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Abstract

Accurate prediction of avalanches is demanded to ensure safety along
Norwegian roads during the winter season. On the initiative of Statens
vegvesen (SVV), different statistical models has been tested, but have
been found inadequate to properly explain the avalanches. Inspired by
recent studies of the French Alps, we seek to find a better avalanche
model by allowing separate stretches of road to share information.

In this case study, we used a data set comprising avalanche observations
from the last 39 years in an area based around Sognefjorden in Norway.
In addition, interpolations of the snow depth, based on the seNorge
snow model, were used as explanatory variables for the different local
avalanche sites. Different models were tested to evaluate the effect of uti-
lizing spatial and temporal dependencies for prediction of avalanches,
at a stretch of road-scale. The spatial and temporal dependencies were
represented as explanatory variables in a Poisson regression model and
as random effects in a latent Gaussian model (LGM) framework. Model
inference and predictions were carried out using Poisson regression
and integrated nested Laplace approximations (INLA) for the LGMs.
The predictive performance of the various models was evaluated using
different skill scores with cross validation for the Poisson regression
models, and on a test set for the LGMs.

It was found that the inclusion of spatio-temporal explanatory vari-
ables improved the prediction accuracy of the Poisson regression model.
However, the random effects in the more flexible latent Gaussian mod-
els were not found to strengthen the predictive performance. Overall,
this implies that spatial and temporal dependencies can be exploited
to improve avalanche models. Still, poor data quality was found to
be a problem and more research is required to better understand the
underlying spatio-temporal processes.
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Sammendrag

Nøyaktige snøskredvarslinger er nødvendige for å kunne ivareta sikker-
heten langs norske veier om vinteren. Ulike statistiske modeller har blitt
testet på initiativ fra Statens vegvesen (SVV), men ingen av modellene
har så langt vist seg å kunne forklare dataene på en tilfredstillende måte.
Ny forskning i de franske alpene inspirerte oss til å forsøke å finne bedre
modeller for snøskred ved å la separate veistrekninger dele informasjon.

I dette eksempelstudiet benyttet vi et datasett som bestod av snøsskre-
dobservasjoner fra de siste 39 årene i et område rundt Sognefjorden
i Norge. I tillegg ble interpolerte snødybder, basert på seNorges snø-
modell, brukt som forklaringsvariabler for ulike lokale skredområder.
Forskjellige modeller ble testet for å undersøke effekten av å benytte
romlige- og tidsavhengigheter til å predikere snøskred for gitte veistrek-
ninger. Avhengighetene ble innkludert som forklaringsvariabler i en
Poisson regresjonsmodell og som tilfeldige effekter i et latent Gaussisk
modellrammeverk. Både inferens og prediksjoner ble utført ved hjelp
av Poisson regresjon og ved bruk av integrerte nøstede Laplace approk-
simasjoner (INLA) for de latente Gaussiske modellene. Nøyaktigheten
til prediksjonene ble vurdert ut i fra forskjellige nøyaktighetsmål, både
ved kryssvalidering for Poisson regresjonsmodellene og for ett testsett
for de latente Gaussiske modellene.

Resultatene viste at nøyaktigheten til prediksjonene basert på Poisson
regresjonsmodellene ble bedre ved å innkludere romlige- og tidsavhen-
gige forklaringsvariabler. Det ble derimot ikke funnet bevis for at de
tilfeldige effektene, som ble benyttet i de mer fleksible latente Gaussiske
modellene, forbedret nøyaktigheten til prediksjonene. Generelt antyder
dette at romlige avhengigheter og tidsavhengigheter kan utnyttes til å
forbedre snøskredvarsling. Allikevel ble det oppdaget at dårlig datakva-
litet var et problem og det kreves mer forskning for å kunne forstå de
underliggende romlige og temporale avhengighetene bedre.
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1 Introduction

1 Introduction
Every winter, central parts of the Norwegian road network are closed due
to avalanches, both when there is a significant risk of one and due to ac-
tual occurrences. Statens vegvesen (SVV) is an institution administering
the main roads in Norway. Thereby, SVV has a responsibility of securing
the road network against the hazards avalanches pose. With this objective,
SVV launched a review of the k-nearest neighbors model (Juvik et al., 20152015),
which is a popular decision support tool due to its simplicity and inter-
pretability by practitioners in operational use. The initiative motivated more
comprehensive investigations seeking to explore alternative models, see Hen-
num (2015)(2015), as well as my own specialization project Ballestad (2015)(2015) were
the problem of under-reporting was examined. The pervasive result from
both studies pointed to a lack in the models’ ability to properly explain the
data. This was also a problem of poor data quality and a result of avalanches
being rare events.

In the last few decades, the availability of spatio-temporal data has increased
substantially as a result of technological and methodological developments.
In addition, the development of Bayesian inference methods have made
it feasible to work with spatio-temporal models on large datasets. In re-
cent years, this approach has also received growing attention in relation to
avalanche forecasting. A number of studies have shown promising results
by modeling avalanches as spatio-temporal processes. Based on data from
Savoie, in the French Alps, Eckert et al. (2007)(2007) showed spatial dependence
of avalanche occurrence at a township scale, using annual count data in a
discrete spatial Poisson model. This demonstrated that spatial models could
provide extra insight. The research was later extended to also consider tem-
poral fluctuations of avalanche occurrences (Eckert et al., 20102010) and it was
found that the annual effect accounted for 17% of the avalanche occurrence
variability. This shows that also temporal dependencies are an intrinsic char-
acteristic of the avalanche activity. Following a similar approach, Lavigne
et al. (2011)(2011) showed that it was possible to bring information from regis-
tered to unregistered avalanche paths, thus substantiating the advantage
of utilizing spatio-temporal dependencies. In the wake of this work, more
sophisticated models were employed to include the effect of spatio-temporal
clustering (Lavigne et al., 20122012) and addition of expert contributions (Lavi-
gne et al., 20152015). Through these improvements, the evolution of avalanches
over time in different regions of the French Alps were identified and related
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to climate change.

Despite the growing attention, the research in this field is still limited.
In all the mentioned previous studies, model inference was carried out in a
hierarchical Bayesian framework using Markov Chain Monte Carlo (MCMC)
simulations and the analysis was done at a township scale focusing on
yearly avalanche frequencies in the French Alps. An alternative approach is
presented in Pozdnoukhov et al. (2011)(2011), that suggests using Support Vector
Machines (SVM), which is a non-parametric classification method, for spatio-
temporal predictive modelling of avalanches. In the study, the method is
used to explore the possibility of exploiting the increased data availability
to develop a data-driven system that could assist in avalanche forecasting.
The system produced avalanche danger maps, on a 10 meter resolution
grid, for a region in Scotland. The danger maps were then used to make
daily predictions for individual avalanche paths. Even though the method
showed promising results, it might be hard to implement such a system
for SVV, since avalanches are only registered once they interfere with the
road network. Thus, providing little information about the terrain in general.

Returning to the situation in Norway, accurate daily avalanche forecasts
are desired to attain a safe road network and ensure minimal unnecessary
road closure. As mentioned before, the studies carried out in Norway so far
showed limited accuracy due to poor data quality and lack in the models’
ability to properly explain the data. It is therefore of interest to see whether
information can be shared between different neighboring stretches of roads
to improve local predictions and thereby overcoming the sparseness of local
data. Even though the Bayesian hierarchical approach showed promising
results for yearly predictions in the French Alps, it has still not been tested
for daily predictions. This will further increase the sparsity of the data and
it is important to select an area with a sufficiently large avalanche frequency.
Moreover, to improve on the computational burden associated with MCMC,
we will instead use a recently developed method called integrated nested
Laplace approximations (INLA), see Rue et al. (2009)(2009).

In this study we will investigate the effect of using spatial and temporal de-
pendencies to model avalanche occurrences in Norway. The spatio-temporal
dependencies will be included both as explanatory variables in a frequen-
tistic framework and as temporally structured random effects in the more
flexible Bayesian hierarchical framework. For the frequentistic approach we
will use Poisson regression. In the Bayesian approach, we also consider Pois-
son distributed responses, but specified as a latent Gaussian model (LGM).
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Here we use integrated nested Laplace approximations (INLA) for the infer-
ence and predictions. Various models are tested for both approaches. The
Poisson regression is used to assess different spatio-temporal explanatory
variables that are used in addition to two basic weather covariates. Both first
and second order random walks will be tested in different forms with the
LGMs. The various models are assessed based on predictive performance.
Hence, it can be investigated whether inclusion of spatio-temporal depen-
dencies improve the accuracy of the avalanche predictions. In addition, it
allows us to compare the simple Poisson regression with the more flexible
latent Gaussian models. The increased flexibility of the LGM comes at the
expense of increased computational costs and it is therefore of interest to
see whether it significantly improves the predictions or not.

Since this study is a collaboration with the SVV, the focus will be on daily
avalanche predictions for exposed parts of the road network. To make the
work feasible, the investigation is restricted to a case study of an area based
around Sognefjorden in Norway. For the various roads in the area, informa-
tive data was available. Other avalanche observations from the surrounding
terrain were also available, however, with poor data quality due to inconsis-
tent observations. It was therefore decided to treat the avalanche occurrences
as an areal process, adopting the township scale methodology mentioned
earlier, but instead using suitable stretches of road. Avalanche occurrences
were then aggregated on a daily basis for each of the stretches.

In Chapter 22, the study area and data are described. In addition, some
initial analysis of the data is carried out, exploring the spatial and temporal
dependencies. This is followed by some theory on the Poisson regression,
latent Gaussian models and INLA in Chapter 33. After having deliberated on
the theoretical foundation, we continue with Chapter 44, where we describe
the different Poisson regression models and latent Gaussian models that are
used in this study. This chapter also provide details on the model validation
procedure, as well as the skill scores and criteria used to compare the models.
We go on to present the results of the model evaluation in Chapter 55. Finally,
in chapter 66, we discuss the results and some data quality issues, before we
present some suggestions for future work.





5 Study area, data and exploratory data analysis

2 Study area, data and exploratory data analysis
2.1 Study area and avalanche data
In this case study it was chosen to use avalanche observations from an area
based around central parts of Sognefjorden in Norway. The area is high-
lighted in Figure 2.12.1. As can be seen, it was located along the west coast
of southern Norway. Climatically, this region was characterized by large
amounts of precipitation caused by weather systems from the North Sea
being forced up the coastal mountains. In the winter season much of the
precipitation fall as snow, due to the lower temperatures in the mountainous
regions. Moreover, since the topography is typically characterized by fjords
and valleys with steep mountainsides, large parts of the road network is
consequently exposed to avalanche-hazardous terrain where avalanches oc-
cur frequently. Additionally, the homogenous climate in the region together
with the relative high frequency of avalanches, made it an area where spatial
and temporal dependencies could provide extra insight and predictability.

Figure 2.1: Location of the case study area.
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The avalanche data was provided by the SVV database and comprised all
registered avalanche observation, along nine different roads in the area, in
the months January to April from 1977 until 2015. The avalanches were reg-
istered manually by local contractors. In Figure 2.22.2 the observed avalanches
are plotted on a map of the area. The different colors indicate the various
roads where the avalanches occurred. These roads were selected since they
had the highest avalanche frequencies in the region. Additionally, it can be
seen that the avalanches tended to cluster along shorter stretches of these
roads. The avalanches along these stretches were presumably relatively
similar in type and cause, thus easing the partition of the area into sub-areas
which will be discussed in further detail in section 2.1.12.1.1. This was also the
reason why avalanches along Fv13 were marked using both yellow and red
dots.

Figure 2.2: Sognefjorden with registered avalanches indicated by dots. The
different colors represent different roads.

