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Abstract— In this paper we consider swimming underwater
snake robots that are fully immersed in water and moving in
a virtual horizontal plane. The main objective of the paper is
to develop a model that is well suited for control design and
stability analysis for swimming snake robots. The proposed
model is notably less complex than the existing models, while
significant parameters such as added mass effects, linear drag
forces, torques due to the added mass and linear drag forces,
are all taken into account in the modeling. An extensive analysis
of a previously proposed complex model of underwater snake
robots ([1]) is presented, and from this analysis a set of
essential properties that characterize the overall motion of
underwater snake robots is derived. The proposed control-
oriented modeling approach captures these essential properties,
resulting in a less complex model that is well suited for control
design, and at the same time has the same essential properties
as the complex model. A qualitative validation of this is given
by simulations that present a comparison of representative
parameters of the complex and the control-oriented models for
lateral undulation and eel-like motion.

I. INTRODUCTION

For centuries, engineers and scientists have gained in-
spiration from the natural world, while searching for ideal
solutions to technical problems. More recently, this process
has been termed as biomimetics. Every biological organism
living in an aquatic environment, swims by generating a
propulsive force through the interaction between the body
and the surrounding fluid that is created through a rhyth-
mic body movement. Generally, studies of hyper-redundant
mechanisms (HRMs), also known as snake robots, have
largely restricted themselves to land-based studies, for which
several models for snake robots have been proposed [2].
Empirical and analytic studies of snake locomotion were
reported by Gray [3], while, among the first attempts to
develop a snake prototype, the work of Hirose [4] is essential.
Recently, HRMs are presented that are suited for aquatic
propulsion as well [5], [6].

The underlying propulsive force generation mechanism
for underwater snake robots has been studied through ex-
ploration of the fluid dynamics surrounding the body. In
this field, several mathematical models of underwater snake
robots have been developed [7], [8], [5], [9], [6], [10], [11],
[12]. However, all these models are rather complex and
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thereby challenging to investigate analytically. In [13], a
simplified model of [12] is used to develop a feedback con-
troller that achieves the desired body oscillation, orientation,
and locomotion velocity. However, the added mass effects
and the torques due to the added mass and drag effects
are neglected [13]. In [1], the authors present a modeling
approach for underwater snake robots that results in a closed
form solution. This modeling approach takes into account
both the linear and the nonlinear drag forces (resistive fluid
forces), the added mass effect (reactive fluid forces), the fluid
moments and current effect.

It is well known that the hydrodynamic forces (fluid
forces) induced by the motion of a rigid body in an under-
water environment are very complex and highly nonlinear.
Therefore, the first contribution of this paper is conducting an
extensive analysis of the complex model of a fully immersed
underwater snake robot moving in a virtual horizontal plane
that was presented in [1]. Based on this analysis the hydro-
dynamic effects which are essential for the overall behavior
of the swimming snake robot are identified. These essential
properties form the basis of the second contribution of this
paper, which is a control-oriented model of underwater snake
robot locomotion aimed at control design and stability anal-
ysis purposes. In particular, we develop a control-oriented
model that is better suited for analysis and design, while
capturing these essential properties.

The development of the control-oriented model is inspired
by the modeling approach that was presented in [2], [14]
for a land-based snake robot. In these references the authors
developed a simplified modeling approach for a planar snake
robot describing the body shape dynamics in terms of the
translational motion of the links, something which is seen
to significantly simplify the equations of motion. Motivated
by this work, we will model the underwater snake robot
locomotion by the translational motion of each link, in order
to exploit that translational motion is generally less complex
to model than rotational one.

This paper is organized as follows. Section II gives a brief
description of the complex model of underwater snake robots
from [1]. This is followed in Section III by an analysis of
this model in order to identify the essential properties of
underwater snake robot. Section IV presents the development
of the control-oriented model of underwater snake robots. In
Section V simulation results are presented, comparing the
behavior of the complex and the control-oriented models, to
validate that the control-oriented model captures the essential
properties of swimming snake robot locomotion. Conclusions
and suggestions for future research are presented in Section
VI.



II. A COMPLEX MODEL OF THE ROBOT
This section gives a brief description of the complex model

of an underwater snake robot moving in a virtual horizontal
plane presented in [1]. For further details, please see [1].
A. Kinematics of the underwater snake robot

The underwater snake robot consists of N rigid links of
equal length l, interconnected by N − 1 joints. The mass
of each link is uniformly distributed so that the link CM
(center of mass) is located at its center point (at length l/2
from each side of the joint). All N links have the same
mass m and moment of inertia J. The total mass of the
snake robot is therefore Nm. The robot is assumed to move
in a virtual horizontal plane, fully immersed in water, and
has N+2 degrees of freedom (N link angles and the x-y
position of the robot). The position of the robot is denoted
by p = (px, py)∈R2. The link angle of each link i∈ 1, . . . ,N
of the snake robot is denoted by θi ∈R, while the joint angle
of joint i ∈ 1, . . . ,N−1 is given by φi = θi+1−θi.
B. Equations of motion of the complex model

In this study we choose to consider a fluid dynamic model
where only the added mass effect (reactive fluid forces),
linear drag forces (resistive fluid forces) and the fluid torques
due to the added mass and drag forces are considered. This
leads to simpler equation of motion compared to the full
hydrodynamic modeling approach described in [1].

