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1 Introduction

The Euler equations of gas dynamics describe how the mass, moment and
pressure of a moving gas are related. They are named after Leonard Euler and
correspond to the case where the Navier-Stokes equations has zero viscosity
and heat conduction[9]. In one dimension, they are given by

ρt + (ρw)x = 0,

(ρw)t + (ρw2 + p)x = 0, (1.1)

Et + (w(E + p))x = 0.

Here ρ denotes the density of a non-viscous �uid or a gas, w is its velocity in
the x-direction and p is the pressure. In cases where the viscous e�ects are
negligible, such as in gas dynamics, these equations are important. The Euler
equations are hyperbolic conservation equations. This thesis will deal with
the isentropic case with ideal polytropic gasses. In this case, the entropy
in the system remains constant. The system (1.1) is then reduced to the
isentropic Euler equations

ρt + (ρv)x = 0,

(ρv)t + (ρv2 + κργ)x = 0.

The isentropic Euler equations have applications within the �eld of acous-
tics, since acoustic waves have varying pressure and density, but the entropy
remains constant[11]. Some examples of other hyperbolic conservation laws
include the nonlinear shallow water equations and Buckley-Leverett equa-
tion, or the linear advection equation. Nonlinear systems of conservation
equations tend to be much more problematic to solve analytically than lin-
ear equations. It's also hard to �nd stability results of numerical methods,
although Harten, Osher, Lax and Tadmor and several others have done a
lot of work in this �eld[10, 11, 14, 16, 18]. Among the central concepts de-
veloped was entropy conservation and entropy stability. If schemes satisfy
certain entropy conditions, then we can obtain entropy stability and con-
vergence towards the physically relevant solution. For the isentropic Euler
equations, the relevant mathematical entropy is the physical energy of the
solution.

The main goal of the thesis is to develop energy conserving and energy sta-
ble schemes for the isentropic Euler equations. To handle the discontinuities
in the solution and dissipation of energy, we develop a di�usion operator. To-
gether, our energy conservative scheme and this di�usion operator will make
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up an energy stable scheme for the isentropic Euler equations. The energy
conservative method will be second-order accurate, while the energy stable
one is only �rst-order accurate.

The rest of Section 1 will contain an introduction into systems of hyper-
bolic equations and the Euler equations. The equations will be derived, as
well as the isentropic case. Section 2 introduces the theory of �nite volume
schemes and introduce a few popular schemes. We develop our scheme in
Section 3. In Section 3.4, the energy conservative scheme is developed as
the theory behind it is discussed. We then perform numerical experiments
to test our method. After this, we develop energy stable schemes in Section
3.7 by adding numerical viscosity to the energy conservative scheme, again
followed by numerical experiments. The scheme will be compared with some
more common methods, such as the Lax-Friedrichs and Rusanov scheme.

Throughout the discussion, we will use the notation ux to denote the
partial derivative of u with respect to x, that is ux = ∂u

∂x
. The speed compo-

nents of the gas will be denoted by variables w and ω, respectively for the x
component and the y component. Furthermore we will later make use of the
following identities and notation.

JjkKi+1/2 = JjKi+1/2 ki+1/2 + JkKi+1/2 ji+1/2 (1.2)
q
j2

y
i+1/2

= 2 · JjKi+1/2 ji+1/2,

where

JjKi+1/2 = ji+1 − ji

ji+1/2 =
ji + ji+1

2
. (1.3)
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1.1 Hyperbolic systems of conservation laws

Hyperbolic systems of conservation laws are time-dependent systems of par-
tial di�erential equations. In one space dimension they take the form

ut(x, t) + fx(u(x, t)) = 0 (1.4)

where u : R×R+ → Rm is the m-dimensional vector of some quantity that is
conserved, such as energy, mass, density, momentum and so on. The variables
of u are commonly called the state variables. The function f(u) : Rm → Rm

is usually called a �ux function, and describes the rate of �ow, or �ux, of all
the state variables at (x, t). For the Euler equations, our conserved quantities
are mass, momentum and energy. In short, if un denotes the nth conserved
state variable we can write

∂
∂t
u1(x, t) + ∂

∂x
f1(u(x, t)) = 0
...
...
...

∂
∂t
um(x, t) + ∂

∂x
fm(u(x, t)) = 0

(1.5)

with u = (u1, ..., um) ∈ Rm as the conserved quantities and f = (f1, ..., fm) :
Rm → Rm being the �ux functions. The nth state variable can be written on
the form u1, while the rate of �ow for the nth state variable can be written as
fn(u(x, t)). The equations in (1.5) also need some initial data to be solved.

The system (1.4) is hyperbolic, which means that the Jacobian matrix
of f , denoted as J = f ′(u), has real eigenvalues for each value of u and is
diagonalizable, that is, there exists some invertible matrix M such that the
matrix M−1JM is diagonal.

In two space dimensions, the system of equations is instead given by

ut(x, y, t) + f(u(x, y, t))x + g(u(x, y, t))y = 0 (1.6)

with u : R2 ×R+ → Rm and f, g : Rm → Rm. Equations (1.4) and (1.6) are
written in their di�erential form.

Similarly, we can write the conservation equations (1.4) in an integral
form. The total value of a conserved variable over the interval [x1, x2] at
time t is given by

utotal =

ˆ x2

x1

u(x, t)dx.

With the assumption that none of the quantity u will be created or destroyed
in the domain, the only change in u at some point will be caused by the �ow
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of u in and out of the border. The rate of �ow is measured by the �ux f , so
the change of u over time will be given by

d

dt

ˆ x2

x1

u(x, t) dx+ f(x2, t)− f(x1, t) = 0.

Thus, the change of the mass in [x1, x2] is given by
ˆ x2

x1

ut dx+

ˆ x2

x1

f(u)x dx = 0,

which is the integral form of a conservation equation. x1 and x2 can be any
values on the valid domain, so this relation must be valid everywhere.

The results presented above is similar for more space dimensions and
can readily be expanded to account for n spatial dimensions. Writing these
equations in their di�erential form, we assume that the partial derivatives
are de�ned everywhere. However, it is a fundamental feature of nonlinear
conservation laws that discontinuities (shocks) easily can develop, even from
smooth initial data. If we write a problem in its weak form, we allow for
discontinuities in our solution.

1.2 Weak form

Solutions to nonlinear conservation tend to develop shocks, i.e. be discontin-
uous at some point. The di�erential forms of a conservation equation will not
make sense in if we have discontinuities in our solution, since the values of
the partial derivatives are unde�ned there. In other words, u is not a classical
solution. This problem is solved by writing the equations in the weak form,
and considering weak solutions to the problem. Let ϕ(x, t) be a smooth test
function in C∞c (R× R+) and let u : R× R+ −→ R be a smooth solution of
the hyperbolic conservation law. We proceed to multiply our equation (1.4)
with ϕ, and integrate over space and time

0 =

ˆ

R

ˆ

R+

(ut + f(u)x)ϕ(x, t) dt dx

=

ˆ

R

ˆ

R+

uϕt + f(u)ϕx dt dx+

ˆ

R

u(x, 0)ϕ(x, 0) dx− 0

Rearranging this gives usˆ

R

ˆ

R+

(ϕtu+ϕxf(u)) dx dt+

ˆ

R

(u0(x)ϕ(x, 0) dx = 0 ∀ϕ ∈ C∞c (R×R+) (1.7)
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We say that (1.7) is the weak form of (1.4), and if this holds, then u(x, t) is
a weak solution. It's important to note that this does not require u to be
di�erentiable, even though it might be. For hyperbolic systems, the weak
solution based on distributions will not guarantee uniqueness. To get the
solution we want, it is necessary to place some additional selection criterion
on it.

1.3 Parabolic Regularization

The physically relevant solutions of (1.4) are the ones that we �nd as u =
limε→0 u

ε, with

uεt + f(uε)x = εuεxx (ε > 0). (1.8)

The right side term can also be expressed di�erently as

uεt + f(uε)x = ε(Puεx)x, (1.9)

where P (u, ux) is the viscosity matrix. Such solutions are called vanishing
viscosity solutions. For each ε, there exists exactly one solution to (1.8),
and it is always smooth[2]. Viscosity and entropy are closely related. Note
that by a sign di�erence in de�nition, mathematical entropy is non-increasing
rather than non-decreasing in time. For conservation laws, we should see the
entropy being conserved in smooth regions of the solution. In areas with
shocks, the physical entropy would increase across the discontinuity, and
so we expect the mathematical entropy to be dissipated (decrease) around
shocks.

