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Abstract— Electric Submersible Pumps (ESP) can be in-
stalled in oil wells to create artificial lift, in order to increase
recovery from the reservoir, and boost the production rate.
A Model Predictive Controller (MPC) for an ESP, based on
linearized models, is developed and designed using SEPTIC
(Statoil’s in-house software tool for MPC), and implemented
on a Programmable Logic Controller (PLC). Automatic code
generators have been utilized to generate an application-
specific MPC controller in ANSI C code. Hardware-in-the-loop
simulation results show that the control performance of the
PLC implementation is comparable to the original SEPTIC
controller.

I. INTRODUCTION
MPC is widely used in the onshore petroleum industry,

such as refineries. Such applications are typically imple-
mented on top of low-level decentralized controllers, where
the low-level (monovariable) controllers address basic re-
quirements regarding safety and stability, while the MPC
controller improves the performance of the overall multivari-
able system. The basic controllers are typically implemented
on ultra-reliable hardware, such as Programmable Logic
Controllers (PLCs), while MPC applications are usually
implemented in a PC/server-based environment [1], [2].

Though MPC is very common in the onshore petroleum
industry, it is not common offshore, where safety and
reliability are of the essence, and ultra-reliable hardware
and software is required. Due to space limitations, offshore
equipment tend to be of a considerable smaller scale, leading
to much faster dynamics. Better control performance may be
possible to achieve by letting fast MPC optimize the plant
directly, bypassing low-level control. However, such an MPC
implementation must not only operate on a higher update
frequency, but also fulfill hard real-time requirements, as
well as safety and reliability requirements. The use of ultra-
reliable hardware and firmware is thus required.

PLCs are commonly used in the industry, due to their
reliability and robustness properties, but the computationally
demanding MPC algorithm introduces challenges regarding
the limited computational resources usually found in such
hardware. However, significant progress has recently been
made in the area of embedded MPC. Implementation as-
pects for predictive control on a PLC has been considered
in [3] and [4]. Important contributions include exploiting
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the MPC problem structure and computational architectures
[5], [6]. This has resulted in a variety of software tools
targeting embedded platforms, with efficient and portable
software implementations of algorithms, such as FORCES
[6], qpOASES [7], FiOrdOs [8], and CVXGEN [9].

We have not found many references addressing dynamic
control of ESP-lifted wells. The complexity of operating
ESP-lifted fields is shown in [10], where improving and
automating the workflow for production operations to im-
prove the asset performance, including optimization and
diagnostics based on real-time data, is discussed. In [11],
optimization of ESP-lifted oil fields based on steady-state
optimization and simple PI-control is considered. However,
as the focus is on steady-state optimization, the dynamics
that would arise e.g. from external disturbances are not
considered. Also, perfect system knowledge is assumed. In
[12], [13], a model of an ESP-lifted well is developed,
the control challenges related to ESPs are discussed, and
automatic control of an ESP installation is implemented and
tested in a large-scale industrial test facility. The results
motivate the use of MPC to provide optimal dynamic control.

Whereas dynamic control is the focus in [13], the focus
in the present paper is on the controller implementation
aspects. Feasibility of embedded MPC is investigated for a
production well incorporating an Electric Submersible Pump
(ESP) for artificial lift. The considered system is described in
Section II, together with a mathematical model of the system
developed by Statoil in [12], [13], which is implemented as
a simulator in MATLAB.

An MPC controller for this system is developed using
SEPTIC, Statoil’s in-house software for MPC. The controller
development and configuration is described in Section III. An
embedded version of the developed controller is then imple-
mented on a PLC, as described in Section IV. Hardware-
in-the-loop simulation results are presented and discussed in
Section V, and concluding remarks are given in Section VI.

II. SYSTEM DESCRIPTION

The considered system consists of one oil well with an
Electric Submersible Pump (ESP) and a production choke
valve, as seen in Fig. 1. The ESP is used for artificial lift,
with the purpose of reducing the hydrostatic pressure from
the fluid in the well and the production line, thus reducing the
bottom hole pressure, increasing the inflow from the reservoir
and the production from the well.



