SINTEF REPORT

@ SINTEF [=

Parallelization of some scientific codes using

SINTEF ICT profiling tools and OpenMP
Address: NO-7465 Trondheim,

NORWAY
Location: Alfred Getz vei 1, NTNU

NO-7491 Trondheim
Telephone: +47 73 59 30 48
Fax: +47 73 59 29 71

AUTHOR(S)

E ise No. NO 948 29 MVA . . .
ipee 0070 Bernt G. Galtrud ~ Karstein Sarli  Torbjern Utnes

CLIENT(S)

SINTEF ICT Applied Mathematics

REPORT NO. CLASSIFICATION CLIENTS REF,
SINTEF A11362 | Open Roger Bjergan
CLASS. THIS PAGE ISBN PROJECT NO, NO. OF PAGES/APPENDICES
Open 9788214044379 | 901110.21 53/3
ELEGTRONIC FILE CODE PROJECT MANAGER (NAME, SIGN.) GHECKED BY (NAME, SIGN.) _
Karstein Sgrii / L/ %w—a Torbjern Utnes— Z{‘}é{y\
FILE CODE DATE PPROVED BY (NAME, POSITION, SIGN.)
?Q v % . &— f\jﬂ“ﬂ-’_'—ﬁ-
2009-03-19 Roger Bjargan, Research Director
ABSTRACT

The purpose of this report is to exchange our experience with parallelizing existing scientific
codes by utilizing profiling tools and the OpenMP application programming interface (API) for
multi-platform shared-memory parallel programming in C/C++ and Fortran.

Profiling is an excellent tool to get an indication on which parts of the program to concentrate in
order to parallelize scientific codes. In general it is necessary to get more detailed information
regarding the relative importance of different sub-blocks inside an interesting subroutine. This
information might be obtained by the use of manually inserted timers inside the subroutines.
In order to get more reliable results cpu-timers should be used instead of wall-clock-timers.

The main goal was to parallelize the Simra CFD-code as much as possible. Some initial work
on less complex and smaller programs did undoubtedly lead to better results for the Simra
code. At the moment about 65% of the program has been parallelized. When using 16 cores
on the Njord supercomputer, the global speedup resulting from this work is between 2.2 and
2.3 depending on the problem size.

KEYWORDS ENGLISH NORWEGIAN
GROUP 1 Parallel computing Parallelle beregninger
GROUP 2 Partial differential equations Partielle differensialligninger

SELECTED BY AUTHOR | OpenMP OpenMP




Parallelization of some scientific codes using profiling tools
and OpenMP

Bernt G. Galtrud Karstein Sarli Torbjern Utnes
March 31, 2009

1 Introduction

We are witnessing the arrival of significant multiprocessing capabilities on PCs and small-group compute
servers. Single-user machines with multiple CPUs have been available for several years, but they remain
uncommon and have typically only doubled or quadrupled, the number of processors. That is now changing,
as multi-core chip designs begin to make it economical for typical users to access 8, 16, or even more
processor cores. However, it will not be easy to utilize all of this power for applications on the desktop.
Most desktop software so far has been developed for single-threaded execution on one CPU, and writing
multi-threaded software has traditionally been difficult.

The purpose of this report is to exchange our experience with parallelizing existing scientific codes by
utilizing profiling tools and the OpenMP application programming interface (AP!) for multi-platform shared-
memory parallel programming in C/C++ and Foriran.

2 Computing environment

The work described in this report was done on two different computer systems. Most of the development
and some initial testing were done on a quite old desktop PC. Some testing was done on a supercomputer.
Both systems got advantages and disadvantages.

The computing power of a supercomputer is of course much higher than a desktop PC. It would seem
nice to do all the work on the big machine. However, the number of CPU hours available for the project was
limited. The supercomputer got another disadvantage. Access to the machine is through a batch system. A
job is committed to a queue. And the job is executed when enough resources are available. On a desktop
PC on the other hand, full and unlimited access can be assured at no extra cost.

2.1 Desktop PC

The PC used was a Dell Precision Workstation 530 MT. The complete manual was lost long time ago, and
the following description of the system was the best we managed to get.

Itis a dual processor system consisting of two Intel XEON Processors at 1.5GHz. The machine got two
256MB RAM units. The amount of Level 1 cache is unknown, but each processor got an individual Level 2
cache of 256kB.

The operating system installed was Ubuntu Linux version 8.04. (Released in April 2008.) The Fortran
compiler used was GNU's gfortran version 4.2.3. The OpenMP version was 2.0

2.2 Supercomputer - Njord

Njord is the current (primo 2009) supercomputer of the Norwegian University of Science and Technology
(NTNU) in Trondheim. Njord is a distributed shared-memory system, consisting of IBM p575+ nodes inter-
connected with a high-bandwidth low-latency switch network [10].

Njord consist of 65 nodes. There are 59 compute nodes, 4 /O nodes and 2 login nodes. Each compute
node consist of 8 dual-core power 5+ processors with 1.9 GHz clock speed. 55 of the compute nodes got
32GB shared memory, and 4 nodes got 128GB RAM.

Each dual-core processor got a common Level 3 cache of 36 MB. Each core got an individual off-chip
Level 2 cache of 1.92 MB, and an individual on-chip Level 1 cache of 64 kB. Each node got a total memory
band width of 24 GB/s, respectively 14.4-16GB/s read and 7.2-8GB/s write. The address mode is by default
64-bit, but 32-bit is also possible.




The operating system running on Njord is IBM's Unix flavor, AlX v 5.3. And the Fortran compiler used
was |BM's xIf90, together with OpenMP v 2.0.

3 Profiling tools

Profiling is a performance analysis of a program as it runs [11]. The main behavior recorded is the frequency
and duration of function calls. The output from a profiler is usually either a trace or a profile. A trace is a
sequential list of events (calls) as they occur when the program is run. A profile is a statistical summary of
the events occurring in the program. The profile is most often given either as a flat profile or a calf graph.

The flat profile consists of a ranking of the subroutines, constituting the program, based on each subrou-
tine's self-time, i.e the time spent in that subroutine alone excluding the time spent in eventual child routines
called by that specific subroutine. Among other things the percentage of the total execution time used by
each subroutine is also displayed.

A call graph gives in addition for each function information concerning which other functions called that
specific function and how many times they did it, and which functions that are called from the considered
function. In sequential programs a profile is most often enough to get a good overview of the program. In
parallel programs on the other hand a trace might be interesting to identify idle times for instance.

There are a wide variety of profiler tools available. A profile might be established using different tech-
niques. Some are very accurate, but induces a very important slow down. Others are a bit less accurate
but allows the program to run at nearly full speed.

In this project the GNU tool gprof was chosen for the desktop PC. While IBM's very similar tool called
Xprofiler was used on the Njord supercomputer. Both depend on sampling at regular time intervals, ob-
serving which program line is being executed at that time. Some error must be expected but it is very fast.
Xprofiler can be used to profile programs containing both sequential and parallel blocks. gprof on the other
hand only handles sequential code.

Other tools were tested as well, in particular Valgrind. Valgrind is very nice looking and easy to use with
an intuitive GUI. But on the kind of problems investigated in this project, the slow down is terrible. (Execution
time is at least multiplied by a factor ten.)

Several good tutorials for using gprof can be found on the Internet. (See for instance the one published
by Jay Fenlason and Richard Stallman [12].) In order to use gprof three steps are necessary. First compile
and link the source code with profiling enabled. This is done by giving the -pg flag to the compiler. Second,
run the program as usual with eventual arguments and I/0-files. The expected output from the program will
be produced, but also a file called gmon.out. This file contains the raw profiling data. The last step of the
process is to run the gprof program with the gmon.out file as an argument. This interprets the raw data and
prints both a flat profile and a call graph to a texffile. There are also printed some information about how to
interpret the profiling information. These explanations are quite good and permit to easily comprehend the
profile.

Several examples of profiles can be found in the appendix. The profiles given are of the programs
investigated in this project. These examples will be treated more carefully at a later stage in this report.

4 Initial work on basic problems

In order to get a hands-on experience with OpenMP as fast as possible we started with two simpler prob-
lems, i.e. linear systems of equations and a Dirichlet type Poisson equation problem. These problems are
important parts of all CFD solvers.

4.1 System of linear equations

We parallelize a Fortran90 program which re-implements the SGEFA/SGESL linear algebra routines from
LINPACK for use with OpenMP ([1],[2],[3],[4], [5]). The SGEFA algorithm factors a real matrix by gaussian
elimination.

We compare methods of solving a system of linear equations

Ax=bhb.

The original version of this code comes from John Burkardt and is published at his web-site [9].




4.1.1 SGEFA-versions

Burkardt’s code solves the problem in five slightly different manners, one after the other. The first one is
a standard sequential version of the SGEFA-algorithm. The second one is a modification of the first one
taking advantage of Fortran’s possibilities of updating a subset of an array by just one command line. In
this case the update is done column-vice. (The range of array indices in each dimension must be specified.
Ega(k+1:n,k) = —a(k+1:nk)/a(k k) ) Itis tempting to call this a vectorization of the do-locp. In
this text the expression will be used, even though it might refer to other things elsewhere. The third one is a
parallelized version (OpenMP) of the second one. The fourth one also exploits vectorization of the do-loop,
but the update is done in a row-vice order. The last one is a parallel version of the fourth one.

4.1.2 Restructuring of the code

The five different versions described above were implemented as five different (and quite long) subroutines
despite the fact that only a few lines differ between the different versions (A.1). As a consequence there
was a high amount of redundant code. A modified and synthesized version was made which consist of only
one subroutine (A.2). Two parameters were added. The first one describing the sgefa-method, normal,
columnoriented or roworiented. The second one telling if it was to bee run sequentially or in parallel. Then
at execution time by the means of if-tests on the two parameters, the appropriate lines of code were chosen.

4.1.3 OpenMP work

The sgefa_c_omp and sgefa_r.omp subroutines were already partially parallelized with the use of an I$omp
parallel workshare and an !$omp parallel do OpenMP directive. With this method a new parallel re-
gion is created twice for each iteration of the loop k over the columns. The creation of a paraliel region is
a rather expensive operation. In one way or another there will be necessary to synchronize some informa-
tion between the threads. The master thread automatically get extra coordination work by setting up (and
ultimately destroying) the threads.

It is desirable to create parallel regions as seldom as possible. The first obvious thing to do in this case,
is to move the creation of the parallel region out of the loop, i.e. using the !$omp parallel directive. (See
listing line number 73 in the A.2 appendix.) Hence the costly operation is done only once. At the respective
code blocks the work-sharing constructs !$omp workshare and !$omp do are used instead of their com-
bined parallel-work-sharing counterparts. The unparallelized regions inside the loop were protected by the
I'$omp single directive. In this way only the first thread arriving at these parts, in each iteration, executes
the given code. And since the !$omp end single directive contains an implicit synchronization barrier the
correctness of the execution is guaranteed, at the potential cost of some extra waiting time.

A new section of the subroutine was also parallelized. The section in question is the one labeled Inter-
change rows K and L see the two code samples included below 1 and 2. The OpenMP construct chosen
was the !$omp workshare directive. In addition an index-vectorization technique similar to the one ex-
plained in 4.1.1 was added to the block of code.

Listing 1: Original version Listing 2: New version
! Interchange rows K and L. ! Interchange rows K and L.
if {1 /=%k) then if {1 /= k ) then
do j =k, n !$omp workshare
t =a(l,j) temp(k:n) = a(l,k:n)
a(l,j) = a(k,j) a(l,k:n) = a(k,k:n)
a(k,]) =t a{k,k:n) = temp(k:n)
end do !$omp end workshare
end if end if

4.1.4 Scheduling of do-loops

Let us consider a do-loop with N iterations. If this structure is to be parallelized on P processors using
the !$omp do directive, the default way of sharing the work is to give an equal number (N/P) consecutive
iterations to each processor. This is not always the best method. If for instance the amount of work is
not constant between the iterations, one might witness an important difference in the workload on some
processors. To get around this problem, OpenMP allows the programmer to distribute the iterations in
different ways. A rule for distributing the iterations is called a schedule. See for instance Miguel Hermanns
compendium [13] for an introduction to the other possibilities for scheduling.

Some initial and not very thorough experimentation was done concerning scheduling of the do-loop in
the parallelized sgefa code. The testing was mainly done on the desktop PC. There was not recorded any

4




major differences in runtime for different scheduling types with the actual problem sizes (N = 10, 100, 1000).
It is possible that more thorough testing might have shown a difference in run time. The tests were per-
formed at an early stage of the process of getting acquainted with OpenMP, and the understanding of how
things work was not as good as they are to day.

In retrospect, a better understanding of the theoretical differences has been obtained. Inside an iteration
of the othermost loop (of index k), the workload is perfectly balanced between the iterations of the inner
loop of index j. Therefor a standard static schedule seems to be the best choice. The only problem is that
for each iteration of k, less and less work is distributed in the inner loop j. Which means that sooner or later
it will be better to hand out the work to fewer processors. One might try the static schedule with a minimal
chunk size. The latter should be determined experimentally.

Ideally it would be desirable to be able to use less processors after a wile. With the OpenMP version
2.0 this is not possible. It is only possible to choose the number of threads upon the creation of the parallel
region. After this choice is made all threads are stuck with that parallel region upon destruction of all the
threads at the same time. It seems though that v 3.0 provides some tools bether suited for this kind of idea.

4.1.5 RNG

The A matrix in this problem was a full matrix. The subroutine maigen fills this matrix with (pseudo) random
numbers. The algorithm for doing this was simple and fast. For small problem sizes the method worked ok,
but for bigger problems it broke down. { Larger then 1000 unknowns.) The reason for this was that a simple
modulo generator without seed and with to short period was used. Sooner or later the start of a new period
will fall in the first column of a line. Since the generator is pseudo random, the same sequence of numbers
comes up each period. This line will then be identical to the first line of the matrix. Two identical lines in the
system causes a breakdown in the Gaussian elimination.

Some work was done to improve the RNG. Larger sets were generated correctly, but at a tremendous
performance cost. The modified routine does not have the limitation of max 1000 unknowns. But it is 100
times slower. Originally the RNG routine was negligible compared to the forward elimination process from
a performance point of view. The new version became equally important.

4.2 The Poisson equation

We parallelize a Fortran90 program which solves the 2D Poisson equation using the finite element method
[61.[7],[8].

The computational region is a rectangle, with homogeneous Dirichlet boundary conditions applied along
the boundary. The state variable u(z, y) is then constrained by:

—(uzz +uy,) = f(z,y)in the rectangle
u(z,y) = g(z,y) on the rectangle boundary

The computational region is first covered with an NX - NY rectangular array of points, creating (NX — 1) -
(NY — 1) sub-rectangles. Each sub-rectangle is divided into two triangles, creating a total of 2. (NX — 1) -
(NY — 1) geometric "elements”. Because quadratic basis functions are to be used, each triangle will be
associated not only with the three corner nodes that defined it, but with three extra mid-side nodes. If we
include these additional nodes, there are now a total of (2- NX — 1)+ (2- NY — 1) nodes in the region.

The original version of this code comes from Janet Peterson by was modified by John Burkardt and
published at his web-site [9].

4.2.1 Profiling of the code

Burkardt's original version was analyzed with the profiling tool gprof. A sample of the output listing (3)
is displayed below. The entire profile, along with an explication of the different pieces of information, is
available in the appendix B.1. The table below announce the three most time consuming subroutines in the
program. As we can see from the profiler listing, one subroutine dgb_fa completely dominates the run time
by using 96.37% of the execution time.

Listing 3: Flat profile

Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds calls s/call s/call name
96.37 33.47 33.47 1 33.47 33.47 dgb_fa_
1.47 33.98 0.51 1942488 0.00 0.00 qgbf._
1.21 34.40 0.42 1 0.42 0.74 assemble_




An extract of the call graph (4)is also presented in this section. This piece shows that the subroutine is
only called once (by the main routine), and dgb_fa does not call any other subroutines itself. This fact is very
promessing when it comes to parallelization. Because it is in general easier to get speedup from a larger
section of code which is run a few times, then from a short section which is run many times. On the other
side, this is not a sufficient condition for large gains. It all depends on the structure of the code how well it
parallelizes.

Listing 4: Call graph

index % time self children called name
33.47 0.00 11 MAIN_._ [1]
[3] 96.4 33.47 0.00 1 dgb_fa. [3]

4.2.2 What is going on in the dgb_fa routine?

The profiling tells us that the dgb_fa subroutine is by far the most interesting routine from a performance
point of view. The routine is included in the appendix B.2.

The routine performs a Gaussian elimination on a banded matrix. The storage format used for the ma-
trices is called dgb, and handles A byN banded matrices with lower bandwidth A/ L and upper bandwidth
MU. During the Gaussian elimination nonzero entries might be generated on ML extra superdiagonals.
This must be taken account of in the storage format, and the total bandwidth is then BW = 2« M L+MU+1.
The original diagonals are collapsed downward, so that diagonals become rows and columns are preserved.

4.2.3 OpenMP parallelization

Burkardt's original version of the dgb._fa subroutine is given in the appendix B.2. The parallelized version is
also given in its’ totality in the appendix B.3.

To get a more detailed picture of the dgb.fa subroutine, manual timers were inserted into the code.
Only the two most time consuming blocks of code in the routine are presented here. The timing results
for a sequence of different problem sizes of NX = NY = 10, 20,40, 80, 160,320 run on P = 1,2,4,8,16
processors can be found in the appendix B.4.

These two most important blocks are labeled TzeroOut and TloopK. The first block zeros out the extra
fill inn band of the matrix. The second block performs the Gaussian elimination on the banded matrix. This
last one is implemented as a do-/loop that loops over the columns k of the matrix. Inside this loop there
are some negligible parts, and only one important part when it comes to consuming time. The important
subblock of code performes the row elimination, see the column Tinner. In the sequential case, TloopK is
in general about 100 times more important then the TzeroOut. From a performance part of view it is not
much to gain from parallelizing the last one. Never the less, it was done just for the sake of training.

Tinner A small sample of the routine containing the subblock “Tinner” is presented both for the sequential
case (listing 5) and the parallel case (listing 6).

As itis a gaussian elimination that is going on, it is not passible to parallelize the othermost do-loop. But
as mentioned in the sgefa-case, the parallelization process can be divided in two steps. First create the
parallel region, then share the work. Even though the othermost do-loop is not parallelizable per-se, the
parallel region can be created outside of this loop and then create worksharing constructs inside the loop.

