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Abstract— This paper considers straight line path following
control of underwater snake robots in the presence of constant
irrotational currents. An integral line-of-sight (LOS) guidance
law is proposed, which is combined with a sinusoidal gait pat-
tern and a directional controller that steers the robot towards
and along the desired path. Integral action is introduced in
the guidance law to compensate for the ocean current effect.
The stability of the proposed control scheme in the presence of
ocean currents is investigated. In particular, using Poincaré map
analysis, we prove that the state variables of an underwater
snake robot trace out an exponentially stable periodic orbit
when the integral LOS path following controller is applied.
Simulation results are presented to illustrate the performance
of the proposed path following controller for both lateral
undulation and eel-like motion.

I. INTRODUCTION

For centuries, engineers and scientists have gained inspi-
ration from the natural world in their search for solutions to
technical problems, and this process is termed biomimetics.
Underwater snake robots have several promising applica-
tions for underwater exploration, monitoring, surveillance
and inspection. They thus bring a promising prospective
to improve the efficiency and maneuverability of modern-
day underwater vehicles. These mechanisms carry a lot of
potential for inspection of subsea oil and gas installations.
Also, for the biological community and marine archeology,
snake robots that are able to swim smoothly without much
noise, and that can navigate in difficult environments such as
ship wrecks, are very interesting [1]. To realize operational
snake robots for such underwater applications, a number
of different control design challenges must first be solved.
An important control problem concerns the ability to follow
given reference paths under the influence of ocean current
effects, and this is the topic of this paper.

Studies of hyper-redundant mechanisms (HRMs) have
largely restricted themselves to land-based studies, while
several models for snake robots have been proposed [2].
Empirical and analytic studies of snake locomotion were
reported by Gray [3], while the work of Hirose [4] is
among the first attempts to develop a snake robot prototype.
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Comparing amphibious snake robots to the traditional land-
based ones, the former have the advantage of adaptability to
aquatic environments. Research on amphibious snake robots
(also referred to as lamprey robots or eel-like robots) is,
however, much less extensive than for the traditional types
and fewer prototypes have been developed [5], [6]. Several
results have been reported in the related field of design,
modeling and control of underwater robots that mimic the
movement of fish [7]. Regarding swimming snake robots,
the underlying propulsive force generation mechanism has
been studied through exploration of the fluid dynamics
surrounding the body. In this field, several mathematical
models of underwater snake robots have been proposed [1],
[8], [9], [10], [11], [12], [13], [14].

Several control approaches for underwater snake robots
have been proposed in the literature. However, the emphasis
so far has mainly been on achieving forward and turning
locomotion [8]. The next step would be not only to achieve
forward locomotion, but also to make the snake robot fol-
low a desired path, i.e. solving the path following control
problem. The works of [8], [15] and [16] synthesize gaits
for translational and rotational motion of various fish-like
mechanisms and propose controllers for tracking straight and
curved trajectories. The work of [17] study the evolution
from fish to amphibian by use of central pattern generators
(CPG). Eel-like motion is considered in [8] and [18], where
controllers for tracking straight and curved trajectories are
proposed. Previous approaches for path following control are
based on dynamic models of the swimming robots where
ocean current effects are neglected.

In [1], the authors propose a model of underwater snake
robots, where the dynamic equations are written in closed
form. This modeling approach takes into account both the
linear and the nonlinear drag forces (resistive fluid forces),
the added mass effect (reactive fluid forces), the fluid mo-
ments and current effects. Based on the dynamic model
presented in [1], we propose in this paper an integral line-
of-sight path following controller for steering an underwater
snake robot along a straight line path in the presence of
ocean currents. The integral LOS guidance law is inspired
by path following control of marine surface vessels in the
presence of ocean currents [19], [20]. Note that the integral
LOS guidance strategy is widely used for directional control
of marine surface vessels for ocean current compensation but
has, to our best knowledge, not been employed previously for
directional control of underwater snake robots in the presence
of ocean currents.

The method of Poincaré maps is a widely used tool for
studying the stability of periodic solutions in dynamical



systems. Poincaré maps are employed in [2], [21] to study
the stability properties of ground snake robot locomotion.
Motivated by this work, we analyse the stability of the
locomotion of an underwater snake robot along the straight
line path in the presence of ocean currents using a Poincaré
map. In particular, by using a Poincaré map, we prove that all
state variables of an underwater snake robot, except the po-
sition along the forward direction, trace out an exponentially
stable periodic orbit when the integral LOS path following
controller is applied. To the authors’ best knowledge, no
formal stability analysis of an integral LOS path following
controller for an underwater snake robot has been presented
in previous literature.

