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1. INTRODUCTION

1.1. A lot to learn, a lot to give

The editors of J. Chemometrics have been kind enough to invite
me to outline some directions, which I think young chemometricians
could find interesting for the future. This perspective paper is my
response, in the form of an essay that summarizes how I see the
field today. It builds on mistakes I have made and things I have
learnt in my past 43 years of data analytic R&D, in food science
and agriculture, in telecommunication, analytical chemistry and
biomedicine, in different universities and companies, in many
countries [1–6].
This is not a review the field of Chemometrics. Instead, I pres-

ent topics that I find interesting, challenging and not yet fully
developed, hopefully within a coherent perspective. My biased
selection of references was chosen to illustrate and expand on
this perspective, linking to previous literature for further reading.
The paper is primarily written for chemists and bio-medical

scientists but readers from other fields may also find something
of interest, for all sciences now face the same two problems:
How to convert the future’s Big Data from a burden to a boon,
and how to combine theory and practice.
How is the Real World joined together? What makes it tick?

How can we know that, and what makes us tick? These are topics
addressed by chemometricians and by our multivariate soft-
modeling parents and siblings in fields like psychometrics,
sensometrics, morphometrics etc. Since Svante Wold and Bruce
Kowalski started it in the mid 70s, Chemometrics has grown to
become a mature field of science, with an extensive literature
and increasingly interacting with other fields.
I believe the field of Chemometrics has a lot to learn from

other disciplines—mathematics, statistics or computer science.
Our heads are filled with domain-specific knowledge, so many
of us are lousy in mathematics except for simple linear algebra
of the type A=B×C+D, and pretty bad in statistics except for
experimental design and simple cross-validation. Our multivari-
ate methods—at least the ones that I know well—are powerful
and versatile but they are linear and static. To describe the
real world realistically, I think they need further development,
e.g. with respect to temporal dynamics and feedback, spatial
distribution, heterogeneity and nonlinearity. And most of our
successful software packages now need fresh impulses from
computer science and cognitive science.
On the other hand, Chemometrics also has a lot to give to

other disciplines. Our internal culture favors warm-hearted
cooperation, rather than cutthroat competition. Academically,
we want Real-World science, so we cherish a humble but aggres-
sive attitude and despise passive arrogance. Our methods and
approaches allow us to handle big data tables without being

overwhelmed. We do not limit ourselves to over-simplified ver-
sions of “The Scientific Method”—the testing of hypotheses
and searching for p-values—we also know how to listen and
learn from real-world data, and leap forward from there. We have
Moore’s Law on our side, but use the increasing computer power
differently from many other fields: we tend to avoid the alienat-
ing “black box” modeling of machine learning and the scientific
hubris of overly confident causal mechanistic modeling. Instead,
we analyze big, real-world data sets with transparent data
modeling methods that help us overview complex systems:

Our main data modeling tools—“factor-analytic” decomposi-
tion methods like Principal Component Analysis (PCA) and
Partial Least Squares Regression (PLSR) and the many extensions
thereof—help us find, quantify and display the essential relation-
ships—expected or unexpected—within and between data
tables. These transparent, open-ended methods reveal the
systematic relationships, not as magic, but for the eyes of
scientist to see. Because meaningful data-driven modeling
requires good data, we insist on representative sampling and
pragmatic, understandable statistical assessments. Thereby we
can get a good grip on the complexity of the real physical world.
We can also use this approach to study the behavior of humans,
and even of complex mathematical models.

In the following, I present my view of Chemometrics as a
science culture for the future, and outline a philosophical frame-
work for that. I then describe some topics for futurework in the field.

1.2. Quantitative Big Data

Why should eager young scientists learn data modeling tools
from Chemometrics and related cultures, and try to improve
them? In my opinion: (i) because science needs better data anal-
ysis, (ii) because to understand what a data set means, domain-
specific background knowledge is also required, and (iii) because
real-world data modeling is good fun, gives good jobs and solves
real problems—all at the same time.

The fun comes with the discovery process: when analyzing a
new table of data, the first, rough PCA is always exciting: what
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is hiding behind the numbers? The good jobs come because
there are not enough willing and able statisticians or other pro-
fessional data analysts, so chemometric competence is sought
after, at least in industry and applied R&D fields. And we have
real problems, all right: in a modern world, values and wealth
are more easily shared, but so are microbes and mines. Unfortu-
nately, the human brain does not develop equally fast. We face
real problems concerning environment and climate, poverty
and war, health and nutrition. Some of these problems are
because of conflict of interests, power misuse and self-serving
cultural arrogance, resulting in serious environment problems,
bloody wars and glaring injustice. These can hardly be solved
by science but by ethics and politics. However, many problems
arise because of lack of foresight and overview, lack of human
communication and lack of sensible solution alternatives. There-
fore we need better tools to understand ourselves, our cultures
and the real world. For a start, we need a lot of good data.

And data we get, indeed. We are witnessing an explosion in
the amounts of available data. Not just one explosion like a
bomb—and not like the continuous, explosive heating in the
sun but an incomprehensible, exponentially growing deluge.
Some parts of the data flow are diverse, flawed and unsystematic
but a lot of it represents precise, accurate, systematic high-
dimensional measurements—what I call here Quantitative Big
Data and these data need to be digested.

Our computer capacity keeps increasing—both in respect to
storage space, memory and CPU. Unfortunately, saving ever-
increasing files of raw data to every-increasing computer disk
racks is not the final answer. The more data we just store, the less
information we have: Unless we can also interpret these data we
are overwhelmed by them—to the extent that we may be happy
with disk crash. Whether we consider the big questions like
global warming and multi-resistant bugs, or the daily chores in
a competitive R&D world, we need to deal with Quantitative
Big Data properly.

It will not be enough to have efficient “black box” algorithms, if
we cannot understand the results. We have to keep people in the
loop, and insist on predictive validity as well as domain-specific
interpretability. So on the one hand we need a lot more cooper-
ation with cognitive science colleagues in neurophysiology,
social sciences and the humanities. That will require all parties
to show each other more respectful curiosity and less fear. On
the other hand we need a lot more mathematics and statistics
but of the useful type that helps us be “approximately right
instead of precisely wrong”. Sadly, I do not think we need more
mathematicians and statisticians, unless they change their ways.

2. THE ABYSS BETWEEN THEMATHEMATIZING
CULTURES AND THE REST OF THE SCIENCES

2.1. The unspoken academic pecking order

In academia—like in the rest of society—there is a deep gap
between math/statistics and the rest of us (Figure 1)—what will
here be called “the math gap” for short. The amount of good
measurements increases, but many scientists’ competence and
self-confidence in data analysis is low. A reason may be that
there is a deep divide between the established math-statistics
cultures and most other science cultures. This is reinforced by
different internal recruitment policies and by the way math
and statistics are being taught. A given mathematical formalism
strikes some with its deep beauty, others with its narrow

brutality. To some, classes on mathematical proofs and imagi-
nary dice throwing are unbearably boring. Nowhere is the abyss
deeper than in the bio-medical sciences; it may appear that “Bio
is bio, and math is math, and never the twain shall meet”. I be-
lieve part of the problem is mental laziness—from all parties in-
volved. But part of it is also because of bad academic traditions.
Many theoreticians regard mathematics as “the lingua franca

of science”—a language common for all scientists in all sciences
at all times. But in practice, this only works for a minority today.
Referring back to Figure 1, the unspoken academic pecking or-
der cements the gap between math and the rest of sciences.
By and large, I believe both sides make an effort to bridge the
math gap—although asymmetrically, with the former usually as
teachers and the latter usually as students. Unfortunately, much
of this effort appears to be in vain. For symmetry, more theoreti-
cians should later take applied courses.
The academic instinct, that globally generalizable results are

more valuable than local ad-hoc results, is healthy. And I sub-
scribe to the saying “Math is cheaper than physics”. That is why
I spent a good part of my career developing calibration mathe-
matics in analytical chemistry [4]. But the maxim “Theory is
better than Practice” is something else. Resorting to theory
may be a person’s fearful retreat from real-world complexity.
The temptation to use math ability as an IQ test rather than a
personality test is misplaced and self-serving. Most mathemati-
cians and statisticians I know are very nice people. But I have
met mathematicians as well as statisticians—in several coun-
tries—who expressed themselves very clearly in that arrogant
way, primarily in situations where they thought they were
“among their own”. So for me, half of mathematics and statistics
could relocate to the Faculty of Theology. The problem is that
the other half is desperately needed in real-world R&D. And I
am not sure where to draw the demarcation. So these fields
are better left to define their own internal cultures. And they
would probably not listen to us, in anyway. But I think we data
modelers should continue to whimp and bark at them, like
adolescent puppies with a twig, eagerly hoping they will come
out and play.
The arrogant theoreticians may be a shrinking minority now,

but they represent a fearsome tradition. Is this why we have
wide-spread fear of math in our society today? We face a cultural
and educational crisis now, with respect to mathematics and sta-
tistics. We need far better ways to handle today and tomorrow’s
complex society. For me that means a need for much more math
and statistics on order to interpret and utilize the torrent of data
coming available. That is definitely true in my own, bio-medical
field. The same can probably said for many other fields, like most
chemical fields, mechanical engineering, economics and various
social sciences.
I am an optimist and think that Chemometrics and other fields

that have successful experience with applied math and statistics
can contribute to a drastically wider use of math and statistics in
the future. Mathematical modeling and computational statistics
can allow us to gain cognitive access to Quantitative Big Data,
while limiting the risk of unwarranted bias and false discovery.
But in much of science—as in society at large—math fear is ram-
pant. So is statistical ignorance, especially in “softer” sciences like
the bio-medical sector, where far too few individuals dare to
cross the gap between the mathematical-statistical sciences
and the other, more experiential sciences. Given life’s complex-
ity, both sides have to rely on simplifications. But as outlined in
Figure 1, I think the mind-set on the two sides of the gap tends
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to be different—one side focuses on relevant approximation, the
other on formal accuracy. The challenge is to bridge that gap,
and I think our little field Chemometrics can contribute a lot to
that.