Under anisotropic drag forces, a link has two drag fluid
coefficients, ct and cn, describing the resistive fluid force
in the tangential (along link x axis) and the normal (along
link y axis) direction of the link, respectively. The added
mass fluid coefficient in the the normal direction of the link
is denoted by µn. It worth mentioning that the added mass
effects are modeled under the assumption that the added mass
fluid parameter in the x direction is equal to zero (µt = 0),
because the added mass of a slender body in longitudinal
direction can be neglected compared to the body mass [1].
As shown in [1], the fluid forces on the link i, denoted by
fi ∈ R2, can be written in terms of the link velocity, ẋi and
ẏi, and the link acceleration, ẍi and ÿi, as

fi =−

[
Fa

x (θi) Fa
xy(θi)

Fa
xy(θi) Fa

y (θi)

][
ẍi

ÿi

]
−

[
Fd

x (θi) Fd
xy(θi)

Fd
xy(θi) Fd

y (θi)

][
ẋi

ẏi

]
,

(1)
where Fa

x (θi) = µn sin2(θi) (2a)
Fa

xy(θi) =−µn sinθi cosθi (2b)

Fa
y (θi) = µn cos2(θi) (2c)

Fd
x (θi) = ct cos2(θi)+ cn sin2(θi) (2d)

Fd
xy(θi) = (ct − cn)sinθi cosθi (2e)

Fd
y (θi) = ct sin2(θi)+ cn cos2(θi) (2f)

It is shown in [1] that the equation of the motion of the
underwater snake robot in terms of link angles, θ ∈ RN ,
the position of the CM of the underwater snake robot,
p = (px, py) ∈ R2, and the joint torques, u ∈ RN−1, can be
written as

θ̈ = g(θ , θ̇ , ṗx, ṗy,u) (3a)

Nmp̈x =
N

∑
i=1

fx,i (3b)

Nmp̈y =
N

∑
i=1

fy,i (3c)

where g(θ , θ̇ , ṗx, ṗy,u) ∈ R is a function of the state vector
and the joint torques. The model of the underwater snake
locomotion given by (3) is complex from a stability analysis
perspective. This complexity is the main motivation behind
the control-oriented model developed in Section IV.

III. ANALYSIS OF THE COMPLEX MODEL
In this section, the complex model given by (3) will

be analyzed in order to identify a set of properties that
characterize the motion of an underwater snake robot. These
properties will be used as a basis for the development of a
control-oriented model of an underwater snake robot moving
in a virtual horizontal plane in Section IV.
A. Analysis of propulsive forces

We begin by deriving an expression for the total force
propelling the CM of the underwater snake forward. We
choose the inertial coordinate system such that the forward
direction of the motion of the underwater snake robot is along
the global positive x axis, which means that the propulsive
force is simply the sum of all external forces on the robot in
the global x direction. Hence, the total force propelling the
CM of the robot forward is given (3b) as

Nmp̈x =
N

∑
i=1

fx,i =−
N

∑
i=1

Fa
x (θi)ẍi−

N

∑
i=1

Fa
xy(θi)ÿi

−
N

∑
i=1

Fd
x (θi)ẋi−

N

∑
i=1

Fd
xy(θi)ẏi.

(4)

From Eq. (4), we can see that the total propulsive force
consists of four components: a) first one involving the
linear acceleration of the link in the forward direction of
motion, Fa

x (θi)ẍi, b) the second one involving the linear
acceleration normal to the direction of motion, Fa

xy(θi)ÿi, c)
the third one involving the linear velocity of the link in the
forward direction of the motion, Fd

x (θi)ẋi, and d) the last
one involving the linear velocity of the link normal to the
direction of motion, Fd

xy(θi)ẏi. It is easily seen that, due to
the minus signs in (4), all the components (2a)-(2f) provide a
positive contribution to the propulsive force only if they are
negative. Considering that the fluid coefficients due to the
drag and the added mass effects are positive, ct , cn and µn,
are always positive, the expressions Fa

x (θi) (2a) and Fd
x (θi)

(2d) are also positive. Initially, we consider the case that
when the robot is moving in the forward direction with
ṗx > 0 and p̈x > 0, which means that ẋi > 0 and ẍi > 0,
and therefore the products Fa

x (θi)ẍi and Fd
x (θi)ẋi are always

positive. Hence, we can conclude that in this case these
products are not contributing to the forward propulsion of
the robot. In addition, it is easily seen that when the robot
is moving forward with ṗx > 0 and p̈x < 0, which means
that ẋi > 0 and ẍi < 0, the product Fa

x (θi)ẍi is contributing to
the forward propulsion of the robot. Note that the magnitude
of the propulsive force increases by decreasing the linear
acceleration of the link in the forward direction, ẍi.

