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Abstract— The measurement quality of Global Navigation
Satellites Systems (GNSS) during marine operations will vary
over time. Inherently, GNSS quality changes should be handled
when GNSS is utilized as aid in inertial navigation systems.
In this paper we present an observer for estimating posi-
tion, velocity and attitude with time-varying gains for high-
performance sensor fusion based on GNSS quality and other
quality indicators. The origin of the error dynamics is proven
to be uniformly semiglobal exponentially stable. The concept
is illustrated by simulating a vessel operating in dynamic
positioning with GNSS and inertial sensors.

I. INTRODUCTION

A strapdown inertial navigation system (INS) is mounted
on a navigating object or vehicle and therefore moves to-
gether with the respective body in question. The estimated
position, velocity and attitude (PVA) provided by the strap-
down INS is based on double and single integration of
accelerometer and gyroscope measurements, respectively.

Standalone INS estimates can be accurate over shorter
time horizons, however inertial sensor errors such as biases,
scale factors and alignment errors propagate through inte-
gration and leads to degraded performance over time. As
a consequence, INS is aided by other sensors or position
reference systems to combat the long term drift of the PVA
estimates.

Integration of INS and GNSS is far from novel. May-
beck [1] presents aided navigation by utilizing the extended
Kalman filter (EKF). GNSS aided navigation is the primary
focus of Farrell [2]. A disadvantage of the EKF is the lack
of global stability guarantees due to linearization about the
given trajectory. Nonlinear observer theory offers a way
around these potential limitations and is applied in this paper.

In the last two decades several nonlinear observers for
attitude estimation have been presented. The basis for these
observers has either been a direct attitude measurement or
resolving the attitude with vector measurements. The latter
concept is based on comparison of vector measurements with
their respective reference vectors in a given reference frame.
The first principle was utilized in [3]–[5], whereas Mahony
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et al. [6], Hua [7], Batista et al. [8]–[9] and Grip et al. [10]
utilized vector measurements to estimate the attitude.

Integration of strapdown INS and GNSS with nonlinear
observer theory was first demonstrated by Vik and Fossen
[5]. The work of Vik and Fossen is based on the assump-
tion that the attitude could be resolved independently from
other measurements. A direct attitude measurement was not
needed in Hua [7] and Roberts and Tayebi [11] where the
INS/GNSS integration was carried out with linear GNSS ve-
locity measurements together with inertial and magnetometer
measurements. More recently, Grip et al. [12] estimated
position, velocity and attitude by utilizing a rotation matrix as
attitude representation with the framework of interconnected
observers from [13]. The origin of the INS/GNSS integration
error dynamics was proven to be global exponential stable.
A semiglobal result was presented in Grip et al. [14] where
the unit quaternion was utilized as attitude representation.
The work of [12] and [14] included gyro bias estimation
and feedback from estimated linear acceleration in inertial
coordinates.

The results in Grip et al. [14] are valid with fixed observer
gains related to the estimation of translational motion. The
gains related to the attitude and gyro bias estimation can
be time-varying as long they are sufficiently large. When
GNSS quality changes should the observer gains be modified.
GNSS quality can e.g. be affected by changes in satellite con-
stellation or satellite shadow when approaching an offshore
installation. Such quality changes can occur during dynamic
positioning (DP) of ships and marine vessels. A DP vessel is
defined in Fossen [15, Ch. 12.2.10] as: “A free-floating vessel
which maintains its position (fixed location or predetermined
track) exclusively by means of thrusters”.

A. Contribution of Paper

This paper expands the work of Grip et al. [14] with
a modified problem formulation and sensor configuration;
customizing the observer for surface vessels in order to
obtain high performance and robust sensor fusion. The two
main contribution of this paper can be summarized as:

• In general, the GNSS height measurement has low
precision. For operations at the (known) sea surface
level, this measurement is replaced with a virtual mea-
surement of the integrated height, i.e. p0n

z

=

R
t

0

pn
z

dt,
to achieve increased performance related to estimation
of heave and vertical acceleration in the North, East,
Down reference frame.



• Expanding the work of [14], related to the estimation of
translation motion, by introducing time-varying gains.
In marine applications such as DP are time-varying
gains beneficial when GNSS quality changes. This can
e.g. prevent unnecessary measurement noise to prop-
agate from the estimates to the control system when
GNSS quality is reduced. Such gain strategy has the
potential to reduce fuel cost, emissions from engines
and wear of mechanical equipment such as thrusters.

B. Notation and Preliminaries
The transpose of a matrix M and vector v is denoted M

|

and v

|, respectively. The identity matrix is denoted, I
n⇥n

where n is the dimension. A block diagonal matrix is defined
as M := blkdiag{M

1

, ...,M
n

} for some square matrices
M

1

to M

n

. Moreover, the Euclidean and Frobenius norms
are denoted k · k.

The unit quaternion is defined as q := [s, r|]| where the
s 2 R denotes the real part whereas, r 2 R3 constitutes the
vector part and is given as r = [r

1

, r
2

, r
3

]

|. The conjugate
of q is denoted q

⇤ and is given as q = [s, �r

|
]

|. Moreover,
kqk = 1 from the unity constraint. The quaternion product
is denoted q = q

1

⌦q

2

, for two unit quaternions q

1

and q

2

,
respectively.

