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Conventional solid state synthesis was used to synthesize dense and phase pure ceramics

in the (1-x)Bi0.5K0.5TiO3 - xBi0.5Na0.5ZrO3 (BKT-BNZ) system. Structural characterization

was done using X-ray diffraction at both room temperature and elevated temperatures, iden-

tifying a transition from tetragonal xBi0.5Na0.5ZrO3 (xBNZ, x=0-0.10) to cubic xBNZ for

x=0.15-0.80. Dielectric properties were investigated with respect to both temperature (RT

- 600◦C) and frequency (1-106 Hz). Relaxor-like behavior was retained for all the materials

investigated, evident by the broadening of the relative dielectric permittivity peaks at transi-

tion temperatures as well as frequency dispersion at their maximum. The maximum dielectric

constant at elevated temperature was found for 0.15BNZ. Electric field induced strain and

polarization response was also investigated for several compositions at RT and the largest

field induced strain was observed for the 0.10BNZ ceramics. The composition range with best

performance coincides with the transition from tetragonal to pseudo cubic crystal structure.

I. Introduction

Development of lead-free piezoelectric ceramics has attained significant attention in recent years.1 There

is a need to replace the state of the art lead containing piezoceramics such as Pb(Zr1−xTix)O3 (PZT) with

lead-free alternatives due to environmental concerns. Amongst others, the European Union has passed

legislations limiting the amount of lead in electronics, with the exception of piezoelectrics until lead-free

alternatives are available.1,2

Two of the lead-free alternatives to PZT are Bi0.5K0.5TiO3 (BKT) and Bi0.5Na0.5TiO3 (BNT). Both

BKT and BNT, as well as their solid solution have been intensively studied.3–11 Other lead-free systems

based on BKT or BNT, such as BKT-Bi0.5K0.5ZrO3
12 (BKT-BKZ), BKT-BiFeO3

13,14 (BKT-BFO), BKT-

BaTiO3
15 (BKT-BT), BKT-K0.5Na0.5NbO3

16 (BKT-KNN), BKT-BiScO3
17 (BKT-BS), BNT-BaTiO3

18,

BNT-K0.5Na0.5NbO3
19 and BNT-NaNbO3

20 have also been investigated.
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BKT is a tetragonal ferroelectric at room temperature. It transforms to a pseudo cubic crystal structure

around 300◦C (T2) giving it relaxor properties and finally it becomes cubic and paraelectric above 380◦C.3–5,8

BNT is a ferroelectric relaxor, which shows a gradual phase transition from RT rhombohedral (R3c) to

tetragonal crystal structure between 200◦C and 320◦C.6,7 It has been suggested that the transition from

tetragonal to cubic phase does not occur until 620◦C.7

Separate studies have been conducted on BKT and BNT where Ti is replaced with Zr. The tetragonality

of BKT has been found to prevail up to 5-11 mol% substitution of Zr for Ti12,21 whereas pure Bi0.5K0.5ZrO3

(BKZ) is found to be cubic Pm3̄m (ICDD nr. 057-0823). A transition from rhombohedral to orthorhombic

structure has been observed for BNT upon 58-60 mol% substitution of Zr for Ti.21–23 The crystal structure

of Bi0.5Na0.5ZrO3 (BNZ) has been reported to be orthorhombic Pnma.24

The effect of Zr substitution for Ti on the piezoelectric and dielectric properties of BNT and BKT has not

been reported to a large extent. A slight increase of the dielectric constant (ε′) with 5-10 mol% substitution

of Zr for Ti in BKT and BNT has been observed.21,25 The piezoelectric coefficient (d33) has been found to

decrease from 68 pC/N to 40 pC/N when substituting 20 mol% Zr for Ti in BNT.25

Compositions near a morphotropic phase boundary (MPB) in a solid solution of two or more compounds

are known to give enhanced piezoelectric properties, as in PZT where the MPB is found at a Zr:Ti ratio

corresponding to 52:48.26 An MPB in the systems BKT-BNT and BNT-BT has been reported at 16-20 mol%

BKT and 6mol% BT, respectively.11,18 A general decrease of the transition temperatures relative to pure

BNT is observed at the MPB in BKT-BNTthis composition, in addition to increased piezoelectric properties

relative to both end members.10,11 The MPB in the above mentioned materials is found in the composition

region where the symmetry changes from tetragonal to rhombohedral.26 Although the symmetry of the end

members in the present study is orthorhombic (BNZ) and tetragonal (BKT), a BKT-BNZ solid solution

could possibly involve an MPB or similar phenomena such as a ”morphotropic phase”.1,27 No MPB has

been reported close to pure BKT.

