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Abstract— In this paper two different observers for a non-
linear compressor model have been developed and compared:
A nonlinear observer based on a circle criterion design and
an Extended Kalman Filter. Both of these observers were
implemented together with linear control strategies in order
to (surge-)control the nonlinear Greitzer compressor model.
The newly developed nonlinear observer is a full state observer
providing local asymptotic stability results. Compared to the
Extended Kalman Filter, the nonlinear observer showed itself
at least equivalent, even superior for open-loop estimation.

I. INTRODUCTION

The system that is the basis for this paper is a model
of an axial compressor introduced by [5]. If a compressor is
operated below a certain mass flow limit called the surge line,
it goes into an unstable mode of operation characterized by
a limit-cycle oscillation in flow and pressure. This is called
surge, which can damage the compressor physically and will
in any case lower the performance.

Controlling this phenomenon is vital and one way of
doing so is by using a so called close-coupled valve (CCV)
introduced by [9]. The CCV directly influences the com-
pressor’s characteristics and thus stabilizes the dynamics.
The compressor and the CCV can be considered as an
extended compressor, meaning that the overall dynamics are
comparable to those of a compressor (see Figure 1).

Surge can be controlled for example by state feedback
control as well as output feedback control. For an output
feedback design for a Moore-Greitzer compressor model,
see e.g. [7]. In [8] a robust output feedback controller is
presented for active surge control of compression systems.
A broad review of surge and rotating stall controllers can be
found in [3].

[4] mentions that the most promising way of surge control
is by using feedback from mass flow. Due to the fact that
mass flow is both difficult and expensive to measure, mass
flow observers have been studied before, e.g. in [2], [7] and
[8] for more general compression systems. This paper though
imposes new results for the Greitzer compressor model,
because it provides a full state observer with local stability
results, whereas other papers handle only estimation of the
nonmeasurable state, e.g. [2].
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Fig. 1: Compressor with CCV

II. MODEL

The following equations describe the Greitzer axial com-
pressor model and have already been transformed for the
origin to be equilibrium point (for details see [4])

˙̂ψ =
1
B

(
φ̂ − Φ̂(ψ̂)

)
˙̂
φ = B

(
Ψ̂c
(
φ̂
)
− ψ̂−u

)
,

(1)

where u is the pressure drop across the CCV,

Ψ̂c
(
φ̂
)
=−k3φ̂

3− k2φ̂
2− k1φ̂ (2)

denotes the compressor characteristics and

Φ̂(ψ̂) = γ

(
sgn(ψ̂ + ψ̂0)

√
|ψ̂ + ψ̂0|− sgn(ψ̂0)

√
|ψ̂0|

)
(3)

denotes the throttle characteristics, where ψ̂0 is always
positive. Thus, (3) can be rewritten as

Φ̂(ψ̂) = γ

(
sgn(ψ̂ + ψ̂0)

√
|ψ̂ + ψ̂0|−

√
ψ̂0

)
. (4)

Note that ·̂ does not indicate an estimated value, but the
displacement from equilibrium points ψ̂ = ψ−ψ0 and φ̂ =
φ −φ0. Further, φ describes the mass flow coefficient (axial
velocity divided by wheel speed) and ψ describes the non-
dimensional pressure coefficient (pressure divided by density
and the square of wheel speed). In addition γ denotes the
throttle gain and sgn(0) = 0.

For the parameters the following relations hold:
B = U

2as

√
Vp

AcLc
> 0, where U is the compressor speed, as

is the speed of sound, Vp is the plenum volume, Ac is the
flow area, Lc is the length of ducts and compressor, k1 =
3Hφ0
2W 2

(
φ0
W −2

)
, k2 =

3H
2W 2

(
φ0
W −1

)
and k3 =

H
2W 3 , where H >

0, W > 0 and φ0 > 0.