Now, what remains is to analyse the effects of the products
Fa

xy(θi)ÿi and Fd
xy(θi)ẏi. A plot of Fa

xy(θi) for different values
of µn is shown in Fig. 1a, while a plot of Fd

xy(θi) for different
values of cn and ct = 1 is shown in Fig. 1b. In each plot, the
angle between the link and the forward direction, θi, is varied
from −90o to 90o. We see that when cn = ct , i.e. the drag



coefficients are equal, there is no effect on the propulsive
force of the underwater snake robot due to the drag effect,
since this gives Fd

xy(θi) = 0. It is easily seen (Fig. 1b) that
when the cn > ct the component Fd

xy(θi) is negative as long
as θi is positive, and vice versa. This means that the product
Fd

xy(θi)ẏi is negative as long as sgn(θi) = sgn(ẏi). In addition,
from Fig. 1a it is seen that for any positive value of µn
the component Fa

xy(θi) is negative as long as θi is positive,
and vice versa. It should be noted that the only case that
Fa

xy(θi) = 0 is the case where the parameter µn = 0, i.e. the
case where the added mass effects are neglectable. Hence, we
can conclude that for any positive values of parameters µn
the product Fa

xy(θi)ÿi is negative as long as sgn(θi) = sgn(ÿi).
Additionally, we see that for a given ÿi and ẏi, a link

produces its highest propulsive force when it forms an
angle of ±45o with the forward direction of motion. It
should be noted that the magnitude of the propulsive force
becomes greater by increasing cn with respect to ct , or by
increasing the magnitude of the sideways link velocity, ẏi, by
increasing the parameter µn, or by increasing the magnitude
of the sideways link acceleration, ÿi and by increasing the
parameter µn, or by decreasing the linear acceleration of the
link in the forward direction, ẍi.

−100 −80 −60 −40 −20 0 20 40 60 80 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Link angle , θ i [deg]

F
a x
y
(θ

i)

µn = 0

µn = 1

µn = 2

µn = 3

µn = 4

(a) Added mass component

−100 −80 −60 −40 −20 0 20 40 60 80 100
−4

−3

−2

−1

0

1

2

3

4

Link angle , θ i [deg]

F
d x
y
(θ

i)

c t = 1

c n = 1

c n = 3

c n = 5

c n = 7

c n = 9

(b) Drag effect component

Fig. 1: The mapping from the sideways link motion to the
forward propulsion for different fluid coefficients

Remark 1: In Fig. 1 we present the mapping from the
sideways link motion to the forward propulsion for some
fluid coefficients values without missing the generality of
the analysis [2].

Now, we can summarize the properties of an underwater
snake robot locomotion based on the previous analysis.

Property 1: For an underwater snake robot described
by (3) with cn > ct , µn > 0, ẋi > 0 and ẍi > 0 forward
propulsion is produced by link velocity and link acceleration
components that are normal to the forward direction.

Property 2: For an underwater snake robot described by
(3) with cn > ct , µn > 0, ẋi > 0 and ẍi > 0, the propulsive
force generated by the transversal motion of link i is positive
as long as sgn(θi) = sgn(ẏi) and sgn(θi) = sgn(ÿi).

Property 3: For an underwater snake robot described by
(3) with cn > ct , µn > 0, ẋi > 0 and ẍi > 0, the magnitude of
the propulsive force produced by link i increases when |θi|
increases as long as |θi|< 45o.

Property 4: For an underwater snake robot described
by (3) with cn > ct , µn > 0, ẋi > 0 and ẍi < 0 forward
propulsion is produced by link velocity and link acceleration
components that are normal to the forward direction and
also by the linear acceleration of the links in the forward
direction.

It is worth mentioning that these results are general,
because no assumptions have been made concerning the
actual motion pattern of the underwater snake robot.

B. Analysis of turning locomotion

In the previous subsection, we determined how propul-
sion is generally achieved with an underwater snake robot,
while in this subsection we will investigate how turning
motion is achieved through simulations. In particular, we
will investigate the turning motion for the two most common
locomotion patterns for swimming snakes: In the first case
the underwater snake robot moves by lateral undulation and
in the second case the robot moves by eel-like undulation.
Both gait patterns, lateral undulation and eel-like undulation,
consist of horizontal waves that are propagated backward
along the underwater snake body from head to tail, with
the difference that in the latter the amplitude of the wave
increases from the head to tail. The lateral undulation is
realized by controlling each joint of the robot according to

φ
∗
i = α sin(ωt +(i−1)β )+φ0, i = 1, . . . ,n−1 , (5)

where the parameter α corresponds to the amplitude of the
serpentine wave that propagates along the body of the snake
robot, ω is the angular frequency of the sinusoidal joint
motion, β determines the phase shift between the sequential
joints, and φ0 is the joint offset that is used to control the
direction of the motion.

The eel-like motion is achieved by propagating lateral
axial undulations with increasing amplitude from nose to tail.
A simple equation is considered for the eel-like motion by
controlling each joint of the snake robot according to the
reference signal (see. e.g. [1])

φ
∗
i = α

(
n− i
n+1

)
sin(ωt +(i−1)β )+φ0, i = 1, . . . ,n−1 , (6)

where the parameter α(n− i)/(n+1) corresponds to the
increasing amplitude, from nose to tail. In both cases, the
parameter φ0 is a joint angle offset value that controls the
overall direction of the locomotion. The effect of changing
this parameter is illustrated in Fig. 2 for lateral undulation
and eel-like motion. This presents the results of a simulation
of an underwater snake robot described by (3) with N = 10
links of length l = 0.14 m.