The inner do-loop over the variable j can be parallelized with an !$omp do directive. Notice that the
vectorized update of the a-matrix conceals a sort of an extra implied do-loop. The update of the a matrix
in one iteration of j does not depend on any value of a from a different iteration. There are a couple of
index variables inside the j-loop, called ! and rnm. These take care of some swapping of values in a. In the
sequential version these are just decremented by one for each iteration. In order to parallelize correctly this
feature, { and mm must be expressed explicitly as a function of j instead as a simple decrement. If not the
iterations would have to be executed in increasing order. It was quite trivial to do this.




Problemsize | P=1| P=2 ]| P=4| P=8| P=16
NX =10 1.00 0.91 0.87 0.62 0.55
NX =20 1.00 1.39 1.88 1.63 1.69
NX =40 1.00 1.76 | 2.93 3.62 4.41
NX =280 1.00 2.09 | 3.93 6.44 9.56
NX =160 1.00 | 218 | 4.94 9.52 16.34
NX =320 1.00 | 209 | 430 | 8.87 16.19

Table 1: Speedup in the Tinner subblock of the dgb_fa routine, for different problem sizes NX = NY and

numbers of processors P used.

Listing 5: Tinner sequential
!

do k = 1, n-1 tloop over columns

execute introblock
! Row elimination with

{  column indexing.
ju = max(ju, mu + pivot(k))

ju = min(ju, n)
mm=m
do j = k+1, ju

I -1
mm =nmm— 1

it { | /=nm) then
temp = a(l, j)
a(l, ) =af{mm, j)
a(mm, j) = temp

end if

a(mm+! : mmelm, j) = a(mml C ommelm, ) &

& +a(mm, j) » a(met : melm, k)
end do
end do

!

Listing 6: Tinner parallel

!Somp parallel
do k = 1, n-1 {loop over columns

!Somp single
execute introblock

How elimination with
column indexing.
ju = max(ju, mu + pivot(k))

ju = min(ju, n})
mm=m
!%omp end single
1$omp do private (11 ,mm,temp)
do j = k+1, ju
=1+ k=-j
mm=m+ k — |
if (Il /= mm) then
temp =a(ll, j)
a(ll, j) =a(mm, |)
a(mm, j) = temp
end if
a(mmel @ mmelm, j) = a(mm+1 ;o mmelm, ) &
& + a{mm, j} = a(m+1 : melm, k)
end do
1$omp end do
end do

!Somp end parallel

TzeroOut In the sequential version the zero out process is done in two stages (listing 7). The first one
before the elimination process starts and the second one after. In the parallel version everything is done at
the same stage (listing 8). An analysis of the indices used in the elimination loop showed that this was a
safe approach. Output of the residuals in the sequential and in the parallel case supported it as well.

Listing 7: TzeroOut sequential
! Zero out the initial fill in columns.
j0 =mu+ 2
j1 =min (n, m) — 1

a(i0O:ml, jz) = 0.0D+00
end do
jz = 1
ju =10

mon

do k = 1, n-1

Zero out the next fill—in column.

jz jz + 1
it { jz <= n ) then
a(t:ml, jz) = 0.0D+00
end if
b ...more work...

end do

jo
it

Listing 8: TzeroOut parallel

=mu + 2
=min (n, m) -1

tLast initial fill in column.

I$omp parallel do, private(i0)

do jz = j0O, n
i0=m+1— jz
i0 = max(io ,1)

a(io:ml, jz) 0.0D+00

end do
!$omp end parallel do




Problemsize | P=1| P=2 | P=4 [ P=8] P=16

NX =10 1.00 | 0.35 | 047 | 0.27 0.16
NX =20 1.00 | 0.83 | 0.98 | 0.97 0.79
NX =40 1.00 | 1.34 | 2.69 | 3.22 3.23
NX =80 1.00 | 2.04 | 393 | 718 | 10.77

NX =160 1.00 | 1.95 | 3.21 5.85 6.12
NX =320 1.00 | 1.66 | 3.11 467 5.16

Table 2: Speedup in the TzeroOut subblock of the dgb_fa routine, for different problem sizes NX = NY
and numbers of processors P used.

Results The complete runtime output is given in the appendix B.4. The output shows timing resuits, L2
error and speedup for different problemsizes and different number of processors. A synthesis of all these
results facilitates the interpretation. The tables 1 and 2 gives the calculated speedups for respectively the
Tinner and TzeroOut subblocks, while the table 3 gives the speedup for the entire program.

Problemsize | P=1| P=2| P=4]| P=8 | P= 16

NX=10 | 1.00 | 1.07 | 1.03 | 0.98 0.97
NX =20 1.00 | 117 | 1.16 | 1.08 1.16
NX =40 1.00 | 148 | 1.86 | 1.95 2.07
NX =80 1.00 | 1.89 | 2.89 | 3.73 4.39

NX =160 1.00 | 2.11 429 | 7.02 9.77
NX =320 1.00 | 2.08 | 413 | 799 | 13.21

Table 3: Global speedup in the Poisson equation solver, for different problem sizes NX = NY and numbers
of processors P used.

5 Parallelizing a CFD code (SIMRA)

SIMRA is a computer code for the simulation of incompressible, inelastic and turbulent flow developed
by Torbjern Utnes at SINTEF. The code solves for averaged (filtered) values of velocity (u), pressure (p),
temperature (6), turbulent kinetic energy (k) and dissipation of energy (e}, using a set of conservation and
turbulence modeling (closure) equations.

CONSERVATION OF MOMENTUM (MOMENTUM EQUATIONS);

+

du _ p, 0
§+(ro)u—V-R—V(;)-{—§g

where 0 = 6, + 6 and p = p, + p. With given 6, can (ps, ps) be computed from a hydrostatic relation and
equation-of-state.

CONSERVATION OF MASs (CONTINUITY EQUATION) (inelastic):

V-(pu)=0

CONSERVATION OF ENERGY (EQUATION OF POTENTIAL TEMPERATURE):

]

oe +(u-V)i=v- (”—Tvo) +5p, 8=T(2)RICs
at or P
EQUATIONS OF TURBULENCE:

k
g—tJr(u-V)k:V-(VTVk)+Pk+Ge—€




€

2
€
O

—+u-V)}e=V- (Z—TVE) + (C1 P + C3Go)
T

wr= O

The latter equations being equations of turbulent kinetic energy and dissipation of turbulent kinetic energy
and the model of eddy viscosity, respectively.

EQUATIONS OF REYNOLDS STRESSES:

Ou; %) 2

Rij = (8.’.63 8.1",' B §k52

For a detailed description of the FEM-based approximation and solution procedure used in SIMRA it is
referred to [15].

5.1 Profiling

The main goal of this project was to do some parallelization work on Simra by using the OpenMP-standard.
The previous chapter describes some initial work on basic problems. The work on these easier cases was
carried out in order to get a bether understanding of the OpenMP-framework and to get the necessary
training in using it efficiently.

A profile of Simra in its serial version was obtained with the program gprof. The aim was twofold. The
profile is a good way to get a first view of how the program is organized by the call graph. The profile also
points out the percentage of the total runtime used by the different subroutines.

A simple input file was given to Simra. The input data describes a so called Hunt mountain. Simra was
used to predict the wether around this mountain. The first test run used n = 100 time steps of dT" = 0.05s.
The data set contained npoin = 84035 points in the mesh.

5.1.1 Flat profile

The following extract of the flat profile displays all the subroutines with a “self-time” of at least 1% of the total
runtime of the simulation.

Listing 9: Flat profile of Simra

ngranularity : Each sample hit covers 4 bytes. Time: 125.46 seconds

% cumulative self self total
time seconds seconds calls ms/call ms/call name
25.8 32.35 32.35 3726 8.68 8.68 .__solver_NMOD_matvec[8]
15.6 51.88 19.53 1701 11.48 11.48 .__solver_NMOD_pssar[10]
12.4 67.38 158.50 100 155.00 350.30 .__solver_NMOD_pcg[6]
9.8 79.64 12.26 100 122.60 271.34 . __turbke_NMOD_turb2[9]
9.1 91.02 11.38 100 113.80 335.38 ._momentum_NMOD_veloc[7]
6.9 99.71 8.69 7833600 0.00 0.00 .__turbke_NMOD_elmat_k[13]
5.9 107.16 7.45 7833600 0.00 0.00 ._momentum_NMOD_elmai_u[14]
3.2 111.16 4.00 500 8.00 73.86 ._.solver_.NMOD_bicgstab2[4]
2.7 114,50 3.34 100 33.40 120.30 . __turbke_NMOD_assemk[11]
2.0 117.02 2.52 100 25.20 99.70 ._momentum_NMOD_assemu[12]
1.1 118.34 1.32 ._-mcount[15]
1.0 119.58 1.24 100 12.40  362.70 .__pressure_.NMOD_dpres[5]

It is important to point out that the percentages spend by each routine depend on both the size of the
data set, and the number of time steps. Which means that the relative importance of the different routines
might change with different input. The flat profile is therefore not an absolute quantity but should be taken
as a hint of relative performance.

5.1.2 Call graph

An extract of the call graph can be found in the appendix C.1.1. The total time spend within a routine is the
self time plus the time spend in the descendents of the routine. Only the routines with a total time of at least
1% of the runtime spend in the entire program are included in the presented listing.

The call graph given by the profiler is text-based. Each routine is given a node number. Each node got
a list of its parents, and another list of all its descendants. Much information is given by this approach, but
a graph is best visualized when the nodes and edges are drawn. There are several tools to draw graphs
from the text-based call graph. The figure 1 was obtained with the use of the program Kprof together with
the program dot.




- ke, emat k

= sover_nomn [ | solver. mave 2. solver.. pssar

Figure 1: Part of the call graph for Simra. All the mayor routines from a performance point of view are
included. A couple of not so important routines are included as well because of limitations in the graph
drawing program.

5.1.3 Decisions made from the profiling

The flat profile together with the call graph tell us that the two most time consuming functions, matvec
(25.8%) and pssor (15.6%), do not have any descendants. Consequently they are a obvious place to start
the parallelization process as they together spend 41.4% of the run time.

In descending order, the next three most important routines are pcg, turb2 and veloc. Together they
spend 31.3% of the run time. It is expected that the parallelization might be harder because they got
descendants. Since nesting of parallel regions is not mastered at the moment, the code lines containing
calls to their descendants could not be parallelized. Therefore it is expected that the parallelization of the
three mentioned routines might also be less effective then the first two routines. On the other hand, all
of the three routines got a much higher seli-time per call then the first two. Which might indicate that the
potential for parallelization is quite high afterall.

The profiler results just tell us where the potential might be the biggest for gains by parallelization. It
does not tell anything about how difficult it might be to actually obtain that gain. (Or if it is possible at all to
parallelize.)

5.2 Parallelizing
5.2.1 Method

The profilling gave us information on which subroutines that would be most interesting to parallelize. To get
a more detailed view, of the respective importance of different subblocks of code inside the subroutines,
manual timers were added inside the subroutines.

A wrapper program was made, that permits Simra to be run multiple times in a row on the same problem
but with different number of processors P used. The wrapper took care of handling the timeres, calculated
speedup for each case and printed a summary of the results. The same data set were used with three
different resolutions, having respectively nPts = 339521, nPts = 173225 and nPts = 84035 number of
points in the mesh. Simra were run with all the three data sets for 200 time steps with a time step resolution
dT = 0.05s. The run time output from the detailed timers can be found in the appendix C.2.

The approach chosen was to start with loop leve! parallelization based on the results from the detailed
timers. The most time consuming loops were considered first. Among them, the most easy ones to paral-
lelize were chosen as a starting point. When parallelizing a loop, it is usually best to start by getting it right,

10




and then afterwards fast. As already stated, creating a parallel region is a costly operation. When several
loops are nested, it is preferable to create the parallel region outside the outhermost loop as long as it is
algorithmically possible. In practice it is often easier to to start the parallelization process on the innermost
loop. Once that loop is correctly parallelized, the second one can be attacked.

Limitations by timer type The timers used were of the type wall clock time. The time measured s just
the clock time that has elapsed since the last time the clock was watched. In practice when a program is
run we want to minimize the wall clock time, i.e we want the program to run as fast as possible.

When analyzing programs from a performance point of view it is usually better to use a timer that
measures cpu time. These types of timeres counts the number of cpu-cycles used by a program. Unless
the program got exclusive and absolute priority to the system resources, cpu-time is more accurate. On a
normal desktop PC, if a program is analyzed with wall clock timers, and for instance the mail client starts
downloading incoming mails the performance of the program will seem to drop. The observed performance
drop down is not real, it is just a question about reduced access to system resources. On the Njord
supercomputer similar problems were encountered, and some of the timing results are inaccurate because
of this. If all computing nodes are busy when the national weather forcast calculations are submitted some
of the other users are temporarily put aside. The larger the data set, the longer time is needed to run the
program. And hence a higher probability of being put on the sideline for a while by the wether forcast.

In the OpenMP standard version 2.0 only a wall clock timer is included. Fortran 90 got the same problem.
In Fortran 95 on the other hand cpu time might be measured by an intrinsic function. OpenMP will probably
get the possibility of measuring cpu time at a later stage.

Limitations by time and money During this project we had access to an account on the Njord super-
computer. The number of available cpu-hours were however limited. A full run of the three data sets takes
2-3 hours of computing time. As a result of these two limitations only two complete runs were done with
the so far final version. The problem with wall clock timers and lack of priority was present in most of the
runs. Only one run of each data set were judged to be of acceptable quality. It would be advantageous to
run more test runs and calculate some mean values,

5.2.2 The matvec-routine

The profiling told us that the matvec routine used 25.8% of the run time in the initial case. The routine
performs a standard matrix-vector product. It is very easy and safe to parallelize. The original version of
the code is stated in the listing 10 . The parallel version is stated in the listing 11

11




Listing 10: Original version Listing 11: Parallel version

subroutine maltvec & subroutine matvec &
&(n,mxnz,amal,ia,ja,x,y) &(n,mxnz,amat,ia,ja,x,y)
integer :: n,mxnz integer :: n,mxnz
integer :: ia(n+1),ja(mxnz) integer :: ia(n+1),ja(mxnz)
real 11 amat(mxnz),x(n),y{(n) real :: amat(mxnz) ,x(n),y(n)
y=0.0 y=0.0
!%omp parallel do
DO i=1,n DO i=1,n
do k=ia{i),ia(i+1)—1 do k=ia(i),ia{i+1)—1
y{i)=y(i)+amat(k)+x(ja(k)) y(i)=y(i)+amat(k}xx(ja(k))
enddo enddo
END DO END DO
!$omp end parallel do
END subroutine matvec END subroutine matvec

Results The speedup Sp of the matvec routine was quite good as shown by the table 4.

Problem size nP=1|nP=2|nP=4|nP=8] nP=16
nPts = 339521 1.00 1.97 3.26 6.40 11.95
nPts =173225 [ 1.00 1.96 3.44 6.81 12.57
nPts = 84035 1.00 1.78 3.51 6.73 11.97

Table 4: Speedup in the matvec routine for different problem sizes nPts and numbers of processors nP
used.

5.2.3 The pssor-routine

The profiling told us that the pssor routine used 15.6% of the run time in the initial case. The routine is
an implementation of a preconditioner that performs a symmetric successive over relaxation on the input
matrix. It turned out to be much harder to parallelize than the matvec routine. At the present moment we
have not been able to implement an efficient way of parallelizing the routine.

The routine consists of two blocks of code. The first one does a forward substitution, the second one a
backward substitution. Both are implemented as two nested do-loops. The difficulty of parallelizing these
nested loops arise from the fact that the the iterations of the outheremost loop is dependant of a certain
number of the previous iterations. A satisfying speedup demands that the iterations of the outhermost loop
can be safely distribute onto the different processors. It seems that this implies that some change must be
made to the nested loops. This should really be considered because the potential gain is quite large.

5.24 The pcg-routine

The profiling told us that the pcg routine used 15.6% of the run time in the initial case. The routine is an
implementation of a preconditioned conjugated gradient method to solve a linear system Ax = b.

The routine consist of two blocks (B; and B.) of code. Their respective percentages of the run time
depends on the problem size as stated by the table below:

Case B, Bs

Small 57% | 94.3%
Medium | 4.4% | 95.6%
Large 3.3% | 96.7%

The first block calculates the initial residual. The second block is a while-loop which is repeated until the
residual is less then the desired precision, r < eps, or until the maximum number of iterations is reached.

The while-loop can be further decomposed into three mayor subblocks of code By, Bay and Bs.. The
table below gives the respective percentage of the total runtime of the pcg routine in function of the problem
size

The Ba, subblock consist only of the call to the pssor routine, and is therefor out of the scope when it
comes to parallelizing the pcg routine. The By, subblock is a matrix-vector product. As it was show above,
the parallelization of this block of code is trivial. The resulting speedup from this subblock is given in the
table below:

12




Case Ba, Bay, Ba.

Small 46.9% | 41.9% | 5.5%
Medium | 50.1% | 39.6% | 5.9%
Large 52.1% | 39.1% | 5.5%

Problem size nP=1nP=2|nP=4|nP=8|nP=16
nPts = 339521 | 1.00 2.01 2.85 6.18 15.40
nPts =173225 | 1.00 2.05 4.09 8.26 15.77
nPts = 84035 1.00 1.97 4.58 8.20 17.42

Table 5: Speedup in the By, subblock of the pcg routine for different problem sizes nPts and numbers of
pracessors nP used.

The Bj. subblock is the unconnected set of all other calculations within the loop. Most of these are quite
easy to parallelize. The speedup is about the same as for the the matrix-vector product up till 4 processors,
and a bit less for 8 and 16. One important difference might be pointed out. The speedup from sharing
a piece of work depends on the workload balancing. It always takes some exira time to coordinate the
threads. If the time needed to execute the work distributed to each processor is not large compared to the
set up time then the speedup will not be good. The amount of work in the third subblock is considerably
less then in the first two subblocks. With the problem sizes used in these experiments the extra speedup
per extra processor added was a bit less in the third subblock then with the matrix-vector product.

Problem size nP=1|nP=2|nP=4|nP=8|nP=16
nPts = 339521 1.00 1.91 2.47 3.92 6.33
nPts = 173225 1.00 2.06 3.93 6.78 9.57
nPts = 84035 1.00 2.01 4.45 7.29 12.39

Table 6: Speedup in the B, subblock of the pcg routine for different problem sizes nPts and numbers of
processors nP used.