We begin with looking at the solutions where the entropy is conserved.
We de�ne a convex function η(u) : Rn → R to be a function that measures
the entropy present in u. When the solution is smooth, the entropy must be
a conserved variable in such areas. By multiplying (1.4) by η′(u)

0 = η′(u)ut + η′(u)f(u)x

= η(u)t + η′(u)f(u)x

= η(u)t + η′(u)f ′(u)ux

We are interested in �nding conditions such that the entropy η itself is con-
served, that is

η(u)t + q(u)x = 0. (1.10)

As we see, this will be satis�ed only if such a q exists that

q′(u) = η′(u)f ′(u). (1.11)
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Around any shocks, the mathematical entropy must dissipate and decrease;
the equality does not hold. In such parts of the domain, the entropy equality
is invalid. By multiplying (1.8) by η′(uε)

0 = η′(uε)uεt + η′(uε)f(uε)x − εη′(uε)uεxx
= η′(uε)uεt + η′(uε)f(uε)x − εη(uε)xx + ε((η′(uε)uεx)x − η′(uε)uεxx)
= η′(uε)uεt + η′(uε)f(uε)x − εη(uε)xx + εη′′(uεx)(u

ε
x)

2

≥ η′(uε)uεt + η′(uε)f(uε)x − εη(uε)xx

Rearranging this gives us that

η(uε)t + q(uε)x ≤ εη(uε)xx

As ε→ 0, we end up with the condition that

η(u)t + q(u)x ≤ 0 (1.12)

This does not make sense in the di�erential form whenever we have discon-
tinuous solutions u. It has to be interpreted in the weak form

ˆ

R

ˆ

R+

η(u)ϕt + q(u)ϕx dxdt+

ˆ

R

η(u0(x))ϕ(x, 0)dx ≥ 0, ∀ϕ ∈ C∞c (R× R+) ,

(1.13)
with ϕ ≥ 0. Equation (1.13) is the entropy inequality in its weak form. In
contrast to the entropy equality, which only works well for smooth solutions
and assumes that all the entropy must be conserved, the entropy inequality
allows for entropy to dissipate around shocks, which is what we want. This
can correspond to energy changing into forms which are not accounted for in
our model, such as heat.

1.4 Euler Equation

1.4.1 Introduction

The Euler equations model adiabatic and inviscid �ow. As mentioned be-
fore, the equations themselves can be seen as Navier-Stokes equations where
you operate with the assumption that there is no viscosity or heat conduc-
tion. Fey, Courant, Friedrichs and many others have written about the Euler
equations[5, 6, 4]. The variables that are found in the Euler equations are
the density of the gas ρ, its velocity w, its total energy E, as well as its
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gas pressure p. Our �rst conserved variable is the density ρ. The density is
transported along the velocity �eld, so we have the �ux

f(x, t) = ρ(x, t)w(x, t).

Thus, the di�erential form can be written as

ρt + (ρw)x = 0. (1.14)

Equation (1.14) is otherwise known as the continuity equation, and the
density is a preserved variable of the Euler Equations.

Next is the momentum. We proceed in a similar manner. The momentum
is given by ρw. Since the momentum is also transported by the velocity �eld,
this contribution to the �ux function will be

fpartial(x, t) = (ρw)(x, t)w(x, t) = ρw2

In accordance with Newton's laws, there are also other forces that are work-
ing on the �uid. Assuming no outside forces, then the sole force will be
proportional to the pressure gradient ∇p. In one dimension, this simpli�es
to px. The full �ux function for the momentum is therefore

f(x, t) = (ρw2)(x, t) + p(x, t)

Thus, the momentum equation in its di�erential form is

(ρw)t + (ρw2 + p)x = 0, (1.15)

also known as the momentum equation.
The last conserved variable of the Euler equations is the total energy E of

the system. As with the momentum, its �ux function will have contributions
from the gas being transported by the velocity �eld, as well as being a�ected
by the pressure. It has �ux function

f(x, t) = w(E + p(x, t)).

Therefore, the equation of conserved energy in its di�erential form is

Et + [w(E + p)]x = 0. (1.16)

In summary, the system of Euler equations models the conservation of its
state variables mass, momentum and energy ρ

ρw
E


t

+

 ρw
ρw2 + p
w(E + p)


x

= 0.
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1.4.2 Thermodynamic relations

To solve the Euler equations, we wish to �nd a way to express the pressure
p in terms of our state variables. To do this, we look at some of the ther-
modynamic relations that will apply for us. In this thesis, we will look at
polytropic, ideal gases. A number of the relations that applies for such gases
will be used in later sections.

An ideal gas will obey the ideal gas law

p = RρT, (1.17)

where R is the speci�c gas constant. A good approximation for the internal
energy of an ideal polytropic gas is

e(T ) = cvT, (1.18)

making e proportional to the temperature T . The constant cv is called the
speci�c heat at constant volume. Rearranging (1.17), we see that p/ρ will
also only depend on the temperature. We introduce a quantity h, such that

h(T ) = e+
p

ρ
= (cv +R)T = cpT, (1.19)

where cp is called the speci�c heat at constant pressure. h is called the
enthalpy of the system, and we see that it also depends only on T . For
molecules with α degrees of freedom, the speci�c heats cv and cp are given
by

cv =
α

2
R,

cp =
(

1 +
α

2

)
R.

This is well known from kinetic theory[13], and by de�nition the speci�c
heats cp and cv are constant. We notice that the ratio between the speci�c
heats cv and cp is independent of R

cp/cv =
α + 2

α
= γ,

and we call this ratio γ the adiabatic exponent. Note that γ does not depend
on R. Common values of γ are γ = 5/3 and γ = 7/5 for monatomic and
diatomic gases, respectively. The ideal gas law (1.17) states that

T =
p

Rρ
.
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Inserting this into the expression for the internal energy, we obtain

e =
αR

2

p

Rρ
=
αp

2ρ
.

Since 2
α

= γ − 1, we have

e =
p

(γ − 1)ρ
. (1.20)

This relation between e and p is important and will be used several times
throughout the text. A common way to decompose the energy E is to divide
it into its internal and kinetic energy terms

E = ρe+
1

2
ρw2 =

p

γ − 1
+

1

2
ρw2. (1.21)

In thermodynamics, entropy is a quantity that measures how unavailable
a system's thermal energy is for conversion into mechanical work. It is often
interpreted as the degree of disorder in the system. By de�nition, for a
reversible process we have that the change in entropy ds is

ds = d
(
lnT cv − ln ρR

)
. (1.22)

According to the second law of thermodynamics, the entropy is non-decreasing,
so ds ≥ 0. In the isentropic case, then ds = 0. So then, by integrating (1.22)
we get

s = cv ln

(
T

ρR/cv

)
(1.23)

= cv ln(
p

ργ
) + const.

If we solve this for p, we get

p =
1

econst/cv
es/cvργ

In the isentropic case, s is constant everywhere, so es/cv is constant. Thus
we de�ne the constant κ as

κ = e
s
cv
− const

cv .

We end up with the following isentropic relation between p and ρ for a poly-
tropic, ideal gas

p = κργ. (1.24)
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This expression for p also gives a useful term for the speed of sound c for
a gas. The density and pressure varies within an acoustic wave, while the
entropy remains constant, and the expression for the sound speed is

c =

√
∂p

∂ρ

∣∣∣∣
s=const

=
√
γκργ−1,

with p = p(ρ) such as in (1.24).

1.4.3 The isentropic Euler equations

By inserting the expression (1.24) for p and (1.20) for e into (1.21), the
expression for the energy reduces to an expression that depends only on ρ
and ρw, the state variables. Then the Energy equation (1.16) is redundant,
and the Euler equations are reduced to[

ρ
ρw

]
t

+

[
ρw

ρw2 + p

]
x

= 0, (1.25)

which is the isentropic Euler equations. What lets us drop the conservation
of energy is the fact that it is implicit in the assumption that s is constant. In
systems where the entropy really is constant, solutions would remain smooth,
and conservation of energy would automatically be satis�ed.

Nonlinear systems of equations will, even with arbitrarily regular data,
tend to develop shocks; The isentropic Euler equations are no exceptions.
When we have shocks in our solution, the entropy is not conserved. Across
real shocks in gas dynamics, the entropy will increase, rather than remain
constant. If we operate with the assumption that the system entropy is
conserved around shocks, we will see that numerical schemes will develop
huge oscillations around shocks unless we add some form of dissipation. The
added dissipation is corresponds to energy changing forms into for example
heat, which is not accounted for in the Euler equations.

We will see later that a shock is the correct vanishing-viscosity solution to
the isentropic equations only if the energy increases across the shock, which
re�ects the the outside work that has been done on the system. Therefore, we
can use the system energy as the entropy function η introduced in Section 1.3.
Where the solution is smooth, the entropy equality (1.10) will apply, while
the entropy inequality (1.12) will be a su�cient condition across shocks.

