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Abstract: In this work the stability properties of a partial differential equation (PDE) with state-
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1. INTRODUCTION

In order to extend shelf life of different foodstuff, freezing has
shown itself superior to many other preservation techniques.
Among other reasons, freezing preserves distinct characteristics
of the original product to a large extent, like e.g. taste and
nutritional value. If suitable freezing and storage methods are
applied correctly, food can be stored for months or even years
without significant degradation of specific quality characteris-
tics. Especially for rapidly spoiling food, such as fish and fish
products, freezing is often an essential part in the supply chain
to deliver high-quality and safe products to the consumer.

As the temperature-dynamics during freezing depend both on
space and time, a good approach to model these dynamics is
using distributed parameter systems (DPS), in particular par-
tial differential equations (PDEs). The most common PDE for
thermal problems is the so called heat equation, a parabolic
PDE. The heat equation as a model for freezing problems
has been extensively studied, e.g. in Pham (2006a), Pham
(2006b) and Woinet et al. (1998). We present additional pub-
lications concerning the modeling of heat and mass transfer in
(frozen) foodstuff in Backi et al. (2014b). In the same article
we give an overview over different articles and books con-
cerning (stability-) analyses of classes of PDE-systems. Most
of them study the Burgers’ equation and its potential form,
since we showed a connection between these equations and
a heat equation with state-dependent parameter functions. In
addition we want to point to the works of Hopf (1950) and
Cole (1951), who attend the topic of transformations between
PDEs, in particular the Burgers’ equation. Furthermore, we
refer to publications concerning stability (and to some degree
also control) of infinite-dimensional systems and PDEs in gen-
eral. Especially we want to highlight the work of Dashkovskiy
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and Mironchenko (2013), Krstic and Smyshlyaev (2008) and
Smyshlyaev and Krstic (2010).

A heat equation, studied in Backi et al. (2014b), is derived from
the diffusion equation with temperature-dependent parameter
functions. The diffusion equation can in some special cases
describe transport phenomena, as for example pointed out in
Hasan et al. (2010). The standard heat equation does not permit
modeling for phase change phenomena, such as thermal arrest
caused by latent heat of fusion. These phenomena have to be
imposed to the PDE, e.g. by adapting the parameter functions.
In the present case this is done by applying the so called ap-
parent heat capacity method as introduced e.g. in Muhieddine
et al. (2008), which in principle overestimates the specific heat
capacity c(T ) in a region I∆T = TF ±∆T around the freezing
temperature TF in order to slow down heat transfer.

The problem considered in this paper is somewhat related to
the classical Stefan problem as it can be interpreted as a “2-
sided Stefan problem without insulated boundaries”. However,
the Stefan problem consists of “sharp switching” between two
linear heat equations with constant parameters, whereas the
problem considered here consists of one heat equation with
state-dependent parameters resulting in an “intermediate zone”
around the freezing point.

As pointed out in Backi et al. (2014b) the explicit definition of
the parameters as state-dependent functions makes a stability
investigation necessary as already established results for the lin-
ear heat equation and the (Potential) Burgers’ equation cannot
be applied directly. The present work provides an extension to
the proof in Backi et al. (2014b), where assumptions on the pa-
rameter functions had to be imposed in order to prove stability
for the heat equation with symmetric boundary conditions. The
question of necessity of a stability analysis for this kind of PDE
might arise, as it models the freezing of foodstuff. Freezing
processes are known to be stable not only by experience, but
also by laws of thermodynamics. However, the PDE we are



investigating is not of standard linear type, but is extended by
a nonlinear term κ(T )T 2

x , which might cause instability or lead
to convergence issues. Therefore, a stability analysis is essential
as by proving stability for the model (6) one can conclude that
it can in fact be used to describe freezing processes with phase
change.

