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Abstract

Early diagnosis of incidents that could delay or endanger a drilling opera-
tion for oil or gas is essential to limit field development costs. Warnings
about downhole incidents should come early enough to allow intervention
before it develops to a threat, but this is difficult, since false alarms must
be avoided. This paper employs model-based diagnosis using analytical re-
dundancy relations to obtain residuals which are affected differently by the
different incidents. Residuals are found to be non-Gaussian - they follow a
multivariate t-distribution - hence, a dedicated generalized likelihood ratio
test is applied for change detection. Data from a 1400 meter horizontal flow
loop test facility is used to assess the diagnosis method. Diagnosis proper-
ties of the method are investigated assuming either with available downhole
pressure sensors through wired drill pipe or with only topside measurements
available. In the latter case, isolation capability is shown to be reduced to
group-wise isolation, but the method would still detect all serious events with
the prescribed false alarm probability.
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1. Introduction

Drilling for oil and gas is a high-cost operation with risk of delays, and
possibly safety and environmental impacts, if an abnormal incident is oc-
curring. A drillstring is rotated with a drill bit at the bottom, crushing
the formation. A circulated drilling fluid then transports the formation cut-
tings back to the surface through the annulus surrounding the drillstring,
see Fig. 1. Pressure in the well is controlled by the hydrostatic and friction
pressure drop of the drilling fluid, as well as a possible topside back-pressure.
For some wells, the pressure window of operation between the pressure of
the formation fluid and the formation fracture pressure is quite narrow. In-
cidents happening can make it difficult to maintain this operational window,
and may lead to costly delays in progress.

Monitoring of the drilling process has traditionally been done manually by
drilling operators. With new sensor technology, giving an increased number
of measurements available, manual monitoring may be overwhelming and
tiresome for operators, whose main task is to drill deeper into the formation,
maintaining operating requirements. An automatic diagnosis algorithm can
be used to interpret the signals and alarming the operators at an earlier stage
if something abnormal is about to develop. Abnormal downhole incidents
include influx of fluids from the formation, or lost circulation of drilling
fluid to the formation, plugging of the drill bit, pack-off of formation solids
around the drillstring, and leakage from the drillstring to the annulus caused
by wear and tear, called drillstring washout. Sensors may stop working, or
have a slowly varying bias drift giving incorrect readings, and actuators may
stop or be partially defective. If the drilling technology managed pressure
drilling (MPD) is applied, the installed choke may be plugged.

Detection of influxes was studied in [1, 2]. Detection of other incidents was
studied in [3] using a high-fidelity model, and a knowledge-based method was
used in [4]. Lost circulation, formation fluid influx, and drillstring washout
have many similarities to the problem of leak diagnosis in open water chan-
nels, see, e.g., [5].

Model-based fault diagnosis methods can often be divided into methods
detecting changes in estimated parameters or states, or using residuals which
are zero in the fault-free case and non-zero during a fault [6]. Diagnosis based
on parameter estimation in drilling was the topic in [7, 8], while this paper
presents a fault detection and isolation (FDI) method based on residuals
generated using analytical redundancy relations (ARR), see, e.g., [9, 10, 11].
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Model-based fault diagnosis of sensors in aircrafts using an extended Kalman
filter was studied in [12], and in [13] diagnosis of actuator faults was done us-
ing analytical redundancy relations and a cumulative sum (CUSUM) method,
while [14] applied ARR for an electrical distribution system.

Analytical redundancy relations offer an alternative to parameter and/or
state estimation, where a structured method is used to generate residuals
based on the model equations. This avoids the need for a stable adaptive
observer. In addition, the ARR residual generation framework offers possi-
bilities to detect and isolate actuator and measurements faults such as bias
drift, differentiating them from process faults in a systematic manner.

Measurement noise will affect the residuals, and with small changes in the
residuals due to faults, a statistical change detection algorithm is necessary.
To increase detection and isolation capabilities it was demonstrated in [7]
that a multivariate change detection algorithm using a generalized likelihood
ratio test (GLRT) was superior to univariate change detection of estimated
parameters. Statistical evaluation of residual signals for fault detection and
isolation was studied in [15, 16, 17, 18], while the use of directional residuals
was studied in [19, 20, 21].

In this paper actuator faults, sensors faults, and downhole drilling inci-
dents are detected and isolated using a model-based fault diagnosis method.
The different incidents are illustrated in Fig. 1, highlighted in red. Resid-
uals are generated using analytical redundancy relations, which due to use
of sensor measurements are affected by noise. Therefore, statistical change
detection is applied using GLRT, detecting changes in the vector residual.
This method will increase detectability of small changes to the process due
to an incident, decreasing the false alarm rate. The different incidents will
affect the residuals differently, making isolation possible by determining the
residual change direction.

The method is tested on a series of data sets from a medium-scale flow
loop test carried out in Stavanger, Norway. The flow loop is a horizontal
loop of 1400 meters, using water as drilling fluid. The paper describes two
scenarios of fault detection and isolation possibilities. In the first scenario,
downhole pressure measurements are available assuming the use of wired drill
pipe technology, see, e.g., [22, 23]. The second scenario describes what can
and cannot be detected and isolated with only topside sensors available, a
case still most common in the industry.

The paper is organized into ten sections. After the introduction, details
about the flow-loop test setup is described in Sec. 2. Model-based fault
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Figure 1: Managed pressure drilling process with possible downhole incidents shown in
red, including lost circulation, drillstring washout, formation fluid influx, and bit nozzle
plugging. Topside sensors shown in green, downhole sensors in magenta, and the actuator
in orange.

diagnosis is briefly introduced in Sec. 3, and the system model is presented
in Sec. 4. Analytical redundancy relations are derived in Sec. 5, and methods
for change detection and incident isolation are suggested in Sec. 6. Results of
incident detection and isolation using downhole sensors are shown in Sec. 7,
and without downhole sensors in Sec. 8. A discussion and a conclusion finalize
the paper.