2.2. Two roads from question to answer: induction vs
deduction

Figure 2 summarizes the two main ways to come from question
to answer in natural science, the data-driven way and the theory-
driven way. In that sense, we chemometricians are part of an
intermediate game in the philosophy of science, in that we tend
to combine the two.
Chemometrics has, over the last 40 years or so developed a

pragmatic science culture and a powerful set of multivariate data
modeling tools, along with numerous other domain-oriented
data modeling subcultures. These help the “owner” of data find,
plot and interpret statistically reliable patters of co-variation in
light of their background knowledge.
The common denominator of all chemometricians is to ob-

serve the Real World sincerely and with an open mind, letting
the data talk to us, but at the same time trying to interpret the
results in light of prior chemical knowledge and the laws of phys-
ics. Some of us have a preference for purely data-driven model-
ing, others for more mathematics, statistics and physics theory.
All of us use background knowledge in design of experiments,

in preprocessing of data and interpreting the results, and all of us
look for unexpected surprises in the residuals.

Ideally, we should combine the deductive and the inductive
approaches in a cyclic, type of abductive process: From a given
initial hypothesis or purpose we define a rather wide observa-
tional process, measuring more properties than strictly necessary
in more objects or situations that strictly necessary. To save
money and to avoid locking ourselves out from surprises, we
can choose broad-spectered multichannel measuring devices
such as diffuse spectroscopy, and postpone the selectivity
enhancement to the mathematical post-processing. To work
efficiently, we use factorial statistical designs, which help us
extract maximal information with minimal experimental effort.

The resulting data tables are then analyzed, without forcing
the data into a straight-jacket of preconceived mechanistic
models. First we use purely data drive methods such as PCA to
search for gross mistakes and errors in the data, and to start get-
ting an overview. Then we apply statistical regression methods
like the PLSR to find quantitative relationships and classifications.
We try various more or less physics-based preprocessing
methods to improve the modeling, thereby handling variation
types that we think we understand, but that can destroy the
additive modeling—like separating light scattering from light
absorption. And we insist on simple, but conservative statistical
validation (e.g. by cross-validation/jack-knifing) and graphical
interpretation at the same time, in order to avoid over-optimism.

Figure 1. The math gap in science.

Figure 2. Two roads from question to answer.
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My personal motto is: No causal interpretation without predictive
ability! No prediction without attempted causal interpretation!

Multivariate metamodeling—the use of statistical designs
and chemometric analyses to study the behavior of complex
mathematical models—strengthens this bridge between induc-
tion and deduction. This will be discussed later in the paper.

Young chemometricians, facedwith the future’s Quantitative Big
Data, will have to redefine how to combine data-driven and theory-
driven modeling. It is difficult to foresee how science will develop,
so they should not feel obliged to follow our old traditions.

2.3. Chemometrics for tomorrow

In the following, I shall outline some topics that I personally con-
sider important, and hitherto unresolved. I start with the relation-
ship between univariate statistical testing and multivariate
explorative data analysis. Till now, chemometricians have focused
more on statistically oriented data analysis than onmathematically
oriented computer modeling. I predict that this will change. To di-
gest and combine the enormous amounts of future scientific
knowledge, we shall need the powerful tools from mechanistic
modeling, too and once chemometricians gain experience with
multivariate metamodeling, they will see that nonlinear dynamics
and other types of mechanistic modeling is far easier than they
thought. So later in the paper, I show how the borderline between
data-driven “statistical”modeling and theory-driven “mathematical”
modeling becomes increasingly blurred, and rightly so.

What can be done to bridge the abyss between the
mathematizing science and everybody else? Is it possible to
increase the number of scientists confident and capable for using
mathematical modeling and statistical assessment in their work?
Could it be that the pragmatic, graphically oriented data modeling
is particularly suitable for particular personality types? Could it
be that the Personality types most often recruited to the math
and stats departments think differently from people in other
disciplines, because of the theoretical nature of their subjects?

Personally, I have met a wide range of personalities in both
math/stats and in more applied, empirically oriented sciences.
But I believe I have observed a tendency: the math/stats people
think differently from bio-people like me. Am I right? And if so,
why? Were we born differently or just trained differently?

I have chosen to use this complex topic for two purposes. (i)
Methodology illustration: To illustrate how traditional univariate
hypothesis testing and multivariate chemometric soft modeling
overlap, but differ: Significance-details vs meaningful overview.

(ii) Culture critique: To contribute to the emerging academic
discussion about the relationship between personality differ-
ences and science cultures. Do we chemometricians realize
how different we are from main-stream chemists, physicists,
statisticians and mathematicians?

2.4. Use and misuse of p-values

Let me pose a hypothesis: Theoreticians are less creative than others. If
I could prove that, it would give me fat satisfaction, given my long-
standing frustration about how mathematicians and statisticians
teach their subjects to chemists. Let me now test my hypothesis.
Figure 3a) displays the reported degree of creativity vs degree

of theoretical work for a selection of N= 250 Norwegian adults.
The data were obtained from personality tests and job inter-
views, and is a subset of a larger study [7]. Obviously, Figure 3a)
shows that people vary a lot, both in creativity and in how theo-
retical their work is. But is there a relationship between the two?
Both the x and y variables have been standardized to a mean of
0 and a variance of 1. The regression line ŷ= xb is shown,

superimposed. Its slope b̂ is negative; that supports my hypoth-
esis: people who work theoretically are less creative than others.
But this estimated relationship is very weak; in fact only 0.004 %
of the variance in y (r2 = 0.00004) can be explained linearly by x
and vice versa, in this dataset. A t-test with N� 2 degrees of free-

dom† shows that slope b̂ is non-significant (p = 0.38).
What should I conclude from that? Of course, hypotheses can

never really be proven, only disproven. My hypothesis was
soundly overwhelmed by its null-hypothesis: Apparently, the ob-
served negative effect was most probably caused by “random”
variation the data. What should I now conclude?
It is my impression that an uninformed use of p-values leads to

needless dumbing-down in, e.g. the medical profession. The
most obvious misuse is a “significant” p-value taken as a proof
of an “important relationship”—or even causality [8].
Here is an important point: On the other hand, if experts just

report that “the relationship is non-significant”, the uninformed
reader may interpret that as “there is no relationship at all”. Of

†The regression line was obtained by fitting the mean-centered linear model
y = xb + f to the data [y,x] over the N = 250 subjects by ordinary least
squares(1). The ordinary least squares estimator is b̂ ¼ x’xð Þ�1x’y . A slope
estimated of the line (which here corresponds to the correlation coefficient)
is b̂ =�0.02. The uncertainty covariance estimate for b̂ is x’xð Þ�1sf 2̂

Figure 3. Are theoretically oriented people less creative than others? (a) Degree of creativity (from personality test) vs degree of theoretical work (from
questionnaire) for N-250 Norwegian adults. (Both variables standardized to mean = 0 and total std.dev. = 1). (b) Estimated effect of theoretical work on
creativity, with 95% confidence range. (c) Sampling uncertainty on the estimates of the effect of theoretical work on creativity: histogram of effect es-
timates from 1000 repeated random subsamples of N = 250 from a total of 2200 Norwegian adults [7].With N = 250 the data do not seem to indicate any
relationship between working theoretically and being creative.

H. Martens

wileyonlinelibrary.com/journal/cem © 2015 The Authors. Journal of Chemometrics
published by John Wiley & Sons Ltd.

J. Chemometrics 2015; 29: 563–581

566



course, that would be unwarranted. For one can ensure a non-
significant result just by doing bad enough science—ensuring
few enough and bad enough data. Why is the relationship
non-significant? Is creativity truly independent of the degree of
theoretical work? Or was N= 250 people too low in this case, or
is the methodology too imprecise?
Equivalent situations may arise in, e.g. studies of the relation-

ship between people’s smoking and lung cancer rate, between
our mobile phone use and brain cancer rate, or between young
people’s # of “LIKES” on social media and their suicide rate. As-
sume, for instance, that someone had found the risk of getting
cancer from long-term extensive mobile phone use to be statisti-
cally non-significant. It is easy then to conclude: the public should
rest assured that mobile (cell-) phone use is safe; case closed. That
conclusion is ok if the researchers have done adequate work, so
that the uncertainty of the conclusion was low, � say the effect
was 1/100 000 and the upper 95% confidence limit being was
3/100 000: With 95% confidence the scientists can then claim that
“No more than three in 0.0003% of the mobile users are expected
to develop brain tumor because of their phone use”.
But what if the researchers had checked too few, with too im-

precise registrations of cancer and of mobile phone use? The es-
timated effect might still be 1/100 000! But the upper 95%
confidence limit might now be far higher, say 3/10. So the re-
searchers would have to report: “Nomore than 30% of the mobile
users are expected to develop brain tumor because of their
phone use”. There would have been public uproar: “The uncer-
tainty is far too high—we must finance more research!”
Thus, is not enough to report the estimated effect size and its

significance stars (***, **, *, n.s.). It is important also to report the
estimated uncertainty range of the observed effects, and the
number of independent observations, N.