The rest of the paper is organized as follows. Section 2 intro-
duces the problem setting and the model, which has already
been described in e.g Backi and Gravdahl (2013) and Backi
et al. (2014b). In Section 3 the steady state solution to the
model of Section 2 is presented. Section 4 provides the main
stability results, whereas Section 5 shows a numerical example,
which highlights the results in the previous section. Finally,
Section 6 delivers some concluding remarks and comments on
future work.

Notation: Let L2 ([0,1]) denote the space of real-valued, square
integrable functions f defined on [0,1] with finite L2-norm;
‖ f‖2 =

∫ 1
0 f (x)2dx < ∞. The space H1([0,1]) is the subspace

of L2([0,1]) consisting of functions g with finite H1-norm;
‖g‖H1 = ‖g‖2+‖gx‖2 <∞. In this paper we deal with functions
w = w(t,x) of time t and space x (the spatial variable). To ease
notation we frequently leave out the dependency on t and/or
x, e.g., ‖w(t)‖ is the L2-norm of the function x 7→ w(t)(x) =
w(t,x).

2. PROBLEM FORMULATION

The problem was originally presented in Backi and Gravdahl
(2013) for an application that models and controls the freezing
of fish in vertical plate freezers. The case considered there, as
well as in Backi et al. (2014b) and Backi et al. (2014a) is also
regarded in the present paper, where a parabolic PDE (diffusion
equation) is formulated in the state variable T representing
temperature, as follows:

ρ (T )c(T )Tt = [λ (T )Tx]x (1)
subject to Dirichlet boundary conditions

T (t,0) = T0

T (t,L) = TL,
(2)

where ρ (T ) describes the density, c(T ) denotes the specific
heat capacity at constant pressure and λ (T ) indicates the ther-
mal conductivity of the medium to be frozen. Note that ρ (T )>
0, c(T ) > 0 and λ (T ) > 0 can be regarded as thermodynamic
alloys of substances like water, fat, etc. as described in Backi
and Gravdahl (2012). The boundary conditions T0 and TL are
given by the refrigerant temperatures at x = 0 and x = L, re-
spectively. Furthermore be advised that the two subscripts (·)t
and (·)x denote derivatives wrt time t and the spatial variable x,
respectively.

We can rewrite (1) in the following form
ρ (T )c(T )Tt = λT (T )T 2

x +λ (T )Txx, (3)
where we introduce two new parameters as

k (T ) =
λ (T )

ρ (T )c(T )
, (4)

κ (T ) =
λT (T )

ρ (T )c(T )
. (5)

This leads to a rewritten form of (3):
Tt =κ (T )T 2

x + k (T )Txx, (6)
which is still subject to the boundary conditions in (2).

Figure 1 displays a qualitative sketch of parameter variations
in λ (T ) and c(T ) over T . Note that the variation in ρ(T ) over
T is of minor consequence and therefore assumed negligible,
i.e. ρ(T ) = const. The parameter functions were defined to ap-
proximate real parameter values sufficiently well. Furthermore,
like mentioned in Section 1, they are adapted to model for the
so-called thermal arrest caused by latent heat of fusion. This
is achieved in particular by overestimating c(T ) in the region
I∆T to slow down heat transfer and thus the desired behavior
is obtained. We point out that the transitions from cs to ci and
from ci to cl have not specifically been introduced in Backi et al.
(2014a). In this paper, however, the transitions are considered to
be functions of the shape c(T ) = p

T+q in small neighbourhoods
outside I∆T , where p and q are constants. In Backi et al. (2014b)

Fig. 1. Qualitative sketch of parameter variations in λ and c
over T

the stability properties of (6) were shown to hold for equal
boundary conditions T0 = TL subject to some restrictions on
the state-dependent parameter functions. Providing a general-
ization to the proof in Backi et al. (2014b), namely in the case
when T0 6= TL, motivates the subsequent investigation.

In the sequel, we shall refer to the following two well-known
lemmas taken from Krstic and Smyshlyaev (2008):
Lemma 1. (Poincaré’s Inequality) For any continuously differ-
entiable function ω = ω(z), the following inequalities hold:

‖ω‖2 ≤ 2ω(0)2 +4‖ωz‖2,

‖ω‖2 ≤ 2ω(1)2 +4‖ωz‖2.