The first avalanche to be registered in this area took place along Fv55 in
Esebotn on 4th of March 1977. Since then, a total of 735 avalanches have
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(a) Yearly (b) Monthly

Figure 2.3: Avalanche frequency

been registered, in the given months and along the selected roads, up till
30th of April 2015. The figures 2.3a2.3a and 2.3b2.3b show the yearly and monthly
avalanche frequencies respectively. It can be seen that in both of the years
1994 and 2000 more than 100 avalanches occurred in total in the region.
However, there were also five years with no avalanches. On average there
were approximately 20 avalanches per year with a standard deviation of
27, thus indicating a large variability in the yearly frequency. The monthly
frequency plot show that the most avalanches occurred in March while the
fewest occurred in April, 289 and 65, respectively. From the graph it can also
be seen that there were fewer avalanches in February than in the neighboring
months January and March.

2.1.1 Selection of stretches of roads
In order to investigate the spatial dependencies of avalanches the area was
partitioned into sub-areas. A sub-area was restricted to be a stretch of road
that could be considered homogeneous. The partition was therefore mainly
based on the distance between the avalanche observations and the similarity
in terrain. The roads Fv241, Fv242, Fv182, Fv337 and Fv 92 were relatively
short and the avalanches along these roads were observed in proximity of
one another, in similar terrain and isolated from observations along neigh-
boring roads. Thus, each of these roads were selected to be a separate stretch
of road. Rv13, on the other hand, was split into two separate stretches, a
southern one and a northern one (red and yellow dots respectively), due to
the length of the road and spread of avalanche observations. These groups
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will be referred to as Rv13s and Rv13n.

The avalanches along the three remaining roads Fv152, Fv13 and Fv55
occurred close to one another and in similar terrain. A closer view of these
roads is displayed in Figure 2.42.4. As can be seen, the avalanches along Fv13
(orange dots) can be roughly divided into four groups. A southern one, a
middle one consisting of the avalanche on both sides of the little inlet called
Sværafjorden, and a third group located north of these two. In addition
there were three points located the furthest north, which we call the out-
lier group. The four groups varied in terrain and many of the avalanches
were closer to avalanches along the neighboring roads than they were to
the other groups. Still, the avalanches occurring along Fv152 would slide
in a westward direction while most of the avalanches along Fv13 would
slide in a eastward direction, hence signifying the difference in terrain. The
avalanches occurring along Fv55 might, however, be more similar to the
avalanches along Fv13 topographically. In Table 2.12.1 the correlations between
the avalanche observations for the different groups and roads are displayed.
Since the correlation between all combinations of the four Fv13 groups was
stronger than any correlation between a group and a neighboring road, it
was decided to adopt the natural road partition also in this region. I.e. the
last three stretches were the roads Fv152, Fv55 and Fv13.

Table 2.1: Correlation between the various stretches of road in the
Balestrand/Vetlefjorden area. Fv13 is split into Fv13o, Fv13n, Fv13m and
Fv13s representing the outliers, northern, middle and southern group re-
spectively.

Fv152 Fv55 Fv13o Fv13n Fv13m Fv13s

Fv152 1.00 0.07 0.17 0.14 0.14 0.17
Fv55 0.07 1.00 0.00 0.12 0.08 0.18
Fv13o 0.17 0.00 1.00 0.28 0.32 0.21
Fv13n 0.14 0.12 0.28 1.00 0.32 0.36
Fv13m 0.14 0.08 0.32 0.32 1.00 0.25
Fv13s 0.17 0.18 0.21 0.36 0.25 1.00
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Figure 2.4: A closer view of the northwest area, Balestrand and Vetlefjorden.
The registered avalanches are indicated by dots and the different colors
represent various roads.

2.1.2 Omission of avalanche observations
The partition yielded ten different stretches following the color coding from
Figure 2.22.2. In order to make the avalanche observations as homogeneous as
possible, all observations that clearly stood out from the rest were omitted in
further analysis. The omission was based on distance to the other avalanche
observations and difference in terrain. Since Fv55 and Rv13n (grey and
yellow dots) were the longest roads in the area, several clusters of avalanche
observations could be identified along both. It was therefore necessary to
decide which observations could be regarded as homogeneous and conse-
quently kept for the prupose of this case study. In Figure 2.22.2, most of the
avalanches along Fv55 (grey dots) occurs in the small inlet called Esebotn,
visible in greater detail in Figure 2.42.4. The small spread made it a suitable
stretch of road. The remaining avalanches along Fv55 were located far away
and was omitted in further analysis. Most of the avalanches occurring along
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Rv13n were observed in one valley with presumably homogenous conditions
(yellow cluster furthest south). The remainder of the registered avalanches
along Fv13n were omitted in further analysis, due to the large spread and
since they were outside the valley, possibly making them different. Fur-
thermore, the easternmost observation belonging to Fv337 was omitted in
further analysis for similar reasons.

The resulting ten stretches and avalanche counts are displayed in Table
2.22.2. Almost half of the observed avalanches occurred along the two stretches
A3 and A8, 106 and 219, respectively. A2, on the other hand, only had 26
registered avalanches. The other stretches vary between 40 to 66 registered
avalanche observations. Note that the omission of data points, related to the
selection of stretches, reduced the overall number of avalanches by 28 down
to 707.

Table 2.2: Stretches of roads together with avalanche frequency.

Stretch Road Avalanches

A1 Fv241 55
A2 Fv242 26
A3 Fv182 106
A4 Fv337 42
A5 Fv92 63
A6 Rv13 s 62
A7 Rv13 n 40
A8 Fv152 219
A9 Fv13 57
A10 Fv55 37
Total All 707

In Figure 2.52.5 the yearly avalanche frequency is plotted again, with color
codes showing the distribution for the ten regions. In general the number of
avalanches varies a lot for each of the stretches from year to year. Several
avalanches were observed for A8 in most of the years. This was reasonable,
considering that 219 out of the 707 avalanches occurred there. Moreover,
it can be seen that for the stretches A6 and A7 (Rv13), avalanches were
mostly registered from year 2000 and onwards. In addition, the frequency
of avalanches in A3 appeared to decrease after 2002. After conversations
with Tveit (2016)(2016) from SVV and Haslestad (2016)(2016) from Norges vassdrags-
og energidirektorat (NVE) later in the study, it was found that these observa-
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tions were related to poor data quality. This was, however, discovered after
the analysis had been carried out and the issue will therefore be discussed
as a source of error in Section 6.26.2.

Figure 2.5: Yearly frequency of avalanches for each area.

2.2 Snow depth data from seNorge
In previous studies for SVV, Juvik et al. (2015)(2015) and Hennum (2015)(2015) found
that snow depth observations from weather stations was a vital explanatory
variable. However, since the weather stations measuring snow depths were
often placed far away from the avalanche sites and at sea level it was dif-
ficult to get realistic observations. Moreover, the data quality was varying
as measurements were sometimes lacking. In an attempt to improve this,
it was decided to use interpolated snow depths based on the seNorge snow
model. This model interpolated a snow depth, at 6:00 every morning, for
every square kilometer in Norway based on precipitation and temperature
observations, and a snow model. For more details, see Saloranta (2014)(2014).

The snow depth data were accessed through the web page (Norges vassdrags-
og energidirektorat, 20122012). Using this model, each stretch, Ai, was given a
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different snow depth covariate, si , from a selected grid point close to the
avalanche observations. In this way it was attempted to account for local
differences and to improve the accuracy of the covariates. However, several
grid points were possible for many of the stretches, especially the stretches
A1, A3, A4, A7 and A9, which were exposed to multiple avalanche paths.
Furthermore, it was unknown at which height the avalanches were triggered.
The correlation between snow depths from two potential grid points, of
different altitude, was computed for each of these problematic stretches.
The results in Table 2.32.3, show that the correlation was relatively strong for
all the stretches. This indicated that the differences were small for grid
points laying close to each other and closer inspection was not carried out. It
was decided to use the grid points with altitudes that seemingly represented
the surrounding mountains best. In Figure 2.62.6 the selected snow depth
locations are displayed as blue squares, while the red squares represent the
alternative locations.

Table 2.3: Correlation between snow depths from different grid points with
different altitudes for problematic stretches.

Stretch Correlation Altitude difference

A1 0.68 638
A3 0.81 354
A4 0.95 150
A7 1.00 20
A9 0.75 160

Since avalanches often occurred during or after heavy snow falls it was
decided to use the difference in snow depth as a second covariate, ∆si , in the
avalanche model. This covariate was computed as the difference between the
interpolated snow depth for a given day and the interpolated snow depth
from the previous day. The correlation between the two covariates si and
∆si was computed, for all the stretches combined, to make sure that ∆si was
not redundant. It was found to be 0.07, thus rejecting this concern.

2.3 Exploring data dependencies
2.3.1 Avalanches and snow depth
In order to investigate the relationship between avalanche occurrences and
the snow depth, the yearly avalanche frequency was plotted together with
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Figure 2.6: Map over area. Red squares show were the snow depth was
computed, blue squares show alternative locations due to varied terrain and
black dots show weather stations.

box plots of the snow depths, averaged over all the stretches for the corre-
sponding years. The plots are displayed in Figure 2.72.7. It can be seen that the
snow depths vary a lot from year to year, both in spread and size. There were
no clear trends visible, although most years with high avalanche frequency
also tended to have larger amounts of snow. This is better visualized in
Figure 2.82.8, which displays the yearly snow depth median, averaged over all
stretches, on top of the yearly avalanche frequency.
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Figure 2.7: Yearly avalanche frequency and box plots of the snow depths,
averaged over all stretches for each year. Compared with yearly avalanche
frequency.
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Figure 2.8: Median of snow depths per year, averaged over all stretches.
Plotted on top of annual avalanche frequency.
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2.3.2 Spatial and temporal dependencies
The spatial dependencies between the different stretches were studied by
computing the correlation between the observed avalanches. The correlation
was then plotted as a function of the distance separating each pair of the
stretches. The results are displayed in Figure 2.92.9 and 2.102.10 in the panels
to the left. A1 and A2 had the strongest correlation and were also located
close to each other. The rest of the stretches had weaker correlation with at
each other. However, no clear relation was found between the correlation
and distance, for any of the stretches. To investigate the correlation pattern
between the different stretches more closely a matrix was plotted, where
all pairs of stretches with correlation above 0.18 had been marked with
dark squares. The result is displayed in Figure 2.112.11. This plot revealed that
there was a second group consisting of A3, A4, A5, A8, A9 and A10 that
seemed to be better correlated than the rest, in addition to the isolated pair
consisting of A1 and A2. This will be exploited later when validating the
latent Gaussian models, see Section 4.64.6.

The right panels in Figure 2.92.9 and 2.102.10, show the estimated autocorrelation
functions (ACF) for the avalanche observations for each of the stretches. The
ACF is clearly significant for the first few lags for both A3 and A5. More-
over, the ACF is weakly significant for many of the first 15 lags along the
stretches A6, A7 and A8. Therefore, this indicates the presence of temporal
dependencies, although weak, that could potentially be used to improve the
accuracy of the avalanche predictions. It should also be noted that the ACF
for both A1 and A2, had a pronounced value at lag 5. Closer examination,
revealed that this was the result of the avalanche activity on the 11th and
16th of January in 2011. For A1, 6 and 5 avalanches were observed on these
two days, respectively. Similarly 9 and 6 avalanches were observed along
A2. Such high counts were rare. In fact, 9 avalanches was the highest count
to be observed along a single stretch during one day. Therefore, since so
many avalanches occurred with a 5 day spacing, it caused the ACF at lag 5
to be pronounced for the two stretches. This was also the reason why the
two stretches were strongly correlated.
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Figure 2.9: Correlation between avalanche occurences for the different
stretches as a function of distance and the autocorrelation for regions A1-A5.
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Figure 2.10: Correlation between avalanche occurences for the different
stretches as a function of distance and the autocorrelation for regions A6-
A10.
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Figure 2.11: Stretches with avalanche occurrence correlation above 0.18 are
illustrated with dark boxes.
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3 Background
3.1 Notation
We first introduce some general notation that is useful to understand the fol-
lowing theory. The set of observations on a response is denoted by a column
vector y = (y1, ..., yn)′, where ′ denote the transpose operation. Moreover, yi
is treated as a realization of the random variable Yi . The set of covariates or
explanatory variables is arranged as an n× (M + 1) matrix X = (x0,x1, ...,xM ).
Each row of X refers to a different observation and each column to a different
covariate. We let β = (β0,β1, ...,βM )′ denote the set of coefficients associated
with the covariates. Note that β0 represents the intercept with covariate
vector (1, ...,1)′ . Finally, we define the linear predictor as

ηi = xiβ. (3.1)

3.2 General linear models: Poisson regression
Poisson regression is a model from the class of generalized linear models
(GLM) introduced by Nelder and Wedderburn (1972)(1972). This is a class that
extends the linear regression from concerning only responses from a Gaus-
sian distribution to the case where it is sufficient that the distribution belong
to the exponential family, see Casella and Berger (2002)(2002) for a definition. In
other words the linear model

Yi ∼Normal(µi ,σ
2), (3.2)

µi = ηi , (3.3)

is generalized to include all distributions that belong to the exponential
family. This is done by assuming instead that a one-to-one continuous differ-
entiable transformation of the distribution mean follow the linear model, i.e.
g(µi) = ηi . The transformation g(·) is referred to as the link function and µi
is the mean of an exponential distribution.