2. Flow loop for testing of incidents in drilling

Data from a medium-scale horizontal flow loop is used to test fault diag-
nosis of downhole incidents, actuator fault, and sensor bias drift. The flow
loop shown in Fig. 2 is a 1400 meter test rig located in Stavanger, Norway,
circulating water in circular pipes with typical drilling diameters. During
the tests the flow loop was rigged for managed pressure drilling (MPD). This
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is a drilling method where the annulus is sealed off with a choke as illus-
trated in Fig. 1. Doing so, the downhole pressure is controlled by the choke
back-pressure, which is affected by hydrostatic pressure due to density, and
friction due to fluid flow. The model used in the diagnosis is thus adapted
to MPD, which could be applied to conventional drilling by omitting the
choke. The test setup was rigged to test the incidents bit nozzle plugging,
drillstring washout, lost circulation, gas influx and choke plugging. Pack-off
was not tested. No tests were done for bias drift, and this is therefore tested
by artificially adding a noise-free signal to specific measurements, ramping
up from zero to a constant bias.

There are some obvious differences between the test setup and real drilling.
One discrepancy is the lack of difference in height between the bit at the
bottom of the well and the choke at the top. This will result in different
hydrostatic pressure, where during an influx the height difference will affect
the now multi-phase flow. However, for normal drilling conditions, this issue
only adds a constant hydrostatic pressure. Other characteristics that differ
are the lack of transported solids due to drilling ahead, as well as lack of
annular effects since circular pipes are used in the test setup. Nevertheless,
for testing drilling incidents the flow loop produces realistic scenarios, only
preceded by a full-scale test rig or actual drilling with logged incidents.

Figure 2: Stand pipe with pressure measurement pp (left) and chokes with pressure mea-
surement pc (right).
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3. Model-based fault detection and isolation

Fault diagnosis methods may be divided into model-based and data-based
techniques [6]. Model-based methods are typically used if mathematical mod-
els of the process and faults are available, whereas data-driven methods use
historical data of complex systems to determine occurring faults, see, e.g.,
[24]. Although complex, the drilling process is limited in size and can be
divided into two subsystems separated by the drill bit. With a quite simple
hydraulics model available, this paper uses a model-based diagnosis method,
namely analytical redundancy relations to generate residuals, together with
statistical change detection to detect changes to the residuals.

Model-based fault detection and isolation (FDI) is defined in [25] as

• Fault detection: Determination of the presence of a fault in the system.

• Fault isolation: Determination of the kind and location of the fault.

The FDI procedure can be divided into function blocks. A residual generator
which provides signals that ideally deviate from zero only if a fault happens,
and a decision system giving a hypothesis about which parts of the system
are faulty [11], see Fig. 3.

Residuals in a model-based fault detection and isolation method can be
generated using state estimation, parameter estimation, joint state and pa-
rameter estimation, or analytical redundancy relations, see, e.g., [26, 27].
Joint state and parameter estimation is achieved using an adaptive observer,
or extending the state vector in a Kalman filter by relevant parameters.
Adaptive observers for state and parameter estimation was the topic in [7, 8].
This paper focuses on using analytical redundancy relations. Benefits and
drawbacks of the two methods are compared in Tab. 1, which is a shortened
version of Tab. 14.1 in [28].

4. System representation

The model of the drilling process including system dynamics, algebraic
equations, inputs, and measurements are presented in this section. Consider
the system

ẋ = f(x, u, θ), (1a)

y = h(x, u, θ), (1b)
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Figure 3: Fault detection and isolation using analytical redundancy relations to generate
residuals r as a function of measured inputs u and outputs y. Changes in mean ∆µ(r)
are detected using statistical change detection, and incident type isolation is determined
using change direction of the mean.

where x ∈ Rnx is the state vector, u ∈ Rnu is the input vector, and θ ∈ Rnθ is
a constant parameter vector. Each equation ẋi = fi(x, u, θ), yi = hi(x, u, θ),
and ui in (1) will represent a constraint

ci ∈ C (2)

in the constraint set C, used in generating the analytic redundancy relations,
as well as analyzing the relationship between the ARR and the faults.

The analytic redundancy relations are easily generated from simple model
equations. In general, simple models give faster and easier real-time diag-
nostic classifiers [21], while unmodeled dynamics can be treated as model
uncertainty. Motivated by this, the dynamics in the well is modeled with a
modification of the simplified model from [29] for the drilling hydraulics,

(c1) :
dpc
dt

=
βa
Va

(qp − qc) (3a)

(c2) :
dqp
dt

=
1

M
((ρa − ρd)gh+ pc − pp + θdq

2
p + θbq

2
p + θaq

2
p) (3b)

where pp is the pressure at the pump, pc the pressure upstream the choke, qp
the pump flow and qc flow through the choke, see Fig. 1. The pressure drop
p∆c over the choke is measured by a dedicated pressure difference sensor.
The parameters βa and Va represent the bulk modulus and volume of the
annulus, respectively, and M is the integrated density of the total liquid in
the drillstring and the annulus per cross section area. The density of the
fluid in the annulus is ρa, and ρd in the drillstring, g is the gravitational
acceleration, and h is the depth of the well. The pressure dynamics in the
drillstring is ignored, assuming in (3) that the flow qp from the rig pump
equals the flow through the bit. This pressure dynamics is typically orders of
magnitude faster than the occurring incidents, making the assumption valid.
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Table 1: Comparison of combined state and parameter estimation with analytical redun-
dancy relations for fault diagnosis, with the preferred method highlighted. Adapted from
[28].