Figure 2b) shows the estimated regression coefficient b̂=�0.02,
with its estimated 95% confidence interval, which is about
< �0.15, 0.10>. So, although no significant effect was found,
it seems that the real effect might actually be as high as 0.10
and as low as �0.15.‡

Here is another important point: “Statistical significance”
does not mean “meaningful”, particularly not when N is high.
The data in Figures 2a) and 2b) come from a larger study:
The 250 subjects were selected at random from more than
2200 job interviews for a wide range of professions. Figure 2c)
shows the distribution of the estimated connection between

creativity and theoretical work, b̂ , obtained by repeating the

random selection and estimation process 1000 times. It shows
indeed that with only 250 respondents, the slope may be neg-
ative, but also as high as 0.25.

The corresponding correlation obtained when using all
N = 2200 was found to be positive (0.073), with a 95% confidence
range of<0.07, 0.11>. It is thus highly significant (p< 0.001). Still
it is very small, and thus practically meaningless. Thus, in sum-
mary, Figure 2 showed that p-values are easy to misinterpret.
For instance when enough data were collected, we found a
slight tendency that people working theoretically are more crea-
tive than others. But it accounted only for 0.5% of the variance.

What does all the remaining unexplained variance represent?
Measurement errors? Or systematic patterns of some sort?

3. SOME INTERESTING TOPICS

3.1. Personality differences: a possible explanation for the
math gap?

In this project, several other variables were also recorded for each
of the 2200 respondents. Can they help us understand more?

Figure 4 relates two reported personality traits, Creativity and
Tidiness (Orderly, Proper), to three variables characterizing the
respondents’ type of work: Theoretical, Abstract and Technical
work type. Then something interesting pops up: Creativity is par-
ticularly positively correlated to having Abstract work (r = 0.34),
negatively related to having Technical work (r =�0.17). On the
other hand, Tidiness is clearly positively correlated both to Theo-
retical work and to Technical work, but strongly negatively corre-
lated to Abstract work. Apparently, there are indeed some clear
structures in how people differ from each other.

The data come from an experienced psychologist’s PhD thesis
[7] on cognition in natural science, in particularly related to dif-
ferent personalities’ ways of learning mathematics. There he
outlined four different roads into mathematics, and how these
most likely are related to differences in brain structure, causing
different personality types. About 2200 Norwegian adults from
a wide range of professions volunteered to take an internet-
based personality test, as well as filling out a questionnaire about
themselves. Before proceeding to full multivariate analysis of all
the variables recorded, let me make a small detour.

The former US secretary of defense Donald Rumsfeld once
made a conceptual two-by-two table of the objective reality vs
what we are aware of (left side):

Rumsfeld is not my favorite, politically. But this table is good,
for it teaches humility. And it demonstrates the benefit of looking
at more than one dimension at a time. I see it as a summary of a
two-component mental model, reminding us of the subjective
limitations to our rationality. That applies for politicians, but for

‡I believe that today’s misuse of p-values in applied statistics is usually not
caused by professional statisticians, but by statistical autodidacts (like me),
now that software for classical statistical analyses is available to everyone. Part
of this, in turn, is that we amateurs do not fully understand the concept of
“degrees of freedom” in ANOVA etc.
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scientists too. Similarly, the famous “Johari window” (middle) is a
two-way table or figure spanning the Self/Others axes. It reminds
us that it is difficult to know oneself, and even more difficult to
know each other. To cross barriers in science therefore takes an
effort. In the same vein, a two-way table of dominating personal-
ity traits is also shown (right side). It represents a summary of
some important personality differences that may help explain
the results in Figure 4. The 2×2 table will now be expanded upon:

Figure 5 shows the main patterns found when analyzing the
personality tests and self-assessments for the 2200 Norwegian
adults. A PLSR model Y= f(X) was developed for relating person-
ality test variables Y (in italics) from self-reported personality
traits and vocation X. Cross-validation showed two valid covaria-
tion pattern types (components), and the figure shows how they
correlate to each of the X- and Y-variables. In summary, the cor-
relation loadings show two more or less independent contrasts
in the personality tests: THINKING/INTROVERT vs FEELING/EXTROVERT
and INTUITIVE/CONTEXTUAL vs SENSING/DIGITAL (i.e. discretizing).
The respondents’ self-assessments and reported work types corre-
late with these two components in interestingways: The THINKING
tend to work theoretically, and to be rational, controlled and
critical, while the FEELING tend to be light-hearted and work with
people. The INTUITIVE tend to do abstract work, being courageous
and entrepreneurial, while the SENSING tend to be tidy and
humble, and do administrative or technical work.

Speculating, I would expect to find many tidy, practically
oriented engineers in the lower left corner, opposite to more entre-
preneurial architects, artists, media-and marketing students. Social

scientists and humanities students I would expect to see in the
upper left people-oriented corner, opposite to the mathematicians,
statisticians, physicists and physical chemists in the lower right,
theoretical.
Among data analysts, I would expect to find many full-time

chemometricians in the contextual-intuitive entrepreneur corner,
along with inventors of brand new modeling approaches and
applications. Perhaps there is a preference, among the Intuitive and
Contextual personalities (upper right) for continuous, contextual
graphical mapping methods like PCA and PLSR (more about these
later), while discrete cluster analysis along with various “black box”
machine learning methods, may be more preferred by the
SENSING/DIGITAL (i.e. discretizing) personalities (lower left)?Within
statistics, I would expect traditionalists in the lower right corner,
while computational statisticians could be in the lower left or the
upper right corner—but probably not in upper left corner.
Figure 5 indicates what I believe is one of the main reasons for

the problems in traditional math/statistics teaching to students
in other fields: Different science cultures tend to attract different
personality types. Mathematical proficiency has traditionally
been regarded as a measure of general intelligence, to be ad-
mired. But I believe math intelligence is rather specialized. And
I have met statisticians and mathematicians who arrogantly
claimed to be proud about not doing applied work, only theoret-
ical. But this is an outdated view of mathematical sciences, or at
least something that I disagree with strongly. However, I have
come to realize that math and science teachers are neither sa-
dists nor snobs, usually. In fact, they often make an extraordinary

Figure 4. Relationship between reported Type of Work and measured Personality for N = 2200 Norwegian adults. Upper: degree of theoretical work.
Middle: degree of abstract work. Lower: degree of technical work. Left: effect on degree of creativity. Right: Effect on the degree of being tidy and orderly.
With N = 2200 the data [7] indicate a statistically significant but meaninglessly small positive relationship between working theoretically and being creative.
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effort to reach out to non-math students with their topics, and
they are as frustrated as anybody about people’s fear of math
and loathing of statistics. Why, then, are some people fascinated
by mathematics, while others hate it and fear it?
We natural scientists and technologists may not like to think

about the way we think. We expect the world to behave systemati-
cally, our measurements to be precise and accurate, and our analy-
ses to be objective, so our conclusions should be clear. We are not
trained in hermeneutic concepts—how our actions yesterday affect
our observations today. But fundamentally, we are in the same boat
as the social scientists and even the humanities people: We are sen-
tenced to a life as applied philosophers and dominated by our psy-
chological preferences and limitations. But we do behave and think
differently, because we are different—often in systematic ways.
It is well established that cognitive science is relevant for mathe-

matical thinking and use. Lakoff and co-workers [9,10] even showed
how important embodied metaphors are for mathematical language
and concepts. Moreover, Kahneman [11] pointed out how human
“thinking” has two levels of processing—a fast, intuitive, rather effort-
less and visually oriented capacity drawing on prior experiences and
tacit knowledge, and a slow, logical, rather strenuous and often ver-
bally oriented capacity based on explicit, formal analysis.
Personally, I have found both ways of thinking valuable in

multivariate “soft” data modeling. On one hand, the intuitive
envisioning is helpful for grasping one’s new modeling ideas, ho-
listically and while they are still fresh. Graphical visualization later
allows me and my colleagues to overview data in light of our
background knowledge. On the other hand, explicit mathemati-
cal formulation of well established theory is useful for loss-less
preprocessing of chemical data. Detailed linear algebra analysis
of my algorithms can reveal flaws in my thinking. For me, testing
software with data simulated to contain well-defined structures
is superb for finding bugs in my software implementations.
I would like to claim that theoretical distinctly oriented students

are well served by traditional math and statistics teaching. But if
math and statistics is primarily taught by introvert, intellectually
“tidy” theoreticians, their didactic style cannot be expected to
reach other main personality types. For instance, as Helge Brovold

has pointed out for me, the feeling-oriented, extrovert student
types (FEELING/EXTROVERT), whom we need for developing a
humane science, will tend to find the theoreticians boring and
the math topic meaningless. And the free-wheeling, creative
entrepreneurial students are bored stiff by mathematical proofs
and pre-cooked formalism—something that I can confirm from
my own wasted effort as math-averse, contextually oriented bio-
chemistry student. Today I have been professor in mathematizing
fields of science in five different universities, but I have not yet
been able to come through a mathematical proof awake.

Chemometrics today has a far more solid theoretical grounding
that we had in the 70s and 80s. Our methods have also gained
recognition among statisticians. Personally, I workmostly withmath-
ematicians, physicists and cyberneticists these days—scientist far
better in mathematical theory than me. But with its focus on
relevance and real-world discovery, Chemometrics offers rich oppor-
tunities also for the intuitive, contextually oriented entrepreneurs as
well as for the extrovert, feeling-oriented personality types. Our
tools and our culture give us freedom to work in different fields.

3.2. Ontology: how the world is

Where should young chemometricians focus? That depends on
how we think about the world. Chemometrics usually reflects a
pragmatic philosophy of science [12]. Philosophizing can be useful,
but is also an early sign of senility. At my age, I am entitled to it. So
here is my view of what we do and what more we might do.