Here we report on the solid state synthesis and structural, dielectric and piezoelectric properties of the (1-

x)BKT-xBNZ materials system, which have not been reported on previously although BNZ was suggested

as a ferroelectric already in 1961.9 Both the large difference in tolerance factor (tBNZ = 0.89, tBKT =

0.99) and the differenttetragonal (BKT) and orthorhombic (BNZ) symmetry of the end members suggest a

possible MPB along the BKT-BNZ composition line.
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II. Experimental

A conventional solid state synthesis route was used to obtain dense ceramic samples of the composition

(1-x)BKT - xBNZ with x=0, 0.05, 0.10, 0.15, 0.20, 0.30, 0.40 and 0.50. Ceramics with x=0.60, 0.70, 0.80,

0.90 and 1 were also prepared, but without sufficient density or phase purity. The precursors, Bi2O3 (Aldrich,

99.9%), TiO2 (Aldrich, 99.9%), ZrO2 (Tosoh), Na2CO3 (Aldrich, 99.99%) and K2CO3 (Aldrich, 99.99%)

were first dried 195◦C in a vacuum furnace for (195◦C, ∼12 h). Stoichiometric amounts of precursors were

mixed and ball milled for (24 h,in isopropanol) using 5 mm yttrium stabilized ZrO2 balls. Prior to this, ZrO2

was ball milled by the same procedure, but separately, to break down ZrO2 agglomerates. The calcination

temperature was optimised for all compositions ranging from 700◦C to 750◦C, and the calcined powders

were ball milled by the same procedure as the precursor mixture. The calcined powders were dried and

sieved (250 µm sieve). Pellets (10 mm diameter) were prepared using uniaxial pressing (50 MPa - 100 MPa)

followed by cold isostatic pressing (200 MPa). The sintering temperature and time was optimized for all

compositions to produce dense and phase pure ceramics. The pellets were surrounded with sacrificial powder

inside an alumina crucible closed with a lid during sintering. Detailed calcination and sintering programs

for each composition are summarized in Table 1.

The relative density was taken as the ratio between the aAbsolute density of the pellets, measured by

Archimedes method (ISO 5017:1998(E)), and the theoretical density, calculated from lattice parameters

determined as described below.and relative density was calculated based on theoretical density calculated

from lattice parameters found by Pawley refinement of XRD data.

Crystal structure was studied using x-ray diffraction (XRD; Model D5005 diffractometer with CuKα-

radiation and secondary monochromator, Siemens). The diffractograms were obtained from crushed sintered

pellets annealed at 600◦C for 12 h to relieve mechanical stresses introduced during crushing (no annealing

was performed prior to XRD of x=0.9 and x=1.0). Lattice parameters of the investigated compositions were

determined by Pawley refinement using the Topas software for 0 ≤ x ≤ 10.80.28 High temperature XRD

(HTXRD; Bruker D8Advance with an mri high temperature camera) up to 600◦C was done on BKT (x=0)

powder.

The microstructure of fabricated ceramics was studied by scanning electron microscopy (SEM; Hitachi

S-3400N). Pellets were polished, thermally etched and coated with carbon. The grain size was measured

by the intercept method, measuring ∼30 grains for each sample. at temperatures 50◦C - 100◦C below

their sintering temperature and coated with carbon to ensure sufficient surface conductivity. The chemical

composition of the samples was investigated using energy-dispersive x-ray spectroscopy (EDS; X-MAX,

Oxford Instruments).
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The piezoelectric and dielectric characterization was performed using samples with ≥96% density. The

samples were polished with grade #1200 silicon carbide grinding paper to thicknesses from 0.69 to 2.32

mm. Electrodes were applied on the pellet faces prior to electrical testing. A spray on silver electrode

(Doduco) was used for RT piezoelectric testing, and the electrode was (cured at 200◦C, 12 h). Sputtered

gGold electrodes were used forsputtered onto pellets for dielectric measurements at elevated temperatures.

Dielectric properties were characterized using a frequency analyzer (Alpha-A High Performance Fre-

quency Analyzer, Novocontrol Technologies) connected to a heating unit (for 0.30 ≤ x ≤ 0.50: combined

furnace and electrode setup, Novotherm, Novocontrol Technologies; for 0 ≤ x ≤ 0.20: tubular furnace with

Probostat, NorECs). All samples (both for dielectric and piezoelectric testing) were subject to a RT-scan

at frequencies 107 Hz - 10−2 Hz to confirm sufficient sample quality before further characterization. Two

samples of each composition were initially tested and the sample with the lowest loss tangent was used for

the piezoelectric measurements.