Note that in Figure 2 the displayed throttle and compressor
characteristics have not been moved to the origin, but it
shows how an operating setpoint can be found using the
original system model (see [4] for details).
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Fig. 2: Throttle and compressor characteristics with setpoint
in the surge area

By setting ψ̂ = x1, φ̂ = x2, ψ0 = x10 and φ0 = x20 the
system can be rewritten as

ẋ1 =
1
B

(
x2− γ

(
sgn
(
x1 + x10

)√∣∣x1 + x10

∣∣−√x10

))
ẋ2 = B

(
−k3x3

2− k2x2
2− k1x2− x1−u

)
.

(5)

The system can be represented in the form ẋ = f (x)+ gu,
with x ∈ Rn, u ∈ Rm, n = 2, m = 1 and g =

[
0 −B

]T .
The system’s measurable state is x1 and thus y = h(x) =Cx
with C =

[
1 0

]
.

III. OBSERVABILITY

An observability test of the model (5) based on [6,
Definition 5.2.1] leads to a vector of Lie-derivatives

J =

[
L0

f h(x)

L1
f h(x)

]
=

[
h(x)

∂h(x)
∂x f (x)

]
=

[
x1

ẋ1

]
for which a gradient operator O = ∂J

∂x can be defined. The
resulting matrix needs to have full rank for the model (5) to
be observable:

O =

 1 0

γ

B

(
−δ
(
x1 + x10

)√∣∣x1 + x10

∣∣− sgn(x1+x10)

2
√
|x1+x10 |

)
1
B


(6)

with δ (·) denoting the Dirac delta function. O has full rank
∀x1,x2 ∈ R and thus (5) is observable.

IV. CONTROLLER DESIGN

The controller that is chosen to (surge-)control the com-
pressor is a linear controller. In order to prove stability of

the linear controller the assumption is made that all states xi
are available from measurements.

Later in the paper we will prove stability also for feedback
of the state estimates x̂i.

A. Proof of Stability

Recalling the compressor’s nonlinear equations (5) with
the linear control law u = µ1x1 + µ2x2 results in the closed
loop description

ẋ1 =
1
B

(
x2− γ

(
sgn
(
x1 + x10

)√∣∣x1 + x10

∣∣−√x10

))
ẋ2 = B

(
−k3x3

2− k2x2
2− (k1 +µ2)x2− (1+µ1)x1

)
.

(7)

A Lyapunov function candidate is chosen as VC =
1
2

(
Bx2

1 +
1
B x2

2
)

which is clearly positive definite ∀x1,x2 ∈
R\{0}. Its time derivative V̇C = Bx1ẋ1 +

1
B x2ẋ2 has to be

negative ∀x1,x2 ∈ R\{0}:

V̇C =−µ1x1x2︸ ︷︷ ︸
I

−x1γ

(
sgn
(
x1 + x10

)√∣∣x1 + x10

∣∣−√x10

)
︸ ︷︷ ︸

II

− x2
2
(
k3x2

2 + k2x2 +(k1 +µ2)
)︸ ︷︷ ︸

III

. (8)

V̇C < 0 if the terms I, II and III are each > 0 ∀x1,x2 ∈R\{0}.
Term II > 0 ∀x1 ∈ R and ∀x10 ∈ R+.
Term III is a quadratic function depending on the variable
x2, which, to be > 0, may have no zeros (no intersection
with the variable’s axis). Therefore, the solution of III = 0

is calculated as x21,2 = −
k2

2k3
±
√

k2
2

4k2
3
− k1+µ2

k3
. Thus, for the

parabola defined in term III to have no zeros, the square

root term
√

k2
2

4k2
3
− k1+µ2

k3
must be a complex number. Thus,

the radicand k2
2

4k2
3
− k1+µ2

k3

!
< 0 which leads to

µ2 >
k2

2
4k3
− k1. (9)

This only holds, if k3 > 0 (parabola opened upwards), which
is the case for the model of the system.