3.2.1 Poisson regression
The Poisson regression model is the typical statistical method for the analysis
of the relationship between observed count data and a set of explanatory
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variables. We describe the model here as formulated by McCullagh and
Nelder (1989)(1989). The count data assume discrete values between 0 and∞, i.e.
Yi ∈ {0,1,2, ...}. The parameter of interest is the average number of events,
λi = E[Yi], and the model assumes that λi has a linear relationship with the
explanatory variables through a link function. For the Poisson regression
the common link function is the logarithm, i.e

ηi = log(λi) = xiβ and λi = exp(xiβ), (3.4)

where ηi is called the linear predictor. Equivalently the exponential function
transforms the continuous values obtained by applying the linear predictor
into the range of values of λi . The Poisson regression model can be written
as follows:

Yi ∼ Poisson(λi) (3.5)

ηi = log(λi) = xiβ. (3.6)

Note that the last equation can be expressed as

ηi = β0 +
M∑
m=1

βmxm,i . (3.7)

The coefficients are interpreted through the exponential function. Exponen-
tiating the intercept yield the average count of events in an area or period
when the predictors are at their reference category or at 0. Similarly, exp(βm)
for m > 0, give the multiplicative effect of the m-th predictor on λi when xm
changes by one unit.

3.2.2 Inference
The model parameters are estimated using the maximum likelihood, see
McCullagh and Nelder (1989)(1989) for a detailed explanation. We present the
method briefly here. The first and expected second derivatives of the loga-
rithm of the likelihood is taken to obtain the score and information matrix.
The estimates are then found using the iteratively re-weigthed last squares
(IRLS) method. Based on a current estimate β̂, the linear predictor η̂ = x′iβ̂
is computed. The fitted values can then be calculated as µ̂ = exp(η̂). Us-
ing these values the working dependent variable z, given for the Poisson
regression as,

zi = η̂i +
yi − µ̂i
µ̂i

, (3.8)
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is computed. An improved estimate for β̂ is then found by regressing z on
the covariate, calculating the weighted least squares estimate

β̂ = (X ′WX)−1X ′Wz, (3.9)

here W is a diagonal matrix of weights with entries wii = µ̂i and the large
sample variance is

Var(β̂) = (X ′WX)−1. (3.10)

The final estimate is determined by repeating this procedure until conver-
gence.

3.3 Latent Gaussianmodels
We continue by introducing the class of latent models, which extends
the generalized linear model by allowing addition of random effects to
the linear predictor. Following the description given in Blangiardo and
Cameletti (2015)(2015):pp. 107-109, a latent model is typically defined within a
three stage Bayesian hierarchical model framework consisting of responses,
a latent process and hyperparameters for the priors that are assigned to the
latent field. That is,

Stage 1: Y = (Y1, ...,Yn), (3.11)

Stage 2: ηi = β0 +
M∑
m=1

βmxmi +
L∑
l=1

fl(zli), θ = (β0,β,f ), (3.12)

Stage 3: ψ = (ψ1, ...,ψP ), (3.13)

where the collection of parameters in the linear predictor, θ, is the latent
field and ψ is a vector of P hyperparameters corresponding to the assigned
priors. The random effects are given by fl(zli), which are unknown functions
defined in terms of a set of covariates Z = (z1, ...,zL). These can take many
different forms such as smooth and nonlinear effects of covariates, time
trends and seasonal effects, random intercept and slopes as well as temporal
or spatial random effects. In this study the functions will be random walk
processes of first and second order, see section 3.3.13.3.1 for more details. The
responses in Stage 1 is typically assumed to belong to an exponential family
where the mean, E[Yi] = µi , is linked to the structured additive predictor ηi
through a link function g(·), so that g(µi) = ηi , as for the GLM in Section 3.23.2.

A latent Gaussian model (LGM) is obtained by assigning Gaussian priors
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to all elements of the latent field θ. The responses are assumed to be condi-
tionally independent, given the latent field and the hyperparameters. Thus,
we have for stage 1 that

p(y|θ,ψ) =
n∏
i=1

p(yi |θi ,ψ), (3.14)

where each data point yi is connected to only one element θi in the latent
field. In our case, since the responses are assumed to be Poisson distributed
we will have that E[Yi] = λi = exp(ηi), as for the Poisson regression, and

p(yi |θi ,ψ) = Poisson(yi ;θi ,ψ) (3.15)

The second stage is formed by the latent Gaussian field resulting from
the multivariate Gaussian prior that is assumed on the latent field, with
mean 0 and precision matrix Q(ψ). The density function thus becomes,

p(θ|ψ) = (2π)−n/2|Q(ψ)|1/2exp
(
−1

2
θ′Q(ψ)θ

)
, (3.16)

where | · | is the determinant.

Finally, the third stage is formed by the hyperparameter prior distribution,
i.e.

ψ ∼ p(ψ). (3.17)

In this study it was decided to use a standard non-informative gamma prior
for the precision parameter associated with the random walk process. This
will be specified further in Section 4.34.3.

3.3.1 Randomwalkmodel
The random effect, f (zi), that we included in the LGM was either a first-order
random walk (rw1) or a second-order random walk (rw2). These are both
improper GMRF’s with rank deficiency one and two respectively (Rue and
Held, 20052005). The models can be described as follows. Given a time ordered
vector (z1, ..., zT ), a random walk is a model defined by an order r so that zt
only depends on the previous t − r elements (Feller, 19681968). The simplest RW
model is defined when r = 1, then the conditional distribution of zt given all
the other elements of the vector is

zt |zt−1 ∼Normal(zt−1, τ
−1),



25

so that there are independent increments

∆zt = zt − zt+1 ∼Normal(0, τ−1),

where τ is the precision. The density for z is derived from the T − 1 incre-
ments as

p(z|τ) ∝ τ (T−1)/2exp
(
−τ

2

∑
(∆zt)

2
)

= τ (T−1)/2exp
(
−1

2
z′Qz

)
, (3.18)

where Q = τR and R is the structure matrix reflecting the neighborhood
structure of the model. Similarly for the second order random walk we have
that

zt |zt−1, zt−2 ∼Normal(2zt−1 + zt−2, τ
−1),

with independent second-order increments

∆2zt = zt − 2zt+1 + zt+2 ∼Normal(0, τ−1).

The density for z thus becomes,

p(z|τ) ∝ τ (T−2)/2exp
(
−1

2
z′Qz

)
, (3.19)

where, again, Q = τR and R represent the new neighborhood structure given
by the second order increment ∆2zt .

3.4 Bayesian inference and LGM
The integrated nested Laplace approximations (INLA) is a deterministic
algorithm especially designed for latent models, that was introduced by
Rue et al. (2009)(2009). We now present an overview of the INLA inference, for
more details we refer the reader to Blangiardo and Cameletti (2015)(2015). In
Bayesian inference the objectives are the marginal posterior distribution for
each element of the parameter vector θ

p(θi |y) =
∫
p(θi ,ψ|y)dψ =

∫
p(θi |ψ,y)p(ψ|y)dψ, (3.20)

and for each element of the hyperparameter vector

p(ψk |y) =
∫
p(ψ|y)dψ−k , (3.21)
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where ψ−k represent ψ without the kth element. It is therefore necessary
to compute p(ψ|y) and p(θi |ψ,y) from which the all relevant marginals and
marginal posteriors can be determined. The first entity can be approximated
by

p(ψ|y) =
p(θ,ψ|y)
p(θ|ψ,y)

(3.22)

∝
p(y|θ,ψ)p(θ|ψ)p(ψ)

P (θ|ψ,y)

≈
p(y|θ,ψ)p(θ|ψ)p(ψ)

p̃(θ|ψ,y)

∣∣∣∣∣
θ=θ∗(ψ)

=: p̃(ψ|y), (3.23)

where p̃(θ|ψ,y) is the Gaussian approximation of p(θ|ψ,y), given by the
Laplace method (Blangiardo and Cameletti, 20152015:p. 105). The θ∗(ψ) is the
mode for a given ψ. This approximation is accurate since p(θ|ψ,y) appears
to be almost Gaussian.

Several methods exists to compute the more complex second entity p(θi |ψ,y).
We explain the standard option, called simplified Laplace approximation,
which is both computationally efficient and usually sufficiently accurate. The
parameter vector is rewritten as θ = (θi ,θ−i) and the Laplace approximation
is used to obtain

p(θi |ψ,y) =
p((θi ,θ−i)|ψ,y)
p(θ−i |θi ,ψ,y)

(3.24)

∝
p(θ,ψ|y)

p(θ−i |θi ,ψ,y)

≈
p(θ,ψ|y)

p̃(θ−i |θi ,ψ,y)

∣∣∣∣∣
θ−i=θ∗−i (θi ,ψ)

=: p̃(θi |ψ,y), (3.25)

where p̃(θ−i |θi ,ψ,y) is the Laplace Gaussian approximation to p(θ−i |θi ,ψ,y)
and θ∗−i(θi ,ψ) is its mode. Furthermore, a Taylor expansion of the Laplace
approximation p̃(θi |ψ,y) that includes a correcting mixing term, is used in
place of the Laplace approximation to reduce the computational cost.

For both the entities the computation of the joint posterior distribution
for θ and ψ, p(θ,ψ|y) is required. It is given by the product of the likelihood
(3.143.14), of the density (3.163.16) and of the hyperparameter prior distribution
(3.173.17), that is

p(θ,ψ|y) ∝ p(ψ) · |Q(ψ)|1/2exp

−1
2
θ′Q(ψ)θ +

n∑
i=1

log(p(yi |θi ,ψ))

 . (3.26)
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In the computations it is exploited that the matrixQ(ψ), is a sparse precision
matrix. This is a consequence of the components of the Gaussian latent
field θ being conditionally independent. A specification that is known as
Gaussian Markov random field (GMRF) (Rue and Held, 20052005).
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4 Models and evaluation
In this chapter we describe the different models that were used to investigate
the effect of including spatial and temporal dependencies on the avalanche
prediction accuracy. The spatial and temporal dependencies are considered
in a GLM framework by using the number of avalanches in the previous
days, both for a single stretch and for the area in general, as explanatory
variables. In the LGM framework we introduce latent temporal variables
that are shared between the stretches. The models are compared according
to predictive performance and the potential improvements are assessed
relative to a basic model that only includes weather covariates.

4.1 Notation
We let i ∈ {1, ...,10} denote the stretches of road. Furthermore, we let j ∈
{1, ..., J} denote the year and t ∈ {1, ...,T } the day. The number of years, J ,
will be described in section 4.64.6. The number of days in each year was
T ∈ {120,121} depending on the year being a leap year or not. That is, yijt
represented the number of avalanches observed along stretch i, in year j and
on day t.

