult to obtain accurately even

if the model does not have the “shrinking” priors. There are two area of high risk

in western and north eastern Germany for all three of them, which if the assumption
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that the shared component represents mainly tobacco consumption is true, means that

consumption of tobacco in these areas is high. Oral-Lung shows an area of increased

risk in south western Germany probably accounting for a minor risk factor specific to

lung and oral cancers since this area of increased risk is not found on the other plots.

These plots are fairly similar to those obtain in Held et al. [2005] when jointly modeling

these diseases which is an encouraging sign. Figures 3.11, 3.12, 3.13 show the disease
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Figure 3.11: Disease specific com-
ponent of oral cancer with lung can-

cer at the mode
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Figure 3.12: Disease specific com-
ponent of oesophagus cancer with

lung cancer at the mode
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Figure 3.13: Disease specific com-
ponent of larynx cancer with lung

cancer at the mode

specific components for Oral-Lung, Larynx - Lung, and Oesophagus-Lung. They are

very similar to those obtained with the previous model and are also quite comparable to

those obtained in Held et al. [2005], and as such the analysis is rather similar to the one

carried out for the previous model. Since the spatial patterns of the structured effect of
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the disease specific components are rather different, it seems that alcohol is not the only

risk factor at play, as was suggested in Section 1.2. Table 3.5 shows the weights for the

shared and disease specific components for Oral-Lung, Larynx - Lung, and Oesophagus-

Lung. It is seen that the shared component depicting smoking throughout Germany has

a weight twice as large as the one for the disease specific component depicted alcohol

consumption and others minor risk factors. It seems consistant with smoked tobacco

being the main risk factor for all these cancer. The last column of Table 3.5 shows the

weights for the shared and disease specific components when modeling jointly lung cancer

with itself. It is somehow artificial but it is expected that the disease specific component

goes to 0. While it does not quite exactly go to 0, the weight for the shared component

is three times as large as the one for the disease specific component. If not perfect,

this result is encouraging and far better than the result obtained for the previous model

where both weights were about equal, see Table 3.4. Table 3.6 shows the result of the

Oral Oesophagus Larynx LungLung

Shared φ1(1− γ) 0.56 0.63 0.58 0.74
Specific γφ2 0.29 0.28 0.29 0.27

Table 3.5: Weights of the structured effect at the mode of the posterior marginal for
the parameters. Oral oesophagus and larynx modeled jointly with lung cancer

same test carry out in Section 3.1.4.1 for Oral-Lung cancer for the current model. The

explanation can be found in the aforementioned section. It is seen from the last column

of Table 3.6 that φ1 and φ2 are slightly underestimated while τ1,τ2 are overestimated

and γ only slightly. The estimates are nowhere as far off as the results from the previous

model seen in Table 3.3. Although the precision terms are somewhat still overestimated,

the model’s approximations can probably account for the discrepancies.

argmax back estimate ratio√
φ1 0.68 0.63 0.92√
φ2 0.51 0.48 0.93√
τ1 39.22 51.23 1.31√
τ2 42.61 51.13 1.20√
γ 0.57 0.58 1.02

Table 3.6: Column 1: Argmax of the posterior marginal Oral-Lung Cancer, Column
2: argmax of the posterior marginal Back estimation, Column 3: Ratio of the latter

columns

Many reasons can explain that the results are not perfect. It can be because this model

is somehow flawed and needs improvement, or because of the approximations made to

allow for an easy derivation of the posterior marginals, or because the data is too scarce,

or else because the mean should be considered as the quantity of interest as in Riebler

et al. [2016]. However, the results obtained here is a huge leap in the right direction.
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3.3 Tests with variable mesh size

It has been shown in the previous part that the results were convincing but not perfect.

One possible shortcoming of the model is the lack of data. The following test only involve

the second model described in Section 3.5, the first one having shown to be rather

disappointing. The posterior distributions, due to the lack of data, rely on the prior

distributions which possibly prevent the model from properly identifying the different

components as in Table 3.6. It has been shown that despite these results being acceptable

they are not quite perfect. To assess whether the lack of data might be responsible for

it, replication of the data would be ideal, however it is not possible with the current

implementation thus the following method to generate bigger mesh is proposed :

• Generate a mesh using the cell2nb R built in function

• Generate the precision matrix of the first order intrinsic GMRF for this mesh

1 a=c e l l 2 n b (p , p , to rus = TRUE) # mesh

2 #Generate the precision matrix

3 Q t e s t= as . matrix(−nb2mat ( a , s t y l e="B" ) )

4 diag (Q t e s t ) = −rowSums(Q t e s t ) # make sure

5 # that the diagonal term is minus the sum of the others

6 Q t e s t = INLA : : : i n l a . scale . model . bym(Q t e s t ) # scaling

• Generate data

• See how the estimates improve as the mesh size increases

If the estimates converge towards “the data” as the mesh size increases, then it is likely

that the lack of data is responsible for at least part of the explanation as to why the

estimates in Table 3.6 were a little off.

3.3.1 Test with a constant risk surface

The data is generated assuming:

η1,i =K1,

η2,i =K2.

Then the posterior marginal for logit(φ1), logit(φ2), log(τ1), log(τ2), log(γ) is maximized

using this data. First remember that the optimization is done on the internal scale and

as log(τ1) and log(τ2) increase, so do τ1 and τ2. It is then expected that τ1 and τ2 go



54

mesh size 100× 100 212 × 212 292 × 292 332 × 332

τ1 560.64 2033.30 3622.99 4631.18
τ2 563.90 2033.84 3643.21 4659.50

Table 3.7: Estimate of mode of the posterior marginal for different mesh sizes

to infinity as the mesh size increases. As is seen in Table 3.7, τ1 and τ2 both increase

substantially as the mesh size increases which would tend to prove that as the amount

of data increase the model gets more an more precise. The code can found be found in

Appendix A.4.6.

3.3.2 Test with no disease specific component

The data is generated assuming :

η1 =
1
√
τ1

((
√
φ1u

∗
1 +

√
1− φ1v1),

η2 =
1
√
τ2

(
√
φ1u

∗
1 +

√
1− φ1v1).

Then the posterior marginal for logit(φ1), logit(φ2), log(τ1), log(τ2), log(γ) is maximized

using this data. So it is expected that logit(γ) goes to −∞ or on the original scale γ goes

to 0. As is seen in Table 3.8, γ decreases as the mesh size increases, however it seems

mesh size 100× 100 212 × 212 292 × 292 332 × 332

φ1 0.46 0.43 0.49 0.46
γ 0.50 0.37 0.31 0.30

Table 3.8: Estimate of mode of the posterior marginal for different mesh sizes

to plateau which would tend to show that despite a substantial decrease, the mode does

not go to zero as the mesh size increase. On the other hand, φ1 is rather close to its

“true value” 0.5 chosen for the implementation that can be found in Appendix A.4.6.

The results from this test are altogether encouraging for if the model does not exactly

identify the data, it does go in the right direction.

3.3.3 Test Overview

The two previous tests showed the model ability to shrink at least to a certain extent

towards simpler models. Even though the results are not perfect, it is at least encour-

aging for there are still many reasons that could explain why the results are what they

are. First of all, the test was run for only one sample and would require to be run

over substantially more samples to get a reliable estimate. Furthermore, the posterior
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marginal is optimized on the internal scale rather than on the original scale which might

be misleading. Besides, the approximation made to derive the posterior marginals only

produce their modes. In Riebler et al. [2016], the shrinking properties of the PC priors

are obtained using the mean of the posterior marginal. Unfortunately, the method used

falls short to compute the mean of a posterior marginal. It is one of the thing that would

have to be further explored to really assess whether the PC priors have, when jointly

modeling disease, the same properties as when modeling just one disease.



Chapter 4

Further developments

This chapter is about further extending the project. It features possible extensions and

improvement of the models and methods. There are, as a matter of fact, many aspects

of this project that can be refined improved and extended. The nature of the project,

itself, explains why so many things are still to be done. Since the work done on PC

priors when jointly modeling disease is rather new, a lot of assumptions were made at

the beginning, and the results being rather encouraging but not quite conclusive, the

topic has to be further explored. Eventually, the model’s results should be obtain using

the theory behind R-INLA to compare the results, and to have a method that has proven

to be efficient.

4.1 Extension to Poisson

Throughout the project, it was assumed that the square root of the SMR followed a

normal distribution. The main motivation for switching to a poisson distribution is

to have a better basis for comparison. Indeed, in Riebler et al. [2016], the results are

obtained using a Poisson distribution on the diseases counts. It is assumed that :

y1,i ∼Poisson(e1,iλ1,i),

y2,i ∼Poisson(e2,iλ2,i),

where log(λj,i) = ηj,i and

η1 =µ1 +
1
√
τ1

(
√

1− γ(
√
φ1u

∗
1 +

√
1− φ1v1) +

√
γ(
√
φ2u

∗
2 +

√
1− φ2v2)), (4.1)

η2 =µ2 +
1
√
τ2

(
√
φ1u1 ∗+

√
1− φ1v1), (4.2)

56
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where u∗1, u
∗
2, v1, v1, µ1, µ2 are the same as in the model detailed in Section 3.2. The

posterior marginal of φ1, φ2, γ, τ1, τ2 is then :

π(φ1, φ2, γ, τ1, τ2|y1,i, y2,i) =
π(u1, u2, v1, v2, µ1, µ2, φ1, φ2, γ, τ1, τ2|y1,i, y2,i)
π(u1, u2, v1, v2, µ1, µ2|y1,i, y2,i, φ1, φ2, γ, τ1, τ2)

,

π(φ1, φ2, γ, τ1, τ2|y1,i, y2,i) ∝π(φ1, φ2, γ, τ1, τ2)

×π(u1, u2, v1, v2, µ1, µ2|φ1, φ2, γ, τ1, τ2)π(y1,i, y2,i|...)
π(u1, u2, v1, v2, µ1, µ2|y1,i, y2,i, φ1, φ2, γ, τ1, τ2)

,

where

π(y1,i, y2,i|...) ∝ exp
∑

y1,iη1,i − log(e1,iη1,i) exp
∑

y2,iη2,i − log(e2,iη2,i),

and

π(u1, u2, v1, v2, µ1, µ2|y1,i, y2,i, φ1, φ2, γ, τ1, τ2) ∝π(y1,i, y2,i|...)

×π(u1, u2, v1, v2, µ1, µ2|φ1, φ2, γ, τ1, τ2),

∝ exp
∑

y1,iη1,i − log(e1,iη1,i)

× exp
∑

y2,iη2,i − log(e2,iη2,i)

× exp−1

2
(uT1Q

−1u1 + uT2Q
−1u2)

× exp−1

2
(vT1 Iv1 + vT2 Iv2 +

µ21
σ2

+
µ22
σ2

).

It is obviously quite cumbersome to manipulate. Mostly because the full conditional

of u1, u2, v1, v1, µ1, µ2 is not a GMRF as it was in the normal case. To remedy to

that, Rue et al. [2009] proposes to use a gaussian approximation of the full conditional

πG(u1, u2, v1, v1, µ1, µ2|y1,i, y2,i, φ1, φ2, γ, τ1, τ2). Once this approximation is made the

computations made in this project can basically be carried out for the poisson case the

same way they have been in the project.

4.2 Posterior marginal of u1, u2, v1, v2, µ1, µ2

The following Equation 2.11

π(u, v|z) ≈ π(u, v|z, θmode)

is used throughout the project as a simplification of Equation 2.10 given below

π(u, v|z) ≈
∑
k

π(u, v|z, θk)π(θk|z)∆k.
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Although using Equation 2.10 should not change the result dramatically, because the

approximation in Equation 2.11 is, as said before, reasonable, it is still necessary to

implement it properly to be able to carry out a precise analysis of the results and have

results that are comparable to Riebler et al. [2016].