Dielectric spectroscopy at elevated temperatures (RT - 600◦C) was performed with constant heating

rateof (2◦C/min) and a measurement was done every 30 seconds at frequencies 1-106 Hz with 1V (AC).. A

voltage of 1 V (AC) was applied across the sample during measurements.

Piezoelectric properties were determined by studying the electric field-induced polarization and strain

response of the samples at RT, with the samples submerged in silicone fluid (Wacker AK 100), using an

aixPES - Piezoelectric Evaluation System (aixACCT). All samples were subject to bipolar measurements

with subsequent unipolar measurements at a constant frequency of(0.25 Hz). Dielectric breakdown was

typically observed foras the electric fields was increased above 60 kV/cm.

III. Results

Dense and phase pure ceramics in the composition region 0 ≤ x ≤ 0.50 were successfully prepared by the

conventional solid state synthesis method. The calcination and sintering temperatures were optimized for

all compositions and densities ≥96% were subsequently obtained for 0 ≤ x ≤ 0.50 as summarized in Table

1.

X-ray diffractograms of powder samples in the 2θ range 20◦ - 60◦ are shown in Figure 1 (2θ=20◦-60◦).

The reflections can be indexed to the tetragonal or the cubic perovskite crystal structure for x ≤ 0.8. The

reflections shift to lower 2θ angles as the BNZ content increases, demonstrating an increasing size of the

unit cell with increasing BNZ content. The increasing unit cell volume growing unit cell is confirmed by

the unit cell parameters determined by Pawley refinement, as shown in Figure 2 and listed in Table 2. The

unit cell of xBNZ (x=0-0.10) was refined using the tetragonal P4mm symmetry, in accordance with what is
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reported for BKT.8 The diffractograms were refined using cubic Pm3̄m unit cell for xBNZ (x=0.15-0.80),

while BNZ (x=1) was refined using the orthorhombic Pnma unit cell in accordance with what has been

reported previously.24 At high BKT content no secondary phases could be observed by XRD, but from

x=0.2 traces of secondary phases could be observed It should be noted that the diffractograms used to

determine cell parameters for x ≥ 0.60 (not shown in Figure 1) were obtained from samples, which were not

phase pure. The ceramics of x=0.80 and x=1 contained a secondary phase suggested to be Bi2Zr2O7 based

on findings by EDS.29

Selected HTXRD diffractograms for BKT (x=0) up to 600◦C are shown in Figure 3. The tetragonal

splitting of the (100)pc diffraction line gradually vanishes and the tetragonal splitting is not possible to

identify above 300◦C in line with previous reports.30

The final density and grain size of the ceramics is summarized The densities and grain sizes for the

composition range 0 ≤ x ≤ 0.50 are includedin Table 1. The grain size increased slowly from x=0 to x=0.30

before a significant increase was seen for x=0.40 and x=0.50. SEM micrographs of the thermally etched

pellets are presented in Figure 4, demonstrating the significant grain size increase observed for x=0.50. The

micrographs also show a not homogeneous grain size and some exaggerated grain growth. The nominal

chemical composition of all the compositions was confirmed by EDS.

The variation of the relative dielectric permittivity, ε′, was investigated for 0 ≤ x ≤ 0.50 with respect to

temperature and frequency. Figure 5a shows how ε′ varies with temperature at 10 kHz. The ε′ maximum

(ε′max) becomes less pronounced as the BNZ content exceed 15 mol% (x=0.15), and for x=0.40 and x=0.50 it

is difficult to establish the temperature at the maximum. The temperature of maximum relative permittivity

(Tm) decreases with increasing BNZ content and x=0.15 displays the highest ε′ of 3507 at 265◦C (10 kHz).

The maximum value of ε′ is given in Table 2, together with Tmthe corresponding temperature.

The frequency dependence of ε′ vs. temperature for x=0.15 is shown in Figure 5b. Relaxor type behavior

is evident by the significant shift in ε′ with frequency. The same behavior was observed for all compositions

investigated. The room temperature ε′ and dielectric losses as a function of frequency and composition for

the samples used to characterize the piezoelectric properties are shown in Figure 6.

