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Abstract—Real time knowledge of total mass of gas and liquid
in the annulus and geological properties of the reservoir is very
useful in many active controllers, fault detection systems and
safety applications in the well during petroleum exploration
and production drilling. Sensors and instrumentation can not
measure the total mass of gas and liquid in the well directly
and they are computed by solving a series of nonlinear algebraic
equations with measuring the choke pressure and the bottom-hole
pressure. This paper presents different estimator algorithms for
estimation of the annular mass of gas and liquid, and production
constants of gas and liquid from the reservoir into the well during
Under Balanced Drilling. The results show that all estimators
are capable of identifying the production constants of gas and
liquid from the reservoir into the well, while the Lyapunov based
adaptive observer gives the best performance comparing with
other methods when there is a significant amount of noise.

Index Terms—Under Balanced Drilling(UBD), Nonlinear ob-
server, Lyapunov stability and Unscented Kalman Filter.

I. INTRODUCTION

In petroleum drilling operations, the drilling fluid (mud)
must be pumped down through the drill string toward the drill
bit by the mud pump (see Figure 1). The annulus is sealed with
a rotating control device (RCD), and the mud exits through a
controlled choke valve, allowing for faster and more precise
control of the annular pressure. The mud carries cuttings from
the drill bit to the surface. In conventional (over-balanced)
drilling, or Managed Pressure Drilling (MPD), the pressure
of the well must be kept greater than pressure of reservoir
to prevent influx from entering the well. But in the UBD
operation, the hydrostatic pressure of the well must be kept
greater than pressure of collapse and less than pressure of
reservoir

pcoll(t, x) < pwell(t, x) < pres(t, x) (1)

at all times t and positions x. Since hydrostatic pressure of
the well is intentionally lower than the reservoir formation
pressure, influx fluids (oil, free gas, water) from the reservoir
are mixed with rock cuttings and mud fluid in the annu-
lus. Therefore, modeling of the UBD operation should be
considered as multiphase flow. Different aspects of modeling
relevant for UBD have been studied in the literature [1]–[4].
Estimation and control design in MPD has been investigated
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Figure 1. Schematic of an UBD system

by several researchers [5]–[11]. However, due to complexity of
multiphase flow dynamic in the UBD operation, there are a few
studies on the estimation and control of the UBD operation
[1], [12]–[14]. Nygaard et al. [12] compared and evaluated
the performance of the extended Kalman filter, the ensemble
Kalman filter and the unscented Kalman filter to estimate
the states and production index in UBD operation. Lorentzen
et al. [13] designed an ensemble Kalman filter to tune the
uncertain parameters of a two-phase flow model in the UBD
operation. In Nygaard et al [14], a finite horizon nonlinear
model predictive control in combination with an unscented
Kalman filter was designed for controlling the bottom-hole
pressure based on a low order model developed in [1], and
the unscented Kalman filter was used to estimate the states,
and the friction and choke coefficients.

State and parameter estimation of linear and nonlinear
dynamical systems is one of the main topics in the control
theory. The adaptive observer was proposed by Carrol et al. in
1973 [15]. The Lyapunov based adaptive observer is generally
used to design a Luenberger type observer for the state while



appropriate adaptive law to estimate the unknown parame-
ters [16]–[19]. If the observability and persistency excitation
condition is satisfied, then both the state and the parameter
estimation will converge to their true values. The original
Kalman filter based on linear model was developed to estimate
both state and parameter of the system usually known as an
augmented Kalman filter. Several Kalman filter techniques
have been developed to work with non-linear system. The
unscented Kalman filter has been shown to have a better
performance than other Kalman filter techniques for nonlinear
system in same cases [20], [21].

Since total mass of gas and liquid in the well could not
be measured directly, they are estimated by solving a series of
nonlinear algebraic equations. In these equations the choke and
the bottom-hole pressures are known from the measurements.
It is assumed to transmit the bottom-hole pressure (BHP)
readings continuously to the surface through a telemetry pipe
with a pressure sensor at the measurement while drilling
(MWD) tool [22]. Some geological properties of the reservoir
such as production constants of gas and liquid from the
reservoir might vary and could be uncertain during drilling
operations. This paper describes the design of Lyapunov-based
adaptive observer, recursive least squares and joint unscented
Kalman filter for estimating the total mass of gas and liquid in
the annulus and geological properties of the reservoir during
UBD operation. These designs are based on a nonlinear two-
phase fluid flow model. The performance of these methods is
evaluated for the case of pipe connection operations where the
main pump is shut off and the rotation of the drill string and
the circulation of fluids is stopped. The adaptive estimators
are compared to each other in terms of speed of convergence,
sensitivity of noise measurement, and accuracy.