1.4.4 Hyperbolicity of the isentropic Euler equations

As we mentioned in Section 1.1, the Euler equations are hyperbolic. To verify
that the Isentropic Euler equations are indeed a hyperbolic system, we �nd

12



the eigenvalues of f(u) =

[
ρw

ρw2 + p

]
. The Jacobian is given by

J = f ′(u) =

[
0 1

−w2 + γκργ−1 2w

]
= 0, (1.26)

so

det(J − λI) =

∣∣∣∣ −λ 1
−w2 + γκργ−1 2w − λ

∣∣∣∣ = 0.

The eigenvectors are

λ =
2w ±

√
4w2 − 4 (w2 − γκργ−1)

2
= w ±

√
γκργ−1 = w ±

√
c.

In other words, since the eigenvectors are real and distinct, the system is
hyperbolic.

1.4.5 Entropy pair

The entropy of interest for the isentropic Euler equations is the total energy
of the system[3], which for an isentropic system is (1.21)

η(u) =
1

2
ρw2 + ρe(ρ). (1.27)

Using this entropy makes sense, since the energy remains constant in an
isentropic system. It is this entropy that will yield the physically relevant
solutions to (1.7).

We proceed to prove that η(u) is convex. In such a case the Hessian of
η(u) will be semi-positive de�nite, that is H = η′′(u) ≥ 0. The Hessian of
η(u) is given by

H =

[
p′(ρ)
ρ

+ w2

ρ
−w

ρ

−w
ρ

1
ρ

]
.

It is well known that a symmetric matrix M is positive de�nite if and only
if there exists a non-singular matrix A such that

AAT = M.

Since [√
p′(ρ)
ρ

w√
ρ

0 −1√
ρ

][√
p′(ρ)
ρ

0
w√
ρ

−1√
ρ

]
=

[
p′(ρ)
ρ
−w

ρ

−w
ρ

1
ρ

]
,
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then the Hessian must be positive de�nite and η(u) is strictly convex. Next
we verify that the entropy in question is indeed valid. Tadmor[18, 17] and
Lax and Friedrichs[7] have stated that the entropy functions η will be exactly
those whose positive Hessians H symmetrize (1.4) on the left, that is

HJ = [HJ ]T ,

with J from (1.26). HJ is

HJ =

[
p′′(ρ) −w

ρ

−w
ρ

1
ρ

] [
0 1

−w2 + p′(ρ) 2w

]
=

[
w3

ρ
− w

ρ
p′(ρ) p′(ρ)

ρ
− w2

ρ
p′(ρ)
ρ
− w2

ρ
w
ρ

]
,

which is indeed symmetric.
To �nd the entropy �ux function q, recall that we wanted to impose

condition (1.11) on a function q so that that the entropy equality holds. We
would then have that

q′T =

[
p′(ρ)
γ−1
− w2

2

w

]T [
0 1

p′(ρ)− w2 2w

]
=

[
−w3 + wp′(ρ)

3
2
w2 + p′(ρ)

γ−1

]T
.

Integrating q′ leaves us with the entropy �ux function of the isentropic Euler
equations,

q = w

(
1

2
ρw2 + ρe(ρ) + p(ρ)

)
= w

(
1

2
ρw2 +

γ

(γ − 1)
κργ
)
.

In accordance with the discussion in Section 1.3, η and q satis�es the entropy
equality (1.10). Summarizing, we have that the entropy pair of interest to
us is

(η(u), q(u)) =

(
1

2
ρw2 + e(ρ), w

(
1

2
ρw2 + ρe(ρ) + p(ρ)

))
(1.28)

for the isentropic Euler equations.

1.4.6 The two-dimensional isentropic Euler equations

The two dimensional isentropic Euler equations will take the form ρ
ρw
ρω


t

+

 ρw
ρw2 + p(ρ)

ρwω


x

+

 ρω
ρwω

ρω2 + p(ρ)


y

= 0. (1.29)
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This is a straightforward extension of the one-dimensional case, using (1.6)
with

u =

 ρ
ρw
ρω

 , f(u) =

 ρw
ρw2 + p(ρ)

ρwω

 , g(u) =

 ρω
ρwω

ρω2 + p(ρ)

 .
The extra requirement here is that we also require that the momentum is
conserved in the second spatial dimension. We stated the de�nition of hy-
perbolicity for systems with one spatial dimension in Section 1.1. For two
dimensions, the linear combination of the two Jacobians J1 = f ′(u) and
J2 = g′(u) has real eigenvalues for all values of u and the Jacobian matri-
ces of f and g is diagonalizable. That is, for ξ = [ξ1, ξ2]T ∈ R2, |ξ| = 1,
Jξ = ξ1J1 + ξ2J2 is diagonalizable and has real eigenvalues. The eigenvalues
of f and g is given by λ1,2,3 and µ1,2,3, respectively

λ1 = w − c, λ2 = w, λ3 = w + c

µ1 = ω − c, µ2 = ω µ3 = ω + c

with c =
√
γ p(ρ)

ρ
being the speed of sound for the gas in question.

15



Figure 1: Discretization mesh for the �nite volume methods

2 Finite volume methods

As we discussed, our solution is likely to form shocks, so we want a solution
that accounts for u not being continuous everywhere. With �nite di�erence
schemes, series expansions are used to �nd an approximation, and in doing
so, one will also assume continuous derivatives.

Finite volume methods are among the best suited methods for solving
nonlinear conservation equations. With such a method, instead of looking at
point values , we partition the domain into control volumes.

The approximated average values are over cells Ci = [xi− 1
2
, xi+ 1

2
). Time

levels is denoted by tn = n∆t, while space is discretized as xj = xL+(j+ 1
2
)∆x

for j = 0, ...., N , where ∆x = xR−xL
N+1

. Thus xj−1/2 = xj −∆x/2 = xL + j∆x
for j = 0, ..., N + 1. We use these averages to approximate the solution using
our cell averages

Un
i ≈

1

∆x

xi+1/2ˆ

xi−1/2

u(x, tn) dx.

An illustration of our grid is given in Figure 1. Starting with our equation,
ut + f(u)x = 0, we integrate over Ci and divide by ∆x
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0 =
1

∆x

xi+1/2ˆ

xi−1/2

(ut + f(u)x) dx

=
d

dt
(

1

∆x

xi+1/2ˆ

xi−1/2

u(x, t) dx) +
1

∆x
(f(u(xi+ 1

2
, t))− f(u(xi− 1

2
, t)))

≈ d

dt
Un
i (t) +

fi+1/2 − fi−1/2

∆x
.

Here, Un
i has been used as an approximation to the cell average,

Un
i ≈

1

∆x

xi+1/2ˆ

xi−1/2

u(x, tn) dx,

and f(u(xi± 1
2
, t)) has been abbreviated as fi±1/2. Proceeding by integrating

over t ∈ [tn, tn+1], the equation is

0 ≈ Un+1
i − Un

i +

tn+1ˆ

tn

fi+1/2 − fi−1/2

∆x
dt = Un+1

i − Un
i +

∆t

∆x
(Fi+1/2 − Fi−1/2).

F n
i±1/2 = 1

∆t

tn+1´
tn

fi±1/2 dt is called the numerical �ux. Using this notation, we

write our original equation as

d

dt
Ui︸︷︷︸
ut

+
Fi+1/2 − Fi−1/2

∆x︸ ︷︷ ︸
f(u)x

= 0.

A slight rearrangement yields the formula

d

dt
Ui = − 1

∆x
(Fi+1/2 − Fi−1/2). (2.1)

By either explicitly calculating F n
i±1/2 or by approximating it, di�erent �nite

volume schemes can be constructed.
Godunov observed[8] that each cell in the �nite volume scheme make up

Riemann problems, that is, problems of the form

URiemann =


Ut + f(U)x = 0 (x ∈ R, t > tn)

U(x, tn) =

{
Un
j if x < xj+1/2

Un
j+1 if x > xj+1/2

(2.2)
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These problems can be solved exactly (like in Godunov's method), or by
approximations, like in the methods presented in Section 2.1.

Solutions of Riemann problems are a sets of at most m waves that em-
anate out from x = xi+1/2. The speed of propagation s for each wave is
bound by the eigenvalues of f ′(Ui) and f ′(Ui+1). ∆t is selected so that the
waves of each cell will not interact with each other. By denoting smax =
maxk |λk(U(x, t))| , x ∈ R as the largest wave speed encountered, we have
the condition that

smax
∆t

∆x
≤ 1,

called the CFL-condition (CFL is short for Courant-Friedrichs-Lewy).
The �nite volume scheme (2.1) can also be extended to account for two

(or more) spatial dimensions. Our cell will then be the two dimensional area
Ci,j = [xi− 1

2
, xi+ 1

2
)× [yi− 1

2
, yi+ 1

2
), and

Ui,j =
1

∆x∆y

ˆ
Ci,j

U(x, y, t) dxdy.