Lemma 2. (Agmon’s Inequality) For any function ω = ω(t,x)
with ω(t) ∈ H1([0,1]), the following inequalities hold:

max
x∈[0,1]

|ω(t,x)|2 ≤ω(0)2 +2‖ω(t)‖‖ωx(t)‖,

max
x∈[0,1]

|ω(t,x)|2 ≤ω(1)2 +2‖ω(t)‖‖ωx(t)‖.

3. STEADY-STATE SOLUTION

Before conducting the stability analysis of (6) we here derive
an explicit formula for the steady-state solution to (6). This is
done by setting Tt = 0, which results in

κ (T )T 2
x + k (T )Txx = 0. (7)



For general κ(T ) and k(T ) the solution to the nonlinear ODE
(7) can be found by evaluating the following expression:

C1x+C2 =

T (x)∫
exp
(∫

κ(z)
k(z)

dz
)

dz. (8)

Now from physical considerations it follows that the steady
state solution must be within the interval [T0,TL] (or [TL,T0]
depending on which of T0 and TL is the smaller one) for all
values of the spatial coordinate. Also, inspired by the qualitative
sketch shown in Figure 1, we henceforth state that κ(T ) = 0
outside I∆T . This is valid as λ (T ) is assumed constant outside
I∆T . Based on these considerations and since we assume that
the boundary conditions T0 and TL are strictly below TF −∆T ,
we conclude that κ(T ) is zero along the steady state solution.

From (7) it then follows that the steady-state solution can be
described as the solution of the ODE

k (T )Txx = 0, (9)

which, since k(T )> 0 for all T , has the solution

T (x) =C1x+C2. (10)

The coefficients C1 and C2 can be found by applying the
boundary conditions (2) to (10), which leads to C2 = T0 and
C1 =

1
L (TL−T0).

Thus the steady-state solution has the form

T (x) =
1
L
(TL−T0)x+T0, (11)

which represents a straight line between the two boundary
values T0 and TL.

4. STABILITY ANALYSIS

The PDE (6) is specific for the freezing application. As we
intend to prove stability, however, we choose to take a more
general view of the problem in this section and to indicate this,
we change the state variable from T to u.

In general, the function u can be expressed as the sum of a
transient part w(t,x) and a stationary part ū(x), i.e. u(t,x) =
w(t,x) + ū(x). Note that ū(x) is a function of x due to the
asymmetric boundary conditions (2). The spatial coordinate is
normalized to belong to [0,1] and the stationary part is required
to be in the same form like (11), hence ū(x) = Sx+R, where
S and R are constants. Thus we study the following equivalent
form of (6):

wt =
κ

L2 (wx +S)2 +
k

L2 wxx

=
κ

L2 (w
2
x +S2 +2Swx)+

k
L2 wxx

(12a)

with boundary conditions

w(t,0) = w(t,1) = 0. (12b)

Remark 3. We must point out that our focus lies on continu-
ously differentiable solutions with finite H1-norm only. From a
rigorous mathematical point of view the question of existence
of such solutions is a crucial aspect, however, we will not
approach that here (see Prüss et al. (2007) who provide a treat-
ment of this for the (related) Stefan problem). Nevertheless, we
point out that our application studies indicate that at least some
solutions of this form exist.

With this remark we continue and state the following result,
which is an extension to (Backi et al., 2014b, Lemma 3) for the
case of asymmetric boundary conditions.
Lemma 4. Let w satisfy (12). Suppose that there exists con-
stants β > α > 0 such that α ≤ k ≤ β . If

(κ + ku)
2 < 2

(
κku− kuuk+ k2

u
)

(13a)

kuuk < k2
u +κku (13b)

w > 0 ∀u ∈ I∆u (13c)
κku ≥ 0 (13d)
kuu ≤ 0 ∀u ∈ I∆u (13e)

κ < 0 ∀u ∈ I∆u (13f)
κ ≡ 0 ∀u 6∈ I∆u (13g)

then the origin is globally asymptotically stable (wrt ‖ · ‖). In
particular ‖w(t)‖→ 0 as t→ ∞.