First, I think it is meaningful to consider that our existence has
two domains—the material domain and the immaterial domain.
The material domain is physical, and governed by physical laws,
which are largely known even though their complex combina-
tions bewilder us, and a lot remains unknown at the quantum
level and at cosmic level. The material domain is addressed by
many natural sciences, including Chemometrics. The immaterial
domain is purely informational (religion, culture, concepts,
language, including mathematics, and messages including tele-
communication). It is addressed by information theory, and,
e.g. by Sensometrics and Psychometrics.

Figure 5. Different personality types ≈ different types of work; PLSR correlation loadings. Personality types (Y, italic UPPER-CASE) related to work types/
self-assessments (X,) of 2200 Norwegian professionals [7] by sampling-balanced PLS regression. Two PLS components (PCs) were found to have
predictive validity in cross-validation. The ellipses show the locus of 100% and 50% fitted variance.
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The distinction between the material and immaterial domains is
not crisp. Money, for instance, seems material one day, and the
next: just a memory. But the unfortunate lack of love between nat-
ural sciences and humanities shows the distinction to bemeaning-
ful. In the present context, the genomic information content of
DNA represents an example of the immaterial: This message can
be held in a strand of base pairs, as a series of light signals in a
DNA sequencer, as a combination of letters ATCG printed on paper
or represented electronically in a PC; this can be transmitted as
radio signal or over the internet, then represented as a sequence
of chemical reagent concentrations in a DNA synthesizer before
ending up in a DNA strand againwith the same information content.

The laws governing the immaterial domain are largely un-
known, I think, except for cases where exact mathematical “laws”
rule, for instance how the sign and real/complex nature of the
eigenvalues of the Jacobian determine the behavior of linear
dynamic systems. Future chemometricians should not be afraid
to combine data from the material and the immaterial domain.
For even the most reductionist materialist cannot step out of
the immaterial, hermeneutic spiral of purposes, and expectations.

Secondly, the physical domain itself is interesting to scrutinize
more closely. The measurement revolution that we now experi-
ence in science reflects the nature of reality itself, � or at least
is intended to do so. Figure 6a summarizes one very exciting
aspect of Reality: It comes with only three fundamental “ontolog-
ical categories”: Properties, Space and Time. And in each of these
categories, there may be variation along the “ordinate” (the
intensity) and along the “abscissa” (the address). The former is
in Figure 6a illustrated by changes in a peak’s size, and the latter
by changes in its position. So in total, there are 3 × 2 = 6
principally different modes in which Reality varies and thus can
be observed§. The material ontology outlined in Figure 6a is
the theater in which I think young chemometricians go to watch
and learn. Then which show will be most fun?

3.3. Epistemology: how we observe the world

There are probably infinitely many ways to observe each of the
three ontological categories in Figure 6a. Therefore, scientists
have to choose—more or less subjectively—what to measure
or not (Figure 6b). Based on our prior expectations, only in a tiny
chosen sub-set of samples in time and space, and only a tiny
sub-set of all the properties may be measured. This subjective
selection, based on our more or less conscious and rational
cost/benefit assessments, is a necessity and usually also an
advantage. But if affordable and unique opportunities are lost
because of erroneous expectations, incompetence or hidden
motives, it generates and perpetuates scientific ignorance and
even seem to support an erroneous bias.

Therefore, we chemometricians—like colleagues in many other
fields, increasingly stress the importance of conscious choice of
“samples”, statistically well designed and based on the existing
knowledge and intuition. This planning may be done quite

pragmatically [5]. But within the available cost limitations, it should
at least address both sampling to ensure sufficient representativity
[13], multi-level factorial designs to reveal possible nonlinearities and
interaction effects, and some sort of power assessment to ensure that
the experiment has reasonable chance of showing interesting results.
Moreover, the choice of measuring device(s) may benefit from

the experience in, e.g. multichannel diffuse Near Infrared (NIR)
spectroscopy: Measure many properties—preferably more than
necessary, (it usually does not cost much, extra). How we then
utilize these measurements depends on how we model them
mathematically (e.g. linear or nonlinear structure models) and
how we estimate the model’s parameters statistically (e.g. based
on full-rank Least Squares or Maximum Likelihood, or reduced
rank approximation). Contrary to the traditional full-rank regres-
sion and discriminant analysis methods (which are still the focus
of many statistics courses—alas—because of their unrealistically
pretty theory), modern reduced-rank methods like Principal
Component Analysis (PCA), Principal Component Regression
(PCR) and Partial Least Squares Regression (PLSR) treat intercor-
relations between measured variables as a stabilizing advantage,
not as a “collinearity problem”. Thus, by multivariate calibration,
the manymeasured variables can often correct for selectivity prob-
lems, andmultivariate outlier analysis may even reveal unexpected
surprises [4]. And contrary to linear reduced-rank methods from
computational statistics, like ridge regression, LASSO and elastic
nets, the bilinear methods most often used in Chemometrics,
cross-validated PLSR provides additional insight in terms of so-
called loading—and score-plots; thereby the user’s domain-
specific tacit knowledge is brought into the scientific data analysis.
However, even the rank-reduced methods like PLSR suffer if

too many irrelevant or noisy variables are included in the data
modeling. In earlier uses of PLSR, this was usually solved by var-
iable selection of some sort, e.g. by successive down-weighting
of variables, or by jack-knifing (as part of the cross-validation,
[14]). More sensitive and less “greedy”methods, like sparse PLSR,
have since been developed [4,15–19].
Still, the data that we obtainwill ultimately be limited by the scope

of our prior expectations. And when analyzing these data, our inter-
pretation will likewise be colored by our expectations, right or
wrong. To counteract this subjectivity, exploratory analysis requires
good validation methods, and this has several aspects [20]. As in sci-
ence in general, data analytic validity is the extent to which a con-
cept, measurement or conclusion is well-founded and corresponds
accurately to the real world. As I see it, analysis of Quantitative Big
Data requires three main validation challenges to be overcome:

(1) Cognitive validation: A data set never contains enough infor-
mation in itself. Humanity’s prior knowledge should be
utilized, but in a soft way. If possible, one should extract
the essence of the data in a way suitable for visualization
and graphical validation in light of the user’s more or less
tacit background knowledge.

(2) Statistical validation: A data set always contains noise, and
usually some mistakes as well. Traditional significance test-
ing is intended to guard against being fooled by random er-
rors, if used sensibly and not just to squeeze out good-
looking p-values for publication. In Chemometrics’ open-
ended data modeling, overfitting (over-parameterization) in-
creases the risk of false discovery. Wishful thinking and
vested interests may aggravate the problem. In the explor-
atory data-modeling overfitting can be reduced by rank op-
timization [21] based on pragmatic cross-validation, or

§Figure 6a is inspired by the British philosopher E.J. Lowe [40], but simplified
and modified to the world of Newtonian physics, where we can distinguish
between time, space and properties. Lowe points out one additional ontolog-
ical category, namely the presence of “gestalt”-like combinations the other
ontological categories. This greatly resembles the thought model for the mac-
roscopic level in analytical chemistry: Every chemical compound in a system
has property spectrum and a concentration varying in time and space. The
property spectrum is characteristic and often constant, or it varies systemati-
cally. The concentration, on the other hand, can vary more or less at random.
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preferably double cross-validation (cross-model validation,
[22]), in lieu of the ideal—a sufficiently large and representa-
tive independent test set.

(3) Progressive validation: A data set never tells the whole story.
The associated prior expectations—as far as we know them—
should ideally be corrected for. Still, non-significant effects
and outliers may later turn out to be valuable and significant re-
sults may turn out to be wrong. Therefore the scientific process
of drilling into the solid Mountain of the Unknown must go on
and on. Statistically valid claims should be reproduced indepen-
dently. Intuitive hunches should be pursued. Solid theories are
man-made and should be critiqued.

In traditional chemometrics, the three ontological modes time,
space and properties are usually accessed in a two-way fashion: A

multi-channel instrument records a set of variables’ (a spectrum
of properties) in a set of samples various points in time and
space). But some modern instruments can observe both in time,
space and property domains in a coherent fashion. For instance,
a video camera allows us to record a small “spectrum” (RGB) at
many pixels in space and many frames in time. Modern
hyperspectral cameras extend that beyond the human visible
resolution, while, e.g. medical imaging by MRI converts this from
2D to 3D. In each case, the property spectrum exists in space and
time, and changes with spatial motion and temporal dynamics.

Of course the space mode itself is 3D—i.e. it has its own three
internal ways. The spectrum of properties itself can also
sometimes have higher internal dimensionality (fluorescence
excitation/emission, chromatographic LC/MS etc.). The time
mode only has one internal way. But once observed, both the

a

Figure 6. Thinking about the real world. (a) Ontology: What constitutes the real world? The physical reality that surrounds us is constituted by three on-
tological categories: Time, Space (1, 2 or 3D) and Property types (many-dimensional, e.g. light at different wavelengths). In each of these categories, there
are two aspects: Position (usually thought of as an “abscissa, x-axis”) and Intensity (“ordinate, y-axis”). In total: 3 × 2 ontological domains. An additional
ontological category is represented by the “gestalts”, “components” or “factors” that link the six ontological domains. (b) Epistemology: How can we ob-
serve the real world? Manymodern measurement types (e.g. hyperspectral video) reflect all three ontological categories. “Properties” is here represented
by “spectrum”. In principle, an infinite number of time points, spatial locations and properties may be measured. In practice, funding limitations and our
ignorance force us to choose only a subset of data to be measured. The rest remains in the dark. Even so, hyperspectral video etc. generates huge data
arrays that require some sort of modeling.
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space, time and property categories may be given additional
internal dimensions, e.g. by creating first and second derivatives
in time, in space and along, e.g. wavelengths, both with respect
to “horizontal” shifts and to “vertical” intensity changes.