Characteristics Combined state and
parameter estimation

Analytical redundancy
relations

Fast detection Relatively fast, dependent
on tuning

Fast

Detecting and isolating
sensor and actuator bias

Dependent on model and
setup

Inherent

Estimation of fault magni-
tude

Possible, but dependent on
model and setup

Requires additional esti-
mation

Propagation of measure-
ment noise

Dependent on tuning Needs to be handled if
measurement differentia-
tion is required

Design of method Dependent on model, may
require expert knowledge
to derive observer

Straightforward if tools are
available

Model parameters Unknown, time-varying Known, constant

Excitation requirements Possibly No

The friction through the system is modeled using a turbulent friction
relationship θiq

2
b for the drillstring, bit, and annulus, respectively with i ∈

{d, b, a}. As shown in [8], this relationship matches the flow loop data well.
For laminar flow, a linear relationship can be applied. The friction coefficients
θi can be found offline using some form of parameter identification, while all
other parameters are assumed constant and known.

The algebraic equations of friction and choke flow are given by

(c3) : pd = pp − θdq2
p + ρdgh, (3c)

(c4) : pa = pd − θbq2
p, (3d)

(c5) : pa = pc + θaq
2
p + ρagh, (3e)

(c6) : qc = gc(uc)
√
p∆c, (3f)

where pa is the pressure in the annulus, downstream the bit. This pressure
is commonly named the bottomhole pressure. The pressure upstream the bit
is denoted pd. The choke opening input constraint is

(c7) : u = uc, (3g)
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and the measurements are

(c8 − c14) : y =
[
pp, pd, pa, pc, p∆c, qp, qc

]>
. (3h)

Note that both states pc and qp in (3) are measured, as well as the downhole
pressures pa and pd. In the following sections these downhole sensors are first
assumed available. Analysis and discussion of the case without the downhole
sensors follows subsequently.

5. Analytical redundancy relations

Analytical redundancy relations (ARR) are functions of the system in-
puts and outputs and their derivatives, and can be used to derive nonlinear
residuals [10]. Analytical redundancy in fault diagnosis can be used to check
for inconsistencies between the actual system and the system model, and
residuals can be used for fault detection and isolation [21]. The residuals
should be (close to) zero during the fault free case, and significantly non-zero
during a fault. Detection of change from zero to non-zero of the residuals
can then be used for fault detection and isolation.

The residuals designed based on system (1) can be written as

r(ȳ(q), ū(q), θ) = 0, (4)

where ȳ(q) and ū(q) are vectors of y and u and their time derivatives up
to order q, respectively, see, e.g., [10, 11, 30, 31]. In case of measurement
noise, the residuals (4) are not identically zero in the fault-free case. Thus, a
fault is detected using hypothesis testing by differentiating between the null
hypothesis H0, and the alternative hypothesis H1,

H0 : r(ȳ(q), ū(q), θ) = w, (5)

H1 : r(ȳ(q), ū(q), θ) = A+ w, (6)

where w is white noise with probability distribution f(x; Π) with statisti-
cal parameters Π, and where A 6= 0 is representing the effect of the fault.
Computing ARR is done by eliminating the state in the system equations.
Different tools and methods available for generating ARR and minimal struc-
turally overdetermined sets [30, 11, 32] for residuals are compared in [33]. The
MATLAB toolbox SaTool [34] comprises algorithms to find complete match-
ings between the constraints and the unknown system variables, and is used
to generate the residuals in this paper.
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5.1. ARR for the drilling model

From the system constraints defined in (3), the Matlab tool SaTool is
used to find the following residuals,

r1 =
d

dt
y4 −

βa
Va

(y6 − y7), (7a)

r2 =
d

dt
y6 +

1

M

(
(ρa − ρd)gh− y1 + y4 + θay

2
6 + θby

2
6 + θdy

2
6

)
, (7b)

r3 = θdy
2
6 − ρdgh− y1 + y2, (7c)

r4 = θby
2
6 − y2 + y3, (7d)

r5 = θay
2
6 + ρagh− y3 + y4, (7e)

r6 = y7 − gc(uc)
√
y5, (7f)

which will be used for fault detection and isolation.
Differentiating a signal with noise leads to obvious challenges. A com-

mon procedure to reduce noise is to low-pass filter the signal, in this case
the residuals. However, if the residuals are low-pass filtered the result will
be slower detection. Furthermore, since both ofy6(t) and dy6/dt appear in
r2, the derivative of the signal is not needed for detectability nor isolability
and the presence of y6(t) ensures that a change in y6 is strongly detectable.
With respect to dy4/dt, y4(t) itself appear in r2 and r5, which assures strong
detectability and isolability. Therefore, the derivatives of y4(t) and y6(t) in
(7) are not needed and they are omitted in the further analysis and applica-
tion. This is equivalent to considering the algebraic version of constraints c1

and c2 in (3), that follow with dy4/dt ≡ 0 and dy6/dt ≡ 0. Rapid changes do
not take place in the normal drilling operation, and the derivatives would be
within the noise floor.

An exception is a so called connection, which is the operation of adding
a new drillpipe to the drillstring. In this case, the flow rate is ramped down,
then up again after a complete connection. If, nevertheless, dy6/dt should
change rapidly, r2 might give a short deviation from zero but [r1, r3, r4, r5]T '
0, so a H1 hypothesis would be rejected. If dy4/dt should change rapidly,
r2 would deviate for a short while, but since none of the other residuals
would deviate from zero, a false H1 alarm would be rejected, also in this
case. Furthermore, this operation is known and can be accounted for in a
monitoring system.
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5.2. Relations between faults in analytic and structural domains

In the structural domain, we consider violations of normal behaviors and
analyze the ability to detect whether a violation has happened. Isolation in
this domain means to determine which constraint has been violated. When
translating to the analytic domain, residuals (7) are expressed as functions
of measured signals y, of input u, and of process parameters in θ, ρ, Va, etc.