Proof. Define the Lyapunov candidate V by

V =

1∫
0

1
k

w2 dx (14)

and note that

V ≥ 1
β
‖w(t)‖2 (15)

since k ≤ β by assumption.

Differentiating (14) with respect to time leads to

V̇ =

1∫
0

2
k

wwt −
ku

k2 w2wt dx

=
1
L2

1∫
0

(2κ

k
ww2

x +
2κ

k
wS2 +

4κ

k
wSwx +2 wwxx

− κku

k2 w2w2
x−

κku

k2 w2S2− 2κku

k2 w2Swx

− ku

k
w2wxx

)
dx.

(16)

Integrating the terms wwxx and ku
k w2wxx by parts yields

1∫
0

wwxx dx =
[
wwx

]1

0
−

1∫
0

w2
x dx (17)

1∫
0

ku

k
w2wxx dx =

[ku

k
w2wx

]1

0
−2

1∫
0

ku

k
ww2

x dx

−
1∫

0

kuuk− k2
u

k2 w2w2
x dx

(18)

with
[
wwx

]1

0
= 0 and

[
ku
k w2wx

]1

0
= 0 due to (12b).

Then, after inserting (17) and (18) into (16) and collecting terms
the following expression is obtained

V̇ =
1
L2

1∫
0

1
k

[
Aw2

x +Bwx +C
]

dx, (19)

where we have used the shorthand



A =−w2 1
k
(κku− kuuk+ k2

u)+w(2κ +2ku)−2k (20a)

B =w2 1
k
(−2κkuS)+w(4κS) (20b)

C =w2 1
k
(−κkuS2)+w(2κS2). (20c)

Note that A < 0, since the coefficients

a =− 1
k
(κku− kuuk+ k2

u) (21a)

b =2κ +2ku (21b)
c =−2k (21c)

of the parabola aw2 + bw+ c defined in (20a) fulfill a < 0 and
b2−4ac < 0, by assumptions (13d)-(13g).

The rest of the proof consists of the following two observations
outside and inside I∆T , respectively.

Firstly, by (13g) we infer that outside I∆T both B = 0 and C = 0.
Hence, for this case, we can bound (19) using that 1

β
≤ 1

k
followed by applying Lemma 1 (Poincaré’s Inequality), leading
to

V̇ ≤ K1

L2β
‖wx‖2 ≤ K1

4L2β
‖w‖2 (22)

with K1 = max(A)< 0.

Secondly we note that the inequality B2− 4AC < 0 holds true
inside I∆T , as can be seen as follows. Using (20) the inequality
B2−4AC < 0 is equivalent to the following quartic inequality

w4

k4 (4κkuS2(kuuk− k2
u))+

w3

k3 (−8κS2(kuuk−2k2
u))

+
w2

k2 (−24κkuS2)+
w
k
(16κS2)< 0.

(23)

Let
ψ(w) = a4w4 +a3w3 +a2w2 +a1w

denote the 4th order polynomial defined by the left hand side
of (23) and note that ai < 0, i = 1,2,3,4 inside I∆T by the
assumptions (13d)–(13f). Let φ(w) denote the 3rd order poly-
nomial defined by ψ(w) = wφ(w). Then (23) holds inside I∆T
iff φ(w) < 0 for w > 0. Since both, a4 < 0 and a1 < 0 inside
I∆T , it is enough to show that the roots of φ(w) all are negative
or complex, which follows from the fact that inside I∆T we have
a4 < 0, φw(0) = a2 < 0 and φww(0) = a3 < 0. Hence as long as
we are inside I∆T there exists a constant K2 < 0 such that

V̇ ≤ K2

L2β
‖wx‖2 ≤ K2

4L2β
‖w‖2. (24)

By letting K̄ = max{K1,K2}, both inequalities (22) and (24)
now yield

V̇ ≤ 1
4L2β

K̄‖w‖2, (25)

which together with (14) and (Henry, 1981, Theorem 4.1.4)
proves the lemma.