The rotation matrix is denoted R 2 SO(3) and can be
calculated according to R(q

n

b

) = I

3⇥3

+2sS(r) + 2S(r)

2,
as in e.g. [14], where S(·) denotes the skew-symmetric
matrix and is given such that v

1

⇥ v

2

= S(v

1

)v

2

for two
given vectors v

1

,v
2

2 R3.
This paper employs two reference frames. The North,

East, Down (NED) and the BODY frame, denoted n and
b, respectively. The BODY frame is fixed to the vessel. For
marine surface vessels, employing local navigation, NED
is assumed to be nonrotating and fixed to the average sea
surface level.

II. PROBLEM FORMULATION
We state the problem formulation for local navigation by

considering

˙pn

= vn (1)
˙vn

= fn

+ gn (2)

˙qn

b

= T
q

(q)!b

b/n

(3)
˙b
b

g

= 0. (4)

where p

n, v

n and f

n denote the position, velocity and
specific force in NED, respectively. Moreover, an additional
state of integrated vertical position, i.e. p0n

z

=

R
t

0

pn
z

dt or

ṗ0n
z

= pn
z

(5)

is introduced. qn

b

is the unit quaternion between BODY and
NED. !b

b/n

is the angular velocity of BODY with respect to
NED expressed in BODY. The three gyro biases are denoted,
b

b

g

. Finally, T (q

n

b

) is defined as:

T (qn

b

) :=

1

2

2

64

�r1 �r2 �r3
s �r3 r2
r3 s �r1
�r2 r1 s

3

75

,

(6)
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Fig. 1. Observer Structure. The attitude and observer translational motion
observer is denoted ⌃1 and ⌃2, respectively. ⌃1 provides an estimate of
the unit quaternion, q̂, together with an estimate on the gyro biases, b̂

b

.
The latter is estimated to improve the estimate of q̂. The signals q̂n

b

and �̂
are utilized by ⌃2 to estimate the specific force, f̂

n

, in NED as seen in
(9d)–(9e). Moreover, f̂

n

is fed back to ⌃1 and is utilized as a reference
vector in the attitude estimation.

for q

n

b

= [s, r|]|. The system (1)–(4) is based on the
formulation in [14] with the difference that NED is the
navigation frame and the gravity vector, gn, is known. This
is valid in DP since the operation is confined to a small
geographical area. Then, the gravity error components will
be significantly less than the GNSS standard deviation. The
total feedback interconnected observer is illustrated in Fig.
1 and described in Section III-A and III-B.

A. Sensor Configuration
The results in this paper are based upon the following

sensor configuration of IMU, GNSS, compass and virtual
measurements:

1) Horizontal position measurement from GNSS given in
NED: pn

gnss,xy = diag{pn
x

, pn
y

}
2) Virtual measurement: p0n

z

= 0, for all t � 0, moti-
vated by Godhavn [16]. The mean vertical position
of the vessel is assumed zero over time since the
wave-induced motion in heave oscillates about the sea
surface. Hence, from Godhavn [16], the following can
be stated: lim

T!1
1

T

R
T

0

pn
z

(t)dt = 0.
3) Angular velocity measurement in BODY from a three

axis rate gyro with biases: !

b

IMU = !

b

b/n

+ b

b

g

. The
biases, bb

g

, in (4) are constant.
4) Acceleration measurements providing specific force in

BODY: f b

IMU = f

b. Accelerometer biases are assumed
to be compensated at system start up or by online
estimation, utilizing e.g. Grip et al. [10, Sec. VI], if
the acceleration is persistently exciting.

5) Heading measurement from a compass:  
c

=  .

B. Assumptions
As in [14], the bounds of the specific force and the gyro

biases are denoted, M
f

and M
b

. Also here is the angular
velocity, !b

b/n

, and the time derivative of the specific force,
˙f b, assumed to be uniformly bounded. Moreover, there exist
a constant c

obs

> 0 such that for all t � 0, kcb ⇥ f

bk �
c
obs

, 8t � 0, yielding uniform observability.

III. NONLINEAR OBSERVER DESIGN
As seen in Fig. 1, the nonlinear observer for estimating

PVA is constructed in two steps. The first stage is to estimate



the attitude, represented by the unit quaternion q

n

b

. The three
gyro biases, bb

g

, are also estimated. The second stage is to
estimate the velocity and the position in NED by exploiting
the attitude estimate, ˆq, and the injection term of the attitude
observer, ˆ

�.
The overall stability of the interconnected observer with

fixed gains was proven to be uniformly semiglobal exponen-
tially stable (USGES) by Grip et al. [14]. We will change one
of the attitude vector measurements before augmenting the
translation motion state space and expanding the translational
motion observer to handle time-varying gains.

A. Attitude Observer with Compass Vector Measurement

The attitude observer ⌃
1

, similar to Grip et al. [14], is
given as

⌃
1

=

8
<

:

˙

q̂

n

b

= T (

ˆ

q

n

b

)(!

b

b/n,IMU � ˆ

b

b

g

+

ˆ

�) (7a)
˙

ˆ

b

b

g

= Proj(b̂
b

g

,�k
I

(t)�̂). (7b)

where the attitude estimate ˆ

q is represented as a unit quater-
nion and the gyro bias estimate is denoted ˆ

b

b

g

. However,
the Earth’s rotation is neglected. The injection term, with a
compass vector measurement, is given by

ˆ

� = k
1

(t)f b ⇥R(

ˆ

q)

|
ˆ

f

n

+ k
2

(t)cb ⇥R(

ˆ

q)

|
c

n (8)

where k
I

(t) > 0 in (7b) and the gains in (8) satisfies
k
1

(t) � k
P

and k
2

(t) � k
P

for some k
P

> 0. The vector
measurement based on  

c

, from the compass, is defined as
c

b

:= [cos( 
c

), � sin( 
c

), 0]| whereas the reference vector
is defined as c

n

:= [1, 0, 0]|. f b is measured specific force
from the accelerometer. The estimate of the specific force
in NED, ˆ

f

n, is fed back to the attitude observer from the
translational motion observer, ⌃

2

. See Fig. 1 and Section
III-B for details.

