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ABSTRACT
We investigate the impact of query result prefetching on the
efficiency and effectiveness of web search engines. We pro-
pose offline and online strategies for selecting and ordering
queries whose results are to be prefetched. The offline strate-
gies rely on query log analysis and the queries are selected
from the queries issued on the previous day. The online
strategies select the queries from the result cache, relying on
a machine learning model that estimates the arrival times
of queries. We carefully evaluate the proposed prefetching
techniques via simulation on a query log obtained from Ya-
hoo! web search. We demonstrate that our strategies are
able to improve various performance metrics, including the
hit rate, query response time, result freshness, and query
degradation rate, relative to a state-of-the-art baseline.

Categories and Subject Descriptors
H.3.3 [Information Storage Systems]: Information Re-
trieval Systems

General Terms
Design, Performance, Experimentation

Keywords
Web search engine, result caching, prefetching

1. INTRODUCTION
Commercial web search engines are expected to process

user queries under tight response time constraints and be
able to operate under heavy query traffic loads. Operating
under these conditions requires building a very large infras-
tructure involving thousands of computers and making con-
tinuous investment to maintain this infrastructure [7]. Opti-
mizing the efficiency of the web search systems is important
to reduce the infrastructure costs. Even small improvements
may immediately translate into significant financial savings
for the search engine.
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Recent research has shown that result caching [5, 15] is a
viable technique to enhance the overall efficiency of search
engines. The main idea in result caching is to store the
results of frequently or recently processed queries in a large
cache and readily serve subsequent occurrences of queries by
the cache. This way, significantly more expensive computa-
tions at the backend query processing system are avoided,
leading to important efficiency gains in the form of reduction
in query response latencies and backend query workloads.

Unlike earlier works that have a focus on limited-capacity
caches [5, 15], more recent works assume result caches with
infinite capacities [11]. The main reason behind this infinite
cache assumption is the cheap availability of storage devices
that are large enough to store the results of all previous user
queries issued to the search engine. Under the infinite cache
assumption all future queries can be served by the cache
except for compulsory misses which have to be served by
the search backend. However, an infinite result cache suffers
from the staleness problem [11]. The dynamic nature of
web document collections requires frequent index updates,
which may render some cache entries stale [1, 8]. In some
cases, the search results served by the cache may not be
fresh enough in terms of their content and this may degrade
the user satisfaction.

In practice, an effective solution to the freshness prob-
lem is to associate every result entry in the cache with a
time-to-live (TTL) value [2, 11]. In this technique, a cache
entry is considered stale once its TTL expires. The hits
on the expired entries are treated as misses and are pro-
cessed by the backend, leading to fresh results. This way, the
TTL approach sets an upper bound on the staleness of any
search result served by the cache. Unfortunately, it sacri-
fices some of the efficiency gains achieved by means of result
caching. Since the cache hits on the expired cache entries
are treated as cache misses, the query traffic volume hitting
the backend search system significantly increases with re-
spect to a scenario where no TTL value is associated with
the cache entries. In general, the increased backend query
volume leads to an increase in the query response latencies
and more backend resources are needed to handle the query
traffic. Moreover, there is a higher risk that the spikes in the
query volume will lead to an overloaded backend, in which
case certain queries may have to be processed in the degra-
dation mode, i.e., search results are only partially computed
for these queries and the user experience is hampered.

The above-mentioned negative consequences of the TTL
approach can be alleviated by combining it with a prefetch-



ing1 strategy that has the goal of updating results of cache
entries that are expired or about to be expired before a user
requests them [11]. An ideal prefetching strategy would have
all queries be readily served by the cache. In practice, there
is no perfect knowledge of queries that will be issued in the
future. Hence, prefetching strategies can only be heuristics.

The observations made before form the main motivation
of this paper. In particular, we aim to devise strategies
to identify cache entries that are likely to be requested
when they are expired. We proactively fetch the associated
search results using the idle compute cycles of the backend.
The main challenge associated with prefetching is to predict
when an expired cache entry will be requested. The pre-
dicted times can be used to select queries whose results are
worth prefetching and to prioritize them to obtain the high-
est performance benefit. Although related ideas on cache
freshness [11] and batch query processing [12] appear in the
literature (see Section 7), our work is novel in terms of the
following contributions.

• We quantify the available opportunity for prefetch-
ing (i.e., the amount of backend capacity that can be
used for prefetching) and the potential benefit (i.e., the
amount of requests for expired cache entries), using a
query workload obtained from Yahoo! web search. To
best of our knowledge, these were not reported before.

• We propose offline and online strategies to select and
prioritize queries that will potentially benefit from
prefetching. The offline strategy relies on the obser-
vation that the queries tend to repeat on a daily basis
and applies query log mining to identify queries whose
results are to be prefetched. The online strategy relies
on a machine learning model that predicts the next oc-
currence time of issued queries. Prefetching operations
are then prioritized based on these expected times.

• We conduct simulations to observe some important
performance metrics, including the hit rate, query re-
sponse time, freshness, and query degradation rate.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss our system model and motivate the result
prefetching problem through observations made over a real-
life web search query log. In Sections 3 and 4, we present the
proposed offline and online prefetching strategies, respec-
tively. We provide the details of our data and experimental
setup in Section 5. The experimental results are presented
in Section 6. We provide the related work in Section 7. The
paper is concluded in Section 8.