This paper consists of following sections: Section II presents
a low-order model based on mass and momentum balances for
UBD operation. Section III explains some popular method for
simultaneously estimating the states and model parameters of
a nonlinear system from noisy measurements. In Section IV,
the simulation results are provided for state and parameter
estimation. Finally, the conclusions are presented in Section
V.

II. MATHEMATICAL MODELING

Modeling of Under-balanced Drilling (UBD) in an oil well
is a challenging mathematical and industrial research area.
Due to existence of multiphase flow (i.e. oil, gas, drilling mud
and cuttings) in the system, the modeling of the system is very
complex. Multiphase flow can be modeled as a distributed
(infinite dimension) model or a lumped (finite dimension)
model. A distributed model is capable of describing the gas-
liquid behavior along the annulus in the well. In this paper, a
Low-order lumped (LOL) model is used. The lumped model
considers only the gas-liquid behavior at the drill bit and the
choke system. This modeling method is very similar to the
two-phase flow model found in [1], [23]. Some important
simplifying assumptions of the LOL model are listed as below:

• Ideal gas behavior
• Simplified choke model for gas, mud and liquid

leaving the annulus
• No mass transfer between gas and liquid
• Isothermal condition and constant system tempera-

ture
• Constant mixture density with respect to pressure and

temperature.
• Liquid phase considers the total mass of mud, oil,

water, and rock cuttings.

The simplified LOL model equations for mass of gas and
liquid in an annulus are derived from mass and momentum
balances as follows

ṁg = wg,d + wg,res(mg,ml)−
mg

mg +ml
wout(mg,ml)

(2)

ṁl = wl,d + wl,res(mg,ml)−
ml

mg +ml
wout(mg,ml)

(3)

where mg and ml are the total mass of gas and liquid,
respectively. The liquid phase is considered incompressible,
and ρl is the liquid mass density. The gas phase is
compressible and occupies the space left free by the liquid
phase. wg,d and wl,d are the constant mass flow rate of gas
and liquid from the drill string, wg,res and wl,res are the
mass flow rates of gas and liquid from the reservoir. The total
mass outflow rate is denoted by wout.

The total mass outflow rate is calculated by the traditional
valve equation

wout = KcZ

√
mg +ml

Va

√
pc − pc0 (4)

where Kc is the choke constant. Z is the control signal to
the choke opening, taking its values on the interval (0, 1].
The total volume of the annulus is denoted by Va. pc0 is the
constant downstream choke pressure (atmospheric). The choke
pressure is denoted by pc, and derived from ideal gas equation
as follows

pc =
RT

Mgas

mg

Va − ml

ρl

(5)

R is the gas constant, T is the average temperature of the gas,
and Mgas is the molecular weight of the gas. The flow from
the reservoir into the well for each phase can be modeled by
the linear relation with the pressure difference between the
reservoir and the well. The mass flow rates of gas and liquid
from the reservoir into the well are given by

wg,res = Kg(pres − pbh) (6)
wl,res = Kl(pres − pbh) (7)

where pres is the known pore pressure in the reservoir. Kg

and Kl are the production constants of gas and liquid from



the reservoir into the well, respectively. Finally, the bottom-
hole pressure is given by the following equation

pbh = pc + (mg +ml)g sin(∆θ) + ∆pf (8)

where ∆pf is the friction pressure loss in the well, g is the
gravitational constant and ∆θ is the average angle between
gravity and the positive flow direction of the well. Reservoir
parameters could be evaluated by seismic data and other
geological data from core sample analysis. But, local variations
of reservoir parameters such as the production constants of
gas and liquid may be revealed only during drilling. So, it is
valuable to estimate the reservoir parameters while drilling is
performed [12].

III. ESTIMATION ALGORITHM

In this section, first an adaptive observer to estimate states
and parameters in UBD operation is derived. Then, the recur-
sive least squares method and joint unscented Kalman filter
are presented for same problem. The total mass of gas and
liquid in the well are outputs of the plant. Since the total
mass of gas and liquid in the well could not be measured
directly, they are computed by solving a series of nonlinear
algebraic equations with measuring the choke pressure and the
bottom-hole pressure. The measurements and inputs of LOL
model can be summarized in Table I. The production constant
of gas (Kg) and liquid (Kl) from the reservoir into the well
are unknown and must be estimated. Kg and Kl are defined
by θ1 and θ2, respectively.

