A Uniformly Semiglobally Exponentially Stable Nonlinear Observer for
GNSS- and Camera-Aided Inertial Navigation

L. Fusini, T. I. Fossen and T. A. Johansen

Abstract—1In this paper a nonlinear observer design for
estimation of position, velocity, acceleration, attitude and gyro
bias of an Unmanned Aerial Vehicle (UAV) is proposed. The
sensor suite consists of an Inertial Measurement Unit (IMU),
a Global Navigation Satellite System (GNSS) receiver, a video
camera and an altimeter. The camera and machine vision can
track features from the environment and calculate the optical
flow. These data, together with those from the other sensors, are
fed to the observer, that is proven to be uniformly semiglobally
exponentially stable (USGES). The performance of the observer
is tested on simulated data by assuming that the camera system
can provide the necessary information.

I. INTRODUCTION

Navigation can be defined as “the task of determining an
object’s position, velocity, or attitude by combining informa-
tion from different sources” [1]. A good estimator for such
values is the extended Kalman filter, but its computational
footprint makes it a demanding solution for systems with low
computational power, for example small unmanned vehicles.
Researchers have then started developing nonlinear observers
as alternatives to the Kalman filter, producing several and
diverse results with stability proofs and experimental support.
The problem of attitude estimation has received significant
attention as a stand-alone problem [2], [3], [4], [5], [6], [7],
[8]. As a step forward, other researchers have considered
the integration of Inertial Navigation System (INS), magne-
tometer/compass and GNSS to estimate attitude, position and
velocity of a vehicle.

[9] expanded the vector-based observer proposed by [5]
and [6] to include GNSS velocity measurements. [2] and [3]
built globally exponentially stable (GES) attitude estimators
based on multiple time-varying reference vectors or a single
persistently exiting vector. A similar observer was developed
in [1] to include also gyro bias and GNSS integration. An
extension of this [10] replaced the rotation matrix with the
unit quaternion for representing attitude, considered Earth
rotation and curvature, a non-constant gravity vector, and
included accelerometer bias estimation.

Besides GNSS and IMU, another sensor commonly used
in navigation is the camera: its greatest advantages are low
weight, low power consumption and the availability of a
wide range of machine vision software tools that make it an
extremely versatile device. Drawbacks are its dependence on
lighting and weather conditions, on the existence of suitable
image features for image processing, and the difficulty in
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separating camera motion from moving objects in complex
non-stationary environments.

[11] and [12] derived an implicit extended Kalman filter
(EKF) that could recover the camera motion states. Such
work has been later extended [13] to include aircraft dynam-
ics into the implicit EKF. In [14] a single camera is used to
reduce the drift over time of an IMU unassisted by GNSS.

Optical flow (OF) from a single camera is used in [15]
to estimate body axes angular rates of an aircraft as well as
wind-axes angles in a GPS-denied scenario. A single camera
and the OF obtained through it is also exploited for obstacle
avoidance in [16]. A comparative study on the accuracy of
different OF algorithms is presented in [17].

A. Contribution of this Paper

This paper proposes a nonlinear observer for position,
velocity, acceleration, attitude and gyro bias of a UAV. It
is shown that the equilibrium point of the estimation error
dynamics is USGES. Exponential stability is important for
systems that are exposed to environmental disturbances and
uncertain initialisation, since it guarantees strong conver-
gence and robustness properties. This, together with having a
small computational footprint, constitutes an advantage over
other popular algorithms as the EKF.

The system is also fault-tolerant, since the camera may be
used to replace the magnetometers in the not unlikely event
they present a faulty behaviour.

II. NOTATION AND PRELIMINARIES

Vectors and matrices are represented by lowercase and
uppercase letters respectively. X 1, X T, and tr(X) denote
the inverse, pseudoinverse, and trace of a matrix respectively,
X7 the transpose of a matrix or vector. The estimated value
of X is represented as X and the estimation error is defined
as X = X — X. The operator || - || denotes the Euclidean
norm, [I,, the identity matrix of order n and 0,,x,, the m xn
matrix of zeros. A vector x = [x1, 9, x3]7 is represented in
homogeneous coordinates as x = [z1, 9,3, 1]T. The func-
tion sat(-) performs a component-wise saturation of its vector
or matrix argument to the interval [—1, 1]. The operator S(z)
transforms the vector x into the skew-symmetric matrix

0 —XI3 T9
S(m) = T3 0 —X1
—X9 T 0

The inverse operation is denoted as vex(-), such that
vex(S(z)) = x. For a square matrix A, its skew-symmetric
part is represented by P,(A4) = (4 — AT).