This gives us the corresponding scheme for two dimensions.

d

dt
Ui = −∆t

∆x

(
(Fi+1/2,j − Fi−1/2,j) + (Gi,j+1/2 −Gi,j−1/2)

)
. (2.3)

2.1 Popular Volume Schemes

Three of the most common �nite volume methods are Lax-Friedrichs method,
Rusanov's method and Roe's method. They are popular choices as they are
fairly simple to implement. The �uxes all contain the term 1

2
[f(Ui+1)+f(Ui)],

but their di�usion operators vary.

2.1.1 Lax-Friedrichs

Lax-Friedrichs method can by found by considering the rarefaction problems
where we would have m waves traveling to the left and m waves to the right.
The Lax-Friedrichs method uses maximum wave speeds given by sli+1/2 =

=

∆x
∆t

and sri+1/2 = ∆x
∆t
, so that −slj+1/2 = srj+1/2 = sj+1/2. The �ux function

for this method is given by

F n
i+1/2 =

1

2

(
f(Un

i+1) + f(Un
i )
)
− ∆x

2∆t
(Un

i+1 − Un
i ) (2.4)

with numerical viscosity ∆x
∆t

having �xed magnitude. The results we get by
using this method are di�usive.
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2.1.2 Rusanov

We get Rusanov's method if we instead decide to choose the speed of prop-
agation for our waves locally as

−sli+1/2 = sri+1/2 = si+1/2 = max
k
{|λk(Ui)| , |λk(Ui+1)|} .

For a system of equations, Rusanov's method is given by

Fi+1/2 =
1

2
(f(Ui+1) + f(Ui))−

1

2
si+1/2(Ui+1 − Ui) (2.5)

2.1.3 Roe

Another popular approximate Riemann solver is found in the Roe scheme.
Roe suggested taking the nonlinear �ux function and linearizing it locally.
We do this by replacing f ′ with a constant Â. Therefore, we have that

f(u)x = f ′(u)ux ≈ Âi+1/2Ux,

where Â can be chosen in several ways. We want to �nd a matrix Â to be
diagonalizable with real eigenvalues, so that the system remains hyperbolic.
Furthermore, we want it to be chosen so that the method is consistent with
the original conservation law. For a linear system, we have that

F (Un
i , U

n
i+1) = ÂUn

i + Â−(Un
i+1 + Un

i ) (2.6)

= ÂUn
i+1 − Â+(Un

i+1 + Un
i ),

where A+ = RΛ+R−1, A− = RΛ−R−1, R denotes the matrix of the eigen-
vectors of Â and Λis the diagonal matrix consisting of the eigenvalues of Â.
Roe's method for systems of equations is given by the average of the terms
in (2.6)

Fi+1/2 =
1

2
(f(Ui+1) + f(Ui))−

1

2
R |Λ|R−1(Ui+1 − Ui), (2.7)

since |A| = A+ − A− = R |Λ|R−1. We will discuss the construction of
1
2
R |Λ|R−1 more in Section 3.7. It is worth noting that Roe's method does not

always approximate the physical solution correctly. Indeed, the approximate
Riemann solution can be very di�erent from the real Riemann solution if
there are more than one strong shock in the Riemann problem. One example
is near the point where two shocks collide.

Roe found the Roe average
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Ũ =

[
ρi+ρi+1

2
wi
√
ρi+wi+1

√
ρi+1√

ρi+
√
ρi+1

]
(2.8)

for the Euler equations [15]. Using this average rather than an arithmetic
one will guarantee exact resolution of single shocks.
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3 Numerical Methods

3.1 Introduction

After looking at the isentropic Euler equations and nonlinear conservation
equations in general, we proceed to develop our own scheme that preserves
the energy. The semi-discrete �nite volume method to (1.4) was then given
by (2.1),

d

dt
Ui = − 1

∆x
(Fi+1/2 − Fi−1/2). (3.1)

A �nite volume scheme is said to be conservative if it can be written in this
form[11]. A conservative volume scheme implies that the two �ows from two
adjoint cells Ci and Ci+1 at point xi+1/2 balance each other out. That is,
they are both given as Fi+1/2.

Furthermore, if a �ux is such that F (u, u) = f(u) the �ux F is called
consistent with f . So when the solution in two cells Ci and Ci+1 are equal,
then the �ux is equal to the conservation equation (1.1). A �nite volume
scheme with a consistent �ux is a consistent scheme.

In this chapter, we will �rst introduce the concepts of entropy preservation
and stability for discrete schemes. We will develop an energy conservative
scheme in Section 3.4 and then develop it further so we get energy stability
in Section 3.7. Numerical experiments are performed along each step. At
the end, the methods are extended to two spatial dimensions.

3.1.1 Convergence

It's essential that our scheme is converging towards the correct solution as
we re�ne our grid. In addition it is known that the weak formulation of
conservation equations can have many di�erent solutions, but we are only
interested in the physically relevant one. This will require us to put extra
conditions on the problem. The following theorem clari�es when we will get
a weak solution of the conservation law.

Theorem 3.1. (Lax-Wendro�[11]). Let U (k) be numerical approximations
computed by a consistent and conservative scheme on a sequence of grids with
mesh sizes ∆t(k)and ∆x(k). Furthermore, let ∆t(k),∆x(k) → 0 as k →∞. If
U (k) converges boundedly to u almost everywhere as k → 0, then the solution
u is a weak solution of (1.4).

In other words, if the conservative scheme U (k) converges and is consistent,
it is a weak solution of the conservation law. However, note that the converse
does not necessarily hold.

21



Now, to make sure that the solution is approaching the physical solution
that we want to �nd, we look for numerical methods which is satisfying the
entropy inequality (1.12). The discrete form of this is

d

dt
η(Ui(t)) +

1

∆x

(
Qi+1/2 −Qi−1/2

)
≤ 0 for all i ∈ Z and t > 0 (3.2)

with the numerical �ux being Qi+1/2 = Q(Un
i , U

n
i+1) which is consistent with

q and continuous, and Q : Rm × Rm → R. The following Theorem from
Osher tells us when a scheme satis�es the entropy inequality.

Theorem 3.2. (Osher[14]) Let U (k) be a sequence of numerical approxi-
mations computed by a consistent and conservative scheme that converges
boundedly a.e. to a function u, like in Theorem 3.1. Now assume that an
entropy �ux Q exists that is consistent with q, so that (3.2) is satis�ed for
every U (k). Then u is a weak solution of ut + f(u)x = 0 that satis�es the
entropy condition for the entropy pair (η, q).

In other words, if we can �nd a such a scheme, it will be a weak solution
that satis�es the discrete entropy inequality (3.2).

3.2 Choosing our time discretization

The entropy preserving method that we will develop is second-order accurate,
so as to minimize the truncation error, it makes sense to use a second-order
accurate time discretization too. So far we have only used the very simple
�rst-order accurate forward Euler method. If we instead use the second-order
Runge-Kutta method known as Heun's method, we can expect to get better
accuracy when we look at how the energy is preserved. Let

ς(Uk
i ) = − 1

∆x

(
F k
i+1/2 − F k

i−1/2

)
.

Then the Forward Euler is given by

Uk+1
i = Uk

i + ς(Uk
i ).

Heun's method calculates the intermediate value U∗i , followed by the �nal
solution at the next integration point, so

U∗i = Uk
i + ∆tkς(U

k
i )

Uk+1
i = Uk

i +
∆tk

2

[
ς(Uk

i ) + ς(U∗i )
]
.
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As we add numerical viscosity in Section 3.6 and onwards, we will be dealing
with �rst-order accurate methods. For these methods, it makes sense to
either

1. Use forward Euler to discretize the time.

2. Reconstruct the di�usion operators, so that we again get methods that
are second-order accurate.

We will not be reconstructing the di�usion operators, so we will only be
using Heun's method when studying the energy conservative properties of
the scheme we develop. When we later add di�usion, we will use forward
Euler discretization.

3.3 Entropy Conservation

Tadmor explored how to construct schemes that satis�es the entropy con-
dition, �rst for scalar conservation laws in 1984[16] and then for systems of
conservation laws in 1987[18]. If we have an entropy pair(η, q), then a scheme
is entropy conservative if it satis�es the discrete entropy equality

d

dt
η(Ui(t) +

1

∆x

(
Qi+1/2 −Qi−1/2

)
= 0. (3.3)

Summing up for i = k, k + 1, ..., l − 1, l, we get

d

dt

(
∆x

l∑
i=k

η(Ui(t))

)
= Ql+1/2 −Qk−1/2

for some chosen endpoints k, l. If the entropy �ux is zero on the boundary,
then the total entropy in the measured area will be preserved. If a scheme
satis�es the discrete entropy inequality

d

dt
η(Ui(t)) +

1

∆x

(
Qi+1/2 −Qi−1/2

)
≤ 0, (3.4)

it is said to be entropy stable. As mentioned in Section 1.3, this allows for the
entropy to decrease around the shocks. Tadmor found an explicit condition
that would ensure entropy conservation in a scheme[16, 18].