How it was done Some examples on how the parallelizations from the third block was carried out is
included in the listings 12 and 13.

In this routine a maximum of 50% could be parallelized. According to Amdahl's law, the maximal theo-
retical speedup would then be SpMaz = 2. The total speedups in the pcg routine are given by the table
below:

Listing 12: Original version Listing 13: Parallel version
bcoef=0.0 begalshd
!Somp parallel
!Somp do reduction{+:bcoef)
do ip=1,np do ip=1.rp : ;
beoef=bcoef+rk (ip)+zk(ip) bcoef=bcoef+rk (ip)=zk(ip)
enddo enddo
1$omp end do

it (iter.eq.1) then

if (iter.eq.1) then
(iter.eq.1) !$omp workshare

K(1: = . pk(1:np) = zk(1:np)
BR{Vang) = 2k inp) 1$omp end workshare
else else

beta=bcoef/bcoefm

1$omp workshare

k{1:np) = zk{1:np) & pk{1:np) = zk(1:np) &

A pi & beia*pE%1:np} & + betaxpk(1:np)
!$omp end workshare

endif endif

1$omp end parallel

beta=bcoef/bcoefm

5.2.5 The bicgstab routine

The routine is an implementation of a preconditioned bi-conjugate gradient (stable?) algorithm.

13




Problem size nP=1|[{nP=2|nP=4|nP=8| nP=16
nPts = 339521 1.00 1.38 1.21 1.48 1.98
nPts =173225 | 1.00 1.36 1.63 1.83 1.97
nPts = 84035 1.00 1.39 1.88 1.79 2.09

Table 7: Speedup in the pcg routine for different problem sizes nPts and numbers of processors n.P used.

About 86% of the time spend in the routine is used by calls to the matvec routine. About 14% is left to
parallelize. (This was the case for all the three problem sizes.)

Some parallelization were implemented. Mostly by the means of the !$omp workshare directive, but
also some !$omp do directives. More can probably be done. The parallelizations already done seem to be
correct, but might hopefully be more effective. A closer attention should be given to the eventual possibility
of creating a bit fewer parallel regions. This might be possible by splitting the parallel constructs and the
work-sharing constructs. Some better tuning of the existing parallel-do-loops are also probably possible.

The speedups measured were as stated by the table below:

Problem size nP=1|nP=2|nP=4|nP=8|nP=16
nPts = 339521 1.00 1.23 1.48 1.56 1.58
nPts =173225 |. 1.00 1.35 1.47 1.61 1.66
nPts = 84035 1.00 1.43 1.42 1.55 1.61

Table 8: Speedup in the bicgstab routine, excluding the calls for the matvec routine, for different problem
sizes nPts and numbers of processors n P used.

5.2.6 The turb2 routine

The routine solves a k-¢ turbulence model for high Reynolds numbers.

Four subblocks were identified. The first one consists of some initializations. The second one calculates
the right hand side (rhs) for the k-¢ equations. The third and fourth deal with the solution of respectively
the k- and the e-equation. Both these subblocks do first a update of the boundary conditions, and then they
make a call for the bicgstab routine that actually solves the equation.

The timing results from the medium sized data set gave the following respective percentages of run
time for the four subblocks: 2.10%, 42.38%, 32.36% and 22.74%. The initialization block is guite small, the
expected gains from parallelizing it is not very big. At the moment this block has been untouched. The third
and fourth block have not been parallelized either. Almost all the time spend in these two blocks is spend in
the bicgstab routine. The only truly interesting subblock to investigate was the second one.

The 'rhs’-subblock consists of three nested do-loops. The first one is over the number of elements in the
mesh, and the two others over the nodes in each element. For the purpose of explaining the parallelization
done, it is not necessary to include all the code (it is about 100 code lines) nor an thourough explanation of
the algorithm. The serial and parallel code are presented in condensed versions in respectively listing 14
and 15. An explanation of the parallelization approach is also included after the listings.

14




Listing 14; Qriginal version Listing 15: Parallel version

!Somp parallel do default(none) &
!$omp private(list of all private variables) &
I$omp shared(list of all shared variables)
do ie=1,nelem
calculate lots of stuff &
& for the element considered

do ie=1,nelem
calculate lots of stuff &
& for the element considered

do i=1,8 do i=1,8
= 1 3 = I d .!.
ip = Inode(i,ie) éﬂ j=:g e(i,ie)
do !=T_,8I de(i. i ip = Inode (] ,ie)
L aca] el calculate stuff in &

calculate stuff in &
& function of ie,i,j,ip,]jp
& gives contrip{jp)

& function of ie,i,j,ip,jp
& gives contrip{jp)

ladd contribution to rhs
rhsLocal(ip) = rhsLocal(ip) &
& + contrib(jp)

ladd contribution to rhs
rhs(ip) = rhs{ip) &
& + contrib(jp)

end do
end do end do
end do
end do 13omp critical
ths( Inode(1:8,ie) ) = rhs{ Inode(1:8,ie) ) &
& + rhsLocal(1:8)
!$omp end critical

end do
!Somp end parallel do

In the real code the ths’ variable does not appear. Instead there are two components called sk’ and
'rsd’, one for each equation (k and €). The ’Inode’ variable is an array which lists the nodes that make up
each of the elements in the mesh.

The iterations of the othermost loop does not have to be executed in increasing order, as long as the
update of the 'rhs’ from each node is done correctly. This loop can be parallelized with an !$omp parallel
do directive. The mayor challenge with this particular loop is the very high number of variables that appear
in it. At least half of them need to be private to each thread.

The default behavior is to consider all variables as shared unless explicitly declared private at the cre-
ation of a parallel region. It is possible to change the behavior for a specific parallel region. Two possibilities
exist. The first is to use the default(private) clause. Which means that all variables are private unless
explicitly declared shared. In this particular loop it was judged usefull to use the second possibility, the
default(none). This implies that all variables that appear in the loop must be declared either in the list of
private variables or in the list of shared variables. If a variable in the loop is not present in exactly one of the
lists, a compilation error occurs. This approach decreases the chances of forgetting to add a variable that
should have been part of the private list in the case of default (shared) or the other way around.

In the original version the following update scheme for the rhs variable occur: For a specific element i,
and for each of the nodes i in that element, the value of rhs(ie) is updated eight times. Each node appear
in general in several elements, which means that for a given value k € 1, ...,nbrQ fNodes, rhs(k) will be
updated multiple times and by different iterations ie of the element loop. The update of rhs(k) constitute a
critical region.

The !$omp critical - !$omp end critical directive pair could have been placed directly around the
code line that updates the rhs variable. However this approached is problematic in practice. Each time a
critical region construct is used, huge waiting times will be added. It was desirable to find a solution where
each iteration only updates the rhs variable once, and thereof only needing one critical region. The chosen
solution was to use a local array, rhsLocal(1 : 8), which the two innermost do-loops work on.

It should be pointed out that the solution with the local array, gives a speedup even in a strictly serial
environment. The reason for this is that the cache hierarchy is used more efficiently.

Results The speedups resulting from the parallelization of the rhs subblocks are given by the table below:

An interesting observation can be made. For all the three problem sizes it seems to be optimal to
use four processors. Unless superlinear speedup occurs as a consequence of better use of the cache,
the maximal speedup using four processors is Sp = 4. Considering that the parallelization of this loop
contains a critical region, a speedup of more than 3 in all cases is good. The reason that the speedup
decreases when more processors are added is that the waiting time at the critical region barrier increases
faster than the gain from less work done by each processor. As a consequence this particular loop should
be parallelized with the NUM_THREADS (4) clause.

15




Problem size nP=1|nP=2|nP=4|nP=8| nP=16
nPts = 339521 1.00 1.80 3.38 3.07 2.79
nPts=173225 | 1.00 1.81 3.41 3.23 2.94
nPts = 84035 1.00 1.74 3.24 3.13 2.83

Table 9: Speedup in the rhs-subblock in the turb2 routine for different problem sizes nPts and numbers of
processors nP used.

5.2.7 The veloc routine

The purpose of the veloc routine is to compute the complete momentum equation. The internal structure of
the routine is very much similar to the turb2 routine. The veloc routine can be divided into four subblocks.
The first one does the calculation of the 'ths’ for the three components of the momentum equation. The
three other subblocks take care of solving one component each, including boundary condition handling.

The 'rhs’ subblock was parallelized in the same manner as explained for the 'ths’ in the turb2 case. The
other three subblocks spend the mayor part of their time in the bicgstab routine. More or less the rest of the
code lines in these blocks were parallelized with !$omp workshare and !$omp do directives. No particular
problems were encountered.

Results The speedups resulting from the parallelization of the rhs subblocks are given by the table below:

Problem size nP=1|nP=2|nP=4|nP=8|nP=16
nPts = 339521 1.00 1.50 1.96 1.57 1.60
nPts =173225 | 1.00 1.47 2.01 1.65 1.68
nPts = 84035 1.00 1.45 1.88 1.57 1.59

Table 10: Speedup in the rhs-subblock in the veloc routine for different problem sizes nPts and numbers
of processors nP used.

Compared to the speedups measured in the 'rhs’ subblock in the turb2 routine the speedup in this case
is not as good. Two possible explanations are proposed. In the turb2 routine two components must be
updated in the critical region. Here it is three components to update, which lead to 50% more time spend
in the critical region each time, which again leads to a higher probability of several threads arriving at the
critical region more or less at the same time. And hence longer mean waiting times. A second possible
explanation is that in the 'rhs’ subblock of the veloc routine, there are in fact two similar nested do-loops after
each other. Both are parallelized the same way as stated above. But the second one contains considerably
less work. It should be tried to remove the parallelization of this second loop to see if it runs faster on a
single processor.

5.2.8 The elmat_k and elmat_u routines

Both these two routines use 6 — 7% of the global run time according to the profiling of the initial test case.
They were examined for possible parallelization. Nothing were implemented. It is not impossible that there
might be gains from parallelization, just improbable. Both routines got a very low self time. Their importance
on the global scale arise from the very high number of times these two routines are called. This fact seems
to suggest that the parent routines, assem_k and assem_u should be investigated instead.

5.2.9 The assem_u routine

The purpose of the assem_u routine is to assemble the coefficient matrix for the velocity components. This
routine was not measured with detailed timers. The main reason was that when the routine was considered,
the experience from other routines seemed to indicate were and how the parallelization should be done. If
more details on the actual effect is wanted at a later stage, for instance if better tuning of ! $omp parallel
do loops is explored, timers might and should be added.

Two techniques were used. First a few initializations were parallelized with the ! $omp workshare direc-
tive. Then a triple nested do-loop were parallelized with the technique described for the 'rhs' subblock in the
turb2 routine.

The speedups of the entire routine are given in the table below.

As already seen with the parallelization technique used and on the problem sizes considered the
speedup is best when four processors are used. We would hope for a speedup between 3 and 4 in this
case. Since the maximum is only about 2.5, some further tuning and experimentation could be good.

16




Problem size nP=1|nP=2|nP=4|nP=8| nP=16
nPts = 339521 1.00 1.83 2.33 2.18 2.15
nPts = 173225 1.00 1.77 2.48 2.38 2.35
nPts = 84035 1.00 1.72 2.37 2.23 2.21

Table 11: Speedup in the assem_u routine for different problem sizes nPts and numbers of processors nP
used.

5.2.10 The assem._k routine

The purpose of the assem_k routine is to assemble the coefficient matrix for the turbulence components.
This routine is almost identical to the assem_u routine. It has not yet been parallelized, but that should be
trivial to do.

5.211 The dpres routine

The purpose of the dpres routine is to perform a projection step as part of the solution of the pressure
correction. Most of the time spend in the routine is for the call for the pcg routine. For the three problemsizes
used (small, medium and large), the respective percentages of the time spend in pcg are 94%, 95% and 96%.
So far there has not been done any parallelization work on the last few percentages. A simple inspection
seems to indicate that it is possible. The suggested method to use is again the same as for the 'ths' case.

5.3 Evaluation

A look back on the flat profile Comparing the flat profile of the initial test case, in listing 9, with a
conservative estimate of the percentage of parallelization in the considered routines, gives an approximative
percentage of untouched code of 35%. This percentage is relative to the total run time for the smallest data
set and with only 100 time steps. With other inputs the percentage will change, but so will the serial profile.

Out of these 35% of untouched code, four cases can be named. First of all, there is the pssor routine
(about 15%) which present an algorithmic challenge. Then there are maybe about 5% that is just a trivial
deal to do. (Same as somewhere else.) Further there are about 5% that are totally unknown. And finally
about 10% that is considered hard, if at all possible to parallelize.

Global speedups For the three data sets used in the detailed tests the following speedups were mea-
sured:

Problem size nP=1|nP=2|nP=4|nP=8 | nP=16
nPts = 339521 1.00 1.48 1.86 2.00 2.20
nPts = 173225 1.00 1.52 2.00 2.19 2.30
nPts = 84035 1.00 1.51 1.99 2.10 2.27

Table 12: Global speedup in the Simra program for different problem sizes n.Pts and numbers of processors
nP used.

The measured speedup is higher for the medium sized data set than for the large one. That is not as
expected. We believe the reason for this comes from the problem of mixing 'wall-clock-time' with ‘non-
exclusive-non-absolute-priority-access’ to a computer system.

Amdahl Even though the percentages from the flat profile can not be directly compared to the three data
sets used later on, it is just to temptating to do it. If we stick with the estimate of 35% of the code left to
parallelize, Amdahl’s law tell us that the maximal possible speedup mazSp using nP = 16 processors is,

maxrSp = = 2.56. (1)

1
This seems to indicate that the obtained global speedup is not that bad. To get a much better estimate,
the percentage of the global run time should be calculated for each routine and each subblock in the timer-
wrapper. It is very easy to do this the next time the tests are run. (But it is quite cumbersome to calculate it
retrospectively.)

17




5.4 Future work

There are still lots of work to do. It might be divided in four different threads.

5.4.1 The pssor routine

The pssor routine is untouched. The gain from parallelizing this one on loop level will be big. Investigate
what can be done. If the algorithm used does not parallelize well, it should be considered to maybe use
another one that does so.

5.4.2 Fill the holes and fine tune loops

In some of the routines that have already been parallelized, there are some percentages of the code that
have not been touched. Not all of these pieces parallelize well, some might even get mayor slowdowns.
Some of the loops already parallelized, might gain quite a bit performance from some fine tuning. For
instance, the ideal number of processors to use in a given parallel region might depend on the problem
size. Both of these approaches will be much more successful if the two following tools are developed:
better timers and a small program that measures the time used by the OpenMP-directives themselves.

First of all, “cpu-timers” should absolutely be added one way or another. There exist libraries to properly
measure “cpu-time” on the different threads. A search on the Internet revealed for instance a library called
TIM[14]. ltis probable that the program has to be compiled in Fortran 95. However the differences between
Fortran 80 and 95 are quite small. The final version might be compiled in Fortran 90, since the timers are
only for the development face.

A small program should be made, or found on the Internet, that measures how the different OpenMP-
directives behave on a specific machine. Some simple loops are sufficient to test for instance how much
time it takes to create a parallel region and close it down with increasing number of processors. Below a
small suggestion is presented for how this might be solved.

do i = 0,4
nP = 27i
witime = omp._get_wtime ()
do j = 1,1000
!$omp parallel NUM.THREADS(nP)

!Somp end parallel
end do
timer{i ) = omp_get-wtime () — witime
end do

The idea is to compare these measured times with how many floating point operations that can be done
in the same time. And from there draw some conclusion on how specific loops might be tuned. The small
program might even be included in the Simra source code. In that way a short test at the beginning of the
execution of the program might permit to tune loops at run time.

The list of compiler options should be studied more in detail. The version run on Njord was tuned for
the type of processor and architecture on that specific supercomputer. The compiler options are included
in the Makefile and permits different tuning on different platforms. There might be other options available
that could speedup the program.

The Xprofiler on Njord can also be used for paralle! profiling. This should be explored. Parallel profiling
permits among other things to identify (too) long waiting times in the program, for instance at synchronize
barriers.

5.4.3 Nesting of parallel regions and equation level parallelization

There has already been identified two places were equation level parallelization might be possible in Simra.
For a given time step, the three velocity components dU, dV and dW are independent and could in principle
be solved in parallel. The same case holds for the two turbulence components de and dk.

The program should be examined with the aim of identifying more regions that could be parallelized on
a higher level.

At the moment nesting of parallel regions has not been mastered. That means that one has to chose
either to parallelize on equation level or on loop level. It might depend from case to case which technique
that gives the highest speedup. Detailed and accurate timing should be done to decide which one to chose
in a give setting.

18




The ideal solution would be to get access to a system that supports nesting of two parallel regions.
Take for instance the case of the turbulence equation. The mayor part of the speedup comes from the
parallelization of the matvec routine. The speedup is not doubled when going from 8 to 16 processors, even
though it is not very far from being the case. It might happend that solving the two components in parallel
with 8 processors on each would be faster. OpenMP v2.0 supports nesting of parallel regions. But the
underlaying system must do it as well. At the moment this has not been mastered on Njord. It is not clear
if this lack of support is a question about hardware or software. If the latter is the case, maybe it could be
fixed in the future.

Nesting of parallel regions could also be implemented as an hybrid OpenMP-MPI solution. In this case
one node with 16 cores could be used to solve one component. The hybrid approach is on the other hand
much more complicated to implement.

5.4.4 New software

The v3.0 of the OpenMP standard was released in summer 2008. Gnu's compiler gfortran already supports
the newest standard. IBM’s Fortran compiler, x/f, also does so in the newest version. At the moment this
version is not installed on Njord. Maybe it is a good idea to put some pressure on Itea to buy and install it?

6 Summary

Profiling is a very good tool to get an indication on which subroutines to concentrate on when parallelizing
scientific codes. In general there will be necessary to get more detailed information regarding the relative
importance of different sub-blocks inside an interesting subroutine. This information might be obtained by
the use of manually inserted timers inside the subroutine. In order to get more reliable results cpu-timers
should be used instead of wall-clock-timers.

The main goal was to parallelize the Simra CFD-code as much as possible. Some initial work on less
complex and smaller programs did undoubtedly lead to better results for the Simra code. At the moment
about 65% of the program has been parallelized. When using 16 cores on the Njord supercomputer, the
global speedup resulting from this work is between 2.2 and 2.3 depending on the problem size.