5.3. ARR and constraint dependency

The matching between residuals (7) and constraints (3) was found using
the ranking algorithm implemented in SaTool [34]. Subsequent calculation of
the analytical redundancy relations is achieved by expressing that ck = 0 is an
ARR when ck is an unmatched constraint, i.e., redundant in the calculation of
the unknown variables but valid and useful as a test quantity. With ck being
a function of the variables in the system and with all unknown variables being
calculable as prescribed by the complete matching, a backtracking along the
path found by the matching will lead to ck being a function expressed solely
by known variables. The calculation of ck will be a function also of the
constraints ci along the paths of the backtracking.

As a next step, the ARR ci = 0 is replaced by the test quantity rj = ci
where rj is a residual. The resulting dependencies between the constraints
and the residuals are listed in Tab. 2. An ‘X’ in the table at position (j, i)
means that a constraint ci is used in the calculation of residual rj. A violation
of ci will therefore influence rj such that the function rj(t) will be nonzero for
some or all t after ci(t) 6= 0 has happened. This is referred to as detectability.
Isolability means that it is possible to determine which particular constraint
was violated. Precise definitions can be found in [11].

Table 2: Dependency matrix between residuals and constraints.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

r1 X X X X
r2 X X X X
r3 X X X X
r4 X X X X
r5 X X X X
r6 X X X X
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Tab. 3 shows structural detectability and isolability of each constraint
using the residuals r. Structural detectability, denoted d, follows if the cor-
responding column i in Tab. 2 is non-zero, i.e., comprises an ‘X’. Structural
isolability, denoted i, requires that the signature in column i in Tab. 2 differs
from the signature of all other columns. Constraints c6, c7 and c14 are only
detectable, denoted ‘d’ in Tab. 3. This means that it is not possible to distin-
guish between a violation of these three constraints or, in other words, that
it is not possible to distinguish between faults in sensors qc, p∆c and choke
opening uc. This can be also seen in the constraint dependency table shown
in Tab. 2, giving the same matching for r6 with c6, c7 and c12. Fortunately,
all these sensors are topside and easily available. If a low reliability is ex-
perienced in these sensors, redundant sensors could be installed to enhance
isolability. Pressure sensors in particular are quite small and easy to install.

Table 3: Detectability and isolability of constraints.

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

i i i i i d d i i i i d i i

Localization of the position of an incident, which was done in [8] based on
parameter and state estimation, would also be possible using ARR by includ-
ing additional measurements in the annulus and extending the model (3) to
include friction parameters representing friction between the measurements.
However, this will lead to quite many constraints and residuals. To narrow
down the scope of this paper, localization is omitted in the fault diagnosis,
focusing on incident detection and type isolation.

5.4. Fault isolation with analytical redundancy relations

The faults are not modeled explicitly in (3). This has been done for
mechanical systems in, e.g., [35], where faults in an automotive engine were
modeled explicitly. This would result in a mapping between the faults and
the residuals. In this paper, this relationship is implicit, and a physical
change to the process will affect the residuals as indicated in Tab. 2 as a
match between residual rj and constraint ci.

The challenge with explicit modeling of the faults lies both in the nature
of some of the faults and the difficulty of modeling any possible incident or
fault. The methodology of [35] is aimed at isolating only the specific fault
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included in the model. The generic approach used here will be sensitive to
any deviation from the normal behavior that was described by (3).

A drillstring washout, a loss of circulating drilling fluid, or an influx
will change the flow in parts of the process. However, the position of the
fault is unknown, and therefore difficult to implement in the model. The
different faults and sensor bias drifts are listed in Tab. 4. An ‘s’ in Tab. 4
denotes strong detectability of the corresponding fault (as opposite to weak
detectability), meaning that the affected residual reaches a non-zero steady
state, see, e.g., [11].

The incidents are defined as:

• A drillstring washout (fwo) is a leakage from the drillstring to the an-
nulus, and will reduce flow in the lower parts of the system. This will
be seen as a reduced friction loss in the drillstring, over the bit, and in
the annulus.

• Lost circulation (fls) of drilling fluid to the reservoir will reduce friction
in the annulus.

• An influx (fin) of reservoir fluids will have an opposite effect as lost
circulation giving larger flow out of the well than in, and an increased
friction in the annulus.

• A plugging of the drill bit nozzles (fbp) will cause an increased pressure
drop over the drill bit. This will then give a higher back-pressure at
the bit, giving increasing values of pump pressure and upstream bit
pressure.

• A pack-off (fpo) is a partial or fully plugging of of solids around the
drillstring in the annulus, giving increased pressure drop in this section.
It will therefore behave similar as a bit nozzle plugging, but with an
increased friction drop in the annulus rather than over the bit.

• A choke plugging (fcp) is a partially or fully blocking of the MPD choke,
caused by formation solids. This will change the characteristics of the
choke.

• Bias drifts in pressure sensors pp, pc, pd and pa are denoted as ∆pi for
sensor pi for a positive drift.
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All the sensor faults and process incidents are possible to isolate, as seen
in Tab. 4, except from a negative bias drift in choke pressure (−∆pc) and a
pack-off (fpo) which have the same signature. Note that the method does not
necessarily handle isolation of simultaneous incidents. However, for drilling
this is not considered a limitation, since each of the incidents are quite se-
vere. If an incident is detected and isolated, drilling should be suspended
and appropriate actions should be taken immediately to reduce possible con-
sequences.

Table 4: Fault dependency table with downhole measurements. Strong detectability is
denoted ‘s’.

∆pp ∆pc ∆pd ∆pa fwo fls fin fbp fpo fcp

r1 − +
r2 − + + + + − −
r3 − + +
r4 − + + −
r5 + − + + − −
r6 −

s s s s s s s s s s

5.5. Analytical redundancy relations with only topside measurements

Analysis up until now assumed available downhole pressure sensors through
a wired drill pipe. However, this is a novel technology without a large user
base in operating drilling rigs. More commonly, only a single downhole pres-
sure sensor is available, with high latency, low bandwidth transmission and
with a relatively high rate of downtime. In many cases no downhole mea-
surement is available at all. It is hence interesting to investigate what can
be done using only topside measurements, in other words, not using pd and
pa in the measurement vector (3h).