We now extend Lemma 4 to the H1-case.
Lemma 5. Suppose that the assumptions of Lemma 4 hold true.
If moreover

κu ≤ 0 (26a)
wx(t,1)wxx(t,1)−wx(t,0)wxx(t,0)≤ 0 (26b)

κS
(

w2
x(t,1)−w2

x(t,0)
)
≤ 0 (26c)

κ

(
w3

x(t,1)−w3
x(t,0)

)
≤ 0 (26d)

then the origin is globally asymptotically stable (wrt ‖ ·‖H1 ). In
particular ‖w(t)‖H1 → 0 as t→ ∞.

Proof. Define the Lyapunov candidate Λ by

Λ =V1 +V =
1
2

1∫
0

w2
x dx+V (27)

where V denotes the Lyapunov function defined by (14).

The time derivative of V1 is

V̇1 =
∫ 1

0
wxwtx dx. (28)

To obtain an expression for wtx in terms of spatial derivatives of
w only, the derivative of (12) with respect to x is calculated and
one obtains

wtx =
1
L2

(
κuw3

x +2κuSw2
x +κuS2wx +2κwxwxx

+2κSwxx + kuwxwxx + kwxxx

)
.

(29)

Combining (29) and (28) and collecting terms gives

V̇1 =
1
L2

1∫
0

κuw4
x +2κuSw3

x +κuS2w2
x +2κw2

xwxx

+2κSwxwxx + kuw2
xwxx + kwxwxxx dx.

(30)

Integrating the terms kwxwxxx and κwxwxx by parts yields
1∫

0

kwxwxxx dx =
[
kwxwxx

]1

0
−

1∫
0

kw2
xx dx−

1∫
0

kuw2
xwxx dx

(31)

1∫
0

κwxwxx dx =
[
κw2

x

]1

0
−

1∫
0

κwxwxx dx−
1∫

0

κuw3
x dx

=
[

κ

2
w2

x

]1

0
−

1∫
0

κu

2
w3

x dx.

(32)

Putting (31) and (32) into (30) one obtains

V̇1 =
1
L2

1∫
0

κuw4
x +κuSw3

x +κuS2w2
x +2κw2

xwxx− kw2
xx dx

+
1
L2

[
kwxwxx +κSw2

x

]1

0
.

(33)

Furthermore, integrating the expression κw2
xwxx by parts gives

1∫
0

κw2
xwxx dx =

[
κw3

x

]1

0
−

1∫
0

2κw2
xwxx dx−

1∫
0

κuw4
x dx

=
[1

3
κw3

x

]1

0
−

1∫
0

1
3

κuw4
x dx.

(34)

After substituting (34) into (33) we receive

V̇1 =
1
L2

1∫
0

κu

3
w4

x +κuSw3
x +κuS2w2

x− kw2
xx dx

+
1
L2

[
kwxwxx +κSw2

x +
2κ

3
w3

x

]1

0
.

(35)



Now we need to have a closer look at the quartic equation
θ(wx) = dw4

x + ew3
x + f w2

x with the shorthand

d =
κu

3
, e = κuS, f = κuS2,

which can be rewritten as w2
xγ(wx). For the quadratic equation

γ(wx) we must impose that it is less than zero for all wx and thus
it must hold that d < 0 and e2− 4d f ≤ 0. If now (26a) holds,
we see that γ(wx)< 0 for all wx and therefore θ(wx)< 0.