The frames of reference considered in the paper are the
body-fixed frame {B}, the North-East-Down (NED) frame
{N} (Earth-fixed, considered inertial) and the camera frame
{C}. The rotation from frame {B} to {N} is represented
by matrix R} = R € SO(3), where SO(3) represents the
Special Orthogonal group. The camera is assumed to be fixed
to the body and perfectly aligned to it, so that camera-frame
and body-frame represent the same coordinate system and
can be identified by {B} alone.

A vector decomposed in {B} and {N} has superscript
and ™ respectively. The body (camera) location w.r.t. {N} is
identified by ¢ = [}, ¢}/, ¢2]". A point in the environment
expressed w.r.t. {N} is " = [2",y", 2"]T: note that a point
located on the sea surface has 2™ = 0 and such it will be
throughout the paper. The same point expressed w.r.t. {B}
is t* = [2°,9° 2T, It will also be assumed that every
point is fixed w.r.t. {N}. The greek letters ¢, 6, and %
represent the roll, pitch, and yaw angles respectively, defined
according to the zyx convention for principal rotations. A 2-
D camera image has coordinates [r, s]7, aligned with the y°-
and 2-axis respectively (see Fig. 1). The derivative [r*, 5]
of the image coordinates is the optical flow (OF). Subscript
r indicates a quantity evaluated by means of the OF.

A. Measurements

The sensor suite consists of a GNSS receiver, an IMU,
a camera, an altimeter and an inclinometer, providing the
following information:
e GNSS receiver: NED position p" and velocity v"™;
o IMU: biased angular velocity w?, = w® + b, where b
represent the bias, and acceleration ab;
o camera: 2-D projections [r, s]”" onto the image plane of
points [z",y", 2"]T from the 3-D world;
e altimeter: altitude c7;
o inclinometer: roll ¢ and pitch 6 angles.
A magnetometer, providing the magnetic field m®, can
also be used for redundancy in the observer.

III. OpTIiC FLOW EQUATIONS

Matrix R and vector ¢" represent a rotation and a transla-
tion and can be joined to form a 4x4 transformation matrix
T from {B} to {N} with homogeneous coordinates

R CTL
T =
[ O1x3 1 }

such that t" = T(¢,0,1) t°. The inverse transformation is
then represented as

01x3 1 M

T _pT n
thltn|:R R'c :|tn
and ¢’ is a function of =", y™, ¢, ¢, ¢, ¢,0, and V.

The relationship between ¢ and its projection onto the
image plane is expressed by means of the well-known
pinhole camera model [18]:

r b
{ }—f{yb . a0 2

s | xb| z

where f is the focal length, defined as the distance between
the image centre 0™ and the camera aperture o, as in Fig.
1. Note that 2® would be 0 only if the camera had a field
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Fig. 1.

of view of 180°, a situation that is not contemplated in
the present paper. %, »°, 2° in (2) can be replaced by the
expressions found through (1), then (2) can be inverted to
express ™ and y", renamed z7. and y7 ., as functions of
firys ey, ey, ¢t ¢,0, and 9.

Such 27, y7 can then be used as a new t7 and transformed
again through T—! to give the same point in body coordi-
nates, ﬂ’T = T’ljal. The resulting tﬁ} is then a function of
fyrys, 6,0, and c?.

At this point the OF is considered. For every single point
t?p tracked by the camera, the relationship between OF and
linear/angular velocity in {B} is given by

. b
] eursenan [ B] @

M is a 2 x 6 matrix defined in [17]. Assuming that the
centre of rotation and the centre of {B} coincide, then M
has the structure

yb b ybzb yb2 b
N LR N
M = b 4 b2 | T b “4)
Tp | =22 0 1 —yb —ZL b Yrir
zh T a:b T zb
T T T

If the points being tracked were k, then the OF vector
would have dimension 2k and M € R2?**6: every new
tracked point adds two rows to the OF vector and two rows to
M, with a structure given by (4). The parameters f,r and s
are known from the camera, ¢,  are estimated by the attitude
observer (see Section IV), ¢ is measured by the altimeter,
so the whole matrix is known. Pseudoinversion allows to
express body-fixed velocities as function of OF and t%..
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The pseudoinverse of M can be computed as in (5) if
MT M has full rank for all states, which can happen only
if £ > 3. The number of features extracted by a chosen
image processing algorithm depends on the kind of images
available, which in turn depends on the kind of environment



being overflown, lighting and weather conditions, etc. It
is assumed that algorithms and flight conditions are good
enough to consider £ > 3 and allow Assumption 1 (see
Section IV-A).