There is one subroutine that is very important from an performance point of view, about 15% of the
runtime, that has not been touched at all. The algorithm is not trivial to parallelize. It might be possible, but
if not one should consider changing it with another that does the same job. If the subroutine in question is
parallelized successfully, a global speedup between 3 and 4 should be expected.

19




References

[1] Peter Arbenz, Wesley Petersen, Introduction to Parallel Computing - A practical guide with examples
in C, Oxford University Press.

[2] Rohit Chandra, Leonardo Dagum, Dave Kohr, Dror Maydan, Jeff McDonald, Ramesh Menon, Parallel
Programming in OpenMP, Morgan Kaufmann, 2001.

[3] Barbara Chapman, Gabriele Jost, Ruud vanderPas, David Kuck, Using OpenMP: Portable Shared
Memory Parallel Processing, MIT Press, 2007.

[4] Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart, LINPACK User’s Guide, SIAM, 1979.

[5] Charles Lawson, Richard Hanson, David Kincaid, Fred Krogh, Algorithm 539: Basic Linear Algebra
Subprograms for Fortran Usage, ACM Transactions on Mathematical Software, Volume 5, Number 3,
September 1979, pages 308-323.

[6] Hans Rudolf Schwarz, Finite Element Methods, Academic Press, 1988.

[7] Gilbert Strang, George Fix, An Analysis of the Finite Element Method, Cambridge, 1973.

[8] Olgierd Zienkiewicz, The Finite Element Method, Sixth Edition, Butterworth-Heinemann, 2005.
[9] John Burkardt,

http://people.scs.fsu.edu/ “burkardt

[10] NOTUR - THE NOCRWEGIAN METACENTER FOR COMPUTATIONAL SCIENCE,
http://www.notur .no/hardware/njord/

[11] Wikipedia article on Profiling aka. Performance analysis,
http://en.wikipedia.org/wiki/Performance_analysis

[12] Jay Fenlason and Richard Stallman, GNU gprof - The GNU Praofiler,
http://www.cs.utah.edu/dept/old/texinfo/as/gprof_toc.html

[13] Miguel Hermanns, Parallel Programming in Fortran 95 using OpenMP School of Aeronautical Engi-
neering. Polytechnical University of Madrid, Spain April 2002.

[14] A Fortran 95 library for timing of parallel programs. Autor: Jalal Chergui, IDRIS-CNRS.
http://www.idris.fr/data/publications/TIM/

[15] Torbjern Utnes, A Segregated Implicit Pressure Projection Method for Incompressible Flows, J. of
Computational Physics 227 (4), 2198-2211, 2008.

20




A SGEFA

A.1 Original code

In the original code five slightly different versions of the SGEFA routine are beeing used. Here only the first
one is presented in its' totality. The only parts that differ among the five, are the two blocks labeled Compute
column K of the lower triangular factor (starting at code line 87) and Add muitiplies of the pivot row to the
remaining rows (starting at code line 93). These two blocks are the only parts presented from the other
subroutines.

subroutine sgefa ( a, Ida, n, ipvt, info )

OCONOUN AWM=

!*********************************************************************

!

It SGEFA factors a real matrix by gaussian elimination.

!

Discussion:

This is a version of the LINPACK routine SGEFA which has been
simplitied by replacing all the calls to BLAS routines by

equivalent code.

k

if ufk,k) .eq. 0.0 . this is not an error
condition for this subroutine, but it does
indicate that sges! or sgedi will divide by zero
if called. use rcond in sgeco for a reliable
indication of singularity.

!
!

I

I

!

/

! on entry

{

! a real(lda, n)

! the matrix to be factored.

!

/ Ida integer

! the leading dimension of the array a .

!

! n integer

! the order of the maltrix a .

!

! on return

!

! a an upper triangular matrix and the multipliers
! which were used to obtain it.

! the factorization can be written a=/+u where
! I is a product of permutation and unit lower
! triangular matrices and u is upper triangular.
I

! ipvt integer(n)

! an integer vector of pivot indices.

!

! info integer

! 0 normal value.

!

{

/

{

!

!

21




/

!

!

implicit none

integer
integer

lda
n

real a(lda,n)

integer

integer info
integer ipvt(n)

integer
integer
integer
real

e

info
do k

J
k

1, n—-1

Find the pivot index L.

|
t

K

abs ( a(k,k) )

doi =k+ 1,n

if (

|

t

end
end do

if

ipvt(k) = |

it ( a(l,k) == 0.0E+00 ) then

info
retu
end if

rm

k

t < abs ( a(i,k) ) ) then
i

abs ( a(i,k) )

Interchange rows K and L.

o
—_
nnn

Compute column K of the lower triangular factor.

do i =
a(i,
end do

k
k)

+ 1,

n
a(i, k) / a(k.k)

22




108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

! Add multiples of the pivot row to the remaining rows.

do j =k +1,n
doi =k+1,n
a(i,j) =afi,j) + a(i,k) = a(k,j)
end do
end do
end do
ipvt(n) = n
if ( a{n,n) == 0.0E+00 ) then
info = n
end if
return

end subroutine sgefa
I*********************************************************************
subroutine sgefac ( a, Ida, n, ipvt, info )

I start identic part as sgefa

! end identic part as sgefa
!
! Compute column K of the lower triangular factor.
!
a(k+1:n,k) = — a(k+1:n,k) / a(k,k)
! Add multiples of the pivot row to the remaining rows.
do j = k+1, n
a(k+1:n,j}) = a(k+1:n,j) + a(k+1:n,k) + a(k,j})
end do

! start identic part as sgefa

! end identic part as sgefa

end subroutine sgefa_c
!*********************************************************************

23




137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190

subroutine sgefac.omp ( a, Ida, n, ipvt, info )
! start identic part as sgefa

! end identic part as sgefa

!
{ Compute column K of the lower triangular factor.
!
{$omp workshare

a(k+1:n,k} = — a(k+1:n,k) / a(k,k)
!$omp end workshare
!

! Add multiples of the pivaet row to the remaining rows.
!
{§omp parallel do shared ( a, k, n ) private ( j )
do j = k+1, n
a(k+1:n,j) = a(k+1:n,]) + a(k+1:n,k) * a(k,j)
end do
{$omp end parallel do

! start identic part as sgefa

! end identic part as sgefa
end subroutine sgefa_c_omp
I*********************************************************************

subroutine sgefa_r { a, Ida, n, ipvt, info )
! start identic part as sgefa

! end identic part as sgefa
! Compute column K of the lower triangular factor.

a(k+1:n,k) = — a(k+1:n,k) / a(k,k)

—

! Add multiples of the pivot row to the remaining rows.
do i = k+1, n
a(i k+1:n) = a(i k+1:n}) + a(i,k) * a(k,k+1:n)
end do

! start identic part as sgefa

! end identic part as sgefa

end subroutine sgefa_r

24




19
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

subroutine sgefa_r.omp ( a, lda, n, ipvt, info )
! start identic part as sgefa

! end identic part as sgefa

{  Compute column K of the lower triangular factor.
{
{$omp workshare
a(k+1:n,k) = — a(k+1:n,k) / a(k,k)
I$omp end workshare
!
! Add multiples of the pivot row to the remaining rows.
!
i$omp parallel do shared ( a, k, n ) private ( i )
do i = k+1, n
a(i,k+1:n) = a(i,k+1:n) + a{i ,k) *= a(k,k+1:n)
end do
!$omp end paraile! do

I start identic part as sgefa

! end identic part as sgefa

end subroutine sgefa_r.omp

25




DoOoO~NOU A W =

A.2 Modified code

Two if-tests (see listing line 73 and 109) permit to decide respectivly if sequential or parallel version is to be

run, and wheter normal, columnvice or rowvice version is to be run.

subroutine sgefa ( a, Ida, n, ipvt, info, version, mode )

.r*********************************************************************
!
!l SGEFA factors a real matrix by gaussian elimination.
!
Discussion:

This is a version of the LINFACK routine SGEFA which has been
simplified by replacing all the calls to BLAS routines by
equivalent code.

on entry

a real{lda, n)
the matrix to be factored.

Ida integer
the leading dimension of the array a .

n integer
the order of the matrix a .

version indicates which version of the algorithme to choose.
Possible values are ’standard’, 'column' and 'row’

mode indicates the modus. 'sequential' or ‘parallel’

a an upper triangular matrix and the multipliers
which were used to obtain it.

the factorization can be written a=i+u where
! is a product of permutation and unit lower
triangular matrices and u is upper triangular.

ipvt integer(n)
an integer vector of pivot indices.

info integer

0, this is the normal value, and the algorithm succeeded.

k if u(k,k) .eq. 0.0 .

If K, then on the K-th elimination step,

a zero pivol was encountered.

The matrix is numerically not invertible.
(this is not an error
condition for this subroutine, but it does
indicate that sgesl/ or sgedi will divide by zero
if called. wvse rcond in sgeco for a reliable
indication of singularity.)

!
!
!
!
!
!
!
)
!
!
!
I
!
!
!
!
!
!
!
!
!
!
/ on return
!
!
!
)
!
!
!
!
!
!
!
!
!
!
/
!
!
!
!
{
!
f
!

implicit none

—_—

—Input parameters

integer, Intent(in) :: Ida

integer, intent(in) :: n

real, intent{inout) :: a(lda, n)
integer, intent(out) :: infa
integer, intent{out) :: ipvi(n)
character(len=«), intent(in) :: version
character(len=«), intent(in) :: mode
!

integer i , j, k, I

real temp(n}

real t

info = 0

26




{$omp paralle! IF( mode == 'parallel’)
dok=1,n-1
{%omp single

Find the pivot index L.

|l = k
t = abs ( a(k,k) )
doi=k+ 1, n
if (t<abs ( a(i,k) ) ) then
Il =i
t =abs ( a(i,k) )
end if
end do
ipvt(k) = |
if ( a(l,k) == 0.0E+00 ) then
info = k
Ireturn lcan't 'return’' because invalid exit from omp structured block
write (+,*) 'GCritical.error!lll. .Pivot.breakdown.at.row._k"
end if

1$omp end single

27




96 [/ Interchange rows K and L.

97 !/

98 if (|1 /= k) then

99 {$omp workshare !if (mode == 'paraliel '}

100 temp(k:n) = a(l ,k:n)

101 a(l,k:n) = a(k,k:n)

102 a(k,k:n) = temp(k:n)

103 1$omp end workshare

104 end if

105

106 !

107 | Compute column K of the lower triangular factor.
108 !/

109 if (version == 'standard’) then

110 doi=k+1,n

111 a(i,k) =— a{i,k) / a(k,k)

112 end do

113 else | version == 'ecolumn' or version == 'row'

114 {$omp workshare !IF(mode == ’'parallel ')

115 a(k+1:n,k) = — a(k+1:n,k) / a(k,k)

116 {$omp end workshare

117 end if

118

19 !

120 ! Add mulitiples of the pivot row to the remaining rows.
121 !

122 if (version == 'standard') then

123 do j =k + 1, n

124 do i =k+1,n

125 a(i,j) =a(i,j) + a{i k) = a(k,j)

126 end do

127 end do

128

129 else if (version == 'column' ) then

130 I$omp do schedule(guided)} !iF(mode == ’'parallel ')
131 do j = k+1, n

132 a(k+1:n,j) = a(k+1:n,j) + a(k+1:n,k) * a(k,j)
133 enddo

134 {$omp end do

135

136 else [ (version == 'row'

137 {$omp do schedule (guided) !IF(mode == 'parallel ')
138 do i = k+1, n

139 a(l,k+1:n) = a(i,k+1:n) + a(i k) * a(k,k+1:n)
140 enddo

141 I$omp end do

142

143 end if

144

145 end do
146 i$omp end parailel
147

28




148
149
150
151
152
153
154
155

DCOoO~NNOO WD =

ipvt(n) = n

if ( a(n,n) == 0.0E+00 ) then
info = n

end if

return

end subroutine sgefa

B Poisson equation

B.1 Profiler listings

Flat profile:

Each sample counis as 0.01 seconds.

% cumulative self self total
time seconds seconds calls s/call s/call name
96.37 33.47 33.47 1 33.47 33.47 dgb_fa_

1.47 33.98 0.51 1942488 0.00 0.00 gbf.

1.21 34.40 0.42 1 0.42 0.74 assemble.

0.58 34.60 0.20 1 0.20 0.20 dgb_sl_

0.17 34.66 0.06 1 0.06 0.28 errors.

0.06 34.68 0.02 143659 0.00 0.00 exact.

0.03 34.69 0.01 171396 0.00 0.00 rhs.

0.03 34.70 0.01 9522 0.00 0.00 quad.e_

0.03 34.71 0.01 1 0.01 0.01 bandwidth_

0.03 34.72 0.01 1 0.01 0.01 boundary.

0.03 34.73 0.01 1 0.01 0.01 solution_write_
0.00 34.73 0.00 3 0.00 0.00 get_unit_

0.00 34.73 0.00 3 0.00 0.00 r8vec_print_some._
0.00 34.73 0.00 2 0.00 0.00 dgb_print_.some._
0.00 34.73 0.00 2 0.00 0.00 timestamp.

0.00 34.73 0.00 2 0.00 0.00 timestring.
0.00 34.73 0.00 1 0.00 34.73 MAIN_.

0.00 34.73 0.00 1 0.00 0.00 area_set._

0.00 34.73 0.00 1 0.00 0.00 compare.

0.00 34.73 0.00 1 0.00 0.00 element_write_
0.00 34.73 0.00 1 0.00 0.00 grid_t6.

0.00 34.73 0.00 1 0.00 0.00 indx_set.

0.00 34.73 0.00 1 0.00 0.00 nodes_write_
0.00 34,73 0.00 1 0.00 0.00 quad.a.

0.00 34.73 0.00 1 0.00 0.00 xy.set.

%
time

cumulative
seconds

self
seconds

calls

self
ms/call

{otal
ms/call

name

the percentage of the total running time of the
program used by this function.

a running sum of the number of seconds accounted
for by this function and those listed above it.

the number of seconds accounted for by this
function alone. This is the major sort for this
listing .

the number of times this function was invoked, if
this function is profiled , else blank.

the average number of milliseconds spent in this
function per call, If this function Is profiled,
else blank.

the average number of milliseconds spent In this
function and its descendents per call, if this
function is profiled, else blank.

the name of the function. This is the minor sort
for this listing. The index shows the location of
the function In the gprof listing. If the index is
in parenthesis it shows where it would appear in

the gprof listing if it were to be printed.

Call graph (explanation follows)

29




granularity : each sample hit covers 4 byte(s) for 0.03% of 34.73 seconds

index % time selt children called name
0.00 34.73 1M main [2]
[1] 100.0 0.00 34.73 1 MAIN__ [1]
33.47 0.00 M dgb_fa_ [3]
0.42 0.33 i1 assemble_ [4]
0.06 0.22 11 errors_ [6]
0.20 0.00 1/1 dgb_sl- [7]
0.01 0.00 111 boundary. [9]
0.01 0.00 11 bandwidth. [12]
0.01 0.00 11 solution_write. [13]
0.00 0.00 1/1 compare. [14]
0.00 0.00 3/3 rBvec_print_some. [16]
0.00 0.00 2/2 timestamp. [18]
0.00 0.00 2/2 dgb_print_some. [17]
0.00 0.00 1/1 xy_set_ [26]
0.00 0.00 1/1 grid-t6. [22]
0.00 0.00 1/1 quad_a_ [25]
0.00 0.00 11 area_sei_ [20]
0.00 0.00 11 indx_set. [23]
0.00 0.00 1M1 nodes_write_ [24]
0.00 0.00 1M element_write_ [21]
<spontaneous>
[2] 100.0 0.00 34.73 main [2]
0.00 34.73 11 MAIN_. [1]
33.47 0.00 11 MAIN_. [1]
[3] 96.4  33.47 0.00 1 dgb_fa_ [3]
0.42 0.33 11 MAIN_. [1]
[4] 2.1 0.42 0.33 1 assemble_ [4]
0.32 0.00 1199772/1942488 qbf_ [5]
0.01 0.00 171396/171396 rhs_ [10]
0.20 0.00 742716/1942488 errors_ [6]
0.32 0.00 1199772/1942488 assemble_ [4]
[5] 1.5 0.51 0.00 1942488 qbf. [5]
0.06 0.22 11 MAIN_. [1]
[6] 0.8 0.06 0.22 1 errors_ [6]
0.20 0.00 742716/1942488 gbf_ [5]
0.02 0.00 123786/143659 exact. [8]
0.01 0.00 9522/9522 guad_e_ [11]
0.20 0.00 11 MAIN__ [1]
[7] 0.6 0.20 0.00 1 dgb.sl_ [7]
0.00 0.00 552/143659 boundary_ [9]
0.00 0.00 19321/143659 compare. [14]
0.02 0.00 123786/143659 errors_ [6]
[8] 0.1 0.02 0.00 143659 exact. [8]
0.01 0.00 i MAIN_. [1]
[91 0.0 0.01 0.00 1 boundary_ [9]
0.00 0.00 552/143659 exact. [8]
0.01 0.00 171396/171396 assemble_ [4]
[10] 0.0 0.0t 0.00 171396 rhs_ [10]
0.01 0.00 9522/8522 errors_ [6]
[11] 0.0 0.01 0.00 9522 quad_e. [11]
0.01 0.00 M MAIN__ [1]
[12] 0.0 0.01 0.00 1 bandwidth_ [12]
0.01 0.00 11 MAIN_. [1]
[13] 0.0 0.01 0.00 1 solution_write_ [13]
0.00 0.00 1/3 get_unit. [15]
0.00 0.00 1M MAIN_. [1]
[14] 0.0 0.00 0.00 1 compare. [14]
0.00 0.00 19321/143659 exact. [8]

30




137 0.00 0.00 1/3 element_write. [21]

138 0.00 0.00 1/3 nodes_write_ [24]
139 0.00 0.00 1/3 solution_write. [13]
140 [15] 0.0 0.00 0.00 3 get_unit_ [15]

141

142 0.00 0.00 3/3 MAIN.. [1]

143  [16] 0.0 0.00 0.00 3 r8vec_print_.some_ [16]
144

145 0.00 0.00 2/2 MAIN_. [1]

146 [17] 0.0 0.00 0.00 2 dgb_print_same_ [17]
147

148 0.00 0.00 2/2 MAIN_. [1]

149 [18] 0.0 0.00 0.00 2 fimestamp. [18]

150 0.00 0.00 2/2 fimestring. [19]
151

152 0.00 0.00 2/2 timestamp. [18]
153 [19] 0.0 0.00 0.00 2 timestring. [19]

154

155 0.00 0.00 11 MAIN_. [1]

156 [20] 0.0 0.00 0.00 1 area_set_ [20]

157

158 0.00 0.00 11 MAIN__ [1]

159  [21] 0.0 0.00 0.00 1 element_write. [21]
160 0.00 0.00 1/3 get_unit. [15]
161

162 0.00 0.00 11 MAIN__ [1]

163 [22] 0.0 0.00 0.00 1 grid_16. [22]

164

165 0.00 0.00 11 MAIN__ [1]

166 [23] 0.0 0.00 0.00 1 indx_set_ [23]

167

168 0.00 0.00 11 MAIN_. [1]

169 [24] 0.0 0.00 0.00 1 nodes_write. [24]

170 0.00 0.00 1/3 get_unit. [15]
171

i72 0.00 0.00 1/1 MAIN_. [1]

173 [25] 0.0 0.00 0.00 1 quad.a. [25]

174

175 0.00 0.00 1/1 MAIN__ [1]

176 [286] 0.0 0.00 0.00 1 xy-set_ [26]

177

178

179 This table describes the call tree of the program, and was sorted by
180  the total amount of time spent in each function and its children.
181

182 Each entry in this table consists of several lines. The line with the
183  index number at the left hand margin lists the current function.