4.2 Poisson regression
The number of avalanches was assumed to be Poisson distributed, such that

yijt ∼ Poisson(λijt). (4.1)

Recall, that the mean λijt was linked to the explanatory variables through a
logarithmic link function and we specify the linear predictor (3.73.7) as

ηijt = β0,i +
M∑
m=1

βm,ixm,ijt , (4.2)

where βm,i were the coefficients, specified for each stretch i, and xm,ijt
were the corresponding explanatory variables with daily observations. The
stretch-specific coefficients allowed the different stretches to depend differ-
ently on the explanatory variables. This is reasonable, since each stretch has
its own local topography and climate (Haslestad, 20162016). For instance, each
stretch had stretch-specific weather covariates, as discussed in Section 2.22.2.
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Furthermore, also the intercept and spatio-temporal explanatory variables,
which will be introduced shortly, were given stretch-specific coefficients,
due to the different topography and since the average number of avalanches
for each stretch varied.

An overview of the explanatory variables that were used is given in Ta-
ble 4.14.1. The weather covariates snow depth and snow depth difference are
described in Section 2.22.2. The four remaining explanatory variables were
used to investigate whether avalanche occurrences significantly depended
on avalanche activity in the previous days. This was done by taking the
total number of avalanches, for all ten stretches in the area, the previous
day and for the five previous days, denoted p1

jt and p5
jt , respectively. Hence

both the day-to-day dependence could be studied as well as the effect of a
smoother 5 day interval. Similarly, the explanatory variables ς1

ijt and ς5
ijt ,

were the number of avalanches, for stretch i, the previous day and the five
previous days. Through comparison of these explanatory variables with
p1
jt and p5

jt , the dependency on avalanches along the neighboring stretches
could be examined.

Table 4.1: Covariates used in model testing.

Covariate Description

sijt Snow depth
∆sijt Snow depth difference
p1
jt Avalanches in area the previous day

p5
jt Avalanches in area the five previous days

ς1
ijt Avalanches along stretch i the previous day

ς5
ijt Avalanches along stretch i the five previous days

In total we tested three different models, within the GLM framework. The
first model, Model 1, was a basic model and all other models, both in the GLM
and the LGM framework, were extensions of this. Only the two weather
covariates, sijt and ∆sijt , were used in the basic model and it provided a ref-
erence when assessing the effect of including spatio-temporal dependencies
in the rest of the models. We specify Model 1,

Model 1: ηijt = β0,i + β1,isijt + β2,i∆sijt =: Bijt , (4.3)
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where β0,i was the intercept for stretch i and (β1,i ,β2,i) were the coefficients
for the corresponding stretch. To improve readability we denote the linear
predictor of Model 1 Bijt and all the other models will be extensions of this.

The second model, Model 2, includes all the different spatio-temporal ex-
planatory variables. In this way, the explanatory variables that were sig-
nificant for the most stretches could be identified and in turn be used to
make an updated Poisson regression model. Moreover, the model allowed
us to compare the different spatio-temporal explanatory variables, so that
the spatio-temporal dependencies could be better understood. We specify
Model 2,

Model 2: ηijt = Bijt + β3,ip
1
jt + β4,ip

5
jt + β5,iς

1
ijt + β6,iς

5
ijt , (4.4)

where Bijt is represented in the basic model (4.34.3), while the remaining
terms were the coefficients and corresponding spatio-temporal explanatory
variables.

Model 3 was the final Poisson regression model and was the update of Model
2. The variables p1

jt and ς1
ijt were excluded, based on the findings in Section

5.1.15.1.1 which showed that they were less significant. The model was used both
to investigate the effect of including spatio-temporal explanatory variables
relative to the basic model, but also for comparison of the potential benefits
when using the more flexible LGMs. We specify the Model 3,

Model 3: ηijt = Bijt + β3,ip
5
jt + β4,iς

5
ijt . (4.5)

4.3 Latent Gaussianmodels
We first explain the generic structure of the tested LGMs, before we specify
the individual models. The avalanche observations y were still assumed to
follow a Poisson distribution and we had for the Stage 1 (3.143.14) of the LGM
hierarchical structure that

yijt |θ,ψ ∼ Poisson(λijt).

In Stage 2 (3.163.16), the latent field generally consisted of two main parts. The
first part included the fixed effects given by the intercept and the weather
covariates, that is Bijt . The second part consisted of a temporally structured
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effect T emp which we will specify for each of the models. These two parts
were combined to give the linear predictor

ηijt = Bijt + T emp. (4.6)

The temporal effect was controlled by the precision τ = 1/σ2, which was a
Stage 3 hyperparameter (3.173.17) for all the LGMs. Since no information about
the prior was available, a standard non-informative logGamma prior was
assumed on the logarithm of the precision, i.e.

τ ∼Gamma(1,5e − 5). (4.7)

The generic model structure was based on the belief that the different
stretches shared a common time trend, much like the idea behind the ex-
planatory variables p1

jt and p5
jt . Therefore, when an avalanche was observed

along a stretch this would serve as a warning for the area in general that the
present conditions might be avalanche hazardous. This seemed plausible,
since topography, snowpack and weather conditions were thought to have
some of the same characteristics throughout the area.

In practice we used three different versions of this model structure. For
all three models both a) a first-order random walk and b) a second-order
random walk was used as the temporal effect in T emp, see Section 3.3.13.3.1.
In the first LGM, it was assumed that the temporal trend was common for
all the years and stretches, such that no distinction was made between the
different years and only one temporal trend was fitted to the days {1, ...,T }.
This temporal trend therefore represented a seasonal effect. We specify
Model 4,

Model 4 : ηijt = Bijt + εr (t), (4.8)

where εr (t) represent the random walk process of order r ∈ {1,2}, which was
controlled by the precision parameter τ (4.74.7).

A second and more realistic GLM assumed that the time trend could be
different for each year, but still sharing the same precision parameter τ . This
seemed more likely considering the large variability in annual avalanche
frequency and snow fall. Each year was therefore assumed to have a condi-
tionally independent random walk, so that εr (t) = εrj (t), where j denotes the
year. We specify Model 5

Model 5 : ηijt = Bijt + εrj (t), (4.9)



33

Finally, in the last version we assumed a seasonal effect, as in Model 4.
However, the seasonal effect was allowed to affect each stretch differently,
through a stretch-specific weight γi . This was also reasonable, considering
that the average number of avalanches was different for the various stretches.
Each stretch was considered to have the same time trend but scaled with
the stretch-specific weight, γi . Note that the weights γi were also Stage 3
hyperparameters, so that ψ = (τ,γ). We specify Model 6

Model 6 : ηijt = Bijt +γiε
r (t). (4.10)

Recall that, since r ∈ {1,2}, this implies that each of the LGMs are tested in
two different variants using first a rw1 and then rw2 process. The models
will therefore be denoted using (a) for rw1 and (b) for rw2. So that Model 4a
denotes Model 4 with a rw1 sub-model etc.

4.4 Model fit criteria
The deviance is a useful measure to compare the models in terms of fit,
whether frequentist or Bayesian. Following the definition given in Blangia-
rdo and Cameletti (2015)(2015):p. 169, the deviance is given by

D(θ) = −2logp(y|θ), (4.11)

where p(y|θ) is the likelihood of θ given the responses y. Since the deviance
was general, it could be used both for the Poisson regression models as well
as for the LGMs. We define the different criteria used for both the model
classes. Note that the criteria could not be used to compare the Poisson
regression models with the LGMs.

The relative quality of the different GLMs was compared using the Akaike
information criterion (AIC) (Akaike, 19731973). If we let β̂ be the maximum
likelihood estimates of the parameters β. Then the AIC is defined as

AIC = 2d + D(β̂), (4.12)

where d is the number of estimated parameters and is used as a measure of
the model complexity. The model with the lowest AIC value is in general
believed to be better supported by the data.
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Correspondingly, the deviance information criterion (DIC) (Spiegelhalter
et al., 20022002), which is a generalization of the AIC, was used to compare
the LGMs. This is the most commonly used measure of model fit based on
the deviance for Bayesian models. The DIC is defined as the sum of the
estimated deviance, D̄(θ) = Eθ|y[D(θ)], and effective number of parameters
given by

pD = Eθ|y[D(θ)]−D(Eθ|y[θ]) = D̄−D(θ̄). (4.13)

The DIC thus become,
DIC = D̄ + pD, (4.14)

and the models with the smaller DIC were better supported by the data, as
for the AIC.

In addition, the marginal likelihood, p(y), was used to compare the LGMs.
The quantity was approximated in the INLA framework by integrating the
Laplace approximation (3.233.23) with respect to the hyperparameter ψ (Rue
et al., 20092009), that is

p̃(y) =
∫
p̃(ψ|y)dψ. (4.15)

The logarithm of the marginal likelihoods was used for the comparison and
the model with the largest value is considered to fit the data better.

4.5 Skill scores
We used the ranked probability score (RPS) (Epstein, 19691969) to evaluate the
accuracy of the predictions resulting from the different models. RPS is a
categorical probabilistic forecast verification metric that was both strictly
proper (Murphy, 19691969) and sensitive to distance (Holstein, 19701970). The error
was measured through estimation of the mean squared error (MSE), which
was, on the other hand, deterministic and continuous. In addition, it was
decided to adopt the scores based on binary outcomes that were used in
the SVV report, Juvik et al. (2015)(2015). We let λ∗ denote the vector of npred
predictions with elements {λ∗ijt}, where i,j and t index the stretches, years
and days for which avalanche activity is predicted. Using this notation the
following definitions and specifications apply.

The RPS is defined as the sum of square differences between the cumu-
lative distribution of the forecast and the observation (Murphy, 19711971). If we
let k denote the the possible forecasts, i.e. the number of avalanche along a
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stretch on a given day, the RPS becomes

RPS =
∞∑
k=1

(F(k)− I(y ≤ k))2, (4.16)

where F(k) is the cumulative forecast distribution and I(y ≤ k) is the indica-
tor function giving the cumulative observation probability of the observation
y. The score is in the range [0,∞) with 0 being the optimal score.

In order to compute the RPS we needed to select an upper limit, K , represent-
ing the highest possible number of avalanches along stretch i on a given day
{j, t}. The value of K was in general set to be 50 as this provided a sufficient
upper limit for all forecasts smaller than 20, hence covering nearly all cases.
For the rare cases where a larger number of avalanches was forecasted, K
was selected such that the probability of forecasting K + 1 avalanches was
less than 10e − 8. The cumulative forecast probability was given by the
cumulative Poisson distribution with parameter λ∗ijt , i.e. F(k) = F(k;λ∗ijt).
This score was averaged over all predictions so that

RPS =
1

npred

∑
λ∗ijt∈λ∗

K∑
k=1

(F(k;λ∗ijt)− I(yijt ≤ k))2. (4.17)

The mean square error was estimated using

M̂SE =
1

npred

∑
λ∗ijt∈λ∗

(λ∗ijt − yijt)
2, (4.18)

i.e. the square sum of difference between the predicted average number of
avalanches λ∗ijt and the observation yijt .

4.5.1 Skill scores used by the SVV
The scores suggested by SVV in Juvik et al. (2015)(2015) was based on binary out-
comes, were avalanche activity was either forecasted or not, depending on a
preset threshold. If the prediction λ∗ijt was above this threshold avalanche
activity was forecasted and similarly no avalanche was forecasted if the
prediction was below this threshold value. The selection of the threshold
value will be discussed in more detail in Section 4.64.6. Based on this threshold
there were four possible validation outcomes that are displayed in Table 4.24.2.
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Table 4.2: Definition of validation outcomes.

Forecasted Observed
Avalanche ¬ Avalanche

Avalanche a (true positive) b (false positive)
¬ Avalanche c (false negative) d (true negative)

The quantities a, b, c and d denote the number of outcomes in the respective
categories during validation.

We define the skill scores as reported by Juvik et al. (2015)(2015). The Hit Rate
(HR) is defined as the proportion of correct forecast for both days with and
without avalanche activity,

HR =
a+ d

a+ b+ c+ d
. (4.19)

The value lies in the range [0,1], with 1 being the optimal score. However,
the HR is considered to be unreliable for rare events such as avalanches,
since forecasting no avalanches will be beneficial.

