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Abstract— This paper focuses on fault tolerant control allo-
cation for overactuated systems with actuator dynamics. The
proposed scheme for fault detection and isolation is based on
unknown input observers and the main contribution of the
paper consists in the presentation of a finite-time control re-
configuration technique which provides a successful recovering
of system performances in spite of actuator faults. Simulation
results support theoretical developments.

I. INTRODUCTION

The main objective of control allocation is to determine
how to generate a specified control effect from a redundant
set of actuators and effectors. Due to input redundancy, sev-
eral configurations leading to the same generalized force are
admissible and for this reason the control allocation scheme
commonly incorporates additional secondary objectives [2]
[12] [16], such as power or fuel consumption minimization.
On the other hand, usually there are also some limitation fac-
tors to be accounted for [3] [10] [15] [21]: actuators/effectors
dynamics, input saturation and other physical or operational
constraints. One further advantage of actuator and effector re-
dundancy is the possibility to reconfigure the control in order
to cope with unexpected changes on the system dynamics,
such as failures or malfunctions: in particular if the set of
actuators and effectors is partially affected by faults, one can
modify the control allocation scheme by preventing the use
of inefficient/ineffective devices in the generation of control
effect or compensating for the loss of efficiency. However,
one key point for successfully re-allocating the control is
the availability of adequate information about the faults that
have occurred; indeed, some accurate fault estimation and/or
a correct identification of the faulty actuators or effectors
are necessary to address the reconfiguration. Recent results
toward fault tolerant control allocation are based on sliding-
mode techniques [7] [14], adaptive control strategies [5]
[18] [19] and unknown input observers [8] [9]. Further
investigations on this topic, with a more application-oriented
character, are proposed for reconfiguration in flight control
[4], [22], [20] and fault accommodation in automated un-
derwater vehicles [17]. An interesting survey on the general
problem of fault-tolerant control reconfiguration is provided
in [23].

The aim of this paper is to present the extension of the results

A. Cristofaro and T.A. Johansen are with Department of Engi-
neering Cybernetics, Norwegian University of Science and Technol-
ogy and with Center for Autonomous Marine Operations and Sys-
tems (AMOS), Norway. email: andrea.cristofaro@itk.ntnu.no,
tor.arne. johansen@itk.ntnu.no

A. Cristofaro acknowledges funding support from ERCIM Alain Ben-
soussan Fellowship programme (ABCDE project - FP7 Marie Curie Actions)

This work is partly sponsored by the Research Council of Norway by
the KMB project D2V, project number 210670, and through the Centres of
Excellence funding scheme, project number 223254 - AMOS.

on fault detection/isolation/accommodation proposed in [§]
[9] to systems with a redundant set of inputs in the presence
of actuator dynamics. Faults are modeled as multiplicative
terms which lead to slow response of actuators, i.e. rate
limitation. The paper is structured as follows. In Section II
the basic setup of control allocation with actuator dynamics
is introduced, while Section III is devoted to the presentation
of the proposed method for fault detection/isolation based on
unknown input observers, assuming that the actuator state
is not directly measured; for sake of simplicity, the output
of the plant is assumed to be the whole state. However,
such assumption can be relaxed and methods proposed in [9]
can be used to tackle the case of systems with unmeasured
states and inputs. Section IV reports the main results of the
paper: first the steady-state effects of the faults are estimated,
then a finite-time actuator reconfiguration strategy is defined
and finally the fault accommodation of the overall system is
proved. In Section V the validation of theoretical results is
provided by numerical tests.

II. CONTROL ALLOCATION SETUP
Let us consider the linear system ¥ = (A, B, G) :

&(t) = Az (t) + Br(t

with
7(t) = Gu(t), (2

where € R", 7 € R¥, w ¢ R™, k < m and B,G
are assumed to be full-rank. The vector u(t) represents the
redundant control input and 7(t) is the generalized control
effect or virtual input; the two variables are related through
the matrix G € R¥*™. The input u(t) (actuator state) is
assigned by the following actuator dynamics:

a(t) = Z(t)ult) + v(t), 3)

where Z = diag(z1, ..., 2m) and v(-) is a free parameter to
be tuned (actuator input).

Assumption II.1 The actuator dynamics is asymptotically
stable, i.e. Z is Hurwitz.