The paper is organized as follows. Section II presents
the dynamic model of an underwater snake robot, while the
integral line-of-sight path following controller along straight
lines is outlined in Section III. The stability analysis based
on the Poincaré map approach is presented in Section IV,
followed by simulation results for both lateral undulation
and eel-like motion in Section V. Finally, conclusions and
suggestions for further research are given in Section VI.

II. DYNAMIC MODELING OF UNDERWATER SNAKE
ROBOTS

This section briefly presents a model of the kinematics and
dynamics of an underwater snake robot moving in a virtual
horizontal plane. A more detailed presentation of the model
is given in [1].
A. Notations and defined symbols

The underwater snake robot consists of n rigid links of
equal length 2l interconnected by n−1 joints. The links are
assumed to have the same mass m and moment of inertia
J = 1

3 ml2. The mass of each link is uniformly distributed
so that the link CM (center of mass) is located at its center
point (at length l from the joint at each side). The total mass
of the snake robot is therefore nm. In the following sections,
the kinematics and dynamics of the robot will be described
in terms of the mathematical symbols described in Table I
and illustrated in Fig. 1. The following vectors and matrices
are used in the subsequent sections:

A =

 1 1
. . .

. . .
1 1

 , D =

 1 −1
. . .

. . .
1 −1

 ,

where A,D ∈ R(n−1)×n. Furthermore,

e =
[

1 . . . 1
]T ∈ Rn, E =

[
e 0n×1

0n×1 e

]
∈ R2n×2 ,

sinθ =
[

sinθ1 . . . sinθn
]T ∈ Rn , Sθ = diag(sinθ) ∈ Rn×n ,

cosθ =
[

cosθ1 . . . cosθn
]T ∈ Rn , Cθ = diag(cosθ) ∈ Rn×n

sgnθ =
[

sgnθ1 . . . sgnθn
]T ∈ Rn

θ̇
2

=
[

θ̇1
2

. . . θ̇n
2
]T
∈ Rn , J = JIn , L = lIn , M = mIn

K = AT (DDT )−1 D , V = AT (DDT )−1 A

B. Kinematics of the underwater snake robot
The snake robot is assumed to move in a virtual horizontal

plane, fully immersed in water, and has n+2 degrees of
freedom (n links angles and the x-y position of the robot).
The link angle of each link i ∈ 1, . . . ,n of the snake robot
is denoted by θi ∈ R, while the joint angle of joint i ∈
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Fig. 1: Underwater snake robot

TABLE I: Definition of mathematical terms
Symbol Description Vector
n The number of links
l The half length of a link
m Mass of each link
J Moment of inertia of each link
θi Angle between link i and the global x axis θ ∈ Rn

φi Angle of joint i φ ∈ Rn−1

(xi,yi) Global coordinates of the CM of link i X,Y ∈ Rn

(px, py) Global coordinates of the CM of the robot pCM ∈ R2

ui Actuator torque of joint between link i and link i+1 u ∈ Rn−1

ui−1 Actuator torque of joint between link i and link i−1 u ∈ Rn−1

( fx,i, fy,i) Fluid force on link i fx,fy ∈ Rn

τi Fluid torque on link i τ∈ Rn

(hx,i,hy,i) Joint constraint force on link i from link i+1 hx,hy ∈ Rn−1

−(hx,i−1,hy,i−1) Joint constraint force on link i from link i−1 hx,hy ∈ Rn−1

1, . . . ,n−1 is given by φi = θi − θi−1. The heading (or
orientation) θ̄ ∈ R of the snake is defined as the average
of the link angles, i.e. as [2]

θ̄ =
1
n

n

∑
i=1

θi. (1)

The global frame position pCM ∈ R2 of the CM (center of
mass) of the robot is given by

pCM =

[
px
py

]
=

[ 1
nm ∑

n
i=1 mxi

1
nm ∑

n
i=1 myi

]
=

1
n

[
eT X
eT Y

]
, (2)

where (xi,yi) are the global frame coordinates of the CM
of link i, X= [x1, . . . ,xn]

T ∈ Rn and Y= [y1, . . . ,yn]
T ∈ Rn.

The forward velocity of the robot is denoted by ῡt ∈ R and
is defined as the component of the CM velocity along the
current heading of the snake, i.e.