4.3 Mean and original scale

4.3.1 Mean rather than mode

Throughout the project, the mode of the posterior marginals of u1, u2, v1, v2, µ1, µ2 and

φ1, φ2, γ, τ1, τ2 were computed and used to analyze model performance. Even though

the mode of the posterior marginal of φ1, φ2, γ, τ1, τ2 was needed to compute the density

of the posterior marginal of u1, u2, v1, v2, µ1, µ2, the main reason why the mode was

systematically computed is because it is the easiest quantity to compute. Easier than

the mean. However, now that the second model produced encouraging results, having

access to others quantities such as the mean is necessary. The mean, especially of the

posterior marginals, would be a useful quantity to have access to for it is with the mean

of the posterior marginals that the shrinking to a simpler model properties of the PC

priors is shown in Riebler et al. [2016]. In this project, a similar analysis is done but

using the mode of the posterior marginal. The obtained results would probably be more

reliable if it had been done with the mean.

4.3.2 Original scale vs internal scale

Using the internal scale (log and logit) helped turn a constrained optimization problem

into an unconstrained optimization problem. However parameter interpretation makes

more sense on the original scale and if the ”shrinking” capacity of the pc priors is to be

seriously tested for joint disease mapping, having access to the mean ( or the mode) on

the original scale, as in Riebler et al. [2016] would be of great help.

4.4 Tobacco- alcohol synergy

There is a synergy between alcohol consumption and smoking that the models fails to

account for. It is in nature non linear and the easiest way to account for it would be

to use covariates that quantify the whether the patients drank or smoke or both. The

problem is, more often than not, this kind of data is not available.
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4.5 Rank deficiency of the precision matrix

The rank deficiency of the intrinsic GMRF precision matrix has been dealt with either

by taking the generalized inverse of the precision matrix when the inverse matrix was

required or by increasing slightly the diagonal. It also led to adjusting the KLD for the

parameters. If the priors were to shrink towards simpler model, looking into a proper

way to use this degenerate matrix would probably be necessary as problems might occur

when studying the limiting cases.

4.6 Extension to more than two diseases

If after all that is suggested before gives convincing results then extending to more than

two diseases could be the next step. It has been done in Held et al. [2005], and it can

be used to compare results.



Chapter 5

Discussion

The goal of the project was to try and assess whether PC priors could be successfully

used when jointly modeling disease. Held et al. [2005] showed that jointly modeling

disease could be a good idea, and Simpson et al. [2015] and then Riebler et al. [2016]

showed that PC priors could be interesting disease mapping tools.

This project did not produce results that would allow for a conclusive answer, however,

pieces of evidence were found. Under simplifying assumption spatial patterns similar to

those found in Held et al. [2005] were found together with a model aptitude to shrink

towards simpler models similar albeit less convincing than the one found in Riebler et al.

[2016].

The findings of this project seems to suggest that the PC priors could have very sim-

ilar properties when jointly modeling disease as when modeling only one disease. The

findings do not conflict with Riebler et al. [2016], rather they are not as strong and con-

clusive. At this stage it is hard to assess if the result are so because of the simplifying

assumptions that were made or because some properties are lost when extending to two

diseases. The results however showed, even for the most accomplished model that the

precision priors tend to overestimate the value of the parameters. It would be however

rather harsh not to give the results the benefit of the doubt because the results are

overall going in the right direction. Besides, at this stage it is hard to assess whether the

overestimation is caused by a flawed model or by the simplifications that were made.

The findings of this project seem encouraging enough to explore what would happen

with fewer simplifications. Using R-INLA methodology would give a better basis for

comparison and hopefully provide conclusive results. The amount of work required to

do so is unfortunately too important to be done as a part of this project. However, it

60
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would be really exciting to see whether further development would lead to results as

exciting as expected.



Appendix A

Code excerpts

A.1 Model 1

A.1.1 Implementation

This code computes the analytical mode of the posterior marginal of u.

1 l ibrary (INLA)

2 data (Germany)

3 n = 544

4 to=exp (2 )

5 s2=1/4

6 ID = diag . spam(n)

7 # SMR for oral cancer

8 z=sqrt ( or$V3)

9 inv=solve ( s2∗ ( to∗R+ID/s2 ) )

10 u=inv%∗%z

A.2 Model 2

A.2.1 Implementation

This code computes the analytical mode of the posterior marginal of u, v, first computing

u, and then obtaining v by substituting u with its value at the mode in the system.

1 k= 0 .5

2 n = 544

3 to=exp (2 )

62
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4 s2=1/4

5 l h s .m=ID/s2+to∗R−ID/ ( s2∗s2∗ ( k+1/s2 ) )

6 rhs . v=(1/s2−1/ ( s2∗s2∗ ( k+1/s2 ) ) )∗z

7 inv . l h s=solve ( l h s .m)

8 # solution

9 u1=inv . l h s%∗%rhs . v

10 v1=(z−u1 )/(1+s2∗k )

A.3 3rd Model

A.3.1 Maximizing the posterior marginal for κ and τ

This code computes the arg max of the posterior marginal for κ and τ for the four

different cancers.

1 alpha . k=3

2 alpha . to=3

3 beta . k=1

4 beta . to=1

5 s2=1/4

6 # Data set for Oral cancer

7 o r l = read . table ("germany . 0 . data" )

8 # Data set for oesophagus cancer

9 oesoph = read . table ("germany . 1 . data" )

10 #Data set for larynx cancer

11 l a r= read . table ("germany . 2 . data" )

12 # Data set for Lung cancer

13 lungcancer = read . table ("germany . 3 . data" )

14 # SMR for the for types of cancer

15 # SMR oral

16 z = sqrt ( or$V3)

17 # SMR oesophagus

18 b =sqrt ( oesoph$V3)

19 #SMR Larynx

20 c = sqrt ( l a r $V3)

21 # SMR Lung

22 d = sqrt ( lungcancer$V3)

23 # Posterior Marginal for kappa and tau

24 t ry1=function ( theta , z ,R, s2 , alpha . to , alpha . k , beta . to , beta . k ) {
25 ID = diag . spam (544)

26 Q1=rBind ( cBind ( theta [ 1 ] ∗R+ID/s2 , ID/s2 ) , cBind ( ( ID/s2 ) , theta [ 2 ] ∗ID+

ID/s2 ) )
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27 Q2=as . matrix ( rBind ( cBind ( theta [ 1 ] ∗R+ID/s2 , ID/s2 ) ,

28 cBind ( ( ID/s2 ) , theta [ 2 ] ∗ID+ID/s2 ) ) )

29 l o gde t=as . numeric ( determinant (Q2)$modulus )

30 b=rbind (cbind ( z ) , cbind ( z ) )/s2

31 mu=solve (Q1, b)

32 f i n =(543/2+alpha . to−1)∗log ( theta [ 1 ] ) +(544/2+alpha . k−1)

33 ∗log ( theta [ 2 ] )− beta . to∗ theta [ 1 ]

34 −beta . k∗ theta [2]− l o gde t/2 + t (mu)%∗%Q1%∗%mu/2

35 }
36 # Argmax for Oral

37 p r i o r . max12=optim(par=c ( 1 8 . 1 3 , 2 8 . 3 8 ) , fn=try1 , z=z ,R=R,

38 s2=s2 , alpha . to = alpha . to , alpha . k = alpha . k ,

39 beta . to = beta . to , beta . k = beta . k , control = l i s t ( f n s c a l e =−1) ,

40 method="BFGS" )

41 # Argmax for Oesophagus

42 p r i o r . max13=optim(par=c ( 1 8 . 1 3 , 2 8 . 3 8 ) , fn=try1 , z=b ,R=R,

43 s2=s2 , alpha . to = alpha . to , alpha . k = alpha . k ,

44 beta . to = beta . to , beta . k = beta . k , control = l i s t ( f n s c a l e =−1) ,

45 method="BFGS" )

46 # Argmax for Larynx

47 p r i o r . max14=optim(par=c ( 1 8 . 1 3 , 2 8 . 3 8 ) , fn=try1 , z=b ,R=R,

48 s2=s2 , alpha . to = alpha . to , alpha . k = alpha . k ,

49 beta . to = beta . to , beta . k = beta . k , control = l i s t ( f n s c a l e =−1) ,

50 method="BFGS" )

51 # Argmax for Lung

52 p r i o r . max15=optim(par=c ( 1 8 . 1 3 , 2 8 . 3 8 ) , fn=try1 , z=d ,R=R,

53 s2=s2 , alpha . to = alpha . to , alpha . k = alpha . k ,

54 beta . to = beta . to , beta . k = beta . k ,

55 control = l i s t ( f n s c a l e =−1) ,

56 method="BFGS" )

A.3.2 Computing the mode of the posterior marginal for u and v

This code computes the posterior marginal of u, v

1 # function to obtain the mode of the posterior marginal

2 get max1 = function ( k1 , to1 ,R=R, s2=s2 , z ) {
3 n = 544

4 s2=1/4

5 ID = diag . spam (544)

6 l h s .m1=ID/s2+to1∗R−ID/ ( s2∗s2∗ ( k1+1/s2 ) )

7 rhs . v1=(1/s2−1/ ( s2∗s2∗ ( k1+1/s2 ) ) )∗z

8 inv . l h s1=solve ( l h s .m1)
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9 # solution

10 u12=inv . lh s1%∗%rhs . v1

11 v11=(z−u12 )/(1+s2∗k1 )

12 r e s u l t = data . frame ( u12 , v11 )

13 }
14 # Mode of the posterior marginal for oral cancer

15 o r a l = get max1( k1=p r i o r . max12$par [ 2 ] , to1= p r i o r . max12$par [ 1 ] ,

16 R=R, s2=s2 , z )

17 # Mode of the posterior marginal for oesophagus cancer

18 oesophagus = get max1( k1=p r i o r . max13$par [ 2 ] , to1= p r i o r . max13$par [ 1 ] ,

19 R=R, s2=s2 , b)

20 # Mode of the posterior marginal for larynx cancer

21 l arynx = get max1( k1=p r i o r . max14$par [ 2 ] , to1= p r i o r . max14$par [ 1 ] ,

22 R=R, s2=s2 , c )

23 # Mode of the posterior marginal for lung cancer

24 lung = get max1( k1=p r i o r . max15$par [ 2 ] , to1= p r i o r . max15$par [ 1 ] ,

25 R=R, s2=s2 , d)

A.3.3 Implementation

This code computes the mode of the posterior marginal of log(φ), logit(τ) and the pos-

terior marginal for u, v, µ

1 l ogdens pcpr i o r2 = function (par , prec . eps = 4 , prec . par ,

2 phi . par , y , Q, prec .mean=0.01){
3 require (mvtnorm)

4 # change of variable to have an unconstrained parameter space

5 prec = exp(par [ 1 ] )

6 phi = exp(par [ 2 ] ) /(1+exp(par [ 2 ] ) )

7 n = dim(Q) [ 1 ]

8 # Compute lambda

9 lambda = −log ( prec . par [ 2 ] ) /prec . par [ 1 ]

10 ld = 0

11 # log(prec) is added to the distribution for tau to satisfy

12 # the change of variable formula

13 ld = ld − (1/2)∗par [ 1 ] − lambda∗prec∧(−1/2)

14 # log( exp(par[2]) / (1 + exp(par[2]))∧2 ) is added to

15 #the distribution for phi to satisfy the change of #variable formula

16 ld = ld + INLA : : : i n l a . pc .bym. phi (Q=Q, u= phi . par [ 1 ] , alpha = phi

. par [ 2 ] ) ( phi )

17 + log ( exp(par [ 2 ] ) / (1 + exp(par [ 2 ] ) )∧2 )

18 # that we can keep

19 Ident = diag (n)
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20 one = matrix (1 , 544 ,1 )

21 QQ = (cbind ( rbind ( Ident + prec . eps ∗ (1−phi )/prec ∗ Ident ,

22 +prec . eps ∗ sqrt ((1−phi )∗phi )/prec ∗ Ident ,

23 prec . eps∗sqrt ((1−phi )/prec )∗t ( one ) ) ,

24 rbind ( prec . eps∗sqrt ((1−phi )∗phi )/prec∗ Ident ,

25 Q + prec . eps ∗ phi/prec ∗ Ident ,

26 prec . eps∗sqrt ( phi/prec )∗t ( one ) ) ,

27 rbind ( prec . eps∗sqrt ((1−phi )/prec )∗one ,

28 prec . eps∗sqrt ( phi/prec )∗one ,

29 prec . eps∗n+prec .mean∗1) ) )