Conducting the same analysis as before, but removing pd and pa from (3),
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the alternative residuals r̃ are

r̃1 =
d

dt
ỹ2 −

βa
Va

(ỹ4 − ỹ5), (8a)

r̃2 =
d

dt
ỹ4 +

1

M

(
(ρa − ρd)gh− ỹ1 + ỹ2 + θf ỹ

2
4

)
, (8b)

r̃3 = ỹ2 − ỹ1 + θf ỹ
2
4, (8c)

r̃4 = ỹ5 − gc(uc)
√
ỹ3, (8d)

the topside measurements are

ỹ =
[
pp, pc, p∆c, qp, qc

]>
, (9)

and
θf = θd + θb + θa (10)

is the friction coefficient of the total friction from pump to choke, represented
by the parameter θf . Since no downhole measurements are available, θd, θb
and θa are not possible to identify individually.

Table 5: Fault dependency table with no downhole measurements. Strong detectability is
denoted ‘s’.

∆pp ∆pc fwo fls fin fbp fpo fcp

r̃1 − +
r̃2 − + + + + − −
r̃3 − + + + + − −
r̃4 −

s s s s s s s s

With a possibility of both positive and negative drift of the pressure sen-
sors, it is not possible to separate washout (fwo), bit nozzle plugging (fbp)
and pack-off (fpo) from bias drift, as seen in Tab. 5, although subgroups of
sensor faults and physical incidents can be isolated. This is as expected, since
drillstring washout, bit nozzle plugging and pack-off only change the pressure
drop seen from pump to choke, without changing flow rate. Without down-
hole measurements, it is difficult to separate these from bias drift. However,
since the measurements are located topside, they are more easily accessible
than downhole measurements. One could install redundant pressure sensors
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making it easy to isolate a sensor with bias drift and exclude it from the
diagnostic algorithm. Drillstring washout could then be isolated from either
a bit nozzle plugging or a pack-off.

6. Multivariate change detection and change direction for FDI

Detecting changes to the residuals are done by using a multivariate gener-
alized likelihood ratio test (GLRT). By using a multivariate scheme, changes
to all residuals are considered jointly. For diagnosis based on change de-
tection in [7], this approach was found to be superior compared with using
independent univariate tests on each signal.

It is common to assume that the noise is Gaussian distributed. However,
noting that the residuals are sums of pressure measurements, and squares of
flow measurements, residuals are not likely to be Gaussian. The distribu-
tion is checked using a Kolmogorov-Smirnov test for the Gaussian, Student
t, Laplace, and Cauchy distributions in Tab. 6, showing a high p-value for all
residuals with the t-distribution, which furthermore is the only distribution
with all p-values above 0.05, a typical statistical threshold. To save space,
only the p-values for the lost circulation case is shown, but the t-distribution
is well suited for all cases. Non-Gaussian distributions on estimated param-
eters and residuals are studied in [7, 8, 36, 37].

Table 6: Kolmogorov-Smirnov test of the residuals r for the lost circulation case at H0,
with p-values above 0.05 highlighted.

Residual Gaussian Student t Laplace Cauchy

r1 0.064 0.79 0.059 1.0× 10−6

r2 0.034 0.70 0.010 1.5× 10−7

r3 2.8× 10−9 0.76 0.75 5.6× 10−3

r4 < 10−12 0.87 0.053 0.048
r5 0.0031 0.99 0.0011 4.6× 10−7

r6 0.0082 0.19 3.2× 10−7 4.2× 10−10

The detection problem of change in a signal x is to distinguish between the
null hypothesis H0 and the alternative hypothesis H1, which can be presented
as

H0 : x ∼ D(Π0;H0), (11a)

H1 : x ∼ D(Π1;H1), (11b)
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where x has the probability distributionD(Πi;Hi) with statistical parameters
Πi under hypothesis Hi.

6.1. Generalized likelihood ratio

The window limited generalized likelihood ratio of signal x(k) with noise
distributed by probability density function f(x; Π), and with statistical pa-
rameters Π, is given by

g(k) = max
k−N+1≤j≤k−Ñ

ln

∏k
i=j f(x(i); Π1)∏k
i=j f(x(i); Π0)

, (12)

where Π0 denotes statistical parameters during the H0 hypothesis, and Π1

during the H1 hypothesis. The window is given by 0 ≤ Ñ ≤ N , and is used
to reduce computational cost [? ].

The p-variate t-distribution of a vector signal x with mean µ, correlation
S, and degrees of freedom ν is

f(x;µ, S, ν) =
Γ((p+ν)/2)

Γ(ν/2)(πν)p/2|S|1/2

[
1+

1

ν
(x−µ)>S−1(x−µ)

]− p+ν
2

, (13)

where Γ(z) is the Gamma function. Note that µ is the mean of x when ν > 1
[38]. The corresponding GLRT statistic was derived in [7] for a change in
mean µ from µ0 to µ1 with S and ν constant, and was shown to be

g(k) = max
k−N+1≤j≤k−Ñ

p+ν

2

k∑
i=j

[
− ln

(
1 +

1

ν
(x(i)−µ̂1)>S−1(x(i)−µ̂1)

)
+ ln

(
1 +

1

ν
(x(i)−µ0)>S−1(x(i)−µ0)

)]
, (14)

where µ̂1 is the maximum likelihood ratio of the mean after change,

µ̂1 =
1

k−j+1

k∑
i=j

x(i). (15)

6.2. Fault isolation by determining change direction of the residuals

The GLRT statistic (14) is scalar, and an estimate of the magnitude of
change is provided by (15). To determine the type of fault, the direction of
change can be considered, which was done for parameter estimation in [7]
and [8], and is similar to [20] where the direction of change of residuals was
considered.
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Problem 1 (Fault detection). Given a sampled time sequence of vectors of
residuals r(k), with change from known condition r0(k) to unknown r1(k).
Define the index set NN := {i ∈ N : 1 ≤ i ≤ N} and let if ∈ NNf be the
possible fault indices. Let a fault signature matrix be D, with column vector
Di corresponding to fault index if . Then distinguish between two hypotheses

H0 : r(k) = 0 + w(k), no fault present, (16a)

H1 : r(k) = Diυ(k) + w(k), a fault is present. (16b)

Problem 2 (Fault isolation). Given that H1 has been accepted, determine
that a particular fault i∗f is present of the possible faults if ∈ NNf , by deter-
mining the best fit of (16b) for the different fault types.