ῡt = ṗx cos θ̄ + ṗy sin θ̄ . (3)
The links are constrained by the joints according to

DX+ lAcosθ = 0, DY+ lAsinθ = 0. (4)
It is shown in [1] that the position of the individual links as
a function of the CM position and the link angles is given
by

X =−lKT cosθ + epx, Y =−lKT sinθ + epy, (5)

where K = AT
(

DDT
)−1

D ∈ Rn×n, and where DDT is nonsin-
gular and thereby invertible [2]. The linear velocities of the
links are given by

Ẋ = lKT Sθ θ̇ + eṗx, Ẏ =−lKT Cθ θ̇ + e ṗy. (6)
The linear accelerations of the links are found by differenti-
ating the velocity of the individual links (6) with respect to
time, which gives

Ẍ = lKT
(

Cθ θ̇
2
+Sθ θ̈

)
+ ep̈x, Ÿ = lKT

(
Sθ θ̇

2−Cθ θ̈

)
+ e p̈y. (7)



Note that in this paper (7) has been adjusted compared to the
corresponding expression presented in [1] in order to express
the acceleration of the links in a more proper way, by also
taking into account the acceleration of the CM.

C. Hydrodynamic modeling
As has been noted in the bio-robotics community, under-

water snake (eel-like) robots bring a promising prospective
to improve the efficiency and maneuverability of modern-day
underwater vehicles. The dynamic modeling of the contact
forces is, however, quite complicated compared to the model-
ing of the overall rigid motion. The hydrodynamic modeling
approach from [1] that is considered in this paper, takes
into account both the linear and the nonlinear drag forces
(resistive fluid forces), the added mass effect (reactive fluid
forces), the fluid moments and current effects. In particular,
in [1] it is shown that the fluid forces on all links can be
expressed in vector form as

f =
[

fx
fy

]
=

[
fAx
fAy

]
+

[
f I

Dx
f I

Dy

]
+

[
f II

Dx
f II

Dy

]
. (8)

The vectors fAx and fAy represent the effects from added
mass forces and are expressed as[

fAx
fAy

]
=−

[
µn (Sθ )

2 −µnSθ Cθ

−µnSθ Cθ µn (Cθ )
2

][
Ẍ
Ÿ

]
−
[
−µnSθ Cθ −µn (Sθ )

2

µn (Cθ )
2

µnSθ Cθ

][
Va

x
Va

y

]
θ̇ ,

(9)

where Va
x = diag(Vx,1, . . . ,Vx,n) ∈ Rn×n, Va

y =
diag(Vy,1, . . . ,Vy,n) ∈ Rn×n and [Vx,i,Vy,i]

T is the current
velocity expressed in inertial frame coordinates. The vectors
f I

Dx
, f I

Dy
and f II

Dx
, f II

Dy
present the effects from the linear

(10) and nonlinear drag forces (11), respectively, where the
relative velocities are given by (12).[

f I
Dx

f I
Dy

]
=−

[
ct (Cθ )

2 + cn (Sθ )
2 (ct − cn)Sθ Cθ

(ct − cn)Sθ Cθ ct (Sθ )
2 + cn (Cθ )

2

][
Ẋ−Vx
Ẏ−Vy

]
(10)[

f II
Dx

f II
Dy

]
=−

[
ct Cθ −cnSθ

ct Sθ cnCθ

]
sgn
([

Vrx
Vry

])[
Vrx

2

Vry
2

]
(11)

[
Vrx
Vry

]
=

[
Cθ Sθ

−Sθ Cθ

][
Ẋ−Vx
Ẏ−Vy

]
(12)

In addition, the fluid torques on all links are
τ =−Λ1θ̈ −Λ2θ̇ −Λ3θ̇ |θ̇ |, (13)

where Λ1 = λ1In, Λ2 = λ2In and Λ3 = λ3In. The coefficients ct ,
cn, λ2, λ3 represent the drag forces parameters due to the
pressure difference between the two sides of the body, and
the parameters µn, λ1 represent the added mass of the fluid
carried by the moving body.
D. Equations of motion

This section presents the equations of motion for the
underwater snake robot. In [1], it is shown that the force
balance equations for all links may be expressed in matrix
form as

mẌ = DT hx + fx, mŸ = DT hy + fy. (14)

Note that the link accelerations may also be expressed by
differentiating (4) twice with respect to time. This gives

DẌ = lA
(
Cθ θ̇

2 +Sθ θ̈
)
, DŸ = lA

(
Sθ θ̇

2−Cθ θ̈
)
. (15)