If furthermore (26b)–(26d) hold, we can infer that

V̇1 ≤−
1
L2

1∫
0

kw2
xx dx≤− α

L2

1∫
0

w2
xx dx. (36)

Thus by putting (25) and (36) into the time-derivative of (27),
using Lemma 1 (Poincaré’s Inequality) and recalling that K̄ <
0, we receive

Λ̇≤− α

L2

1∫
0

w2
xx dx+

K̄
L2β

1∫
0

w2
x dx≤ K̄

L2β

1∫
0

w2
x dx

≤ K̄
2L2β

1∫
0

w2
x dx+

K̄
2L2β

1∫
0

w2
x dx

≤ K̄
8L2β

1∫
0

w2 dx+
K̄

2L2β

1∫
0

w2
x dx

≤ K̄
8L2β

‖w(t)‖H1 ,

(37)

which, together with (27) and (Henry, 1981, Theorem 4.1.4)
proves the lemma.

Together with Lemma 2 (Agmon’s Inequality), Lemma 5 now
immediately implies the following main result of the paper.
Theorem 6. Let w satisfy (12). Suppose that the assumptions
of Lemma 5 hold true. Then w(t,x) → 0 as t → ∞, hence
u(t,x)→ ū(x) as t→ ∞.
Remark 7. (Discussion about assumptions). The assumptions in
Lemma 4 and Lemma 5 impose limitations on the parameter
functions k(u) and κ(u) and their respective derivatives wrt u.
In Lemma 4 assumptions (13d)–(13g) are satisfied due to the
definition of the parameter functions in Figure 1. Assumption
(13c) holds true due to the fact that the boundary conditions are
chosen constant below the region I∆u = I∆T and the definition of
w in the beginning of this subsection. Assumptions (13a)–(13b)
have to be imposed to the problem and are valid, also due to the
definition of the parameter functions.
In Lemma 5 assumption (26a) is satisfied by the definition
of the parameter functions, again see Figure 1. Assumptions
(26b)–(26d) define conditions for the temperature change with
respect to the spatial domain and its derivative, both evaluated
at the respective boundaries.

5. SIMULATION EXAMPLES

For the simulations we now return to the original freezing appli-
cation, where we have chosen asymmetric boundary conditions
(BCs) and noisy initial conditions (ICs) in order to exemplify
the theoretical results in Section 4. Simulation parameters can
be found in Backi and Gravdahl (2013) and represent a physical
freezing process. Second order central differences and first or-
der forward and central differences have been used to discretize

the PDE (6) in its spatial coordinates only. This resulted in a set
of coupled ODEs representing a spatial resolution of approxi-
mately 1 ·10−3 m (N = 99 discretization steps).

We present one case whose behavior has already been presented
in Backi et al. (2014b). However, in Backi et al. (2014b) the
convergence to the steady state value was not covered by the
theorem due to its conservative formulation. Now we can state
that the simulations presented in Backi et al. (2014b), as well
as the ones illustrated below, are covered by Theorem 6.
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Fig. 2. Initial condition, red: sum of sinusoidals, blue: sinu-
soidals plus added white Gaussian noise

Figure 2 shows the noisy IC that was chosen for the simulations.
It consists of a sum of sinusoidals of different frequencies
around T = 280 K plus added white Gaussian noise. The red
line illustrates the sinusoidals whereas the blue line the overall
noisy IC. The damping character of the linear heat equation is
well-known; By choosing the IC in this fashion we want to
emphasize that the damping character still holds for (6), even
in the presence of the term κ(T )T 2

x .

Fig. 3. Asymmetric BCs and noisy IC

In Figure 3 a simulation with BCs T (t,0) = 260 K and
T (t,0.1) = 240 K is presented. We can see that the temper-
ature distribution converges towards the expected steady state
solution and is clearly stable in accordance with Theorem 6.
Moreover, we can see the phenomenon of thermal arrest, which
takes the form of a plateau of nearly constant temperatures
inside I∆T . The region I∆T is emphasized by the two orange
rectangles. Furthermore, the thermal arrest is best visible in
the very center of the spatial domain. The overall behavior
corresponds with freezing curves obtained by measurements,
as presented e.g. in Nicholson (1973).