Fig. 1. Well with ESP

A. Control targets

There are a number of variables that affect the life-time
of ESP installations, such as power consumption, flow rate,
pressure, temperature, thrust forces and vibration. Operation
outside of certain limits on these variables may lead to failure
or reduced life-time of the ESP, which has a huge economic
impact, both due to the costs of replacing the pump, and the
loss of production. Thus, the main control priority in this
system is to maintain good operating conditions for the ESP.
This study focuses on keeping a constraint on the electric
current, which is proportional to the power consumption
of the pump, and keeping constraints on the upthrust and
downthrust forces acting on the ESP shaft.

The next priority is to ensure acceptable operational con-
ditions for the well. This includes keeping the pump inlet
pressure within certain constraints, and to avoid backflow
into the well by keeping the wellhead pressure higher than
the topside pressure.

Less prioritized, but still important control targets, are to
maximize the pump efficiency, and optimize certain produc-
tion condition parameters. This includes keeping the inlet
pressure at a certain setpoint, and minimize the electric
current flow in the ESP motor. Another control target is to
avoid high wellhead pressure relative to the topside pressure;
a high pressure difference means there is a large power loss
in the topside choke, which is a waste of power provided by
the ESP. Choking the well may be necessary to keep the ESP
within its operational limits, but is otherwise not desired.

B. Third order model

A simple, third order model of an ESP lifted well is
developed by Statoil in [12], [13]. A similar model is

also developed in [14], which is used for optimization in
[11]. The simulator implemented in MATLAB is based on
the model found in [13], and the model is repeated here
for convenience. All model variables and parameters are
given in SI units, and all well parameters, such as reservoir
pressure pr and well productivity index PI, are considered
known constants.

1) Model equations: The system model is given by the
following differential equations:

ṗbh =
β1
V1

(qr − q) (1a)

ṗwh =
β2
V2

(q − qc) (1b)

q̇ =
1

M
(pbh − pwh − ρghw + ∆pp −∆pf ) (1c)

and the following algebraic equations:

qr = PI (pr − pbh) (2a)
qc = Cc

√
pwh − pts z (2b)

∆pp (f, q) = ρgH0 (q0)

(
f

f0

)2

(2c)

In this model, ESP characteristics for head and brake horse-
power (BHP) at a reference frequency f0 are assumed to be
available, denoted H0(q) and P0(q), respectively. The affinity
laws found e.g. in [15] describe how flow, head and BHP
are related to the pump frequency. As the available pump
characteristics are only valid at the reference frequency, the
affinity laws are used to calculate these variables at other
frequencies. The affinity laws are also used to calculate the
(theoretical) flow q0 that the pump would provide at the
reference frequency, given by:

q0 = q
f0
f

(3)

Some key variables in the model are further defined below.
See also Fig. 1.

2) Key Variables:
• State variables:

pbh bottom hole pressure in the well
pwh wellhead pressure
q average flow in the well

• Control inputs (manipulated variables, MVs):
f ESP motor frequency (pump speed)
z production choke valve opening

• Disturbance (disturbance variable, DV):
pts topside pressure

• Available measurements (controlled variables, CVs):
pts topside pressure
pwh wellhead pressure
pp,in ESP inlet pressure
q flow from the well
I electric ESP motor current

• Other:
∆pf pressure drop due to friction (cf. [13])



The variables q0 and ∆pc = pwh − pts are easily calcu-
lated from these measurements, and are also assumed to be
available measurements. While the other measured variables
are present in the third order model, models for the inlet
pressure and the electric current are stated below.

3) Electric current: Using the affinity laws and equation
(5.14) in [15], the electric current consumption of the ESP
motor is modeled as:

I(f, q) =
Inp
Pnp

P0(q0)

(
f

f0

)3

(4)

where Inp and Pnp are the so-called nameplate ratings of
the ESP motor.