We obtain the acceleration of the CM by differentiating (2)
twice with respect to time, inserting (14), and noting that the

constraint forces hx and hy, are cancelled out when the link
accelerations are summed. This gives[

p̈x
p̈y

]
=

1
n

[
eT Ẍ
eT Ÿ

]
=

1
nm

[
eT 01×n

01×n eT

]
f (16)

By inserting (7), (8) and (9) into (16) the acceleration of the
CM may be expressed as[

p̈x
p̈y

]
=−Mp

[
eT µnS2

θ
−eT µnSθ Cθ

−eT µnSθ Cθ eT µnC2
θ

][
lKT (Cθ θ̇

2
+Sθ θ̈)

lKT (Sθ θ̇
2−Cθ θ̈)

]

−Mp

[
−eT µnSθ Cθ −eT µnS2

θ

eT µnC2
θ

eT µnSθ Cθ

][
Va

x
Va

y

]
θ̇ +Mp

[
eT fDx
eT fDy

]
(17)where

Mp =

[
m11 m12
m21 m22

]
=

[
nm+ eT µnS2

θ
e −eT µnSθ Cθ e

−eT µnSθ Cθ e nm+ eT µnC2
θ

e

]−1

. (18)

and fDx = f I
Dx

+f II
Dx

and fDy = f I
Dy

+f II
Dy

are the drag forces in
x and y directions. Additionally, it is easily verifiable that the
determinant n2m2 +nmµn +µ2

n ∑
n−1
i=1 ∑

n
j=i+1(sin(θi−θ j))

2 is
nonzero for n 6= 0 and m 6= 0.

The torque balance equations for all links is expressed in
matrix form as

Jθ̈ = DT u− lSθ AT hx + lCθ AT hy + τ, (19)

where τ is given from (13) [1]. What now remains is to
remove the constraint forces from (19). By premultiplying
(14) by D and solving for hx and hy, we can write the
expression for the joint constraint forces as

hx = (DDT )−1D(mẌ+µn (Sθ )
2 Ẍ−µnSθ Cθ Ÿ

−µnSθ Cθ Va
x θ̇ −µn (Sθ )

2 Va
y θ̇ − f I

Dx − f II
Dx )

hy = (DDT )−1D(mŸ−µnSθ Cθ Ẍ+µn (Cθ )
2 Ÿ

+µn (Cθ )
2 Va

x θ̇ +µnSθ Cθ Va
y θ̇ − f I

Dy − f II
Dy ).

(20)

Inserting in (19) the joint constraints forces (20) and also
replacing DẌ, DŸ with (15), Ẍ,Ÿ with (7) and p̈x, p̈y with
(17), and solving for θ̈ , we can finally express the model of
an underwater snake robot as

Mθ θ̈ +Wθ θ̇
2
+Vθ θ̇ +Λ3|θ̇ |θ̇ +KDxfDx +KDyfDy = DT u, (21)

where Mθ , Wθ , Vθ , KDx and KDy are defined as
Mθ = J+ml2Sθ VSθ +ml2Cθ VCθ +Λ1 + l2

µnK1KT Sθ + l2
µnK2KT Cθ

(22)
Wθ = ml2Sθ VCθ −ml2Cθ VSθ + l2

µnK1KT Cθ − l2
µnK2KT Sθ (23)

Vθ = Λ2− lµnK2Va
x − lµnK1Va

y (24)

KDx = lµnm11A1eeT − lµnm21A2eeT − lSθ K (25)

KDy = lµnm12A1eeT − lµnm22A2eeT + lCθ K
(26)

where K1 = A1 + µnA1eeT (m12Sθ Cθ −m11S2
θ
)− µnA2eeT (m22Sθ Cθ −

m21S2
θ
), K2 = A2− µnA1eeT (m11Sθ Cθ −m12C2

θ
)+ µnA2eeT (m21Sθ Cθ −

m22C2
θ
), A1 = Sθ KS2

θ
+Cθ KSθ Cθ , A2 = Sθ KSθ Cθ +Cθ KC2

θ
.

Remark 1: The model (17,21) has been adjusted compared
to the model in [1] by redefining the expression of the link
accelerations as in (7) in order to avoid a singularity issue
of the model presented in [1].