In each of these many ways, the scientists (or the instrument
makers) have to limit their ambitions, based on their prior expecta-
tions. Still, the amount of data from today’s instruments is already
staggering, and will increase drastically in the future. The culture
and methodology of Chemometrics have something to contribute
to the handling of such Quantitative Big Data—while we have a lot
to learn, too.

Likewise, extensive computer simulations can also generate
huge amounts of data. For instance, inmultivariatemetamodeling
(see below), simulations according to large statistical designs can
reveal the behavioral repertoire of complex mechanistic mathe-
matical models. Even for Quantitative Big Data from simulations,
Chemometrics has something to offer—and to learn.

Figure 7 shows a typically Chemometric approach to analyzing
a data set obtained as property spectra in time and space
(Figure 6b): Subspace decomposition. The data cube “X” is
approximated by some sort of data-driven modeling, splitting
it into a low number of components (sometimes called factors
or estimated latent variables). Each such “gestalt” component is
defined by a parameter vector (often some sort of eigenvector)
in each of the data ways, representing a (linear) combination of
the data in that data-way. Thus a cacophony of input data is
summarized by its main underlying rhythms and harmonies, plus
unsystematic errors.

In Figure 7, the conventional bilinear PCA model has been
expanded to an N-linear model. These general N-way models
(Parafac, Tucker-analysis) allow extremely compact representa-
tions of huge data files in terms of a low number of underlying
patters, bundled together in N-linear “factors” or “gestalts” with
manifestations in spectral properties, time and space, connected
via a compact central kernel tensor. These, in turn, are suitable
for practical use and graphical interpretation. The number of such
components is determined empirically, e.g. by cross-validation.
Expanding Svante Wold’s early analysis of the bilinear PCA as a
series expansion (pers.com.), I think of the N-linear decomposi-
tions as multivariate series expansions of the unknown structure
in X.

I first met method these N-way methods in psychomet-
rics in the 70ies, where I started, and became fascinated
[1]. But after having played with them on non-ideal chemi-
cal data, I became afraid that chemists might misuse them,
because their ability to reveal underlying structures
unambiguously applies only for ideal data. However, Rasmus
Bro and others have since convinced me of their potential
for effective extraction of information, e.g. from Quantitative
Big Data.
Different methods make different assumptions about the

compact central kernel tensor: Parafac [23] is most strict—it
assumes the kernel to be hyperdiagonal, while the Tucker 1,
Tucker 2 and Tucker 3 models relax this successively, whereby
the number of components may be different in different
ways.
Just like PCA may be extended into PLSR, the N-linear model

may be extended to match the model parameter vectors against
external properties in each of these domains, as illustrated by,
YSpectrum, YTime and/or YSpace in Figure 7.
A number of interesting multi-matrix and non-linear exten-

sions of these bi-linear and N-linear decomposition methods
have been developed: I think the multi-block methods of various
kinds [24–27] are particularly interesting as cognitive tools to in-
terpret the subspace structure of cross-disciplinary data. I expect
the extended combination of nominal-level dynamic PLSR [28]
and sparse PLSR to be particularly powerful for revealing nonlin-
ear dynamics.
Like in all other sciences, there is a deeply subjective aspect to

Chemometrics. As shown in Figure 7, the input data are first
scaled by vectors of prior scaling weights, intended to balance
the signal/noise in spectrum, time and space in various least-
squares based steps in the data modeling. Samples deemed to
be outliers may thus be removed. Conventionally, variables are
left unscaled or standardized to equal variance. But other scaling
weights may also be chosen: Variables considered to be particu-
larly important may be forced into a data driven model by very
high scaling weights. Conversely, questionable variables may
be down-weighted. These scaling weights may equivalently be
employed inside the iterative modeling algorithms, or explicitly
as pre-processing. The latter is often preferred in Chemometrics,
to save time.

Figure 7. Data driven modeling: finding the underlying patterns in data. An N-way array X of high-dimensional data may often be approximated by a much
simpler N-way data model. The figure illustrates three-way Tucker or Parafac data modeling wrt time, space and spectrum. Like in conventional two-way PCA,
prior scaling weights, subjectively chosen by domain experts, are used to balance the signal/noise and relevance of different time points, locations and
properties. The ensuing N-linear decomposition results in a few “gestalts” with properties both in time, space and spectrum. These are here collected in
low-dimensional loading matrices in time, space and property types, connected by a small N-way kernel in a low-dimensional tensor model. The loadings may
be related to external variables, YTime, YSpace or YSpectrum, in analogy to two-way PLSR, and are suitable for graphical interpretation by the domain experts.
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By these scaling weights we consciously impose our sub-
jective “prejudices” (prior expectation of relevance and preci-
sion) on the data modeling. For later graphical analysis of the
obtained loading vectors, the scaled variables may be brought
back to their original units by division by their scaling weights,
or plotted in terms of so-called correlation loadings. Properties
totally ignored have implicit scaling weights of zero, and their
modeling results of course cannot be de-scaled again. The
same goes for locations, time-points or samples ignored.
I think this inversion of our subjective prior scaling weights

gives a naive illustration of how, and to what limit, we can
eliminate our own “pre-judices” in general [29], when trying to
interpret observations in the Real World. In our unavoidable
hermeneutic circle (or rather, spiral), our prior scaling may be
extended from simple weight vectors to matrices of expected
patterns, desired or undesired. These may be implemented in
different ways, e.g. by Generalized Least Squares preprocessing
(matrix multiplication by the square root of expected
covariances [30]), or by statistically more advanced Bayesian
analyses. Unfortunately, Evolution did not allow our brain to do
matrix multiplication—otherwise we humans might have been
able to use this to correct for our own cultural biases. On the
other hand, to be stabile, cultures may need some shared
prejudices. So perhaps we should limit our prejudice correction
to computational science. But there we may have to use it, as
a tool to reduce the risk of Type II errors in Quantitative
Big Data—failing to discover what we could and should
have seen.
Going back to the ontology, Figure 6a showed that each of the

time, space and property modes had two aspects—position and
intensity. Data from color video cameras etc. already contain
information in all six domains. And in theory, the N-linear de-

composition in Figure 7 can be used in all six domains simulta-
neously. But in practice, no one does that yet, to my knowledge.
But we should! I think a lot of opportunities remains in this re-
spect. Here is one suggested way forward for entrepreneurial
mavericks:

3.4. The IDLE model: dual-domain modeling

In a given combination of ontological categories—for instance a
series of pictures (the spatial domain), systematic variations can
be compactly quantified by bilinear modeling (scores × loadings)
in both abscissa (spatial position) and ordinate (intensity, e.g. light
intensity for different colors). Figure 8 illustrates how I like to
model a set of related images, e.g. a video sequence, in terms of
what I have called the “IDLE” model. Successfully implemented,
the IDLE model represents a model-based compression method
that gives both high compression rates and interpretable models.

The meaning of the IDLE model name (I =D(L)+E) is explained
in Figure 8. To develop a good IDLE model from video data
requires that color changes and motions are estimated and
modeled separately. That is not trivial (I know, for I spent about
10 years on that in the 90s, and now I am at it again). But it is
doable. In 2D video describing a given scene, segmentation is
needed in order to separate independent objects (“holons”) to
be modeled individually. It also requires motion estimation for
each holon (e.g. in terms of optical flow), followed by motion
compensation. Finally, the estimated motions and color changes
are submitted to bilinear modeling and residual analysis.

I believe this type of multivariate dual-domain modeling,
combined with elements from other sciences, will find increasing
use for making sense out of the future’s Quantitative Big Data. It
is illustrated in the image domain in Figure 8. But it also applies

Figure 8. The dual-domain IDLE model I = D(L) + E: Intensity observed = Displacement model of (Local intensity model) + Error, illustrated in 2D: For a
sequence of related images (Smiley variations, top), an idealized IDLE model (right) consists of a Reference intensity image (top), a Displacement model
(“Smile loading”), an Intensity change model (“Blush model”) and a set of individual Residuals (bottom row), according to the IDLE model. The Displace-
ment model in this simple illustration consists of one single “smile” component (one soft motion pattern of the mouth) and one single “blush” com-
ponent (one soft color change pattern of the cheek). Unmodeled motions, objects or colors show up in the residuals images E. When the IDLE
model is applied to describe three new images (center columns), motion estimation shows that “smile” scores of 1.2, 1.2 and �1.6 allows the bland
mouth expression of the reference image to be morphed into two smiles and a frown. Likewise, the “blush” scores of 0, 0.5 and �0.4 makes the second
happy Smiley blush, while the third, unhappy one, get green cheeks. When later encountering an abnormal image (right column), the unexpected
mouth twist and forehead fly are—ideally—left unmodeled in the Error Intensity image E.
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in the time domain (time delays/phase vs. amplitude or effect
shapes) and in the property domain (wavelength peak shifts vs
absorbance peak heights)¶.

Figure 9 illustrates the IDLE principle by two snap-shot from a
video sequence of a baby, lent me by my colleague Lars Adde.
The baby lies on its back, moving its body and head and waving
its arms and legs. In the long video sequence, a representative frame
(# 63) was selected as a reference, IRef (a). The motion details for
another image—frame # t=68, I68 (c) will now be shown.
Comparing images (a) and (c), the arms have clearly moved, and
the arm shadows too.