2. PRELIMINARIES
System architecture. In this work, we assume the

search engine architecture shown in Fig. 1. User queries
are issued to the search engine’s main frontend, which con-
tains an infinite result cache where the entries are associated
with a TTL value. Queries whose results are found in the
cache and not yet expired are readily served by the result
cache. Otherwise, they are issued to the frontend of a se-
lected backend search cluster, which is composed of many
nodes that host a large index build on the document col-
lection (only one cluster is displayed in the figure). After a

1The term prefetching is used in [13, 16] differently to imply
requesting the successive results pages for a query.
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Figure 1: The sketch of a search engine architecture
with a query prefetching module.

query is processed at the backend cluster, the computed re-
sults are cached together with the time of the computation
so that the expiration time can be determined. The query
prefetching module interacts with both the search engine
frontend and the search cluster frontend. This module is
responsible for selecting a set of queries that are expired or
about to be expired (from the query logs or the result cache)
and issuing them to the search cluster’s frontend, which is-
sues them to the backend. The results computed by the
backend are then cached like regular user queries.

Query prefetching problem. Our focus in this work is
on the query prefetching module. The idea behind this mod-
ule is to avoid, as much as possible, potential cache misses
by proactively computing, i.e., prefetching, the results of
queries that are about to expire before they are requested
by the users. At first glance, the problem of prefetching
looks trivial as it seems easy to identify queries that are
expired or about to be expired. The problem, however, is
quite challenging because not all prefetching operations are
useful and prefetching the results of a query consumes back-
end resources. In particular, if the results of a query are
prefetched, but the prefetched results are not requested be-
fore they are expired, prefetching leads to waste of resources.

The most important benefit of prefetching is the increase
in the cache hit rate [11]. This immediately corresponds to
reduced average query response times as more queries can
be served by the cache. In addition, the freshness can also
be improved if unexpired cache entries are prefetched.2 Fi-
nally, the fraction of queries whose results are computed in
the degraded mode can be reduced if prefetching can de-
crease the amount of processing at peak query traffic times.
In summary, the benefits expected from prefetching are re-
duced query response time, improved result freshness, and
reduced query result degradation.

The query results need to be prefetched, as much as possi-
ble, when the user query traffic volume is low so that the user
queries are not negatively affected from the query processing
overhead incurred due to prefetching. Hence, the feasibility
of prefetching depends on the availability of the low traf-
fic hours. This raises the question whether the low traffic
periods are long enough to prefetch sufficiently many query
results. Moreover, the fraction of queries that can benefit
from prefetching needs to be quantified. Finally, the poten-
tial risk for query result degradation needs to be identified.

2It is interesting to note that prefetching only expired cache
entries results in increased staleness. In fact, cache staleness
not necessarily impacts on results freshness as some expired
results might not be retrieved in the future.
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We will look into these issues in what follows by analyzing a
sample taken from the query traffic received by Yahoo! web
search during a particular day.

Motivating observations. The upmost curve in Fig. 2
shows the user query traffic received by the search engine,
i.e., the traffic that would hit the backend if there was no
result cache. The bottom curve indicates the backend traf-
fic in case of an infinite result cache with an infinite TTL,
i.e., only the compulsory cache misses hit the backend. The
curve in between shows the backend traffic volume when the
TTL is set to one hour. We observe that, during the peak
hours, a significant amount of cache misses (about one-third)
are due to expired cache entries.

According to Fig. 3, there is a good amount of opportunity
for prefetching (especially during the night) when compared
to the amount of requests on expired cache entries. We ob-
serve that the traffic volume reaches its peak from 11AM
to 4PM, resulting in a risk for query result degradation in
scenarios where the backend traffic rate is comparable to
the peak sustainable throughput (PST) of the backend (e.g.,
when the TTL is one hour). In general, the backend query
load decreases with increasing TTL values, but the poten-
tial for reduction in the query load due to prefetching also
decreases since there are fewer expired queries.

In Fig. 4, we try to quantify the existing opportunity for
prefetching, the risk of overflow, and the potential for load
reduction, assuming two different TTL values and three dif-
ferent PST values. The reported values are in terms of
queries per second, averaged over the entire day. As an ex-
ample, with a TTL of one hour and a PST of 20 query/sec,
the overflow rate is about five queries per second.

Prefetching strategies. We evaluate two alternative
types of prefetching strategies. The first set of techniques are
offline and rely on query log mining. In these strategies, the
prefetched queries are selected from the previous day’s query
logs. The second set of prefetching strategies are online. The
idea here is to predict the next occurrence times of cached
queries and try to prefetch expired or about-to-expire cache
entries before they are requested while being in an expired
state. Both types of strategies have two phases: the selection
phase, where the queries whose results are to be prefetched
are determined, and the ordering phase, where the selected
queries are sorted in decreasing order of their importance
and are prefetched in that order.