In summary, the equations of motion for the underwater
snake robot are given by (17) and (21). By introducing the
state variable x =

[
θ

T , pT
CM , θ̇

T
, ṗT

CM

]T
∈ R2n+4, we can rewrite

the model of the robot compactly in state space form as

ẋ =
[
θ̇

T
, ṗT

CM , θ̈
T
, p̈T

CM

]T
= F(x,u) (27)

where the elements of F(x,u) are found by solving (17) and
(21) for p̈CM and θ̈ , respectively.



III. INTEGRAL LOS PATH FOLLOWING CONTROL

In this section we propose an integral line-of-sight path
following control scheme for underwater snake robots. The
controller consists of three main components. The first
component is the gait pattern controller, which produces a
sinusoidal motion pattern which propels the robot forward.
The second component is the heading controller, which steers
the robot towards and subsequently along the desired path.
The third component is the integral LOS guidance law, which
generates the desired heading angle in order to follow the
desired path. An inner loop PD controller is used to control
the joint angles φ , while an outer loop controller is used for
generating the reference joint angles in order to achieve the
desired sinusoidal gait pattern and also the desired heading
θref (Fig. 2). The three components of the path following
controller will be presented in the following subsections.

Underwater
Snake
Robot

Joint
Control

uGait Pattern
Generator

f*
Heading
Control

gIntegral
LOS

qref

Outer Loop Controller Inner Loop Controllera,w,b

D

qpy

f

s

Fig. 2: Controller Structure
A. Control Objective

The path following control objective is to make the robot
converge to the desired straight line path and subsequently
progress along the path at some nonzero forward velocity
ῡt > 0, where ῡt is defined in (3). We consider it as less
important to accurately control the forward velocity of the
robot. The global x axis is aligned with the desired path,
and thus the position of the robot along the global y axis
corresponds to the cross track error, and the heading of the
robot (1) is the angle that the robot forms with the desired
path (Fig. 3). The objectives of the control system can be
formalized as

lim
t→∞

py = 0 (28)

lim
t→∞

θ̄ = θ̄ss (29)

lim
t→∞

ῡt > 0 (30)

where θ̄ss is a constant value which will be non-zero when
the underwater snake robot is subjected to ocean currents
that have a component in the transverse direction of the path.
Note that since underwater snake robots having an oscillatory
gait pattern the control objectives imply that py and θ̄ should
have steady state oscillations about zero and θ̄ss, respectively.
Remark 2: Note that the heading of the robot is not required
to oscillate around zero but rather to oscillate around a
steady-state constant value (29) in the presence of ocean
currents in the transverse direction of the path. This is
similar to the results shown in [20] for autonomous surface
vessels. In particular, the underwater snake robot then needs
to keep a nonzero heading angle in steady state in order
to compensate for the current effect. A non-zero angle will
allow the underwater snake robot to side-slip in order to
compensate for the current effects and thus stay on the
desired path, as shown in Fig. 4.
Remark 3: The current should be bounded with a constant

Vmax > 0 such that Vmax >
√

V 2
x,i +V 2

y,i, where [Vx,i,Vy,i]
T is the

current velocity expressed in inertial frame coordinates. Note
that the value of Vmax that the robot is able to compensate
is directly connected to the physical limitations of the robot
and the number of the links.

D
x

y
q

qref

(       )p ,px      y

Fig. 3: The Integral LOS guidance law
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V
x

V
y

qss

current

Fig. 4: Steady state: The underwater snake robot side-slips
with a constant θ̄ss to follow the path

B. Motion Pattern

Previous studies on swimming snake robots have been
focused on two motion patterns; lateral undulation and eel-
like motion. In this paper we will use a general sinusoidal
motion pattern that describes a broader class of motion pat-
terns including lateral undulation and eel-like motion. Lateral
undulation [2], which is the fastest and most common form
of ground snake locomotion, can be achieved by creating
continuous body waves, with a constant amplitude, that are
propagated backwards from head to tail. In order to achieve
lateral undulation, the snake robot is commanded to follow
the serpenoid curve as proposed in [4]. Eel-like motion can
be achieved by propagating lateral axial undulations with
increasing amplitude from head to tail [7]. In this paper, a
general sinusoidal motion pattern is achieved by making each
joint i ∈ {1, · · · ,N−1} of the underwater snake robot track
the sinusoidal reference signal

φ
∗
i (t) = αg(i,n)sin(ωt +(i−1)δ )+ γ, (31)

where α and ω are the maximum amplitude and the fre-
quency, respectively, δ determines the phase shift between
the joints, while the function g(i,n) is a scaling function
for the amplitude of joint i which allows (31) to describe a
quite general class of sinusoidal functions, including several
different snake motion patterns. For instance, g(i,n)= 1 gives
lateral undulation, while g(i,n) = (n− i)/(n+ 1) gives eel-
like motion [1]. The parameter γ is a joint offset coordinate



that we will use to control the direction of the locomotion
[2], [22]. In particular, in [2] and [22], γ is shown to affect
the direction of locomotion in the case of land-based snake
robots and fish robots, respectively.