IV. OBSERVER DESIGN
A. Assumptions

In designing the nonlinear observer the following assump-
tions are made:

Assumption I: a sufficient number of image features are
selected such that M has full rank and Eq. (5) can be used.

Assumption 2: the gyro bias b is constant, and there exists
a known constant L; > 0 such that [|b]| < L.

Assumption 3: there exists a constant c.ps > 0 such that,
vt >0, ||k x ab|| > cops.

Assumption 3 imposes that vectors v% and a® are non-
collinear, i.e. the angle between them is non-zero and none
of them can be identically zero (see, e.g., [9], [5]). In practise
this condition restricts the types of manoeuvres that insure
a correct functioning of the proposed observer. Velocity and
accelerations are not an issue for fixed-wing UAVs, since
they always have a positive forward speed during flight and
never accelerate just opposite to gravity, but helicopter-like
vehicles will violate Assumption 3 when in hover or when
just gaining altitude and the observer will not work.

The following simplifying assumption is also introduced:

Assumption 4: Euler angles are considered as measured by
inclinometers and not extracted from the estimated R matrix
(i.e. R is not fed back to M ) as well as the altitude c?, so
that matrix M and subsequently v%. depend only on known
values.

IMU, b b GNSS
Wps O
inclinometer n n
p,v .
¢, 0 D
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b
rs o ol @ Jot T
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Fig. 2. The actual system being analysed, with 31 representing the attitude
observer and Yo the translational motion observer. R is not fed back to the
camera block, Euler angles are considered as measured by the IMU.

B. Observer Equations

The observer is chosen as
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(6)—(7) are the same as in [1], with the only difference
being how the matrix J is defined. In addition there is Eq.
(8), given by machine vision. The subsystem ¥; represents
the attitude observer, in which Kp is a symmetric positive
definite gain matrix, ¢ > 1 is a scaling factor tuned
to achieve stability, k; is a positive scalar gain, Proj(-,-)
represents a parameter projection [19] that ensures that ||b]|
does not exceed a design constant L; > L (see Appendix).
The matrix J is the output injection term, whose design is
inspired by the TRIAD algorithm [20]. It is defined as

J(Wh, 0" a%a" R) == A, AT — RA, AT (9a)
Ay = [oh, ol xa®, ol x (vl x a®)]  (Ob)
An = [@n7 ﬁn X &n’ {)n X (,&n X dn)] (90)

The subsystem X, represents the translational motion
observer, where K, Kp,y, Kyp, Ky, K¢p, and K¢, are ob-
servers gains yet to be defined, and ¢g" = (0,0,9.81)7 is the
gravity vector in NED.

The system ;-3 is a feedback interconnection, as
illustrated by Fig. 2.

V. STABILITY PROOF

The error dynamics of the attitude observer »; can be
expressed by

(10a)
(10b)

R= RS(w®

) — RS(wh, —b) —oKpJ
b = —Proj(b, 7(J))

m

where 7(J) = —krvex(Po(RTKpJ)). The equilibrium
point (R, b) = (0,0) was proven to be globally exponentially
stable (GES) in [1], with velocities replaced by the magnetic
field and assuming that all arguments of J were measured
values and not estimates.

The error dynamics of the translational motion observer
Yo is represented by

P =" = Kppp™ — Kpy 0" (11a)
0" =" — K™ — Ky @™ (11b)
" = —Kepp" — Kep0" +d (11c)

where d = (RS(w?) — RS(w?, — b))a® + (R — R)ab. By
defining the error variable w = [(p™)7T, (3™)T, (a™)T]T, the
error dynamics (11) can be written in a more compact form

as
W= (A—KC)w+ Bd (12)

where

A:{Oexz’, Ig ]’ B:{Oax:’,}7

03x3  O3x6 I3

Kpp va

C= [ Is Ogxs ] s K = Kvp Ky
Kep  Keo



Theorem 1 gives conditions for observer (6)—(7) to be
rendered USGES.

Theorem 1: Let o be chosen to ensure stability according
to Lemma 1 in [1] and define Hg (s) = (Is— A+ KC)~!
There exists a set (0,c) such that, if K is chosen such that
A — KC is Hurwitz and ||Hg (3)|lec < 7, for v € (0,c¢),
then the origin of the error dynamics (10)—(12) is USGES as
defined by [21] when the initial conditions satisfy ||b(0)] <
L;.