Finally, Proj(·, ·) denotes the parameter projection such
that the gyro bias estimate is confined to a compact set,
kˆb

b

g

k  M
b

, as with the previous results presented by Grip
et al. [10], [12] and [14].

B. Augmented Translation Motion Observer with Time-
varying Gains

The main result of this paper is obtained by extending the
work of [14] with:

1) The state space augmentation, p0n
z

=

R
t

0

pn
z

dt
2) Introduction of a time-varying observer gains by re-

placing the combined high-gain/regular gain, K =

K

✓

, with K(t) = #(t)K
✓

as given in (9a)–(9d).

K

✓

is defined as K

✓

:= ✓L�1

✓

K

0

, where L

✓

is given in
Appendix I. Design flexibility and performance enhancement
are obtained if #(t) is chosen properly.

The total augmented observer ⌃
2

is given as

⌃2 =

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

˙p̂0n
z

= p̂n
z

+ #(t)✓K
p

0
z

p

0
z

p̃0
z

(9a)

˙p̂n

=

ˆvn

+ #(t)✓2


0 K
pp

K
pp

0
z

01⇥2

� 
p̃0
z

˜p
xy

�
(9b)

˙v̂n

=

ˆf
n

+ gn

+ #(t)✓3


0 K
vp

K
vp

0
z

01⇥2

� 
p̃0
z

˜p
xy

�
(9c)

˙⇠ = �R(

ˆqn

b

)S(

ˆ�)f b

IMU

+#(t)✓4


0 K
⇠p

K
⇠p

0
z

01⇥2

� 
p̃0
z

˜p
xy

�
(9d)

ˆf
n

= R(

ˆqn

b

)f b

IMU + ⇠, (9e)

where p̃0
z

= p0n
z

� p̂0n
z

and ˜

p

xy

= [pn
x

� p̂n
x

, pn
y

� p̂n
y

]

| are
the innovation signals. ⇠ is an intermediate state providing
information of the translation motion to the specific force
estimate, ˆ

f

n

. The signals ˆ

q

n

b

and ˆ

� are provided by ⌃
1

.
The observer structure can be written as:

ˆ

x = (A� #(t)K
✓

C)

ˆ

x+B

ˆ

d

= (A� #(t)✓L�1

✓

K

0

C)

ˆ

x+B

ˆ

d (10)

with ˆ

x = [p0n
z

, (ˆpn

)

|, (ˆvn

)

|, (ˆf
n

)

|
]

| and ˆ

d =

R(

ˆ

q)(S(!

b

b/n

+

˜

b))f

b

IMU +

˙

f

b

). The unknown signals ˜

b and
˙

f

b are the estimation error of b

b

g

from ⌃
1

given as ˜

b =

b

b

g

� ˆ

b

b

g

and the derivative of the specific force, respectively.
In addition, the remaining matrices from (10) are given as:

A =

2

664

0 0 0 1 0
1⇥3

0
1⇥3

0
3⇥1

0
3⇥3

I

3⇥3

0
3⇥3

0
3⇥1

0
3⇥3

0
3⇥3

I

3⇥3

0
3⇥1

0
3⇥3

0
3⇥3

0
3⇥3

3

775

,

B =

2

664

0
1⇥3

0
3⇥3

0
3⇥3

I

3⇥3

3

775

,

C =

2

4
1 0 0 0

1⇥7

0 1 0 0
1⇥7

0 0 1 0
1⇥7

3

5

,

(11)

K

0

=

h
K

p

0
z

p

0
z

01⇥2 K

p

z

p

0
z

01⇥2 K

v

z

p

0
z

01⇥2 K

⇠

z

p

0
z

02⇥1 K
pp

02⇥1 K
vp

02⇥ K
⇠p

02⇥1

i|
,

The nominal stationary gain K

0

can be chosen freely in
order to make A � K

0

C Hurwitz. ✓ � 1 is a high-gain
tuning parameter used to guarantee stability and robustness
with respect to the uncertainties in ˆ

d. The time-varying scalar
#(t) � ⌧ > 0, can e.g. be chosen by taking into account the
horizontal GNSS accuracy reported by the GNSS receiver.

C. Stability Analysis
In order to state the main result of the total interconnected

observer, ⌃
1

� ⌃
2

, the respective estimation errors of the
translational motion are defined in the following manner;
p̃0
z

:= p0n
z

� p̂0n
z

, ˜

p := p

n � ˆ

p

n, ˜

v := v

n � ˆ

v

n and ˜

f :=

f

n � ˆ

f

n

. The attitude and gyro bias estimation error are
defined as ˜

q := q

n

b

⌦ ˆ

q

n⇤
b

and ˜

b := b

b

g

� ˆ

b

b

g

, respectively.
The constraint of the unit quaternion yield zero estimation

error when s̃ = 1 or equivalently k˜rk = 0. Hence, s̃ = 0

corresponds to the maximum attitude error of 180

� about
some axis. As in Grip et al. [14] we define a set D

q

(✏) :=
{˜q | |s̃| > ✏} which represents the attitude errors bounded
away from 180

� by a margin determined by ✏ 2 (0, 1

2

).
Furthermore, the combined estimation error of ⌃

1

is defined



as ˜

� := [

˜

r

|, ˜b|]| similar to [14], while the combined
estimation error of ⌃

2

is defined as ˜

x := [p̃0
z

˜

p, ˜v, ˜f ]|. Now,
the main result is stated as:

Theorem 1 (USGES of ⌃
1

–⌃
2

): Let D ⇢ R10 be an
arbitrary compact set containing the origin, and let ✏̄ 2 (0, 1

2

)

be an arbitrary constant. Furthermore, let k
P

be chosen to
ensure stability according to [10, Theorem 1] for ⌃

1

with
known f

n, with respect to some ✏ < ✏̄. Also let P = P

| > 0

be the solution of the algebraic Riccati equation

AP + PA

|
+Q�2⌧PC

|
CP = 0 (12)

where Q = Q

| > 0. Then, there exist a ✓⇤ � 1, a scalar
⌧ > 0 and a #(t) � ⌧ such that for ✓ � ✓⇤, some gain
K

0

= PC

| and constants K > 0 and � > 0 yield
p
k˜xk2 + k˜�k2  Ke

��t

p
k˜x(0)k2 + k˜�(0)k2,

for all initial condition such that (p̃0
z

(0) ⇥ ˜

p(0) ⇥ ˜

v(0) ⇥
˜

⇠(0)) 2 D, ˜

q(0) 2 D
q

(✏̄), and kˆb
b

g

(0)k  M
b

. Conse-
quently, the origin of ⌃

1

–⌃
2

is USGES.
Proof: The error dynamics of p̃0

z

, ˜p and ˜

v are given as

˙p̃0
z

= p̃
z

� #(t)✓K
p

0
z

p

0
z

p̃0
z

˙

p̃ =

˜

v � #(t)✓2

0
2⇥1

K

pp

K
p

z

p

0
z

0
1⇥2

� 
p̃0
z

˜

p

xy

�

˙

ṽ =

˜

f + g

n � #(t)✓3

0
2⇥1

K

vp

K
v

z

p

0
z

0
1⇥2

� 
p̃0
z

˜

p

xy

�

.

It can be shown that
˙

˜

f =

˜

d� #(t)✓4

0
2⇥1

K

⇠p

K
⇠

z

p

0
z

0
1⇥2

� 
p̃0
z

˜

p

xy

�

,

where ˜

d = (I

3⇥3

� ˜

R

|
)R(q

n

b

)

�
S(!

b

b/n

)f

b

+

˙

f

b

�
�

˜

R

|
R(q

n

b

)S(

˜

b)f

b with ˜

R = R(q

n

b

)R(

ˆ

q

n⇤
b

) = R(

˜

q). Then,
the total error dynamics becomes

˙

x̃ = (A� #(t)K
✓

C)

˜

x+B

˜

d. (13)

The transformed error dynamics (Appendix I) with ⌘ :=

[⌘
1

,⌘
2

,⌘
3

,⌘
4

]

| where ⌘
1

:= p̃0
z

, ⌘
2

:=

˜

p/✓, ⌘
3

:=

˜

v/✓2

and ⌘

4

:=

˜

f/✓3, similar to [14], can be expressed as

1

✓
˙

⌘ = (A�K

0

C)⌘ + ⇢(t, ˜�) (14)

where ⇢(t, ˜�) = [0,0|
3⇥1

,0|
3⇥1

, 1

✓

4
˜

d

|
]

|. See Appendix I for
details.

The Lyapunov function candidate (LFC) is defined as
U :=

1

✓

⌘

|
P

�1

⌘. Differentiation along the trajectories of
(14) gives

˙U =

1

✓
˙

⌘

|
P

�1

⌘ +

1

✓
⌘

|
P

�1

˙

⌘

= ⌘

|
(P

�1

A+A

|
P

�1

)⌘ � #(t)⌘|
P

�1

K

0

C⌘

� #(t)⌘|
C

|
K

|
0

P

�1

⌘ + 2⌘

|
P

�1

⇢(t, ˜�). (15)
By using that K

0

= PC

|, resolving the transposes and
exploiting that P = P

| gives
˙U = ⌘

|
P

�1

(AP + PA

|
)P

�1

⌘

� 2#(t)⌘|
C

|
C⌘ + 2⌘

|
P

�1

⇢(t, ˜�).
(16)

Furthermore, by inserting (12) into (16) gives
˙U = �⌘

|
P

�1

QP

�1

⌘ � 2(#(t)� ⌧)⌘|
C

|
C⌘

+ 2⌘

|
P

�1

⇢(t, ˜�).
(17)

Then, (17) can be simplified further since #(t) � ⌧ > 0

yielding,
˙U  �⌘

|
P

�1

QP

�1

⌘ + 2⌘

|
P

�1

⇢(t, ˜�). (18)

Moreover, since kI3⇥3 � ˜R
|k = ks̃S(

˜r)� S(

˜r2
)k  2k˜rk, a

bound of ⇢(t, ˜�) can be given as k⇢(t, ˜�)k  1

✓

4 �1k˜�k,
where ˜

� = [

˜

r

|, ˜b|]|, for some �
1

> 0 independent of ✓.
Hence, ˙U can take the following form

˙U  �min(Q)�min(P
�1

)

2k⌘k2 + 2kP�1k
✓4

�1k⌘kk˜�k. (19)

Since the reference vector f

n, in (7)–(8), is not known,
but estimated, we turn the attention back to the dynamics of
s̃. The attitude observer of (7)–(8), with the injection term
� based on known f

n and the error dynamics,

˙s̃ =
1

2

˜

r

|
R(q

n

b

)(

˜

b+ �) (20)

˙

r̃ = �1

2

(s̃I
3⇥3

� S(

˜

r))R(q

n

b

)(

˜

b+ �) (21)

