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Abstract. In this paper we present a novel method for nonlinear rigid
body motion estimation from noisy data using heterogeneous sets of
objects of the conformal model in geometric algebra. The rigid body
motions are represented by motors. We employ state-of-the-art nonlin-
ear optimization tools and compute gradients and Jacobian matrices
using forward-mode automatic differentiation based on dual numbers.
The use of automatic differentiation enables us to employ a wide range
of cost functions in the estimation process. This includes cost func-
tions for motor estimation using points, lines and planes. Moreover, we
explain how these cost functions make it possible to use other geometric
objects in the conformal model in the motor estimation process, e.g.,
spheres, circles and tangent vectors. Experimental results show that
we are able to successfully estimate rigid body motions from synthetic
datasets of heterogeneous sets of conformal objects including a combi-
nation of points, lines and planes.
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1. Introduction

Rigid body motion or pose estimation in geometric algebra has been an active
research topic over the last decades, and it has been investigated using the
conformal model since its introduction in 2001 by Li, Hestenes and Rock-
wood [15]. Lasenby et al. [14] presented attitude estimation using rotors in
the 3D Euclidean model. Daniilidis [5] presented a solution to the hand-
eye calibration problem in robotics using dual quaternions. This solution
was later extended to the motor algebra in [2], and to the conformal model
in [18]. Rosenhahn and Sommer [19] presented 2D-3D pose estimation using
stratification of spaces. Further, Gebken, Perwass and Sommer [9] presented
methods for 2D-3D and 3D-3D rigid body motion estimation from point data
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in the conformal model using a tensor implementation for the numerical com-
putations.

Most estimation techniques based on geometric algebra employ singular
value decomposition or other linear least-squares methods. In contrast to this,
Valkenburg and Alwesh [25] employed non-linear optimization in a calibration
method of multiple stationary 3D points as part of an optical positioning
system using the conformal model of geometric algebra. Perwass [17] used
non-linear optimization in 3D-reconstruction from multiple view geometry in
the projective model of geometric algebra. The methods of [17,25] made use
of multivector differentiation in geometric calculus [12] to compute gradients
and Jacobian matrices.

In [24] we presented methods and implementation details for automatic
differentiation [13,22] of multivector valued functions, which were used for
computing gradients and Jacobian matrices in nonlinear optimization. Both
matrix and multivector implementations were presented. Further, we pre-
sented multiple parameterizations of rotors and motors as well as different
cost functions for rotor and motor estimation from noisy point data.

This work is extended in this paper with inspiration from the results of
Valkenburg and Dorst [26] on the estimation of motors from sets of hetero-
geneous objects in the conformal model. We also expand our work on point
sets, as presented in [24], by introducing cost functions for motor estimation
from 3D line and plane correspondences. Further, we explain how these cost
functions make it possible to use other geometric objects like spheres, circles
and tangent vectors in the conformal model in the estimation process.The
use of automatic differentiation makes it efficient to implement optimization
for a wide range of cost functions.

The paper is organized as follows: Sect. 2 introduces geometric algebra
and the conformal model. Further, Sect. 3 presents motor estimation from
observations of geometric objects in the conformal model. Section 4 presents
experimental results. Finally, Sect. 5 concludes the paper.

2. Geometric Algebra and the Conformal Model

Geometric algebra is an approach to geometry based on the work of W. Clif-
ford who combined Grassmann’s exterior algebra with Hamilton’s quater-
nions, and created what he termed geometric algebra. Hestenes developed
geometric algebra further in his books [11,12] and later introduced the con-
formal model in [15].

The elements of a geometric algebra are called multivectors. The geo-
metric algebra over the 3-dimensional Euclidean space R

3 is denoted R3. The
notation R

r
3 refers to the r-grade elements of R3; e.g., R2

3 refers to the elements
of R3 of grade 2 – the bivectors. The notation R

+
3 refers to the elements of R3

of even grade. The conformal model of geometric algebra is denoted R4,1 with
the null basis {e1, e2, e3, no, n∞}. The basis vector n∞ = e− − e+ represents
the point at infinity and the basis vector no = (e− + e+)/2 represents an
arbitrary origin. These basis vectors have the properties n2

∞ = n2
o = 0 and
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n∞ · no = −1. The notation eij is shorthand for the outer product ei ∧ ej
of the vectors ei, ej ∈ R

1
3. The highest grade element of R3, the Euclidean

pseudoscalar, is denoted I3. The conformal pseudoscalar is denoted I. The
conformal dual of a multivector X is denoted X∗ = X · I−1. The element of
grade r of a multivector X is extracted using the grade projection operator
〈X〉r.