Next, we define the Probability of Detection (POD) as the probability of
forecasting avalanche activity before it occurs,

POD =
a

a+ c
. (4.20)

The value lies in the range [0,1], with 1 being the optimal score.

The Unweighted Average Accuracy (UAA) is defined as the average of the
accuracy of the predictions for both days with and without avalanche activ-
ity,

UAA =
1
2

(
a

a+ c
+

d
b+ d

)
. (4.21)

The value lies in the range [0,1], with 1 being the optimal score. This is
considered to be a better skill score for rare events, since both events a and
d are equally weighted.

The Pierce Skill Score (PSS) is a measure of the accuracy relative to a un-
biased random reference forecast, i.e.

PSS =
a

a+ c
− d
b+ d

. (4.22)
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The value lies in the range [−1,1], with 1 indicating a perfect forecast. More-
over, 0 indicates that the model performs equivalently to a model forecasting
the same every day.

The Bias is defined such that values above 1 indicate that an event is fore-
casted more often than it occurs, while values below 1 indicate the opposite,

Bias =
a+ b
a+ c

. (4.23)

The value lies in the range [0,∞), with 1 being the optimal score.

4.6 Inference and validation schemes
The different GLMs were evaluated and compared, using k-fold cross valida-
tion. We let each fold correspond to a year, so that one year at a time was
used as test set, while the remaining years were used to train the models.
Since the focus was on predicting avalanches, all years without avalanche
observations were excluded. This resulted in 34 years. Hence, the procedure
was repeated 34 times for each model. The skill scores were computed for
each repetition and the average was used as a general measure of the models
predictive performance. In order to compute the different scores suggested
by SVV, we needed to set a threshold value, deciding whether an avalanche
was to be forecasted or not. The threshold was set such that the Bias (4.234.23)
was approximately equal for all the models, to ease comparison.

The complexity of the latent models caused the computations related to
the inference to be expensive. The cross validation procedure was therefore
no longer feasible. It was instead decided to validate the different models us-
ing a single training set Dtrain to train the models and a single test set Dtest to
evaluate the predictions resulting from the trained model. To further reduce
the computational costs only a subset of the complete data set D = {y,X}
was selected for the validation procedure, i.e. (Dtrain ∪Dtest) ⊂D. The two
sets were selected so that they were mutually exclusive, i.e. Dtest∩Dtrain = ∅,
to prevent overfitting. Note that this validation procedure also had to be
carried out for the Poisson regression models, in order to compare the GLMs
and LGMs.

We continue by describing how the test set and training set were selected.
Firstly, we used the five stretches with strongest correlations in terms of
avalanche occurrence. Hence, the spatio-temporal dependencies were more
likely to have an effect. Recall, Figure 2.112.11, which display all pairs of
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stretches that have a correlation above 0.18. As can be seen, the areas A3,
A4 and A5 form a group of correlated stretches. Moreover both A3 and A6
were well correlated with the stretches A8, A9 and A10. However, A10 is
less correlated with A8 and A9. Based on this the the five stretches A3, A4,
A5, A8 and A9 were selected. Secondly, to further reduce the computational
expenses it was decided to let the training set consist of 10 selected years:
1986, 1991, 1993, 1994, 1995, 1997, 1998, 2002, 2011 and 2012. These
years were chosen to include varying numbers of avalanches. However, a
minimum of 4 avalanches per year was required, in total for the 5 stretches,
as the focus was on predicting avalanche occurences. Similarly the test set
was constructed of the three years: 1990, 1999 and 2000 and used to evaluate
the different models’ prediction accuracy. For the three years it occurred
12 avalanches (few), 37 avalanches (moderate) and 62 avalanches (many),
respectively. Thereby allowing assessment of the models’ performance in
the different cases.

The spatio-temporal dependency from the random effects in the LGMs
must be estimated every day, based on data from the previous days the same
year. The model therefore needs to be run again for each day in the test set.
The associated computational cost is high, since the whole test set comprises
361 days. This would not, however, be a problem for SVV operationally. The
mode of the precision parameter, τ (4.74.7), from the trained model was kept
fixed, mainly to reduce computation time. Thus, for each day a prediction
λ∗ijt was made for each of the five stretches, based on the corresponding
weather covariates and the previously trained model. The data set was then
updated with the observed values yijt . and the procedure was repeated.
In this way it was prevented that future information falsely enhanced the
prediction estimates. The same routine was not required for predictions for
the GLMs, since no information exchange with the assumed future observa-
tions would occur. These predictions could therefore be computed as normal.

The iterative prediction and validation procedure for the LGMs is illus-
trated in Algorithm 11. Here l was the index iterating through the days of
the test set. Thus, each value of l corresponded to a unique combination of
the index {j, t} identifying the year and day for which the prediction, λ∗l , was
made. Note that λ∗l = (λ∗3jt ,λ

∗
4jt ,λ

∗
5jt ,λ

∗
8jt ,λ

∗
9jt), corresponding to the predic-

tions for each of the selected stretches, on the given day. The predictions
λ∗l were taken to be the exponentiated mode of the linear predictors that
was estimated using INLA. In addition, the threshold required to compute
the scores for binary outcomes was selected such that the Bias, see equation
(4.234.23), was approximately equal for the different models, as for the cross
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validation earlier.

Algorithm 1 LGM validation

1: procedure Validation procedure(Dtrain, Dtest)
2: for each day l do
3: make prediction λ∗l based on day 1 : (l − 1)
4: update Dtrain with observation yl
5: compute skill scores for predicted values λ∗

4.6.1 Software
All analysis, data handling, as well as all computations related to the model
were done using R (R Development Core Team, 20082008). The GLM inference
and prediction were carried out using the glm() and predict.glm() functions
which was available in the R environment. Similarly the inla() function,
available from the R-INLA package, see Rue et al. (2009)(2009) and Martins et
al. (2012)(2012), was used for the inference and also prediction related to the LGMs.
In addition the rgdal package (Bivand et al., 20152015) was useful in the treatment
of the spatial data. At last, the ggmap package (Kahle and Wickham, 20132013)
deserves a mention for the usefulness when plotting coordinates and maps.
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5 Results
This chapter presents the results for the models investigated in this study.
We start with the coefficients, AIC and results from the cross validation
for the Poisson regression models. Thereafter, we show examples of the
temporal random effects that were found using the LGMs. We also present
the DIC and marginal log-likelihood, as well as the estimated random walk
precision, τ , for the different LGMs. Finally, we present the results of the
predictive performance for all the models of interest, both for each of the
years; 1990 (few avalanches), 1999 (moderate) and 2000 (many) individually,
as well as for the joint test set.

5.1 Poisson regression
5.1.1 Selection of coefficients
The estimated regression coefficients for Model 1, 2 and 3 are found in Ta-
bles 5.15.1, 5.25.2 and 5.35.3, respectively. The gray entries indicate coefficients that
were not significant at a 0.05 level. For more details, consult Table A.1A.1, A.2A.2
and A.3A.3 in Appendix AA, which display the coefficients and corresponding
standard error.

In the basic model (Model 1) both the explanatory variables were significant
for most of the stretches. The snow depth difference was only found to
be nonsignificant for the single stretch A4, while the snow depth was non-
significant for the three stretches A1, A2 and A10. Both weather covariates
therefore seemed to be informative for the modelling of avalanches.

In Model 2, all the available explanatory variables where tested simultane-
ously. That is, both the weather covariates as well as the four spatio-temporal
explanatory variables. Note that no normalization of the variables was used.
From Table 5.25.2 we see that the snow depth difference is the explanatory vari-
able that is significant for the most stretches. Moreover, both the variables
p5
jt and ς5

ijt , were found significant for seven of the stretches each. These
variables were the number of avalanches the 5 previous days both for the
area and single stretches. The variables p1

jt and ς1
ijt , one the other hand were

significant for two and six stretches, respectively. These represented the
number of avalanches on the previous day for the area and single stretches. It
therefore seemed that the day-to-day dependence might be less informative
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than the smoother 5 day interval. It should also be noted that the inclusion
of the additional explanatory variables caused the weather coefficients to be
smaller and of less significance.

Based on the results for Model 2, we excluded the explanatory variables
for the day-to-day dependence, p1

jt and ς1
ijt , in the updated spatio-temporal

Poisson regression model. For Model 3, all coefficients were significant for
at least seven of the stretches except for the snow depth, which was only
significant for three of the stretches. This is displayed in Table 5.35.3.

Table 5.1: Coefficients for Model 1, which acted as the basic model depending
only on weather covariates, fitted to the full data set. The coefficients that
were not significant at a 0.05 level are marked gray.

Stretch
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

1 -4.14 -5.44 -4.23 -5.39 -5.22 -4.69 -5.80 -3.42 -5.27 -5.00
si -0.25 0.36 1.97 1.23 2.40 0.60 0.77 0.50 0.48 0.10
∆si 0.08 0.15 0.07 0.03 0.13 0.09 0.05 0.11 0.12 0.10

Table 5.2: Coefficients for Model 2, where all the explanatory variables were
included to investigate which were more significant, fitted to the full data
set. The coefficients that were not significant at a 0.05 level are marked gray.

Stretch
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

1 -4.44 -6.02 -4.27 -5.60 -5.27 -4.86 -5.90 -3.52 -5.70 -5.02
si -0.17 0.52 1.15 1.13 1.87 0.36 0.50 0.27 0.33 -0.19
∆si 0.08 0.15 0.04 0.02 0.10 0.08 0.07 0.10 0.11 0.10
p1 0.25 0.59 -0.02 -0.12 0.01 -0.18 0.09 -0.01 0.02 -0.08
p5 -0.16 -0.24 0.12 0.15 0.08 0.09 0.04 0.02 0.21 0.12
ς1
i -0.96 -2.09 0.31 1.74 0.50 0.50 -0.11 0.06 0.10 0.38
ς5
i 1.25 1.25 -0.05 -0.93 0.05 0.42 0.79 0.39 -0.49 0.16

5.1.2 Model fit and predictive performance
The AIC for the three models are listed in Table 5.45.4. Both Model 2 and 3 have
a smaller value than Model 1, thus suggesting that the additional explana-
tory variables improve the model fit. The AIC score for Model 2 and Model
3 was relatively similar, with Model 2 scoring slightly lower. However, since
the extra explanatory variables in Model 2 were nonsignificant for many of
the stretches, it is reasonable to assume that Model 3 fitted the data better.
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Table 5.3: Coefficients for Model 3, which was the updated Poisson regression
model, fitted to the full data set. The coefficients that were not significant at
a 0.05 level are marked gray.

Stretch
A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

1 -4.41 -5.91 -4.25 -5.46 -5.21 -4.84 -5.86 -3.52 -5.66 -5.03
si -0.18 0.39 1.15 1.04 1.80 0.33 0.46 0.27 0.28 -0.17
∆si 0.08 0.15 0.05 0.01 0.11 0.08 0.08 0.10 0.11 0.10
p5 -0.09 0.04 0.11 0.09 0.07 0.06 0.07 0.01 0.22 0.10
ς5
i 1.01 0.54 0.03 0.11 0.24 0.50 0.75 0.40 -0.48 0.20

Table 5.4: AIC for the three models.

Model AIC

1 6888.9
2 6264.3
3 6297.9

Table 5.5: Skill scores from cross validation for the three different GLM
models.

Model RPS MSE HR POD UAA PSS Bias

1 0.02 4.15e-2 0.88 0.35 0.62 0.24 30.4
2 15.44 3.13e6 0.88 0.39 0.64 0.28 30.4
3 5.63 4.44e5 0.88 0.39 0.64 0.28 30.4

The results from the cross validation are displayed in Table 5.55.5. The best
result is marked with bold for each skill score. As can be seen, Model 1 had
the best score in terms of RPS and MSE. In fact, the resulting values for these
two scores was extremely large and therefore weak for Model 2 and 3, in
comparison. This indicated that it was a problem with the cross validation.
The cause of this will be explained shortly. Moreover, both Model 2 and
3 had slightly higher values for the POD, UAA and PSS score, which sug-
gested that the models detected more avalanches in general. The large MSE,
therefore, indicated that too many avalanches were being forecasted on some
of the days. However, this was not an operational problem as the general
interest was on determining whether avalanche activity would occur or not.
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Figure 5.1: Predictions λ∗ijt based on model 2 for the year 1994. Red vertical
lines indicate avalanches.