Assumption I1.2 The state x(t) of the system is supposed to
be measured. The actuator state u(t) is instead assumed to
be not known and only the value of the initial configuration
u(0) is available together with the actuator input v(t).

Remark II.1 Since the actuator dynamics is asymptotically
stable, possible errors on the initial configuration u(0) can
be easily handled in the proposed approach as they only
provide transient terms and do not affect the asymptotic
response of the actuators.



Without loss of generality, the desired control effect 7.(t) is
assumed to be given as a linear feedback:

7e(t) = Kz + Lw, 4)

where w is the state of a suitable exogenous system to be
tracked:

W= Sw. (&)
In particular K, L can be determined by
L=Y — KII,

where (II,Y) is the solution to the Francis equations [11]
associated to the regulation of the output y = C'x + Dw:

IS = All + BY
0=CII+D

A control allocation strategy is defined such that, whenever
it is possible, the actuator input v(¢) in (3) ensures that the
actuator state u(t) satisfies

Gu(t) =~ 7.(t). (6)

Although the linear equation Gu. = 7. always admits
(uncountable) exact solutions when rank(G) = k, a simple
solution can be obtained using the right pseudo-inverse
matrix [13]:

u, =G Br., G f.=GT(@ceT) L. @)
In this paper we consider the class of faults acting on
effectors and actuators efficiency by changing their effec-
tiveness: these can be modeled by a multiplicative term
A(t) which limit the rate of the actuators, i.e. A(t) =
diag(91(t), ..., 0m(t)) for some unknown functions 0;(t) €
[0, 1], which are called efficiency factors. The overall actuator
dynamics to be considered is therefore

a(t) = A(t) Zu(t) + v )

It follows that, whenever 6;(t) = 1 Vi = 1, ...,m, the con-
troller operates with nominal conditions and hence u(t) =
uc(t), ie.

T(t) = Gu(t) ~ 7.(t)

On the other hand if one of the actuators is subject to a
loss of effectiveness or complete failure, i.e. if §;(¢) # 1 for
some ¢, the designed control law wimay no longer be able
to ensure the desired effect, this meaning that, in the case of
fault presence, one may have 7(t) # 7.(t) with a consequent
deterioration of system performances. Such problems can
be avoided by accommodating the fault effects if a suitable
control reconfiguration policy is considered. Moreover, it can
be noticed that the case of faults affecting the actuator input
v(t), as well as actuator total failures, can be tackled using
the framework proposed in [9].

Summarizing, throughout the paper we will deal with the
system resulting from the coupling of (1), (2), (5) and (8)
with desired control effect assigned by (4).

III. FAULT DETECTION AND ISOLATION
Define the input observer
a(t) = Za(t) + v(t) ©)
4(0) = u(0)

Let us suppose that the actuators 41, ..., ¢, are faulty, that is
d;(t) # 1 for j =iy, ..,44; due to the diagonal form of the
system (8), the following identity can be verified

u(t)_a(t) = [01'1*1 * 01’2*1'1*1 *oee Oiqfiq_lfl * Omfiq}Ta

where * denotes a non-null quantity. In particular the fault-
free components of wu(t) are equal to those of #(t) and
moreover the matrix W = BG satisfies

B(Gu(t) — Gu(t)) = W(u(t) —a(t))

- i: Wi, (g, () — 1, (), (19
=1

where W; stands for the 4t column of the matrix W.
Consider the following Unknown Input Observer UIO [6] of
the state x(t):

2(t) = Fz(t) + RBGu(t) + Nx(t)
Z(t) = 2(t) + Hx(t)

Thanks to (10), exploiting the observer structure and setting

N = N;j + N, if the following conditions are satisfied

R=1I,n—H (11)
F=RA—-N,, o(F)eC (12)
N, =FH (13)

then the equation of the error e(t) = x(t) — &(t) reduces to

e(t) = F@(t) + RZ Wie (uie (t) - aiz (t))v (14)
=1

where o(-) stands for the spectrum of a matrix and the set
C~ in the left open complex half-plane.