Vectors x ∈ R
1
3 maps to points p ∈ R

1
4,1 according to p = x+ 1

2x2n∞+no.

Lines Λ ∈ R
3
4,1 are constructed through the outer product of two conformal

points and the point at infinity: Λ = p1 ∧ p2 ∧ n∞. Planes Π ∈ R
4
4,1 are

constructed through the outer product of three conformal points and the
point at infinity Π = p1 ∧ p2 ∧ p3 ∧ n∞. Dual planes are denoted π ∈ R

1
4,1.

Rigid body motions can be represented in the conformal model using
motors

M = TR (2.1)

where T = 1 − 1
2 tn∞ is a translator with translation vector t ∈ R

1
3, and

R ∈ R
+
3 is a rotor. A rotor R can be written in the form

R = cos
(

θ

2

)
− sin

(
θ

2

)
B, (2.2)

where θ ∈ R is the rotation angle and B ∈ R
2
3 is a unit bivector that encodes

the rotation plane. It is noted that rotors are isomorphic to the unit quater-
nions.

Define M = span{1, e12, e13, e23, e1n∞, e2n∞, e3n∞, I3n∞}. The motor
manifold M is defined as the set

M = {M : M ∈ M,MM̃ = 1}. (2.3)

The motors can be written as the exponential of a unit bivector Λ∗

M = exp
(

−1
2
Λ∗

)
, (2.4)

where Λ∗ ∈ span{e12, e13, e23, e1n∞, e2n∞, e3n∞}. More specifically, Λ∗ =
θB + tn∞ where B ∈ R

2
3 and t ∈ R

1
3. It can be shown that Λ∗ is a dual line

representing the screw axis of the rigid body motion, see [6]. Following [27],
the exponential formulation in (2.4) can be written in terms of the constituent
elements of different grades as

〈M〉0 = cos
(

θ

2

)
(2.5)

〈M〉2 = sin
(

θ

2

)
B + cos

(
θ

2

)
t⊥n∞ + sinc

(
θ

2

)
t‖n∞ (2.6)

〈M〉4 = sin
(

θ

2

)
Bt⊥n∞, (2.7)

where t⊥ = (t ∧ B)/B is the rejection of t by B and t‖ = (t · B)/B is the
projection of t in B. As described in [7], the rotor R of a motor M = TR can
be extracted by

R = −no · (Mn∞). (2.8)
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The translation vector t ∈ R3 can then be found using

t = −2(no · M)/R. (2.9)

The bivector B is found as the normalized grade 2 part of the rotor R:

B = 〈R〉2/‖〈R〉2‖. (2.10)

A geometric object X ∈ R4,1 is displaced by a motor M ∈ M using the
sandwich product

X ′ = MXM̃, (2.11)

where X ′ is the displaced object.

3. Motor Estimation from Observations of Conformal Objects

In this section a new approach to motor estimation is proposed based on
non-linear least squares optimization of the form

min
M∈M

F (M). (3.1)

where F : M �→ R is the cost function to be minimized and M is a conformal
motor on the motor manifold M. The cost function F can be written

F (M) =
1
2

N∑
i=1

(fi(M))2 =
1
2

N∑
i=1

p∑
j=1

(rij(M))2, (3.2)

where each observation i corresponds to a vector fi(M) = (ri1, . . . , rip)� of
p residuals rij ∈ R. It is seen that the cost function F has m = Np residuals
where N is the number of observations. A residual is a scalar measure for the
discrepancy between the model and the observed data [16].