After closer examination, it was found that the poor results for Model 2
and 3 was caused by the two years 1994 and 2011. Both years included
several avalanche observations that were observed either on the same or on
consecutive days. This was discovered when inspecting the RPS and MSE
scores for the individual iterations of the cross validation algorithm, see
Table B.1B.1 and B.2B.2 in Appendix BB for more details. Therefore, when either of
these years were used as the test set, and hence excluded from the training
set, in the cross validation algorithm, it resulted in a large coefficient for the
spatio-temporal explanatory variables. This caused the predictions to spike
for the relevant consecutive days in the test set. The problem is illustrated
in Figure 5.15.1, were the predictions based on Model 2, for 1994, are plotted.
For one of the days it was predicted close to 2000 avalanches, even though
eight actually occurred. Still, eight avalanches on the same day was unusual
and since the training data did not include enough similar incidents, the
estimated model coefficients for the temporal explanatory variables were
too high.

To reduce the impact of unusually many avalanches we tested the model
using the square root of the spatio-temporal explanatory variables instead,

i.e.
√
p1
jt ,

√
p5
jt ,

√
ς1
ijt and

√
ς5
ijt . This lowered the maximal values of these
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variables, so that that overall the range of possible values would be smaller.
Hence, decreasing the chance of the extreme predictions. The results from
the cross validation with the modified explanatory variables are displayed
in Table 5.65.6. The updated models are denoted 2.1 and 3.1 respectively. The
modification improved the scores and all three models were now found to
have identical RPS. The MSE was still lowest for Model 1 and the HR had
decreased slightly for both the updated models. However, for the remaining
scores for binary outcomes, the updated models performed clearly better
than Model 1. Furthermore, Model 3.1 appeared to be slightly better than
2.1, as was expected. It should be noted that this was not a problem when
evaluating the LGMs in Section 5.2.25.2.2, since the problematic years 1994 and
2011 was included in the training set Dtrain.

Table 5.6: Skill scores from cross validation for the updated GLMs: 2.1 and
3.1.

Model RPS MSE HR POD UAA PSS Bias

1 0.02 0.04 0.88 0.35 0.62 0.24 30.4
2.1 0.02 0.09 0.87 0.45 0.66 0.32 30.4
3.1 0.02 0.05 0.86 0.47 0.67 0.34 30.4

To conclude, Model 3.1 was found to provide the most accurate predictions,
in spite of the MSE and HR being better for Model 1. This suggested that
the spatio-temporal explanatory variables could improve binary avalanche
forecasts.

5.2 Latent Gaussianmodels
5.2.1 Temporal effects
The approximated temporally structured effects fitted to Model 4a and 4b
are displayed in Figure 5.2a5.2a and 5.2b5.2b, respectively. In Model 4 all the years
were assumed to have a common time trend that was shared between all
the stretches. Recall, that 4a was the version using rw1 and 4b was the
version using rw2. The rw1 process show distinctively more fluctuations
than the smoother rw2 process. Both the effects increase overall during the
first 30 days, corresponding to January, before revealing a drop in February.
The effects then increase again, into March, before gradually wearing off in
late March and April. This corresponded well with the reported monthly
avalanche frequencies, see Figure 2.3b2.3b in Section 2.12.1.
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(a) Model 4a, random effect (rw1) (b) Model 4b, random effect (rw2)

Figure 5.2: Approximated posterior mode with 0.025 and 0.975 quantiles
for the temporally structured effect fitted to Model 4a (left) and 4b (right).

In Model 5a and 5b each year was considered to be a replicate of the same
process, sharing a common precision parameter. This resulted in ten random
effects with rw1 structure for Model 5a and equivalently ten random effects
with rw2 structure for Model 5b. In Figures 5.3a5.3a and 5.3b5.3b the rw1 and rw2
for a year with few avalanches (1998) are displayed. We see that the effect is
relatively flat with small fluctuations revealing the few avalanche incidents.
Correspondingly, the Figures 5.4a5.4a and 5.4b5.4b show the random walk processes
for a year with a moderate number of avalanches (1997). It is observed that
the fluctuations increase in size and number due to the increased avalanche
activity. Finally, Figure 5.5a5.5a and 5.5b5.5b show the random walk processes for a
year with many avalanches (1994). The fluctuations increased again for the
rw1 process. The rw2 process, however, is smoother with fewer fluctuations.
This might be due to choice of prior.

Since Model 6 assumes that the stretches A3, A4, A5, A8 and A9 have
the same random effect with a different scale parameter γi , the approxi-
mated random effects for Model 6a and 6b were similar to the effects fitted
to Model 4a and 4b, respectively. The resulting scales are listed in Table 5.75.7.
It was found that the scales were approximately equal in the two models.
Furthermore, it can be seen that the scaling for both the stretches A4 and A5
were approximately 1, thus suggesting that the temporal effect was equally
influential as for A3. This matched the ACF findings in Section 2.3.22.3.2, see
Figure 2.92.9. The scale for A8, on the other hand, was approximately 0.5.
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(a) Model 5a, random effect (rw1) (b) Model 5b, random effect (rw2)

Figure 5.3: Approximated posterior mode with 0.025 and 0.975 quantiles for
the temporally structured effect for a year with few avalanche observations
(1998) fitted to Model 5a (left) and 5b (right).

(a) Model 5a, random effect (rw1) (b) Model 5b, random effect (rw2)

Figure 5.4: Approximated posterior mode with 0.025 and 0.975 quantiles
for the temporally structured effect for a year with moderate avalanche
observations (1997) fitted to Model 5a (left) and 5b (right).
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(a) Model 5a, random effect (rw1) (b) Model 5b, random effect (rw2)

Figure 5.5: Approximated posterior mode with 0.025 and 0.975 quantiles for
the temporally structured effect for a year with many avalanche observations
(1994) fitted to Model 5a (left) and 5b (right).

Hence, the temporal effect would have less impact on the predictions, in
spite of this being the stretch with the most avalanche occurrences. The scale
for A9 was the largest at approximately 1.4, indicating that the temporal
effect was more influential for this stretch. Still the differences were small,
which was reasonable considering that these were the stretches that were
strongest correlated.

Table 5.7: Approximated scale parameters, γi , for Model 6a and 6b.

Model Scale Mean 0.025 0.975 Mode

6a

γ4 1.03 0.66 1.40 1.03
γ5 1.04 0.70 1.39 1.03
γ8 0.49 0.29 0.71 0.49
γ9 1.36 0.97 1.76 1.35

6b

γ4 0.96 0.57 1.36 0.96
γ5 1.03 0.67 1.40 1.03
γ8 0.41 0.21 0.62 0.40
γ9 1.35 0.94 1.76 1.34
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5.2.2 Model selection
In Table 5.85.8 the DIC and marginal log-likelihood for each of the latent mod-
els are displayed. In general, the DIC and log-likelihood was better for the
models with the rw1 random effect compared to their counterparts, where
the rw2 was used instead. I.e. 4a, 5a and 6a had better scores than 4b,
5b and 6b respectively. This suggested that the temporal structure of the
avalanche observations had more resemblance to a first-order random walk
than a second-order. The best DIC and log-likelihood value was obtained for
Model 5a, thus indicating that the rw1 random effect with yearly replicates
might be the best model. Model 5b, which was the same model, but with the
rw2 replacing the rw1, had a DIC score that was a lot worse than for the rest
of the models. Still, the log-likelihood value was the second best. The poor
DIC value was thought to be related to numerical instability. Therefore, it
was decided to discard Model 5b from the prediction based model validation.

The precision parameter τ can be seen to be generally smaller and more ac-
curately determined for the models with rw1. This implied that the variance
was in general larger for these temporal random effects.

Table 5.8: DIC and approximated hyperparameter for the different LGM’s

Model fit Precision τ
Model DIC log-likelihood Mean 0.025 0.975 mode

4a 2072.93 -1147.32 2.30 1.09 4.39 1.87
4b 2138.80 -1168.50 105.65 27.78 63.91 63.91
5a 1567.24 -1015.17 0.71 0.48 1.03 0.67
5b 5.59e12 -1105.84 20.79 8.27 42.5 16.33
6a 2051.14 -1136.76 1.87 0.85 3.63 1.52
6b 2101.86 -1157.03 33.46 6.53 96.75 16.86

5.3 Evaluation of predictive performance
In this section we present the skill scores resulting from the years 1990, 1999
and 2000 for Model 1, 3, 4a, 4b, 5a, 6b and 6b. Hence, the basic model can
be compared to the other models that include various forms of spatial and
temporal dependencies. In addition, it was of interest to compare Model 3,
where the temporal dependencies were included using explanatory variables,
with the LGMs to see whether the flexibility of the LGMs provided any gain
on the accuracy. Finally, it was of interest to compare the LGMs against each
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other.

The various resulting skill scores for 1990 are found in Table 5.95.9. Over-
all Model 5a, seemed to yield the best predictions, although the basic model
(Model 1) yielded equally good values for the binary scores. The probability
of detection was as high as 0.75 for Model 1 and Model 5a thus 8 out of
12 avalanches where correctly forecasted. Still, the Bias of 4 indicate that
in general too many avalanches were predicted. Figure 5.65.6 illustrate the
forecasts for Model 1, 3, 4b and 5a for stretch A9 this year. The red vertical
lines indicate the actual avalanche observations with width proportional to
the number of avalanches on a given day. The gray horizontal line indicate
the threshold value used for the scores based on binary outcomes. Model
5a appears to fit the avalanche observations well for this year, explaining
the low RPS and MSE scores. There was also an avalanche that non of the
models could detect, hence illustrating the models’ weakness.

Table 5.9: Skill scores for predictions made for the year with few avalanches
(1990).

Model RPS MSE HR POD UAA PSS Bias
1 0.026 0.046 0.930 0.750 0.842 0.684 4.000
3 0.023 0.039 0.920 0.500 0.714 0.429 4.000
4a 0.022 0.036 0.917 0.417 0.672 0.344 4.000
4b 0.021 0.035 0.923 0.583 0.757 0.514 4.000
5a 0.018 0.030 0.930 0.750 0.842 0.684 4.000
6a 0.022 0.038 0.927 0.667 0.799 0.599 4.000
6b 0.022 0.037 0.923 0.583 0.757 0.514 4.000

In Table 5.105.10 the resulting skill scores for 1999, a year with few avalanche
observations, is listed. In general, the differences between the models were
much smaller than for 1990. It can be seen that Model 3 and 4b had a slightly
better RPS and MSE value. Moreover it can be seen that Model 1 and 3 had
identical and best values for the binary scores. Among the GLMs Model 6a
seemed to perform slightly better for the binary scores. The forecasts for
stretch A8 is plotted in Figure 5.75.7. Almost all the avalanches occurred along
this stretch this year. The plots show that the forecasts given by Model 1 and
Model 3 were identical, explaining the identical scores. Also Model 4b had
a similar forecast, however, the predictions for 5a are observed to be less
accurate.
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Figure 5.6: Predictions λ∗ijt for the year with few avalanches (1990) for
stretch A9. The observed avalanches are marked with red vertical lines. The
grey horizontal line indicates the threshold value.

In Table 5.115.11 the skill scores for 2000, a year with a moderate number
of avalanches, are listed. Model three scored clearly better than the rest of
the models this year. Also Model 1 seemed to be competitive to the LGMs.
Model 4b was again the LGM with the best RPS and MSE score. However,
Model 5a yielded the best binary scores. The predictions for A3 are plotted
in Figure 5.85.8. As for 1999, Model 1 and 3 yielded fairly similar predictions,
but the temporal explanatory variables appeared to make a positive contri-
bution. Especially for detecting several avalanches at the end of the time
series. Model 5a also detected these avalanches and the predictions peak for
these few days.