C. Outer-Loop Controller

In previous approaches the parameters α and δ are typ-
ically fixed and the parameters ω,γ are used to control the
speed and the direction of the snake robot [23], [2], [22]. In
this paper, the same idea will be used in order to steer the
underwater snake robot to a desired orientation. In particular,
the outer-loop controller will be responsible for generating
the reference joint angles in order to ensure that the desired
orientation is achieved. The orientation θ̄ of the robot is
given by Eq. (1). Motivated by [19], [20] we propose to
define the reference orientation using the following integral
line-of-sight guidance law

θ̄ref =−arctan
(

py +σyint

∆

)
, ∆ > 0 (32)

ẏint =
∆py

(py +σyint)2 +∆2 (33)

where py is the cross-track error (i.e., the position of the
underwater snake robot along the global y axis), while ∆ and
σ > 0 are both constant design parameters and yint illustrates
the integral action of the guidance law. In particular, ∆

denotes the look-ahead distance that influences the rate of
convergence to the desired path [24] and σ > 0 is the integral
gain. The proposed integral LOS path following controller is
commonly used for path following control of marine surface
vessels in presence of unknown constant irrotational ocean
current [19], [20]. The conjecture is that this choice of
orientation reference will make the snake robot converge to
the path, i.e. make py converge to zero, cf. Fig. 3.
Remark 4: The look-ahead distance ∆ is an important design
parameter that directly influences the transient motion of the
underwater snake robot. Choosing ∆ large should result in a
well-damped transient motion, but the rate of convergence
to the path will be slow, cf. Fig. 3. On the other hand,
choosing ∆ too small should result in poor performance or
even instability. A rule of thumb is to choose ∆ larger than
twice the length of the robot (see e.g. [24]).
Remark 5: The integral effect becomes significant when the
ocean current effect pushes the underwater snake robot away
from its path. Note that (33) is designed such that the integral
action has less influence when the robot is far from the path,
reducing the risk of wind-up effects [20]. In fact, (32,33)
behaves as a traditional LOS law when the underwater snake
robot is far away from the path while the integral action takes
over when the motion is closer to the desired path.

Motivated by results for ground snake robots, we seek to
use the parameter γ to control the direction of the locomotion
of the robot. In particular, to steer the heading θ̄ according
to the integral LOS angle in (32), we choose the joint angle
offset according to

γ = kθ

(
θ̄ − θ̄ref

)
, (34)

where kθ > 0 is a control gain [2].

D. Inner-loop controller

In order to make the joint angle φi follows its reference
signal φ ∗i , a PD controller is used:

ui = kp(φ
∗
i −φi)+ kd(φ̇

∗
i − φ̇ i), i = 1, . . . ,n−1 , (35)

where kp > 0 and kd > 0 are the gains of the controller.

IV. STABILITY ANALYSIS OF THE INTEGRAL LOS PATH
FOLLOWING CONTROLLER BASED ON THE POINCARÉ MAP

In this section, the theory of Poincaré maps is employed
to prove that the integral LOS path following controller pro-
posed in Section III generates a locally exponentially stable
periodic orbit in the state space of the underwater snake
robot. This periodic orbit implies that the robot locomotes
along the desired straight path in the presence of current.

A. The Poincaré map

The Poincaré map is a useful tool for studying the stability
of periodic solutions in dynamical systems [25]. In particular,
the stability of a periodic orbit of a dynamical system is
related to the stability of the fixed point of the corresponding
Poincaré map of the system. We will thus use a Poincaré
map approach as a stability analysis tool for the closed-
loop system of an underwater snake robot with the path
following controller presented in Section III. In particular,
the exponential stability of the system will be investigated
by checking if the fixed point is an exponentially stable
equilibrium point of the discrete system. The fixed point
x̄∗ is locally exponentially stable if the magnitudes of all
the eigenvalues of the Jacobian linearization of the Poincaré
map JP(x̄∗) about the fixed point are strictly less than one.