3. OFFLINE STRATEGIES
There is a high correlation between the repetition of some

queries and the time of the day, i.e., some queries are more
likely to be issued around the same time of the day. Accord-
ing to Fig. 2 in [10], a large fraction of queries are submitted
about 24 hours after their latest submission. Hence, a rea-
sonable strategy is to prefetch certain queries in the previous
day’s query logs. This strategy is based on query log mining
and is completely offline. Hence, the query selection process
does not incur any overhead on the runtime system.

3.1 Offline Query Selection
Let T denote the TTL of the result cache. Let τ denote

the current time point and τ ′ denote the time point exactly
24 hours before τ . Assume that the time interval [τ ′, τ) is
split into N time intervals, each interval having a length of
s = (τ−τ ′)/N time units. Let 〈δ1, δ2, . . . , δN 〉 be a sequence
of N time intervals, where δi = [τ ′ + (i− 1)× s, τ ′ + i× s).
Each time interval δi is associated with a query bucket bi
that stores the queries issued to the search engine within the
respective time interval. The queries to be prefetched during
a particular future time interval [τ +(i−1)×s, τ + i×s) are
limited to those in the set of buckets 〈bi, bi+1, . . . , bi+bT/sc〉,
i.e., the queries issued within the past time interval [τ ′+(i−
1) × s, τ ′ + (i − 1) × s + T ). Hence, the prefetched queries
are selected as

Qi =

i+bT/sc⋃
j=i

bj . (1)

At the end of a time interval δi, we switch to the next query
set Qi+1 and start prefetching results of queries in that set.

3.2 Offline Query Ordering
Since it may not be possible to prefetch all queries as-

sociated with a time interval, the queries need to be or-
dered based on their importance, i.e., the benefit that can
be achieved by prefetching a query. While ordering the
queries, the past frequency of a query plays an important
role. Herein, we discuss three simple strategies to determine
the importance of a query.3 The strategies differ in the way
the past query frequency is weighted. In what follows, w(q)

3It is possible to come up with variants of these strategies.



represents the weight of a query q and S is the sample of
queries considered in the selection phase mentioned above.

Unit-weighted frequency. This strategy assumes that
a query’s importance is equal to its frequency in S, i.e.,

w(q) =
∑
qj∈S

1, (2)

where qj denotes an occurrence of q in the query sample S.
This strategy simply prefers prefetching frequent queries as
an attempt towards increasing the likelihood of prefetching
a query that will repeat again.

Workload-weighted frequency. This strategy assigns
a heavier weight to those queries appearing during high-
traffic periods, i.e., those that are issued when the backend
query traffic volume is higher. The motivation here is to
prefetch more queries from busy traffic hours so that the
number of queries hitting the search cluster backend is re-
duced in those hours. We compute the weight of a query
as

w(q) =
∑
qj∈S

v(qj), (3)

where v(qj) represents the backend query traffic volume in
queries per second when qj is observed. This strategy aims
at reducing the backend query volume at busy hours and,
indirectly, it also aims at reducing the number of degraded
query results.

Time-weighted frequency. This strategy give a higher
priority to queries that occurred closer in time to τ ′.

w(q) =
∑
qj∈S

(τ ′ + T − t(qj)), (4)

where t(q) denotes the time at which qj is issued. The as-
sumption here is that the likelihood of prefetching a repeat-
ing query will increase.

4. ONLINE STRATEGIES
Online strategies are designed to identify queries that are

already expired or about to expire and are going to be issued
to the backend due to a TTL miss. Those queries are pro-
cessed beforehand, possibly when the load at the backend is
low. The key feature of this strategy is the prediction of the
next time point (eq) at which query q will be issued while
its cached results are in an expired state.

In the rest of the section, we use the following notation.
We denote by lq the latest request time and by uq the latest
computation time of the results of query q. As in the pre-
vious section, τ denotes the current time and T denotes the
TTL. We denote by s the selection period (i.e., we update
the prefetching queue at every s time units) and by fq the
number of occurrences of q up to τ .

To estimate eq, each time q is submitted, we predict the
time to its next appearance, nq. Under the assumption that
q appears every nq seconds, eq can be calculated as lq+k×nq,
where k is the smallest natural number greater than 0 that

satisfies uq+T <lq+k×nq, i.e., k=buq+T−lq
nq

c+ 1.

The value for nq is computed through a machine learning
model using the features given in Table 1. Temporal fea-
tures are based on when a query is submitted. Query string
features are based on the syntactic content of the query. Re-
sult page features capture the characteristics of the results
returned by the search engine. Frequency features are based

Table 1: The features used by the learning model

Feature type Feature Description

Temporal hourOfDay Hour of submission
timeGap Time since last occurence

Query string termCount No. of terms in query
avgTermLength Avg. term length

Result page pageNo Requested result page no
resultCount No. of matching results

Frequency

queryFreq No. of occ. of query
sumQueryTF Sum
minQueryTF Minimum
avgQueryTF Average
maxQueryTF Max. term query log freq.
sumDocTF Sum
minDocTF Minimum
avgDocTF Average
maxDocTF Max. term document freq.

on counters associated with terms of the queries. We use
gradient boosted decision trees to train our model [14].