4) Inlet pressure: The ESP inlet pressure is modeled as:

pp,in = pbh − ρgh1 − F1(q) (5)

where h1 is the height from the reservoir to the pump, and
F1(q) is the frictional pressure drop in that section.

5) Thrust forces: The upthrust and downthrust forces act-
ing on the ESP are important control targets, but are not mod-
eled directly. These forces depend on the pump frequency
and flow. This means that, for a given pump frequency,
constraints on the flow may be imposed to avoid upthrust
or downthrust conditions. In this model, such constraints
are assumed to be provided at the reference frequency,
denoted q0,min and q0,max. Constraints on the flow q at other
frequencies may be calculated using the affinity laws, but
this would make these constraints proportional to the pump
frequency, which complicates the controller implementation.
Instead, as the theoretical flow q0 is easily calculated from
(3), the real flow q is replaced as an output by q0, and the
following constant constraints are imposed:

q0,min < q0 < q0,max (6)

C. Limits

It is assumed that the ESP can only operate with a
frequency between 35 and 65 Hertz, and the frequency can
not change faster than 0.5 Hertz per second. The production
choke valve opening z is also limited between 0 and 100
percent, and the rate of change is limited to 0.5 percent per
second. These limits must be respected by the controller.

III. CONTROLLER DESIGN

The system to be controlled, described in Section II, is
a multivariable control problem with multiple control tar-
gets and priorities, which motivates using Model Predictive
Control (MPC), see e.g. [2]. Considering the dynamics of the
system, a sampling rate of at least 1 Hertz (one control action
per second) is considered a requirement for the controller.

A. SEPTIC

The controller in this study is developed and configured
using SEPTIC (Statoil Estimation and Prediction Tool for
Identification and Control), which is Statoil’s in-house soft-
ware tool for MPC. SEPTIC has been in use since 1997,
with many running applications [16]. The main advantage
of using SEPTIC (or a similar tool) is that the software

is field-proven, and has many built-in features to ease the
process of developing and configuring the controller to obtain
the desired performance. The main considerations in the
controller configuration is outlined in this section. Details
regarding the implementation aspects of SEPTIC can be
found in [16].

B. Control targets
In SEPTIC, three (optional) control targets may be speci-

fied for each output variable (CV, controlled variable): high
limit, low limit and setpoint. These limits are not hard
constraints, instead slack variables and penalties (see e.g. [2])
are used in the implementation. For each input variable (MV,
manipulated variable), hard constraints are implemented both
for high and low limits, and the rate of change. In addition,
a setpoint (denoted ideal value, IV) may be assigned, and
changing the input variables may be penalized to reduce the
control action.

C. Internal models
To obtain internal models (models used for prediction in

the controller), steps in the inputs z and f and the disturbance
pts are applied to the simulator, and the response of the
variables I , q0, pp,in and ∆pc are measured. Linear SISO
(single input, single output) step response models are then
generated for each input/output pair, using built-in features
in SEPTIC. In the controller, predictions of the multivari-
able system dynamics are made based on the superposition
principle [16].

D. Priorities and weights
One of the features of SEPTIC is that, in addition to

weighting of the different variables, the relative priority of
each control target can be assigned explicitly. This is im-
plemented as a sequence of steady-state quadratic programs
that are solved to respect the specifications in the order of
decreasing priority, each stage respecting the achievements
from earlier stages. When all achievable steady-state targets
are calculated, the dynamic optimization problem is adjusted
accordingly before it is solved.

This feature has proven its value in many applications [16],
and it makes the SEPTIC implementation of the specifica-
tions described in section II-A relatively straight-forward,
with quite little effort on tuning. In this application, most
of the control decisions are based on priorities, though the
weighting of the variables is not superfluous. In transients
(e.g. due to large disturbances), the weighting of the variables
will be of great importance. Loosely speaking, the priorities
are decisive for steady-state conditions, while the weights
determine the transients.