Figure (9b) shows the so-called motion field D68@Ref, or just D68,
estimated by our proprietary implementation of optical flow esti-
mation. The motion field D68 tells how each of the pixels in IRef
should be moved in order to mimic the target frame I68 as well
as possible. Moving IRef according D68 produced IRef@68 (e): The
arms as well as the shadows in IRef@68 now resemble I68. Con-
versely, d) shows I68@Ref, i.e. how image I68 looks when it is moved
back by the motion field D68 to mimic IRef.
To develop a two-domain motion model for a video sequence,

the motion estimation and move-back operation is repeated for
every frame n= 1,2,…,Ref� 1,Ref + 1,… N. (For n = IRef, DRef@Ref

is of course zero). Thereby, both the motion image Dn@Ref and
the moved-back intensity image In@Ref (for each color channel)
is represented in the same reference position for each image
n= 1,2,…….N. Dn@Ref and (In@Ref� IRef) are thus very well suited
for bilinear modeling, because the meaning of each pixel is
always the same for all the frames. The modelling yields bilinear
spatiotemporal “smile”- and “blush” components like those illus-
trated in Figure 8.

¶I developed this dual-domain model back in the late 80s. Frank Westad and I
wrote a short paper on modelling possible wavelength shifts in spectroscopy
[41]; otherwise notmuch has been published academically on it, except in the pat-
ent literature with Jan Otto Reberg and others [42,43]. Building a business on this
principle in the 90s was fun and interesting. But only till the stress almost killedme
and I left it. Now, many years later, with more experience and more computer
power, I am at it again with my new colleagues, and the fun is the same.

Figure 9. The IDLE principle illustrated by snap-shot from video sequence. The spontaneous motion gestalts of a baby (courtesy Lars Adde (St. Olav
University Hospital and Norwegian University of Science and Technology, Trondheim, Norway). a) IRef: A chosen reference image with light intensity
(frame # 63 in video) (b) Dn@Ref: Displacement field (optical flow or “smile field”) showing the pattern of motions from the reference image to another
image (frame n = # 68). For visual clarity, the motion arrows representing the horizontal and vertical motions, are shown for a few of the pixels only. (c)
In: Frame n = # 68 in the same sequence. (d) In@Ref: Frame # 68 morphed via the motion field to mimic the reference frame # 63. (e) IRef@n: Reference
frame # 63 morphed via the motion field to mimic frame # 68. (f) A motion gestalt’s time series: PCA Score of PC # 1 vs video frame #. g) A gestalt’s
spatial motion pattern: PCA Loading of PC # 1, folded back to 2D video pixel space. (h) 3D gestalt trajectory: Three first PCA PC score vectors, rotated
to show cluster of repetitive movements.
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The bilinear spatiotemporal model will have temporal scores
(the essential time-series) and spatial loadings (the essential mo-
tion gestalts and color change patterns). For illustration, motion
fields Dn@Ref were estimated from the reference frame (frame
63) to each of frames n= 1,2,…,125. These motion fields, with
nPels pixels for the horizontal motions and nPels pixels for the
vertical motions, were unfolded from their 2D representation
(e.g. Figure 9b) to 1 D vectors with 2*nPels elements, generating
a joint motion data table of 125 rows and 2*nPels columns. The
first PCA of these motion data explained 47 % of the motion var-
iance. This first whole-body “mathematical motion gestalt” is de-
fined by its spatiotemporal parameters, the scores time series
(Figure 9f) and its spatial whole-body motion pattern (Figure 9g).
But such raw bilinear components from PCA, PLSR etc. are not

intended to be individuallymeaningful; they just provide sensible
“window frames” for looking into the essence of the data. With 3
such PC “motion gestalts”, most of the motion variance (86%)
was described. The trajectory of the baby’s motions in this video
is summarized in the 3D “window” in Figure 9h). For interpreta-
tion, the 3D score plot has here been rotated manually to reveal
a striking feature in this video—a repeatedmotion pattern. Other,
more automatic rotation methods might have been used instead
(ICA, Varimax etc.) in the scores or the loadings, to obtain so-
called “simple structures” (axes corresponding to more “natural”,
physiological motion gestalts). More detailed interpretation will
reveal which body parts are involved in which of these “natural”
motion gestalts, but that is beyond the scope of this paper.
These model-based video representations may, in turn, be

used for many purposes—for instance for compressed transmis-
sion, and for time series analysis and the development of more
mechanistic models of ODE/PDE/Finite Element type, to map po-
sition, velocity, acceleration etc. for all pixels in the reference im-
age, simultaneously.
I must admit that the IDLE model is my favorite: confusing to

think about, somewhat tricky to implement, but versatile and
powerful. I am back working on the topic after a 15-year break,
and hope that IDLE modeling in the future will make it easier
to handle the massive data streams from two-domain monitor-
ing sensors for quantitative process control, improved medical
diagnosis etc. So while the IDLE model itself is something to pur-
sue also for young chemometricians, my other personal take-
home message is: Never give up—even if things take more time
than you like. But take a break when you need it.

3.5. Quantitative Big Data: useful and understandable

That brings me to my next favorite topic, on which I am presently
working: How can our Chemometrics methods be adapted to
harness the massive, overwhelming data streams that come
from today’s video cameras and tomorrow’s multi-channel
multi-way measuring devices—what I call Quantitative Big Data?
Surely, buying larger and larger disks to store these overwhelm-
ing, ever-increasing data files is not an answer. Some sort of
mathematical and statistical modeling is needed, to identify
and extract the essence in the data.

Most multivariate data analysis methods either require all the
data to be available at the time of model development, or defin-
ing a model that is modified as time goes, in a kind of “moving
window”. Figure 10 shows the kind of modeling that I find more
in line with how we humans learn: continuously discovering
new phenomena, without necessarily forgetting the past. As-
sume that a real-world system is continuously modified by a
few input controls and then monitored by a high number of in-
strument outputs. This generates an ever-increasing mass of
measurements: Quantitative Big Data. Alternatively, assume that
a complicated mechanistic model, with a high-dimensional set
of outputs, is subjected to an extensive series of computer simu-
lations. That can also generate a cumbersome stream of data.

When the raw data stream comes from a systematic process
(chemistry, physics, biology etc.) the complexity of the resulting
model is often small. This means that if bi-linear modeling is
used in this continuous learning process, only a limit number
of components is needed. So the file size to be stored can often
be drastically reduced. More importantly, the continuous soft-
model learning process makes it easy for people to inspect and
interpret the essence in the otherwise overwhelming data
stream. The improved understanding leads to new scientific in-
sight, and better handling of the system monitored.

Such a learning algorithm, involving not only the computer
but also people, and thus bringing the human mind into the
loop, is better than some of the alienating machine learning ap-
proaches employed to handle Big Data today. The way I work to
develop it, non-stop massive measurement streams can thereby
be compressed into their PCA-like essence without loss of valu-
able information. The next question is then: What is the best
way to use these compact, continuous time-series of reality
descriptions?

Figure 10. Making Quantitative Big Data useful and understandable. A complex, ill understood but continuous process can be a physical system con-
tinuously monitored by multichannel instrumentation, or a mathematical model subjected to extensive simulations. Such a “forever-running” system
may be summarized by an automatic, self-learning approximation model. This simplified, ever-changing model should preferably of the interpretable
subspace type used in Chemometrics. The process may thereby be better understood, and better controlled.
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4.6. From time series data to causal insight

Having retired from my previous research positions at the Nor-
wegian Food Research Institute and the Norwegian U. of Life Sci-
ences at Ås, I have the privilege of now working at the
Department of Engineering Cybernetics at my Alma Mater, the
Norwegian U. of Science and Technology, Trondheim. There I
am the only person who does not know much about PID regula-
tors and Kalman Filters, but I see that I know more than the
others about multivariate data modeling. Merged together, our
fields may represent Big Data Cybernetics (Morten Breivik, pers.
com.).

My question is here: How can our Chemometrics way of work-
ing contribute to process control? The first aspect of that is: How
do our methods relate to dynamic modeling in terms of differen-
tial equations?

As a biochemistry student, and in my subsequent years as
food scientist, I stayed away from dynamic modeling. I now see
that this was because I feared it; seeing an integration like

∫
∞

�∞
e�x2dx made me cringe. More recently, I think of integration

is just a form of summation. I have found that numerical integra-
tion in, e.g. Matlab is often straight-forward. And we can often do
the numerical integration once and for all and thereafter replace
it by multivariate metamodeling (more later). So dynamic model-
ing is not particularly difficult—it is only that the notation and
terminology looks so foreign.

Figure 11 will give a small illustration of how the PLS regres-
sion can be used for nonlinear dynamic modeling. By “soft” PLSR
models, time series data can be converted into “harder” non-
linear dynamic models.

If we have some time series data, cross-validated Partial Least
Squares Regression (PLSR) can provide interpretable, reduced-
rank dynamic models. Martens et al. [28] illustrate one way in
which PLSR time-series analysis can provide temporal forecasting
and reveal attractor structures in multivariate dynamic systems:
One or more time series vectors (Y-variables) were modeled from
the same and/or additional line-shifted time series (X-variables) in
a linear, reduced-rank approximation PLSR model. We also outline
various cognitive computational aspects of modeling in the time
domain, in light of our Chemometrics culture.

Let us first look at linear dynamic models. In, e.g. systems
biology and control theory, simple dynamics can be expressed
by linear ordinary differential equation (ODE) models of how
the rate-of-change in the state of a process depends on the state
itself. Data analytically, this can be written by the linear model
Y ≈XB, where K time series X(N × K) = [x1, x2, …, xK] represent
a set of K variables observed at N points in time, and rates
Y= [dx1 / dt, dx2 / dt, …, dxK / dt] is their temporal derivatives∥.
Each individual column vectors bj in the K×K rate constant matrix
B in the dynamic model shows how the rate of state variable j is
defined by all the K “state”-variables, including itself: yj =Xbj.