The polarization vs. applied electric field curves for 0 ≤ x ≤ 0.50 compositionsrecorded during cycling

with bipolar electric field at RT (0.25 Hz) are displayed in Figure 7a and Figure 7b. The maximum

polarization (Pmax) was obtained for the x=0.10 composition with 20.5 µC/cm2 at 60 kV/cm. The

qualitative shape of the hysteresis loop did not depend on the maximum electric field in the range 25-

60kV/cm. The polarization decreased significantly and the hysteresis loop becaome gradually more closed

as the x→=0.50 composition is approached. with Pmax=4.4 µC/cm2 at 60kV/cm for x=0.50The highest

5

grande
Cross-Out

grande
Cross-Out

grande
Replacement Text
with

grande
Inserted Text
 pure

grande
Cross-Out

grande
Cross-Out



polarization obtained for x=0.50 was 4.4 µC/cm2 at 60kV/cm. The same trend was also apparent in strain

vs. electric field curves shown in Figure 7c and Figure 7d. The highest strain (Smax,b) obtained was 0.08 %

for x=0.1. Following the reduced polarization at increasing BNZ content, the strain was also significantly

reduced. Pmax and Smax,bThe highest polarization and strain obtained for all compositions are included

in Table 2. Table 2 also shows the unipolar electric field induced strain of the investigated compositions

where Smax,u is the maximum obtained strain (with remanent strain subtracted) and Emax is the maximum

applied electric field.

IV. Discussion

The dielectric and piezoelectric properties reported in this work for xBNZ (x=0-0.50) demonstrated a

peak in performance for x=0.15 and x=0.10, respectively. The compositions corresponding to maximum

performance coincide with the transition from tetragonal to cubic symmetry (Figure 2). We have calculated

the Goldschmidt tolerance factor, t, for the different compositions using the Shannon radii31 with A and

B cations of coordination number (CN) 12 and 6, respectively. For Bi CN=8 was used, giving a tolerance

factor for the present end members of 0.99 (BKT) and 0.89 (BNZ). The Goldschmidt tolerance factor,

t of the x=0.10 is 0.98. Investigations of other BKT-based materials systems reveal that BKT loses its

tetragonality at t≈0.96-0.98 when substituting with BKZ12,21, BFO13, KNN16, BS17 and BNT11,32,33 (all

t based on Shannon radii31). There is currently no consensus on the exact composition where the transition

from tetragonal symmetry occurs in the BKT-BNT system.33 A tentative structural phase diagram of the

ternary reciprocal system BKT-BNZ is shown in Figure 8. This is based on the presentdata obtained in

this study andcombined with reported literature data.11,12,21,32–34 The diagram shows a dominatinglarge

cubic/pseudo cubic region suggesting that large amounts of substitution in the BKT-BNZ system is not

beneficial. The tetragonal area of BKT is mainlylargely constrained to the Ti-rich region of the diagram.

This is the region withof higher tolerance factor and corresponds to the t-range given above for which BKT

loses its tetragonality. Based on the current knowledge it could be predicted that the loss of tetragonality

would occur at x∼0.10 along the (1-x)BKT - xBNZ composition joint. This transition however does not

show the characteristics of being an MPB as the tetragonal and orthorhombic phase regions are separated

by a large area with cubic symmetry.

Figure 5b shows that Tm is a function of frequency for the x=0.15 ceramics. The same was observed for

all the other compositions investigated. The broad temperature and frequency dependence of ε′ is typical

of relaxor materials. However, our data are not sufficient to attribute the investigated materials to any

specific class of relaxors (see e.g. Bokov and Ye35), hence relaxor-like is used. Relaxor-like behavior was
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maintained for all levels of BNZ substitution. The same has been observed when substituting BKT with

BKZ, BS and BFO.12,14,17 The dielectric dispersion increases as the BNZ content is increased along with

the general decrease of ε′ and Tm. These trends are most likely related to the structural development with

composition which we discuss later.

RT dielectric constants of the ternary reciprocal BKT-BNZ materials system are summarized in Figure

9. ε
′

RT for BKT (x=0) correspond to previously measured data (450-720).5,12,32,36,37 It is apparent from

the contour plot that the Ti rich compositions exhibit the highest dielectric constants, and that addition of

large amounts of Zr in general suppresses ε
′

RT . The maximum ε
′

RT observed for the BKT-BNT system is

found near the MPB at ∼20 mol% BKT in BNT.10,32 A 15 mol% substitution of BNZ to BKT is currently

the second best composition investigated in the ternary reciprocal BKT-BNZ system at RT.