Mimicking the approaches presented in [8] and [9], a
family of unknown input observers for system (1) can be
designed in order to detect and isolate the faults affecting
the actuator dynamics (8). To this purpose, with respect to
the matrix W = BG € R"*™, we call uniform sub-rank the
integer kg < k computed as follows:

ko :=max{p <k :rankW; --- W, |=np,
VJ= (1, Jp) s je €{1,...,m}}.

Theorem IIL1 [9] Let kg < k be the uniform sub-rank of
the matrix W = BG and set so = (;’;)

i) For any multi-index J, of length ko, h =
1,...,80, an unknown input observer {Op} =
{F(h),R(h),N(h),H(h)} can be designed such that
conditions (11)-(13) are satisfied and moreover

RMWWw; =0,  RMW #£0.

15)

(16)

ii) Combining together the information provided by all
residuals e (t), h = 1,..., s, it is possible to detect
and isolate up to ko — 1 faults simultaneously affecting
the system.



The residual e(™)(¢) is said to be active, this meaning that
some faults have occurred, if it overpass a known threshold
(h) ;4

e ie.

eM )] < ™) <= no faults
|
||e(h)(t)\| > eh) = presence of faults.

The threshold €™ can be computed or tuned based on known
bounds for observer initialization error as well as for possible
disturbance or noise terms affecting the plant [9].

IV. CONTROL RECONFIGURATION

Suppose that, through the FDI module described in Theo-
rem IIL.1, faults in the actuators 71, ..., i, have been identified.
Let us group into the reduced-order vector @(t) € R™ ¢
the fault-free entries of w(t), corresponding to any wu,(t)
with i # iy, £ = 1,...,q. Assume that k < m —q =
m and define the reduced-order matrices Z € R™*™ =
diag(z1,...,%27), G € RFX™ obtained from Z and G
by neglecting the columns corresponding to the positions
i1,...,1q. Assuming that rank(G) = rank(G) = k, the
desired actuator state can be updated as follows:

Te(t) = G Br.(t). (17)

We have to deal with the following decoupled dynamics

uiz (t) = 5ie (t)zieuie (t) + v, (t)v l= 1,....q

and

a(t) = Zu(t) + o(t).
The basic idea is to compensate the effect of the inputs u;, (t)
while simultaneously the input u tracks the desired actuator
state . in finite-time [1]. We set

v, (1) =0 (18)

and, for r € (0,1),

@u>=—Z%ﬁ>+a4“‘fnm%ﬂﬁjgﬁ“

with £ > 0 and where, by construction, the exact knowledge
of (t) is provided by the observer (9). It is worth to note
that, due to (4)-(5) and (17), the derivative u.(t) can be
computed without differentiating signals.

19)

The asymptotic recovery of the system performances
will be proved in three steps:

A) The steady-state of the faulty inputs is computed with
the scope of designing a correction factor 75(¢).

B) The input (19) is proved to guarantee finite-time con-
vergence of the reconfigured actuator state u(t) to the
reconfigured desired actuator state @ (¢).

C) The fault accommodation of the total system is shown
to be enforced: the state of the faulty plant converges
to the state of the nominal (fault-free) system.

A. Evaluation of faulty inputs steady-state
Setting v;, = 0 as in (18), the dynamics of faulty actuators
reduces to the free evolution:
Ui, (t) = 51'1, (t)zie Uiy (t)v

Two possible behaviors for the steady-state of w;,(t) exist,
depending on the rate of the fault ¢;,(¢). To this end, we give
the following definition.

Definition IV.1 The efficiency factor 6(t) > 0 is said to be
a low-degrade fault if

+oo
/ d(o)do = +o0.
0

Conversely, if the above integral is a finite quantity, we will
refer to §(t) as to a high-degrade fault.

(=1,...q. (20)

Proposition IV.1 Let us consider the free-input actuator
dynamics (20) with w(0) # 0. Two cases are admissible:
a) if the factor §;,(t) is a low-degrade fault then
1imt%+oo Us, (t) = 0,’

b) if 6;,(t) is a high-degrade fault then there exists Uy €
R, @ # 0, such that lim_, 4o u;, (t) = Uig.