Table I
MEASUREMENTS AND INPUTS OF LOL MODEL

Variables Measurement/Input
Choke pressure (pc) Measurement
Bottom-hole pressure (pbh) Measurement
Drill string mass flow rate of gas (wg,d) Input
Drill string mass flow rate of liquid (wl,d) Input
Choke opening (Z) Input

A. Lyapunov-based adaptive observer

A full-order adaptive observer for the system (2)-(3) is

˙̂mg =wg,d + ŵg,res(m
c
g,m

c
l )−

mc
g

mc
g +mc

l

wout(m
c
g,m

c
l )

+ l1(mc
g − m̂g) (9)

˙̂ml =wl,d + ŵl,res(m
c
g,m

c
l )−

mc
l

mc
g +mc

l

wout(m
c
g,m

c
l )

+ l2(mc
l − m̂l) (10)

where

ŵg,res = θ̂1(pres − pbh) (11)

ŵl,res = θ̂2(pres − pbh) (12)

and l1,l2 have to be chosen positive. m̂g and m̂l are estimates
of states mg and ml, θ̂1 and θ̂2 are estimates of parameters
θ1 and θ2. mc

g and mc
l are calculated by measurements of the

choke pressure and the bottom-hole pressure and an inversion
of the equations (5) and (8)

mc
l =

1

1− pcMgas

RTρl

(
pbh − pc −∆pf
g sin(∆θ)

− pcMgasVa
RT

) (13)

mc
g =

pcMgas(Va − mc
l

ρl
)

RT
(14)

Defining the state estimation errors e1 = mg − m̂g and
e2 = ml − m̂l, the error dynamics can be written as follows

ė1 = (θ1 − θ̂1)(pres − pbh)− l1e1 (15)

ė2 = (θ2 − θ̂2)(pres − pbh)− l2e2 (16)

with θ̃1 = θ1 − θ̂1, θ̃2 = θ2 − θ̂2. Let the Lyapunov function
candidate for adaptive observer design be defined as

V (e, θ̃) =
1

2
(q1e

2
1 + q2e

2
2 + θ̃21 + θ̃22) (17)

where q1 and q2 are positive tuning parameters. It is easy to
check that V (e, θ̃) is positive definite decrescent. From (15)
and (16), the time derivative of V (e, θ̃) along trajectory of the
error dynamics is

V̇ (e, θ̃) =− l1q1e
2
1 − l2q2e22 + θ̃1 [q1(pres − pbh)e1 +

˙̃
θ1]

θ̃2 [q2(pres − pbh)e2 +
˙̃
θ2] (18)

In order to force the term in the brackets to zero, the
adaptation laws are derived:

˙̂
θ1 = − ˙̃

θ1 = q1(pres − pbh)e1 = q1ηe1 (19)
˙̂
θ2 = − ˙̃

θ2 = q2(pres − pbh)e2 = q2ηe2 (20)

with η = pres−pbh. The adaptation laws can be implemented
by using e1 = mc

g − m̂g and e2 = mc
l − m̂l. This gives time

derivative of V (e, θ̃)

V̇ (e, θ̃) =− l1q1e
2
1 − l2q2e22 ≤ 0 (21)

which implies that all signals e1, e2, θ̃1, θ̃2 are bounded. From
(15,16) and e1, e2, θ̃1, θ̃2 ∈ L∞, ė1, ė2 are bounded. It follows
by using Barbalat’s lemma that e1, e2 converge to zero. If
η is persistently exciting, i.e,

∫ t+T
t

η2(τ) dτ ≥ α for some
α, T > 0 and ∀t ≥ 0, then the parameter estimates will
converge to their true values [16]. Thus according to theorem
4.9 in [24], the adaptive observer system is globally asymptot-
ically stable if the persistency excitation condition is satisfied.
Note that bottom-hole pressure has some variation during pipe
connection. Therefore, pipe connection procedure and noise of
the system could satisfy persistence exciting condition.