The implemented controller configuration is provided in
Table I. The first column states the explicitly assigned
priority, while the last column states the assigned weight
or penalty. The weights for the inputs f and z specify the
penalization of change in the inputs; the limits are hard
constraints. Of practical reasons (scaling of the variables),
the units used in the controller are different from the SI-
units in the model, as seen in the table.



TABLE I
MPC CONTROLLER CONFIGURATION

Prio Var. Unit Low Setp. High W
1 I A 65 100
2 q0 m3/h 53.2 80.7 25
3 ∆pc bar 1 25
3 pp,in bar 40 70 20
4 pp,in bar 50 10
5 I A 0 1
5 q0 m3/h 65.9 1
6 ∆pc bar 10 1
- f Hz 35 65 1*
- z % 0 100 1*

*) Penalty on change

Fig. 2. Embedded implementation process

IV. EMBEDDED IMPLEMENTATION

The process of transferring the SEPTIC implementation to
a PLC is outlined in Fig. 2, and is further described in this
section.

A. Target platform

The target hardware platform is the Programmable Logic
Controller (PLC) ABB AC500 PM592-ETH. This PLC has
support for ANSI C89 and C99, and significant computa-
tional power. It has a G2 LE core implementation of the
Freescale MPC603e microprocessor running at 400 MHz.
This is a low-power RISC CPU with a dedicated hardware
floating point unit (FPU), and the PLC can achieve a cycle
time per floating-point instruction of 0.004 μs (minimum)
[17]. The PLC is equipped with 4 MB RAM for user program
memory, and 4 MB integrated user data memory.

The software package ABB PS501 Control Builder Plus
(version 2.3.0), which is based on the CoDeSys automation
platform technology, is used to integrate the MPC controller
(C code) into a PLC software/runtime environment. The
support offered for ANSI C code includes a restricted set
of standard library functions, and linking against external
libraries is not supported. Thus, the implemented C code
must be self-contained (library-free).

The GNU GCC 4.7.0 compiler toolchain is used to com-
pile the C code. The supported compiler optimization levels
are limited to –O1 and –O2, with limited compiler flag
options. In this study, the –O1 optimization level is used.

B. QP formulation

Due to the limited hardware resources and runtime support
on the PLC (compared to a PC), a custom light-weight
QP solver is implemented to solve the control problem. To

achieve this, the SEPTIC configuration is first translated into
a sparse QP problem formulation, including slack variables
for the soft constraints. An automatic code generator tailored
for SEPTIC, was developed for this purpose in [18] (referred
to as the eMPC code generator in the sequel). It extracts
information from the internal data structures in SEPTIC and
generates the QP formulation based on the existing SEPTIC
configuration. and also provides some general functionality
for an embedded MPC implementation.

C. The QP solver
As mentioned in the introduction, many code generators

are now available to generate fast and efficient QP-solvers,
with modest memory requirements, making embedded im-
plementations practically feasible. In this study, a prelimi-
nary release of the MATLAB toolbox FiOrdOs1 has been
used to generate the custom solver. The generated solver is
implemented in ANSI C code, and solves the parametric QP
problem:

min
x∈X

1

2
xTHx+ gTx (7a)

subject to: Aix ≤ bi, Aex = be (7b)

The solver is based on the primal-dual first-order method
proposed in [19], originally developed for image processing
applications. Unlike the other methods in FiOrdOs, which
require a positive definite Hessian H , this method allows a
positive semi-definite Hessian, which is the case for the QP
problem generated by the eMPC code generator. Promising
results using this method for embedded MPC has been shown
in [20].

For our application, the decision variable vector x contains
predictions of future inputs and measurements, and the slack
variables. The current state of the controlled system and
previous control actions enter the QP problem in the vector
be, which makes this parametric. The other matrices and
vectors are constant, and are constructed using the problem
formulation generated by the eMPC code generator, as in
[20] where more details are provided. To achieve this effi-
ciently, the eMPC code generator has been modified to also
generate the problem formulation in MATLAB format, and a
MATLAB script has been written to automatically construct
the necessary matrices and vectors, and generate the solver
using the FiOrdOs code generator.