4.1 Online Selection
The key point in the online strategy is to prefetch queries

satisfying τ < eq ≤ τ+T when there is processing capacity.
As a näıve method of query selection, one could scan the list
of queries in the cache and pick those with eq values that
satisfy the constraint. In practice, this is not feasible as
the cost of scanning the cache for every submitted query is
prohibitive. Hence, we resort to use a bucket data structure
where each bucket stores queries with eq values within a
time-period [t, t+ s). Insertions and deletions in the bucket
list can be realized in O(1)-time.

As illustrated in Fig. 5, the prefetching module maintains
a list of buckets. Each time a query is requested, we remove
it from the current bucket, modify eq and place it back in
a new bucket. In particular, we have two situations. If the
request is a hit, we modify eq and potentially move the query
into another bucket. Otherwise, if it is a miss, we delete it
from its current bucket and issue it to the backend. Once
it has been processed, we update eq and eventually insert q
in the bucket list. Finally, once in every s seconds we select
queries having eq∈(τ, τ+T ] from the corresponding buckets
and place these in the prefetching queue.

4.2 Online Ordering
To prioritize the queries in the prefetching queue, we evalu-
ate the following three methods:

Based on age-frequency. A query is assigned a weight

w(q) = (τ − uq)× fq.

In other words, older and more frequent queries get a higher
priority. This strategy tends to favor frequent queries that
were refreshed long time ago. The goal of this method is to
optimize the freshness of the results.

Based on age-frequency and degradation. We ex-
tend the weight function to include degradation.

w(q) = (τ − uq)× fq × (1 + dq).

This strategy favors older and degraded queries. The goal
of this method is to optimize the freshness of the results and
reduce the degradation.

Based on processing cost and expected load. Each
query is prioritized according to its expected processing cost
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Figure 5: The proposed search engine architecture with query prefetching capability.

times the expected difference in the backend load.

w(q) = ρ(q)× L(eq),

where ρ(q) is the estimated processing cost and L(eq) is the
backend load that is observed 24 hours prior to eq. This
strategy aims at reducing the query response time and in-
creasing the throughput.

5. DATA AND SETUP
Prefetching strategies. We evaluate a number of com-

peting strategies. The first type of strategies are baseline
strategies that do not employ any prefetching. These are
no-ttl, which assumes that there is an infinite result cache
with no TTL for entries so that any repetition of a query
is a hit, and no-prefetch, which assumes that there is an
infinite result cache with a TTL, but the prefetching logic is
not activated. The second type of strategies are the offline
strategies discussed in Section 3: off-freq, off-vol, and
off-time. The third type of strategies are the online strate-
gies discussed in Section 4: on-age, on-agedg, and on-load.
The fourth type are the oracle versions of online strategies
in which the exact next occurrence times of queries are as-
sumed to be known. Following the convention in naming the
online strategies, we refer to the oracle strategies as oracle-
age, oracle-agedg, and oracle-load. The last implemen-
tation is an interpretation of the age-temperature refreshing
strategy [11], which we refer to as age-temp.

The original age-temp strategy maintains a two-
dimensional bucket structure, where one of the dimensions
corresponds to the result age and the other dimension cor-
responds to the query frequency (temperature). In our im-
plementation of this strategy, each age bucket is defined by
the selection interval s and the temperature is computed as
log2 (fq), where fq is the number of times a query is seen
since the beginning of the first day. Each time a query is
requested, we increase its frequency and potentially move it
to a bucket corresponding to a higher temperature. Each
time a query is processed, we move it to the bucket with the
same temperature but the age dimension corresponding to
τ . Furthermore, in our experiments, the temperature of a
query cannot decrease. As an alternative, we have evaluated

the use of a sliding time-window to dynamically maintain
the number of occurrences. However, we have observed that
with a window of reasonable size, e.g., 24 or 48 hours, the hit
rate tends to be lower. Therefore, in our experiments, we
count occurrences starting from the beginning of the first
day. Further, we prioritize buckets by the corresponding
age× temperature value and restrict selection to the first
30, 000 queries satisfying a minimum age requirement, which
prevents too fresh queries from being repeatedly refreshed.
We denote the minimum result age as R and use it as the
limiting factor for queries selected also by the other meth-
ods. Finally, among the selected queries, we give a higher
priority to expired queries instead of unexpired ones.

In the offline strategies, the only cache state information
that is made available to the prefetching module is whether
an entry is older than R or not. Other information relies
only on the query log from the past day and includes nothing
about the current cache state. In the online strategies, the
decisions are made based on the current cache state and the
prediction model mentioned before. As predicting, based on
a limited query log, the arrival times of queries that request
expired entries is a challenging problem, we allow an entry to
be prefetched up to two times without being hit in between.

We use the oracle strategies to show the effect of accu-
rate prediction of the next request for an expired entry. The
oracle strategies have no information about future hits, nei-
ther the number of occurrences nor the time at which they
will occur. Nevertheless, they demonstrate that accurate
prediction of the next requests for expired entries is enough
to achieve good performance. Note that, in our results, we
report only the results for the oracle-agedg strategy since
it always outperforms the other two alternatives.