30 b = ( c ( prec . eps ∗ sqrt ((1−phi )/prec ) ∗ y ,

31 prec . eps ∗ sqrt ( phi/prec ) ∗ y , prec . eps∗sum( y ) ) )

32 QQ = INLA : : : i n l a . as . spa r s e (QQ)

33 mu = c ( i n l a . q so lve (QQ, matrix (b , 2∗n+1, 1) ) )

34 ld = ld − c ( i n l a . qsample (Q=QQ, mu=mu, sample = rep (0 , 2∗n+1) ,

35 l ogdens=TRUE, cons t r = l i s t (A = matrix ( c ( rep (0 , n ) ,

36 rep (1 , n ) ,0 ) , 1 , 2∗n+1) , e = 0) )$ l ogdens )

37 return ( ld )

38 }
39

40 g = system . f i l e ("demodata/germany . graph" , package="INLA" )

41 g=i n l a . read . graph ( g )

42 Q=as . matrix ( i n l a . graph2matrix ( g ) )

43 Q = −Q
44 diag (Q) = g$nnbs

45 Q = INLA : : : i n l a . scale . model . bym(Q)

46 diag (Q) = diag (Q) + 1e−8

47 data (Germany)

48 y = sqrt (Germany$Y/Germany$E)

49 prec . par = c ( 0 . 2 /0 . 31 , 0 . 0 1 )

50 phi . par = c ( 0 . 5 , 2/3)

51 prec .mean = 0.01

52

53 bss4= (optim(par=c ( 0 . 1 , 0) , fn=logdens pcpr ior2 ,

54 prec . par = prec . par ,

55 phi . par = phi . par ,

56 y = y ,

57 Q = Q,

58 control = l i s t ( f n s c a l e =−1, r e l t o l = 1e−16) ,

59 method = "L−BFGS−B" , lower = c (1 e−3,−10) ) )

60

61 # posterior marginal u,v,mu

62 par1=bss4$par

63 prec = exp( par1 [ 1 ] )
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64 phi = exp( par1 [ 2 ] ) /(1+exp( par1 [ 2 ] ) )

65 n = dim(Q) [ 1 ]

66 Ident = diag (n)

67 one=matrix (1 , 544 ,1 )

68 QQ = (cbind ( rbind ( Ident + prec . eps ∗ (1−phi )/prec ∗ Ident ,

69 +prec . eps ∗ sqrt ((1−phi )∗phi )/prec ∗ Ident ,

70 prec . eps∗sqrt ((1−phi )/prec )∗t ( one ) ) ,

71 rbind ( prec . eps∗sqrt ((1−phi )∗phi )/prec∗ Ident ,

72 Q + prec . eps ∗ phi/prec ∗ Ident ,

73 prec . eps∗sqrt ( phi/prec )∗t ( one ) ) ,

74 rbind ( prec . eps∗sqrt ((1−phi )/prec )∗one ,

75 prec . eps∗sqrt ( phi/prec )∗one ,

76 prec . eps∗n+prec .mean∗1) ) )

77 b = ( c ( prec . eps ∗ sqrt ((1−phi )/prec ) ∗ y ,

78 prec . eps ∗ sqrt ( phi/prec ) ∗ y , prec . eps∗sum( y ) ) )

79 mu=solve (QQ, b)

80 A = matrix ( c ( rep (0 , n ) , rep (1 , n ) ,0 ) , 1 , 2∗n+1)

81 QQ. inv=solve (QQ)

82 c=solve ( (A%∗%QQ. inv%∗%t (A) ) )

83 mean= mu−QQ. inv%∗%t (A)%∗%c%∗%(A%∗%mu)

84

A.4 Scaling the priors

These are the settings used for the next two subsection of this appendix.

1 g = system . f i l e ("demodata/germany . graph" , package="INLA" )

2 g=i n l a . read . graph ( g )

3 Q=as . matrix ( i n l a . graph2matrix ( g ) )

4 Q = −Q
5 diag (Q) = g$nnbs

6 Q = INLA : : : i n l a . scale . model . bym(Q)

7 diag (Q) = diag (Q) + 1e−8

8 prec .mean . 1 = 0 .01

9 prec .mean . 2 = 0 .01

10 prec . eps . 1 = 4

11 prec . eps . 2 = 4

12 phi . par = matrix ( rep (0 ) , 3 , 2 )

13 phi . par [ 1 , ] = c ( 0 . 5 , 2/3)# .5 for all

14 phi . par [ 2 , ] = c ( 0 . 5 , 2/3)

15 phi . par [ 3 , ] = c ( 0 . 5 , 2/3)

16 prec . par = matrix ( rep (0 ) , 2 , 2 )
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17 prec . par [ 1 , ] = c ( 0 . 2 /0 . 31 , 0 . 0 1 )

18 prec . par [ 2 , ] = c ( 0 . 2 / 0 . 3 1 , 0 . 0 1 )

19 inv = ginv ( as . matrix (Q) )

20 e i g 1 = eigen (Q)$value [ 1 : 5 4 3 ]

21 e i g 1 = 1/ e i g 1

A.4.1 prior for φ1 and midpoint formula

1 #Function that compute d(phi 1)

2 d i s t phi1 = function ( phi1 ,gamma, Ident ,Q, n , inv = inv , e i g 1 = e i g 1) {
3 sigma 0 = (1−gamma)∗ Ident+gamma∗ inv

4 sigma 1 = (1−phi1 )∗(1−gamma)∗ Ident + ((1−phi1 )∗gamma+phi1 )∗ inv

5 t r M = sum( diag ( ginv ( sigma 0)%∗%sigma 1) )

6 ln S 0 = sum( log(1−gamma+gamma∗ e i g 1) ) # ok

7 ln S 1 = sum( log ( (1−phi1 )∗(1−gamma)+ ((1−phi1 )∗gamma+phi1 )∗ e i g 1)

)

8 r e s = sqrt ( ( t r M − (n) − ln S 1 + ln S 0)+ 1e−2)

9 }
10 # Function that compute the prior for phi 1

11 kld d i s t = function ( phi1 ,gamma, Ident ,Q, n , lambda 3 ,

12 inv = inv , e i g 1 = e i g 1) {
13 r e s u l t = 0

14 r e s u l t = r e s u l t + log ( lambda 3)

15 r e s u l t = r e s u l t − lambda 3∗ d i s t phi1 ( phi1 ,gamma, Ident ,Q, n ,

16 inv = inv , e i g 1 = e i g 1)

17 d e l t a =1e−4

18 phi d = phi1 + de l t a

19 d = log (abs ( d i s t phi1 ( phi d ,gamma, Ident ,Q, n ,

20 inv = inv , e i g 1 = e i g 1)−
21 d i s t phi1 ( phi1 ,gamma, Ident ,Q,

22 n , inv = inv , e i g 1 = e i g 1) )/ d e l t a )

23 r e s u l t = r e s u l t +d

24 r e s u l t = r e s u l t − log (1−
25 exp(−lambda 3∗ d i s t phi1 ( phi1 =1,gamma= gamma,

26 Ident=Ident ,Q=Q, n=n ,

27 inv = inv , e i g 1 = e i g 1) ) )

28 return ( r e s u l t )

29 }

Integral for the scaled and unscaled prior using the mid point formula :

1 # Compute the integral of the scale and unscaled prior

2 a=seq ( 0 , 1 , 0 . 0 5 )
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3 r e s = rep (0 , length ( a ) )

4 prod1 = rep (0 , length ( a ) )

5 # Lambda for the chosen value of gamma

6 lamb = − log (1 −phi . par [ 3 , 2 ] ) / d i s t phi1 ( phi1 = phi . par [ 3 , 1 ] ,

7 gamma=0.5 , Ident = Ident ,Q = Q, n=n , inv = inv , e i g 1 = e i g 1)

8 for ( i in 1 : length ( a ) ) {
9 # unscaled prior

10 r e s [ i ] = kld d i s t uns ( phi1 = a [ i ] ,gamma = 0 . 5 , Ident = Ident ,Q = Q,

11 n = n , lambda 3 = lamb , inv = inv , e i g 1 = e i g 1)

12 # scaled prior

13 prod1 [ i ] = kld d i s t ( phi1 = a [ i ] ,gamma = 0 . 5 , Ident = Ident ,Q = Q,

14 n = n , lambda 3 = lamb , inv = inv , e i g 1 = e i g 1)

15 }
16 sum = 0

17 sum scale = 0

18 for ( i in 1 : ( length ( a )−1) )

19 {
20 # mid point method for the unscaled prior

21 sum = sum + 0.05 ∗ (exp( r e s [ i ] )+exp( r e s [ i +1]) )/2

22 # same method

23 sum scale = sum scale + 0.05 ∗ (exp( prod1 [ i ] )+exp( prod1 [ i +1]) )/2

24

25 }
26 sum = round(sum, d i g i t s =3)

27 sum scale = round(sum scale , d i g i t s = 3)

A.4.2 prior for γ and midpoint formula

This code computes the prior for gamma both scaled and unscaled.

1 # Function that computes d(gamma)

2 d i s t gamma = function (gamma, phi1 , Ident ,Q, n ,

3 inv = inv , e i g 1 = e i g 1) {
4 sigma 0 = (1−phi1 )∗ Ident+phi1∗ inv

5 sigma 1 = (1−phi1 )∗(1−gamma)∗ Ident + ((1−phi1 )∗gamma+phi1 )∗ inv

6 t r M = sum( diag ( ginv ( sigma 0)%∗%sigma 1) )

7 ln S 0 = sum( log(1−phi1+phi1∗ e i g 1) ) # done

8 ln S 1 = sum( log ( (1−phi1 )∗(1−gamma)+ ((1−phi1 )∗gamma+phi1 )∗ e i g 1)

)

9 r e s = sqrt ( ( t r M − (n) − ln S 1 + ln S 0)+1e−2)

10 # 1-e2 is a corrective term for when gamma is small, numerical error

in

11 # ln S 0 and ln S 1 produce very small negative number.
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12 }
13 # Function that computes the prior for gamma

14 kld d i s t gamma uns = function (gamma, phi1 , Ident ,Q, n ,

15 lambda 5 , inv = inv , e i g 1 = e i g 1) {
16 r e s u l t = 0

17 r e s u l t = r e s u l t + log ( lambda 5)

18 r e s u l t = r e s u l t − lambda 5∗ d i s t gamma(gamma, phi1 ,

19 Ident ,Q, n , inv = inv , e i g 1 = e i g 1)

20 d e l t a = 1e−4

21 gamma d = gamma + d e l t a

22 r e s u l t = r e s u l t + log (abs ( d i s t gamma(gamma = gamma d , phi1 , Ident ,

23 Q, n , inv = inv , e i g 1 = e i g 1)−d i s t gamma(gamma = gamma, phi1 ,

24 Ident ,Q, n , inv = inv , e i g 1 = e i g 1) )/ d e l t a )

25 r e s u l t = r e s u l t

26 print ( c ( r e s u l t , ’gamma ’ ) )

27 return ( r e s u l t )

28 }
29 kld d i s t gamma = function (gamma, phi1 , Ident ,Q,

30 n , lambda 5 , inv = inv , e i g 1 = e i g 1) {
31 r e s u l t = 0

32 r e s u l t = r e s u l t + log ( lambda 5)

33 r e s u l t = r e s u l t − lambda 5∗ d i s t gamma(gamma, phi1 , Ident ,

34 Q, n , inv = inv , e i g 1 = e i g 1)

35 d e l t a = 1e−4

36 gamma d = gamma + d e l t a

37 r e s u l t = r e s u l t + log (abs ( d i s t gamma(gamma = gamma d , phi1 , Ident ,

38 Q, n , inv = inv , e i g 1 = e i g 1)−d i s t gamma(gamma = gamma, phi1 ,

39 Ident ,Q, n , inv = inv , e i g 1 = e i g 1) )/ d e l t a )

40 r e s u l t = r e s u l t − log (1 − exp(−lambda 5∗ d i s t gamma(gamma=1,

41 phi1=phi1 , Ident=Ident ,Q=Q, n=n , inv = inv , e i g 1 = e i g 1) ) )

42 return ( r e s u l t )

43 }

A.4.3 Posterior marginal for u1, v1, u2, v, µ1, µ2

This code computes the mode of the posterior marginal of logit(φ1), logit(φ2), log(τ1), log(τ2), logit(γ)

and the mode of the posterior marginal of u1, v1, u2, v, µ1, µ2. Note that the prior for φ1

and γ ’s code is in A.4.2.