The matrix D is constructed based on Tab. 4, where each fault type in
the table corresponds to one column vector Di. An element with ‘−’ in the
table gives a value of −1 in D, ‘+’ gives a value of 1, and 0 is used other-
wise. Negative bias drift is isolated using changed signs for the corresponding
positive drift.

The fault type i∗f is isolated using a projection of the change in mean
µ̂1 − µ0 of the residual r onto the different column vectors Di corresponding
to different faults, finding the largest projection,

i∗f = arg max
i

D>i (µ̂1 − µ0)

D>i Di

. (17)

6.3. Deciding on threshold value for the GLRT statistic

By finding the distribution of the test statistic g(k) at H0, a threshold
value h can be chosen with a desired probability of false alarm PFA. If test
statistic data is available at H1, the probability PD of detecting a fault may
also be found. An asymptotic distribution may be estimated from data. A
Weibull distribution was fitted to the the test statistic of the residuals in [36]
and estimated parameters in [7, 8]. A lognormal distribution is used in [39].

The test statistic data of r for the influx case at H0 is plotted in Fig. 4,
showing a good fit of the tail to the Weibull distribution. The lognormal
distribution gives a good fit overall, but not of the last 10 % of the tail,
which is the part of the distribution that is most important for threshold
selection. The Weibull distribution is applied for all cases to determine the
threshold h of g(k).
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Figure 4: Weibull probability plot of g(k) atH0 for the influx case. Test statistic data fitted
to Weibull distribution (red solid line) and lognormal distribution (green dashed dotted
line). The threshold h is calculated from a fitted Weibull distribution with PFA = 10−6,
plotted as a vertical black dashed line.

The Weibull distribution has the probability density function f(x;α, β)
and cumulative distribution F (x;α, β) given by

f(x;α, β) =
β

α

(x
α

)β−1

e−(x/α)β , x ≥ 0, (18)

F (x;α, β) = 1− e−(x/α)β , x ≥ 0, (19)

where α > 0 is the scale parameter and β > 0 is the shape parameter. The
inverse cumulative distribution can be used to determine the threshold h as
a function of the probability of false alarms PFA, even if the residuals are not
independent and identically distributed [39, 40, 41]. The threshold is then
given by

h = Q(1− PFA;H0, α0, β0) = β0 (− ln(PFA))1/α0 , (20)

where α0 and β0 are the parameters of the Weibull distribution fitted to g(k)
under H0. If H1 data is available, the probability of detecting a fault PD is
given as a function of the threshold h,

PD = 1− F (h;H1, α1, β1) = e−(x/α1)β1 , (21)

where α1 and β1 are the statistical parameters of the test statistic at H1.
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7. FDI of flow loop data using downhole measurements

Fault detection and isolation of different incidents in data from the flow
loop tests is done using the methods described in Secs. 5 and 6. This sec-
tion presents fault detection and isolation where downhole measurements are
available. The cases studied are lost circulation, gas influx, bit nozzle plug-
ging, choke plugging, and a positive bias drift in the downhole sensor pa. The
measured pressure and flow rates are plotted in Fig. 5, which are sampled at
10 Hz. The plot shows a concatenation of different test cases recorded over a
time period of several weeks, and are not necessarily plotted in chronological
order. In the test setup some of the incidents are also measured, used only
as ground truth about the time interval and magnitude of the incident, and
shown in Fig. 6. Note that bit nozzle plugging and choke plugging occurring
during the interval 40 to 60 minutes are not measured.

The residuals r given by (7) are plotted in Fig. 7 for all five cases of in-
cidents. The physical parameters of the flow loop are found using available
information about the drilling process and are listed Tab. 7. The friction pa-
rameters θa, θb and θd in (7) are found using an off-line parameter estimation
method. The parameters are assumed constant or varying much slower than
the dynamics in the process, and thus kept constant in r. In this case the
parameters are found using the adaptive observer in [42] of data H0 known
to be fault free. Since the flow-loop setup was used extensively for a various
number of tests, many not included in this paper, there are some differences
between the cases, giving slightly different friction parameters, representing
natural variation during operation.

Table 7: Physical flow loop parameters.