The skill scores resulting from all three years combined are listed in Ta-
ble 5.125.12. Model 3 was clearly better than all the other models according
to the skill scores, while Model 4b had the best RPS and MSE value of the
GLMs. Model 5a was the second best model in terms of the skill scores for
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Table 5.10: Skill scores for predictions made for the year with a moderate
number of avalanches (1999).

Model RPS MSE HR POD UAA PSS Bias
1 0.057 0.090 0.788 0.784 0.786 0.572 4.000
3 0.056 0.090 0.788 0.784 0.786 0.572 4.000
4a 0.058 0.092 0.775 0.676 0.729 0.457 4.000
4b 0.056 0.090 0.782 0.730 0.757 0.515 4.000
5a 0.057 0.091 0.782 0.730 0.757 0.515 4.000
6a 0.057 0.091 0.785 0.757 0.772 0.544 4.000
6b 0.057 0.091 0.782 0.730 0.757 0.515 4.000

Table 5.11: Skill scores for predictions made for the year with many
avalanches (2000).

Model RPS MSE HR POD UAA PSS Bias
1 0.095 0.182 0.630 0.694 0.658 0.316 4.000
3 0.093 0.176 0.666 0.871 0.757 0.514 4.000
4a 0.102 0.199 0.620 0.645 0.631 0.262 4.000
4b 0.096 0.186 0.613 0.613 0.613 0.226 4.000
5a 0.106 0.216 0.636 0.726 0.676 0.352 4.000
6a 0.099 0.192 0.613 0.613 0.613 0.226 4.000
6b 0.099 0.200 0.617 0.629 0.622 0.244 4.000

binary outcomes, but the worst in terms of RPS and MSE. Moreover, the
basic model proved competitive having the third best results both in terms
of RPS and MSE, as well as for the scores for the binary outcomes.

Table 5.12: Skill scores for predictions for the whole test set.

Model RPS MSE HR POD UAA PSS Bias
1 0.059 0.106 0.778 0.694 0.739 0.477 4.000
3 0.058 0.102 0.792 0.811 0.801 0.602 4.000
4a 0.061 0.109 0.768 0.613 0.695 0.391 4.000
4b 0.058 0.104 0.775 0.667 0.724 0.448 4.000
5a 0.061 0.113 0.782 0.730 0.758 0.515 4.000
6a 0.060 0.107 0.772 0.649 0.715 0.429 4.000
6b 0.059 0.109 0.773 0.658 0.719 0.439 4.000
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Figure 5.7: Predictions λ∗ijt for the year with a moderate number of
avalanches (1999), for stretch A8. The observed avalanches are marked
with red vertical lines. The grey horizontal line indicates the threshold
value.



Evaluation of predictive performance 54

Figure 5.8: Predictions λ∗ijt for the year with a moderate number of
avalanches (2000), for stretch A3. The observed avalanches are marked
with red vertical lines. The grey horizontal line indicates the threshold value.
Note that the y-axis is different for Model 5a, to fully display the predictions
for the last days.
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6 Concluding remarks
6.1 Discussion andmain results
In this study we investigated whether spatial and temporal dependencies
could be utilized to improve the accuracy of daily probabilistic avalanche
predictions at a stretch of road scale. Spatio-temporal dependencies were
included as explanatory variables in a generalized linear model framework.
In addition, temporal random effects were included in the extended latent
Gaussian model framework. The temporal trend was estimated based on
the best correlated stretches, thus exploiting spatial dependencies. This was
done to examine whether the increased flexibility of these models could
further improve the predictions. Our findings suggested that the inclusion
of spatio-temporal dependencies through explanatory variables improved
the avalanche prediction accuracy. However, the inclusion of random effects
was not found to further improve the predictions. In fact the best latent
Gaussian model performance was comparable to the basic model, that was
only based on two weather covariates.

Our first finding, that spatio-temporal dependencies improved the avalanche
predictions was supported by our evaluation of the predictive performance
of the various models. Model 3, which was the preferred model that in-
cluded spatio-temporal explanatory variables, performed better than the
basic model (model 1) in terms of the selected skill scores. Since Model 3
also performed better than all the latent Gaussian models, this demonstrated
that the random effects did not further improve the predictions. However,
the differences were small for most of the skill scores, indicating that the
improvements were limited. The cross validation, used to compare the gener-
alized linear models, gave less evidence of improvements as the basic model
scored slightly better both in terms of MSE and HR. Still, HR is considered
an unreliable score for rare events and both Model 2 and 3 yielded better
results for the POD, UAA and PSS, indicating that the binary forecasts were
better. This was in general more important, since the focus would be on
whether avalanches occurred or not, rather than how many in operational
use.

Our study partly extends the previous findings in Eckert et al. (2010)(2010) and
Lavigne et al. (2011)(2011), showing that spatio-temporal dependencies might also
be intrinsic for daily predictions. However, these results were obtained in
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the GLM framework and could not analogously be shown for the Bayesian hi-
erarchical models. This is therefore inconsistent with the previous findings,
where Bayesian hierarchical models were used. However, there were several
factors distinguishing the models and data in this study from the previous
ones. Thus, making direct comparison challenging. Most importantly, the
daily temporal effects might be more difficult to identify than the annual
fluctuations that was in focus in the previous works.

There could be several other reasons as to why the LGM’s did not improve
the prediction accuracy. We point out the most important ones here. Firstly,
the models tested in this study were different from the ones in previous
studies (Eckert et al., 20102010; Lavigne et al., 20112011). For instance no distinct
spatial random effects were included, since the spatial correlation between
the stretches was in general weak. Secondly, in comparison to the previous
studies which were based on data from the French Alps, this study was
carried out in Norway, thus differing both topographically and climatically.
Thirdly, the model assumptions were also slightly different, focusing on
stretches of roads rather than townships. In addition, it could be a problem
that the selected random walk process did not sufficiently resemble the
underlying temporal process and other models should be tested. As a final
point, the combination of stretch-specific weights and conditionally inde-
pendent yearly temporal effects might have improved the results. However,
this was not tested in this study as the increased model complexity did not
fit the INLA framework.

In conclusion, this study demonstrates that spatio-temporal dependencies
can be included as explanatory variables to improve prediction accuracy.
This shows that spatio-temporal dependencies provide extra insight, that
can be useful to secure the Norwegian road network against the hazards
posed by avalanches. Moreover, this is a simple model that can easily be
applied, provided that the stretches of road of interest are sufficiently similar
in terms of topography and weather and that sufficient data are available.

6.2 Data quality
As previously mentioned in Section 2.1.22.1.2, conversations with Tveit (2016)(2016)
from SVV and Haslestad (2016)(2016) from NVE revealed that poor data quality
was an issue. However, this was first fully discovered after the results were
ready. This was consequently an important source of error, that should be
considered in future studies to give more credible results. For this reason,
we give a detailed account of the problem.
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The avalanche data used in this study were observations from a relatively
large area and spanning almost 40 years. Hence, different personnel have
been involved in the observation procedure. This has resulted in local varia-
tions, and strongly varying data quality is known to be a widespread prob-
lem due to under-reporting according to Tveit (2016)(2016) and Haslestad (2016)(2016).
Furthermore, under-reporting is especially known to occur when several
avalanches happen on the same day, along the same stretch. This inflicts a
problem with the assumption of Poisson distributed observations.

According to the same sources, it does not exist any record of when avalanche
registration was initiated along the different stretches. Indeed, there is no
available collective overview of when the different roads was built. Conse-
quently there is no certain way to decide how far back avalanche observations
can be reliably used. In Table 6.16.1 the year of the first registered avalanche
observation for each stretch is listed. The overall earliest registration was
in 1977. However, for many of the other stretches the first registration was
several years later. For example, the first registered avalanche observation
in domain A2 was from 2000. According to Tveit (2016)(2016), this was probably
related to change of personnel that took place the same year. Hence, the
lack of avalanches before this year was probably due to under-reporting.
This shows that large scale under-reporting was in fact a problem and more
careful investigation is required to determine which data that can be used.
The problem of under-reporting is also supported by Figure 2.82.8 in Section
2.3.12.3.1. As can be seen, it appeared to be more snow than in any other year
in 1981, still only a few avalanches were observed. Again suggesting that
under-reporting occurred.

Another problem arises, as the avalanche observations span several years.
For roads where avalanches pose a big threat, it is likely that avalanche
protection measures could be installed. Hence, causing the data basis to
change. An example of this was found for stretch A3, where a tunnel and
an avalanche gallery had been built in 2002. The observed avalanche oc-
currences, were seen to drop significantly after this year, see Figure 2.52.5 in
Section 2.1.22.1.2. This clearly demonstrates how the premisses changes. More-
over, since it is difficult to get an overview of these modifications for historic
data, this represents another issue regarding the data quality.

Also the snow depth weather covariate is prone to uncertainty, being inter-
polated values on a square kilometer grid. According to Saloranta (2016)(2016), it
had been found that the present version of the seNorge snow depth model
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Table 6.1: The year of the first registered avalanche observation for the
different stretches of road.

Stretch
First

Observation

A1 1985
A2 2000
A3 1986
A4 1986
A5 1980
A6 2000
A7 1979
A8 1979
A9 1979
A10 1977

often predicted too high temperatures at the mountains near the fjords along
the western coast of Norway, resulting in too modest snow depths. This will
also affect the models ability to properly explain the data.

In general the under-reporting and avalanche protection measures yielded a
unreliable data set, with fewer avalanche observations than what really oc-
curred. In addition, since the snow model probably estimated too little snow,
this is likely overall weaken the models’ predictive performance. Therefore,
by taking these issues into account in future studies better and more realistic
results are expected.

6.3 Future work
In this study data quality has been pointed out as an issue that affected the
credibility of the results. We will present here some recent developments
that might be used in future studies to improve on this issue. Furthermore,
we will give some suggestions of alternative models that should also be
explored.

6.3.1 Improving data quality
More realistic snow depth data might be obtained using the new version of
the seNorge snow depth model that was released at the end of 2015 accord-
ing to (Saloranta, 20162016). In the new version updated Bayesian interpolation
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methods are used in interpolation of precipitation and air temperature to
improve the estimates of the snow depth. Furthermore, research exploring
the possibility of utilizing electronic systems for surveying avalanche activ-
ity has been growing in the last few years. For example Eckerstorfer and
Malnes (2015)(2015) has shown good ability to detect avalanches using satellite-
borne high resolution synthetic aperture radars. These radars are insensitive
to clouds and bad weather, which is typical for periods where avalanche
intensity is large. Moreover, it allows avalanches to also be detected during
the night. Such a system could potentially replace the contractors role as
avalanche observers and provide more consistent and accurate observations
over larger areas. In this way, avalanches that does not interfere with the
road network additionally be detected.

6.3.2 Alternativemodels
As of today, avalanche forecasts are provided at a regional basis in Norway,
as a danger level scale ranging from 1-5. The appropriate danger level for a
specific region is made by experts based on field observations and weather
conditions (Norges vassdrags- og energidirektorat, 20132013). In order to in-
crease a statistical models ability to explain the avalanche occurrences it
should be considered to include the forecasted danger levels as a covariate.
This was unfortunately not possible at the time when this thesis was written,
since the forecast service had only been operational for 2015 for our region.

In future works the models should also be tested for other regions to inves-
tigate whether comparable results can be obtained. Alternative temporal
models, such as the autoregressive (AR) model should be explored in the
LGM framework and closer examinations of the underlying spatial struc-
tures should be attempted, for instance by including spatial random effects
in the LGM. Other hierarchical structures were also possible, e.g. non-linear
effects for the intercept, the explanatory variables or both. New area parti-
tions should also be assessed, as the assumption of homogeneous behavior
of all the avalanches paths along a stretch is probably not true for longer
stretches, that run along several mountains. Moreover, given sufficient avail-
ability of data, the SVM approach (Pozdnoukhov et al., 20112011), mentioned in
the introduction, should be tested as an alternative, for comparison.
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A Extended results on significance of coefficients
Table A.1: Regression coefficients and standard errors for Model 1.