Simulation setup. We sample queries from five consec-
utive days of Yahoo! web search query logs. The queries in
the first three days are used to warmup the result cache. No
prefetching is done in these days. At the end of the third
day, we start allowing queries into our data structures. The
age-temperature baseline starts with queries collected from
the first three days. The offline strategies start with queries
collected during the third day. The online strategies use the
first three days to create a model. As no predictions are
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Figure 6: Temporal splitting of the query log with
respect to the tasks.

made before the beginning of the fourth day, we use aver-
age inter-arrival times to initiate the bucket structure at the
end of day three. We assume that the prefetching logic is
activated at the beginning of the fourth day. Finally, for all
of the techniques, we use the fourth day to stabilize the per-
formance and the fifth day for the performance evaluation.

For the prediction model used by the online strategies, the
first day of the training period is used to compute the static
features (e.g., query and term frequencies).4 The instances
for which the next arrival times are tried to be predicted
are extracted from the second day. The target values (i.e.,
the next arrival times that are tried to be predicted) are
obtained from the second and third days. This setup is il-
lustrated in Fig. 6. The importance values for the features
used by the model are displayed in Fig. 7. As expected, the
query frequency and the time gap between the two consec-
utive occurrences of a query turn out to be the most im-
portant features. For the fourth and fifth days, we train a
learning model using the preceding three days.

System parameters and query processing logic.
The experiments are conducted using a discrete event sim-
ulator that takes as input the user queries along with their
original submission timestamps. We simulate a system with
K compute nodes and P query processors, which allows up
to P queries to be concurrently processed with a speedup
proportional to K. We assume that the entire inverted in-
dex is maintained in the memory. In all experiments, we set
the TTL (T ) to 16 hours, which is chosen by an analysis
of the opportunity, risk, and potential benefits of prefetch-
ing shown in Fig. 4. We fix P to 8 and vary K to create
three different scenarios corresponding to poor (K = 850),
medium (K= 1020), and high performance (K= 1224) sys-
tems. With 850 nodes, both no-prefetch and no-ttl expe-
rience a degradation of efficiency at peak performance. With
1020 nodes (20% above the first scenario), no-ttl reaches
the peak sustainable throughput only marginally. With 1224
nodes (20% above the second scenario), both no-prefetch

and no-ttl perform well.
If more than P queries are concurrently issued to the

backend, the most recent queries are put into a processing
queue. To prevent the queue from growing indefinitely, we
monitor the processor usage Pl over the last minute. When
Pl > 0.95×P , we degrade the currently processed query by
P/Qτ , where Qτ is the number of queries being processed
at the backend at that time.

4We use a document collection containing several billion
documents to compute the features that rely on the doc-
ument frequencies of terms.
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Figure 7: Feature importance.

Since prefetching happens while user queries are sched-
uled, we monitor the average number of user queries being
processed over the last minute Ql and maintain a budget of
B = bf×P−Qlc processors to be used for prefetching. By
default, we use f = 0.875 to keep the processor utilization
around 87.5 percent. To prevent the system from prefetch-
ing recently processed queries, we restrict the minimum age
of queries being selected with a parameter R. In our ex-
periments we use three different values, TTL/2, TTL/4 and
TTL/8. Finally, the prefetching queue is updated/reset once
in every s=10 minutes.

Evaluation metrics. We evaluate the performance us-
ing five different metrics. The metrics are cache hit rate,
query response time, average hit age, degradation rate, and
backend query traffic rate. The hit rate reflects how good
the prefetching algorithm is at having query results avail-
able at request. The change in response time reflects the
real improvement from prefetching versus its overhead. The
upper bound for both metrics is limited by the number of
compulsory misses and corresponds to the hit rate and la-
tency of no-ttl. The average hit age reflects how good the
prefetching method is at keeping cached results fresh. The
degradation rate reflects the amount of degraded results be-
ing served to the user and is defined as the total degrada-
tion divided by the number of queries being answered by
the frontend. The total degradation is the sum of the rel-
ative degradations of the results returned by the frontend.
Finally, the average backend query traffic measures the av-
erage number of queries issued to the backend. The lower
bound on this number is again defined by no-ttl.

6. EXPERIMENTS
In this section, we present the results of our experiments.

Our first observation is that in all the cases that we analyze
(except for one), the best possible results are obtained, as
expected, by the oracle-agedg strategy (the last line in the
tables). Obviously, not being feasible in practice, the oracle
strategy is presented only as an upper bound to the results
that can be attained by the other techniques. Indeed, as
the prediction accuracy gets closer to that of the oracle, we
should get better and better results.

Note that, in the sole case of the average hit age results
reported in Table 6, the oracle-agedg strategy leads to sub-
optimal results. This behavior can be explained by observ-
ing that the age decreases as we increase the number of times
an entry is subject to prefetching. The oracle, instead, min-
imizes the amount of prefetching and thus some entries (es-
pecially those requested further in the future) tend to have
higher ages.