1 # Neighbor matrix

2 g = system . f i l e ("demodata/germany . graph" , package="INLA" )

3 g=i n l a . read . graph ( g )

4 Q=as . matrix ( i n l a . graph2matrix ( g ) )
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5 Q = −Q
6 diag (Q) = g$nnbs

7 Q = INLA : : : i n l a . scale . model . bym(Q)

8 diag (Q) = diag (Q) + 1e−8

9 # Parameters

10 prec .mean . 1 = 0 .01

11 prec .mean . 2 = 0 .01

12 prec . eps . 1 = 4

13 prec . eps . 2 = 4

14 phi . par = matrix ( rep (0 ) , 3 , 2 )

15 phi . par [ 1 , ] = c ( 0 . 5 , 2/3)# .5 for all

16 phi . par [ 2 , ] = c ( 0 . 5 , 2/3)

17 phi . par [ 3 , ] = c ( 0 . 5 , 2/3)

18 prec . par = matrix ( rep (0 ) , 2 , 2 )

19 prec . par [ 1 , ] = c ( 0 . 2 /0 . 31 , 0 . 0 1 )

20 prec . par [ 2 , ] = c ( 0 . 2 / 0 . 3 1 , 0 . 0 1 )

21 inv = ginv ( as . matrix (Q) )

22 e i g 1 = eigen (Q)$value [ 1 : 5 4 3 ]

23 e i g 1 = 1/ e i g 1

24 # Function to maximise to obtain the posterior marginal for the

parameters

25 l ogdens j o i n t v2 = function (par , prec . eps . 1 = 4 , prec . eps . 2 = 4 , y1 ,

y2 ,

26 Q, prec .mean . 2 = 0 .01 , prec .mean . 1 = 0 .01 ,

27 prec . par , phi . par , inv = inv , e i g 1 = e i g 1) {
28 require (mvtnorm)

29 # Change of variables

30 phi1 = exp(par [ 1 ] ) /(1+exp(par [ 1 ] ) )

31 phi2 = exp(par [ 2 ] ) /(1+exp(par [ 2 ] ) )

32 t1 = exp(par [ 3 ] )

33 t2 = exp(par [ 4 ] )

34 gamma = exp(par [ 5 ] ) /(1+exp(par [ 5 ] ) )

35 n = dim(Q) [ 1 ]

36 # User defined scaling parameter

37 lambda 1=−log ( prec . par [ 1 , 2 ] ) /prec . par [ 1 , 1 ]

38 lambda 2=−log ( prec . par [ 2 , 2 ] ) /prec . par [ 2 , 1 ]

39 lambda 3= − log (1 −phi . par [ 3 , 2 ] ) / d i s t phi1 ( phi1 = phi . par [ 3 , 1 ] ,

40 gamma=gamma, Ident = Ident ,Q = Q, n=n , inv = inv , e i g 1 = e i g 1)

41 lambda 5= − log (1 −phi . par [ 1 , 2 ] ) / d i s t gamma(gamma = phi . par [ 1 , 1 ] ,

42 phi1 = phi1 , Ident = Ident ,Q = Q, n=n , inv = inv , e i g 1 = e i g 1)

43 # Log density

44 ld = 0

45 ld = ld + kld d i s t ( phi1 ,gamma, Ident ,Q,

46 n , lambda 3 , inv = inv , e i g 1 = e i g 1)+ log ( exp(par [ 1 ] ) /
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47 (1 + exp(par [ 1 ] ) )∧2 )

48 ld = ld + INLA : : : i n l a . pc .bym. phi (Q=Q, u= phi . par [ 2 , 1 ] ,

49 alpha = phi . par [ 2 , 2 ] ) ( phi2 ) + log ( exp(par [ 2 ] ) /

50 (1 + exp(par [ 2 ] ) )∧2 )

51 ld = ld + i n l a . pc . dprec ( t1 , u=prec . par [ 1 , 1 ] ,

52 alpha = prec . par [ 1 , 2 ] , log=TRUE) + log ( t1 )

53 ld = ld + i n l a . pc . dprec ( t2 , u=prec . par [ 2 , 1 ] ,

54 alpha = prec . par [ 2 , 2 ] , log=TRUE) + log ( t2 )

55 ld = ld + kld d i s t gamma(gamma, phi1 ,

56 Ident ,Q, n , lambda 5 , inv = inv , e i g 1 = e i g 1) +

57 log ( exp(par [ 5 ] ) / (1 + exp(par [ 5 ] ) )∧2 )

58 # Building the precision matrix

59 Ident = diag (n)

60 one = matrix (1 , 544 ,1 )

61 zerom = matrix (0 ,544 ,544)

62 zero = matrix (0 , 544 ,1 )

63 R1 = cbind ( prec . eps . 1∗(1−phi1 )∗gamma/t1∗ Ident+

64 prec . eps . 2∗phi2/t2∗ Ident+Q,

65 prec . eps . 1∗sqrt (gamma∗(1−phi1 )∗phi1 )/t1∗ Ident ,

66 prec . eps . 1∗sqrt (gamma∗(1−gamma) )∗(1−phi1 )/t1∗ Ident

67 +prec . eps . 2∗sqrt ( phi2∗(1−phi2 ) )/t2∗ Ident ,

68 prec . eps . 1∗sqrt ((1−phi1 )∗gamma/t1 )∗one ,

69 prec . eps . 2∗sqrt ( phi2/t2 )∗one ) #done

70 R2 = cbind ( prec . eps . 1∗sqrt (gamma∗(1−phi1 )∗phi1 )/t1∗ Ident ,

71 prec . eps . 1∗phi1/t1∗ Ident+Q,

72 prec . eps . 1∗sqrt ((1−phi1 )∗(1−gamma)∗phi1 )/t1∗ Ident ,

73 prec . eps . 1∗sqrt ( phi1/t1 )∗one ,

74 zero )

75 R3 = cbind ( prec . eps . 1∗sqrt (gamma∗(1−gamma) )∗(1−phi1 )/t1∗ Ident

76 +prec . eps . 2∗sqrt ( phi2∗(1−phi2 ) )/t2∗ Ident ,

77 prec . eps . 1∗sqrt ((1−phi1 )∗
78 (1−gamma)∗phi1 )/t1∗ Ident ,

79 (1+ prec . eps . 1∗(1−phi1 )∗(1−gamma)/t1 )

80 ∗ Ident+prec . eps . 2∗(1−phi2 )/t2∗ Ident ,

81 prec . eps . 1∗sqrt ((1−phi1 )∗(1−gamma)/t1 )∗one ,

82 prec . eps . 2∗sqrt ((1−phi2 )/t2 )∗one )

83 R5 = cbind ( prec . eps . 1∗sqrt ((1−phi1 )∗gamma/t1 )∗t ( one ) ,

84 prec . eps . 1∗sqrt ( phi1/t1 )∗t ( one ) ,

85 prec . eps . 1∗sqrt ((1−phi1 )∗(1−gamma)/t1 )∗t ( one ) ,

86 prec . eps . 1∗n+prec .mean . 1∗1 ,

87 0)

88 R6 = cbind ( prec . eps . 2∗sqrt ( phi2/t2 )∗t ( one ) ,

89 t ( ze ro ) ,

90 prec . eps . 2∗sqrt ((1−phi2 )/t2 )∗t ( one ) ,
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91 0 ,

92 prec . eps . 2∗n+prec .mean . 2∗1)

93 QQ = rbind (R1 , R2 , R3 , R5 , R6)

94 b = c ( prec . eps . 1∗sqrt ((1−phi1 )∗gamma/t1 )∗y1+

95 prec . eps . 2∗sqrt ( phi2/t2 )∗y2 ,

96 prec . eps . 1∗sqrt ( phi1/t1 )∗y1 ,

97 prec . eps . 1∗sqrt ((1−gamma)∗(1−phi1 )/t1 )∗y1+

98 prec . eps . 2∗sqrt ((1−phi2 )/t2 )∗y2 ,

99 prec . eps . 1∗sum( y1 ) ,

100 prec . eps . 2∗sum( y2 ) )

101 # GMRF precision

102 QQ = INLA : : : i n l a . as . spa r s e (QQ)

103 # GMRF mean

104 mu = c ( i n l a . q so lve (QQ[ 1 : 1 6 3 4 , 1 : 1 6 3 4 ] ,

105 matrix (b [ 1 : 1 6 3 4 ] , 3∗n+2, 1) ) )

106 e=c ( 0 , 0 ) # constraint RHS

107 # constraint matrix

108 A=matrix (0 ,2 , 3∗n+2)

109 A[1 ,1 : 544 ]=1

110 A[2 ,545 :1088 ]=1

111 # compute density

112 ld = ld − c ( i n l a . qsample (Q=QQ, mu=mu, sample = rep (0 , 3∗n+2) ,

113 l ogdens=TRUE, cons t r = l i s t (A = A, e = e ) )$ l ogdens )

114 print (round( c (par , ld ) , d i g i t s =5) )

115 return ( ld )

116 }
117 # Function that compute the mode of the posterior marginal for u v mu

118 get mode = function (par , y1 , y2 ,Q, n ) {
119 phi1 = exp(par [ 1 ] ) /(1+exp(par [ 1 ] ) )

120 phi2 = exp(par [ 2 ] ) /(1+exp(par [ 2 ] ) )

121 t1 = exp(par [ 3 ] )

122 t2 = exp(par [ 4 ] )

123 gamma = exp(par [ 5 ] ) /(1+exp(par [ 5 ] ) )

124 Ident = diag (n)

125 one = matrix (1 , 544 ,1 )

126 zerom = matrix (0 ,544 ,544)

127 zero = matrix (0 , 544 ,1 )

128

129 R1 = cbind ( prec . eps . 1∗(1−phi1 )∗gamma/t1∗ Ident+

130 prec . eps . 2∗phi2/t2∗ Ident+Q,

131 prec . eps . 1∗sqrt (gamma∗(1−phi1 )∗phi1 )/t1∗ Ident ,

132 prec . eps . 1∗sqrt (gamma∗(1−gamma) )∗(1−phi1 )/t1∗ Ident+

133 prec . eps . 2∗sqrt ( phi2∗(1−phi2 ) )/t2∗ Ident ,

134 prec . eps . 1∗sqrt ((1−phi1 )∗gamma/t1 )∗one ,
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135 prec . eps . 2∗sqrt ( phi2/t2 )∗one ) #done

136

137 R2 = cbind ( prec . eps . 1∗sqrt (gamma∗(1−phi1 )∗phi1 )/t1∗ Ident ,

138 prec . eps . 1∗phi1/t1∗ Ident+Q,

139 prec . eps . 1∗sqrt ((1−phi1 )∗(1−gamma)∗phi1 )/t1∗ Ident ,

140 prec . eps . 1∗sqrt ( phi1/t1 )∗one ,

141 zero )