˙

˜

b = �Proj(ˆb
b

g

,�k
I

�)

,

(22)

was proven to be USGES in Grip et al. [10]. First, Grip et al.
defines V (s̃) := 1 � s̃2 = k˜rk2 and ˙V = M � k

P

c2obs↵(s̃),
where ↵(s̃) = s̃2(1� s̃2). Moreover, from [10], a sufficiently
large k

P

and |s̃| = ✏ imply that ˙V = M � k
P

c2obs↵(✏). This
results in the trajectories not being able to escape the region
defined by |s̃| � ✏. Furthermore, ˙s̃ can be expressed as

˙s̃ =
1

2

˜

r

|
R(q

n

b

)(

˜

b+ �) + µ
1

, (23)

where µ
1

=

1

2

˜

r

|
R(q

n

b

)(

ˆ

���), by taking into account (20)
and that ˆ

�, instead of �, is utilized as the injection term.
Moreover, µ

1

has the property |µ
1

|  1

2

k
1

kf bk k˜rk k˜fk 
�
2

k˜rk k˜fk for a �
2

> 0 independent of ✓. We also write the
bound of µ

1

, |µ
1

|  ✓3�
2

k˜rk knk. By following the steps
of [14, Proof Theorem 1] we also have | ˙s̃|  1

2

(k˜bk+ kˆ�k).
Since k˜bk  M and ˆ

� only consist of bounded signals we
have | ˙s̃|  M

s

for a M
s

> 0 independent of ✓.
Motivated by Grip et al. [14, Lemma 2], the bound of ˜

x

can be given as k˜xk  �, obtained for all t � T , for some �,
as presented in Lemma 1, Appendix II. Furthermore, � can
be defined as � := k

P

c2obs(↵(✏+ ✏̃/2)�↵(✏))/(2�2) > 0 and
T = ✏̃/(2M

s

), where ✏̃ := ✏̄ � ✏, and let ✓ be sufficiently
large such that for all t � T , k˜xk  �. Then, as in [14,
Proof Theorem 1],

|s̃(T )| � |s̃(0)|�
Z

T

0

| ˙s̃(t)| dt  ✏̄�M
s

✏̃/(2M
s

) = ✏+ ✏̃/2,

and for all t � T , |µ
1

|  �
2

k˜rk k⌘k  �
2

�  k
P

c2
obs

(↵(✏+
✏̃/2)�↵(✏))/2. Now, it follows for t � T that the derivative
of V (s̃) yields

˙V M � k
P

c2
obs

↵(s̃) + 2|s̃µ
1

|
M � k

P

c2
obs

(↵(s̃)� ↵(✏+ ✏̃/2) + ↵(✏)).



Then, with the reference to the proof of [10, Theorem 1] it
follows for |s̃| = ✏ + ✏̃/2 that ˙V  M � k

P

c2
obs

↵(✏) < 0.
Hence, ˜

q cannot escape the set D
q

(✏ + ✏̃/2) ⇢ D
q

(✏) and
we can assume |s̃| � ✏ in the remainder of the analysis.

By taking in account (21)–(22) and that ˆ

� is the injection
term, the error dynamics of ˜

r and ˜

b are written

˙

r̃ = �1

2

(s̃I
3⇥3

� S(

˜

r))R(q

n

b

)(

˜

b+ �) + µ

2

(24)

˙

˜

b = �Proj(ˆb
b

g

,�k
I

�) + µ

3

. (25)

Hence, µ

2

and µ

3

take the form, µ

2

=

1

2

(s̃I
3⇥3

�
S(

˜

r))R(q

n

b

)(� � ˆ

�) and µ

3

= �Proj(ˆbb
g

,�k
I

�) �
Proj(ˆbb

g

,�k
I

ˆ

�). Then, kµ
2

k  �
3

k˜fk  ✓3�
3

k⌘k for
some �

3

> 0 independent of ✓. From the properties of the
parameter projection, it can be shown that kµ

3

k  �
4

k˜fk 
✓3�

4

k⌘k for some �
4

> 0 independent of ✓.
Furthermore, [10] also presents the LFC, W (t, ˜r, s̃, ˜b) =

V (s̃) + 2 l s̃ ˜r|R(q

n

b

)

˜

b +

l

2k

I

˜

b

|
˜

b > 0, 8 ˜

r, ˜b 6= 0. By
following the steps of [10, Proof, Theorem 1] result in

˙W  �
⇥
k˜rk k˜bk

⇤|


k
P

a� lM2 ?
� 1

2

(1 + 2 lM
!

) l ✏2

� 
k˜rk
k˜bk

�
(26)

where ? indicates symmetry, a > 0 and M
!

� k!b

b/n

k. l
is given in [10]. Moreover, from [10] for some sufficiently
large k

P

, can it be shown that ˙W  �k˜�k2 < 0 for some
 > 0. With the relations above we get that ˙W is less or
equal than �k˜�k2 plus the terms related to µ

1

, µ
2

and µ

3

,
yielding that

˙W  �k˜�k2 � 2s̃µ
1

+ 2lµ
1

˜

r

|
R(q

n

b

)

˜

b+ 2ls̃µ|
2

R(q

n

b

)

˜

b

+ 2ls̃˜r|R(q

n

b

)µ

3

+

l

k
I

˜

b

|
µ

3

.