Table 2: Cache hit rate
K=850 K=1020 K=1224

Strategy R = T/8 R = T/4 R = T/2 R = T/8 R = T/4 R = T/2 R = T/8 R = T/4 R = T/2
no-prefetch 0.493 – – 0.494 – – 0.494 – –
no-ttl 0.600 – – 0.600 – – 0.600 – –
age-temp 0.517 0.517 0.516 0.533 0.533 0.533 0.542 0.542 0.543
off-freq 0.512 0.512 0.510 0.515 0.515 0.514 0.517 0.518 0.517
off-vol 0.511 0.511 0.509 0.514 0.514 0.513 0.516 0.517 0.517
off-time 0.511 0.511 0.509 0.515 0.515 0.515 0.519 0.521 0.521
on-age 0.534 0.535 0.533 0.546 0.547 0.547 0.549 0.550 0.553
on-agedg 0.534 0.535 0.533 0.546 0.547 0.547 0.549 0.550 0.553
on-load 0.493 0.493 0.494 0.494 0.494 0.495 0.494 0.494 0.497
oracle-agedg 0.597 0.596 0.592 0.599 0.599 0.600 0.600 0.600 0.600

Table 2 shows the cache hit rate of different strategies for
various parameters. The no-prefetch and no-ttl strategies
are the two extreme cases. The no-prefetch strategy does
not involve prefetching and relies only on the TTL to cope
with staleness problem. The no-ttl strategy correspond to
an infinite cache scenario, where only the compulsory misses
incur a cost. In between these two extremes, by varying the
K and R parameters, we observe that, in all cases, the offline
strategies perform worse than the age-temp baseline. Our
online strategies, however, outperform the baseline. In par-
ticular, we compare the hit rate performance of a strategy A
versus that of B by computing the relative hit rate improve-
ment with respect to oracle-agedg as I= HRA−HRB

HRO−HRB
, where

HRA, HRB , and HRO are the hit rates of the A, B, and
oracle-agedg strategies, respectively. The improvement to-
wards the oracle of our on-age versus the baseline age-temp

ranges from 12% of on-age with K = 1224 and R = T/8
to 22.78% of on-age with K = 850 and R = T/4 with an
average of 19.23%. Fig. 8 shows the hit rate trend of four
different strategies: no-prefetch, no-ttl, on-agedg, and
oracle-agedg. According to the figure, our method consis-
tently outperforms the no-prefetch strategy.

In Table 3, we report the response time of our system
by varying the simulation parameters. Query response time
and hit rate are related and results confirm this behavior.
As in the case of hit rate, we report the improvement with
respect to the oracle that are similar to those of hit rate
figures. The improvement towards the oracle of our on-age

versus the baseline age-temp ranges from 12.4% of on-age
with K=1224 and R=T/8 to 27.5% of on-age with K=850
and R=T/8 with an average of 21.1%. The hourly trend for
the average response time is shown in Fig. 9, where the effect
of peak load reduction is evident. From 11AM to 6PM, the
peak load response time is greatly reduced. Therefore, in
this case, the user experience should be greatly improved.

Another important aspect to consider when evaluating
prefetching strategies is the load we put on the backend (Ta-
ble 4). If we do not adopt any prefetching strategy, the load
on the backend would certainly be affected only by the hit
rate. Indeed, the higher the hit rate the less the number
of queries hitting the backend. This is confirmed by the
numbers in Table 4 as the no-prefetch strategy is the one
attaining, in all cases, the minimum amount of workload
at the backend. We remark that our goal is to optimize
the exploitation of the infrastructure, i.e., to increase the
overall load by keeping the amount of degraded queries as
low as possible. Numbers in Table 4, thus, are more ex-
planatory if read in conjunction with the results presented
in Table 5. Disregarding the case K = 1224, in which the
computational capacity is too high to be overloaded even

by a great number of prefetching operations (with the ex-
ception of on-load which tries to prefetch expensive queries
first), in all cases, on-age and on-agedg attain the greatest
reduction in terms of degraded queries, despite the average
backend query traffic is greater than the baseline. Figs. 10
and 11 confirm the results reported in the tables and show
even more remarkably the effect of prefetching on the back-
end query traffic, which results to be roughly flattened and
far apart from the no-cache case. The degradation (Fig. 11)
is also greatly reduced during the peak hours. In this case,
we report degradation of query results for the case K=850
instead of K = 1020 as in the other cases. This is because,
for K=1020, the degradation is negligible.

We also report the average hit age measured in number
of minutes passed since the last update. It is worth being
pointed out that measuring the average hit ratio does not
say much about the quality or staleness of results in the
cache. In fact, if the majority of entries are updated but
requested after a period of time very close to the TTL, the
ideal strategy would not update them. Indeed, this would
make the average hit age increase when those queries are
actually requested only slightly before their expiration. We
report these results in Table 6 and Fig. 12.

Finally, we measure the accuracy of prefetching methods.
We define the accuracy as the fraction of correct prefetch-
ing actions. That is, the average between the fraction of
prefetching operations never followed by a hit with respect
to the total number of prefetching operations and the frac-
tion of compulsory misses relative to the number of misses.
As illustrated in Table 7, while performing less prefetching,
the offline techniques have in general higher accuracy. In ad-
dition, it is worth to note that there is a high potential for
improvement. If we compare prefetching accuracy with that
of oracle-agedg, we can observe that we are still far from
being close to the maximum. On the other hand, the worst
accuracy is achieved by on-load, which illustrates that pri-
oritizing frequent queries maximizes the probability of useful
prefetching. We note that the age-temp baseline performs
poorly with respect to our strategies.