184  The lines above it list the functions that called this function,

185 and the lines below it list the funclions this one called.

186 This line lists:

187 index A unique number given to each element of the table.

188 Index numbers are sorted numerically,

189 The index number is printed next to every function name so
190 it is easier to look up where the function In the table.
191

192 % time This is the percentage of the ‘total’.time.that.was.spent
193 cibce oo in.this.function.and.its.children.._Note.that._due.to

194 wovoommus wewwondifferentoviewpoints , functions.excluded.by.options , .etc,
195 wuswsssuucausaoy these.numbers.will NOT.add.up.to.100%.

196

197 wuuus selfuoauaooThisois theototal .amount.of.time.spent.in.this.function.
198

188  .....children...This.is.the_.total_.amount.of.time.propagated.into.this
200 o wuwusooos fUnctionoby.its uchildren.

201

202 L...ocalled ceoe. This.is.the.number.of.times..the_.function.was.called.

203 Lioon v ouoeewew [futhesfunctionucalledoitself urecursively | .the .number

204 Liiicinew wuwwoenOflysincludes non—recursiveocalls , .anduis ufollowed Lby

205 Leicccmcccacnoeo a.'+"' and the number of recursive calls.

206

207 name The name of the current function. The index number Is
208 printed after it. |If the function is a member of a

208 cycle, the cycle number is printed between the

210 function 's.name.and.the.index.number.

211

212

31




230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272

Lo~ & =

—_ -
n—-o

~For.the.function's parenis, the fields have the following meanings:

self This is the amount of time that was propagated directly
from the function into this parent.

children This is the amount of time that was propagated from
the function’s.children.inlo.this._parent.

HHHHH called .....This.is.the.number.of_times.this.parent.called.the

uuuuuuuuuuuuu weuwfunctions '/’ the total number of times the function
was called. Recursive calls to the function are not
included in the number after the ‘/°'.

uuuuu name.uuuwoa This.is Ltheoname.of Lthe.parent. ..The.parent's index
number is printed after it. |If the parent is a
member of a cycle, the cycle number is printed between
the name and the index number.

If the parents of the function cannot be determined, the word
‘<spontaneous>'.is.printed.in.the.'name’ field, and all the other
fields are blank.

For the function’s.children ,.the.fields.have.the_following.meanings:

uuuuu selfuoceoc.This.is.the.amount.of.time_that was.propagated.directly
uuuuuu vuuwwaooncfromatheochild Linto utheofunction.

uuuuu children...This.is.the.amount.of._time_thal.was.propagated.from._the
wewouuuoswuoueuaw GRild 's children to the function.

called This is the number of times the function called
this child '/'.the.total.number.of.times.the.child
uuuuuuuuuuuuuuuu was.called...Recursive_calls.by.the.child_.are.not
b Bt it listed .in_the.number_after.the.'/".

name This is the mame of the child. The child's.index
uuuuuuuuuuuuu wewnumber.is..printed_after.it...If.the.child.is.a
S B B member.of .a.cycle , .the.cycle .number.is .printed
uuuuuuuuu wuowuoubetweenctheonamecand.theoindex.number.

~If.there_are.any.cycles.(circles}.in_the.call.graph,.there.is.an
wentry._for.the.cycle—as—a—whole...This.entry_shows.who.called .the
~cycle.(as.parents).and.the.members.of.the.cycle.(as.children.)
~The.‘+' recursive calls entry shows the number of function calls that
were internal to the cycle, and the calls entry for each member shows,
for that member, how many times it was called from other members of
the cycle.

Index by function name

[1] MAIN__ [21] element_write._ [11] quad_e_

[20] area_set. [6] errors. [16] rBvec_print.some._
[4] assemble_ [8] exact. [10] rhs_

[12] bandwidth_ [15] get_unit_ [13] solution_write.
[8] boundary. [22] grid_t6. [18] timestamp.

[14] compare. [23] indx_set_ [19] timestring-

[3] dgb_fa_ [24] nodes_write_ [26] xy_set.

[17] dgb_print_some. [6] qgbf.

[7] dgb_sl. [25] quad_a.

B.2 Burkardt’s original version

subroutine dgb_fa ( n, ml, mu, a, pivot, info )

!*********x*******************************************************************BO
!
Il DGBFA performs a LINPACK-style PLU factorization of an DGB matrix.
!
Discussion:

!

!

/ The DGB storage format is for an M by N banded matrix, with lower

! bandwidth ML and upper bandwidth MU. Storage includes room for ML
! extra superdiagonals, which may be required to store nonzero entries
! generated during Gaussian elimination.

32




TN tm tmm T e e e ol el el sl s et St e e e Bl fml fml e e e e e P T e fm fmn fmm tme e e et e tmm e e e e e e fmn e e me

-

The original M by N matrix is "collapsed” downward, so that diagonals
become rows of the storage array, while columns are preserved. The
collapsed array is logically 2+ML+#MU+T by N.

The following program segment will set up the input.

do j 1, n
i1 =max ( 1, j—mu )
i2 min ( n, j+ml )
do i = i1, i2
k=1 — j + M
atk,j) = afull(i,j)
end do
end do

m=ml +mu + 1
i

This uses rows ML+1 through 2«ML+MU+1 of the array A.
in addition, the first ML rows in the array are used for
elements generated during the triangularization.

The ML¥MU by ML+MUJ upper left triangle and the
ML by ML lower right triangle are not referenced.

Modified :
04 March 1999
Author:
FORTRANSQ version by John Burkardt
Reference:
Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart,
LINPACK User's Guide,
SIAM, 1979

Parameters :

Input, integer N, the order of the matrix.
N must be positive.

input, integer ML, MU, the lower and upper bandwidths.
ML and MU must be nonnegative, and no greater than N—1.

Input/output, real ( kind = 8 } A(2«ML+MU+1,N}, on input, the matrix
in band storage, on output, information about the LU factorization.

Output, integer PIVOT(N), the pivot vector.
Output, integer INFO, singularity flag.
0, no singularity detected.
nonzero, the factorization failed on the INFO-th step.
implicit none
integer ml
integer mu
integer n
real ( kind = 8 ) a(2+«ml+mu+1,n)
integer i0, info, pivot(n), j, jo, j1, ju, jz, k, |, Im, m, mm
real { kind = 8 ) temp

m=ml+ mu + 1
info = 0

Zera out the initial fill—in columns.

jo
Al

mu + 2
min { n, m) —1

do jz = jO, |1
i0=m+ 1 - jz
a(io:ml,jz) = 0.0D+00

33




86 | Zero out the next fill—in column.

98 jz = jz + 1

99 if { jz <=n )} then
100 a{i:ml,jz) = 0.0D+00
101 end if

103 ! Find L = pivot index.

1056 Im = min { ml, nk )

|
108 do | m+1, m+im
a

ps (a(l,k) ) < abs ( a(j,k) ) ) then

111 end if
112 end do

114 pivet(k) = | + k —m

116 ! Zero pivot implies this column already triangularized.
117 !

118 if { a(l,k) == 0.0D+00 ) then

119 info = k

120 write { =, "(a)' ) '.

121 write ( %, '(a)" ) 'DGBFA.—.Fatal.error!'

122 write ( *, '(a,i8)' ) '.L.Zero.pivot.on.step.’, info
123 return

124 end if

126 ! Interchange if necessary.
127 !

128 if (m/= 1) then

129 temp a(l k)

130 a(l k) = a(m,k)

131 a(m,k) temp

132 end if

134 1‘ Compute multipliers.

136 j a(m+1:melm, k) = — a(m+1:m+Im,k) / a{m,k)
138 I Fow elimination with column indexing.

140 ju

141 ju
142 mm

max ( ju, mu+pivot(k) )
min ( ju, n)
m

nonu

144 do j = k+1, ju

—

146 I =1 -1
147 mm =npm— 1

149 if { | /=mm) then
150 temp a(l,j)
a(rm, j )
temp

iy
[4)]
'y
]
—
&=
nmnn

155 afmm+immelim, j) = a{mmetameim, ) + a(mm, |} + a(m+1:meim, k)
157 end do

159 end do

161 pivot(n) = n

162 it ( a(mn) == 0.00+00 ) then

163 info = n
164 write ( =, ‘(a)' ) '’

34




165 write ( =, '(a)})’' ) 'DGB.FA_—.Fatal.error!’

166 write ( =, '(a,i8)' } '..Zero.pivot.on.step.’, info
167 end if

168

168 return

170 end subroutine dgb_fa

B.3 Modified version

1 subroutine dgb.fa ( n, ml, mu, a, pivot, info, timerLen, timer, mode, &
2 & extraArgil )

3

4 use omp_lib

5 implicit none

6

7 ! —Calling

8 integer, intent{in) :: n

9 integer, intent{in) :: ml

10 integer, intent(in) :: mu

11 real { kind = 8 ), intent(inout) :: a(2s«ml+mu+1,n)

12 integer, intent{out) :: pivot(n)

13 integer, intent(out) :: info

14

15 integer, intent(in) :: timerLen

16 double precision, intent(inout), dimension(timerLen) :: timer
17 character(len=x), intent{in) :: mode

18 character(len==+), intent(in) :: extraArgl

19

20 ! —Locals

21 integer 10, j ,j0, j1, ju, j2, k, |, Il, Im, m, mm, index

22 real { kind = 8 ) temp

23

24 double precision :: wtimel, wtime2, wtime3 , wtime4, wiime5, wtime6é
25

26 m=ml + mu + 1
27 infoa = 0
!

28

29 ! Zero out the fill—in columns.

30 !

31 jO =mu + 2

32 j1 =min ( n, m )} — 1 {Last initial fill in column.
33

34 wtimel = omp_get.wlime ()

35 {fomp paralle! do IF(mode == 'parallel '), private(i0)
36 do jz = jO, n

37 10 =m+ 1 - jz

as i0 = max(i0,1) /BG add: comb all zero out in one loop
a9 a(i0:ml,jz) = 0.0D+00

40 end do

4 I$omp end parailel do

42 wiime2 = omp_get.wiime ()

43 timer (1) = wtime2 — wtime1

44

45 jz = |1

46 ju=20

47

48 fimer(3) = 1.0
49 timer (4:6) = 0.00000000000000000
50 wtime5 = omp_get_wtime ()}

52 !$omp parallel IF(mode == ’parallel ')
53 do k = 1, n—1 lloop over columns
54 1$omp single

56 !

57 ! Find L = pivot index.
58 !

59 wiimed = omp_get_wlime ()}
60 Im = min ( ml, n—k )

61 | =m

63 do j = m+1, melm
if ( abs ( a{l,k) ) < abs ( a(j,k) ) ) then
I = j
66 end if

35




67 end do

68

69 wilimed4 = omp_get_wtime ()

70 limer(4) = timer(4) + (wtimed4 — wtime3)
71

72 pivot(k) = | + k —m

73 !

74 ! Zero pivot implies this column already triangularized.
75 !

76 it ( a{l,k) == 0.0D+00 ) then

77 info = k

78 write ( x, (a) ) A

79 write {( «, '(a)’ ) 'DGBFA.-.Fatal.error!’
80 write ( «, '(a,i8)' ) 'u.Zero.pivot.on.step.', info
81 lreturn

82 end if

83 !

84 ! Interchange if necessary.

85 !

86 it {(m/= 1) then

87 temp = a(l,k)

88 a(l,k) = a{m,k)

89 a(m,k) = temp

90 end If

91 !

92 ! Compute multipliers.

93 !

94 wtime3 = omp_get.wtime ()

95 a{m+1mmim, k) = — a(m+1:melm,k) / a{m,k)
96 wilime4 = omp_get_wtime ()

97 timer(5) = timer(5) + (wiime4 — wtime3)
28 !

99 { Fow elimination with column indexing.
100 !

101 ju = max ( ju, mu+pivot(k) )

102 ju =min ( ju, n)

103 mm = m

104

105 wiime3 = omp_get_wtime ()

106 {$omp end single

107

108 {§omp do private (1l ,mm, temp)

109 do | = k+1, ju

110 I =1+ k-j

111 mn=m+ Kk — j

12 if {11 /=mm ) then

113 temp =af(ll,j)

114 a(ll,j) = a(mm,j)

115 a(mm, j) = temp

116 end if

117 a(mm+lmmem, ) = ammetmmedm, j) + a(mm,j) »* a(m+1:m+Im, k)
118 end do

119 I$omp end do

120

121 {fomp single

122 wilimed4 = omp_get_wtime ()

123 timer(6) = timer(6) + (wtimed — wtime3)
124 1$omp end single

125

126 end do
127 i$omp end parallel

129 wtime6 = omp_get_wtime ()
130 timer (2) wiime6 — wiime5s

non

131 timer(7) = wtime6 — wiime1

132

133 pivot{n) = n

134 if ( a(mn) == 0.0D+00 ) then

135 info = n

136 write ( =, i

137 write ( *, (a) ) 'DGB.FA.~_.Fatal.error!"'
138 write ( *, '(a,iB)’ ) '..Zero_pivoi.on.step.’, info
139 end if

140

141 return

142 end subroutine dgb_fa

36




Q@ NEO R -

B.4 Runtime output
Legend:

1. Ttotal refers to the total execution time for a the entire program for a given proble size and a given

number of processors.

Juno 4 2008 10:31:59.025 AM
maxNp = 16
Dimensions are
NX = 10 NY = 10
#nodes = 361 #elemenis = 162
moda Ttotal Tdgb
sequentlal{ 1} 2,204E-02 3.206E—-@
Spoedup 1.00DE+00 1.000E+00
Spaeedup/ proc 1.000E+00 1.000E+00

TzaroOul

1.47BE-06
1.000E+00
1.000E+00

Tdgb refers to the run time of the dgb-subroutine.

BandWidth = 115

TloopK Tinner
JA9E-1 1.586E—m
1.000E+00 1.000E+00
1.000E+00 1.00DE+00

TzeroOut and TloopK design the execution time for two blocks of the dgb-subroutine.
Tinner is the run time for a subblock of the TloopK-block.

BandWidth refers to the total bandwidht of the banded matrix.