Furthermore, by taking in account the bounds on µ
1

, µ
2

and
µ

3

, it follows that
˙W  �k˜�k2 + 2✓3�

2

k˜rk k⌘k+ 2l✓3�
2

k˜bk k⌘k

+2l✓3�
3

k˜bk k⌘k+ 2l✓3�
4

k˜rk k⌘k+ l

k
I

✓3�
4

k˜bk k⌘k

 �k˜�k2 + �
5

✓3k˜�kk⌘k

for an appropriate constant �
5

, independent of ✓.
Now, defining the LFC Y := U +

1

✓

7W on the form of
�
1

(k⌘k2 + k˜�k2)  Y  �
2

(k⌘k2 + k˜�k2) where �
1

,�
2

>
0. Then, the derivative of Y along the trajectories satisfies

˙Y � �min(Q)�min(P
�1

)

2k⌘k2 + 2 �
1

✓4
kP�1kk⌘kk˜�k

� 1

✓7
k˜�k2 + �

5

1

✓4
k˜�kk⌘k,

yielding

˙Y �
⇥
k⌘k k˜�k

⇤
"
�min(Q)�min(P

�1

)

2 ?

� 2kP�1k�1+�5

2✓

4


✓

7

# 
k⌘k
k˜�k

�

,

where ? indicates symmetry. Clearly the first-order principal
minor, �min(Q)�min(P

�1

)

2 > 0, is positive. The second-
order principal minor,

1

✓7
�min(Q)�min(P

�1
)

2� 1

✓8
(2kP�1k�1 + �5)

2

4

is positive for ✓ > (2kP�1k�1+�5)
2

4�min(Q)�min(P�1
)

2


. Inherently ˙Y 
��

3

(k⌘k2 + k˜�k2) for some �
3

> 0. By invoking the
comparison Lemma [17, Lemma 3.4] with the linear system
u̇ = ��

3

u, and the corresponding solution u(t) = u(0)e��3t

yields Y (t)  Y (0)e��3t for all t � 0. Consequently, the
equlibrium point [⌘

|, ˜�|
]

|
= 0 is USGES as defined in

Loria and Panteley [18, Def. 2.7].
Remark 1: The stability result of Theorem 1 is achieved

for a sufficiently large ✓ and k
P

, respectively. By studying
the proof one can calculate the explicit minimum values of ✓
and k

P

. However, ✓ and k
1

(t), k
2

(t) � k
P

will probably be
unnecessary large due to the conservative nature of the proof.
Therefore, the choice of gains should be based on careful
tuning such that unnecessary amplification of sensor noise is
prevented. Moreover, high gains in discretized systems can
result in numerical instability. Hence, the gains should be
chosen with care.

IV. CASE STUDY
This section presents a case study with time-varying

gains illustrating how such gain strategy can yield higher
performance and a more robust sensor fusion when GNSS
quality changes.

A. DP Vessel and INS Configuration
The GNSS aided INS was applied to a simulated supply

vessel in DP operation with two-set points. The vessel was
exposed to environmental disturbances. These were irrota-
tional current with fixed speed and first-order wave loads
utilizing the JONSWAP wave spectra, see Fossen [15, Ch. 8]
for details. The total 6 degrees of freedom vessel motion data
were obtain using the Marine System Simulator [19] at 100
Hz. From this IMU data was generated at the same frequency.
The GNSS’ position measurements were obtained at 5 Hz.
Zero mean Gaussian noise was added to all measurements
Finally, the three axis gyro biases were simulated using
b

b

g

= 10

�3 · [�55, 35, �40]

|
rad/s.

B. Implementation
There exist other alternatives to calculate ˆ

� than stated
in (8). First, in the implementation we utilized a saturated
estimate of ˆ

f

n

, denoted sat

M

f

(

ˆ

f

n

), in order to prevent
any peaking effects from initial transients to propagate from
⌃

2

to ⌃
1

. Then, the choice of measurement and reference
vectors, in the calculation of ˆ

�, was made with inspiration
from the Triad algorithm [20]. The first vector pair was
chosen to be the normalized versions of f b and sat

M

f

(

ˆ

f

n

),
respectively. The second vector pair was chosen to normal-
ized versions of S(f b

)c

b and S(sat

M

f

(

ˆ

f

n

))c

n, respectively.
The proof of Theorem 1 is still valid for a uniformly bounded
and Lipschitz continuous ˆ

� with respect to sat

M

f

(

ˆ

f

n

).
The innovation signal p̃0

z

should be high-pass filtered to
remove any slow varying terms related to the height. These
can e.g. come from tidal components. This also gives a low-
pass effect since integration and high-pass filtering yield,

h(s) =
1

s
· T

h

s

T
h

s+ 1

= T
h

· 1

T
h

s+ 1

.

(27)



Then, the high-pass filtered innovation can be extracted as:

p̃0
z,h

= � 1

T
h

x
f

+ p̃0
z

, (28)

where x
f

is the low-pass filtered innovation signal.
The numerical integration was carried out with RK4 and

the corrector-predictor scheme presented in [15, Ch.11.3.4].