Any method with more numerical viscosity than an entropy conservative
method is entropy stable[18]. Hence, if we �rst develop an entropy conser-
vative method, we can later add numerical viscosity to it to ensure entropy
stability (we do this in Section 3.6). This will be our approach. We recall
that the relevant entropy for the isentropic Euler equations is the energy of
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the system. Therefore, we will use the terms energy conservative and energy
stable when we talk about the entropy of our scheme in particular.

We want our solution of (1.4) to satisfy the entropy inequality. This
implies that the measured entropy is non-increasing, so

d

dt

ˆ
R

η(u)dx ≤ 0.

For a numerical scheme that instead satis�es the discrete entropy inequality,
we get a discrete stability estimate,

d

dt
∆x
∑
i

η(Ui) ≤ 0. (3.5)

In the case where η(u) is preserved, the stability estimate will be

d

dt
∆x
∑
i

η(Ui) = 0.

Using the same procedure as in Section 1.3 on (2.1), we get

η′(U)T
(
d

dt
Ui

)
= −η′(Ui)T

(
1

∆x

(
Fi+1/2 − Fi−1/2

))
(3.6)

d

dt
ηi(Ui) = −η′(Ui)T

(
1

∆x

(
Fi+1/2 − Fi−1/2

))
.

Similarly to the non-discrete case, we will need put the requirement that
η′(Ui)

((
Fi+1/2 − Fi−1/2

))
=
(
Qi+1/2 −Qi−1/2

)
for (3.3) to hold. Here, Qi+1/2 =

Q(Ui, Ui+1) is the numerical entropy �ux and is consistent with q.
η′(u) is central in the theory behind entropy conservation and stability,

and is called the entropy variables. It is usually denoted by

v = v(u) = η′(u). (3.7)

What kind of criteria can we place on Fi+1/2 to ensure that

η′(Ui)
((
Fi+1/2 − Fi−1/2

))
=
(
Qi+1/2 −Qi−1/2

)
?

We make use of the following theorem from Tadmor [18]. First, note that
the entropy potential is ψ(u) = v(u)Tf(u)− q(u) by de�nition.

Theorem 3.3. (Tadmor[18]). Solutions computed by the scheme with con-
sistent numerical �ux Fi+1/2 satisfy the discrete entropy equality (3.3) with
numerical entropy �ux

Q̃i+1/2 = V
T

i+1/2Fi+1/2 − ψi+1/2 (3.8)
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if and only if

JV KTi+1/2 Fi+1/2 = JψKi+1/2 (3.9)

Here, Q̃ is consistent with q.

This can be veri�ed by rearranging (3.6) and using the de�nition of the
entropy potential.

3.3.1 Example: Burgers' Equation

If we use Burgers' equation as an example, that is, a function of form (1.4),
where f = 1

2
u2, we can choose our entropy function as η = u2. Then q′(u) is

given by

q′(u) = η′(u)f ′(u) = 2uu = 2u2 ⇒ q(u) =
2

3
u3.

The entropy potential by de�nition will be

ψ(u) = 2u
u2

2
− 2

3
u3 =

1

3
u3.

Now, using (3.9) J2UKi+1/2 Fi+1/2 =
q

1
3
U3

y
i+1/2

. Then,

Fi+1/2 =
1

6

JU3Ki+1/2

JUKi+1/2

=
1

6

U3
i+1 − U3

i

Ui+1 − Ui
=
U2
i+1 + UiUi+1 + U2

i

6
. (3.10)

With this, we have found an entropy conservative �ux function of Burgers'
equation.
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Figure 2: Solution u of (3.11) at t = 2, using the �ux (3.10). This �ux lacks
numerical viscosity and gives large oscillations.

Plotting the solution of u at time t = 2 with the initial value problem

u0(x) = 1 + 0.3 sin(2x), (3.11)

we see that large oscillations develop around discontinuities, as seen in Figure
2. This is expected, and to avoid oscillations we must add numerical viscosity.
We continue the example in Section 3.6.

3.4 Developing the Energy Conservative Scheme(EEC)

As mentioned in Section 1.4.5, the relevant entropy function of the isentropic
Euler equations to be the total energy of the system. As already explored in
Section 3.3 schemes satisfying (3.3) will be entropy conservative. We proceed
to develop such a method for the isentropic Euler equations.

3.4.1 The discretization of F

We wish to �nd a discretization of the numerical �ux Fi+1/2, denoted by

F̃i+1/2 =

[
F̃ 1
i+1/2

F̃ 2
i+1/2

]
=

[
{ρw}

{ρw2}+ {κργ}

]
, where we let {} denote the discretiza-

tion of a quantity. The idea of our scheme is to �nd such a discretization F̃
for the isentropic Euler equations (1.25) so that (3.9) holds. For Polytropic
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gases, p is given by (1.24). Recall that the entropy pair of the isentropic
Euler equation (1.28) for a polytropic gas is

η =
1

2
ρw2 + κ

ργ

(γ − 1)
, q = w

(
1

2
ρw2 +

γ

(γ − 1)
κργ
)
.

As mentioned in Section 3.3, our entropy variables (3.7) are then de�ned as

v(u) = η′(u) =

[
κ γ

(γ−1)
ργ−1 − w2

2

w

]
. (3.12)

Again, by de�nition, the entropy potential of the isentropic Euler equations
are

ψ(u) =

(
κ
γργ−1

(γ − 1)
− w2

2

)
w + w (wρ+ κ · ργ)− w

(
1

2
wρ+ ρκ

ργ

(γ − 1)
+ κργ

)
= κwργ

We wish (3.9) to hold, so that

0 = JV KTi+1/2 · F̃i+1/2 − JψKi+1/2 .

Filling in, we have

0 =

s
κ
γργ−1

(γ − 1)
− 1

2
w2

{

i+1/2

F̃ 1
i+1/2 + JwK F̃ 2

i+1/2 − JψKi+1/2

= κ
γ

(γ − 1)

q
ργ−1

y
i+1/2

F̃ 1
i+1/2 − wi+1/2 JwKi+1/2 F̃

1
i+1/2 + JwK F̃ 2

i+1/2 − JψKi+1/2 .

To simplify, we introduce the term Ω = κ γ
γ−1

. We make use of the following

identities from (1.2). We then get

0 = Ω
q
ργ−1

y
i+1/2

F̃ 1
i+1/2 − wi+1/2 JwKi+1/2 F̃

1
i+1/2 + JwKi+1/2 F̃

2
i+1/2 − κ JwργKi+1/2

= Ω
q
ργ−1

y
i+1/2

F̃ 1
i+1/2 − κwi+1/2 JργKi+1/2

+ JwKi+1/2

(
F̃ 2
i+1/2 − wi+1/2F̃

1
i+1/2 − κργi+1/2

)
The idea behind the scheme that we are developing is to manipulate the
terms so that they are expressed in terms of jumps over the same variable.
To be able to do this, we must factorize Jργ−1Ki+1/2 and JργKi+1/2 into common

terms. Recall that γ − 1 = 2
α
, where α is the degrees of freedom of the gas.

We can factorize

27



0 = 2Ωρ1/α
i+1/2

q
ρ1/α

y
i+1/2

F̃ 1
i+1/2 − κwi+1/2

q
ρ(2+α)/α

y
i+1/2

+ JwKi+1/2

(
F̃ 2
i+1/2 − wi+1/2F̃

1
i+1/2 − κργi+1/2

)
i+1/2

The second term on the right side will vary di�erent depending on the values
of alpha. Commonly, α takes the value of either 3 or 5, so that γ = 5/3 or
γ = 7/5. If we can �nd a function such that

q
ρn/α

y
i+1/2

= Γ(n, α)i+1/2

q
ρ1/α

y
i+1/2

, (3.13)

we can group Jργ−1Ki+1/2 and JργKi+1/2 in terms of
q
ρ1/α

y
i+1/2

. We proceed

to look at for a pattern in the di�erence identities.

q
ρ2/α

y
i+1/2

=
q
ρ1/α

y
i+1/2

ρ1/α
i+1/2+ρ1/α

i+1/2

q
ρ1/α

y
i+1/2

= 2
q
ρ1/α

y
i+1/2

ρ1/α
i+1/2,

q
ρ3/α

y
i+1/2

= JρKi+1/2 ρ
2/α

i+1/2 +
q
ρ2/α

y
i+1/2

ρ1/α
i+1/2,

q
ρn/α

y
i+1/2

=
q
ρ1/α

y
i+1/2

ρ(n−1)/α
i+1/2 +

q
ρ(n−1)/α

y
i+1/2

ρ1/α
i+1/2.