The trace of the head is shown in Fig. 2a-2b, while the
average joint angle, defined as φ̄ =∑

N−1
i=1 φi/(N−1), is shown

in Fig. 2c-2d. The underwater snake robot is controlled
according to lateral undulation, (5), and eel-like motion, (6),
with α = 30o, ω = 120o/s and β = 40o. In addition, the offset
angle is set to φ0 = 5o in the time interval t ∈ [20,30] and
φ0 = −10o in the time interval t ∈ [50,60], while the offset
angle is set to φ0 = 0o outside these two time intervals.

From Fig. 2, we can see that the robot swims forward
without turning as long as the average joint angle, φ̄ , is
oscillates around zero, while the direction of the motion
changes when the average joint angle is non-zero. It is seen
(Fig. 2) that in the case of eel-like motion the average joint
angle oscillates with larger amplitude compared to lateral
undulation around the expected direction. The positive (resp.
negative) average joint angle produces a counterclockwise
(resp. clockwise) rotation of the underwater snake robot.



In addition, we can see that the speed of the directional
change is correlated with the amplitude of the average joint
angle. Moreover, Fig. 2a-2b show that the rate of directional
change is larger when the robot moves with larger forward
velocity (for ω = 120o/s). This indicates that the speed of the
directional change, for some fixed joint angle offset, becomes
greater by increasing the forward velocity of the underwater
snake robot. Through the simulation study based on the
complex model we observe a set of qualitative properties
and similar formulations as the ones that observed for the
ground snake robot locomotion presented in [2], [14]. We
will now summarize the observations of this simulation study
of the turning locomotion of an underwater snake robot.
Proposition 1: During both lateral undulation and eel-like
motion for an underwater snake robot described by (3) with
cn > ct and µn > 0, the overall direction of the locomotion
remains constant as long as the average joint angle is zero.
However, this will change in the counterclockwise (resp.
clockwise) direction when the average joint angle is positive
(resp. negative). The speed of directional change of the
locomotion becomes greater by increasing the amplitude of
the average joint angle and/or by increasing the forward
velocity (assuming that the average joint angle is non-zero).
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(b) Trace of the head for ω = 120o/s
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Fig. 2: Turning Locomotion Analysis

C. Analysis of link motion
From the analysis in Section III.A it is clear that un-

derwater snake locomotion consists of periodic body shape
changes that generate external forces that propel the robot
forward. According to the Property 1, the forward motion is
inducted by the motion of the links normal to the forward
direction. The above result led us to wonder if the body shape
changes can be characterized in terms of the translational
displacements of the links instead of the rotational joints
motion. This would be similar to the approach presented for
the ground snake robot in [2], [14]. Generally, the model
given by (3), which describes the rotational link motion of
an underwater snake robot, is quite complex.

In order to support this idea, we consider an underwater
snake robot described by (3) forced to move with lateral
undulation, (5), and eel-like motion, (6), along the global
x axis with φ0 = 0o. Fig. 3 show the relative displacement
between the CM of two arbitrarily chosen links (link 3 and

link 4) in the global x and y directions. These plots indicate
that, during both lateral undulation and eel-like motion, the
relative displacements between the CM of two adjacent links
along the forward direction of motion are approximately
constant, while the relative displacements normal to the
direction of motion oscillate around zero. Hence, based
on these simulation results we can compose the following
proposition.

Proposition 2: During both lateral undulation and eel-like
motion, the change in body shape consists mainly of relative
displacement of the CM of the links normal to the direction
of motion. In addition, the relative displacement of the CM
of the links along the forward direction can be approximated
as constant.

Remark 2: The analysis of the underwater snake robot
locomotion gives Property 1-4 and Proposition 1-2, which
are similar to the ones presented in [2], [14] for a ground
snake robot. However, in this paper, the properties are
developed under the assumption that the snake robot moves
according to lateral undulation and eel-like motion, and also
the hydrodynamic effects are analyzed.
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Fig. 3: Relative displacement of the CM of link 3 and 4
IV. A CONTROL–ORIENTED MODEL OF AN

UNDERWATER SNAKE ROBOT
Using the results from the previous section, we now

develop a control-oriented model of an underwater snake
robot moving in a virtual horizontal plane. The model is
derived for control design and stability analysis purposes.

A. Overview of the modeling approach

The idea behind the control-oriented model of underwater
snake robot locomotion is based on the simplified modeling
approach presented in [2], [14] for a ground snake robot. In
particular the idea is to describe the body shape changes of an
underwater snake robot as linear displacements of the links
with respect to each other instead of rotational displacements.
Proposition 2 indicates that these linear displacements should
be normal to the forward direction of the motion, while
Property 1 points out that these transversal displacements of
the links are that which propel the underwater snake robot
forward. This suggest that we can model the revolute joints of
an underwater snake robot as prismatic (translational) joints.

In the following subsections, the kinematics and dynamics
of the underwater snake robot will be modeled in terms of
the mathematical symbols described in Table I and illustrated
in Fig. 4a-4b. The following vectors and matrices are used
in order to derive the model.



TABLE I: Definition of mathematical terms
Symbol Description
N The number of links
l The length of a link
m Mass of each link
φi Normal direction distance between links i and i+1
υφ ,i Relative velocity between links i and i+1
θ Orientation of the underwater snake robot
υθ Angular velocity of the underwater snake robot
(ti,ni) Coordinates of the CM of link i in the t−n frame
(pt , pn) Coordinates of the CM of the robot in the t−n frame
(px, py) Coordinates of the CM of the robot in the global frame
(υt ,υn) Forward and normal direction velocity of the robot
ui Actuator force at joint i
( fx,i, fy,i) Fluid force on link i in the global frame
( ft,i, fn,i) Fluid force on link i in the t−n frame
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(a) The control-oriented model
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(b) Kinematics and dynamics of the robot

Fig. 4: Underwater snake robot

A =


1 1

. . .
. . .