C. Tuning and Gain Structure

The gains of ⌃
1

, on compact form g
a

=

[k
1

(t), k
2

(t), k
I

(t)]|, were chosen as:

ġ
a

= � 1

T
g
a

+

1

T
k
a

,

(
k
a

= [20, 20, 1]| if t  100

k
a

= [0.55, 1, 0.01]| else.

with T = 25 s to speed up convergence of the ˆ

q

n

b

and ˆ

b

b

g

.
This strategy was compared to simulation with fixed attitude
gains given as k

1

= 0.55, k
2

= 1 and k
I

= 0.01.
The nominal gain of ⌃

2

, K
0

, is obtained by solving (12)
with A, C, Q and the scalar ⌧ as design parameters. #(t) can
be chosen to any value larger than ⌧ > 0. #(t) was based on
the reported horizontal RMS error from the GNSS receiver.
However, in addition to be GNSS noise dependent is also a
higher initial #(t) reasonable to speed up the convergence of
⌃

2

. The following structure was chosen for #(t):

#(t) = #
0

+ #
1

+ #
2

(29)

where #
0

= 0.5 and #
1

= b · e�a·e
f with a = 2 and b = 1.5.

e
f

is obtained by filtering the horizontal RMS GNSS error,
e
rms,xy

, with a first-order low-pass filter with time constant,
T = 125 s. e

rms,xy

can be computed as:

erms,xy =

q
�2
x

+ �2
y

= �ure ·HDOP (30)

such as in [21, Eq. (2.27)] where �
x

and �
y

are the north and
east GNSS standard deviation, respectively whereas HDOP
is the horizontal dilution of precision. �

ure

is the standard
deviation of the user equivalent range measurements. The
signal #

2

is calculated as

˙#2 = � 1

T
#2 +

1

T
k,

(
k = 1 if t  100

k = 0 else
.

(31)

with T = 25 s and is used to prescribe a higher gain initially
in order to obtain faster convergence. After some time #

2

will vanish and #(t) will only depend on #
0

and #
1

. Such a
strategy introduces additional degrees of freedom in the sense
that the position, velocity and acceleration estimates will
be less sensitive to high GNSS measurement noise. Other
methods instead of (29)–(31) can also be used.

The parameters related to K

0

were chosen as ⌧ = 1/2
and Q = blkdiag{50, 0.5 · I

3⇥3

, 0.08 · I
3⇥3

, 0.0025 · I
3⇥3

},
yielding K

p

0
z

p

0
z

= 5.4295, K
pp

0
z

= 2.2396, K
vp

0
z

= 0.4454,
K

⇠p

0
z

= 0.0354 and K

pp

= 0.9513 · I
2⇥2

, K
vp

= 0.3275 ·
I

2⇥2

, K
⇠p

= 0.0354 · I
2⇥2

, respectively. ✓ was chosen to
✓ = 1. The time constant of the high-pass filter was chosen
as to be T

h

= 600 in order to compensate for the slowly
varying effect of ocean tides.
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Fig. 2. Horizontal position of the DP vessel. Blue: True position. Red:
Estimated position.
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Fig. 3. Horizontal GNSS RMS accuracy.

D. Results
This section presents the simulation results. Fig. 2 shows

the true horizontal position and estimates, respectively of the
vessel during DP operation with two set-points. Furthermore,
Fig. 3 shows how the reported horizontal GNSS RMS
accuracy is reduced between time t = 600 s and t = 700 s.
The resulting #(t) is shown in Fig. 4 where one can observe
the effects of the three gain components. For approximately
t < 150 s is the dominating terms of (29), #

0

and #
2

.
#
2

vanishes after t > 150 s. Furthermore, #
0

is the main
component of # in the time interval t = [600� 700] s since
#
1

is the exponential decaying when GNSS accuracy is low.

The quality of heave estimates are shown in Fig. 5. It is
seen that the heave estimates have a positive phase relative
to the actual heave signal. This is to due to the high-pass
filtering of the innovation signal p̃0

z

. Reduction of the phase
can be obtained with a different high-pass filter and by tuning
of the filter time constant, T

h

, as done in [16].
The estimation error of ˜

p with time-varying and fixed
gains are presented in Figs 6 and 7, respectively. The RMS
error of the position estimates, when GNSS quality was
low with variable gains, resulted in erms,p̃

x

= 0.6977 and
erms,p̃

y

= 0.5751, while the RMS errors were erms,p̃
x

=

0.8158 and erms,p̃
y

= 0.8894 with fixed gains.
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Fig. 4. The time-varying gain component, #(t), in ⌃2. Blue: Simulation
with time-varying #(t). Red: Simulation with fixed #(t).



300 320 340 360 380 400

−1

0

1

Tim e [ s ]

p
n z
[m

]

Fig. 5. Illustration of the heave estimate quality. Blue: Heave of vessel.
Red: Estimated heave.
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Fig. 6. Position estimate error, p̃ with time-varying gains. Blue: p̃
x

. Red:
p̃
y

. Green: p̃
z

.
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Fig. 7. Position estimate error, p̃ with fixed gains. Blue: p̃
x

. Red: p̃
y

.
Green: p̃

z

.

The time evolution of the attitude gains can be seen in
Fig. 8. Furthermore, in Figs. 9 and 10, the attitude estima-
tion error are presented with time-varying and fixed gains,
respectively. The convergence of the attitude estimates are
observed to be significantly faster with time-varying gains.
Such functionality is particular useful if a critical fault has
occurred and the observers are re-initialized. By comparing
Figs. 9 and 10 one can also observe less attitude error in
roll and pitch with the time-varying gains when the GNSS
quality was low. This is due to ⇠, in (9d)–(9e), was less
affected by the GNSS noise in the time-varying case since
#(t) was reduced. Inherently, since ˆ

f

n

, in (9e), is utilized as
reference vector in ⌃

1

, the attitude will be less affected by
GNSS noise. Finally, Fig. 11 show the decaying gyro bias
estimation error when time-varying gains are utilized.
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Fig. 8. Time-varying attitude gains. Blue: k1(t). Red: k2(t). Green: k
I

(t)
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Fig. 9. Attitude estimation error, given in Euler angles, with time-varying
gains. Blue: Roll. Red: Pitch. Green: Yaw
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Fig. 10. Attitude estimation error, given in Euler angles, with fixed gains.
Blue: Roll. Red: Pitch. Green: Yaw
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Fig. 11. Gyro bias estimation errors with time-varying gains. Blue: x-axis.
Red: y-axis. Green: z-axis

V. CONCLUSIONS

A uniformly semiglobal exponentially stable observer for
GNSS aided INS tailored for DP vessels was developed.
Time-varying gains were introduced to increase performance
and robustness. Moreover, through simulations it was shown
that time-varying gains in estimation of translational motion
and attitude are beneficial for fast convergence and suppres-
sion of sensor noise.