For the Lyapunov function derivative (8) to be negative
definite, now the controller gain µ1 can be set to zero,
meaning that term I vanishes. But it is desirable to have
feedback from the measurable state x1 as well and thus an
upper bound for (8) can be introduced

V̇C ≤−µ1x1x2−β1x2
1−β2x2

2, (10)

where βi ∈ R+. From (8) and (10) we find the two ex-
pressions β1x2

1 ≤ II and β2 ≤ III, which hold at least for a
small environment around the origin. In this case (10) can
be rewritten as

V̇C ≤−xT Qx =−xT

[
β1

µ1
2

µ1
2 β2

]
x. (11)

Q can be made positive (semi-)definite by looking at the



eigenvalues q1,2 of Q, which have to be positive. Out of

q1,2 =
1
2

(
β1 +β2±

√
(β1−β2)

2 +µ2
1

)
the following inequality is received

β1 +β2 ≥
√

(β1−β2)
2 +µ2

1

yielding into µ1 ≤ ±2
√

β1β2 for Q to be positive (semi-)
definite. Following a conservative approach the bound on µ1
is chosen to be 0 < µ1 ≤ 2

√
β1β2.

A further investigation of the size of the controller gain
µ2 leads to a direct dependence on β2. We show this by
introducing an additional value η in the inequality (9) leading
to µ2 =

k2
2

4k3
−k1+η and putting this into the inequality β2 ≤

III. By solving this inequality (again we only allow zero or
a complex number as solutions), we receive the inequality

β2
!
< η . This is a powerful result due to the fact that now we

can design the matrix Q almost only by choosing µ2: The
choice of µ2 defines a bound on β2, which itself defines a
bound on µ1.

Finding a value for β1 analytically out of the inequality
β1x2

1 ≤ II is harder and has been done by trial-and-error–
simulation for the parameter ranges −5 ≤ x1 ≤ 5 and 0 ≤
x10 ≤ 0.5. A value of β1 = 0.3 has been found to be suiting
the problem (see the error plot II− β1x2

1 ≥ 0 in Figure 3).
Due to the fact that β1 is fixed now, a design of the matrix
Q is just depending on the choice of µ2.
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Fig. 3: Error plot of II−β1x2
1 for β1 = 0.3

If all these requirements on the elements of the matrix Q
are fulfilled, we have obtained a locally asymptotically stable
state feedback controller. It has to be mentioned that, the
smaller β1 gets chosen, the bigger the range of x1 can be set
and thus the local asymptotical stability result becomes more
powerful. Nevertheless, the range −5 ≤ x1 ≤ 5 is sufficient
for the application presented in this paper.

V. NONLINEAR OBSERVER

In this section we propose a nonlinear observer based on
the circle criterion design as introduced in [1].

A. Theory

For the design the system’s equations (5) can be written
into the following form:

ẋ =ACCx+Gξ (ϒx)+ρ (y,u)

y =Cx
(12)

With

ACC =

[
0 1/B

−B −εB

]
, (13)

C =
[
1 0

]
,ϒ =

[
0 1

]
,G =

[
0
−B

]
, (14)

ρ (y,u) =

[
−γ

(
sgn
(
x1 + x10

)√∣∣x1 + x10

∣∣−√x10

)
−Bu,

]
(15)

ξ (x2) =k3x3
2 + k2x2

2− (ε− k1)x2 (16)

where ε is chosen such that the polynomial (16) is nonde-
creasing for all feasible values of k1.

It has to hold that the pair (ACC,C) is detectable. Fur-
ther ξ (·) and ρ (·, ·) are locally Lipschitz. The main re-
striction is that ξ (·) is nondecreasing, which means that
(a−b) [ξ (a)−ξ (b)]≥ 0 ∀a,b ∈ R.

We now design the observer as

˙̂x = ACCx̂+L(Cx̂− y)+Gξ (ϒx̂+K (Cx̂− y))+ρ (y,u) .
(17)

Thus, the observer error dynamics ˙̃x = ẋ− ˙̂x are governed by

˙̃x = (ACC +LC) x̃+G

ξ (ϒx)−ξ (ϒx̂+K (Cx̂− y))︸ ︷︷ ︸
ϕ

 .
(18)

Now the observer can be designed by representing the
observer error as a linear system with a sector nonlinearity
as feedback. The function ϕ of (18) can now be represented
as as a function of ϒx and z := ϒx− (ϒx̂+K (Cx̂− y)) =
(ϒ+KC) x̃, which is in fact a time varying nonlinearity in z,
so ϕ := ϕ (t,z). Therefore, the error system can be rewritten
into the form

˙̃x =(ACC +LC) x̃+Gϕ (t,z) ,

z =(ϒ+KC) x̃
(19)

where ϕ (t,z) has to satisfy zϕ (t,z)≥ 0 ∀z ∈ R, meaning it
is nondecreasing.