It must be ensured that the solution stays on the motor manifold during
the optimization. In this paper, this is achieved using the exponential map in
(2.5) to (2.7). The use of the exponential map in optimization on manifolds
has previously been used in pose estimation on SE(3) [21], and in numerical
integration on SO(3) and SE(3) [10]. The motor Mk+1 ∈ M in iteration
k + 1 is calculated as

Mk+1 = exp(Λ∗(ak+1))Mk, (3.3)

where ak+1 ∈ R
6 and

Λ∗(a) =
∑
I

aIΛ
∗
I , Λ∗

I ∈ {e12, e13, e23, e1n∞, e2n∞, e3n∞}. (3.4)

Here, ak+1 is the step calculated using a nonlinear least-squares method [16],
e.g., BFGS, nonlinear conjugate gradients or the Levenberg–Marquardt
method. The method used in this work is the Levenberg–Marquardt method.
This means that Λ∗(ak+1) is in the tangent space of M at Mk. Thus, Mk+1 is
on the motor manifold M and satisfies Mk+1M̃k+1 = 1 whenever MkM̃k = 1.
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3.1. Motor Estimation from Points

Consider a rigid body that is displaced by a motor M ∈ M. Let {pi}, pi ∈ R
1
4,1

be a set of points on the rigid body in the initial configuration, and let
{qi = MpiM̃} be the set of same points in the displaced configuration. The
sets {pi} and {qi} are called point clouds. Motor estimation is to find the
motor M given {pi} and {qi}.

One possible formulation of this optimization problem employs the inner
product between two conformal points

min
M∈M

1
2

N∑
i=1

(
MpiM̃ · qi

)2

. (3.5)

In this formulation, the measure that is optimized is the squared distance
between each two points, resulting in a 1-dimensional residual vector for each
observation. This however, is not a good formulation for the cost function as
is shown in the experimental results in [24] where the optimization process
converge slowly close to the solution.

An alternative solution is to project the points down to the 3-
dimensional Euclidean model after the transformation by the motor M , and
then to use the residual errors along each of the coordinate axes, resulting in
a 3-dimensional residual vector for each observation

min
M∈M

1
2

N∑
i=1

(
PR

1
3
(MpiM̃) − PR

1
3
(qi)

)2

. (3.6)

In [24], we found that this gave a significantly faster rate of convergence in
experiments.

3.2. Motor Estimation from 3D Line Correspondences

The next step is to consider motor estimation from two sets of 3D line cor-
respondences. Lines have been widely used in tracking, visual servoing and
pose estimation [1], however most of this work is based on optimizing 2D-
3D line correspondences with error metrics based on image features and not
3D-3D line correspondences. Bartoli and Sturm [1] present two reasons for
this. First, there is no global minimal parameterization for lines representing
their 4 degrees of freedom with 4 global parameters, and second, there are
no universally agreed error metric for comparing lines.

We present three formulations for motor estimation from 3D line corre-
spondences. Formally, given a set of direct or dual line correspondences

{(Λ1i , Λ2i)},

the aim is estimate the motor M that transforms the set {Λ1i} onto the set
{Λ2i}, that is,

Λ1i = MΛ2iM̃. (3.7)

The first formulation is based on the “Lin 3D” method in [1], and is
based on direct comparison of line coordinates. The optimization problem
can then be formulated as
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min
M∈M

1
2

N∑
i=1

(
MΛ2iM̃ − Λ1i

)2

, (3.8)

resulting in a 6-dimensional residual vector for each observation.
The other formulation we present is based directly on the geometry of

two lines [26]. This formulation is based on the angle and the common normal
between two lines. Given two normalized dual lines Λ∗

1 and Λ∗
2, the common

normal Euclidean vector w ∈ R
1
3 can be found by computing the motor

M = TR (3.9)

=
1
2
Λ∗
1/Λ∗

2. (3.10)

A measure for the angle between the two lines is found from

cos
(

θ

2

)
=

1
2
〈Λ∗

1/Λ∗
2〉. (3.11)

The common normal vector w can then be found as the rejection of the
translation vector t ∈ R

1
3 of the translator T in the rotation plane bivector

B ∈ R
2
3 of the rotor R.

Given the motor M and the set of normalized dual line correspondences
{(Λ∗

1i , Λ
∗
2i)} the residual common normal vector w ∈ R

1
3 for line set i can be

found from
1
2
MΛ∗

1iM̃/Λ∗
2i . (3.12)

The optimization problem can then be formulated as

min
M∈M

1
2

N∑
i=1

(wi + (1 − cos(θ/2))i)
2
, (3.13)

resulting in a 4-dimensional residual vector for each observation.
A 2-dimensional residual vector for each observation can be formed by

using the Euclidean norm of the common normal vector w, ‖w‖ ∈ R, and the
measure for the angle between the lines.