1 1

 , D =


1 −1

. . .
. . .

1 −1

 ,

e =
[

1 . . . 1
]T ∈ RN , ē =

[
1 . . . 1

]T ∈ RN−1,

D̄ = DT (DDT )−1 ∈ RN×N−1,

where A,D ∈ R(N−1)×N .

B. Kinematics of the underwater snake robot
The underwater snake robot is assumed to move in a

horizontal plane, fully immersed in water, and has N+2
degrees of freedom. The motion of the robot is defined with
respect to the fixed global frame, x− y, and the t−n frame
that is always aligned with the robot (Fig. 4a) The origin of
both frames are fixed and coincide. The direction of the t
axis is denoted as the tangential or forward direction of the
robot, and the direction of the n axis as the normal direction.
As shown in Fig. 4, the global frame position of the CM of
the underwater snake robot is denoted by (px, py)∈R2, while
(pt , pn)∈R2 is the t−n frame position. θ ∈R stands for the
global frame orientation and is expressed with respect to the
global x axis with counterclockwise positive direction. The
angle between the global x axis and the t axis is also θ since
the t−n frame is always aligned with the snake robot. The
relationship between the t−n frame position and the global
frame position is given by

pt = px cosθ + py sinθ , pn =−px sinθ + py cosθ (7)
The relationship between the global frame velocity of the
robot and the t−n frame velocities is given by

ṗx = υt cosθ −υn sinθ , ṗy = υt sinθ +υn cosθ , (8)
and the inverse relationship is given by

υt = ṗx cosθ + ṗy sinθ , υn =−ṗx sinθ + ṗy cosθ . (9)
Differentiating (7) with respect to time and inserting (9) gives

ṗt = υt + pnθ̇ , ṗn = υn− pt θ̇ . (10)
We denote the t−n frame position of the CM of the link i
by (ti,ni)∈R2. The N−1 prismatic joints of the underwater
snake robot control the normal direction distance between the
links. As sees in the Fig. 4b, the normal direction distance

between the link i and link i+1 is given by
φi = ni+1−ni (11)

and represents the coordinate of joint i. In the control-
oriented, we refer to φi as a joint coordinate instead of a
joint angle. The holonomic constraints is expressed in matrix
form for all links as

Dt+ lē = 0, Dn+φ = 0, (12)

where t = [t1, . . . , tN ] ∈ RN , n = [n1, . . . ,nN ] ∈ RN , and φ =
[φ1, . . . ,φN−1] ∈ RN−1. The t− n frame position of the CM
of the underwater snake robot can be written in terms of the
link positions as

pt = eT t/N, pn = eT n/N, (13)

The link positions can be expressed as
t = pt e− lD̄ē, n = pne− D̄φ . (14)

By differentiating (14) with respect to time and inserting
(10), the individual link velocities are given as

ṫ = (υt + pnθ̇)e, ṅ = (υn− pt θ̇)e− D̄φ̇ . (15)
The kinematics of an underwater snake robot, described in
this subsection, is similar to that of a snake robot moving
on land. In this section we provide a brief presentation of
the kinematics for completeness. An extensive presentation
of the snake robot kinematics can be found in [2], [14].
Additionally, it is necessary to derive the equations of linear
accelerations of the links in order to express the fluid forces
below. Hence, the linear accelerations of the links are found
by differentiating the velocity of the individual links (15)
with respect to time, which gives

ẗ = (υ̇t + ṗnθ̇ + pnθ̈)e, n̈ = (υ̇n− ṗt θ̇ − pt θ̈)e− D̄φ̈ . (16)
C. Fluid dynamic model

In this subsection, we employ a fluid model that takes
into account the added mass effects and linear drag forces,
similar to the hydrodynamic model described in Section II.
The hydrodynamic forces, which act on the CM of each link,
must be defined so that Property 1-3 from Section III be also
applicable for the control-oriented model of the robot.

By assembling the forces in (1) on all links in vector form,
we can rewrite the global frame fluid forces on the links as

f =

[
fx

fy

]
=

[
fAx

fAy

]
+

[
fDx

fDy

]
, (17)

where fAx and fAy represent the effects from added mass
forces and are expressed as[

fAx

fAy

]
=−

 µn (Sθ )
2 −µnSθ Cθ

−µnSθ Cθ µn (Cθ )
2

[ Ẍ
Ÿ

]
, (18)

where Sθ = diag(sinθ) and Cθ = diag(cosθ) The vectors
fDx , fDy present the effects from the linear drag forces (19).[

fDx

fDy

]
=−

 ct (Cθ )
2 + cn (Sθ )

2 (ct − cn)Sθ Cθ

(ct − cn)Sθ Cθ ct (Sθ )
2 + cn (Cθ )

2

[ Ẋ
Ẏ

]
(19)

Assumption 1: When θi is small, the following approxi-
mations hold sin2

θi ≈ 0, cos2 θi ≈ 1 and sinθi cosθi ≈ θi (see
e.g. [14]).