142

143 R3 = cbind ( prec . eps . 1∗sqrt (gamma∗(1−gamma) )∗(1−phi1 )/t1∗ Ident+

144 prec . eps . 2∗sqrt ( phi2∗(1−phi2 ) )/t2∗ Ident ,

145 prec . eps . 1∗sqrt ((1−phi1 )∗(1−gamma)∗phi1 )/t1∗ Ident ,

146 (1+ prec . eps . 1∗(1−phi1 )∗(1−gamma)/t1 )∗ Ident+

147 prec . eps . 2∗(1−phi2 )/t2∗ Ident ,

148 prec . eps . 1∗sqrt ((1−phi1 )∗(1−gamma)/t1 )∗one ,

149 prec . eps . 2∗sqrt ((1−phi2 )/t2 )∗one )

150

151 R5 = cbind ( prec . eps . 1∗sqrt ((1−phi1 )∗gamma/t1 )∗t ( one ) ,

152 prec . eps . 1∗sqrt ( phi1/t1 )∗t ( one ) ,

153 prec . eps . 1∗sqrt ((1−phi1 )∗(1−gamma)/t1 )∗t ( one ) ,

154 prec . eps . 1∗n+prec .mean . 1∗1 ,

155 0)

156 R6 = cbind ( prec . eps . 2∗sqrt ( phi2/t2 )∗t ( one ) ,

157 t ( ze ro ) ,

158 prec . eps . 2∗sqrt ((1−phi2 )/t2 )∗t ( one ) ,

159 0 ,

160 prec . eps . 2∗n+prec .mean . 2∗1)

161 QQ = rbind (R1 , R2 , R3 , R5 , R6)

162 b = c ( prec . eps . 1∗sqrt ((1−phi1 )∗gamma/t1 )∗y1+

163 prec . eps . 2∗sqrt ( phi2/t2 )∗y2 ,

164 prec . eps . 1∗sqrt ( phi1/t1 )∗y1 ,

165 prec . eps . 1∗sqrt ((1−gamma)∗(1−phi1 )/t1 )∗y1+

166 prec . eps . 2∗sqrt ((1−phi2 )/t2 )∗y2 ,

167 prec . eps . 1∗sum( y1 ) ,

168 prec . eps . 2∗sum( y2 ) )

169

170 QQ = INLA : : : i n l a . as . spa r s e (QQ) # GMRF precision

171 mu = c ( i n l a . q so lve (QQ, matrix (b , 3∗n+2, 1) ) )

172 e=c ( 0 , 0 )

173 A=matrix (0 ,2 , 3∗n+2)

174 A[1 ,1 : 544 ]=1

175 A[2 ,545 :1088 ]=1

176 r e s=i n l a . qsample (Q=QQ, mu=mu, logdens=TRUE,

177 cons t r = l i s t (A = A, e = e ) , compute .mean = TRUE)

178 u1 = r e s $mean [ 1 : 5 4 4 ]
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179 u2 = r e s $mean [ 5 4 5 : 1 0 8 8 ]

180 v1 = r e s $mean [ 1 0 8 9 : 1 6 3 2 ]

181 mu1 = r e s $mean [ 1 6 3 3 ]

182 mu2 = r e s $mean [ 1 6 3 4 ]

183 eta1= mu1 + 1/sqrt ( t1 )∗ ( sqrt(1−phi1 )∗ ( sqrt (gamma)∗u1+

184 sqrt(1−gamma)∗v1 ) + sqrt ( phi1 )∗ u2 )

185 eta2 = mu2 + 1/sqrt ( t2 )∗ ( sqrt(1−phi2 )∗v1

186 + sqrt ( phi2 )∗ u1 )

187 r e s u l t 1 = data . frame ( u1 =u1 , u2=u2 , v1=v1 , mu1=mu1,

188 mu2=mu2, eta2 = eta2 , eta1 = eta1 )

189 return ( r e s u l t 1 )

190 }

A.4.4 Code for the second model with the PC priors

This code computes the priors for φ1, φ2, τ1, τ2, γ, the mode of the posterior marginal

of logit(φ1), logit(φ2), log(τ1), log(τ2), logit(γ) and the mode of the posterior marginal of

u1, v1, u2, v, µ1, µ2.

1 g = system . f i l e ("demodata/germany . graph" , package="INLA" )

2 g=i n l a . read . graph ( g )

3 Q=as . matrix ( i n l a . graph2matrix ( g ) )

4 Q = −Q
5 diag (Q) = g$nnbs

6 Q = INLA : : : i n l a . scale . model . bym(Q)

7 diag (Q) = diag (Q) + 1e−8

8 prec .mean . 1 = 0 .01

9 prec .mean . 2 = 0 .01

10 prec . eps . 1 = 4

11 prec . eps . 2 = 4

12 phi . par = matrix ( rep (0 ) , 3 , 2 )

13 phi . par [ 1 , ] = c ( 0 . 5 , 2/3)# .5 for all

14 phi . par [ 2 , ] = c ( 0 . 5 , 2/3)

15 phi . par [ 3 , ] = c ( 0 . 5 , 2/3)

16 prec . par = matrix ( rep (0 ) , 2 , 2 )

17 prec . par [ 1 , ] = c ( 0 . 2 /0 . 31 , 0 . 0 1 ) prec . par [ 2 , ] = c ( 0 . 2 / 0 . 3 1 , 0 . 0 1 )

18 temp = as . matrix (Q)

19 inv = ginv ( temp )

20 e i g 1 = eigen (Q)$value [ 1 : 5 4 3 ]

21 e i g 1 = 1/ e i g 1

22 Ident = diag (544)

23 n = 544

24 # KLD for phi2
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25 kld d i s t phi2 = function ( phi2 ,gamma, phi1 ,

26 e i g 1 = e i g 1 , inv = inv , Ident = Ident , n = n) {
27 Sigma 0 = ((1−gamma)∗(1−phi1 )+gamma)∗ Ident +(1−gamma)∗phi1∗ inv

28 Sigma 1 = ((1−gamma)∗(1−phi1 )+gamma∗(1−phi2 ) )∗ Ident

29 + ((1−gamma)∗phi1+gamma∗phi2 )∗ inv

30 ln S 0 = n/ (n−1)∗sum( log (((1−gamma)∗(1−phi1 )

31 +gamma)+(1−gamma)∗phi1∗ e i g 1) )

32 Tr 1 = sum( diag ( solve ( Sigma 0)%∗%Sigma 1) )

33 ln S 0 = sum( log (((1−gamma)∗(1−phi1 )+gamma)

34 +(1−gamma)∗phi1∗ e i g 1) )

35 ln S 1 = sum( log ( (1−gamma)∗(1−phi1 )+gamma∗(1−phi2 )

36 + ((1−gamma)∗phi1+gamma∗phi2 )∗ e i g 1) ) # ok

37 r e s = sqrt ( (Tr 1 − n − ln S 1 + ln S 0)+ 1e−1)

38 }
39 # Prior for phi2

40 p r i o r phi2 = function ( phi2 ,gamma, phi1 , lambda ,

41 e i g 1=e i g 1 , inv=inv , Ident=Ident , n=n) {
42 r e s u l t = 0

43 r e s u l t = r e s u l t + log ( lambda )

44 r e s u l t = r e s u l t − lambda∗kld d i s t phi2 ( phi2 = phi2 ,gamma = gamma,

45 phi1 = phi1 , e i g 1=e i g 1 , inv=inv , Ident=Ident , n=n)

46 d e l t a = 1e−4

47 b = log (abs ( ( kld d i s t phi2 ( phi2 = ( phi2+d e l t a ) ,gamma = gamma,

48 phi1 = phi1 , e i g 1=e i g 1 , inv=inv , Ident=Ident , n=n)−
49 kld d i s t phi2 ( phi2 = phi2 ,gamma = gamma, phi1 = phi1 ,

50 e i g 1=e i g 1 , inv=inv , Ident=Ident , n=n) )/ d e l t a ) )

51 r e s u l t = r e s u l t + b

52 s c a l t = kld d i s t phi2 ( phi2 = 1 , phi1 = phi1 ,gamma = gamma,

53 Ident = Ident , n=n , e i g 1 = e i g 1 , inv = inv )

54 r e s u l t = r e s u l t − log(1−exp(−lambda∗ s c a l t ) )

55 return ( r e s u l t )

56 }
57 # KLD phi1

58 kld d i s t phi1 = function ( phi1 , phi2 , inv , e i g 1 ,n ) {
59 Ident = diag (n)

60 zerom = matrix (0 , n , n )

61 Sigma base = rbind (cbind ( Ident , zerom ) , cbind ( zerom , phi2∗ inv+(1−phi2

)∗ Ident ) )

62 Sigma f l e x = rbind (cbind ( phi1∗ inv+(1−phi1 )∗ Ident , zerom ) ,

63 cbind ( zerom , phi2∗ inv+(1−phi2 )∗ Ident ) )

64 Tr 1 = sum( diag ( Sigma f l e x%∗%solve ( Sigma base ) ) )

65 ln det = − sum( log ((1−phi1 )+ phi1∗ e i g 1) )

66 r e s u l t = sqrt (Tr 1 − 2∗n + ln det )

67 }
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68 # PC prior for phi1

69 p r i o r phi1 = function ( phi1 , phi2 , lambda , e i g 1=e i g 1 , inv=inv , Ident=

Ident , n=n) {
70 r e s u l t = 0

71 r e s u l t = r e s u l t + log ( lambda )

72 r e s u l t = r e s u l t − lambda∗kld d i s t phi1 ( phi1 = phi1 , phi2 = phi2 ,

73 e i g 1=e i g 1 , inv=inv , n=n)

74 d e l t a = 1e−3

75 b = log (abs ( ( kld d i s t phi1 ( phi1 = ( phi1+d e l t a ) , phi2 = phi2 ,

76 e i g 1=e i g 1 , inv=inv , n=n)−kld d i s t phi1 ( phi1 = phi1 ,

77 phi2 = phi2 , e i g 1=e i g 1 , inv=inv , n=n) )/ d e l t a ) )

78 r e s u l t = r e s u l t + b

79 s c a l t = kld d i s t phi1 ( phi1 = 1 , phi2 = phi2 ,

80 n=n , e i g 1 = e i g 1 , inv = inv )

81 r e s u l t = r e s u l t − log(1−exp(−lambda∗ s c a l t ) )

82 return ( r e s u l t )

83 }
84 # KLD for gamma

85 kld d i s t gamma = function (gamma, phi2 , phi1 , e i g 1 = e i g 1 ,

86 inv = inv , Ident = Ident , n = n) {
87 Sigma 0 = (1−phi1 )∗ Ident +phi1∗ inv

88 Sigma 1 = ((1−gamma)∗(1−phi1 )+gamma∗(1−phi2 ) )∗ Ident+

89 ((1−gamma)∗phi1+gamma∗phi2 )∗ inv

90 Tr 1 = sum( diag ( ginv ( Sigma 0)%∗%Sigma 1) )

91 ln S 0 = sum( log (((1− phi1 )+phi1∗ e i g 1) ) ) # ok

92 ln S 1 = sum( log ( (1−gamma)∗(1−phi1 )+gamma∗(1−phi2 )

93 + ((1−gamma)∗phi1+gamma∗phi2 )∗ e i g 1) ) # ok

94 r e s = sqrt ( (Tr 1 − n − ln S 1 + ln S 0+1e−1) )

95 }
96 # Prior for gamma

97 p r i o r gamma = function (gamma, phi2 , phi1 , lambda , e i g 1=e i g 1 ,

98 inv=inv , Ident=Ident , n=n) {
99 r e s u l t = 0

100 r e s u l t = r e s u l t + log ( lambda )

101 r e s u l t = r e s u l t − lambda∗kld d i s t gamma(gamma = gamma, phi2 = phi2 ,

102 phi1 = phi1 , e i g 1=e i g 1 , inv=inv , Ident=Ident , n=n)

103 d e l t a = 1e−3

104 b = log (abs ( ( kld d i s t gamma(gamma = (gamma+d e l t a ) , phi2 = phi2 ,