3.3. Motor Estimation from Plane Correspondences

This section presents a new method for motor estimation from correspon-
dences of 3D planes. The proposed method holds for both direct and dual
planes. Valkenburg and Dorst [26] employ the inner product between two
planes as the similarity measure used in the optimization. For two dual planes
π1, π2 ∈ R

1
4,1, this results in the measure

cos(θ) = 〈π1π2〉. (3.14)

However, this measure does not include any information regarding the dis-
tance from the origin along the respective normal vectors of each plane. The
estimated motor based on this measure will only contain the rotor and not
the translator.

In this work we present a formulation that is able to estimate not only
the rotor components of the motor, but also the components related to the
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translator. Similarly to creating a motor through the geometric product of
two lines, we form a general rotor G = TRT̃ , which is the rotor R translated
by the translator T = 1 − 1

2wn∞, through the geometric product of two
planes,

G =
1
2
π2/π1. (3.15)

Note that a translator is formed if the unit vectors of the two planes are
parallel. The distance measure can then be found by decomposing the general
rotor and finding the translation vector w ∈ R

1
3 and taking the Euclidean

norm

d = ‖w‖ ∈ R. (3.16)

The optimization problem can then be formulated with the cost function

min
M∈M

1
2

N∑
i=1

(di + (1 − cos(θ/2))i)
2
, (3.17)

resulting in a 2-dimensional residual vector for each observation.

3.4. Motor Estimation using Heterogeneous Conformal Objects

In the preceding sections, only homogeneous sets of conformal objects have
been used in the motor estimation. Based on the ideas of Valkenburg and
Dorst [26], this is now extended to motor estimation using heterogeneous
sets of conformal objects that have all been transformed by the same motor,
as shown in Fig. 1 for a point, a line and a sphere.

Figure 1. A line, a point and a sphere before and after the
transformation by a motor
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In our formulation, this is done with the optimization problem

min
M∈M

1
2

N1∑
i=1

w1i

(
PR

1
3
(MpiM̃) − PR

1
3
(qi)

)2

+
1
2

N2∑
j=1

w2j

(
MΛ2jM̃ − Λ1j

)2

+
1
2

N3∑
k=1

w3k (dk + (1 − cos(θ/2))k)
2
, (3.18)

where N1 are the number of point correspondences, N2 are the number
of line correspondences, N3 are the number of plane correspondences and
w1i , w2j , w3k ∈ R are weights to adjust the contributions from the different
cost functions to the overall solution based on, e.g., the reliability of the
data [26].

This formulation can be used to estimate motors from more complex
geometric objects as point pairs, circles and tangent vectors. For circles, this
can be performed by using the center point and the carrier plane where the
center points c ∈ R

1
4,1 is extracted using c = C/(−n∞ · C) and the carrier

dual plane is found by π = (C ∧n∞)∗. This can similarly be done for tangent
vectors by using the origins of the transformed tangent vectors and the carrier
lines. Point pairs can be used by either splitting them into the constituent
points or by creating the carrier line.

3.5. Convexity

The convexity of motor estimation using non-linear optimization has not been
thoroughly investigated in the context of geometric algebra. However, motor
estimation is closely related to estimation and control in SE(3), where the
analysis can be separated into convergence of translation, and convergence
in rotation as given in SO(3). It is known that if deviations in SO(3) are
described by the angle θ and plane of rotation B, or with associated metrics
like 1 − η or 1 − η2 where η = cos(φ/2), the convergence to zero deviation
can be achieved for all initial conditions except for initial conditions where
the solution can get stuck at |θ| = π, see [8,28].