Note that in order to investigate the stability properties us-
ing Poincaré maps, the model of the underwater snake robot
should be represented as an autonomous system. Following
the approach described in [26], the model (27) with the path
following controller proposed in Section III can be rewritten
as the following autonomous system

ẋ = F
(

x,
T
2π

β

)
, x(t0) = x0

β̇ =
2π

T
, β (t0) =

2πt0
T

(36)

where β = 2πt/T is a new state variable and T = 2π/ω is the
period of the cyclic locomotion generated by the sinusoidal
gait pattern in (31). The state variable β is periodic since we
force β to be 0 ≤ β < 2π , i.e. we set β to zero each time
β = 2π .

What now remains is to specify the Poincaré section for
the underwater snake robot. We choose the global x axis as
the Poincaré section S of the system in (36) (see e.g. [2]).
Furthermore, we exclude px from the Poincaré map since the
forward position of the robot will not undergo limit cycle
behaviour like the other states of the system. As a result,
the Poincaré section is given by S = {(θ , py, θ̇ ,β )|py =
0}, which means that the vector of the independent time-
periodic states constrained to S can be expressed as x̄ =[
θ

T , θ̇
T
, ṗT

CM, β

]T
∈ R2n+3.

Remark 6: Note that since px is not present on the right hand
side in any of the dynamic equations in (27), we can exclude



px from the Poincaré map without affecting the other state
variables of the system (27).
Remark 7: In this paper we consider a one-sided Poincaré
map by assuming that the Poincaré section is crossed when
the CM position of the underwater snake robot crosses the
x axis from above, similar to the approach presented in [2],
[21] for ground snake robots.

B. Stability analysis of the Poincaré map

In order to investigate the stability of the robot with the
integral LOS path following controller proposed in Section
III, we consider an underwater snake robot with n = 3 links,
each one having length 2l = 0.14 m and mass m = 0.6597
kg. The hydrodynamic parameters are ct = 0.2639, cn = 8.4,
µn = 0.3958, λ1 = 2.298810−7, λ2 = 4.310310−4 and λ3 =
2.262910−5. An extensive discussion about the values of
the fluid parameters can be found in [1]. The values of a
constant ocean current in the inertial frame are [0.005,0.01]
m/sec. The joint PD controller (35) is used for each joint
with parameters kp = 20, kd = 5, and lateral undulation and
eel-like motion are achieved by choosing g(i,n) = 1 and
g(i,n) = (n− i)/(n+ 1), respectively, with gait parameters
α = 70o, δ = 70o and ω = 120o/s in (31). Initially, we
run simulations with the proposed control strategy until the
robot reaches the desired path, and then we choose the initial
values of yint as 5.33 and 6.54 for lateral undulation and eel-
like motion, respectively. Note that these initial values are
used for the stability analysis of the system by using Poincaré
map. Furthermore, the control gain in (34) is kθ = 0.8, while
the guidance law parameters in (32-33) are chosen as ∆= 2ln
[24], and σ = 0.01 [20].

The Poincaré map of the underwater snake robot model
in (17,21) found using Matlab R2011b. The dynamics is
calculated using the ode23tb solver with a relative and
absolute error tolerance of 10−4. Using the Newton-Raphson
algorithm the fixed point, x̄∗ ∈ R9, of the Poincaré map for
lateral undulation and eel-like motion are given by (37) and
(38), respectively.

x̄∗ = [−35.06o,−41.79o, 17.68o,−108.83o/s, 26.49o/s,

106.96o/s, 10.59cm/s,−3.86cm/s, 194.04o]T

(37)
x̄∗ = [−15.77o,−29.99o,−2.21o,−116.75o/s,

20.62o/s, 70.89o/s, 9.10cm/s,−1.57cm/s, 191.88o]T
(38)

The locomotion of the robot over one period is shown in
Fig. 5 and 6 for lateral undulation and eel-like motion,
respectively. The initial values of the states of the robot are
given by (37) and (38), and the initial position is chosen
as pCM = 0. From Fig. 5 and 6, we can see that after one
period of the motion the state variables have returned to
their initial values given by (37) and (38). In addition, after
one period of motion the position of the robot along the
x axis has increased. Furthermore, Fig. 7a and 8a illustrate
the limit cycle that is traced out by the three link angles
of the robot for lateral undulation and eel-like motion. The
Jacobian linearization of the Poincaré map about the fixed
points (37) and (38) are calculated, and the magnitudes of
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Fig. 5: Motion of the underwater snake for lateral undulation
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Fig. 6: Motion of the underwater snake for eel-like motion

the eigenvalues of JP(x̄∗) ∈ R9×9 are found to be given
by (39) and (40) for lateral undulation and eel-like motion,
respectively:
| eig(JP(x̄∗)) |= [0.394, 0.394, 0.041, 0.008, 0.002,