Covariate Stretch Estimate Std. Error

1

1 -4.14 0.29
2 -5.44 0.34
3 -4.23 0.14
4 -5.39 0.27
5 -5.22 0.22
6 -4.69 0.22
7 -5.80 0.40
8 -3.42 0.13
9 -5.27 0.31

10 -5.00 0.31

si

1 -0.25 0.20
2 0.36 0.50
3 1.97 0.28
4 1.23 0.26
5 2.40 0.30
6 0.60 0.25
7 0.77 0.23
8 0.50 0.14
9 0.48 0.21

10 0.10 0.32

∆si

1 0.08 0.01
2 0.15 0.03
3 0.07 0.02
4 0.03 0.03
5 0.13 0.02
6 0.09 0.02
7 0.05 0.02
8 0.11 0.01
9 0.12 0.01

10 0.10 0.02
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Table A.2: Regression coefficients and standard errors for Model 2.

Covariate Stretch Estimate Std. Error

1

1 -4.44 0.30
2 -6.02 0.43
3 -4.27 0.15
4 -5.60 0.29
5 -5.27 0.22
6 -4.86 0.24
7 -5.90 0.42
8 -3.52 0.13
9 -5.70 0.38
10 -5.02 0.32

si

1 -0.17 0.19
2 0.52 0.59
3 1.15 0.35
4 1.13 0.28
5 1.87 0.35
6 0.36 0.28
7 0.50 0.24
8 0.27 0.16
9 0.33 0.25
10 -0.19 0.35

∆si

1 0.08 0.01
2 0.15 0.03
3 0.04 0.02
4 0.02 0.03
5 0.10 0.02
6 0.08 0.02
7 0.07 0.02
8 0.10 0.01
9 0.11 0.01
10 0.10 0.02

p1

1 0.25 0.12
2 0.59 0.17
3 -0.02 0.05
4 -0.12 0.10
5 0.01 0.05
6 -0.18 0.11
7 0.09 0.07
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8 -0.01 0.05
9 0.02 0.03
10 -0.08 0.08

p5

1 -0.16 0.07
2 -0.24 0.15
3 0.12 0.02
4 0.15 0.02
5 0.08 0.02
6 0.09 0.02
7 0.04 0.04
8 0.02 0.02
9 0.21 0.02
10 0.12 0.02

ς1
i

1 -0.96 0.44
2 -2.09 0.53
3 0.31 0.12
4 1.74 0.48
5 0.50 0.20
6 0.50 0.24
7 -0.11 0.26
8 0.06 0.14
9 0.10 0.19
10 0.38 0.50

ς5
i

1 1.25 0.24
2 1.25 0.34
3 -0.05 0.06
4 -0.93 0.38
5 0.05 0.12
6 0.42 0.09
7 0.79 0.11
8 0.39 0.06
9 -0.49 0.15
10 0.16 0.27
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Table A.3: Regression coefficients and standard errors for Model 3.

Covariate Stretch Estimate Std. Error

1

1 -4.41 0.30
2 -5.91 0.42
3 -4.25 0.15
4 -5.46 0.28
5 -5.21 0.22
6 -4.84 0.24
7 -5.86 0.41
8 -3.52 0.13
9 -5.66 0.37
10 -5.03 0.33

si

1 -0.18 0.19
2 0.39 0.60
3 1.15 0.35
4 1.04 0.29
5 1.80 0.35
6 0.33 0.28
7 0.46 0.24
8 0.27 0.16
9 0.28 0.25
10 -0.17 0.35

∆si

1 0.08 0.01
2 0.15 0.03
3 0.05 0.02
4 0.01 0.03
5 0.11 0.02
6 0.08 0.02
7 0.08 0.02
8 0.10 0.01
9 0.11 0.01
10 0.10 0.02

p5

1 -0.09 0.06
2 0.04 0.05
3 0.11 0.02
4 0.09 0.02
5 0.07 0.02
6 0.06 0.02
7 0.07 0.03
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8 0.01 0.01
9 0.22 0.02
10 0.10 0.02

ς5
i

1 1.01 0.21
2 0.54 0.12
3 0.03 0.05
4 0.11 0.13
5 0.24 0.09
6 0.50 0.07
7 0.75 0.09
8 0.40 0.05
9 -0.48 0.10
10 0.20 0.22
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B Extended results from cross validation
In Table B.1B.1 and B.2B.2 the RPS and MSE for each iteration in the cross valida-
tion of the GLM’s is listed. It was found that the years 1994 and 2011, j = 15
and j = 30 respectively, yielded poor predictions for model 2 and 3. These
models included temporal explanatory variables, that were found to be the
problem cause. The years are marked with bold font in both tables and it can
be seen that both the RPS and MSE is extremely large for these two years,
compared to the rest. This indicated a weakness with the model and the
temporal explanatory variables were modified so that instead the square
root was used. The results for the updated models are given in the same
Tables, denoted as model 2.1 and 2.3 and it can be seen that this roughly
solves the problem.
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Table B.1: Estimated RPS for each iteration in the cross validation, for the
three generalized linear models. Model 2.1 and 3.1 are the updated versions
of model 2 and 3, were the square root of the temporal explanatory variables
is used instead. The years were the predictions were poor is marked with
bold font.

Test set Model
j 1 2 3 2.1 3.1
1 1.1e-03 1.0e-03 1.0e-03 9.6e-04 9.6e-04
2 7.7e-03 7.6e-03 7.5e-03 8.1e-03 7.5e-03
3 1.2e-03 1.0e-03 1.0e-03 9.7e-04 9.6e-04
4 2.0e-02 6.1e-03 6.1e-03 3.7e-03 3.6e-03
5 2.8e-03 1.5e-03 1.6e-03 1.2e-03 1.3e-03
6 1.5e-03 1.2e-03 1.2e-03 1.0e-03 1.0e-03
7 6.5e-03 6.1e-03 6.1e-03 6.0e-03 6.0e-03
8 4.4e-02 4.2e-02 4.2e-02 4.3e-02 4.2e-02
9 1.2e-02 1.3e-02 1.3e-02 1.3e-02 1.3e-02

10 5.0e-03 5.0e-03 5.0e-03 5.0e-03 5.0e-03
11 1.1e-02 1.1e-02 1.1e-02 1.1e-02 1.1e-02
12 8.2e-03 8.2e-03 8.2e-03 8.3e-03 8.3e-03
13 4.1e-03 3.8e-03 3.8e-03 3.7e-03 3.7e-03
14 1.9e-02 1.9e-02 1.9e-02 1.8e-02 1.8e-02
15 8.7e-02 1.9e+00 6.1e-01 1.6e-01 1.2e-01
16 1.5e-02 1.5e-02 1.5e-02 1.6e-02 1.6e-02
17 2.9e-02 2.9e-02 3.0e-02 2.7e-02 3.0e-02
18 3.6e-03 3.5e-03 3.5e-03 3.5e-03 3.5e-03
19 3.0e-02 2.8e-02 2.8e-02 2.9e-02 2.8e-02
20 8.1e-02 8.1e-02 8.1e-02 7.7e-02 7.8e-02
21 2.1e-02 2.1e-02 2.1e-02 2.1e-02 2.1e-02
22 5.7e-02 5.9e-02 5.7e-02 5.9e-02 5.7e-02
23 3.5e-03 3.8e-03 3.6e-03 3.5e-03 3.5e-03
24 8.0e-03 8.1e-03 8.1e-03 8.2e-03 8.2e-03
25 1.2e-02 1.2e-02 1.2e-02 1.2e-02 1.2e-02
26 1.2e-02 1.2e-02 1.2e-02 1.1e-02 1.1e-02
27 7.5e-03 7.4e-03 7.3e-03 7.4e-03 7.4e-03
28 6.0e-03 6.0e-03 5.9e-03 6.0e-03 6.0e-03
29 8.1e-03 8.1e-03 7.7e-03 8.1e-03 7.6e-03
30 4.9e-02 5.2e+02 1.9e+02 6.9e-02 7.1e-02
31 1.9e-02 1.9e-02 1.9e-02 1.8e-02 1.9e-02
32 2.7e-03 2.6e-03 2.6e-03 2.6e-03 2.6e-03
33 5.8e-03 3.0e-03 2.9e-03 1.7e-03 1.7e-03
34 1.2e-02 1.1e-02 1.1e-02 1.2e-02 1.1e-02
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Table B.2: Estimated MSE for each iteration in the cross validation, for the
three generalized linear models. Model 2.1 and 3.1 are the updated versions
of model 2 and 3, were the square root of the temporal explanatory variables
is used instead. The years were the predictions were poor is marked with
bold font.

Test set Model
j 1 2 3 2.1 3.1
1 1.1e-03 1.0e-03 1.0e-03 9.6e-04 9.7e-04
2 1.1e-02 1.1e-02 1.1e-02 1.2e-02 1.1e-02
3 1.2e-03 1.0e-03 1.0e-03 9.7e-04 9.7e-04
4 3.1e-02 8.4e-03 8.4e-03 5.6e-03 5.3e-03
5 4.4e-03 1.8e-03 1.9e-03 1.3e-03 1.4e-03
6 1.6e-03 1.2e-03 1.2e-03 1.0e-03 1.0e-03
7 8.3e-03 7.8e-03 7.8e-03 7.6e-03 7.6e-03
8 1.1e-01 1.1e-01 1.0e-01 1.1e-01 1.1e-01
9 2.4e-02 2.4e-02 2.4e-02 2.4e-02 2.4e-02

10 6.4e-03 6.4e-03 6.4e-03 6.4e-03 6.4e-03
11 1.8e-02 1.8e-02 1.8e-02 1.8e-02 1.8e-02
12 1.6e-02 1.6e-02 1.6e-02 1.6e-02 1.6e-02
13 4.3e-03 3.9e-03 3.9e-03 3.9e-03 3.9e-03
14 2.9e-02 2.9e-02 2.9e-02 2.8e-02 2.8e-02
15 2.8e-01 2.8e+03 1.5e+02 1.8e+00 5.4e-01
16 2.2e-02 2.2e-02 2.2e-02 2.2e-02 2.2e-02
17 9.8e-02 9.9e-02 1.1e-01 6.8e-02 1.1e-01
18 3.6e-03 3.6e-03 3.6e-03 3.6e-03 3.6e-03
19 4.7e-02 4.5e-02 4.4e-02 4.6e-02 4.4e-02
20 1.6e-01 1.6e-01 1.6e-01 1.5e-01 1.5e-01
21 5.4e-02 5.5e-02 5.4e-02 5.4e-02 5.4e-02
22 1.2e-01 1.4e-01 1.2e-01 1.4e-01 1.2e-01
23 5.2e-03 5.7e-03 5.2e-03 5.2e-03 5.1e-03
24 1.1e-02 1.1e-02 1.1e-02 1.1e-02 1.1e-02
25 1.3e-02 1.3e-02 1.3e-02 1.3e-02 1.3e-02
26 2.0e-02 1.9e-02 1.9e-02 1.9e-02 1.9e-02
27 1.2e-02 1.2e-02 1.2e-02 1.2e-02 1.2e-02
28 9.3e-03 9.2e-03 9.2e-03 9.3e-03 9.3e-03
29 1.5e-02 1.5e-02 1.4e-02 1.5e-02 1.4e-02
30 2.0e-01 1.1e+08 1.5e+07 2.9e-01 3.2e-01
31 2.4e-02 2.4e-02 2.4e-02 2.3e-02 2.3e-02
32 2.7e-03 2.6e-03 2.6e-03 2.6e-03 2.6e-03
33 2.4e-02 7.6e-03 7.1e-03 2.5e-03 2.6e-03
34 1.5e-02 1.3e-02 1.3e-02 1.7e-02 1.3e-02
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