So we are one step closer to an apparent causal insight, be-
cause Y≈XB represents a set of coupled linear ODEs. I think of
mechanistic ODE formulations as “how does it feel to be X inside
this system? How does it work?”, as opposed to the more exter-
nal statistical assessment: “How does this system seem to
behave?”. Of course, ODEs and other mechanistic models should

always be regarded with healthy skepticism, and that goes for
data-driven ODEs too. But ODEs can give deeper insight into
the dynamic behavior of a system:
Because the observed state variables may be expected to dis-

play natural collinearities, and because the experimental condi-
tions seldom allow complete spanning of all combinations of
all state variables, reduced-rank regression is required. Cross-
validated PLSR is then an alternative for estimating the Jacobian
matrix B. Thus, by regressing rates on states by a linear model,
we can generate differential equations from time series data.
And using a reduced-rank linear regression method, like PLSR with
cross-validation to estimate the optimal rank and jack-knifing to
estimate the precision of the resulting Jacobian, we should be able
to make reliable ODE’s even from highly intercorrelated time
series, by standard chemometric methodology.
Then, going beyond standard chemometrics, we can under-

stand the dynamic behavior of the system by analyzing the
mathematical properties of the obtained Jacobian matrix B. That
is outside the comfort zone of most chemometricians, including
mine. But control theory can then tell us how the system will be-
have wrt short- and long-term temporal stability, primarily from
its eigenvalue properties**.
In general, I believe that the IDLE-like extensions of bilinear

modeling in time, space and properties × position change and
intensity change may be seen as powerful multivariate general-
izations of the bi-linear part of a Taylor expansion. But some-
times these linear (or quadratic) constraints limit us too much.
Therefore, we chemometricians should look more into the gen-
eralizations of useful techniques I have learnt from Psychomet-
rics (I had my early exposure to professional multivariate data
modeling among psychometricians in the 70s and early 80s,
mainly in the US).
Figure 11 shows how to look for the right nonlinear differential

equation model that have caused a certain observed set of time
series in a system. It employs standard chemometric PLSR, but
on X-variables represented at what in Measurement Theory is
called the NOMINAL level:
A given hypothetical system was characterized by three state

variables, observed as functions of time. (I received these four
error-free three-dimensional time series, generated by computer
simulations, i.e. numerical integration from four different sets of
initial states without being told the underlying causal structure
of the ODE used for generating them by simulation). I computed

∥The ODE structure is here written in standard chemometric/statistical regres-
sion notation. In control theory the notation is different.

**In Chemometrics we might be inclined to perform singular value decompo-
sition of B, since that bilinear decomposition would correspond to our under-
standing of a model with reduced rank A (A ≤ K): The “latent states” are
defined from the “manifest states”: TA = XVA, and the rates from these score
vectors TA: Y ≈ TAQA′. This means that the obtained Jacobian is bilinear:
BA = VAQA′. This is described in more detail in [28]*.
If so desired, we may reformulate how we span the A-dimensional subspace,
by a transformation matrix CA (A × A), e.g. by ICA, MCR, Varimax rotation etc.
DA = XVACA, Y ≈DA CA

�1QA′. But unless we go beyond this linear model formu-
lation, we get BA = VACA CA

�1QA′ = VAQA′. So I don’t think that would affect the
Jacobian.
How should we then analyze the properties of the quadratic matrix BA( K x K)?
Singular value decomposition (svd) of BA would only give us back the X- and
Y-subspaces of VA and QA′, which we already know from the PLSR. And eigen-
value decomposition of BA′BA or BABA′, which are both quadratic and symmet-
ric, would of course also have given us the same basis vectors as svd of BA.
However, the in control theory, Jacobian BA itself is submitted to eigenvalue
decomposition. And BA is not symmetric. Therefore—depending on the values
in BA—its eigen-analysis may result in some negative, and even complex
eigenvalues.
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the time derivatives of each of these time series, and defined
them as 3 Y-variables. I could have used the three time series di-
rectly as X-variables, and obtained the Jacobian as the regression
coefficient B in Y=XB+ F. But that did not work here; I found
that the causal dynamics behind the data must be highly
nonlinear.
Therefore I chose to split each of the observed quantitative

time series into 20 nominal (category) variables, with values 0
or 1 as illustrated in Figure 11, and defined these 60 indicator
variables as my X-variables. The nonlinear “Jacobian” was the
estimated as the regression coefficient at optimal rank, by a
sampling-balanced, cross-validated/jackknifed PLSR. The results
showed negative, linear “cis”-effects proportional (degradation
effects of each state variable on itself). For 6 of the “trans”-effects,
three of them were found to be close to 0 and three were found
to be highly nonlinear sigmoids. When I sent these results back
to my colleague who had generated the data, he confirmed that
I had indeed found the causal structure behind the data.
This is just one little demo example, using one of the nonlinear

techniques from psychometric Measurement Theory, nominal
scaling. Others (ordinal scaling) are also available, in addition to
the Interval (like Farenheit or Centigrade temperature scales)
and Ratio scaling (Kelvin temperature scale).
I advise students of chemometrics to combine our standard

tools from chemometrics, with methods from other disciplines,

like image analysis and control theory. Armed with such a
method arsenal, a surprisingly wide range of data can be
analyzed. For instance, the next section shows how Chemometrics
can pay something back to our friends in mathematics:

4.7. Multivariate metamodeling: models of models

The subspace methods that we often use in Chemometrics have
proven useful for getting a better grip on main-stream mathe-
matical modeling, particularly when the models are large
and/or intricate, and thus slow to compute and difficult to over-
view. By massive statistically designed computer simulations
with such models, followed by subspace analysis of the large
resulting Input and Output data tables, several different benefits
may be obtained. In [6] we reviewed the use of conventional
PLSR, N-way PLSR and non-linear PLSR for revealing the actual
behavior of a wide range of mathematical model types:

Highly reduced experimental designs, like Latin Hyper-Cube
design or Optimized Binary Replacement design allow models
with many inputs (e.g. 10 or 20 input parameters) to be probed
systematically at many levels in factorial designs, without
experiencing combinatorial explosion.

“Classical” metamodeling in the causal direction, describing
the model outputs in terms of the defined model inputs, gives

Figure 11. ODE development by Nominal-level PLSR: dynamics and nonlinearity. Data-driven generation of nonlinear differential equation (ODE)
system. Example of nonlinear (nominal-level) PLS regression Adapted from Martens et al. 2013 [28]. Adapted from Martens et al. 2013 [28] A complex
system is here to be characterized in terms of a nonlinear dynamic mathematical model, linking three state variables. Middle: The input data consisted
of four sets of time series, each containing them time series of the three different state variables obtained by numerical integration for a new set of
initial states. Each of the three state variables were split into 20 category variables (white = 1, dark = 0) and the set of these 60 nominal variables were
together used as X-variables. Left: The three state variables were also differentiated with respect to time, and used as three Y-variables. Conventional
PLS regression was employed based on the linear model of rates = f (states) (i.e. Y ≈ XB). Cross-validation showed that four PCs gave optimal prediction
of rates Y from statcategories X. Right: The nominal-level regression coefficients B at optimal PLS regression rank was finally split to show how different
levels of each of the tree states affected each of the three rates.
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both sensitivity analysis and model overview, and can give
substantial computational speed-up.

“Inverse” metamodeling, reversing the modeling direction to
describe the inputs from the outputs, can substantially speed
up the fitting of complicated mathematical models to experi-
mental data. Because the simulations and the metamodeling
can be done once and for all, problems with long, iterative
search processes and getting stuck in local minima are avoided.

But because many mechanistic models are mathematically
sloppy, i.e. that several input parameter combinations give more
or less the same model output [31], such inverse modeling can
sometimes be difficult. Then it is better to compare the experi-
mental data directly to the raw simulation data. We have called
that the Direct Look-Up method Isaeva et al. (2012a) [32] and
(2012b) [34]—which is a simple version of so-called Case-based
Reasoning.

The ambiguity associatedwith sloppymodels can changed from
being a nuisance and source of confusion to a source of deeper in-
sight by chemometric analysis [33]: The so-called neutral parame-
ter set, obtained when fitting a sloppy model to a given set of
empirical data, represents a sample of “all” the parameter combi-
nations that give satisfactory fit to these empirical data. PCA or
PLSR of this neutral parameter set shows the “structure of doubt”
in the modeling process, in terms of linear subspaces or non-linear
sub-manifolds of equivalent parameter settings.

Figure 12 illustrates another use of multivariate metamodeling:
Faster and more comprehensive fitting of nonlinear models to
data [34]. In this case it concerns how to parameterize growth
curves. We needed a way to describe the complex dynamics of
a spatially heterogeneous system (2D electrophoresis gels in
proteomics). Sarin Nhek therefore monitored the color develop-
ments with a video camera, each time obtaining more than 100
000 different measured “growth curves” of pixel darkness z1 as
functions of time x1, z1,meas. = f(x1); one for each pixel.

To quantify these curves, we wanted to fit each of them to a
nonlinear growth model—the logistic function, with two param-
eters p1 and p2: z0 ¼ 1

1þe �p1x0þp2ð Þ in a suitable time range. Initial

attempts to do that by conventional, iterative curve-fitting failed

miserably—many of the optimizations ended up in useless local
minima, and the whole procedure was prohibitively slow and
had to be terminated.
So instead, we ran the logistic function, for a selected range of

abscissa values x0, with several thousand different value combi-
nations for parameters p1 and p2 chosen according to a factorial
design. The black curves in Figure 12a) show some of them, after
having resized both axes in simulations z0 = f(x0) to range [0,1] at
100 different abscissa values, forming a set of several thousand
simulation curves zsim. = f(x). Likewise, the measured curves
z1,meas. = f(x1) were resized and interpolated to form observed
curves in the same range, zmeas. = f(x).
Based on these simulations, two fast, quantitative predictors

could then be developed:

(1) Multivariate calibration: A so-called inverse multivariate
metamodel, whereby parameters p1 and p2 were described
as two regressand variables Y from the resized response vec-
tor zsim (100 regressor variables X) by cross-validated PLSR.
Once established, the unknown parameters p1 and p2 were
for each pixel simply predicted by replacing zsim by zmeas.