βa 2.2× 109 Pa Effective bulk modulus
ρd, ρa 1000 kg/m3 Drilling fluid density
Ma 3.74× 107 Pa s2/m3 Integrated density per cross section
Va 13.2 m3 Volume of fluid in annulus
h 2.14 m Depth of well at bit

Ld, La 700 m Length of drillstring/annulus

From Fig. 7 it is apparent that different faults affect the residuals in some
manner, giving non-zero values. However, due to measurement noise, these
changes are very difficult to detect reliably without some change detection
method. The methods in Sec. 6 are used for fault detection and isolation
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Figure 5: Topside pressure measurements (top), downhole pressure measurements (mid-
dle), and flow measurements (bottom) of the five cases of lost circulation, gas influx, bit
nozzle plugging, choke plugging, and positive bias drift in sensor pa. The different cases
are separated with alternating grey and white backgrounds. There is significant noise in
the data.
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Figure 6: Downhole incidents of lost circulation and gas influx in the first 40 minutes of
data. Bit nozzle plugging and choke plugging from 40 to 60 minutes are not measured.
Artificially added bias drift in pa starts at 110 minutes. None of this information is
available to the diagnosis method.

in the different cases described in the following subsections. For all cases a
window length of

N = 200 (22)

samples is used, corresponding to 20 seconds and is considered sufficiently
long. A too short window length decreases the detection rate, whereas an
increasing window length increases the computational cost. Choosing a suffi-
ciently long window length was discussed in [8]. A probability of false alarm

PFA = 10−6 (23)

is used to determine thresholds, which corresponds to an expected false alarm
rate of 0.00018 per hour (under 2 per year). Due to process disturbances,
there has been used an additional requirement that an alarm is set off only if
200 samples (20 s) of g(k) is above the threshold. The spikes in residuals r2

and r3 happening at 64 minutes are caused by a 2 second temporal artifact
in pp.

7.1. Lost circulation

The first case studied is lost circulation of drilling fluid to the reservoir,
which is labeled as fault fls in Tab. 4. From this table, loss of drilling fluid
is detected and isolated if g(k) is above the threshold, and that the mean of
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Figure 7: Residuals r1 - r6 for lost circulation, gas influx, bit nozzle plugging, choke
plugging, and positive bias drift in sensor pa, using downhole measurements.
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r is changing in a negative direction for r1, and positive direction for r2 and
r5. Three different loss rates are tested with different magnitude, plotted in
red in Fig. 6. The first loss is at over 1000 L/min, which is a complete loss
of drilling fluid. The last one is around 250 L/min, or 25 % of circulation
rate. All three loss rates are quite large, and as expected, detection and
isolation are quite manageable. Fault detection is shown in the upper panel
of Fig. 8, showing a value of g(k) above threshold for all three losses. The
actual loss intervals are shown in grey in the lower panel, where fault isolation
is correctly achieved using change direction of r, shown in blue.

Figure 8: Detection and isolation of lost circulation. Actual loss shown in grey.

7.2. Gas influx

Gas influx is a complex case to correctly diagnose. When gas enters
the annulus, the dynamics changes drastically from single-phase to multi-
phase flow. Limitations of the model (3) during an influx is discussed in
[8], where the model is not well suited to determine information about the
gas influx once it has entered the annulus. However, detecting and isolating
the initial occurrence of an influx is still possible, by determining change
in the total annular friction and change in the flow rate difference in and
out of the well. The procedure once an influx is detected is to shut in the
well, which is done by closing the blow-out preventer (BOP) around the
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drillstring, blocking annular flow. It is therefore still possible to use the
method described in this paper. Two influxes of gas in the annulus are plotted
in blue in Fig. 6. Corresponding detection is shown in Fig. 9. Both influxes
are correctly detected and isolated. However, after the first influx, the gas is
transported through the annulus, giving different dynamics and friction. This
gives some incorrectly isolated incidents, while most are correctly isolated as
gas in the system. Nevertheless, as discussed above, once the first influx is
detected and isolated the drilling crew will most probably decide to shut in
the well and remove the gas in the system by circulating a heavier drilling
fluid.

Figure 9: Detection and isolation of two influxes of gas into the well. Note that there is
gas in the well also after injection. Some of it is correctly isolated as gas, some incorrectly
as a bit nozzle plugging.

7.3. Plugging of drill bit nozzles

Plugging of the drill bit nozzles is not as severe as formation fluid influx
and lost circulation, since the pressure in the well is not affected. Neverthe-
less, monitoring of the bit status is important in order to maintain drilling.
A partial blocking of the nozzles will be seen as a higher pressure in the
drillstring, which the operator has great benefits of determining the cause of.
A full blocking of the nozzles will stop circulation of drilling fluid, halting
progress.
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Four pluggings of the bit nozzles are successfully detected and isolated in
Fig. 10, two small and two large. Detecting a bit nozzle plugging may be pos-
sible by directly measuring the pressure drop over the bit, pd− pa. However,
this pressure drop is a function of flow. In addition, changes to pressure mea-
surements may be caused by other incidents. Thus is a complete diagnosis
method favorable for distinguishing nozzle plugging from other incidents.

Figure 10: Detection and isolation of a plugging of the drill bit nozzles.

7.4. Plugging of MPD choke

If the choke in a managed pressure drilling operation becomes partially
plugged, control of the back-pressure may be difficult. This pressure will
directly affect the downhole pressure, which should be controlled within a
pressure window. If the pressure is too low the well can start to produce,
causing influxes, while a too high pressure may cause damage to the forma-
tion, which may result in lost circulation due to cracks in the formation.

Detection and isolation of a partial plugging of the MPD choke is shown
in Fig. 11. The partial plugging is simulated in the flow loop as partially
closing a dedicated valve upstream the choke. The plugging occurs in the
very beginning of the recorded data set, and is correctly detected and isolated.
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Figure 11: Detection and isolation of a plugging of the MPD choke.

7.5. Bias drift in bottomhole pressure sensor pa

The four previous cases describe incidents which are physical changes in
the process due to some induced physical incidents. Detection and isolation
is based on residuals which again are functions of measurements of process
variables and actuators. For such a method to be successful, the measure-
ments must be reliable. In real life, uncertainty in measurements, such as
bias drift, affects the diagnosis method. It is therefore important to also
detect and isolate such effects.

In this case a positive drift in the downhole pressure sensor pa is tested.
The bias drift is artificially added to the pressure signal as a ramp function
from 0 to 3 bar, starting at around 110 minutes in Fig. 6. This is occurring
simultaneously as the choke opening is ramped up, giving a significant in-
crease in choke pressure pc, and thus also in pd, pa and pp, shown in Fig. 5.
Diagnosis of the bias drift is shown in Fig. 12, with an early detection of the
drift where the bias is quite small. Determining that a bias drift is occurring
from the measurements directly would be difficult for an operator, while it
is successfully detected and isolated with the methodology in this paper.
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Figure 12: Detection and isolation of a positive bias drift in pressure sensor pa.