D. Problem size
The QP problem size depends on the number of in-

puts, outputs and control targets (introducing slack vari-
ables and constraints), as well as controller configuration
parameters, such as prediction horizon, input blocking for
the MVs and evaluation points for the CVs [2], [16]. In
this application, each of the MVs have 5 blocks, each
CV have 8 or 9 evaluation points, and there are 7 soft
constraints. The generated problem has 60 decision vari-
ables (x ∈ R60, H ∈ R60×60, g ∈ R60), 105 inequality con-
straints (Ai ∈ R105×60, bi ∈ R105) and 43 equality con-
straints (Ae ∈ R43×60, be ∈ R43).

1See http://fiordos.ethz.ch



E. PLC implementation

The eMPC code generator also provides a C code frame-
work for the embedded MPC implementation. This frame-
work, combined with the QP solver generated by FiOrdOs,
forms the basis for the embedded implementation. Additional
functionality, such as warm-starting the solver and OPC
communication via Ethernet, is also implemented. In order to
reduce the computational load, the explicit priorities which
may be defined in SEPTIC (see Section III-D) are not
implemented in the embedded controller.

V. SIMULATION RESULTS
In this section, hardware-in-the-loop simulation results are

presented. The performance of the embedded controller is
compared to the original SEPTIC MPC, which is considered
the benchmark controller.

A. Hardware setup

The embedded controller is implemented on the PLC, and
communication with the ESP simulator is established via
Ethernet and an OPC server. SEPTIC is run on the same
PC as the simulator, but there is no interaction except via
the OPC server.

B. Benchmark scenario

To test and evaluate the performance of the controller, a
benchmark simulation scenario is defined, i.e. a predefined
sequence of measurements of the topside pressure, including
measurement noise. To ensure comparable simulation results,
the other measurements are noise-free. Thus, the scenario is
exactly the same in all simulations presented in this section,
the only difference is the controller.

The scenario starts at steady-state conditions, with a top-
side pressure of 20 bar, and the ESP controlled manually.
The controller is activated after 1 minute, and is active for
the remainder of the scenario. After 2 minutes, the topside
pressure is increasing to 28 bar. After 4 minutes, it decreases
to 12 bar. After 6 minutes, it is slowly increasing until it
again reaches 20 bar.

C. Original results

Since explicit priorities are not implemented in the em-
bedded controller, only the weights are used. Thus, the
embedded controller ignoring the priorities of the SEPTIC
configuration in table I will not provide the same perfor-
mance as SEPTIC. As expected, hardware-in-the-loop simu-
lations using this configuration show a poor performance of
the embedded controller. E.g., tracking of the (low-priority)
setpoint on pp,in is improved compared to SEPTIC, on the
expense of large violations of the (higher-priority) low limit
on q0.

The simulations are shown in Fig. 3a and 3b. The topside
pressure, defining the scenario, is given in the top plot. The
next four plots are measurements of the controlled variables
I , q0, ∆pc and pp,in, respectively. The last two plots are
the pump frequency f and the choke opening z, which are
the controller inputs. The constraints are also plotted (dashed
lines), and the setpoint on pp,in (dash-dotted line at 50 bar).

TABLE II
MPC CONTROLLER CONFIGURATION WITHOUT PRIORITIES

Var. Unit Low Setp. High W
I A 65 200
q0 m3/h 53.2 80.7 50

∆pc bar 1 25
pp,in bar 40 70 1
pp,in bar 50 2
I A 0 0.01
q0 m3/h 65.9 0.05

∆pc bar 10 1
f Hz 35 65 0.02
z % 0 100 0.005

D. Implementation without priorities

To achieve acceptable performance of the embedded con-
troller, SEPTIC is reconfigured without explicit priorities,
and the desired performance is achieved through proper
tuning of the weights and penalties. The new configuration
is shown in Table II. Most noticeable is the greatly reduced
weights on the setpoints for I and q0, and the move penalty
on the inputs.