We notice that there is a function

Γ(n, α)i+1/2 = Γ(n− 1, α)i+1/2ρ1/α
i+1/2 + ρn−1/α

i+1/2, Γ(1, α) = 1

that satis�es (3.13). The two di�erences we wanted to group together are
then written as

r
ρ

2
α

z

i+1/2
= Γ(2, α)i+1/2

q
ρ1/α

y
i+1/2

= 2ρ1/α
i+1/2

q
ρ1/α

y
i+1/2

,
r
ρ
α+2
α

z

i+1/2
= Γ(2 + α, α)i+1/2

q
ρ1/α

y
i+1/2

.

We then get

0 =
q
ρ1/α

y
i+1/2

(
2Ωρ1/α

i+1/2F̃
1
i+1/2 − κwi+1/2Γ(2 + α, α)

)
+ JwKi+1/2

(
F̃ 2
i+1/2 − wF̃ 1

i+1/2 − κργi+1/2

)
.

We want to choose such (F̃ 1
i+1/2, F̃

2
i+1/2)that(

2Ωρ1/α
i+1/2F̃

1
i+1/2 − κwi+1/2Γ(2 + α)i+1/2

)
= 0(

F̃ 2
i+1/2 − wi+1/2F̃

1
i+1/2 − κργi+1/2

)
= 0
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This gives us

F̃i+1/2 =

[
F̃ 1
i+1/2

F̃ 2
i+1/2

]
=

[
γ−1
γ

Γ(2+α)i+1/2

2ρ1/αi+1/2

wi+1/2

wi+1/2F̃
1
i+1/2 + κργi+1/2

]

We end up with a scheme on the form

d

dt
Ui =

−1

∆x

(
F̃i+1/2 − F̃i−1/2

)
(3.14)

Which is our Explicit Energy Conserving scheme, shortened as EEC.

3.4.2 Two-dimensional EEC Scheme

We proceed to �nd a discretization for the two-dimensional system (1.29).
The entropy function for this system is

η(u) = ρe(ρ) +
1

2
(w2 + ω2),

which gives us the entropy variables

v(u) =

κ γ
(γ−1)

ργ−1 − 1
2
w2+ω2

ρ2

w
ω

 . (3.15)

By de�nition, the entropy potentials are calculated to be

ψx = κργw,

ψy = κργω.

The method remains the same, and we end up with similar results to what
we got in Section (3.4.1)

0 = Ω
q
ργ−1

y
i+1/2

F̃ 1
i+1/2 − κwi+1/2 JργKi+1/2

+ JwKi+1/2

(
F̃ 2
i+1/2 − wi+1/2F̃

1
i+1/2 − κργi+1/2

)
+ JωKi+1/2

(
F̃ 3
i+1/2 − ωF̃ 1

i+1/2

)

F̃i+1/2 =

F̃ 1
i+1/2

F̃ 2
i+1/2

F̃ 3
i+1/2

 =


γ−1
γ

Γ(2+α)i+1/2

2ρ1/αi+1/2

wi+1/2

wF̃ 1
i+1/2 + κργi+1/2

ωF̃ 1
i+1/2


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Similarly, for G

0 = Ω
q
ργ−1

y
i+1/2

G̃1
i+1/2 − κωi+1/2 JργKi+1/2 + JwKi+1/2

(
G̃2
i+1/2 − wG̃1

i+1/2

)
+ JωKi+1/2

(
G̃3
i+1/2 − ωi+1/2G̃

1
i+1/2 − κργi+1/2

)

G̃i+1/2 =

G̃1
i+1/2

G̃2
i+1/2

G̃3
i+1/2

 =


γ−1
γ

Γ(2+α)i+1/2

2ρ1/αi+1/2

ωi+1/2

wi+1/2G̃
1
i+1/2

ωi+1/2G̃
1
i+1/2 + κργi+1/2


Which satis�es the entropy equality for two dimensions, that is

d

dt
η(Ui(t)) +

1

∆x

(
Qx
i+1/2,j −Qx

i−1/2,j

)
+

1

∆y

(
Qy
i,j+1/2 −Q

y
i,j−1/2

)
= 0

Thus, our two-dimensional scheme ends up with the form

d

dt
Ui = − 1

∆x

(
F̃i+1/2 − F̃i−1/2

)
− 1

∆y

(
G̃i+1/2 − G̃i−1/2

)
3.4.3 Scheme Analysis

The properties of the scheme that we found is denoted as the Explicit Entropy
Conservative scheme, abbreviated as EEC.

Theorem 3.4. The EEC scheme (3.14) is consistent with the isentropic
Euler equations (1.25). It is second order accurate and energy preserving,
i.e. it satis�es the entropy equality (3.3) and has the numerical entropy �ux

Q̃i+1/2 = V
T

i+1/2Fi+1/2−ψi+1/2 = κ
γ

(γ − 1)
ργ−1F̃1−

1

2
w2F̃1+w2F̃1+κwργ−κwργ,

where Q̃ is consistent with q.

Proof. We chose Q̃ so that it satis�es (3.8) so it follows that the EEC scheme
satis�es the energy equality according to Theorem 3.3. The accuracy is
shown by truncation error analysis. Let F i

x denote the approximation of the
derivative of f i, that is f at the ith space step. Then, from (3.14) we have
that

F i
x =

F̃i+1/2 − F̃i−1/2

∆x
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Taylor expansion of F̃i+1/2 and F̃i−1/2 gives

F̃i+1/2 = f i + f ix
∆x

2
+

1

2
f ixx

(
∆x

2

)2

+
1

6
f ixxx

(
∆x

2

)3

F̃i−1/2 = f i − f ix
∆x

2
+

1

2
f ixx

(
∆x

2

)2

− 1

6
f ixxx

(
∆x

2

)3

Then the di�erence between the real f ix and F
i
x is then

F i
x − f ix =

1

24
f ixxx∆x

2 +O(∆x3),

which means that our scheme is second order accurate. The consistency
follows from the de�nition.
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3.5 Numerical Experiments

Our �rst test problem is given by the initial conditions

ρ(x, 0) =

{
2 if 4 < x < 6

1 elsewhere
, (3.16)

w(x, 0) = 0.

(a) ∆x = 0.1 (b) ∆x = 0.05

(c) ∆x = 0.01

Figure 3: The density ρ from solutions of (3.16) at time t = 1, with increasing
number of points.

The solution of this problem should see shocks develop in both directions.
We notice that the shocks are resolved as they should, but we see large
oscillations. As illustrated in Figure 3, the frequency of these oscillations
increase as we re�ne our mesh in space; they have a period of order ∆x.
To get rid of the oscillations we will later add a dissipating factor to the
developed scheme.
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(a) t = 0.2 (b) t = 0.5

Figure 4: The density ρ from solutions of the EEC scheme, using the Forward
Euler and Heun's methods time discretization.

Figure 4 shows the importance of using the Heun's method, which is of
second-order accuracy when we compute the solution. As seen in the �gure,
oscillations will grow at a much faster pace when we only use the �rst-order
accurate Forward Euler method for time discretization.

For our next experiment we introduce the �ux

F avg
i+1/2 =

1

2
(f(Ui) + f(Ui+1)) (3.17)

to compare our scheme with, which we will just call the average �ux. This is
just the �rst term from the methods presented in Section 2.1, namely (2.4),
(2.5) and (2.7). For simplicity, we will denote the �nite volume scheme with
�ux F avg

i+1/2 as the average �ux scheme.
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(a) CFL=0.25 (b) CFL=0.05

(c) CFL=0.05

Figure 5: Relative change in energy ηrelchange over time for the EEC method
and the average �ux without their dissipating terms.

We wish to test the energy conserving properties of the EEC method
(3.14). To do this we introduce a measure for relative change in energy over
time

ηrelchange =
‖ηntot − η0

tot‖L1

‖η0
tot‖L1

,

using ηntot as the total energy in our scheme at time step n, ηntot =
∑

i η(Un
i ).

As long as the entropy �ux q is zero on the border, the entropy should be
conserved with our scheme, and ηrelchange should have a bound that is negligible.
Figure 5 illustrates this well, with a sharp reduction in �lost� energy for our
method as we reduce the CFL-number. On the other hand, a scheme using
the �ux (3.17) sees an increase in ηrelchange, as the method using such a �ux is
not energy conserving.
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CFL Runtime ηrelchange

0.25 0.084035 1.34711e-4
0.20 0.101188 7.23383e-5
0.15 0.133578 3.32239e-5
0.10 0.199802 1.15557e-5
0.05 0.393697 2.10832e-6
0.025 0.781972 4.30241e-7
0.01 1.939399 5.95635e-8

(a) EEC scheme using Heun's method

CFL Runtime ηrelchange

0.25 0.041048 8.3892e-2
0.20 0.046873 4.5319e-2
0.15 0.061111 2.2807e-2
0.10 0.090872 1.0484e-2
0.05 0.183622 3.7439e-3
0.025 0.360909 1.6157e-3
0.01 0.905467 5.9518e-4

(b) EEC scheme using the forward
Euler's method

Table 1: Runtimes and change in energy ηrelchange for the EEC scheme.