Remark 3: Assumption 1 is valid for (| θi |< 20o) as it is
shown in [2], [14]. We will therefore approximate the added
mass and drag forces based on this assumption.

The velocities ẋi and ẏi correspond to the velocity of link
i in the tangential and normal directions of the underwater



snake robot, respectively, the forces fx,i and fy,i correspond to
the fluid forces on link i in the tangential and normal direc-
tions, respectively. By denoting the fluid force components
on link i in the t−n frame of the control-oriented model by
ft,i and fn,i, respectively and letting the t−n frame velocity
and acceleration components of link i be given by (ṫi, ṅi)
and (ẗi, n̈i), we then have that

ẋi = ṫi, ẏi = ṅi, ẍi = ẗi, ÿi = n̈i, fx,i = ft,i, fy,i = fn,i. (20)
Using Ass. 1 and θi ≈ (φi−1 +φi)/2l (see e.g. [2], [14]), the
fluid forces in the tangential, ft ∈ RN , and normal, fn ∈ RN ,
directions can be written as[

ft

fn

]
=

[
fAt

fAn

]
+

[
fDt

fDn

]
, (21)

where[
fAt

fAn

]
=−

 0N×N − µn

2l
diag(AT φ)

− µn

2l
diag(AT φ) µnIN

[ ẗ
n̈

]
θ̇=0,θ̈=0

(22)and [
fDt

fDn

]
=

[
−ct IN cpdiag(AT φ)

cpdiag(AT φ) −cnIN

][
ṫ
ṅ

]
θ̇=0

. (23)

The parameter cp = (cn− ct)/2l is a propulsion coefficient
which maps the normal direction link velocities and the
joint coordinates into propulsive fluid forces in the forward
(tangential) direction of the underwater snake robot.

Remark 4: We can seen from (22) and (23) that the
propulsive force on link i that propel the robot forward are
produced by the normal direction link velocity, ṅi, and by the
normal direction link acceleration, n̈i, which is in agreement
with Property 1. Furthermore, we see from (22) and (23)
that the magnitude of the propulsive forces produced by
link i is increased by increasing | φi−1 + φi |, which from
θi ≈ (φi−1+φi)/2l, corresponds to increasing | θi |. This is in
agreement with Property 3. Finally, we can see from (22) and
(23) that the forward direction force components produced
by ṅi and n̈i is positive when sgn(φi−1 + φi) = sgn(ṅi) and
sgn(φi−1+φi)= sgn(n̈i), which is in agreement with Property
2. Hence, we conclude that the simplified/control-oriented
fluid model directly captures the Property 1-3 from Section
III.A, which means that we can argue that the simplified fluid
model in (22), (23) is qualitatively similar to the complex
fluid model in (17).

Remark 5: In this control-oriented modeling approach we
choose to disregard the link velocity components due to the
angular velocity θ̇ of the underwater snake robot and the
link acceleration components θ̈ , due to the angular velocity.
These are reasonable assumptions since the dynamics of the
angular motion of the underwater snake robot will generally
be much slower than the body shape dynamics. Furthermore,
these assumptions simplify the fluid model significantly.

Inserting (15) into (22) and (16) into (23) with θ̇ = 0 and
θ̈ = 0 the final expressions for the added mass effects and
linear drag forces can be written as[

fAt

fAn

]
=−

 0N×N − µn

2l
diag(AT φ)e

− µn

2l
diag(AT φ)e µnINe

[ υ̇t

υ̇n

]

−

 0N×N − µn

2l
diag(AT φ)

− µn

2l
diag(AT φ) µnIN

[ 0N

−D̄φ̈

] (24)

and [
fDt

fDn

]
=

[
−ct υt e+ cpdiag(AT φ)(υne− D̄φ̇)

−cnυne+ cnD̄φ̇ + cpυt diag(AT φ)e

]
. (25)

D. Dynamics of the underwater snake robot
This subsection presents the equations of motion for the

underwater snake robot. The forces and torques acting on
link i are visualized in Fig. 4b and the force balance for link
i in global frame coordinates is given by

mẗi = ft,i +ht,i−ht,i−1, mn̈i = fn,i−ui +ui−1 (26)
where ft,i and fn,i are the fluid forces, ht,i and ht,i−1 are
the joint constraint forces on link i from link i+1 and link
i−1, respectively, and ui and ui−1, produce relative motion
between the links in the normal direction. The force balance
equations for all links may be expressed in matrix form as

mẗ = ft +DT ht , (27)
mn̈ = fn−DT u, (28)

where ht = [ht,1, . . . ,ht,N−1]
T ∈ RN−1 and u =

[u1, . . . ,uN−1]
T ∈ RN−1. Premultiplying (28) by D/m

gives
Dn̈ =

1
m

Dfn−
1
m

DDT u. (29)

By differentiating (12) twice with respect to time, it is
seen that Dn̈ =−φ̈ . We can therefore write the body shape
dynamics of the underwater snake robot as

φ̈ =− 1
m

Dfn +
1
m

DDT u. (30)

Inserting (21) into (30) and using the easily verifiable rela-
tions De = 0, DD̄ = IN−1, Ddiag(AT φ)e =−ADT φ , we get