8. FDI of flow loop data with only topside measurements

All cases in the previous section utilized downhole pressure sensors avail-
able when wired drill pipe technology is at hand. However, in most drilling
rigs only a few downhole sensors are available, if any. This section inves-
tigates to what extent analytical redundancy relations are capable of fault
detection and especially fault isolation with only topside sensors available.
Two cases are studied: drillstring washout, and a negative bias drift in the
choke pressure sensor pc.

8.1. Drillstring washout without downhole measurements

Without downhole sensors, it is difficult to distinguish between a negative
drift in pp, a positive drift in pc, and drillstring washout (fwo), as shown in
Tab. 5. However, detecting that something has happened, and narrowing
down the possibility to these three different scenarios, is still of great value
for the drilling crew.

Topside pressure and flow measurements are plotted in Fig. 13, where the
washout case consists of the first 19 minutes. In Fig. 14, the actual washout
is measured as pressure drop over a valve, where there is no washout if the
pressure drop is zero. The corresponding effects on the residuals are shown
in Fig. 15, showing an increase in r̃2 and r̃3 during the washout. Also here, a
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Figure 13: Pressure measurements (top) and flow measurements (bottom) of drillstring
washout (grey background) and a negative bias drift in sensor pc without downhole mea-
surements.

Figure 14: Drillstring washout (grey background), and artificially added negative bias
drift in pc starting at 69 minutes. None of this information is available to the diagnosis
method.
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Figure 15: Residuals r̃1 - r̃4 for drillstring washout and negative bias drift in pc, without
downhole measurements.

statistical change detection algorithm is necessary to get sufficient detection
with a low false alarm rate. The GLRT statistic is plotted in Fig. 16, showing
detection of the incident, with isolation narrowed down to either positive bias
in pc, negative bias in pp or a drillstring washout, which is the actual case.

8.2. Negative bias drift in choke pressure sensor without downhole measure-
ments

Detection and isolation of a negative bias drift in the choke pressure sensor
pc is shown in Fig. 17, where no downhole measurements are available. The
drift is ramped up from 0 to 3 bar quite slowly. For bias drift under around 1
bar (before 60 minutes), the value of g(k) is below the threshold value, while
for increasing drifting values the bias is isolated to the correct subgroup of
incidents.

9. Discussion

Two different diagnosis scenarios using flow-loop data were tested, as-
suming in the first scenario that downhole pressure sensors were available,
while in the second only topside sensors were used. Using downhole pressure
sensors, all incidents are detectable and isolable using analytical redundancy
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Figure 16: Detection and isolation of a washout without downhole measurements. The
incident is isolated to be either a positive bias drift in pc, a negative drift in pp, or a
drillstring washout.

Figure 17: Detection and isolation of a negative bias drift in pressure sensor pc without
downhole measurements. The sensor fault is isolated as either a positive bias drift in pp,
a bit nozzle plugging, a pack-off, or the actual negative bias drift in pc.
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relations, except separating a pack-off from a negative drift in the measured
choke pressure. Detection and isolation was successfully achieved at an early
stage, with temporal false alarms only for the gas influx incident.

When using only topside measurements, the number of residuals were
reduced from six to four, with the effect of greatly reducing isolation capa-
bilities. As can be seen in Tab. 5, there are several overlaps between the
different cases, especially if both negative and positive bias drift of the pres-
sure sensors are considered. However, there is still important information in
the existing isolation. A possibility to separate a drillstring washout from
either a bit nozzle plugging or a pack-off is of great value for the drilling
personnel.

The model used to generate the residuals is limited to hydraulic relation-
ships between pressures and flow rates. In a real drilling rig system, there
is also information about drillstring torque and the weight of the drillstring
and bottomhole assembly, called weight on bit, as well as the rate of penetra-
tion. This information can be included as constraints in (3), giving increased
detection and isolation capabilities. An influx can be a result of drilling into
a gas pocket, called a drilling break, increasing the rate of penetration dras-
tically. A pack-off will not only increase fluid friction, but also increase the
rotational friction of the drillstring. This would be seen as an increase in the
torque measured topside. The diagnosis framework described in this paper
could easily be extended with these features, illustrating its flexibility for
extending the detection and isolation capabilities.

Diagnosis of downhole incidents is also possible using adaptive observers,
which was done in [7, 8]. Tab. 1 made a comparison between the methods,
where one method was favorable for some properties, while the other method
was best suited for others. Adaptive observers make it possible to estimate
the fault magnitude, at least in some cases. This is not directly possible
using analytical redundancy relations. ARR, however, make it possible to
distinguish between sensor faults and actuator faults from physical incidents,
a property not directly possible using adaptive observers. A complete diag-
nosis system may thus implement both methods, possibly combining them
for improved diagnosis.

10. Conclusion

Analytical redundancy relations were used to generate residuals based on
a simple hydraulics drilling model. Despite significant measurement noise,
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statistical change detection of the residuals was achieved with early detection
and low false alarm rates using a multivariate generalized likelihood ratio
test. Data from a medium-scale horizontal flow-loop rig of 1400 meters was
used to test incident diagnosis capabilities. Successful detection and isolation
was achieved with the specified low false alarm rates for all of the incidents:
drillstring washout; fluid loss; gas influx; bit nozzle plugging; choke plugging;
as well as bias drift of the pressure sensors. The method was first tested
using downhole pressure sensors, showing successful isolation of all of the
different incidents. Then, using only cheaper and readily available topside
measurements, the different incidents were shown to be successfully detected
and isolated into subgroups of possible incidents.
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