0.002, 2.82×10−4, 2.82×10−4, 4.84×10−5]T
(39)

| eig(JP(x̄∗)) |= [0.548, 0.548, 0.059, 0.059, 0.011,

1.49×10−3, 2.92×10−4, 1.02×10−4, 9.25×10−5]T
(40)

From (39) and (40), it is easily seen that all the eigenvalues,
both for lateral undulation and eel-like motion cases, are
strictly less than one. Therefore we can conclude that the
periodic orbit is locally exponentially stable for the given
choice of controller parameters both for lateral undulation
and eel-like motion. Since the periodic orbit is exponentially
stable and the system returns to py = 0 with time period T ,
we can conclude that the control objective (28) is achieved.
Furthermore, in [27] it is shown that for an underwater snake
robot under anisotropic drag effects propulsive forces are
positive as long as sgn(θi) = sgn(ẏi) and sgn(θi) = sgn(ÿi).
Fig. 7b-7c and 8b-8c show that these conditions are valid
over the majority of the period for both lateral undulation
and eel-like motion. Hence the robot moves forward and the
control objective (30) is satisfied. Since the control objectives
(28) and (30) are both satisfied, we can argue that the control
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Fig. 7: Stability analysis of the Poincaré map for lateral undulation
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ẏ1 [mm/s]

1 2 3 4 5
−100

0

100

 

 
θ2[deg ]
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Fig. 8: Stability analysis of the Poincaré map for eel-like motion

objective (29) must be satisfied. Note that if the heading did
not oscillate around θ̄ss, but rather around zero, then the robot
would not be able to compensate the ocean current effects
and the robot would drift away from the desired path, which
contradicts the fulfilment of control objective (28).
Remark 8: A more formal stability analysis of the system in
(17,21) with the proposed controller remains a challenging
task, mainly due to the complexity of the dynamic system
equations [1]. Thus a numerical approach is adopted in
this paper. Note that by using the Poincaré map approach,
we have only proven that the stability of the proposed
path following controller presented in Section III holds for
the numerical parameters of the system presented in the
beginning of this subsection. However, simulations indicate
that the proposed path following controller can be applied to
steer the robot to the desired path in the presence of ocean
currents for other parameters of the system and for a wide
range of the current values.

V. SIMULATION STUDY
This section presents simulation results in order to in-

vestigate the performance of the integral line-of-sight path
following controller described in Section III. The model and
controller parameters are the same as in Section IV. The
initial values of all states of the robot are set to zero except
for the initial position of the center of mass, which is selected
as pCM(0) = [0,0.5]. In Fig. 9a and Fig. 10a we can see that
(34) makes the heading angle converge to and oscillate about
the desired heading angle given by (32) for lateral undulation
and eel-like motion, respectively. Note that the heading of the
robot does not converge to oscillations about zero but rather
converges to a steady state constant value, θ̄ss, which means
that the control objective (29) is achieved. Moreover, Fig.

9b and Fig. 10b show that control objective (28) is verified,
i.e. the integral LOS guidance law (32) will make the cross
track error converge to zero. Finally, from Fig. 9c and Fig.
10c we can see that the CM of the underwater snake robot
converges to the desired path for both lateral undulation and
eel-like motion. Fig. 9-10 clearly shows that the heading, the
cross track error and the position of the robot have a steady
state oscillatory behavior when the robot reaches the desired
path, as it has been predicted in Section III.A.

VI. CONCLUSIONS
This paper has proposed an integral line-of-sight path fol-

lowing controller for underwater snake robots. In particular,
a straight line path following controller for an underwater
snake robot in the presence of constant irrotational currents
was proposed. The integral line-of-sight guidance law was
combined with a directional controller to steer the robot to
the path, where integral action was introduced to compensate
for the effect of ocean currents. It was shown that the
integral LOS guidance law can be applied to underwater
snake robots to compensate for the current effect and achieve
path following of straight lines. In addition, the stability of
the locomotion along the straight line path in the presence
of current was analysed. By use of a Poincaré map, we
proved that all state variables of an underwater snake robot,
except the position along the forward direction, trace out
an exponentially stable periodic orbit when the integral
LOS path following controller is applied. Simulation results
illustrated the performance of the proposed control strategy.
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