ε
′

RT of the composition showing the highest ε′ at Tm in the BKT-BNZ system and other BKT-based

solid solutions have been compared. Solid solutions of BKT-BNT (80% BNT), BKT-BFO (25% BFO),

BKT-BNZ (15% BNZ) and BKT-BS (15% BS) all show similar ε
′

RT , which is higher than the ε
′

RT of the

end members. The BKT-KNN and BKT-BKZ systems do not show any increase of the maximum ε′ at

elevated temperatures relative to BKT (x=0) and are hence not seen as a viable alternative to improve the

properties of BKT. At elevated temperatures the BKT-BNT and BKT-BFO solid solutions show an ε′ 2-3

times higher than what is observed for BKT-BNZ and BKT-BS.10,12,14,16,17

The relaxor behavior observed above ∼300◦C for BKT (x=0) is in accordance with earlier reports.12,17

Full width-half maximum (FWHM) values of selected diffraction lines from the high temperatureHTXRD

experiment performed on BKT (x=0, Figure 3) are shown in Figure 10a). The data show an abrupt drop

of FWHM near 300◦C in agreement with where T2 has been reported earlier followed by a more gradual

decrease as the temperature rises to ∼400◦C.3,8,30 The region between ∼300◦C and ∼400◦C is the pseudo

cubic region of BKT where the relaxor behavior is observed. Relaxor-like behavior was maintained as

the BNZ content was increased showing frequency dispersion of ε′ with temperature. The same has been

observed when substituting BKT with BKZ, BS and BFO.12,14,17 The dielectric dispersion increases as the

BNZ content is increased along with the general decrease of ε′ and Tm. These trends are most likely related

to the structural development with composition as discussed further below.

The polarization and strain response to the applied electric field of BKT (x=0) in this study is within

the range of what has been observed elsewhere.17,37 The increase of polarization and strain response is

though much lower than what has been obtained both for the BKT-BFO and BKT-BNT systems.10,13,14

The reduced opening of the hysteresis loops as x increases as more BNZ is added to BKTis attributed to

the increasingly cubic character of the material. Other solid solutions such as BKT-BFO also show reduced

7

grande
Cross-Out

grande
Cross-Out

grande
Replacement Text
literature

grande
Cross-Out

grande
Sticky Note
mangler henvisning til ref i denne setningen

grande
Inserted Text
observed

grande
Cross-Out

grande
Replacement Text
is in good accord with previous reports

grande
Cross-Out

grande
Inserted Text
s with increasing BNZ content



opening, but this is probably related to domain pinning. is also observed when adding BKT to BFO, and may

occur due to various domain pinning mechanisms observed in ferroelectrics.1,13 Another factor to consider

is that the average size of the A-site cation decreases while the average size of the B-site cation increases

as more BNZ is added to BKT. This reduces the tolerance factor and the structure adapts by tilting the

BO6 octahedra (BNZ is orthorhombic due to octahedral tilting). This also reduces the structures ability

to accommodate the ferroelectric displacement of Ti4+ which consequently reduces the overall ferroelectric

response of the material.38 Another factor to consider is the ratio between unit cell size and the average size

of the cations. As the amount of BNZ increases the size of the unit cell increases (Figure 2), but the relative

size of the B-cation increases more. The average size of the B-cation increases 19% (the size of the A-cation

decreases 12%). The crystal lattice adapts to this by tilting the BO6 octahedra resulting in less space

available to accommodate polarization. A study of the local atomic structure of BKT-BNT showed that as

the Na content increased the displacement of Ti decreased. This was attributed to the reduced unit cell

parameters observed for the Na-rich compositions. Combined with shorter Bi-Ti distances and an increasing

B cation size, the above mentioned space limitation is a probable reason for the reduced polarization and

strain response observed in BKT-BNZ.38

By examining the strain response of 0 ≤ x ≤ 0.50 ceramics (Figure 7c and Figure 7d) it is apparent that

the response becomes more electrostrictive as x increases, identified by the transition from ferroelectric but-

terfly loops to almost parabolic strain-electric field curves.electrostriction shows an increasingly dominating

role over piezoelectric strain response. The strain response of a material is a combination of piezoelectric

effect and electrostriction. All dielectric materials show electrostriction, whereas piezoelectricity is only

observed in materials of a non-centrosymmetric space group. In short it can be described using Equation 1:

Si = gijPj +QijP
2
j (1)

where S is the total strain, g is the piezoelectric coefficient, P is the polarization, Q is the electrostriction

coefficient and i,j (=1,2,3) are directional indexes.1 Due to the square dependency of electrostrictive strain

on polarization it is clear that electrostriction can only produce positive strain, and a plot of S vs P2 will

show a linear relationship. This is very close to what is observed for x=0.50 (figure not shown). The

domain structure of the pseudo cubic phase observed for 0.15 ≤ x ≤ 0.580 is probably a combination of a

cubic matrix phase with embedded local polar nanodomains. These polar domains will provide piezoelectric

response in an inherently cubic centrosymmetric matrix phase.35 The nanodomains will disappear gradually

as x increases and will eventually vanish completely, leaving behind a cubic paraelectric state where only

electrostriction can be observed. The same gradual microstructural changes are observed as BKT (x=0)

is heated from RT to above TC where disappearance of the ferroelectric domains occur gradually between
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280◦C and 450◦C.30 Tetragonal to pseudo cubic transition has also been suggested for BKT-BNT39 (as

referred by33), BKT-BKZ12, BKT-BFO13 and BKT-BS17 solid solutions when moving away from the BKT

rich region.

The P-E loops in Figure 7a and Figure 7b show a limited degree of saturation with some evidence of non-

ferroelectric contributions due to dielectric loss at high fields. These losses will manifest as an overestimation

of the polarization (Table 2) but does not alter the observed trend between compositions. Measurements of

polarization vs. electric field strength were normally stopped at fields of 60kV/cm as higher fields typically

gave electric breakdown. One sample (x=0.05) was though exposed to 70kV/cm and one (x=0.10) was

exposed to 80kV/cm without any significant change of the hysteresis loop. As the coercive field of BKT

is ∼50kV/cm and the tetragonality is reduced with increasing BNZ content it is proposedbelieved that the

applied fields are sufficient to make the data relevant.5,40 It should be noted that the increasing polarization

observed with increasing BKT content is not a manifestation of losses.41 There is no systematic indication

when examining the dielectric loss of samples used for piezoelectric characterization that the observed

polarization is manifestation of conductivity rather than real polarization, see Figure 6.

The FWHM of two x-ray diffraction lines is shown as a function of xBNZ in Figure 10b). Both these

diffraction lines show tetragonal splitting at ambient temperatures for pure BKT. A drop of FWHM is,

as expected, observed at x=0.10 where the transition from tetragonal to pseudo cubic crystal structure

occur. The increase of FWHM at x=0.15 may be due to the polar nanodomains distributed throughout the

cubic matrix phase. It is possible that these nanodomains introduce non-uniform stresses that may act to

disturb the long range order seen by the x-rays and cause a ”size effect” giving peak broadening. As the

nanodomains gradually disappear, the ”size effect” diminishes and the FWHM decrease down to a close

to constant level at x=0.50-0.80. It is also possible that there is a symmetry change for this composition

that was not resolved by the XRD analysis, offering an alternative explanation to the broadening between

x=0.15 and x=0.40.

It has been noted by others that densification of BKT during sintering is difficult and hot pressing has

been suggested as one measure to overcome this.5,37 Problems were not observed with respect to sinterability

of BKT (x=0) in this work. A study was conducted to first find the lowest calcination temperature which

gave a pure perovskite phase. A subsequent milling step was performed to obtain small particles, resulting

in a higher driving force for densification during sintering. The resulting microstructure shows grain sizes

similar to what has been reported elsewhere.4,5 The grain size increases gradually for 0 ≤ x ≤ 0.30 and then

increases significantly for x=0.40 and x=0.50. As x increases from 0, the ratio of the alkali precursors K2CO3

and Na2CO3 approach their eutectic composition at 55-58 mol% Na2CO3 and the liquidus temperature of
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this carbonate mixture hence decreases with increasing BNZ content.42 The liquidus temperature of the

K2CO3 : Na2CO3 ratio in the precursor mixture for x=0.40 and x=0.50 is 746◦C and 719◦C, respectively,.

The calcination temperature of x=0.40 and x=0.50 was 750◦C, showing that the two materials, when calcined

at 750◦C, were made in the presence of a transient liquid, not as a purely solid state synthesis. Such synthesis

conditions allow for much higher ion mobility and may result in significant grain growth during calcination.

The solidus and liquidus temperature of the carbonates in the precursor mixture for x=0.30 is 750◦C and

783◦C, respectively, and hence only a very small amount of liquid can be expected at this composition and

less grain growth is observed.42

Based on experimental results (not shown) it is proposed that the transition from pseudo cubic to

orthorhombic symmetry of the (1-x)BKT - xBNZ system occurs at 0.80 ≤ x ≤ 0.90 as an orthorhombic

superstructure reflections were was observed forat x=0.90. This transition range also corresponds to a similar

tolerance factor to that of the rhombohedral - orthorhombic transition of BNT-BNZ. The dielectric and

piezoelectric properties of x=0.60-1.0 were not studied in detail due to the low response observed for x=0.5

and the challenge to prepare materials with sufficient quality. Dielectric and piezoelectric characterization

of x=0.60-1.0 compositions was not performed due to problems with obtaining ceramic samples of sufficient

density and phase purity. Typically a sintering temperature gave a phase pure pellet at a given temperature

(850◦C - 900◦C) but not sufficient density. Increasing the temperature to improve density led to growth of

a secondary phase suggested to be Bi2Zr2O7. For x=0.90 and 1.0, no phase pure samples could be prepared

by the present synthesis route.