Table 1 measures the runtime of the EEC scheme and its relative change
in energy for di�erent CFL numbers. The runtime is measured in seconds.
The importance of using a second order time discretization becomes apparent
when we compare the values of the two tables, as the values of ηrelchange in Table
1a are several order of magnitude smaller than that of Table 1b .

CFL Runtime ηrelchange

0.25 0.024229 2.4255e-4
0.20 0.029376 2.8123e-4
0.15 0.039802 3.0552e-4
0.10 0.059685 3.1523e-4
0.05 0.121595 3.1861e-4
0.025 0.239345 3.1881e-4
0.01 0.603769 3.1851e-4

(a) Average Flux Scheme with
Heun's method

CFL Runtime ηrelchange

0.25 0.033777 1.7319e-2
0.20 0.042700 1.7267e-2
0.15 0.063292 1.7260e-2
0.10 0.091174 1.7298e-2
0.05 0.181621 1.7272e-2
0.025 0.354508 1.7259e-2
0.01 0.887423 1.7252e-2

(b) Roe's Scheme with Heun's
method

Table 2: Runtimes and change in energy ηrelchange for the average �ux scheme
and Roe's method. The relative energy does not decrease with smaller CFL-
numbers, meaning that the schemes are not energy preserving.

As we can see, neither of these schemes well conserve the energy as we de-
crease the CFL-number. The average �ux scheme and Roe's method are com-
putationally cheap to implement, and when we compare the runtimes of Table
2 with those of Table 1, we see that the EEC method is somewhat slower.
However, neither the Average �ux scheme or Roe's scheme conserves the en-
ergy. Computation of ηrelchange using Lax-Friedrichs method and Rusanov's
method yielded similar results. Both schemes had lower computational cost,
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but no Energy preservation. It is no big surprise that Lax-Friedrichs scheme,
Rusanov's Scheme and Roe's scheme are not energy conserving, as they con-
tain di�usion operators which dissipates energy around shocks. Thus, we can
expect the energy to be decreasing around shocks.

As stated in Theorem 3.4, the EEC scheme is second-order accurate. If we
let the L1-error of u with spatial grid-size ∆x be denoted as E∆x, then E∆x is
given by E∆x =

∑
i |Ui − ui|∆x, where Ui and ui are the approximation and

real solution of u at point x = i∆x, respectively. A scheme with accuracy
k should have its error be given by E∆x = O(∆xk). In other words, the
expression for E∆x is readily given as

E∆x = C∆xk,

with C being some constant. If we then use di�erent spatial mesh sizes
∆x1 and ∆x2 and evaluate E∆x for each of them, we can use two of these
expressions to eliminate C by division

E∆x1

E∆x2
=

(
∆x1

∆x2

)k
.

By taking the logarithm of both sides, we get the expression for k,

k =

(
E∆x1/E∆x2

∆x1/∆x2

)
.

When we want to �nd the rate of convergence by numerical experiments, test
problems such as (3.16) are not well suited because of the strong shocks that
exist in the solution from the start. Instead, we choose initial value data that
will stay smooth for low values of t. One such test problem is

ρ(x, 0) =

{
1 + sin(2x− π

2
) if π < x < 2π

1 elsewhere
, w(x, 0) = 0. (3.18)

∆x L1 error of ρ Order of Accuracy
0.16 0.112761 �
0.08 0.048675 1.212006
0.04 0.019098 1.349730
0.02 0.005593 1.771820
0.01 0.004954 0.175025

Table 3: Order of Accuracy for the EEC Scheme for test problem (3.18).
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Table 3 shows the order of accuracy that was computed with the EEC
scheme for test problem (3.18) at time t = 0.5. We see that the order of
convergence is approaching k = 2, but as the ∆x gets smaller, MATLAB
has di�culties correctly computing the L1error, and we get up with a k ≈ 0.
When the accuracy is of second order, it is hard to compute solutions and
L1-errors that are accurate enough to get a good measure of k. Still, the
pattern was showing that k is tending towards 2.

Finally, we compute the solution to the two-dimensional test problem

ρ(x, 0) =

{
2 if 3 < x < 7, 4.5 < y < 5.5

1 elsewhere
, (3.19)

w(x, 0) = 0,

ω(x, 0) = 0.

(a) t = 0.2 (b) t = 0.5

(c) t = 0.8

Figure 6: The density ρ from solutions of (3.19), using the two-dimensional
EEC scheme.
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The solution is plotted in Figure 6. As we can see, the solution behaves
similarly to the one-dimensional scheme. In Section 3.8, we present a solution
to the same problem with an energy stable scheme.

3.6 Numerical Viscosity

The de�nition of an energy stable method is, as was discussed in Section 3.3,
one that satis�es the entropy inequality (3.4), that is

d

dt
η(Ui(t)) +

1

∆x

(
Qi+1/2 −Qi−1/2

)
≤ 0.

As discussed �rst in Section 1.3 and then later in Section 1.4.3, we need
our energy to be dissipated at the shocks. The EEC-method is energy con-
servative, so there is no dissipation. We wish to �nd some di�usion oper-
ator to add to our existing scheme, so that our new scheme will be on the
form Fi+1/2 = F̃i+1/2 −Di+1/2 JV Ki+1/2, where Di+1/2 JV Ki+1/2 represents our
numerical viscosity. The requirements for entropy stability was stated by
Tadmor[18] in the following theorem, together with an entropy dissipation
estimate.

Theorem 3.5. (Tadmor[18]). Assume that we have a positive semi-de�nite
matrix D so that we get

JV KTi+1/2Di+1/2 JV Ki+1/2 ≥ 0 ∀Vi, Vi+1. (3.20)

A conservative scheme which has more numerical viscosity than an entropy
conservative one is entropy stable. That is, if an entropy conservative scheme
has �ux F̃i+1/2, then the �ux of the entropy stable scheme will be given by

Fi+1/2 = F̃i+1/2 − Di+1/2 JV Ki+1/2. Furthermore, an entropy stable scheme
with numerical �ux F has the entropy dissipation estimate

d

dt
η(Ui) +

1

∆x

(
Qi+1/2=Qi−1/2

)
= =

1

4∆x
JV KTi+1/2Di+1/2 JV Ki+1/2

=

1

4∆x
JV KTi−1/2Di−1/2 JV Ki−1/2≤0

Here

Qi+1/2 = Q̃i+1/2 −
1

2
V
T

i+1/2Di+1/2 JV Ki+1/2 ,

where Q̃ is the numerical entropy �ux (3.8) and Q is consistent with q .

Proof. Let F̃i+1/2 be a entropy conserving �ux, that is

JV Ki+1/2 F̃i+1/2 = JψKi+1/2 .
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By de�nition

Fi+1/2 = F̃i+1/2 −Di+1/2 JV Ki+1/2 , Di+1/2 ≥ 0.

0 =
dUi
dt

+
Fi+1/2 − Fi−1/2

∆x

=
dUi
dt

+
F̃i+1/2 − F̃i−1/2

∆x
(3.21)

−

(
Di+1/2 JV Ki+1/2 −Di−1/2 JV Ki−1/2

∆x

)

Multiplying with η′(Ui) = Vi by (3.21)

0 =
d

dt
η(Ui) +

Q̃i+1/2 − Q̃i−1/2

∆x
−
ViDi+1/2 JV Ki+1/2

2∆x
+
ViDi−1/2 JV Ki−1/2

2∆x

=
d

dt
η(Ui) +

Q̃i+1/2 − Q̃i−1/2

∆x
−
V̄ T
i+1/2Di+1/2 JV Ki+1/2 − V̄ T

i−1/2Di−1/2 JV Ki−1/2

2∆x

+
1

4∆x

(
JV KTi−1/2Di+1/2 JV Ki+1/2 − JV KTi−1/2Di−1/2 JV Ki−1/2

)
If we then let Qi+1/2 = Q̃i+1/2 − 1

4
V̄ T
i+1/2Di+1/2 JV Ki+1/2, we have

0 =
d

dt
η(Ui) +

Qi+1/2 −Qi−1/2

∆x

+
1

2∆x

(
V̄ T
i+1/2Di+1/2 JV Ki+1/2 − V̄

T
i−1/2Di−1/2 JV Ki−1/2

)
≥ d

dt
η(Ui) +

Qi+1/2 −Qi−1/2

∆x

So if (3.20) is satis�ed, then F also satis�es the entropy inequality and we
can �nd a stable scheme. If we can �nd the right matrix D, we can create a
modi�cation to the EEC method from Section (3.4) that satis�es the entropy
inequality.