The nonlinear observer designed with the circle criterion
is asymptotically stable, if the LMI[
(ACC +LC)T P+P(ACC +LC)+νI PG+(ϒ+KC)T

Λ

GT P+Λ(ϒ+KC) 0

]
≤ 0 (20)



in P, PL, Λ, ΛK and ν is solvable for the matrix P = PT > 0,
the constant ν > 0 and the diagonal matrix Λ > 0.

For a detailed theoretical study please see [1].

B. Prerequisites

Like already mentioned in subsection V-A the pair
(ACC,C) must be detectable, which is fulfilled because the

observability matrix has full rank

[
C

CACC

]
=

[
1 0
0 1/B

]
.

Further, (16) has to be nondecreasing, which will be shown
by differentiation:

d
dx2

ξ (x2) = 3k3x2
2 +2k2x2− (ε− k1)

!
≥ 0

meaning that no real solutions are allowed for this quadratic
equation. The solution to the quadratic inequality in x2 is

x21,2 =−
k2

3k3
±

√
k2

2

9k2
3
+

ε− k1

3k3
.

For this expression to have no real solution it must hold that
the radicand k2

2 + 3k3 (ε− k1) ≤ 0 or rewritten in terms of
k1, k2 and k3 being functions of the setpoint x20 and / or the
constants H and W :(

3H
2W 2

(x20

W
−1
))2

+
3H

2W 3

(
ε−

3Hx20

2W 2

(x20

W
−2
))
≤ 0

which is independent of the setpoint x20 leading to the
expression

ε ≤− 3H
2W

. (21)

This means that the polynomial (16) has no extreme values
for any values of x2 and x20 , if (21) holds. This constitutes a
sufficient condition for the demanded property of (16) to be
nondecreasing and it can be shown by trivial calculus that
this property actually holds.

Due to the fact that the the polynomial (16) is nondecreas-
ing for all x2 and x20 it is automatically implied that it is also
globally Lipschitz for all x2 and x20 , respectively. One could
argue in addition that (16) is continuously differentiable
and thus at least locally Lipschitz, which is the originally
demanded property.

Further, it can be shown that the function (15) is Lipschitz
on the set x1 ∈ R\{−x10}, which is the demanded local
result.

C. Stability

We are going to prove closed loop asymptotic stability for
the system model in connection with the nonlinear observer
and the controller. Hereby we use a Lyapunov-approach,
which will deliver a local result (due to the fact that the
controller delivers a local result).

For the closed loop system controlled by the linear con-
troller we are using the same approach used in subsection
IV-A. But now the states in the control law get replaced
by their estimates, leading to u = µ1x̂1 + µ2x̂2. This can
be rewritten in state and state-error variables resulting in

u = µ1 (x1− x̃1) + µ2 (x2− x̃2). Thus, we receive the same
closed loop description like in (7), but with an additional

vectorial term g̃(x̃1, x̃2) =

[
0

B(µ1x̃1 +µ2x̃2)

]
.

Now we take the same Lyapunov function candidate V1 =
1
2

(
Bx2

1 +
1
B x2

2
)

which has already been defined in subsection
IV-A. Thus the time-derivative of V1 with feedback of the
observer-states becomes

V̇1 = V̇C +µ1x̃1x2 +µ2x̃2x2 (22)

where V̇C is defined in (8).
In [1, Theorem 1] a Lyapunov function candidate for the

observer error is defined as V2 = x̃T Px̃ where P is delivered
out of the solution of the LMI defined in (20). The authors of
[1] show that the time derivative of this Lyapunov function
is less or equal than some upper bound V̇2 ≤−ν x̃T x̃, where
ν comes out of the solution of the LMI as well.