V. Conclusion

Dense and phase pure materials of the composition (1-x)Bi0.5K0.5TiO3 - xBi0.5Na0.5ZrO3 (x=0-0.50)

were fabricated using conventional solid state synthesis. The route gave dense and fine-grained ceramics,

also for pure BKT. The crystal structure was found to be tetragonal for 0 ≤ x ≤ 0.10 and pseudo cubic

for 0.15 ≤ x ≤ 0.80. The piezoelectric and dielectric response to an applied electric field was investigated,

showing relaxor-like behavior for all materials. The maximum dielectric performance was observed for

x=0.15 with ε′max = 3507 at 265◦C and the maximum converse piezoelectric performance was observed

for x=0.10 with Smax/Emax = 116 pm/V. The functional properties in all show max performance in the

composition region of phase transition from tetragonal to pseudo cubic crystal structure. This is in line with

what has been observed for other BKT-based piezoelectrics, though not the best. The reported dielectric

properties of the BKT-BNZ materials system demonstrated that the Ti-rich compositions show the highest

performance. A tentative structural phase diagram for the reciprocal BKT-BNZ system was suggested

10



based on reported crystal symmetries and shows a large pseudo cubic region for intermediate compositions.

Though the functional properties of BKT were improved by BNZ substitution, the BKT-BNZ composition

joint does not provide lead-free alternatives to PZT.
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VI. Tables

Table 1: Optimized synthesis temperatures and subsequent sintered pellet relative density and grain size for the (1-x)BKT -

xBNZ materials system.

Composition Calcination Sintering Density, [%] Grain size, [µm]

x = 0 (BKT) 700◦C - 3 h 1060◦C - 3 h 97 ± 0.6 0.2 ± 0.01

x = 0.05 700◦C - 3 h 1050◦C - 10 h 97 ± 0.4 0.2 ± 0.02

x = 0.10 700◦C - 3 h 1050◦C - 3 h 96 ± 0.9 0.3 ± 0.03

x = 0.15 700◦C - 3 h 1050◦C - 10 h 98 ± 0.8 0.4 ± 0.01

x = 0.20 700◦C - 3 h 1050◦C - 10 h 96 ± 0.7 0.5 ± 0.05

x = 0.30 750◦C - 3 h 1000◦C - 10 h 96 ± 1 0.6 ± 0.06

x = 0.40 750◦C - 3 h 980◦C - 10 h 96 ± 0.7 2.0 ± 0.1

x = 0.50 750◦C - 3 h 980◦C - 10 h 96 ± 0.6 4.8 ± 0.5

x = 0.60 750◦C - 3 h 980◦C - 10 h 92 ± 2 -

x = 0.70 750◦C - 3 h 980◦C - 10 h 93 ± 0.5 -

x = 0.80 750◦C - 3 h 875◦C - 3 h 96 ± 0.5 -

x = 0.90 700-1050◦C - 3 h - - -

x = 1 (BNZ) 750◦C - 3 h 850◦C - 3 h 96 ± 1 -
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Table 2: Tabulated cell parameters, piezoelectric and dielectric data for the (1-x)BKT - xBNZ materials system.

Composition
Cell parameters, (Å) Pmax Smax,b Smax,u/Emax ε

′

max

a b c (µC cm−1) (%) (pm/V) @ 10 kHz

x = 0 (BKT) 3.933(3) - 3.975(4) 12 0.03 46 2575 (378◦C)

x = 0.05 3.954(6) - 3.962(8) 14 0.04 62 2954 (329◦C)

x = 0.10 3.96(2) - 3.96(2) 21 0.08 116 3296 (308◦C)

x = 0.15 3.975(1) - - 13 0.04 61 3507 (265◦C)

x = 0.20 3.9799(8) - - 14 0.04 61 2555 (243◦C)

x = 0.30 4.0042(7) - - 10 0.02 36 1788 (212◦C)

x = 0.40 4.0186(4) - - 7 0.01 16 1217 (232◦C)

x = 0.50 4.0325(4) - - 4 0.01 9 906 (251◦C)