The cost functions that we use in the present paper are based on the
angle-plane description (2.2) for the deviation in rotation. This is even the
case for the cost function in (3.5), which is seen by applying the angle-plane
form of the rotor. The step in the Levenberg–Marquart for iteration k is
calculated in the tangent space at Mk based on the deviation in translation
and the deviation in rotation, which is given in terms of the geodesic metric
and the plane of rotation in the same tangent space. The update is done with
the exponential map and results in a new motor Mk+1. In this optimization
process the incremental convergence properties at each step will be similar to
stability properties in the control problem on SE(3). This indicates that the
optimization problem will be convex except in the case that the solution gets
stuck at |θ| = π, which will not be encountered in practice. This agrees with
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the extensive numerical testing that was performed on the method proposed
in this paper, with initial angular deviations up to θ̄0 = π.

4. Experimental Results

This section presents experimental results on motor estimation using sets of
heterogeneous conformal objects. The experiments were implemented using
our framework GAME [23] for multivector estimation, which was presented
in [24]. The GAME framework is written in C++ and Python, and is based on
the Ceres [20] non-linear optimization framework of Google, and the Versor [4]
geometric algebra library of Pablo Colapinto.

We employ the Levenberg–Marquardt (LM) [16] method, where the
Jacobian matrices are computed using forward mode automatic differen-
tiation based on dual numbers [3,13]. Automatic differentiation computes
derivatives with machine precision and works by exploiting the fact that all
computer implementations of mathematical functions are composed of a set
simple differentiable unary or binary operations. Derivatives of more com-
plex functions are computed by applying the chain rule at each operation
and bookkeeping the results [22]. The Jacobian matrices used in this work
are of size N × 6, where N is the number of residuals and 6 is the dimension
of the tangent space of the motor manifold M at the motor M .

In the following, the ground truth set of homogeneous conformal objects
{Xi}, X ∈ R4,1, i ∈ {1, . . . , N} are transformed by the motor M to form
the set {X ′

i} where X ′
i = MXiM̃ . The motor M which is to be estimated is

generated by a rotation of π/3 around the e2 axis followed by a translation
of 1 unit along the e1, e2 and e3 axes resulting in a motor M = TR with
coefficient vector

xM ≈ (0.87, 0,−0.5, 0,−0.68,−0.43,−0.18,−0.25). (4.1)

No noise was added in the experiments and the initial motor M0 = 1 was used
in all experiments, if not explicitly stated otherwise. The performance of the
different cost functions were evaluated by comparing the coefficients of the
estimated motor with the ground truth motor. Two motors are considered
to be equal if their coefficient vectors are equal within some tolerance. Given
the coefficient vectors a,b ∈ R

8, coefficient i of b is considered to be equal
to coefficient i of a if the following equation holds

|ai − bi| ≤ α + β|bi|, (4.2)

where α, β ∈ R. In the following experiments we consider two coefficient
vectors to be equal if (4.2) holds for

α = 1 × 10−8 and β = 1 × 10−5. (4.3)

The termination criterion of the LM solver is that the relative function tol-
erance εF satisfies εF ≤ 1× 10−6, or that the relative parameter tolerance εx
satisfies εx ≤ 1 × 10−8.
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4.1. Motor Estimation from 3D Point Correspondences

In [24], we presented motor estimation from sets of noisy point correspon-
dences. Using the LM method we were able to estimate the motor that trans-
formed one set of conformal points to the other set using 1,00,000 observations
with a computation time of 0.5040 s.

With no noise added, our method was able to estimate the correct motor
from 10 points in 4 iterations within tolerances α = 1×10−9 and β = 1×10−5.

4.2. Motor Estimation from 3D Line Correspondences

Motor estimation using 10 3D line correspondences with three different cost
functions was performed. The results are shown in Fig. 2. The cost function
in (3.8) with 6 residuals converged in 4 iterations and terminated due to the
parameter tolerance εx, while the cost function in (3.13) with 4 residuals
per observation converged in 7 iterations, with termination due to εF . A
version of (3.13) using the norm of the common normal between the line
correspondences and thus 2 residuals per observation performed slightly worse
and converged in 15 iterations, with termination due to εF . The optimization
problems based on (3.13) converged quickly during the first iteration while it
converged slowly close to the solution, that is, when the distance and angle