L2 error

J.883E-4

parallel ( 2) 2.069E— s 3 7 — 5 =
Spoedup 1.065E+00 1.285E+00 3.523E-01 1.301E+00 2.053E-01
Speedup/ proc 5.327E-0 6.423E-01 1.761E-O1 6.503E-01 4.548E—01
parallal ( 4) 21306t  2771E-m  3.147E-05  2.730E-00  1.822E-W  3.883E_01
Speedup 1.034E+00 1.157E+00 4.697E-01 1.165E+00 B.706E—-D1
Speedup/ prac 2.586E-01 2.893E-D1 1.174E-01 2.913E-01 2.176E-01
paraliel ( B)  2.251E@  3965E-0  5.006E-(6  J.931E-(0  2.500E-@  3.68IE
Spoedup 9.791E- 8.045E—-01 2.743E-m 8.118E—-D1 G.196E-0
Speedup/ proc 1.224E-01 1.006E—-m 3.425E-2 1.015E—-D1 7.745E-(C
paraliel (16)  2.2B4E-8  4.4326-0  0.465E-06  A437E—(D  D.O0IE-G1  3.8B3E_04
Spoedup 9.651E-01 7.235E-01 1.562E-01 7.358E-01 5.46BE-01
Speedup/proc 6.032E-@ 4.522E—-m 9.761E-3 4,599E-@ 3.418E-C2
Dimensions are
NX = 20 NY = 20
#nodes = 1521 #elemenis = 722 BandWidih = 235
moda Ttatal Tdgb TzeroOut TioopK Tinnar L2 arror
sequentlal{ 1) 5.887E-R 2411E-2 8.10BE-05 2.402E-(2 2.127E-@®@ 4.114E-05
Speedup 1.000E+00 1.000E+00 1.000E+D0 1.000E+00 1.000E+00
Speedup/proc 1.000E+00 1.000E+00 1.000E+DD 1.000E+00 1.000E+C0
paraliel (2]  5.037E—@  1927E—w@  1.094E-0)  \G1GE-02  1.52BE—B  4.114E_05
Speedup 1.169E+00 1.251E+00 8.322E-01 1.253E+00 1.392E+00
Speedup/proc 5.843E-01 6.255E-01 4,161E-01 6.267E-01 6.950E-D1
puralial [ 4} 5.076E-02  1.596E-1  9.923E_F  1.580E-8  1.433E-@  4.114E—05
Spoedup 1.160E+00 1.511E+00 9.770E- 1.514E+00 1.877E+00
Speedup/ proc 2.898E-01 J.7T7E-01 2.442E-01 3.7B85E-01 4.692E-01
paralinl ( B)  S.471E—@  1885E-@  B.046E—B 1876618  1908E_0  4.114E-05
Speedup 1.076E+00 1.214E+00 8.745E-01 1.215E+00 1.626E+00
Speedup/ proc 1.345E-01 1.518E-D1 1.218E-01 1.519E-01 2.032E-01
paralial (16)  5.0BBE-2  1.966E—2  1.154E—01  1.054E-02  1.268E-@  4.114E-05
Speedup 1.157E+00 1.226E+00 7.893E-01 1,229E+00 1.6B1E+0D
Speedup/proc 7.232E-2 7.665E—-02 4.931E—@2 7.682E—-2 1.051E-01
Dimansions are
NX = 4D NY = 40
#nodas = 6241 #elements = 3042 BandWidlh = 475
mode Ttatal Tdgb TzaroOut TioopK Tinner L2 error
sequentinl{ 1) 4.B3BE-01 3.209E-01 1.134E-@ 3.198E-01 3.018E-01 4.754E-06
Speedup 1.000E+D0D 1.000E+D0 1.000E+00 1.000E+00 1.000E+00
Speedup/ proc 1.000E+D0 1.000E+0D0 1.000E+00 1.000E+00 1.000E+00
paraliol ( 2)  3.260E—01  1947E—gi B ] BRI
Speedup 1.4B4E+00 1.648BE+00 1.33BE+00 1.650E+00 1.760E+00
Speedup/proc TA21E-D1 8.241E-DY B8.690E—01 B.24BE-01 8.B02E-01
paralial ( 4)  2.605E-01  1.294E—01  4.220E—0¢  1.280E-01  1.032E-01  4.754E—06
Spoedup 1.858E+00 2.480E+00 2.680E+00 2.479E+00 2.825E+00
Speedup/ proc 4.644E-01 6.200E—-01 8.720E- 6.199E-01 7.313E-01
paraliol ( B)  2.485E-01  1.473E—01  3.526E01  1.100E—0  B.J42E-10  4.754E_06
Speedup 1.047E+00 2.737E+00 3.215E+00 2.735E+00 3.G12E+00
Speedup/prac 2.434E-01 3.421E-01 4.018E-01 3.418E-01 4.524E-0t
paraliel (16)  2.339E—01  1.024E—00  3.510E—01  1.021E-01  6.042E—@  4.754E—t6
Speedup 2.0B9E+00 3.134E+00 3.232E+00 3.133E+00 4.412E+00
Speedup/proc 1.293E-01 1.959E-01 2.020E-01 1.958E-01 2.758E-01
Dimansions are
NX = 80 NY = an
#nodes = 25281 #elemenis = 12482 BandWidlh = §55
moda Ttotal Tdgb TzaroOut TioopK Tinner L2 error
sequential({ 1) 6.0128E+00 5.137E+00 1.242E—-@ 5.125E+00 4.998E+00 5. 71BE-07
Spaadup 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00

37




Speedupfproc  1.000E+00  1.000E+00  1.000E+00  1.000E+00  1.00GE+00
parallel [ 2] 3.1B7E+00  2.540E+00  6.091E— 2.534E+00  2.908E+00  5.710E—07
Spaccup 1.889E+00  2.023E+00  2.040E+00  2.023E400  2.093E+00
Speedup/proc 8.443E-01 1.011E+00 1.020E+00 1.011E+00 1.046E+00
parallal [ 4)  2.070E+00  1.435€:00 3.1 14326400 1.271E+00  5.718E—07
Speecup 2.894E+00  3.507E+00  3.933E«00  G.5B0E+D0  3.932E+00
Speedup/proc  7.236E—01  0.852E—01  9.833E-01  B.OSOE—O1  B.831E—01
paraltel  ( B14E+00  9.707E—01  1.744E—00  8.600E—01  7.760E—01  5.7188_07
Speedup 3.720E+00  5.290E+D0  7.126E+00  5.209F+00  B.441E+00
Speedup/proc  4.660E—01  6.61GE—01  B.90BE-DI  B.612E—01  B.051E—01
10726400 7.278E-01  1.454E-0  7.966E_U1  5.226E_01  5.718E_07
4.388E+00  7.050E+00  1.077E+01  7.053E+00  8.SG64E+00
Speedup/proc  2.742E—DI  4.412E—0i  B.731E—01  4.40BE—01  5.877E—01

Dimensions are

NX = 160 NY = 160
#nodes = 101761 #elemonis = 50562 BandWidih = 1915
mode Ttatal Tdgh TzeroOul TieapK Tinnar L2 arror
sequentlal{ 1} 1.012E+02 2.611E+01 9.094E-@ 8.602E+01 9.503E+01 7.014E—08
Speedup 1.000E+00 1.000E+00 1,000E+00 1.000E+00 1.000E+00
Speedup/proc 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+00
parallel [ 2]  4.801E:01  4.479E:01  A.B87E_B  4.475E+01  4.4GBEsD1  7.014E—08
Speedup 2.107E+00 2.148E+00 1.953E+00 2.148E400 2.175E+00
Speedup/proc 1.054E+00 1.073E+00 9.763E-01 1.073E+00 1.08BE+DD
paralial [ 4)  2.357E401  2.034E401  2.834E-@  2.032E:01  1.924E:01  T.014E—8
Speedup 4.202E+00 4.724E+00 3.208E+00 4.727E+00 4.939E+00
Speedup/prec 1.073E+00 1.183E+00 8.022E-01 1.182E+00 1.235E+00
paralial ( B)  1.441Es01 11216401 1.558E-@  1.410E+d1  0.088E00  7.014E—06
Speedup 7.020E+00 8.577E+00 5.B48E+00 B.581E+00 9.517E+00
Speedup/proc 8.775E—-01 1.072E+00 7.312E-D01 1.073E+00 1.190E+00
parallol (16}  1.038E401  7.122E+00  1ABGE-@  7407E+00  B.BAGEDD  7.014E-08
Speedup §.765E+00 1.350E+01 6.12DE+00 1.351E+01 1.634E+01
Speedup/ proc 6.103E-01 B.435E-01 3.025E-01 8.444E-01 1.021E+00
Dimensions are
NX = 320 NY = J20
#nodes =  40B321 #olemonis = 203522 BandWidth = 3835
moda Ttotal Tdgb TzeroQul TioopK Tinner L2 error
sequentinl{ 1) 1.642E+03 1.610E+03 6.22BE-D1 1.610E+03 1.602E+03 B.685E—09
Speedup 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+0D
Speedup/proc 1.000E+00 1.000E+00 1.000E+00 1.000E+00 1.000E+0DD
parallel ( 2)  7.900E+02  7.743E402  3.750E-01  7.739E+02  7.000E:02  B.GO5E.(8
Speedup 2.077E+00 2.080E+00 1.661E+00 2.080E+00 2.092E+00
Spoedup/proc 1.03BE+00 1.040E+00 B8.303E-01 1.040E+00 1.046E+00
parallel { 4) 38736402 J.G07E+02  2.000E-01  3.BOSE:D2  3.795E+02  B.6055-08
Spoedup 4.133E+00 4.230E+00 3.114E+00 4.231E+00 4.301E+00
Speedup/prec 1.033E+00 1.05B8E+00 7.785E-01 1.05BE+00 1.075E+00
parallal { B)  2.056E+02  1.890E+02  1.336E_01 BBE+02  1.805E¢02
Speedup 7.986E+00 8.521E+00 4,665E+00 B.524E+00 B.874E+00
Speedup/proc 9.983E-01 1.065E+00 5.831E-D1 1.065E+00 1.108E+00
paraliol (16}  1.0408:02  1.070E+02  1.2006—01  1.078E:02  8.695E+01  B.6OSE_08
Speedup 1.321E+01 1.492E+01 5.164E+00 1.483E+01 1.619E+M
Speedup/ proc B.256E-01 9.323E-01 3.227E-01 9.330E-01 1.012E+0D
FEM2D POISSON:

Normal end of exacution,

June 4 2008 11:28:12.311 AM

38




C Simra

C.1 Profile
C.1.1 Call graph

An extract of the call graph obtained by the profiler is presented here. In total 155 different functions and
subroutine are called during the simulation, including system calls and intrinsic Fortran functions. The total
time spend in a routine/function is the “self-time” plus the time spend in the other units called from that
spesific unit. There are only 17 of the 155 units that are listed with at least 1% of the runtime as their total
time. In this appendix it is only the partial call graph for these 17 units that is presented. In the appendix
B.1 a complete profiler listing is presented for the basic poisson problem. In that listing it is also included
an explication of the terms used.

Listing 16: Extract of the call graph of Simra

ngranularity : Each sample hil covers 4 bytes. Time: 125.45 saconds

called/1olal parents

index %lime sell descendenls called+sel! namo Index
called/total children
0.00 123.66 11 .--8tart 2]
[1] 98.6  0.00 123.66 1 .main {1]
0.00 120.28 m .p2.algorithm [3]
0.65 0.61 11 .--prassure .NMOD _storage_cppe [17]
0.62 0.46 111 -6lorage.ql (18]
0.80 0.00 1t . —prassura.NMOD_assemp [20]
0.05 0.15 " .caleul [25])
0.01 0.03 i input [36)
0.00 0.00 6/88 ..-mailoc [78]
B.68 <spontanaous>
12] 08.6  0.00 123.66 _.start [2]
0.00 123.66 1" .main [1]
0.00 120.28 117 .main [1]
13] 85.9 0.00 120.28 1 .p2.algerithm [3]
1.24 35.03 100/100 . —pressure.NMOD_dpras [5]
11.38 2216 100/100 «~momenum_.NMOD.veloc [7]
12.26 14.87 100/100 . --turbka .NMOD_turb2 [9]
3.34 B.69 100/100 . --turbke NMOD._assemk [11]
2.52 7.45 100/100 «—momenlumNMOD_assemu [12]
0.88 0.31 100/100 «—momenlum.NMOD.upcor [16]
0.01 0.04 2/2 .result [29]
0.00 0.00 100/100 -lime.step [77]
0.00 0.00 3/88 .-.malloc [78]
1.60 1217 2001500 .--lurbke.NMOD.urb2 (8]
240 19.76 a00/500 .—momantum .NMOD_veloc [7]
18] 20.4  4.00 32.93 500 .--50lvar.NMOD.bicgsiab2 [4]
32,35 0.00 J726/3726 .--5olver.NMOD.malvec [8]
0.58 0.00 21122112 .--soivar_.NMOD.norm [22]
1.24 35.03 100/100 .p2.algorithm [3]
[51 28.9 1.24 35.03 100 - ~pressure.NMOD_dpres [5]
15.50 18.53 1004100 . —solver.NMOD._pcg (6]
15.50 19.53 100/100 . —pressure.NMOD_dpres [5]
(6] 27.% 15.50 19.53 100 .--solver.NMOD.pcg [B]
19.53 0.00 17011701 .--solver . NMOD_pssor [10]
11.38 22,16 100/100 .p2.algorithm [3]
[71 25,7 11.38 22.16 100 .—momenium.NMOD.valoc {7]
2.40 19.76 300/500 .--solver.NMOD_bicgstab2 [4]
32.35 0.00 3726/3726 .--solvar.NMOD_bicgsiab2 [4]
18] 258 32.35 0.00 726 .-solver_.NMOD_malvec [B]
12.26 14.87 100100 .p2.algorithm [3]
191 21.6 12.26 14.87 100 . —turbke.NMCD_turb2 [9]
1.60 1317 200/500 .--solver.NMOD_bicgstab2 [4]
.03 0.02 240100/324135 .-pow [28]
0.03 0.00 240100/240100 -log [38])
0.02 0.00 240100/240100 .-exp [42]
18.53 p.00 17091170 . —solvar.NMOD.pcg [6]
[1o] 15.6 19.53 0.00 1701 . =5olver_.NMOD_pssor [1D]
3.34 B.68 100/100 .p2.algorithm [3]
[11] 9.6 3.34 B.68 100 . —~turbke NMOD_assamk [11]
a.69 0.00 7833600/7833600 . -turbka_NMOD.aIimat_k [13]
2.52 7.45 100/100 .p2.algorithm [3)
[12] 7.9 2.52 7.45 100 .—momentum NMOD_assemu [12]
7.45 0.00 7833600/7833600 .—momenfum_NMOD.almat.u [14]

39




B.69 0.00 7833600/7833600

«-lurbke_NMOD_assemk [11]

[13] 6.9 B8.69 0.00 7833600 --turbke.NMOD_elmai_k [13]
7.45 0.00 7833600/7833600 .—momentum NMOD.assemu {12]

[14] 5.9 7.45 0.00 7833600 . —momentum NMOD.elmat.u [14]

6.65 <sponianeous

[15] 1.1 1.32 0.00 .--mcount [15]
0.98 0.31 100/100 .p2.algorithm [3]

[16) 1.0 0.98 0.91 100 .—-momentum NMOD_upcor [16]
0.31 0.00 100/100 . —momentum NMOD_couran [24]
0.65 0.61 111 .main [1]

"7 1.0 0.65 0.61 1 .--pressure.NMOD _storaga.-cppo [17]
0.03 0.40 783360162371 . --sorting.NMOD_sortheap [19)
0.15 0.02 1”1 .--macro.el.NMOD_elnab [26]
0.01 0.00  78336/78336 essure.NMCD.elmat.p [55)
0.00 0.00 ”m .--pressura.NMOD_calc.p [63)
0.00 0.00 13/88 ---malloc [78]

C.2 Timer results

The same model was used with three different resoulutions with respectively 84035, 173225 and 339521
number of points in the mesh. This sections gives the run time output from the detailed timers and the

corresponding speedups.

C.2.1 Smal size data set

Listing 17: Run time output for the smal size data set

Core values

npoin  nalem  nz.u nz.p nitar nstep eps dl
84035 7B336 2268945 2115072 200 200 1.00E-03 5.00E—-02
Run timas and Speed Up In MAIN
moda Tiotal Tinput Tcalcul Tcppe TassemP Tqt Tp2

P o= 1
runTime 2.0446E+02 2.2002E-0{ 2.1683E—01 1.2256E+00 7.8764E—01 1.1583E+00 2.30B4E+02
% Tiot 100.00 0.10 0.08 0.52 0.34 D.49 9B8.46
Speedup 1.00 1.00 1.00 1.00 .00 1.00 1.00
Speedup/P 1.00 1.00 1.00 1.00 1.00 1.00 1.00

nP = 2
runTime 1.5826E+02 2,4952E—01 2.1631E—M 1.1831E+00 7.6815E—01 1.110BE+00 1.5472E+02
% Ttol 100.00 0.16 0.14 0.75 0.49 87.76
Speedup 1.48 0.82 1.00 1.03 1.03 1.04 1.48
Speedup/P 0.74 0.46 0.50 0.51 0.51 0.52 0.75

nP = 4
runTime  1.263BE+02 1.9398E—01 2.0503E-0f 1.1802E+00 7.6662E—01 1.1354E+D0 1.2280E+02
% Tiot 100.00 0.15 0.16 0.93 0.61 87.25
Speedup 1.86 1.18 1.06 1.04 1.03 1.02 1.88
Speedup/P 0.46 0.30 0.26 0.28 0.26 0.26 0.47

nP = 8
runTime  1,1699E+02 1.9002E—-01 2.0882E-01 1.1769E+00 7.6073E—01 1.1367E+00 1.1351E+02
% Ttot  100.00 0.16 0.18 1.01 0.66 9 87.02
Speedup  2.00 .21 1.04 1.04 1.02 1.02 2.00
Speedup/P 0.25 0.15 0.13 0.13 0.3 0.13 0.25

P = 16
funTime 1.063GE+02 1.8849E-01 2.045BE—01 1.172B6E+00 7.6B7BE—01 1.1461E+00 1.02BBE+02
% Tiot 100.00 0.18 0.19 0.72 86.73
Speedup  2.20 1.21 1.08 1.05 1.02 1.01 2.24
Speedup/P 0.14 0.08 0.07 0.07 0.06 0.06 0.14

40




Run times and Speedup In P2-algo
measura Tp2alg TassemU Tveloc Tdpres TassemK Tturb2
wnTime 2.30B4E+02 2.6016E+01 B.5119E+01 3.8619E+01 2.411BE+01 5.4038E+01
% of Tp2alg 100.00 11.27 36.87 16.73 10.45 232.41
Speedup 1.00 1.00 1.00 1.00 1.00 1.00
Speedup/P 1.00 1.00 1.00 1.00 1.00 1.00
Thpe @ T o
runTime 1.5472E+02 1.4191E+01 5.068)E+01 2.8422E+01 2.3B2BE+01 J.4761E+01
% ol Tp2alp 100.00 2017 az2.76 18.37 15.40 22.47
Speadup 1.49 1.83 1.68 1.36 1.01 1.55
Speedup/P 0.75 .82 0.84 0.68 51 .78
TR 4 T e
runTime 1.2260E+02 1.1164E+01 3.2952E+D1 3.2143E+01 2.3477E+01 2.0329E:01
% of Tp2alg 100.00 8.08 26.81 26.15 19.10 16.54
Speedup 1.88 2.33 2.58 1.20 1.03 2.66
Speedup/P 0.47 0.58 0.65 0.30 0.26 0.66
2
runTime 1.1351E+02 1.1924E+01 3J.0639E+01 2.6849E+01 2.3778E+01 1.7504E+01
% of Tp2alg 100.00 10.50 26.99 23.65 20.85 15.42
Speedup 2.03 2.18 2.78 1.44 1.01 3.089
Spaedup/P 0.25 0.27 0.35 a.18 13 0.39
e 1g T
runTime 1.0288E+02 1.2128E+01 2.7207E+01 2.0631E+01 2.3265E+01 1.6B27E+01
% ol Tp2alg 100.00 11.79 26.45 20.05 22.61 16.36
Speedup 2.24 2.15 3.13 1.87 1.04 a.21
Speedup/P 0.14 0.13 0.20 0.12 0.06 0.20
Run times and Speedup in veloc (called trom p2algo)
measure Tveloc Trhs Tsolve {Tdu Tav Tdw)
Thp Ly T e e
runTime  B.511BE+01  2.8837E+01 5.5181E+01 1.8483E+01 1.7812E+01 1.8398E+01
% ol Tveloc 100.00 a5.17 64.83 21.71 21.04 21.61
Spesdup 1.00 1.00 1.00 1.00 1.00 1.00
Speedup/P 1.00 1.00 1.00 1.00 1.00 1.00
-~ e ittt sesnenssiseven
runTime 5.0682E+01 1.991BE+D1 3.0764E+D1 9.9851E+00 9.09BB1E+00 1.0431E+D1
% of Tvaloc 100.00 38.30 60.70 19.70 19.71 20.58
Speedup 1.68 1.50 1.78 1.85 1.79 1.76
Speedup/P 0.84 0.75 0.90 0.93 o0.80 0.88
runTime 3.2951E+01 1.5300E+01 1.76561E+01 5.6101E+00 5.6695E+00 5.5952E+00
% of Tveloc 100.00 46.43 53.57 17.03 .21 18.18
Speedup 2.58 1.96 3.13 3.29 3.16 3.07
Speedup/P 0.65 0.49 0.78 0.82 0.79 0.77
B
runTime  3.0638E+01 1.9122E40t 1.1516E+01 3.6134E+00 3.6740E+00 3J.8306E+00
% of Tveloc 100.00 62.41 37.50 11.78 11.99 12.50
Speadup 2.78 1.57 4.79 5.12 4.87 4.80
Speedup/P 0.35 0.20 0.60 0.64 0.61 a.60
N
runTime 2.7207€+01 1.B600E+01 B.5166E+00 2,6735E+00 2.6607E+00 2.7882E+DD
% ol Tveloc 100.00 68.70 31.30 8.78 10.25
Spoedup 3.13 1.60 6.48 6.91 6.73 6.60
Spoedup/P 0.20 0.10 0.40 0.43 0.42 0.41