B. Recursive Least Squares

The LOL model based on equations (2)-(3) can be repre-
sented by a discrete explicit scheme given by

xk = f(xk−1, θ) + qk (22)
yk = h(xk) + rk (23)

h(xk) = [mc
g,m

c
l ]
T (24)



where qk ∼ N(0, Qk−1) is the zero mean Gaussian process
noise, and rk ∼ N(0, Rk) is the zero mean Gaussian mea-
surement noise. The system equations in (22)-(24) could be
represented as follows

yk = φk−1θ + ψk−1 + rk + qk (25)
θ = [Kg , Kl] (26)

ψk−1 =

wg,d − mc
g

mc
g+m

c
l
wout(m

c
g,m

c
l )

wl,d − mc
l

mc
g+m

c
l
wout(m

c
g,m

c
l )

 (27)

where φk is a regressor. The update equation for the
estimation parameter θ̂ at step k is given by RLS method as
follows

θ̂k = θ̂k−1 +Kk(yk − φkθ̂k−1 − ψk−1) (28)

where Kk is a matrix to be determined which is called the
estimator gain matrix. The update equations for the estimation-
error covariance P and the estimator gain matrix K at step k
are given by RLS method as follows

Kk = Pk−1φk[I + φTk Pk−1φk]−1 (29)

Pk = [I −Kkφ
T
k ]Pk−1 (30)

The initial estimation-error covariance P is usually chosen
as P (0) = αI with large values for α, because this leads to
high correction vectors and therefore to fast convergence.

C. Joint Unscented Kalman Filter
The Unscented Kalman Filter (UKF) was introduced in

[25]–[27]. The main idea behind the method is that approx-
imation of a Gaussian distribution is easier than an arbi-
trary nonlinear function. The UKF estimates the mean and
covariance matrix of estimation error with a minimal set of
sample points (called sigma points) around the mean by using
a deterministic sampling approach known as the unscented
transform. The nonlinear model is applied to sigma points
instead of a linearization of the model. So, this method does
not need to calculate explicit Jacobian or Hessian. More details
can be found in [20], [21], [26], [27].

Two common approaches for estimation of parameters and
state variables simultaneously are dual and joint UKF tech-
niques. The dual UKF method uses another UKF for parameter
estimation so that two filters run sequentially in every time
step. At each time step, the state estimator updates with new
measurements, and then the current estimate of the state is
used in the parameter estimator. The joint UKF augments the
original state variables with parameters and a single UKF is
used to estimate augmented state vector. The joint UKF is
easier to implement [21], [27].

Using the joint UKF, the augmented state vector is defined
by xa = [X, θ]. The state-space equations for the the aug-
mented state vector at time instant k is written as:

x1,k
x2,k
θ1,k
θ2,k

 =


f1(Xk−1, θ1,k−1)
f2(Xk−1, θ2,k−1)

θ1,k−1
θ2,k−1

 = fa(Xk−1, θk−1) (31)

mg and ml are denoted by x1 and x2, respectively.

IV. SIMULATION RESULTS

The parameter values for the simulated well and reservoir
are given in Table II. These parameters are used from the off-
shore test of WeMod simulator [28]. WeMod is a high fidelity
drilling simulator developed by the International Research
Institute of Stavanger (IRIS). The measurements have been
synthetically generated by using the LOL model described in
Section II, adding the normal distributed noise to the process
and measurement results. The augmented process covariance
noise matrix used in this plant model and the joint state-
parameter estimation is

Q = diag[10−1, 10−1, 10−4, 10−4]

Table II
PARAMETER VALUES FOR WELL AND RESERVOIR

Name LOL Unit
Reservoir pressure (pres) 270 bar
Collapse pressure (pcoll) 255 bar
Friction pressure loss (∆pf ) 10 bar
Well total length (Ltot) 2300 m
Well vertical depth (L) 1720 m
Drill string outer diameter (Dd) 0.1397 m
Annulus volume (Va) 252.833 m3

Annulus inner diameter (Da) 0.2445 m
Liquid flow rate (wl,d) 44 Kg/s
Gas flow rate (wg,d) 5 Kg/s
Liquid density (ρl) 1475 Kg/m3

Gas average temperature (T ) 25 ◦C
Average angle (∆θ) 0.8448 rad

UKF parameters are determined empirically. The parameter
values for UBD model, adaptive observer, RLS and UKF are
summarized in Table III.