φ̈ =− cn

m+µn
φ̇ +

1
m+µn

(
µn

2l
ADT

υ̇t +cpADT
υt)φ +

1
m+µn

DDT u. (31)

The tangential and normal direction accelerations of the
CM of the underwater snake robot, denoted by υ̇t and υ̇n,
respectively, are given as the sum of all tangential and normal
direction forces on the links divided by its mass. This gives[

υ̇t

υ̇n

]
=

1
Nm

[
eT 0N×N

0N×N eT

][
ft

fn

]
, (32)

where we can see that the joint constraint forces, ht , and
the actuator forces, u, are cancelled out when the link
accelerations are summed. Now, inserting (21) into (32)
and using easily verifiable relations, eT diag(AT φ)e = 2ēT φ ,
eT D̄ = 0, and eT diag(AT φ)D̄ = φ T AD̄, we get

υ̇t = k3
(
k12cp(ēT

φ)2− k2ct N
)

υt + k3
(
k22cpēT

φ − k1cnNēT
φ
)

υn

− k3(k2
k1

2
φ

T AD̄φ̈ + k2cpφ
T AD̄φ̇)

(33)

υ̇n = k3
(
Nm2cpēT

φ − k1ct NēT
φ
)

υt + k3
(
k12cp(ēT

φ)2−N2mcn
)

υn

− ēT
φk3(k1cpφ

T AD̄φ̇ +
k1

2

2
φ

T AD̄φ̈)

(34)where k1 = µn/l, k2 =Nm+Nµn and k3 =
1

Nmk2− (k1ēT φ)2 .

We also need to model the dynamics of the snake robot
orientation. As mentioned in previous sections, the idea
behind the control-oriented modeling approach of the under-
water snake robot locomotion is to disregard the rotational
motion of the links and instead only consider the translational
displacements of the links. The orientation of the robot with
prismatic joints is defined as θ , which is also the angle of
all the links.

Proposition 1 states that the direction of the forward
motion changes when the average of the joint angles is



oscillates around a non-zero value and that the speed of
direction changes is increased by increasing the average of
the joint angles and/or by increasing the forward velocity.
This observation should also hold for the control-oriented
model. The direction of the forward motion in the control-
oriented model is given by the orientation θ , the forward
velocity is given by υt , and the average of the joint angles
corresponds to the average of the joint coordinates ēT φ/(N−
1). Hence, using Prop. 1, the overall torque that induces the
rotational motion of a snake robot should be

θ̈rotation = λ2υt
ēT φ

N−1
(35)

where λ2 is a constant parameter which gives the scaling of
the mapping from average coordinate and forward velocity
to rotational acceleration. The induced torque is multiplied
by υt since the snake robot otherwise would experience a
constant angular velocity, even in the case of a nonzero
average joint coordinate in the rest mode. Furthermore, fluid
forces act on the underwater snake robot in order to induce
fluid torques that oppose the rotational motion. Since the
fluid forces are the linear drag forces and added mass effects,
we can assume that the rotational fluid torques are obtained
due to the added mass and the linear drag forces. We choose
to model the torque due to the added mass effect as

θ̈am =−λ3θ̈ , (36)
where λ3 is a constant parameter which indicates the torque
coefficient due to the added mass effect. In addition, we
model the torque due to the linear drag forces as

θ̈drag =−λ1θ̇ , (37)
where λ1 is a constant parameter which determines the drag
torque opposing to the rotation of the underwater snake
robot. By combining (35), (36) and (37) we can write the
control-oriented model of the rotational dynamics of the
underwater snake robot as

θ̈ =− λ1

1+λ3
θ̇ +

λ2

(N−1)(1+λ3)
υt ēT

φ , (38)

Remark 6: Although, the model of θ̈ is not based on first
principles of the rotational dynamics (see e.g. [2]) of an
underwater snake robot, we can presume that the behavior
of this model will be qualitatively similar to the behavior of
an underwater snake robot with revolute joints. It will also
be quantitatively similar when the rotation parameters λ1, λ2
and λ3 are properly chosen. This claim will be supported by
simulation results in the following section.

E. Complete control-oriented model
We now present the complete control-oriented model of

the underwater snake robot. The state vector of the model is
chosen as

x =
[
φ

T ,θ , px, py,vT
φ ,υθ ,υt ,υn

]T
∈ R2N+4, (39)

where φ ∈ RN−1 are the joint coordinates, θ ∈ R is the
absolute orientation, (px, py) ∈ R2 is position of CM in the
the global frame, vφ = φ̇ ∈ RN−1 are the joint velocities,
υθ = θ̇ ∈ R is the angular velocity, and (υt ,υn) ∈ R2 are
the tangential and normal direction velocities of the robot.
As illustrated in Fig. 4b, each link is influenced by fluid
forces, linear drag forces and the added mass effects, and
constraint forces that hold the joints together. The complete

control-oriented model of the robot can be written as
φ̇ = vφ (40a)

θ̇ = υθ (40b)
ṗx = υt cosθ −υn sinθ (40c)
ṗy = υt sinθ +υn cosθ (40d)

v̇φ =− cnN
k2

vφ +
N
k2

(
k1

2
ADT

υ̇t + cpADT
υt)φ +

N
k2

DDT u (40e)

υ̇θ =− λ1

1+λ3
υθ +

λ2

(N−1)(1+λ3)
υt ēT

φ (40f)

υ̇t = k3
(
k12cp(ēT

φ)2− k2ct N
)

υt + k3
(
k22cpēT

φ − k1cnNēT
φ
)

υn

− k3(k2
k1

2
φ

T AD̄v̇φ + k2cpφ
T AD̄vφ )

(40g)

υ̇n = k3
(
Nm2cpēT

φ − k1ct NēT
φ
)

υt + k3
(
k12cp(ēT

φ)2−N2mcn
)

υn

− ēT
φk3(k1cpφ

T AD̄vφ +
k1

2

2
φ

T AD̄v̇φ )

(40h)

where u ∈ RN−1 are the transformed actuator forces at the
joints.