105 phi1 = phi1 , e i g 1=e i g 1 , inv=inv , Ident=Ident ,

106 n=n)−kld d i s t gamma(gamma = gamma, phi2 = phi2 , phi1 = phi1 ,

107 e i g 1=e i g 1 , inv=inv , Ident=Ident , n=n) )/ d e l t a ) )

108 r e s u l t = r e s u l t + b

109 s c a l t = kld d i s t gamma(gamma = 1 , phi2 = phi2 , phi1 =phi1 ,

110 Ident = Ident , n=n , e i g 1 = e i g 1 , inv = inv )
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111 r e s u l t = r e s u l t − log(1−exp(−lambda∗ s c a l t ) )

112 return ( r e s u l t )

113 }
114 # Function to maximise to obtain the mode of the

115 # posterior marginal for the parameters

116 l ogdens j o i n t l a s t = function (par , prec . eps . 1 = 4 , prec . eps . 2 = 4 ,

117 y1 , y2 , Q, prec .mean . 2 = 0 .01 , prec .mean . 1 = 0 .01 ,

118 prec . par , phi . par , inv , e i g 1) {
119 require (mvtnorm)

120 # Change of variables

121 phi1 = exp(par [ 1 ] ) /(1+exp(par [ 1 ] ) )

122 phi2 = exp(par [ 2 ] ) /(1+exp(par [ 2 ] ) )

123 t1 = exp(par [ 3 ] )

124 t2 = exp(par [ 4 ] )

125 gamma = exp(par [ 5 ] ) /(1+exp(par [ 5 ] ) )

126 n = dim(Q) [ 1 ]

127 Ident = diag (n)

128 one = matrix (1 , n , 1 )

129 zerom = matrix (0 , n , n )

130 zero = matrix (0 , n , 1 )

131 # User defined scaling parameter

132 # lambdas

133 lambda phi1= − log (1 −phi . par [ 1 , 2 ] ) /kld d i s t phi1 ( phi1 = phi . par

[ 1 , 1 ] ,

134 phi2 = phi2 , e i g 1=e i g 1 , inv=inv , n=n)

135 lambda phi2= − log (1 −phi . par [ 2 , 2 ] ) /kld d i s t phi2 ( phi2 = phi . par

[ 2 , 1 ] ,

136 gamma=gamma, phi1 = phi1 , Ident = Ident , n=n ,

137 e i g 1 = e i g 1 , inv = inv )

138 lambda gamma= − log (1 −phi . par [ 3 , 2 ] ) /

139 kld d i s t gamma(gamma = phi . par [ 3 , 1 ] ,

140 phi2 = phi2 , phi1 = phi1 , Ident = Ident , n=n , e i g 1 = e i g 1 , inv = inv )

141 # priors contribution

142 ld = 0

143 ld = ld + i n l a . pc . dprec ( t1 , u=prec . par [ 1 , 1 ] ,

144 alpha = prec . par [ 1 , 2 ] , log=TRUE) + log ( t1 )

145 ld = ld + i n l a . pc . dprec ( t2 , u=prec . par [ 2 , 1 ] ,

146 alpha = prec . par [ 2 , 2 ] , log=TRUE) + log ( t2 )

147 ld = ld + p r i o r phi1 ( phi1 = phi1 , phi2 = phi2 ,

148 lambda = lambda phi1 , e i g 1=e i g 1 , inv=inv ,

149 Ident=Ident , n=n) + log ( exp(par [ 1 ] ) /

150 (1 + exp(par [ 1 ] ) )∧2 )

151 ld = ld + p r i o r phi2 ( phi2 = phi2 ,gamma = gamma,

152 phi1 = phi1 , lambda = lambda phi2 ,
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153 e i g 1=e i g 1 , inv=inv , Ident=Ident , n=n) +

154 log ( exp(par [ 2 ] ) / (1 + exp(par [ 2 ] ) )∧2 )

155 ld = ld + p r i o r gamma(gamma = gamma , phi2 = phi2 ,

156 phi1 = phi1 , lambda = lambda gamma, e i g 1=e i g 1 ,

157 inv=inv , Ident=Ident , n=n) +

158 log ( exp(par [ 5 ] ) / (1 + exp(par [ 5 ] ) )∧2 )

159

160 #################################### Matrix

161

162

163 R1 = cbind (Q+prec . eps . 1 /t1∗(1−gamma)∗phi1∗ Ident+prec . eps . 2 /t2∗
phi1∗ Ident ,

164 prec . eps . 1∗sqrt ((1−gamma)∗phi1∗gamma∗phi2 )/t1∗ Ident ,

165 prec . eps . 1∗(1−gamma)∗sqrt ( phi1∗(1−phi1 ) )/t1∗ Ident

166 + prec . eps . 2∗sqrt ((1−phi1 )∗phi1 )/t2∗ Ident ,

167 prec . eps . 1∗sqrt ((1−gamma)∗gamma∗phi1∗(1−phi2 ) )/t1∗ Ident ,

168 prec . eps . 1∗sqrt ((1−gamma)∗phi1/t1 )∗one ,

169 prec . eps . 2∗sqrt ( phi1/t2 )∗one )

170

171 R2 = cbind ( prec . eps . 1∗sqrt ((1−gamma)∗phi1∗gamma∗phi2 )/t1∗ Ident ,

172 prec . eps . 1∗gamma∗phi2/t1∗ Ident+Q,

173 prec . eps . 1∗sqrt ((1−gamma)∗(1−phi1 )∗gamma∗phi2 )/t1∗ Ident ,

174 prec . eps . 1∗gamma/t1∗sqrt ( phi2∗(1−phi2 ) )∗ Ident ,

175 prec . eps . 1∗sqrt (gamma∗phi2/t1 )∗one ,

176 zero )

177 R3 = cbind ( prec . eps . 1∗(1−gamma)∗sqrt ( phi1∗(1−phi1 ) )/t1∗ Ident

178 + prec . eps . 2∗sqrt ((1−phi1 )∗phi1 )/t2∗ Ident ,

179 prec . eps . 1∗sqrt ((1−gamma)∗(1−phi1 )∗gamma∗phi2 )/t1∗ Ident ,

180 prec . eps . 1∗(1−gamma)∗(1−phi1 )/t1∗ Ident

181 + prec . eps . 2∗(1−phi1 )/t2∗ Ident+Ident ,

182 prec . eps . 1∗sqrt ((1−gamma)∗
183 gamma∗(1−phi1 )∗(1−phi2 ) )/t1∗ Ident ,

184 prec . eps . 1∗sqrt ((1−gamma)∗(1−phi1 )/t1 )∗one ,

185 prec . eps . 2∗sqrt ((1−phi1 )/t2 )∗one

186 )

187 R4 = cbind ( prec . eps . 1∗sqrt ((1−gamma)∗gamma∗phi1∗
188 (1−phi2 ) )/t1∗ Ident ,

189 prec . eps . 1∗gamma/t1∗sqrt ( phi2∗(1−phi2 ) )∗ Ident ,

190 prec . eps . 1∗sqrt ((1−gamma)∗gamma∗
191 (1−phi1 )∗(1−phi2 ) )/t1∗ Ident ,

192 prec . eps . 1∗gamma∗(1−phi2 )/t1∗ Ident+ Ident ,

193 prec . eps . 1∗sqrt (gamma∗(1−phi2 )/t1 )∗one ,

194 zero

195 )



80

196 R5 = cbind ( prec . eps . 1∗sqrt ((1−gamma)∗phi1/t1 )∗t ( one ) ,

197 prec . eps . 1∗sqrt (gamma∗phi2/t1 )∗t ( one ) ,

198 prec . eps . 1∗sqrt ((1−gamma)∗(1−phi1 )/t1 )∗t ( one ) ,

199 prec . eps . 1∗sqrt (gamma∗(1−phi2 )/t1 )∗t ( one ) ,

200 prec . eps . 1∗n+prec .mean . 1∗1 ,

201 0)

202 R6 = cbind ( prec . eps . 2∗sqrt ( phi1/t2 )∗t ( one ) ,

203 t ( ze ro ) ,

204 prec . eps . 2∗sqrt ((1−phi1 )/t2 )∗t ( one ) ,

205 t ( ze ro ) ,

206 0 ,

207 prec . eps . 2∗n+prec .mean . 2∗1)

208 QQ = rbind (R1 , R2 , R3 , R4 , R5 , R6)

209 b = c ( prec . eps . 1∗sqrt ( phi1∗(1−gamma)/t1 )∗y1+

210 prec . eps . 2∗sqrt ( phi1/t2 )∗y2 ,

211 prec . eps . 1∗sqrt (gamma∗phi2/t1 )∗y1 ,

212 prec . eps . 1∗sqrt ((1−gamma)∗(1−phi1 )/t1 )∗y1+

213 prec . eps . 2∗sqrt ((1−phi1 )/t2 )∗y2 ,

214 prec . eps . 2∗sqrt (gamma∗(1−phi2 )/t1 )∗y2 ,

215 prec . eps . 1∗sum( y1 ) ,

216 prec . eps . 2∗sum( y2 ) )

217

218 QQ = INLA : : : i n l a . as . spa r s e (QQ) # GMRF precision

219 mu = c ( i n l a . q so lve (QQ, matrix (b , 4∗n+2, 1) ) ) # GMRF mean

220 # constraint matrix

221 e=c ( 0 , 0 ) # constraint RHS

222 A=matrix (0 ,2 , 4∗n+2)

223 A[ 1 , 1 : n]=1

224 A[ 2 , ( n+1) : ( 2∗n) ]=1

225 # compute density

226 ld = ld − c ( i n l a . qsample (Q=QQ, mu=mu, sample = rep (0 , 4∗n+2) ,

227 l ogdens=TRUE, cons t r = l i s t (A = A, e = e ) )$ l ogdens )

228 print (round( c (par , ld ) , d i g i t s =5) )

229 return ( ld )

230 }
231 # Function to obtain the mode of the posterior marginal for u1 u2 v1

v2 mu1 mu2

232 get mode l a s t = function (par , y1 , y2 ,Q) {
233 require (mvtnorm)

234 # Change of variables

235 phi1 = exp(par [ 1 ] ) /(1+exp(par [ 1 ] ) )

236 phi2 = exp(par [ 2 ] ) /(1+exp(par [ 2 ] ) )

237 t1 = exp(par [ 3 ] )

238 t2 = exp(par [ 4 ] )
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239 gamma = exp(par [ 5 ] ) /(1+exp(par [ 5 ] ) )

240 n = dim(Q) [ 1 ]

241 Ident = diag (n)

242 one = matrix (1 , n , 1 )

243 zerom = matrix (0 , n , n )

244 zero = matrix (0 , n , 1 )

245

246 R1 = cbind (Q+prec . eps . 1 /t1∗(1−gamma)∗phi1∗ Ident+

247 prec . eps . 2 /t2∗phi1∗ Ident ,

248 prec . eps . 1∗sqrt ((1−gamma)∗phi1∗gamma∗phi2 )/t1∗ Ident ,

249 prec . eps . 1∗(1−gamma)∗sqrt ( phi1∗(1−phi1 ) )/t1∗ Ident

250 + prec . eps . 2∗sqrt ((1−phi1 )∗phi1 )/t2∗ Ident ,

251 prec . eps . 1∗sqrt ((1−gamma)∗gamma∗phi1∗(1−phi2 ) )/t1∗ Ident ,

252 prec . eps . 1∗sqrt ((1−gamma)∗phi1/t1 )∗one ,

253 prec . eps . 2∗sqrt ( phi1/t2 )∗one )

254

255 R2 = cbind ( prec . eps . 1∗sqrt ((1−gamma)∗phi1∗gamma∗phi2 )/t1∗ Ident ,

256 prec . eps . 1∗gamma∗phi2/t1∗ Ident+Q,

257 prec . eps . 1∗sqrt ((1−gamma)∗(1−phi1 )∗gamma∗phi2 )/t1∗ Ident ,

258 prec . eps . 1∗gamma/t1∗sqrt ( phi2∗(1−phi2 ) )∗ Ident ,

259 prec . eps . 1∗sqrt (gamma∗phi2/t1 )∗one ,

260 zero )