x = 0.60 4.0416(3) - - - - - -

x = 0.70 4.0508(2) - - - - - -

x = 0.80 4.0585(3) - - - - - -

x = 1 (BNZ) 5.787(4) 8.162(5) 5.694(3) - - - -
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VII. Figures
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Figure 1: X-ray diffractograms of sintered compositions (1-x)BKT - xBNZ (x=0-1). The intensity is normalized to the maximum

intensity. The lower indices refer to tetragonal BKT.
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Figure 2: Pseudo cubic (apc, bpc and cpc) and cubic (ac) unit cell parameters as a function of composition for (1-x)BKT -

xBNZ (x=0-0.8). The orthorhombic unit cell parameters for x=1.0 are normalized as follows; apc=2−1/2aorth, bpc=0.5borth

and cpc=2−1/2corth. Filled symbols from this work, open circles from elsewhere.24 Also shown is the Goldschmidt tolerance

factor (dashed line).31
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Figure 3: X-ray diffractograms for BKT (x=0) at selected temperatures. The lower indices refer to tetragonal BKT and upper

indices to cubic BKT. Reflections due to platinum sample stage shown at ∼39.8◦ and ∼46.3◦.
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Figure 4: SEM micrographs of thermally etched pellet surfaces, a) BKT (x=0); b) 0.1BNZ; c) 0.15BNZ; d) 0.3BNZ; e) 0.5BNZ

(note larger scale).
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Figure 5: Temperature dependence of the dielectric constant for (1-x)BKT - xBNZ (x=0-0.5) at 10 kHz (a) and frequency and

temperature dispersion of the dielectric permittivity of 0.15BNZ (b).
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chanical testing for (1-x)BKT - xBNZ (x=0-0.5).
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VIII. Figure captions

Figure 1: X-ray diffractograms of sintered compositions (1-x)BKT - xBNZ (x=0-1). The intensity is

normalized to the maximum intensity. The lower indices refer to tetragonal BKT.

Figure 2: Pseudo cubic (apc, bpc and cpc) and cubic (ac) unit cell parameters as a function of composition

for (1-x)BKT - xBNZ (x=0-0.8). The orthorhombic unit cell parameters for x=1.0 are normalized as

follows; apc=2−1/2aorth, bpc=0.5borth and cpc=2−1/2corth. Filled symbols from this work, open circles from

elsewhere.24 Also shown is the Goldschmidt tolerance factor (dashed line).31

Figure 3: X-ray diffractograms for BKT (x=0) at selected temperatures. The lower indices refer to

tetragonal BKT and upper indices to cubic BKT. Reflections due to platinum sample stage shown at ∼39.8◦

and ∼46.3◦.

Figure 4: SEM micrographs of thermally etched pellet surfaces, a) BKT (x=0); b) 0.1BNZ; c) 0.15BNZ;

d) 0.3BNZ; e) 0.5BNZ (note larger scale).

Figure 5: Temperature dependence of the dielectric constant for (1-x)BKT - xBNZ (x=0-0.5) at 10 kHz

(a) and frequency and temperature dispersion of the dielectric permittivity of 0.15BNZ (b).

Figure 6: Room temperature dielectric constant (a) and loss (b) as a function of frequency of the samples

used for electromechanical testing for (1-x)BKT - xBNZ (x=0-0.5).

Figure 7: Bipolar polarization (a and b) and strain (c and d) for sintered ceramics of composition

(1-x)BKT - xBNZ (x=0-0.5).

Figure 8: Tentative structural phase diagram in the ternary reciprocal system BKT-BNZ based on

reported crystal symmetries. Solid marks along the binary joints represent reported phase transitions (PC

= pseudo cubic); circle PC-C12, triangle down T-PC12,39 as reported by33 and this work, diamond T-

(R+T?)32, triangle up (PC?)/(R+T?)/T-R11,32 and39 as reported by33, and square R-O21,34. Dotted lines

possible phase dominance areas.

Figure 9: Contour plot of RT dielectric constants in the BKT-BNZ system. Data are gathered from the

following literature (frequency = 10 kHz if not stated otherwise): stars (this work), triangle up12, triangle

down34, hexagons (100 kHz)21, plus (1 MHz)36, cross10, diamond25, square43, circle44.

Figure 10: FWHM of the a); 112/211 XRD reflections as a function of temperature for BKT (x=0) and

b); 112/211 and 002/200 XRD reflections as a function of composition of (1-x)BKT - XBNZ (x=0-0.8).

Dashed line added as guide to the eye.
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