Remark 7: It should be noted that in this paper the control-
oriented model is derived based on Property 1-3 and the
Proposition 1-2. This modeling approach is not able to
capture the results in the case pointed in Property 4.
V. COMPARISON BETWEEN THE COMPLEX AND

THE CONTROL–ORIENTED MODEL
This section presents simulation results for lateral undu-

lation and eel-like motion in order to compare the complex
underwater snake robot model given by (3) and the control-
oriented model given by (40). Both models were imple-
mented and simulated in Matlab R2011b. The dynamics was
calculated using ode45 solver in Matlab with a relative and
absolute error tolerance of 10−6.

A. Simulation parameters
We consider an underwater snake robot has N = 10 links

of length l = 0.14 m. The mass of each link is m = 0.6597
kg and it chosen to fulfil the neutrally buoyant assumption
(cf. [1]). Furthermore, we choose the fluid forces and torque
coefficients as ct = 0.2639, cn = 4.2, µn = 0.3957, λ1 =
2.2988×10−7, λ2 = 4.3103×10−4, for the complex model
and ct = 0.45, cn = 5, µn = 0.4, λ1 = 0.5, λ2 = 20, λ3 =
0.01 for the control-oriented. Please note that defining a
general mapping between the fluid coefficients in the two
models remains a topic of future work. The coefficients
here are chosen through trial and error. The joint reference
coordinates were calculated according to the motion pattern
lateral undulation and eel-like motion, defined in (5) and (6),
respectively. The values of the controller parameters are set
ω = 120o/s, β = 40o in both models, while the values of
parameter α are presented with each simulation results. In
addition, the joint offset angle was set to φ0 = α/6 in the
time interval t ∈ [40,70], φ0 = −α/6 in the time interval
t ∈ [130,160] and φ0 = 0 outside of these two time intervals.
Both models are simulated with the initial values set to
zero. Furthermore, in order to achieve the desired locomotion
patterns given in (5) and (6) we use the following PD-
controller for both complex and control-oriented model:

u = φ̈
∗+ kd(φ̇

∗− φ̇)+ kp(φ
∗−φ), (41)

with the controller gains kp = 200 and kd = 50.



B. Simulation results

Simulation results for lateral undulation and eel-like mo-
tion of the underwater snake robot are presented. In partic-
ular, the amplitude of (5) and (6) is set to the values 13.9o,
for the complex model and 4.3 cm for the control-oriented
model. These amplitudes correspond to the link angle θi =
20o (cf. [2] for details about how to transform between
angular and translational link motion). The simulation results
are shown in Fig. 5 for lateral undulation, while simulation
results for eel-like motion are shown in Fig. 6. In all figures,
the motion of CM for both models is presented in subfigure
(a), while subfigures (b) and (c) show the CM velocity of
the underwater snake robots in the global x and y direction,
respectively. Furthermore, subfigure (d) shows the orientation
of the underwater snake robots, which is given by θ in the
control-oriented model, and is estimated as the average of the
link angles in the complex model, i.e. as θ̄ = (1/N)∑

N
i=1 θi.

The simulation results, for both lateral undulation and eel-
like motion, indicate that the qualitative behavior of the
underwater robot expected by the control-oriented model
is similar to the behavior corresponding to the complex
model. In addition, choosing the presented values for the
fluid coefficients, we also achieved a good quantitative
similarity between the two models. The similar behavior of
the two models confirms that the control-oriented model can
capture all the effects that determine the overall motion of
the underwater snake robot. Hence, the proposed control-
oriented modeling approach could be used to develop a
general analysis and control design, in order to get results
that would be applicable for the complex model.
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Fig. 5: Simulation results for lateral undulation

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented a model of the kinematics and
dynamics of a planar, underwater snake robot, aimed at
control design and stability analysis purposes. The model,
which takes into account the added mass effects, the linear
drag forces, the torques due to the added mass and linear
drag forces, is significantly less complex than the existing
models on underwater snake robots. An extensive analysis
of the complex model has been presented and a set of
essential properties that characterize the overall motion of
an underwater snake robot was derived. Simulation results
for lateral undulation and eel-like motion indicate that the
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Fig. 6: Simulation results for eel-like motion

proposed control-oriented model captures these essential
properties, and that the control-oriented and the original
model have similar qualitative and quantitative behavior. In
future work, this modeling approach will be the base for the
development and analysis of controllers for underwater snake
robot locomotion.

REFERENCES

[1] E. Kelasidi, K. Y. Pettersen, J. T. Gravdahl, and P. Liljebäck,
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