261 R3 = cbind ( prec . eps . 1∗(1−gamma)∗sqrt ( phi1∗(1−phi1 ) )/t1∗ Ident

262 + prec . eps . 2∗sqrt ((1−phi1 )∗phi1 )/t2∗ Ident ,

263 prec . eps . 1∗sqrt ((1−gamma)∗(1−phi1 )∗gamma∗phi2 )/t1∗ Ident ,

264 prec . eps . 1∗(1−gamma)∗(1−phi1 )/t1∗ Ident

265 + prec . eps . 2∗(1−phi1 )/t2∗ Ident+Ident ,

266 prec . eps . 1∗sqrt ((1−gamma)∗gamma∗(1−phi1 )∗
267 (1−phi2 ) )/t1∗ Ident ,

268 prec . eps . 1∗sqrt ((1−gamma)∗(1−phi1 )/t1 )∗one ,

269 prec . eps . 2∗sqrt ((1−phi1 )/t2 )∗one

270 )

271 R4 = cbind ( prec . eps . 1∗sqrt ((1−gamma)∗gamma∗
272 phi1∗(1−phi2 ) )/t1∗ Ident ,

273 prec . eps . 1∗gamma/t1∗sqrt ( phi2∗(1−phi2 ) )∗ Ident ,

274 prec . eps . 1∗sqrt ((1−gamma)∗gamma∗
275 (1−phi1 )∗(1−phi2 ) )/t1∗ Ident ,

276 prec . eps . 1∗gamma∗(1−phi2 )/t1∗ Ident+ Ident ,

277 prec . eps . 1∗sqrt (gamma∗(1−phi2 )/t1 )∗one ,

278 zero

279 )

280 R5 = cbind ( prec . eps . 1∗sqrt ((1−gamma)∗phi1/t1 )∗t ( one ) ,

281 prec . eps . 1∗sqrt (gamma∗phi2/t1 )∗t ( one ) ,

282 prec . eps . 1∗sqrt ((1−gamma)∗(1−phi1 )/t1 )∗t ( one ) ,
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283 prec . eps . 1∗sqrt (gamma∗(1−phi2 )/t1 )∗t ( one ) ,

284 prec . eps . 1∗n+prec .mean . 1∗1 ,

285 0)

286 R6 = cbind ( prec . eps . 2∗sqrt ( phi1/t2 )∗t ( one ) ,

287 t ( ze ro ) ,

288 prec . eps . 2∗sqrt ((1−phi1 )/t2 )∗t ( one ) ,

289 t ( ze ro ) ,

290 0 ,

291 prec . eps . 2∗n+prec .mean . 2∗1)

292 QQ = rbind (R1 , R2 , R3 , R4 , R5 , R6)

293 b = c ( prec . eps . 1∗sqrt ( phi1∗(1−gamma)/t1 )∗y1+

294 prec . eps . 2∗sqrt ( phi1/t2 )∗y2 ,

295 prec . eps . 1∗sqrt (gamma∗phi2/t1 )∗y1 ,

296 prec . eps . 1∗sqrt ((1−gamma)∗(1−phi1 )/t1 )∗y1+

297 prec . eps . 2∗sqrt ((1−phi1 )/t2 )∗y2 ,

298 prec . eps . 2∗sqrt (gamma∗(1−phi2 )/t1 )∗y2 ,

299 prec . eps . 1∗sum( y1 ) ,

300 prec . eps . 2∗sum( y2 ) )

301 QQ = INLA : : : i n l a . as . spa r s e (QQ)

302 mu= c ( i n l a . q so lve (QQ, matrix (b , 4∗n+2, 1) ) )

303 e=c ( 0 , 0 )

304 A=matrix (0 ,2 , 4∗n+2) # constraint matrix

305 A[ 1 , 1 : n]=1

306 A[ 2 , ( n+1) : ( 2∗n) ]=1

307 #####

308 r e s=i n l a . qsample (Q=QQ, mu=mu, logdens=TRUE,

309 cons t r = l i s t (A = A, e = e ) , compute .mean = TRUE)

310 u1 = r e s $mean [ 1 : 5 4 4 ]

311 u2 = r e s $mean [ 5 4 5 : 1 0 8 8 ]

312 v1 = r e s $mean [ 1 0 8 9 : 1 6 3 2 ]

313 v2 = r e s $mean [ 1 6 3 3 : 2 1 7 6 ]

314 mu1 = r e s $mean [ 2 1 7 7 ]

315 mu2 = r e s $mean [ 2 1 7 8 ]

316 eta1= mu1 + 1/sqrt ( t1 )∗ ( sqrt(1−gamma)∗ ( sqrt ( phi1 )∗u1+

317 sqrt(1−phi1 )∗v1 ) + sqrt (gamma)∗ ( sqrt ( phi2 )∗u2+

318 sqrt(1−phi2 )∗v2 ) )

319 eta2 = mu2 + 1/sqrt ( t2 )∗ ( sqrt(1−phi1 )∗v1 +

320 sqrt ( phi1 )∗ u1 )

321 r e s u l t 1 = data . frame ( u1 =u1 , u2=u2 , v1=v1 , mu1=mu1,

322 mu2=mu2, eta2 = eta2 , eta1 = eta1 )

323 return ( r e s u l t 1 )

324 }
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A.4.5 Code for the results of the second model

This code shows how the results are computed using the code already written.

1 s o l u t i o n= optim(par= s o l u t i o n $par ,

2 fn=logdens j o i n t l a s t ,

3 y1 = y ,

4 y2=sqrt ( lung y ) ,

5 Q = Q,

6 prec . par = prec . par ,

7 phi . par = phi . par ,

8 e i g 1 = e i g 1 ,

9 inv = inv ,

10 control = l i s t ( f n s c a l e =−1, f a c t r=1e10 ) ,

11 method = "L−BFGS−B" , lower = c(−4,−4,−4,−4,−4) )

12 r e s s o l = get mode l a s t ( s o l u t i o n $par , y , sqrt ( lung y ) ,Q)

13 s o l u t i o n 2= optim(par= s o l u t i o n 2 $par ,

14 fn=logdens j o i n t l a s t ,

15 y1 = sqrt ( smr unkcancer ) ,

16 y2=sqrt ( lung y ) ,

17 Q = Q,

18 prec . par = prec . par ,

19 phi . par = phi . par ,

20 e i g 1 = e i g 1 ,

21 inv = inv ,

22 control = l i s t ( f n s c a l e =−1, f a c t r=1e10 ) ,

23 method = "L−BFGS−B" , lower = c(−10 ,−10 , −10,−10, −10) ,

24 upper = c (30 ,30 ,30 ,30 ,30 ) )

25 r e s s o l 2 = get mode l a s t ( s o l u t i o n 2 $par , sqrt ( smr unkcancer ) , sqrt ( lung

y ) ,Q)

26 s o l u t i o n 3= optim(par= s o l u t i o n 2 $par ,

27 fn=logdens j o i n t l a s t ,

28 y1 = sqrt ( larynx ) ,

29 y2=sqrt ( lung y ) ,

30 Q = Q,

31 prec . par = prec . par ,

32 phi . par = phi . par ,

33 e i g 1 = e i g 1 ,

34 inv = inv ,

35 control = l i s t ( f n s c a l e =−1, f a c t r=1e10 ) ,

36 method = "L−BFGS−B" , lower = c(−10 ,−10 , −10,−10, −10) ,

37 upper = c (30 ,30 ,30 ,30 ,30 ) )

38 r e s s o l 3 = get mode l a s t ( s o l u t i o n 3 $par , sqrt ( larynx ) , sqrt ( lung y ) ,Q)



84

39 # Function that computes the weights for the shared and disease

specific component

40 bouiboui = function (par )

41 {
42 w1 = sqrt (par [ 1 ] ∗(1−par [ 5 ] ) )

43 w2 = sqrt (par [ 2 ] ∗par [ 5 ] )

44 return ( c (w1 , w2) )

45 }

A.4.6 code for the test using the increased mesh size

In this part is shown the code used to obtain the results with an increased mesh size

Constant risk

1 # Generate a sample with a constant risk

2 generate sample = function (p) {
3 a=c e l l 2 n b (p , p , to rus = TRUE)

4 Q t e s t= as . matrix(−nb2mat ( a , s t y l e="B" ) )

5 diag (Q t e s t ) = −rowSums(Q t e s t )

6 Q t e s t = INLA : : : i n l a . scale . model . bym(Q t e s t )

7 diag (Q t e s t ) = diag (Q t e s t ) + 1e−8

8 inv t e s t = ginv ( as . matrix (Q t e s t ) )

9 e i g t e s t = eigen (Q t e s t )$value [ 1 : ( length ( diag (Q t e s t ) )−1) ]

10 e i g t e s t = 1/ e i g t e s t

11 n t e s t = dim(Q t e s t ) [ 1 ]

12 e=c (0 )

13 A=matrix (0 , 1 , n t e s t )

14 A[ 1 , 1 : n t e s t ]=1

15 Ident t e s t = diag (n t e s t )

16 gr id1 = rep (1 , n t e s t )

17 gr id2 = rep ( 1 . 0 5 , n t e s t )

18 r e s u l t = data . frame ( gr id1 , g r id2 )

19 return ( r e s u l t )

20 }
21 # Generate the precision matrix

22 generate mat = function (p) {
23 a=c e l l 2 n b (p , p , to rus = TRUE)

24 Q t e s t= as . matrix(−nb2mat ( a , s t y l e="B" ) )

25 diag (Q t e s t ) = −rowSums(Q t e s t )

26 Q t e s t = INLA : : : i n l a . scale . model . bym(Q t e s t )

27 diag (Q t e s t ) = diag (Q t e s t ) + 1e−8
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28 return (Q t e s t )

29 }
30 # Generate the eigen value of the precision matrix

31 generate e i g = function (p) {
32 a=c e l l 2 n b (p , p , to rus = TRUE)

33 Q t e s t= as . matrix(−nb2mat ( a , s t y l e="B" ) )

34 diag (Q t e s t ) = −rowSums(Q t e s t )

35 Q t e s t = INLA : : : i n l a . scale . model . bym(Q t e s t )

36 diag (Q t e s t ) = diag (Q t e s t ) + 1e−8

37 inv t e s t = ginv ( as . matrix (Q t e s t ) )

38 e i g t e s t = eigen (Q t e s t )$value [ 1 : ( length ( diag (Q t e s t ) )−1) ]

39 e i g t e s t = 1/ e i g t e s t

40 return ( e i g t e s t ) }
41 # Generate the generalized inverse of the precision matrix

42 generate inv = function (p) {
43 a=c e l l 2 n b (p , p , to rus = TRUE)

44 Q t e s t= as . matrix(−nb2mat ( a , s t y l e="B" ) )

45 diag (Q t e s t ) = −rowSums(Q t e s t )

46 Q t e s t = INLA : : : i n l a . scale . model . bym(Q t e s t )

47 diag (Q t e s t ) = diag (Q t e s t ) + 1e−8

48 inv t e s t = ginv ( as . matrix (Q t e s t ) )

49 return ( inv t e s t )

50 }
51 # Constant risk surface test

52 # test 1 mesh size 10x10

53 p =10

54 sam1 = generate sample (p)

55 mat1 = generate mat(p)

56 inv1 = generate inv (p)

57 e i g1 = generate e i g (p)

58 grid t e s t 1= optim(par= c (0 . 45790 , −1.07327 ,

59 7 .07158 , 7 .20251 , −0.08590) ,

60 fn=logdens j o i n t l a s t ,

61 y1 = sam1$gr id1 ,

62 y2=sam1$gr id2 ,

63 Q = mat1 ,

64 prec . par = prec . par ,

65 phi . par = phi . par ,

66 e i g 1 = eig1 ,

67 inv = inv1 ,

68 control = l i s t ( f n s c a l e =−1, f a c t r=1e10 ) ,

69 method = "L−BFGS−B" , lower = c(−3,−3,−10,−10,−2) ,

70 upper = c ( 3 , 3 , 10 , 10 , 3 ) )