’ Proof: The first part of the proof follows that of
Lemma 2 in [1]. However, our expression for J is different.

The pair (A, C) is observable and the triple (A, B, C) left-
invertible and minimum phase (see Theorem 2 in [4]), so K
can always be chosen to satisfy the conditions of the present
theorem. It has also been proven that the solutions cannot
escape the region ||b]| < L;.

The error dynamics (10) can be rewritten as

R=RS(w) — RS(w®, — b) —

b= —Proj(b, 7(.J)) + Proj(b,

UKPJ+O'KPJ (13a)
7(J)) — Proj(b, 7(J)) (13b)

Consider the Lyapunov function candidate

V(R,D) = IIRH2—€H(S( b)RTR) + iHBIIZ

which satisfies a1 (||R]|% + ||b]|2) < V < as(||R| + ||b]?).
where aq, o are positive constants and 0 < £ < 1 [1]. Its
derivative satisfies

V < —as(||R||> + [16]?) + r(RT o K p.J)
— bt (S (Proj(b, 7(J)) — Proj(b, 7(J)))RTR)
— tur(S(L)RT oK plJ)

+ 228 Broj (b, 7(1)) — Proj. (1)

We have J = (A, — An)A{ = A, AT, where

Ay =" =",

o™ x (V" x a) — 0" x (0" x a")]

v xa” —o" xat,

By algebraic manipulation of A, it can be found that
| AL < hi||@|| + he|l@||? + hs||@|®, where hi, ha, hs are
positive values obtained from the different combinations of
la™|| and [[v™]|, which are bounded. It then follows that
loEpJ|l < si(hulli] + holl@|* + hs|[w]?) for some
s1 > 0. Stll following [1], it is also |[Proj(b,7(J)) —
Proj(b, 7(J))|| < sa(ha[|@]| + ha[@]* + hs||@]|*) for some
s9 > 0.
In virtue of all this, V can then be expressed as

V < —as(|R)*+1|5]?)
+ V3s1||R|| (R | @] + ha[@]|? + hs|@|*)
+ V60s3|| R (h |@0]| + he|l@]|® + hs|@]?)
+ V6s1|b]| (ha[|@] + hell@||* + hs||@]®)
2055
21180l (ha ||@]] + ha|@]|% + hall@])?)

<- a3€2 + haC(ha[[@] + he||@]|* + hs|l@]?)

for some hy > 0, where ¢ := (|| R||% + [|5]|%)"/2.

As reported in [22], there is a function W = T Pw,
with P positive definite, such that W< —|@]* +~ 2||d||2,
where d is defined as in (I11) and v > 0. d is bounded as
d < V2(LyuLg||R|| + La|b|| +L L, ||R||) + Lg||R||, where
L, L,, and L, are bounds on w , |la®|| and a® respectively.
Subsequently, T < —||w||2 4 y2¢>¢? for some g > 0.

Let’s now consider function U = W + ~V for the whole
system. By combining the derivatives of W and V' we obtain

— [lo]1* +v*¢*¢*
+ (=3 + haC(ha||@]| + ha|| @ + hs|@]|?))

—— Qi) g | &= ]|
where the matrix components are defined as
=1
D2 = = — gyhalhs + b6 + hollit]?)
422 = —7’¢* + azy

The tunable parameter is 7, so we can say that matrix
Q is positive definite if 7 < 4q2+h2(h1+h420|“w”+h3”wu3)2
depends on ||w||, so for every different ||w|| it is necessary
to choose a different  to satisfy positive definiteness of Q.

To show USGES of the origin of the system, according to
Definition 2.7 in [21], theorem 2 from [23] will be exploited.

Collecting the states in a single vector z = [@T, RT,b7]”
and given the expressions of W and V, it is immediate to
see that there exist positive constants ki (7y), k2(~y) such that
ki (Ml <U < ka(y)ll=].

Concerning U, let us impose positive definiteness by
bounding ||w|| instead of -y. The determinant of () has to
be positive, hence the condition

2
hal[@]]? + hall@]| + by = [4= 5T <0 (4)
17
h1,ho, hs, hy,a3,q have all already been fixed in pre-
vious steps, whereas y > 0 is still a free pa-
rameter. The solution of (14) can be expressed as
|[@||<f(h1, ha, b3, ha,q,7,a3)=A. This corresponds to
having = € Ba in theorem 2 from [23]. Since the theorem
is valid if A can be chosen arbitrarily positive, we have to
prove that there always exists a combination of parameters

that realises any chosen A.