3.7 Adding the di�usion operator

The construction of stable di�usion operators is not trivial. One choice would
be to use the Rusanov di�usion operator
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∣∣si+1/2

∣∣ I JUKi+1/2 ,

where si+1/2 = maxk {|λk(Ui)| , |λk(Ui+1)|} is the same as before. The di�u-
sion operator that we will use with our method is a modi�ed version of the
di�usion operators from Roe's method. The di�usion operators are modi�ed
so that we get entropy stable operators.

3.7.1 Roe's di�usion operator

Since ∂u = ∂u
∂v
∂v by the chain rule, we have that

JUKi+1/2 = [UV ]i+1/2 JV Ki+1/2 , (3.22)

where [UV ]i+1/2 is the the matrix given by ∂u
∂v

and evaluated in Ui+1/2. Recall
from (3.12) that the entropy variables for the isentropic Euler equations are

v =

[
κ γ

(γ−1)
ργ−1 − 1

2
m2

ρ2
m
ρ

]
=

[
v1

v2

]
.

Writing u in terms of v, we have

u(v) =

[
ρ
ρu

]
=


(
v1+

v22
2

Ω

)β
v2

(
v1+

v22
2

Ω

)β
 .

with Ω = κγ
γ−1

and β = 1
γ−1

. We can now calculate the change-of-variables
matrix

UV =
ρ2−γ

γκ

[
1 w
w w2 + κγργ−1

]
.

According to the eigenvector scaling theorem and the results in Barth[1], we
can choose R to be the scaled matrix of eigenvectors of f such thatRRT = Uv.
We see that we must then have

R =

√
ρ2−γ

2γκ

[
1 1

w −
√
κγργ−1 w +

√
κγργ−1

]
.

Then, if we use Roe's di�usion operator from (2.7) and (3.22), we get

R |Λ|R−1 JUKi+1/2 = R |Λ|RT JV Ki+1/2 ,
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with

|Λ| =
[
w −

√
κγργ−1 0

0 w +
√
κγργ−1

]
.

Letting a = w−
√
κγργ−1 and b = w+

√
κγργ−1, this matrix can be directly

calculated to be

R |Λ|RT =

[
|a|+ |b| |a| a+ |b| b
|a| a+ |b| b |a| a2 + |b| b2

]
.

Note that by evaluating UV in the arithmetic average from (1.3) instead of
the Roe average (2.8), the shock resolving properties of Roe's method is lost.
We call the new scheme given by F̂i+1/2 = F̃i+1/2 − R |Λ|RT JV Ki+1/2 the
Entropy Stable with Roe Di�usion operator scheme, abbreviated as ESRD.

3.7.2 Two-dimensional di�usion operator

The two-dimensional operator is constructed in an analog manner to the one
dimensional case. We proceed to construct the modi�ed version of Roe's
di�usion operator. The entropy variables are given by (3.15),

v =

κ γ
(γ−1)

ργ−1 − 1
2
m2

ρ2

w
ω

 =

v1

v2

v3

 .
u(v) is also similarly given as

u(v) =

 ρ
ρw
ρω

 =



(
v1+

v22
2

+
v23
2

Ω

)β
v2

(
v1+

v22
2

+
v23
2

Ω

)β
v3

(
v1+

v22
2

+
v23
2

Ω

)β


with Ω as before. The matrix UV is calculated to be

Uv =
ρ2−γ

γκ

1 w ω
w w2 + Υ wω
ω wω ω2 + Υ

 ,
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with Υ = κγργ−1. We then �nd the scaled matrix of eigenvectors of f and g
from (1.29) such that Rx (Rx)T = Ry (Ry)T = UV . They are

Rx =

√
ρ2−γ

2γκ

 1 0 1

w −
√
Υ 0 w +

√
Υ

ω
√

2Υ ω

 ,

Ry =

√
ρ2−γ

2γκ

 1 0 1

w −
√

2Υ w

ω −
√
Υ 0 ω +

√
Υ

 .
The diagonal matrix consisting of the eigenvalues of f is

|Λx| =


∣∣∣w −√Υ ∣∣∣ 0 0

0 w 0

0 0 w +
√
Υ

 ,
and similarly for g. Then the calculation is straight forward, and as de-
scribed in (2.3) of Section 2.1 and Section 2.1.3. The matrices Rx |Λx| (Rx)T

and Ry |Λy| (Ry)T are calculated in a direct manner, like its one-dimensional
counterpart.

3.7.3 Scheme Analysis

Theorem 3.6. The ESRD scheme is consistent with the isentropic Euler
equations (1.25). It is energy stable and it satis�es the energy dissipation
estimate

d

dt
η(Ui) +

1

∆x

(
Qi+1/2 −Qi−1/2

)
=

−1

4∆x

(
JV KTi+1/2 (R|Λ|RT )i+1/2 JV Ki+1/2

)
−1

4∆x

(
JV KTi−1/2 (R|Λ|RT )i−1/2 JV Ki−1/2

)
≤ 0,

where Qi+1/2 = Q̃i+1/2 − 1
2
V
T

i+1/2R|Λ|RT JV K i+1/2 is consistent with Q. Q̃ is
(3.8), the energy �ux of the EEC scheme. The scheme is �rst-order accurate.

Proof. The di�erence between the numerical viscosity matrices of the energy
preserving EEC scheme and the ESRD scheme is Di+1/2 = Pi+1/2− P̃ i+1/2 =
R|Λ|RT . This is a positive symmetric matrix, and hence satis�es the stability
criterion (3.20) for all Vi and Vi+1. The energy dissipation estimate then
follows from Theorem 3.5
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3.8 Numerical Experiments

We continue testing on a problem similar to (3.16),

ρ(x, 0) =

{
2 if 3 < x < 5

1 elsewhere
, (3.23)

w(x, 0) = 0.

Figure 7: The density ρ from solutions of the ESRD scheme plotted together
with several common schemes and a reference solution.

We test the stability of our scheme. Figure 7 shows the ESRD scheme
compared with popularly used volume schemes, as well as a high resolution
reference solution.

We can see that Rusanov's scheme as well as the ESRD scheme are the
schemes that most closely approximate the solution, with Roe's scheme fol-
lowing closely behind. Lax-Friedrichs scheme does not approximate wave
speeds locally, and we see that it is quite di�usive.
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(a) t=0.5 (b) t=1

(c) t=3 (d) t=6

Figure 8: The density ρ from solutions of (3.19), using the the ESRD scheme.
We have used the re�ective boundary conditions that ω → −ω at the bound-
ary y = 0. That is, y = 0 is acting as if it was a solid wall.

In Figure 8, we plotted the solution of the two dimensional problem (3.19)
solved by the ESRD scheme. We observe that we don't get growing oscilla-
tions like in Figure (6). The method is behaving as expected.
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∆x L1 error of ρ Order of Accuracy
0.16 0.415281 �
0.08 0.234966 0.821639
0.04 0.126008 0.898930
0.02 0.069927 0.849602
0.01 0.037054 0.916208
0.005 0.018034 1.038915
0.0025 0.009134 0.981343
0.00125 0.004237 1.108375
0.000625 0.002110 1.005735

Table 4: Order of Accuracy for the ESRD Scheme for test problem (3.18).

The ESRD scheme should only be �rst-order accurate, because of the
added Roe di�usion operator. We examine the rate of convergence for the
ESRD scheme by using the same test problem and conditions as in Section
3.5, that is, (3.18) at t = 0.5. Table 4 shows that the rate of convergence
quickly tend towards a rate k ≈ 1. As the ESRD method is only �rst-order
accurate, the order of accuracy was much simpler to accurately compute
than for the EEC method. This is because small inaccuracies in the real
computed solution matters less than it would when we have a second-order
accurate method.
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3.9 Conclusion

We developed an entropy conservative and entropy stable �nite volume scheme
for the isentropic Euler schemes for polytropic, ideal gases with any degrees
of freedom α. The schemes were developed for one space dimension, and the
generalized to account for the two-dimensional case. Numerical experiments
showed that the EEC scheme has a decent computational cost, even though
it's higher than that of the popularly used methods. It is also second or-
der accurate. The ESRD scheme adds dissipation around shocks to avoid
growing oscillations, and is stable, but only �rst-order accurate.

Further possible work to be done includes making the stable method by
using reconstruction[12] to make the method second-order accurate. One
could also investigate the positivity preservation of the density variable ρ.
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