APPENDIX I
STATE TRANSFORMATION

The estimation error of ⌃
2

, ˜

x = [p̃0
z

, ˜p, ˜v, ˜f ]|, can be
transformed into the error variable ⌘ by defining: ⌘ := L

✓

˜

x

where L

✓

= blkdiag{1, 1

✓

I

3⇥3

, 1

✓

2 I3⇥3

, 1

✓

3 I3⇥3

}, ✓ is a
high-gain like parameter. The error dynamics from (13) yield

˙

x̃ = (A� #(t)K
✓

C)

˜

x+B

˜

d. (32)

with the A, B and C matrices together with ˜

d and #(t) � ⌧
from Section III-B–III-C. Let the total gain be calculated as

#(t)K
✓

= #(t)✓L�1

✓

K

0

. (33)

with K

0

from Theorem 1. Moreover, by defining ⌘ :=

[⌘
1

,⌘
2

,⌘
3

,⌘
4

]

| with ⌘
1

:= p̃0
z

, ⌘

2

:=

˜

p/✓, ⌘

3

:=

˜

v/✓2

and ⌘

4

:=

˜

f/✓3, is the transformed error dynamics written

˙

⌘ =

˙

L

✓

x+L

✓

˙

x = L

✓

˙

x. (34)



It can also be shown that
L

✓

(A�#(t)K
✓

C)L

�1

✓

= ✓(A� #(t)K
0

C) (35)
and

L

✓

B = [0,0|
3⇥1

,0|
3⇥1

, 1/✓3 · 1|
3⇥1

]

| (36)
from

˙

⌘ = L

✓

(A� #(t)K
✓

C)L

�1

✓

⌘ +L

✓

B

˜

d (37)
which again results in

1

✓
˙

⌘ = (A� #(t)K
0

C)⌘ + ⇢(t, ˜�) (38)

with ⇢(t, ˜�) = 1

✓

4 [0,0
|
3⇥1

,0|
3⇥1

, ˜d
|
]

|.

APPENDIX II
UNIFORM ATTRACTIVITY OF ⌃

2

Drawing upon the elements of [14, Lemma 2], is the origin
of ˜

x proven to be uniformly attractive and stable.
Lemma 1 (Uniform Attractivity and Stability): For any

� > 0 and T > 0 there exist a ✓⇤
1

� 1 such that for ✓ � ✓⇤
1

and all initial condition as specified in Theorem 1 results
in k˜xk  � for all t � T . Hence, ˜

x = 0 is an uniformly
attractive and stable equilibrium point.

Proof: The proof follows as in [14, Proof Lemma 2].
The parameter projection in (7b) ensures k˜bk  M and be-
cause k˜rk  1, we have that k˜�k 

p
M2

+ 1. Furthermore,
we define the level set ⌦

✓

:= {⌘ |U  �

2

✓

7�min(P
�1

)}, and
note that ⌘ 2 ⌦

✓

) k⌘k  �

✓

3 ) k˜xk  �. Outside of ⌦

✓

,

we have k⌘k � �

✓

3

q
�min(P

�1

)/�max(P
�1

) which implies
that ˙U can be stated as

˙U � 1

2

�min(Q)�min(P
�1

)

2k⌘k2

�
✓
�
p

�min(P�1
)

p
�min(Q)�min(P�1

)

2

2✓3
p

�max(P�1
)

� 2kP�1k�1
✓4

p
M2

+ 1

◆
k⌘k

=� 1

2

�min(Q)�min(P
�1

)

2k⌘k2

�
✓
�
p

�min(Q)�min(P
�1

)

3
2

2✓3
p

�max(P�1
)

� 2kP�1k�1
✓4

p
M2

+ 1

◆
k⌘k.

by utilizing (19). The first term is negative definite. The
second term can be made negative definite with a sufficiently
large ✓, yielding

˙U � 1

2

�min(Q)�min(P
�1

)

2k⌘k2

� ✓

2

�min(Q)�min(P
�1

)

2

�max(P
�1

)

U

outside ⌦

✓

. Defining a as:
a :=✓ �min(Q)�min(P

�1

)

2/(2�max(P
�1

))

and invoking the comparison Lemma [17, Lemma 3.4] with
u̇ = �au and the corresponding solution u(t)  u(0)e�a t

we get: U(t)  U(0)e�a t. By letting L > � be a bound on
k˜x(0)k for any initial condition as specified in Theorem 1,
then L is also a bound on k⌘(0)k. Then, outside ⌦

✓

we have

U(t)  �max(P
�1

)L2

✓
exp

✓
� ✓

2

�min(Q)�min(P
�1

)

2

�max(P�1
)

t

◆

.

Thus, ⌘ must enter ⌦
✓

before

t  T =

2�max(P
�1

)

�min(Q)�min(P�1
)

2✓


6 ln(✓) + ln

✓
L2�max(P

�1
)

�2�min(P�1
)

◆�

.

Hence, for a sufficiency large ✓ � 1, k˜xk  � for t � T .
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