In what follows, we enumerate what we retain to be the
take away messages from this work. First, the baseline re-
lies only on the knowledge of the past frequency and the
current age. This approach cares about keeping popular en-
tries fresh and does not care if they will be used again in
the future. Second, the offline strategies rely only on the in-
formation about the queries submitted in the previous day.
Even though they are worse than the baseline, they perform
surprisingly well, given that they use only one day of his-
tory. Third, the online strategies rely on predicted future
query expirations. This prediction task is very difficult to



Table 3: Average query response time (in ms)

K=850 K=1020 K=1224
Strategy R = T/8 R = T/4 R = T/2 R = T/8 R = T/4 R = T/2 R = T/8 R = T/4 R = T/2
no-pefetch 309.1 – – 157.5 – – 112.5 – –
no-ttl 183.6 – – 122.0 – – 95.5 – –
age-temp 278.1 277.4 277.4 153.8 153.7 153.9 119.0 119.0 119.0
off-freq 280.5 279.9 280.1 157.2 156.2 155.3 120.3 117.8 114.8
off-vol 280.1 280.6 282.3 157.6 156.9 155.9 120.6 118.6 116.3
off-time 280.9 283.0 285.5 157.8 157.1 156.9 120.6 118.8 117.2
on-age 257.8 255.5 257.5 148.1 147.9 147.9 116.6 116.5 116.4
on-agedg 253.8 254.8 257.3 147.9 147.7 147.7 116.6 116.5 116.4
on-load 316.2 311.2 312.4 173.3 173.2 171.2 133.7 133.3 132.5
oracle-agedg 189.7 189.8 191.2 129.5 129.0 128.9 99.7 99.4 99.0

Table 4: Average backend query traffic rate (query/sec)

K=850 K=1020 K=1224
Strategy R = T/8 R = T/4 R = T/2 R = T/8 R = T/4 R = T/2 R = T/8 R = T/4 R = T/2
no-prefetch 18.34 – – 18.34 – – 18.34 – –
no-ttl 14.50 – – 14.50 – – 14.50 – –
age-temp 23.48 23.44 23.41 27.28 27.09 26.93 32.75 32.44 32.07
off-freq 23.01 21.00 19.97 25.22 22.62 20.74 29.03 24.67 21.65
off-vol 22.98 20.97 19.95 25.19 22.59 20.83 29.00 24.97 22.23
off-time 23.04 21.18 20.08 25.15 22.73 21.28 29.23 25.50 22.92
on-age 25.11 24.93 24.33 30.34 30.03 29.15 36.99 36.43 35.26
on-agedg 25.07 24.86 24.28 30.35 30.03 29.15 36.99 36.43 35.26
on-load 18.95 19.03 19.24 19.53 19.60 19.88 20.78 20.86 21.17
oracle-agedg 20.92 20.49 19.85 22.47 21.63 20.74 23.99 23.19 21.62

Table 5: Average degradation rate (×10−4)
K=850 K=1020 K=1224

Strategy R = T/8 R = T/4 R = T/2 R = T/8 R = T/4 R = T/2 R = T/8 R = T/4 R = T/2
no-prefetch 166.9 – – 1.398 – – 0.000 – –
no-ttl 7.2 – – 0.003 – – 0.000 – –
age-temp 76.6 79.0 95.0 0.485 0.412 0.418 0.000 0.000 0.000
off-freq 87.9 88.2 89.8 0.645 0.731 0.849 0.000 0.000 0.000
off-vol 88.8 87.8 87.9 0.632 0.606 0.645 0.000 0.000 0.000
off-time 94.0 91.1 93.4 0.807 0.661 0.689 0.000 0.000 0.000
on-age 50.3 48.8 51.3 0.319 0.223 0.118 0.000 0.000 0.000
on-agedg 50.6 49.5 49.6 0.201 0.169 0.284 0.000 0.000 0.000
on-load 233.2 241.5 175.4 173.3 173.2 171.3 133.7 133.3 132.5
oracle-agedg 5.7 5.7 6.4 0.000 0.000 0.000 0.000 0.000 0.000

Table 6: Average hit age (in minutes)

K=850 K=1020 K=1224
Strategy R = T/8 R = T/4 R = T/2 R = T/8 R = T/4 R = T/2 R = T/8 R = T/4 R = T/2
no-prefetch 357 – – 356 – – 356 – –
no-ttl 4737 – – 4735 – – 4734 – –
age-temp 342 356 375 170 209 289 137 170 246
off-freq 222 255 322 139 172 239 111 147 227
off-vol 222 254 327 138 172 329 111 148 226
off-time 226 259 329 144 179 242 118 155 232
on-age 217 255 333 135 163 235 114 148 222
on-agedg 216 254 333 135 163 235 114 148 222
on-load 356 356 353 356 356 355 352 352 360
oracle-agedg 272 291 336 258 280 324 265 287 332