(2) Case-based reasoning: A Direct Look-Up, whereby each
measured curve zmeas was compared to the simulated curves
zsim, and all plausible matches listed, possibly with a simple
local linear interpolation.

Again, the former metamodeling is extremely fast, but
requires the model to have unique one-to-one relationships
between input parameters and output curves. The latter one
may be slightly slower, but works also for “sloppy” models with
non-unique input/output relationships, which gives a more infor-
mative overview of the ambiguity in the parameterization for the
chosen model, the logistic function.
However, there is also ambiguity in the choice of the mecha-

nistic model itself. A number of alternative mathematical models
could have been chosen. How to compare and interconnect
these mechanistic mathematical models? So we tried to find
“the mathematics behind the mathematics” of simple line-
curvature:

Figure 12. Example of multivariate metamodeling: The modelome of line curvature. (a) Thirty-eight widely different mathematical models of line cur-
vature, z = f(x, parameters), represented by i = 1,2,…, 500 out of N> 17 000 simulations using different parameter combinations (Isaeva et al. 2012a,
[32]), after normalization of x and z to [0,1]. Dark lines: one of the 38 models, the Logistic Function. (b) PCA of all N curves. Percent variance vs # of
principal components, showing that the modelome of 38 different mathematical models of line curvature can be inter-linked quantitatively with high
precision ( 99.9% correctly explained variance) via a 12-dimensional bilinear metamodel.
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Different fields of science were scrutinized, and thirty-eight
relevant, but widely different mathematical models of line
curvature were found, each capable of producing smooth
sigmoids and archs. Among the 38 models, we included the Hill
function, the two-parameter logistic function, the five-parameter
logistic function, the Gompert function, various kinetic functions,
trigonometric functions, cumulative statistical distribution
functions and ODE-integrals. All of them were nonlinear and thus
difficult to fit to curve data. For each of the 38 alternative
nonlinear dynamic models, massive computer simulations were
done, applying different parameters and initial value combina-
tions according to statistical designs, generating the outputs
z0, sim = f(x0). In total, more than 17 000 simulations were
performed. For each of the obtained curves, both the input
vector x0 and output vector z0 were normalized to [0,1], yielding
zsim = f(x). Figure 12a) shows 500 out of the N> 17 000 normal-
ized curve simulations.
A joint PCA was performed on these N> 17 000 normalized

curves. Figure 12b) shows that 95% of the variance among them
was explained by only two PCs: >99% by 6 PCs and about 99.9%
by 12 PCs††.
Summarizing, the 38 competing curvature models had so

diverse mathematical form that it was very difficult to compare
them directly. But they are easily compared via their joint PCA
metamodel, linking their behavioral repertoires of output curves.
This behavior can, in turn, be linked to their input parameter
values. Thus, for any given parameter combination of any of
the curvature models, we can check if any of the 37 other models
behave similarly, and if so, identify their parameter values.
We consider our collection of the 38 curvature models, with

the data base and joint PCA metamodel, as a first estimate of
the “modelome of line curvature”. Technically, this use of the
multivariate soft modeling of line curvature turned out to be less
unique than we thought at the time. It is similar to a technique in
computer vision, the Kanade–Lucas–Tomasi (KLT) feature tracker
[35–37], which also relies on PCA-like analysis of lots of features.
Moreover, the obtained loadings from the joint PCA model in our
specific case—smooth growth curves—looked very similar to
cosine functions with different frequencies. So a Fast Fourier
Transform (FFT) or a Discrete Cosine Transform (DCT) might have
been used instead, in which the orthonormal loadings are
preselected instead of generated by PCA of the data. But our
general idea of merging many competing mechanistic models
into one joint metamodel is perhaps new?
In the future, similar modelomes may be established for other

classes of models with comparable behavior. For instance, it
might perhaps be possible to make modelome-libraries of differ-
ent classes of linear or nonlinear ODEs and PDEs, thus doing
away with the need for time-consuming numerical integration.

4.8. Combining human and technical data

The twin fields of Chemometrics and Sensometrics share many
aspects with each other and with, e.g. Psychometrics. For one
thing, we use factor analytical subspace-methods like PCA and
PLSR for open-ended, transparent data-driven modeling suitable
for human interpretation. Moreover, this methodology makes it

easy to combine “immaterial” human response data with “mate-
rial” technical data.

For instance, from the modelome-of-line-curvature data
(Figure 12), Isaeva et al. (2012a) [32] submitted print-outs from
a representative subset of the thousands of simulated curves
to quantitative sensory descriptive analysis, using a sensory
panel from food science. Once the panelists had developed a
suitable vocabulary and used it to profile the selected curves, a
PLS regression model was developed to describe sensory profile
Y from the curves’ joint metamodel scores X. Using this PLSR
model, it was now possible to predict how humans would have
verbally described each of the >17 000 curves—if they had seen
them, or vice versa.

A similar sensory profiling was used to describe complex
behavior of a nonlinear spatiotemporal model of cell differentia-
tion [38]. Using their senses and language capabilities, the
human assessors were able to reveal a new and totally
unexpected mathematical pattern type.

To handle the future deluge of data, artificial intelligence
will hardly be intelligent enough. Human interpretation will
be required. Future chemometricians should learn to respect
Sensory Science as a wonderful way to give meaning to
measurements and models.

4. A TWO-WAY BRIDGE ACROSS THE MATH
GAP

Working in science concerns having a job at all, and having fun
on the job. But not just that: Scientists are talented people, and
I think we should use our talents for something meaningful.
My own university has the motto “Knowledge for a better world”.
I subscribe to that. Referring to Figure 5, it is clear that we are all
somewhat different, and should use our talents differently. Some
should bake the cake, some should sell it and some should de-
velop new cakes.

Figure 2 outlined the difference between the inductive and
the deductive mind-set in science. With that in mind, let us
now return to my original concern in Figure 1, the problematic
gap between the mathematical sciences and non-mathematical
sciences. I sincerely believe that our chemometrics culture and
tool-box, together with other soft-modeling disciplines such as
sensometrics, psychometrics and morphometrics, and other
pragmatic, real-world oriented fields such as image analysis, sig-
nal processing and control theory plus realistic statistical valida-
tion [44], can bridge that gap. If we do that, we have done
science and society a favor.

Figure 13 concerns how to build a bridge across the math gap.
The bridge is two-way, from the inductive to the deductive
mode of working, and vice versa. Assume that a given, real-world
system is studied by experimental observation by some scientist.
Assume also that other scientists study the same system theoret-
ically, by mechanistic mathematical modeling. Traditionally,
these two groups of scientists would not meet (Figure 1). How-
ever, both groups would control their system by variations in
certain inputs and obtaining certain outputs. If both groups used
multivariate soft modeling to link their inputs and outputs, they
could develop a fruitful two-way communication bridge, with
several benefits:

Variables a) and b) in Figure 13 represent the inputs and out-
puts common to the real experiments and the computer simula-
tions. To the extent that the mathematical model describes the

††In addition, there are offset- and slope parameters for the normalization of x
and z.
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system well, the soft-modeling should show the same behavior
patterns for these common inputs and outputs. If not, their dis-
crepancies should either lead to critical assessment of the real
experiments, or used for developing data-driven model exten-
sions, as explained by Martens [39].

Variables c) and d) represent inputs involved only in the real
experiment or only in the simulation experiment. Among these,
variables shown to be important for predicting the outputs,
should be included and varied consciously in future simulations
and/or experiments.

Likewise, variables e) and f) represent outputs involved only in
the real experiment or only in the simulation experiment. Among
these, variables shown to be important for predicting the out-
puts should be monitored, for improvements of future experi-
ments and/or simulations.

I admit, I have not yet had the chance to demonstrate this dip-
lomatic bridge-building in practice.

A lot of good science has been done and is still done by
performing small, critical exercises, be it hypothesis-based exper-
iments or critical simulation attempts. But that is a slow and risky
process. I am convinced that in the future, science will make
much more use of high-throughput, high-dimensional measur-
ing instruments as well as massive, well-designed computer sim-
ulations and multivariate metamodeling. If that prediction
comes true, then I believe our two-way bridge across the math
gap is bound to build itself, rendering both “looking-good”
statistics and “macho” modeling obsolete.

But that will require a major change in the way math and sta-
tistics is taught to the students in chemistry, biology, medicine
and applied sciences. A communal, international effort is called
for to develop course contents and teaching styles suited for stu-
dents of all major types of personality types.

5. CONCLUSIONS

To handle the future’s Quantitative Big Data, we need a lot more
applied mathematical modeling, statistical assessments and
graphical interpretation tools. I have here outlined my view of
how Chemometrics culture in the future may contribute to
building a two-way bridge across the math gap in science and
technology, in particular wrt the biomedical field:
On one hand, the data-driven multivariate soft modeling—in

the tradition of conventional Chemometrics—can convey to
the theoretically oriented mathematical modeling community
how the Real World seems to behave, empirically. On the other
hand, multivariate metamodeling, based on methods, e.g. from
Chemometrics, can convey to more math-averse empiricists that
mathematical modeling of, e.g. non-linear dynamic mechanisms
is not as difficult as they may think.
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