41




RAun times and Speedup In turb2 (called irom p2algo)

maasura Tlurb2 Tinl Trhs TdK TdE

runTime 5.4036E+01 1,3724E+00 2.5839E+01 1.567G6E+01 1.0866E+01

% of Tiurb2 100.00 2.54 47.82 29.01 20.11
Speadup 1.00 1.00 1.00 1.00 1.00
Spesdup/P 1.00 1.00 1.00 1.00 1.00

runTime 3.4760E+01 1.0627E+D0 1.4377E+01 1.078BE+D1 7.9523E+00

% of Tturb2 100.00 3.82 41.36 31.03 22.88
Speedup 1.55 1.01 1.80 1.45 1.37
Speedup/P 0.78 0.50 0.90 0.73 0.68
Tp . e T e
runTime 2.0327E+01 1.3669E+00 7.B350E+00 6.5408E+00 4.5038E+00
% of Tturb2 100.00 6.72 a7.56 Ja.g 22.16
Speedup 2.66 1.00 3.38 2.40 2.4%
Speedup/P 0.66 0.25 0.85 0.60 0.60
B
runTime 1.7503E+01 1.3621E+00 B.4215E+00 4.5176E+00 2.8216E+00
% of Tiurb2 100.00 7.78 48,12 25.81 16.60
Spesdup 3.09 1.0t 3.07 3.47 3.72
Speedup/P 0.38 0.13 0.38 0.43 0.46
B T
runTime 1.6826E+01 1.J67JE+00 0.2649E+00 3.6410E+00 2.2547E+00
% of Tiurb2 100.00 8.13 55.06 21.64 13.40
Speedup 3.21 1.00 2.79 4.30 4,82
Speedup/P 0.20 0.06 0.17 0.27 0.30

Aun timas and Speedup In bicgstab (called from dU,dV,dw,dK,dE).

megsure Thbicgstb Tinil TinitMv Tloop-MvV TloopMv
B

runTime  7.9844E+01 0.9050E—01 9.2858E+00 1.0078E+01 5.8500E+01

% ol Tbicg 100.00 1.24 11.63 12.62 74.52

Speedup 1.00 1.00 1.00 1.00 1.00

Spoedup/P 1.00 1.00 1.00 1.00 1.00

runTime 4.7B11E+01 6.B485E—01 4.6451E+00 8.4243E+00 3.4082E4+01

% of Tbleg 100.00 1.39 9.72 17.62 71.28
Speedup 1.67 1.49 2.00 1.20 1.75
Speedup/P 0.83 0.74 1.00 0.60 0.87
R LT e e e
runTime 2.7149E+01  4.9756E—D1 2.3175E+00 7.0G10E+00 1.7276E+01
% ol Tbicg 100.00 1.83 8.54 26.01 63.63
Spaedup 2.4 1.98 a.01 1.43 3.44
Speedup/P 0.74 0.50 1.00 0.36 0.86
T
runTime 1.7446E+01 4.2698E—01 1.2132E+00 6.7930E+00 9.0142E+00
% of Thicg 100.00 2.45 6.95 38.94 51.67
Speedup 4.58 2.32 7.65 1.48 6.60
Speedup/P 0.67 0.29 0.96 0.19 0.83
Thpaig T
runTime 1.2906E+01 4.2115E—-01 B.1815E—01 6.7360E+00 4.9304E+00
% of Thicg 100.00 3.26 6.34 52.20 38.20
Speedup 6.18 2.35 11.35 1.50 12.07
Speadup/P 0.38 0.15 0.7 0.08 0.75

42




Run times and Speedup In matvec {cailed ifrom bicgstab)

measure Tmalvec

P = 1
unTime 6.8786E+01
Speedup 1.00
Speedup/P 1.00
nP = 2
runTime 3.B727E+01
Speedup 1.78
Speedup/F 0.89
nP = 4
runTime  1.9503E+01
Speedup 3.51
Spaedup/P 0.88
nP = 8
runTime  1.0227E+01
Speedup 6.73
Speedup/P 0.B4
nP = 16
runTime  5.7485E+00
Speadup 11.87
Speedup/P 06.75

Aun limes and Speedup In pcg (called from dpres)

measure  Tpcg Trhs Tloop Tpssor TresiPC TmatVect Tecoe!

2 T
runTime 3.6164E+01 2.0605E+00 31.4103E+01 1.6863E+01 7.0161E-01 1.5153E+01 1.2035E+00
% Tpcg 100.00 5.70 94.30 46.81 1.94 41.90

Speedup 1.00 1.00 1.00 1.00 1.00 1.00

Speedup/P  1.00 1.00 1.00 1.00 1.00 1.00

W T

runTime 2.6121E+01 1.0760E+00 2.5045E+01 1.6453E+01 3.8350E—01 7.5492E+00 6.5784E—01
% Tpeg 100.00 4.12 85.88 62.99 1.47 28.¢0 2.52
Speadup  1.38 1.91 1.36 1.03 1.83 2.01 1.95
Spaadup/P  0.69 0.96 0.68 0.52 0.91 1.00 0.98

TP e 4T s s e
runTime 2.9781E+01 5.6729E-01 2.9224E+01 2.3096E+01 3.3170E—01 5.3106E+00 4.B340E—01
% Tpeg 100.00 1.80 98.10 77.63 1.1 17.83 1.62
Speedup 1.21 3.63 117 0.73 2.12 2.85 2.66
Speedup/P 0.30 0.91 0.29 0.1B 0.53 0.71 0.66
WRaTe TS T
unTime 2.4471E+D1 3.0653E—D1 2.4164E+01 2.1170E+D1 2.6040E—01 2.4518E4+00 2.7957E—01
% Tpecg 100.00 1.25 88.75 B86.51 1.06 10.02 1.14
Speedup 1.48 6.72 1.41 0.80 2.69 6.18 4.59
Speetup/P 0.18 0.84 0.18 0.10 0.34 0.77 0.57

L

runTime 1.8242E+07 2.0897E—-01 1.8032E+01 1.6500E+01 2.5755E—01 9.B36BE—01 1.5087E—01
% Tpeg 100.00 1.15 98.85 90.99 1.63 5.39 i}
Speedup 1.88 5.81 1.89 1.02 2.36 15.40 8.50
Speedup/P  0.12 0.61 0.12 0.06 0.15 D.98 0.53

43




Aun times and Speedup In pesor {called from pcg).

measure Tpasor Tlorward Tbackwrd
B
runTime  1.6962E+01 B.1157E+00 B.B461E+00
% ol Tpssor 100.00 47.85 52.15
Spaedup 1.00 1.00 1.00
Speadup/P 1.00 1.00 1.00
R L e s
wnTime 1.6451E+01 B.0D87E+00 8.4424E+00
% of Tpssor 100.00 48.68 51.32
Speedup 1.03 1.01 1.05
Spoeedup/P 0.52 0.51 0.52
e e a T
rwnTime 2.3004E+01 1.1192E+01 1.1902E+01
% ol Tpssor 100.00 48.46 51.54
Speedup 0.73 0.73 0.74
Speedup/P 0.18 0.18 0.18

runTime  2.1169E+01 1.0254E+01 1.0914E+01

% of Tpssor 100.00 48.44 51.56
Speedup D.BD 0.79 0.81
Speedup/P D.10 0.10 0.10

runTima  1.6507E+01 B.1176E+00 B.4795E+00

% of Tpssor 100.00 48.81 51.09
Speedup 1.02 1.00 1.04
Spoedup/P 0.06 0.06 0.07

Residuzls lor the last lime slep.

residual duy dv oW dP di dE
TP ST 10540605 1.0674E 16 2.07G5E_(5 B.G69GE-0t 1.6029E_05 2.142BE_0V
ToP . 2 15267E-; 1.2 B.S67E—04 1.0702E_(4 7.5873E—04
----------------------------------------- 0.0B57E—0+ |.2G40E—D4 7.630BE—04
6.0257E—p+ 1.2527E—04 7.6337E_01

1.3732E-D4 1.0257E—04 2.8165E—04 6.3466E—01 1.4747E—04 7.681BE—04

44




C.2.2 Medium size data set

Listing 18: Run time output for the medium size data set

Cora valuas

npoin  nalem nz.u nz.p niter nstep  eps dt

173225 163840 4677075 4423680 200 200 1.00E-00 5.00E-C2
-

Run times and Speed Up In MAIN

mode Tlotal Tinput Tcalcul Teppo TassemP Tq1 Tp2

e A R
runTime 5.689BE+02 4.B176E—01 4. 54GBE—01 2.5984E+00 1.7598E+00 2.4302E+00 5.6125E+02

% Tict 100.00 0.08 0.08 0.46 0.3 0.43 98.64
Speedup 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Speedup/P 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2
runTime 3.74G4E+02 4.0930E—01 4 .4625E—01 2 4018E+00 1.7076E+00 2.32B1E+00 3.6726E4+02

% Tiol 100.00 0.11 0.12 0.67 0.486 0.62 98.03
Speedup  1.52 1.18 1.02 1.04 1.03 1.04 1.53
Speedup/P 0.76 0.58 0.51 0.52 0.52 0.52 0.76
a4 T -
runTlmD 2.8510E+02 3.8252E—01 4.2869E—01 2.4901E+00 1. TI]-‘&DEfI]I] 2.3852E+00 2.7771E+02

% Ttot 100.00 0.13 0.15 0.87 0.60 0.84 87.41
Speedup  2.00 1.26 1.06 1.04 1.03 1.02 2.02
Speedup/P 0.50 0.n 0.27 0.26 0.26 0.25 0.51
WP e BT
runTime 2.6038E+02 3.8204E—01 4.3703E—01 2.4859E+00 1.7019E+00 2.3832E+00 2.5200E+02
% Tiot 100.00 0.15 017 0.85 0.65 0.92 97.16
Spoedup  2.18 1.26 1.04 L] 1.03 1.02 2.22
Spoedup/P 0.27 0.16 0.13 0.13 0.13 1 0.28
R
runTime 2.4604E+02 3.8240E-01 4.2803E-01 2. d857E40I] 1.74B5E+00 2.3826E+Q0 2.3952E+02
% Ttol 100.00 0.15 0.17 1.0 0.71 0.96 96.99
Speadup  2.30 1.26 1.06 1.05 1.0t 1.02 2.34
Speadup/P 0.14 n.0a 0.07 0.07 D.06 0.06 0.15

Aun times and Speedup in P2-algo.

measurg Tp2alg Tassemy Tvaloc Tdpres TassemK Tturb2
= 1
runTime 5.6125E+02 G.0230E+C1 1.9004E+02 1.0542E+02 5.5615E+01 1.3441E+02
% of Tp2alg 100.00 10.73 35.48 18.78 e.91 23.85
Speedup 1.00 1.00 1.00 1.00 1.00 1.00
Speedup/P 1.00 1.00 1.00 1.00 1.00 1.00
P = 2
runTime 3.6726E+02 3.3981E+D1 1.16D0E+02 7.8750E+0f 5.4302E+01 7.7B70E+01
% ol Tp2alg 100.00 8.26 31.58 21.44 14.7% 21.20
Speedup 1.53 1.77 1.72 1.34 1.02 1.73
Speedup/P 0.76 o.89 0.86 0.67 0.51 0.86
nP e 4
unTime 2.7771E+02 2.425G6E+01 7.9025E+01 6.6488E+01 5.3753E+01 4.7883E+01
% ol Tp2alg 100.00 B,73 26,46 23.54 18.36 17.24
Speedup 2.02 2.48 2.52 1.59 1.03 2.81
Speedup/P 0.51 0.62 0.63 0.40 D0.26 0.70
nF= 8
runTime 2.5289E+02 2.5J44E+01 6.809BE+01 5.5644E+01 5.3620E+01 3.9227E+01
% of Tp2alg 100.00 10.02 27.23 23.58 2119 15.51
Spaadup 2.22 2.38 2.89 1.77 1.04 3.43
Speedup/P 0.28 0.30 0.36 0.22 0.13 0,43
nP = 1§
runTime  2,3952E+02 2.56B2E+01 G6.0187E+01 5.5052E+01 5.4656E+01 3.668BE+01
% of Tp2alp 100.00 10.72 2513 23.36 22.82 15.22
Speedup 2.04 2.35 3.31 1.88 1.02 3.66
Speedup/P 0.15 0.15 a.21 0.12 0.06 0.23

45




Run limes and Speedup In veloc {called from p2algo).

measure Tvaloc Trhs Tsolve (TdU Tdv TdW)
e
unTime 1.9804E+02 6.6154E+01 1.32BBE+02 4.3836E+01 4.3190E+01 4.4746E+01
% of Tveloc 100.00 33.24 66.76 22.02 21.70 22.48
Speedup 1.00 1.00 1.00 1.00 1.00 1.00
Speedup/P 1.00 1.00 1.00 1.00 1.00 1.00

runTime 1.1GO0E+02 4.4890E+D1 7.110BE+01 2.2030E+01 2.1B60E+01 2.6246E+01

% 0! Tveloc 100.00 38.70 61.30 18.98 1B.B4 22.63
Speadup 1.72 1.47 1.87 1.89 1.98 1.70
Speedup/P 0.B6 0.74 0.83 0.89 0.99 0.85

runTime 7.9024E+01 J.2876E+01 4.604BE+D1 1.5342E+01 1.3354E+01 1,6474E+01

% ol Tvaloc 100.00 41.73 58.27 19.41 16.90 20.85
Speedup 2.52 2.01 2.88 2.88 3,23
Speedup/P 0.63 0.50 0.72 0.71 0.81
Tap LTI s -
runTime 6.8B97E+01 4.0114E+01 2.B7B3E+01 9.5317E+00 7.931BE+00 1.0446E401
% ol Tveloc 100.00 5B.22 41.78 13.83 11.51 15.16
Speedup 2.88 1.65 4.62 4.60 5.45 4.28
Spoedup/P 0.38 0.21 0.58 0.57 0.68 0.54
Tep g T e e
unTime  6.01B6E+01 3,89265E+01 2.0022E+01 6.8947E+00 5.8874E+00 7.2661E+00
% of Tveloc 100.00 65.24 34.76 11,46 8.78 12.07
Speadup 3.31 1.68 6.35 6.36 7.34 6.16
Speedup/P 0.21 0.11 0.40 0.40 0.46 0.38

Run times and Speedup In turb2 (called lrom p2algo).

measure Tturb2 Tinit Trhs TdK TdE
e
runTime 1.3441E+02 2.8239E+00 5.6857E+D1 4.34B9E+01 3.0560E+01
% of Tlurh2 100.00 2.10 42.08 32.36 22.74
Speedup 1.00 1.00 1.00 1.00 1.00
Spaadup/P 1.00 1.00 1.00 1.00 1.00
B T
runTime 7.7868E+01 2.8192E+00 3.1405E+01 2.3031E+01 2.0037E+01
% of Tturb2 100.00 3.62 40.34 29.58 25.73
Speedup 1.73 1.00 1.81 1.89 1.83
Spesdup/P 0.86 0.50 0.91 0.94 0.76
nPa 4 Tt
runTime 4.78B1E+D1  2.B20BE+00 1.6688E+01 1.5362E+01 1.2443E+D1
% ol Tirb2 100.00 5.89 34.85 Jz2.08 25.88
Speedup 2.81 1.00 3.41 2.83 2.46
Speedup/P 0.70 0.25 0.85 0N 0.61
T e T T e e
runTime 3.9226E+01 2.7580E+00 1.7623E+01 1.0481E+01 7.7568E+00
% of Tiurb2 100.00 7.14 44.93 26.72 19.77
Speadup 3.42 1.00 a.23 4.15 3.94
Speedup/P 0.43 0.13 0.40 0.52 0.49
T e e
runTime 3.66B7E+01 2.8123E+00 1.8371E+01 B.2025E+00 5.7347E+00
% of Tlurp2 100.00 7.67 52.80 22.36 16.63
Speedup 3.66 1.00 2.94 5.30 5.33
Speedup/P 0.23 0.06 0.18 0.33 0.33

46




Run times and Speedup in bicgstiab (called from dU,dV,dw,dK, dE).

measure Thicgsib Tinit TinitMv
P e 1
runTime 2.0183E+02 2.2481E+00 2.0691E+01
% ol Thicg 100.00 1.1 10.25
Speedup .00 1.00 1.00
Speedup/P 1.00 1.00 1.00
"nP- g T
funTime 1.0961E+02 1.3816E+00 1.0119E+01
% of Thicg 100.00 1.26 8.23
Speedup 1.84 1.63 2.04
Speedup/P 0.92 0.81 1.02
nP =
runTime 6.9802E+01 9.98B1E-D! 5.1109E+00
% of Tbicg 100.00 1.43 7.32
Speatup 2.89 2.25 4.05
Speedup/P 0.72 0.56 1.01
nP = 8
runTime 4.3213E+01 0.4740E-01 2.5754E+00
% ol Thicg 100.00 1.86 5.96
Speedup 4.87 2.65 8.03
Spoedup/P 0.58 0.33 1.00
T
runTime  3.1073E+01  7.B313E-01 1.5326E+00
% ol Tbicg 100.00 2.52 4.93
Speedup 6.50 2.87 13.50
Speedup/P 0.41 0.18 0.84

Tloop—V

2.5524E401
12.65

1.9200E+01
17.52

1.8179E+01
26.04

1.6814E+01
38.91

52.93

TloopMy

1.5339E+02
76.00

72.00

4.5518E+01
65.21

3.37
0.84

2.2980E+0
53.18

1.2312E+01
30.62

12.46
0.78

Run times and Speedup In matvec {called from bicgstab}.

maasura Tmaltvec
L2 T
runTima  1.7408E+02
Speedup 1.00
Spoedup/P 1.00
TwPaT2
runTime B.9035E+01
Speedup 1.96
Speedup/P 0.98
runTime 5.0630E+01
Speedup 3.44
Spesdup/P 0.B6
B
runTima  2.5555E+01
Speedup 6.81
Spaedup/P .85
B T T
funTime  1.3844E+01
Speedup 12.57
Spesdup/P 0.79

47




Run 1imes and Spa

measure

edup In peg {(calied from dpres).