Table III
PARAMETER VALUES FOR MODEL AND ESTIMATORS

Parameter Value Parameter Value
Kg 5 × 10−6 L 4
Kl 5 × 10−5 Kc 0.013
q1 2 × 10−9 l1 0.09
q2 5 × 10−10 l2 0.3
PRLS(0) 100 I κ 0
β 2 α 0.5

The time-step used for discretizing the dynamic model and
adaptive estimator was 5 seconds. This time-step is chosen for
reducing computation time. The initial values for the estimated
and real states and parameters are as follows

x1 = 5446.6, x2 = 54466.5, θ1 = 5, θ2 = 5

x̂1 = 4629.6, x̂2 = 46296.2, θ̂1 = 8, θ̂2 = 3

The scenario in this simulation is as follows, first the
drilling in a steady-state condition is initiated, then at t =
10 min the main pump is shut off to perform connections
procedure. The rotation of the drill string and the circulation
of fluids are stopped for 10 mins. Next after making the



first pipe connection at t = 20 min the main pump and
rotation of the drill string are restarted. Then at t=52 min the
second pipe connection procedure is started, and is completed
after 12 mins. Two different simulations with low and high
measurement noise covariances are performed. To compare
the three estimators, production constant of gas and liquid
from the reservoir into the well during the UBD operation are
estimated by each of the estimators. In the first simulation, the
total mass of gas and liquid measurements are corrupted by
zero mean additive white noise with the following covariance
matrix

R =

[
0.5 0
0 0.5

]
Figures 2 and 3 show the measured and estimated total

mass of gas and liquid, respectively. The estimation of the
production constants of gas and liquid from the reservoir
into the well are shown in Figures 4 and 5, respectively. In
estimation of production constants of gas and liquid from the
reservoir into the well, RLS has a very fast convergence rate,
about 30 seconds or less. But, UKF and adaptive observer take
much longer and it is in the order of minutes.
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Figure 2. Total mass of gas with the low measurement noise covariance
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Figure 3. Total mass of liquid with the low measurement noise covariance

In second simulation, the total mass of gas and liquid
measurements are corrupted by zero mean additive white noise
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Figure 4. Production constant of gas with the low measurement noise
covariance
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Figure 5. Production constant of liquid with the low measurement noise
covariance

with the following covariance matrix

R =

[
50 0
0 50

]
Figures 6 and 7 show the measured and estimated total mass

of gas and liquid, respectively. According to Figures 6 and 7,
the adaptive observer is a very sensitive to noise measurement.
This sensitivity is due to the fact that adaptive observer uses
measurement instead of estimates in the adaptive observer
equations. The estimation of the production constants of gas
and liquid from reservoir into the well are illustrated in Figures
8 and 9, respectively. In estimation of the production constants
of gas and liquid from the reservoir into the well, adaptive
observer has a good convergence rate, about 2 minutes, but
the UKF takes almost 20 minutes. The RLS method has
a reasonable convergence rate but has offset due to use of
nonlinear regressor.

In this paper, performance of these adaptive estimators is
evaluated through the root mean square error (RMSE) metric.
The RMSE metric for adaptive observer, RLS and UKF in
two cases are summarized in Table IV. According to the
RMSE metric table, RLS has the better performance than
other methods for parameter estimation while it is lower
measurement noise covariance. But, the adaptive observer
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Figure 6. Total mass of gas with the high measurement noise covariance
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Figure 7. Total mass of liquid with the high measurement noise covariance

Table IV
RMSE METRIC

Method R x1 x2 θ1 θ2
Adaptive observer 0.5 27.482 243.03 1.304 0.900
UKF 0.5 28.018 216.04 2.066 2.199
RLS 0.5 − − 0.073 0.097
Adaptive observer 50 39.070 256.83 1.425 0.911
UKF 50 70.412 225.49 9.925 8.813
RLS 50 − − 2.981 3.084

has better performance than the other methods for parameter
estimation while the measurement noise covariance is high.

V. CONCLUSIONS

This paper presents an adaptive observer, recursive least
squares and joint UKF for estimating states and parameters
in under-balanced drilling operations. The low-order lumped
model presented here only captures the major phenomena
of the UBD operation. Simulation results demonstrate satis-
factory performance of adaptive observer, RLS method and
joint UKF for state and parameter estimation during pipe
connection procedure with low measurement noise covari-
ance. The Lyapunov-based adaptive observer shows better
convergence than the other methods with high measurement
noise covariance. However, for parameter estimation with low
measurement noise covariance RLS has a better performance
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Figure 8. Production constant of gas with the high measurement noise
covariance
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than other aforementioned methods.
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