Now we can define a Lyapunov function candidate for the
overall system as V =V1 +V2 with its time-derivative

V̇ ≤−xT Qx+µ1x̃1x2 +µ2x̃2x2−ν x̃T x̃ (23)

to which we now impose an upper bound with the help of
Young’s inequality:

V̇ ≤−xT Qx+µ1

(
x̃2

1
2
+

x2
2

2

)
+µ2

(
x̃2

2
2
+

x2
2

2

)
−ν x̃T x̃.

(24)

This can be rewritten into the form V̇ ≤−x̌T Q̌x̌ with

x̌T =
[
x1 x2 x̃1 x̃2

]T
,

Q̌ =


β1 µ1/2 0 0

µ1/2 β2−µ1/2−µ2/2 0 0
0 0 ν−µ1/2 0
0 0 0 ν−µ2/2

 .
(25)

Now the matrix Q̌ has to become positive definite by the
right choice of variables. Basically one can use Sylvester’s
criterion, which says that all principal minors of a matrix
must be positive for the matrix to be positive definite. In
our case this means that if we can make the determinant of
the upper left 2–by–2 corner positive, we simply can set a
bound on ν ≥ νbound in the LMI, so that νbound ≥ µ1/2 and
νbound ≥ µ2/2. Thus, the matrix Q̌ will be positive definite.

VI. EXTENDED KALMAN FILTER

The Extended Kalman Filter is an observer based on the
Kalman Filter. The basis for this observer is a linearization
of the system model (5).

The regular Kalman Filter is linearized around a fixed
setpoint and has therefore a constant observer matrix
AEKF . In contrary, the Extended Kalman Filter is linearized
around moving and thus changing setpoints, leading to a
time-dependent observer matrix AEKF (t).



A. Linearization

The linearization of the system model (5) leads to the
following observer matrix

AEKF =

− γ sgn(x1S+x10)

2B
√
|x1S+x10 |

1/B

−B B
(
−3k3x2

2S
−2k2x2S − k1

)

(26)

with xiS representing the actual point in state space the
compressor is operating in and xi0 representing the desired
operating point, like already mentioned in Section II.

Note that x1S = x̂1 = x1 (due to the fact that it is
measurable) and x2S = x̂2. Note further that the term

−δ
(
x1 + x10

)√∣∣x1 + x10

∣∣ (see (6)) is neglected in (26), due
to the fact that the case x1 =−x10 does not occur in practice.

B. Definition of the Extended Kalman Filter

The following model for the dynamics of the EKF has
been chosen (without denoting time dependencies explicitly)

˙̂x = (AEKF −LEKFC) x̂+LEKFCx+gu+GEKF w,

y =Cx̂+ v,
(27)

including modeling / process and measurement errors as
gaussian white noise, denoted as scalars w and v, respec-
tively. Further, LEKF =

[
L1EKF L2EKF

]T , C =
[
1 0

]
and

g =
[
0 −B

]T . The process noise is fed into the model
with GEKF =

[
1 1

]T . It holds for the expected values that
E (w) = E (v) = 0, E

(
wwT

)
= QEKF = diag(qEKF1 ,qEKF2),

E
(
vvT
)
= REKF = r1 and E

(
wvT

)
= NEKF =

[
0 0

]T .
The meaning of the elements of QEKF is that for large

values of qEKFi either the state xi is heavily influenced by
disturbances and / or the model for this state is particularly
uncertain. Large values for the element r1 in REKF mean
that there is a lot of noise present in the measurement of
the output y. NEKF is mostly set to zero, because there is no
covariance expected between process noise and measurement
noise. Further, large QEKF in relation to REKF means that the
measurement is considered more trustful than the model; and
vice versa.

A time-dependent Riccati-Differential-Equation in
PEKF (t) has to be solved in order to calculate the observer
gains LEKF (t). The time dependence is due to the time
dependence of AEKF (t) and thus to the changing setpoints.

ṖEKF (t) = AEKF (t)PEKF (t)+PEKF (t)AT
EKF (t)

−PEKF (t)CT 1
r1

CPEKF (t)+QEKF ,

PEKF (0) = 0,

LEKF (t) = PEKF (t)CT 1
r1
.