71 #test 2 mesh size 21∗21
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72 p =21

73 sam2 = generate sample (p)

74 mat2 = generate mat(p)

75 inv2 = generate inv (p)

76 e i g2 = generate e i g (p)

77 grid t e s t 2= optim(par= c (0 . 45790 , −1.07327 ,

78 7 .07158 , 7 .20251 , −0.08590) ,

79 fn=logdens j o i n t l a s t ,

80 y1 = sam2$sample1 ,

81 y2=sam2$sample1 . 1 ,

82 Q = mat2 ,

83 prec . par = prec . par ,

84 phi . par = phi . par ,

85 e i g 1 = eig2 ,

86 inv = inv2 ,

87 control = l i s t ( f n s c a l e =−1, f a c t r=1e10 ) ,

88 method = "L−BFGS−B" , lower = c(−3,−3,−10,−10,−3) ,

89 upper = c ( 3 , 3 , 10 , 10 , 3 ) )

90 #test3 mesh size 29∗29
91 p =29

92 sam3 = generate sample (p)

93 mat3 = generate mat(p)

94 inv3 = generate inv (p)

95 e i g3 = generate e i g (p)

96 grid t e s t 3= optim(par= c (0 . 45790 , −1.07327 ,

97 7 .07158 , 7 .20251 , −0.08590) ,

98 fn=logdens j o i n t l a s t ,

99 y1 = sam3$sample1 ,

100 y2=sam3$sample1 . 1 ,

101 Q = mat3 ,

102 prec . par = prec . par ,

103 phi . par = phi . par ,

104 e i g 1 = eig3 ,

105 inv = inv3 ,

106 control = l i s t ( f n s c a l e =−1, f a c t r=1e10 ) ,

107 method = "L−BFGS−B" , lower = c(−3,−3,−10,−10,−3) ,

108 upper = c ( 3 , 3 , 10 , 10 , 3 ) ) )

109 #test4

110 p = 33

111 sam4 = generate sample (p)

112 mat4 = generate mat(p)

113 inv4 = generate inv (p)

114 e i g4 = generate e i g (p)

115 grid t e s t 4= optim(par= grid t e s t 3 $par ,
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116 fn=logdens j o i n t l a s t ,

117 y1 = sam4$sample1 ,

118 y2=sam4$sample1 . 1 ,

119 Q = mat4 ,

120 prec . par = prec . par ,

121 phi . par = phi . par ,

122 e i g 1 = eig4 ,

123 inv = inv4 ,

124 control = l i s t ( f n s c a l e =−1, f a c t r=1e10 ) ,

125 method = "L−BFGS−B" , lower = c(−3,−3,−10,−10,−3) ,

126 upper = c ( 3 , 3 , 10 , 10 , 3 ) )

No disease specific effect

1 # Test with no disease specific effect

2 generate sample spec = function (p) {
3 a=c e l l 2 n b (p , p , to rus = TRUE)

4 Q t e s t= as . matrix(−nb2mat ( a , s t y l e="B" ) )

5 diag (Q t e s t ) = −rowSums(Q t e s t )

6 Q t e s t = INLA : : : i n l a . scale . model . bym(Q t e s t )

7 diag (Q t e s t ) = diag (Q t e s t )+1e−8

8 inv t e s t = ginv ( as . matrix (Q t e s t ) )

9 e i g t e s t = eigen (Q t e s t )$value [ 1 : ( length ( diag (Q t e s t ) )−1) ]

10 e i g t e s t = 1/ e i g t e s t

11 n t e s t = dim(Q t e s t ) [ 1 ]

12 e=c (0 )

13 A=matrix (0 , 1 , n t e s t )

14 A[ 1 , 1 : n t e s t ]=1

15 Ident t e s t = diag (n t e s t )

16 u1 = i n l a . qsample (Q=Q t e s t ,mu=rep (0 , n t e s t ) , compute .mean = TRUE,

17 cons t r = l i s t (A = A, e = e ) )$sample

18 b1 = mvrnorm(n = 1 , mu=rep (0 , n t e s t ) , Sigma=Ident t e s t , t o l = 1e

−6,

19 e m p i r i c a l = FALSE, EISPACK = FALSE)

20 gr id1 = 1/3∗(1/4∗u1+1/4∗b1 )

21 gr id2 = 1/3∗(1/4∗u1+1/4∗b1 )

22 r e s u l t = data . frame ( v1= grid1 , v2 =gr id2 )

23 return ( r e s u l t )

24 }
25 #test 1 mesh size 10x10

26 p =10

27 sam21 = generate sample spec (p)

28 mat21 = generate mat(p)
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29 inv21 = generate inv (p)

30 e ig21 = generate e i g (p)

31

32 grid t e s t 2 1= optim(par= c (0 . 45790 , −1.07327 ,

33 7 .07158 , 7 .20251 , −0.08590) ,

34 fn=logdens j o i n t l a s t ,

35 y1 = sam21$sample1 ,

36 y2=sam21$sample1 . 1 ,

37 Q = mat21 ,

38 prec . par = prec . par ,

39 phi . par = phi . par ,

40 e i g 1 = eig21 ,

41 inv = inv21 ,

42 control = l i s t ( f n s c a l e =−1, f a c t r=1e10 ) ,

43 method = "L−BFGS−B" , lower = c(−2,−2,−2,−2,−2) ,

44 upper = c ( 2 , 2 , 10 , 10 , 2 ) )

45 #test 2 mesh size 21x 21

46 p =21

47 sam22 = generate sample spec (p)

48 mat22 = generate mat(p)

49 inv22 = generate inv (p)

50 e ig22 = generate e i g (p)

51 grid t e s t 2 2= optim(par= c (0 . 45790 , −1.07327 , 7 .07158 , 7 .20251 ,

−0.08590) ,

52 fn=logdens j o i n t l a s t ,

53 y1 = sam22$sample1 ,

54 y2=sam22$sample1 . 1 ,

55 Q = mat22 ,

56 prec . par = prec . par ,

57 phi . par = phi . par ,

58 e i g 1 = eig22 ,

59 inv = inv22 ,

60 control = l i s t ( f n s c a l e =−1, f a c t r=1e10 ) ,

61 method = "L−BFGS−B" , lower = c(−3,−3,−10,−10,−3) ,

62 upper = c ( 3 , 3 , 10 , 10 , 3 ) )

63 # test 3 mesh size 29 x29

64 p =29

65 sam23 = generate sample spec (p)

66 mat23 = generate mat(p)

67 inv23 = generate inv (p)

68 e ig23 = generate e i g (p)

69 grid t e s t 2 3= optim(par= grid t e s t 2 2 $par ,

70 fn=logdens j o i n t l a s t ,

71 y1 = sam23$sample1 ,
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72 y2=sam23$sample1 . 1 ,

73 Q = mat23 ,

74 prec . par = prec . par ,

75 phi . par = phi . par ,

76 e i g 1 = eig23 ,

77 inv = inv23 ,

78 control = l i s t ( f n s c a l e =−1, f a c t r=1e10 ) ,

79 method = "L−BFGS−B" , lower = c(−3,−3,−10,−10,−3) ,

80 upper = c ( 3 , 3 , 10 , 10 , 3 ) )

81

82 #test4 mesh size 33∗33
83 p =33

84 sam24 = generate sample spec (p)

85 mat24 = generate mat(p)

86 inv24 = generate inv (p)

87 e ig24 = generate e i g (p)

88 grid t e s t 2 4= optim(par= grid t e s t 2 3 $par ,

89 fn=logdens j o i n t l a s t ,

90 y1 = sam24$sample1 ,

91 y2=sam24$sample1 . 1 ,

92 Q = mat24 ,

93 prec . par = prec . par ,

94 phi . par = phi . par ,

95 e i g 1 = eig24 ,

96 inv = inv24 ,

97 control = l i s t ( f n s c a l e =−1, f a c t r=1e10 ) ,

98 method = "L−BFGS−B" , lower = c(−3,−3,−10,−10,−3) ,

99 upper = c ( 3 , 3 , 10 , 10 , 3 ) )



Appendix B

Additional explanations

B.1 Precision matrix

Quu =R+
φ

τ

I

σ2

Qvv =I +
1− φ
τ

I

σ2

Qµµ =
1

σ2max
+

n

σ2

Quv =

√
(1− φ)φ

τ

I

σ2

Qvu =

√
(1− φ)φ

τ

I

σ2

Qµv =

√
φ

τ

(1, .., 1)

σ2

Qµu =

√
1− φ
τ

(1, .., 1)

σ2

Quz =−
√

1− φ
τ

I

σ2

Qvz =−
√
φ

τ

I

σ2

Qµz =− (1, .., 1)

σ2

90
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B.2 Precision matrix First model with PC priors

Qu1u1 =Q∗ + (τε1
(1− φ1)γ

τ1
+ τε2

φ2
τ2

)I

Qu1u2 =τε1

√
γ(1− φ1)φ1

τ1
I

Qu1v1 =τε1

√
γ(1− γ)(1− φ1)

τ1
I + τε2

√
φ2(1− φ2)

τ2
I

Qu1µ1 =τε1

√
(1− φ1)γ√

τ1
(1, ..., 1)T

Qu1µ2 =τε2

√
φ2√
τ2

(1, ..., 1)T

Qu2u2 =Q∗ + τε1
φ1
τ1
I

Qu2v1 =τε1

√
(1− γ)φ1(1− φ1)

τ1
I

Qu2µ1 =τε1

√
φ1√
τ1

(1, ..., 1)T

Qu2µ2 =0

Qv1v1 =(1 +
τε1(1− φ1)(1− γ)

τ1
)I + (1 +

τε2(1− φ2)
τ2

)I

Qv1µ1 =
τε1
√

(1− φ1)(1− γ)
√
τ1

(1, ..., 1)T

Qv1µ2 =
τε2
√

1− φ2√
τ2

(1, ..., 1)T

Qµ1µ1 =τε1n+ τmax1

Qµ1µ2 =0

Qµ2µ2 =τε2n+ τmax2
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B.3 Precision matrix Second model with PC priors

Qu1u1 =Q+ τε1
1

τ1
(1− γ)φ1I + τε2

1

τ2
φ1I

Qu1u2 =τε1

√
(1− γ)φ1γφ2

τ1

Qu1v1 =(τε1
(1− γ)

√
φ1(1− φ1)
τ1

+ τε2

√
φ1(1− φ1)

τ2
)I

Qu1v2 =τε1

√
(1− γ)(φ1)(1− φ2)γ

τ1
I

Qu1µ1 =τε1

√
(1− γ)φ1√

τ1
(1, ..., 1)T

Qu1µ2 =τε2

√
φ1√
τ2

(1, ..., 1)T

Qu2u2 =τε1
γφ2
τ1

I +Q

Qu2v1 =τε1

√
(1− γ)(1− φ1)γφ2

τ1
I

Qu2v2 =τε1
γ
√
φ2(1− φ2)
τ1

Qu2µ1 =τε1

√
γφ2
τ1

(1, ..., 1)T

Qu2µ2 =0

Qv1v1 =(τε1
(1− γ)(1− φ1)

τ1
+ τε2

1− φ1
τ2

+ 1)I

Qv1v2 =τε1

√
(1− γ)γ(1− φ1)(1− φ2)

τ1

Qv1µ1 =τε1

√
(1− γ)(1− φ1)

τ1
(1, ..., 1)T

Qv1µ2 =τε2

√
1− φ2
τ2

(1, ..., 1)T

Qv2v2 =(τε1
γ(1− φ2)

τ1
+ 1)I

Qv2µ1 =τε1

√
γ(1− φ2)

τ1

Qv2µ2 =0

Qµ1µ1 =τε1n+ τmax1

Qµ1µ2 =0

Qµ2µ2 =τε2n+ τmax2
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