Hardware-in-the-loop simulations with this configuration
are shown in Fig. 3c and 3d. The performance of the
embedded controller is quite comparable to the performance
of the original SEPTIC implementation. However, there are
some differences. Most noticeable is the use of the control
input z (production choke valve) between 4 and 7 minutes
in the embedded implementation. The SEPTIC MPC keeps
the choke fully open in this interval, while the choke is
only about 90 percent open in the embedded implementation.
This, however, has little effect on the performance. The
mean power consumption (electric current, I) is only slightly
increased compared to the original SEPTIC implementation,
from 44.42 Ampere to 44.86 Ampere, a 1 percent increase
(see Section V-E).

E. Control performance

For comparison of controller performance, the error (con-
straint violation or deviation from setpoint) on certain control
targets are presented in Table III. The errors are calculated
for different time intervals, stated in the table below each
control target (in minutes).

F. Computation time and memory

In the simulations, the average computational time of
the embedded controller was 124.09 ms, which is well
within the required sampling rate of 1 Hz. The FiOrdOs
generated solver has a small footprint. The program code size
downloaded to the PLC was 179kB (<4% of its capacity),
and the program data size 108kB (∼2%). As the number
of iterations in the solver is fixed (100 iterations was used
in the simulations presented here), the computational time
of the solver is also very predictable, which is crucial in
real-time applications. The worst-case computational time in
this implementation was measured to be 124.89 ms, which
is only 0.64% above the average time.



(a) SEPTIC (original) (b) Embedded (original)

(c) SEPTIC (no priorities) (d) Embedded (no priorities)

Fig. 3. Simulation results



TABLE III
PERFORMANCE

Target Original No priorities
(Interval) Error SEPTIC PLC SEPTIC PLC

I high Max 0.1601 0 0.1625 0.1238
(2-4.5) Mean 4.187e-3 0 4.854e-3 6.035e-3

MSE 5.658e-4 0 5.821e-4 3.192e-4
q0 low Max 0.6623 3.0628 0.6620 0.6644
(1-4.5) Mean 0.2749 1.7477 0.2780 0.2751

MSE 0.1530 4.5379 0.1521 0.1531
pp,in low Max 3.1723 0 3.1725 4.0151

(2-4.5) Mean 1.6514 0 1.6475 1.7627
MSE 3.6673 0 3.6500 4.1390

pp,in setp Mean 1.7892 1.0962 1.7876 1.9679
(4-10) MSE 9.6471 1.5508 9.7950 11.7728
I setp Min 31.8312 30.8984 31.8380 32.3683
(1-10) Mean 44.4247 38.9517 44.4056 44.8572

VI. CONCLUSION

In this paper, a feasible approach to implement model
predictive control on industry-standard ultra-reliable embed-
ded hardware was outlined. The use of established industrial
MPC software tools for controller design, in combination
with automatic code generators, significantly reduced the
effort required for the implementation. This could be further
improved by including more functionality in automatic code
generators.

Some modifications to the original controller design were
needed to achieve acceptable performance of the embedded
controller, as explicit priorities are not included in the
embedded implementation. Instead, the desired performance
was achieved through tuning of weights and penalties on
soft constraints. As seen in the simulation results, a perfor-
mance quite comparable to the original results was achieved,
however, realising all the specifications for all combinations
of the control targets without the explicit priorities required
more tuning effort.

A fast sampling rate (up to 8 Hz) was achievable for
the system considered in this study. The control problem
size (number of variables and constraints) was relatively
small, but the results imply that this approach is also feasible
for larger control problems. The number of iterations in
the solver could be increased to improve the controller
performance, or reduced to reduce the computation time.
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