(28)

VII. SIMULATIONS

In this section we are presenting different simulation
results for both designed observers with the parameters that
can be found in the table in the Appendix.

First of all we are going to show how the closed loop
systems react on an error in the state x1 and x2 respectively.
Then we are going to present simulations of diverging initial
conditions for the system model and the observers. Finally
a simulation with no active controller and a comparison of
the estimation during surge will be presented.

The setpoint x10 , x20 for all simulations is inside the surge
area (see Figure 2 where it is marked).

A. Error in x1

Figures 4 and 5 show how the closed loop systems with
nonlinear observer and Extended Kalman Filter react on an
error in the state x1 = 0.1 at t = 1 s. The error gets brought
back to zero in finite time.

It is remarkable that the observer gains LEKF of the EKF
depend on the actual state of the system model / observer and
thus change after the error is introduced. For this case both
observers don’t differ much in their closed loop performance.
For both observers a mismatch not only in magnitude but also
in sign is viewable between the states x2 and x̂2.
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B. Error in x2

In Figures 6 and 7 one can see the closed loop behavior
of both observers with controllers for a disturbance in the
non-measurable state x2 = 0.1 at t = 1 s. Again, the error



gets brought back to zero in finite time for both observers.
Although it is not viewable due to the scale of the plot, the
observer gains LEKF get adapted due to the change in the
actual state of the system model / EKF.

This study is just of theoretical nature and shall visual-
ize the ability of the observers to estimate also the non-
measurable state x2.

Due to the fact that the state x1 is measurable, it is
estimated quite well. But for state x2 we can see a transiently
mismatch between state x2 and x̂2. This holds for both
observers.
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C. Diverging initial conditions

Both observers get presented for their performance un-
der diverging initial conditions xinit =

[
1 1

]T and x̂init =[
−1 −1

]T in Figures 8 and 9. Note that for better clarity
the EKF in Figure 9 is presented in the range t ∈ [0, 5] s.

The states / estimated states are brought back to zero in
finite time for both observers. Note that the input values
for the nonlinear observer and the EKF are very large and
can only be regarded as theoretical results without practical
relevance. The employment of saturation could make the
input signal feasible, but would in any case affect the stability
properties leading to another stability proof.
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D. Surge

To visualize the surge phenomenon the controller gets
turned off and the observers start with different initial condi-
tions than the model: xinit =

[
0.1 0

]
and x̂init =

[
−0.1 0

]
.

Both open-loop systems go into a limit cycle oscillation as
can be seen in the Figures 10 and 11. It is easy to recognize
that the nonlinear observer is superior compared to the EKF
in estimating this oscillation. The performance differs a lot
in this case, as can be viewed in the plot of the estimation
errors for both observers in Figure 12.
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VIII. CONCLUSION

In this paper we presented a locally asymptotically stable
nonlinear observer for a Greitzer compressor model together
with linear state feedback for surge control. The advantage
of the nonlinear observer is that it is easy to implement. A
further property gets clear when looking at the open loop
simulation (surge case), where it showed better convergence
properties than the Extended Kalman Filter: The estimation
error of the EKF remained within a bound indicating sta-
bility (not asymptotic), whereas the estimation error of the
nonlinear observer vanished giving asymptotic stability.

Simulations show that the nonlinear observer designed
with the circle criterion gives at least the same performance
like the in industry established and widely used EKF.
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APPENDIX

TABLE I: Simulation parameters

Ac 0.01 m2

B 0.832 m−1

H 0.18
K −4.53
L

[
−10.09 −58.65

]T
Lc 3 m

QEKF

[
101 0

0 103

]
REKF 0.1

U 80 s−1

Vp 1.5 m3

W 0.25
as 340 ms−1

k1 −1.037
k2 0.864
k3 5.76
x10 0.533
x20 0.3
β1 0.3
β2 8.9
γ 0.411
ε −5
η 9
µ1 1.83
µ2 10.07
ν 80.11

νbound 40