Fig. 4. Asymmetric BCs and noisy IC - 0 to 50 s

Figure 4 shows the behaviour in the first 50 s for the case
shown in Figure 3. Like mentioned earlier, we do this in order to
illustrate the converging and damping character even for noisy
IC. As can be seen, the low-frequency parts of the sinusoidals
are still present at the end of the simulation time, whereas
the high-frequency peaks caused by white Gaussian noise get
levelled out fairly fast.

6. CONCLUSIONS AND FUTURE WORK

In this paper we presented a stability investigation for a partial
differential equation with state-dependent parameter functions
and asymmetric boundary conditions. The PDE is a heat equa-
tion derived from the diffusion equation. The work is specific
for a freezing application and presents a generalization to al-
ready established stability results for the same heat equation
with symmetric boundary conditions.

Numerical simulations indicate that the theoretical results in
Section 4 in fact hold for the freezing application. As pointed
out in Backi et al. (2014b) we firstly proved stability in the
sense of convergence in both L2- and H1-norms, and secondly
in terms of absolute value of the solution’s transient part. We
were forced to impose restrictions on derivatives and signs of
the coefficient functions.

Regarding future work, it was brought to our attention by com-
ments of well-regarded colleagues that, by using Friedrichs’
Inequality instead of Poincaré’s Inequality, one can potentially
find tighter bounds for the respective time derivatives of the
Lyapunov candidates V and Λ.

Furthermore, one could investigate stability for different types
of boundary conditions. Particularly, replacing the Dirichlet
boundary conditions by those of Neumann type, representing
heat flux at the respective boundaries. This is interesting from a
mathematical point of view, however, it does not seem practical
for the specific freezing case in vertical plate freezers. This
is due to the fact that the heat flux is proportional to the
temperature difference at the boundaries. A correct estimation
of this proportionality factor, however, is hard to obtain, as it is
mainly dictated by the flow regime and the spatially-dependent

vapor quality (i.e. the mass fraction of the vapor phase) of the
refrigerant.

REFERENCES

Backi, C.J., Bendtsen, J.D., Leth, J., and Gravdahl, J.T. (2014a).
Estimation of inner-domain temperatures for a freezing pro-
cess. In Proceedings of the 2014 IEEE Multi-Conference on
Systems and Control. Antibes, France.

Backi, C.J., Bendtsen, J.D., Leth, J., and Gravdahl, J.T. (2014b).
The nonlinear heat equation with state-dependent parameters
and its connection to the burgers’ and the potential burgers’
equation. In Proceedings of the 19th IFAC World Congress.
Cape Town, South Africa.

Backi, C.J. and Gravdahl, J.T. (2012). Modeling of the freezing
process for fish in vertical plate freezers. In Proceedings
of the 17th Nordic Process Control Workshop. Copenhagen,
Denmark.

Backi, C.J. and Gravdahl, J.T. (2013). Optimal boundary
control for the heat equation with application to freezing with
phase change. In Proceedings of the 3rd Australian Control
Conference. Perth, Australia.

Cole, J.D. (1951). On a quasi-linear parabolic equation occur-
ing in aerodynamics. Quarterly of Applied Mathematics, 9,
225–236.

Dashkovskiy, S. and Mironchenko, A. (2013). Input-to-state
stability of infinite-dimensional control systems. Mathemat-
ics of Control, Signals, and Systems, 25(1), 1–35.

Hasan, A., Sagatun, S., and Foss, B. (2010). Well rate control
design for gas coning problems. In Proceedings of the
49th IEEE Conference on Decision and Control, 5845–5850.
Atlanta, GA, USA.

Henry, D. (1981). Geometric theory of semilinear parabolic
equations, volume 840 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin.

Hopf, E. (1950). The partial differential equation ut + uux =
µuxx. Communications on Pure and Applied Mathematics,
3(3), 201–230.

Krstic, M. and Smyshlyaev, A. (2008). Boundary Control of
PDEs - A Course on Backstepping. Advances in Design and
Control. Society for Industrial and Applied Mathematics.
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