100

101
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4-residuals

0 1 2 3 4 5 6 7

Iteration k

10−15

10−13

10−11

10−9

10−7

10−5

10−3

10−1

101
6-residuals

C
os

t

Figure 2. Convergence of the cost function for motor esti-
mation using 3D line correspondences with two different cost
functions. The cost function in (3.8) with 6 residuals per
observation converged in 4 iterations and terminated due to
the parameter tolerance εx, while the cost function in (3.13)
with 4 residuals per observation converged in 7 iterations,
with termination due to the function tolerance εF
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Figure 3. Convergence of the cost function for motor esti-
mation using 3D plane correspondences. The cost function in
(3.17) with 2 residuals per observation converged in 7 itera-
tions

between the lines are small. The best cost function was the cost function in
(3.8) employing 6 residuals per observation. This gave the smallest number
of iterations, and it was the only cost function that was able to satisfy the
tolerances in (4.3). The two other cost functions were only able to satisfy the
condition in (4.2) with α = 1 × 10−3. By decomposing the estimated motor,
we found that there were errors in both the translational and rotational
components with an angle error θ ≈ 3 × 10−4 rad and distance error d ≈
1.4 × 10−4 m.

4.3. Motor Estimation from 3D Plane Correspondences

Motor estimation using 10 plane correspondences was performed and the
results are shown in Fig. 3. Optimization with the cost function in (3.17)
with 2 residuals per observation converged in 7 iterations and satisfied the
condition in (4.2) with α = 1 × 10−3 and β = 1 × 10−5. The LM solver
terminated due to the function tolerance εF .

4.4. Motor Estimation from Sets of Heterogeneous Conformal Objects

Motor estimation with the cost function in (3.18) using points, lines and
planes gave the results shown in Fig. 4. Without noise, when all objects were
transformed by the same motor, we were able to estimate the motor with
α = 1 × 10−5 in 4 iterations with an initial angular error of θ̄0 = π/3. In
addition, our method was able to estimate the motor with the same precision
with an initial angular error of θ̄0 = π, demonstrating the robustness of
our proposed method. Using the same initial motors and with noise, the
optimization converged in 13 and 19 iterations. The noise was applied to
the sets {X ′

i} by applying a motor with a small translation and rotation.
Different noise motors were applied to different sets, that is, the point set were
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Figure 4. Convergence of the cost function for motor esti-
mation using sets of heterogeneous conformal objects –
points, lines and planes. Without noise, the motor was esti-
mated with α = 1 × 10−5 in 4 iterations with an initial
angular error of θ̄0 = π/3, and in 9 iteration with θ̄0 = π.
With noise, the initial convergence is comparable, but due to
noise the optimization terminated after 13 and 19 iterations.
Comparison with the method of Valkenburg and Dorst [26]
shows that our method converged with the same accuracy in
the noise free case and with improved accuracy when there
was noise

transformed by another noise motor than the set of lines and planes. In these
experiments, the weights w1i = w2j = w3k = 1, in (3.18), were used. Our
method performs equally well as the method by Valkenburg and Dorst [26]
when no noise is present. When noise is present our method performs slightly
better.

5. Conclusion

In this paper we have presented a novel method for non-linear rigid body
motion estimation using point, line and plane correspondences where the
rigid body motions were represented using motors in the conformal model
of geometric algebra. The presented method makes is possible to estimate
motors using both homogeneous and mixed or heterogeneous sets of objects,
that is, using observations of points, lines and planes all transformed by the
same motor. In addition, these formulations can be used to estimate con-
formal motors from correspondences of more complex objects, e.g., spheres,
circles and tangent vectors. As opposed to the method of Valkenburg and
Dorst [26] our method is able to estimate the translational part of the motor
using only lines and planes. This is due to the use of the common normal
for line correspondences and the translation in the rotation plane for plane



Motor Estimation using Heterogeneous

correspondences. Moreover, our method had slightly better performance than
the method of Valkenburg and Dorst in the presence of noise. Our method
was very robust in the numerical experiments, and converged consistently
with initial angular deviations up to π.

The Levenberg–Marquardt nonlinear least-squares optimization method
was used and Jacobian matrices were computed using automatic differentia-
tion based on dual numbers. The presented method ensures that the solution
in each iteration is on the motor manifold by computing the update step in
the tangent space and computing the resulting motor using the exponential
map.

Open Access. This article is distributed under the terms of the Creative Com-
mons Attribution 4.0 International License (http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes
were made.
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