Trhs Tioop Tpssor

TrestPC TmatVecl Tcoef

P = 1
runTime 1.0013E+02

4.41B8E+00 B8.5710E+01 5.0184E+01

1.9549E+00 J.9618E+01 3.8504E+00

% Tpcg 100.00 4.41 95.59 50.12 1.85 38.57 3.95

Speadup 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Speedup/P 1.00 1.00 1.00 1.00 1.00 1.00 1.00

TR L e T B .
runTime 7.3586E+01 2.3503E+00 7.1227E+01 4.9003E+01 1.0214E+00 1.8340E+01 1.8507E+00

% Tpcg  100.00 a2 96.79 66.50 1.29 26.29 2.52

Speedup 1.36 1.87 1.34 1.02 1.91 2.05 213

Speedup/P 0.68 0.84 0.67 0.51 .96 1.02 1.07

Tap oy T e e
runTima 6.1392E+01 1.2471E+00 6.0145E+01 4.8540E+01 5,7508E—01 9.6847E«00 9.4161E-0Y

% Tpcg  100.00 2.03 97.97 79.72 .94 15.78 1.583

Speedup  1.63 a3.54 1.59 1.03 3.38 4.08 4.20

Speedup/P 0.41 0.89 0.40 0.26 0.85 1.02 1.05

TaR . g T s s
runTime 5.4679E+01 6.8295E—01 5.3986E+01 4.8266E+01 4.2932E—D1 4.7875E+00 5.0134E-01

% Tpecg 100.00 1.25 88.75 88.27 0.79 8.7 0.82

Speedup 1.83 G.47 1.77 .04 4.55 a8.26 7.88

Speedup/P 0.23 0.81 0.22 0.13 0.57 1.03 D.88

TP e tg T s
runTime 5.0BB0E+01 4.26A6E—01 5.0453E+01 4.7182E+01 4.2851E—01 2.5117E+00 3.278BE-01

% Tpcg 100.00 0.84 99,16 92.73 0.64 4.84 0.64

Speedup 1.97 10.35 1.90 1.06 4.55 15.77 12.05

Speedup/P 0.12 0.65 0.12 0.07 0.28 0.88 0.75

Aun times and Speedup In pssor {called from pcg)

Tbackwrd

2.4614E+01
49.05

52.00

mpasure Tpsaor Tlorward
P = 1
runTime 5.01B1E+01 2.5567E+01
% ol Tpssor 100.00 50.85
Speedup 1.00 1.00
Speadup/P 1.00 1.00
w2 T
runTime 4.B988E+01 2.3631E+01
% of Tpssor 100.00 48.23
Speedup 1.02 1.08
Spaedup/P 0.51 D.54
nP = 4
runTimn  4.8937E+01  2.3480E+01
% af Tpssor 100.00 48.00
Spoedup 1.03 1.09
Speedup/P .26 0.27
nP= B
runTime 4.B263E+01 2.3207E+01
% of Tpssor 100.00 48.08
Spaedup 1.04 1.10
Spoedup/P 0.13 0.14
nP = 16
runTime  4.7178E401  2.2323E+01
% ol Tpssor 100.00 47.32
Speedup 1.06 1.15
Speedup/P 0.07 .07

2.5058E+01
51.92

2.4856E+01
52.68

0.99
0.06

48




Residuals for the lastl time step.

rasidual du dv oW

C.2.3 Large size data set

Listing 19: Run time output for the large size data set

Core values

npoin nelam nz.u nz.p niter  nstep eps di
339521 324000 9167067 B748000 200 200 1.00E~-03  5.00E-02
Prepe—. I,
Run limes and Speed Up in MAIN
moda  Tiotal Tinput Tcalcul TassemP Ta1
TR 4TI
runTime 1.1785E+01 8.2021E—01 8.0001E~01 5.1690E+00 3.2966E+00 4.8148E+00 1.1635E+03
% Tiol 100.00 0.07 0.08 0.44 0.2e o.M 88.73
Speedup 1.00 1.00 1.00 1.00 1. 1.00
Speedup/P 1.00 1.00 1.00 1.00 1% 1.00 1.00
Tap . g TR
funTime 7.7087E+02 8.1574E—01 8.7121E—0 4.5582E+00 3.2795E+00 4.6129E+00 7.6443E+02
% Tial  100.00 0.10 0.11 0.64 0.42 0.59 88.13
Speadup 1.51 1.01 1.03 1.04 1.01 1.04 1.52
Speedup!P 0.78 0.50 0.52 0.52 .50 0.52 0.76
AR e 4TI
runTime 5.91BBE+02 7.3772E—01 8.4874E-(1 4.55B81E+00 3.27GGE+00 4.7258E+00 5.7733E+02
% Tiot 100.00 0.12 0.14 0.84 0.55 0.80 97.54
Speedup 1.88 1.1 1.06 1.04 1.01 1.02 2.02
Speedup/P 0.50 n.28 0.27 0.26 0.25 0.25 0.50
Thp e @ T
runTime 5.6151E+02 7.3707E—01 B.4B55E—01 4.8504E+00 3.2745E+00 4.7235E+00 5.4697E+02
% Ttot 100.00 0.13 0.15 0.88 0.58 Q.84 ar.41
Spescup  2.10 1.1 1.06 1.04 1.01 1 2.13
Speedup/P 0.26 D.14 0.13 0.13 0.13 0.13 0.27
T
runTime 5.1803E+02 7.3438E—01 B8.4B39E—(1 4.B48G6E+00 3.2783E+00 4.7253E+00 5.0448E+02
% Tiot 100.00 0.14 0.16 0.95 0.63 0.91 a7.20
Speedup  2.27 1.12 1.08 1.04 1.01 1.02 2.0
Speedup/P 0.14 0.07 0.07 0.07 0.06 0.06 0.14

49




Aun times and Speedup in P2-algo.

measure Tp2alp TassemU Tveloc Tdpres Tassemi Tturb2
Thpa Ty T e e
runTime 1.1635E+03 1.1100E+02 3.9621E+02 2.7422E+02 1.0228E+02 2.6751E+02
% of Tp2alg 100.00 34.05 23.57 8.79 22.99
Spoedup 1.00 1.00 1.00 1.00 1.00 1.00
Speedup/P 1.00 1.00 1.00 1.00 1.00 1.00
B
runTime 7.6443E+02 6.4536E+01 2.0214E+02 1.8963E+02 1.0286E+02 1.5288E+02
% of TpZalg 100.00 B.44 30.37 26.12 13.46 20.00
Speedup 1.52 1.72 1.71 1.37 0.99 1.75
Speedup/P 0.76 0.86 0.85 0.69 0.50 0.87
nP =
runTime 5.7730E+02 4.6B01E+01 1.6447E+02 1.5058E+02 1.0156E+02 1.0155E+02
% ol Tp2alg 100.00 8.1 28.49 26.08 17.59 17.59
Speedup 2.02 237 2.41 1.82 1.01 2.63
Specdup/P 0.50 0.59 0.60 0.46 0.25 0.66
Twpew T - i )
runTime 5.4607E+02 4.0780E+01 1.4161E+02 1.5786E+02 1.0384E+02 B.155GE+0!
% ol Tp2alg 100.00 §.10 25.09 28.86 19.00 14.91
Speadup 2.13 2.23 2.80 1.74 0.88 .28
Speadup/P 0.27 0.28 0.35 0.22 0.12 0.41
B
runTime 5.0440E+02 5.0245E+01 1.232BE+02 1.3645E+02 1.06B5E+02 7.53B88E+01
% of Tp2alp 100.00 9.96 24.44 27.05 21.18 14.94
Speadup 2.0 2.21 3.21 2.01 0.96 3.55
Spaedup/P D.14 D.14 0.20 0.13 0.06 0.22
Run times and Speedup in veloc (called from p2aigo).
maeasure Tvaloc Trhs Tsclve (TdU Tav Tdw)
ThR e d T e
runTime 3.9620E+02 1.2535E+02 2,7085E+02 8.B763E+01 0.0082E+01 8.8875E+D1
% ol Tveloc 100.00 31.64 68.36 22.40 22.74 22.68
Spoedup 1.00 1.00 1.00 1.00 1.00 1.00
Speedup/P 1.00 1.00 1.00 1.00 1.00 1.00
Thp oI e
runTime 2.3214E+02 8.6263E+0% 1.45808E+02 4.8698E+01 4.6770E+01 4.8392E401
% of Tveloc 100.00 37.16 62.84 20.98 20.15 20.85
Spoedup 1.7 1.45 1.86 1.82 1.83 1.86
Speedup/P 0.85 0.7 0.93 0.91 0.95 0.93
runTime 1.6447E+02 6.6711E+01 B.7761E+01 3.35G65E+01 2.9274E+01 3.2957E+01
% ol Tveloc 100.00 40.56 59.44 20.41 17.80 20.04
Speedup 2.41 1.88 2.77 2.64 3.08 273
Speedup!P 0.60 0.47 0.69 0.66 0.77 0.68
Thp e e TTTTTTTTTTTTTTImImImmmm s )
runTime 1.41B81E+02 7.0650E+01 6.1958E+01 2.1043E+01 1.8280E+01 2.0751E+01
% ol Tveloc 100.00 56.25 43.75 14.86 12.82 14.65
Speedup 2.80 1.57 4,37 4.22 4.83 4.33
Speadup/P 0.35 0.20 0.55 0.53 0.62 0.54
T
runTime 1.2328E+02 7.8975E+01 4.4305E+01 1.4747E+0! 1.3056E+01 1.4645E+01
% of Tvaeloc 100.00 64.06 35.84 11.96 10.50 11.88
Speedup az 1.58 8.1 6.02 6.80 6.14
Spaeedup/P 0.20 0.10 0.38 0.38 0.43 0.38

50




Run limes and Speedup in furb2 (called Irom p2algo).

measure Tturb2 Tinit Trhs TdK TdE
i
wnTime  2.6750E+02 5.603BE+00 1.0844E+02 B.9931E+01 6.2394E+01
% of Tturb2 100.00 2.09 40.54 33.62 23.32
Speedup 1.00 1.00 1.00 1.00 1.00
Speedup/P 1.00 1.00 1.00 1.00 .00
nRoa g T e e
runTime 1.5289E+02 5 5B801E+00 6.2270E+01 5.0036E+01 3 3BB0E+01
% al Tturb2 100.00 3.65 40.73 32.73 22.16
Speedup 1.75 1.00 1.74 1.80 1.84
Spoedup/P 0.87 0.50 0.87 .90 0.92
Thpe 4 TTTmmmmmmmmmmmmmmmmeemeee CoTTTTTTmT e
unTime 1.0154E+02 5.58G0E+00 3.3479E+01 3.6068E+01 2.5207E+01
% of Tiurb2 100.00 5.50 32.87 35.52 24.91
Speedup 2.63 1.00 3.24 2.48 2.47
Speedup/P 0.66 0.25 o.m 0.62 0.62
R g e e oo
runTime B.1555E+01 5.5882E+00 3J.4681E+01 2.4134E«01 1.6046E+01
% of Tlurb2 100.00 6.85 42,53 28.59 19.60
Spoedup 3.28 1.00 3.13 3.73 3.89
Spaedup/P 0.4 0.13 0.39 0.47 0.49
B
runTime  7.53B7E+01 5.5046E+00 3.8328E+0% 1.B777E+01 1.1580E+01
% ol Tturb2 100.00 7.42 50.84 24.91 15.36
Speedup 3.55 1.00 2.83 4.79 5.39
Speedup/P 0.22 0.06 0.18 0.30 0.34

Aun times and Speedup In bicgstab (called from dU,dv,dW,cK,dE).

measure Tbicgstb Tinit TiniMv Tioop-MV TinopMy
e T N T
runTime 4.1330E+02 4.650BE+00 4.1569E+01 5.242BE+01 3.1470E+02
% of Thicg 100.00 1.12 10.06 12.69 76.14
Spesdup 1.00 1.00 1.00 1.00 1.00
Speedup/P 1.00 1.00 1.00 1.00 1.00
AP = 2
runTime 2.2060E+02 2.B207E+00 2.0870E+01 3.71B2E+01 1.5874E+02
% of Thiep 100.00 1.28 9.46 16.85 72.41
Speedup 1.87 1.65 1.89 1.41 1.87
Speedup/P 0.94 p.a2 1.00 0.7 0.99
T T e e
runTime 1.50S4E+02 1.9474E+D0 1.0420E+01 3.9352E+01 9.8835E+01
% of Thicg 100.00 1.29 6.92 26.14 65.65
Speedup 2.75 2.39 3.98 1.33 J.18
Speedup/P 0.68 0.60 1.00 0.33 0.80
N e
runTime  8.4011E+01  1.61B1E+00 5.2573E+00 3.6715E+01 5.0427E+01
% of Tbicg 100.00 1.72 5.58 38.05 53.64
Speedup 4.40 2.87 7.9 1.43 6.24
Speedup/P 0.55 0.36 0.99 0.18 0.78

runTime  6.6719E+01  1.5470E+00 2.9450E+00 3.5384E+01 2.6867E+01

% of Tbicg 100.00 2.32 4.41 53.00 40.27
Speadup 6.19 3.01 14.12 1.48 1.7
Spoedup/P 0.39 0.19 0.88 0.09 0.73

51




Run times and Speedup in matvec (called irom bicgstab)

measura Tmatvec

runTime  3.5627E+02

Speedup 1.00
Speedup/P 1.00
nP = 2
runTime 1.8062E+02
Speedup
Speedup/P 0.99

runTime 1.0926E+02

Speedup 3.26
0.e2

R E T s
runTima  5.56B4E+01
Spoedup 8.40
Speedup/P 0.80

TRR e s T e e
runTime 2.9012E+01
Spoedup 11.95
Speedup/P 0.75

iy . EXRER R REE

Run times and Speedup In pcg (catled ifrom dpres).

measura Tpeg Trhs Tlo Tpssor TrestPC TmatVect  Tcoef

runTime 2.6376E+02 8.6341E+00 2.5513E+02 1.3753E+02 5.0135E+00 1.0303E+02 9.5498E+00
30.06

% Tpeg  100.00 3.27 86.73 52.14 1.90 3.62
Speedup 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Speedup/P 1.00 1.00 1.00 1.00 1.00 1.00 1.00
TP e 2T s e e
runTime 1.8921E+02 4.4914E+00 1.B472E+D2 1.2528E+02 2.5586E+00 5.2191E+01 4.6B97E+00
% Tpeg  100.00 2.37 97.63 66.21 1.35 27.58 4B
Spoedup 1.39 1.92 1.8 110 1.96 1.97 2.04
Speedup/P 0.70 0.96 0.69 0.55 0.98 0.99 1.02
B A e s e
runTima 1.4022E+02 2.4240E+00 1.37B0E+02 1.1200E+02 1.2407E+00 2.2510E+01 2.0447E+0DD
% Tpcg  100.D0 1.73 88.27 79.87 D.Bg 16.08 1.46
Speedup 1.88 3.56 1.85 1.23 4.04 4.58 4.87
Speedup/P 0.47 0.89 0.46 0.31 1.0 1.14 117
L
runTime 1.4774E402 1.3709E+00 1.4637E+02 1.3176E+02 B.JB13E—-01 1.2571E+01 1.1875E+00
% Tpcp  100.00 D0.83 99.07 88.18 0.57 B.51 0.81
Speedup  1.78 6.30 1.74 1.04 5.98 B.20 7.97
Spaedup/P 0.22 0.79 0.22 0.13 0.75 1.02 1.00
T i T -
runTime 1.2624E+02 0.1287E—01 1.2533E+02 1.1812E+02 6.4537E—01 5.9131E+00 6.4455E—01
% Tpcg  100.00 a.72 08.28 §93.57 0.51 4.68 0.51
Speedup  2.09 9.46 2.04 1.16 1.7 17.42 14,82
Speedup/P 0.13 0.59 0.3 0.07 0.48 1.09 0.93

52




Aun times and Speedup in pssor (called Irom pcg)

measure Tpssor Tlorward Tbackwrd
TR e T

runTime 1.3753E+02 6.9332E+01 6.B194E+01

% of Tpssor 100.00 50.41 49.58

Speedup 1.00 1.00 1.00

Speedup/P 1.00 1.00 1.00

runTime 1,2527E+02 6.0409E+01 6.4BB3E+01

% of Tpssor 100,00 48.22 51.78
Speedup 1.10 115 1.05
Spesdup/P 0.55 0.57 0.53
ToP . &
runTime 1.1198E+02 5.2767E+01 5.9226E+01
% ol Tpssor 100.00 47.12 52.88
Speedup 1.23 1.31 1.15
Speedup/P 0.31 0.33 0.29

nP =
runTime 1.3175E+02 6.2108E+01 6.9646E+01
% of Tpssor 100.00 47.14 52.86
Speedup 1.04 1.12 0.98
Spaedup/P 0.13 0.14 012
BT -
unTime 1.1812E+02 5.6031E+01 6.20B5E+01
% of Tpssor 100.00 47.44 52.56
Speedup 1.16 1.24 1.10
Spasdup/P 0.07 0.08 0.07
* * PR

Residuals for the last fime step.

residual du dv o dP dK dE

2.0743E-04

“2.7008E—0

1.5876E—04 5.2045E-04 2.4376E-04 1.1250E-M4

53