Table 7: Prefetching accuracy

K=850 K=1020 K=1224
Strategy R = T/8 R = T/4 R = T/2 R = T/8 R = T/4 R = T/2 R = T/8 R = T/4 R = T/2
age-temp 0.529 0.525 0.514 0.550 0.543 0.533 0.543 0.535 0.523
off-freq 0.543 0.593 0.629 0.551 0.586 0.610 0.534 0.563 0.592
off-vol 0.537 0.588 0.622 0.546 0.580 0.602 0.531 0.556 0.573
off-time 0.534 0.573 0.601 0.542 0.572 0.586 0.533 0.554 0.561
on-age 0.599 0.592 0.594 0.597 0.587 0.588 0.570 0.560 0.557
on-agedg 0.599 0.593 0.595 0.597 0.587 0.588 0.570 0.560 0.557
on-load 0.412 0.441 0.528 0.417 0.451 0.516 0.419 0.475 0.495
oracle-agedg 0.842 0.846 0.855 0.798 0.799 0.804 0.723 0.720 0.726
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Figure 8: Result cache hit rate
(K=1020).

0 2 4 6 8 10 12 14 16 18 20 22
Hour of the day

80

100

120

140

160

180

200

220

A
ve

ra
ge

 q
ue

ry
 re

sp
on

se
 ti

m
e 

(m
s)

no-prefetch
no-ttl
on-agedg (R=T/4)
oracle-agedg (R=T/4)

Figure 9: Average query response
time (K=1020).
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Figure 10: Backend query traffic
rate (only user queries, K=1020).
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Figure 11: Average degradation
rate (K=850).
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Figure 12: Average hit age (K =
1020).

carry out, as experiments show, yet a mildly good predic-
tion policy gives very good results in terms of search backend
exploitation, low query degradation, and hit-ratio. Fourth,
even if oracle has a perfect knowledge of all the future misses,
it does not have all the information needed to order the
queries in the best possible way to reduce the number of
misses, for instance. However, we use the oracle strategies
as an upper bound to the effectiveness of prefetching with
respect to the cache content. Finally, in Figs. 8–12, we ob-
serve that, during the peak hours, the benefits of prefetching
are greatly amplified thus confirming our initial hypothesis,
i.e., prefetching has a great potential for improving search
engine utilization and peak-load performance.

7. PREVIOUS WORK
Herein, we survey the previous work on result caching,

freshness, and batch query processing. Interested readers
may refer to [10] for a broader survey on search efficiency.

Result caching. So far, a large body of research focused
on increasing the result cache hit rates [4, 20] or to reduce
the query processing cost of backend search systems [15, 21].
Depending on how the cache entries are selected, static [6],
dynamic [22], or hybrid [13] caching strategies are followed.
The earlier works assumed limited-capacity caches, where
the main research issues are admission [5], prefetching [16],
and eviction [20], whereas the recent works mostly adopted
an infinite cache assumption [11]. A number of proposals are
made to combine other layers of caching with result caching,
resulting in two-level [3, 22], three-level [17, 18], or even five-
level [19] caching architectures.

Cache freshness. The most recent works deal with re-
sult caching in the context of maintaining the freshness of
the results served by the cache [1, 8, 9, 11]. In this line of
research, the cache entries are associated with TTL values
that are fixed for all queries. In [2], each query is associated
with a different TTL value depending on its freshness re-
quirements. In several works, the TTL approach is coupled
either with more sophisticated techniques such as invalida-
tion of potentially stale cache entries [1, 8, 9], where the goal
is to predict the stale cache entries by exploiting certain in-
formation obtained during index updates. The search results
whose freshness is potentially affected by the updates are
then marked as invalid so that they are served by the back-
end system in a successive request, rather than by the cache.
The approach followed in [11], on the other hand, relies on
proactive refreshing of cached search results. In this ap-
proach, the indexing system does not provide any feedback
on staleness. Instead, some presumably stale search results
are selected and refreshed based on their likelihood of being
requested in future and also depending on the availability
of free processing cycles at the backend search system. Our
work proposes strategies that are alternative to that in [11]
and also focuses on different performance metrics.

Batch query processing. In [12], some efficiency op-
timizations are proposed for batch query processing in web
search engines. Those optimizations (e.g., query reorder-
ing) are orthogonal to ours and, in case of a partially disk-
resident index, they may be coupled with our prefetching
techniques. Since we assume an in-memory index, however,
we did not consider those optimizations in our work.



8. CONCLUSIONS AND FURTHER WORK
We investigated the impact of prefetching on search en-

gines. We showed that an oracle strategy that has a perfect
information of future query occurrences can achieve the best
attainable results. We made an attempt to close the gap
with the oracle by testing two alternative set of prefetching
techniques: offline and online prefetching. We showed that
the key aspect in prefetching is the prediction methodology.
Furthermore, we showed that our accuracy in predicting fu-
ture query occurrences is only about a half of the best that
can be done. We plan to extend this work in several direc-
tions. First, we are going to design more effective techniques
for predicting the expiration of a query. Second, we are go-
ing to evaluate the economic impact of prefetching on the
search operations. Finally, we would like to design spec-
ulative prediction techniques that will be able to prefetch
queries that were not even submitted. This would reduce
the number of compulsory misses that form an upper bound
on the cache performance.
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