A as solution of (14) exists and is positive if
— 3 ’yq __4dasz
hy 4 <0, which is true if v < R It also

043

has to be 1mposed that v < =%, so that the square root is

83 8
3 5 < «@3

real. It’s easy to see that is always true,

h2h2+4q q2
so only v < m is necessary. This means that, for
any v € (0, W) the parabola represented by (14) will

cross the horizontal axis at any positive value. In other words,
for any chosen A > 0, there is a «y such that the solution of
(14) is @] < A.

At this point U is negative definite in function of ~,
which in turn depends on A, so it can be expressed as



U < —ks(A)|z|?, where k3(A) > 0 is a constant that
depends on the chosen A.
It can also be verified that

L EO(A)A?
A—oco ka(v(A))

Both %, and k2 depend on the function U, which is explicitly
linear in . However, U is also function of P, that depends
on . Given that v — 0 as A — oo and the eigenvalues of
P have the same rate of convergence to zero [22], [24], both
k1 and ko are functions of «y of the same order for the scope
of (15), which is thus verified.

All hypotheses of theorem 2 from [23] are satisfied, so
it can be concluded that the origin of the error dynamics
(10)—(12) is USGES. [ |

15)

VI. CASE STUDY

The dynamics of a UAV is here simulated, together with
the information available from the sensors, and the observer
(6)—(8) is verified based on these data. It is assumed that
machine vision can provide the required v%. The matrix J
is first calculated based on information coming from magne-
tometers and accelerometers: the magnetic field vector m"
is assumed constant, with a value corresponding to Earth’s
magnetic field in Trondheim, Norway. At time ¢ = 90s a drift
in the magnetometers’ readings is simulated, and at £ = 100s
they are replaced by machine vision, so v and 9" take the
place of m? and m”. In this way the system is shown to
be fault-tolerant. Zero-mean Gaussian white noise is added
to all measurements, which are assumed to be available
at the same rate of 100 Hz. The GPS measurement error
v[n] is modeled as a Gauss-Markov process by v[n + 1] =
e~karsTsy[n] + ngps[n], where ngps is zero-mean Gaussian
white noise, 1/Kgps is the time constant of the process, and
T, is the sampling time. Table I reports the values for such
parameters.

TABLE 1
GAUSS-MARKOV ERROR MODEL PARAMETERS FOR GPS
MEASUREMENTS
Direction  Std. Dev. ngps (m)  1/kgps (s) T (s)
North 0.21 1100 1.0
East 0.21 1100 1.0
Altitude 0.40 1100 1.0

The gyro bias is limited by ||b|| < L, = 2°/s, and
L; = 2.1°/s is used for the projection. The observer gains are
initialised with Kp = diag(10,10,10), o = 1, k; = 0.02,
K,, = 1005, K,, = I3, K,, = 0113, K,, = 813,
K¢, = I3, and K¢, = 5I3. At time ¢ = 100s some of
the gains are changed: Kp = diag(1,1,1), K,, = 10I3, and
Kep =0.115.

The simulation results are illustrated in Figs. 3-7.

VII. CONCLUSIONS AND FUTURE WORK

A fault-tolerant nonlinear observer for estimating attitude,
position, velocity, acceleration and gyro bias of a UAV
was proposed and successfully verified with simulations,
after having proven that its origin is USGES. In future
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developments Assumption 4 will be dropped and it will be
tried to prove stability of the observer even when the roll
and pitch angles are extracted from the estimated rotation
matrix. Machine vision will also be implemented and full-
scale experiments with UAVs will be performed, so that the
observer can be verified on real data.
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APPENDIX

The parameter projection Proj(-, -) is defined as:

. I— SO 2 1B > Ly, 677 >0
Proj(b, 7) = ( H )T 19 = Ly, b7

T, otherwise

where c(b) = min{1,([b|* — L})/(L? — L})}. This
operator is a special case of that from Appendix E
of [19]. Some of its properties, used in this paper, are
reported here: (i) Proj(-,-) is locally Lipschitz continuous,
G o] > L, = bTPI'OJ(b 7) < 0, (iii) ||Proj(b,7)|| <
|I7||, and (iv) 7bTPI‘O_](b 7)< —bTT.