Proof: Let us prove case a) first. The solution of
equation (20) can be expressed by

i, (t) = e#ie Jo i@y, ()

since by definition z; < 0 Vi = 1,...,m, if J;,(¢) is a
low-degrade fault, the exponent z;, fot d;,(0)do in the above
formula tends to —oo and, consequently, u;, (t) converges to
zero. On the other hand, in the case b) of high-degrade fault
one has

+o00
/ i,(0)do =¢cp >0
0

and hence the identity lim;_, .o u;,(t) = ;e holds with
Uip = 6zi1~’c[’uie (O) | ]

Remark IV.1 A low-degrade fault can be interpreted as a
partial loss of actuator efficiency, while actuators affected
by high-degrade faults are subject to complete failure.

Remark IV.2 It is worth to note that, as the actuator
dynamics is ruled by the Hurwitz matrix Z, the stability of
the total system may not be compromised by the transient of
faulty actuators.

The first issue of the proposed FTC scheme to be addressed
is the estimation of the steady-state {;,,...,;,} of fault-
inputs. This can be achieved using the information provided
by the residual signals e (¢) in (14), (16); in particular,
according to Theorem IIL1, let us fix h € {1,...,s0} such
that

RMW,, £0ve=1,..,q. (21

The input u;, (¢) can be decomposed as u;, () = ;, "HLL (1),

+

where w;, (t) is the transient. Let us set g as

q=rankWy --- W], §<q.



Proposition IV.2 Suppose that condition (21) holds true
and choose W € R"™9 such that Im(W) =
span(W;, --- Wi, ). Then there exist a constant vector
w* € RY such that

q

— —Lyrr—*
E G”uié =B Wau y
=1

where B~ stands for the left pseudo-inverse of B.

Proof: The proof is straightforward observing that, by
construction, span(W;, --- W; ) = span(BG;, --- BG;,)
and hence G' € R**9 can be found such that W = BG. m

Theorem IV.1 Let u* € RY be the constant vector defined
in Proposition IV.2 and denote by t; > 0 the time instant
of control reconfiguration initialization. Then the following
identity holds

lim Q(t,t;) "~ (e<h> (t) — eF“’)téh)(tﬁ)) -, (22)

t——+oo

where b B
Q(t,ty) = /eF "=y | RMW.
ty

Proof: Let us omit the superscript (h) in order to
improve the readability. We notice that, by construction, the
overall input matrix W € R™*? associated to @* is full-
rank, and therefore the left pseudo-inverse Q (¢, tn)_L is well-
defined. Since u.;,(t) = 0 for ¢t > ¢4, integrating equation
(14), the error €™ (t) = ¢(t) can be expressed as

t q
e(t) = efe(ty) —l—/ eF't=9IR Z W, u;,(0)do
ty . =1
= ee(ty) —|—/ PR Wardo
ty

t a
+/ eF(t_”)RZWiZuL (0)do
ty (=1

= ef'e(ty) + Q(t, ty)u*

t q
+/ eF(tf")RZW,’ZuL (0)do.
ty =1

By construction F' is a Hurwitz matrix and uL (t) converges
to zero, and hence the last term in the right-hand side is
asymptotically null. Observing that Q(¢,¢;) ™% is bounded,
the identity (22) is proved. [ ]

B. Finite-time convergence

Consider the control law (19). By construction, using (4),
(5) and (1) with 7(¢t) = 7.(t), the derivative of @.(t) can be
expressed as

tie(t) = K1x(t) + Liw(t) + Bya(t), (23)
where, for sake of clarity, we have set

Kl = C—,Y_R_Z:{j47 Ll = G_RLS, Bl = G_RKBG
(24)

Theorem IV.2 Assume w;, (t) =0 fort > ty, { =1,...,q.
Given the exogenous signal w(t), the control law (19), (23)-
(24) guarantees that u(t) converges to u.(t) in finite time. In
particular, for any initial condition u(ty), there exists T > ty
such that the input u(t) driven by the control

o(t) = —Za.(t) + Kix(t) + Liw(t)
(25)

satisfies

I|a(t) — @u(t)]| = 0Vt > T.

Proof: Set h(t) := u(t) — u.(t) and consider the
Lyapunov function V (k) = 2h”h. Computing the derivative
and using (25) one gets
1ir 1ir

= EV) =
By a standard argument from the theory of finite-time
stabilization, the time horizon 7" can be evaluated as follows:

V(h(t)) = h(t)Th(t) < —€[|h()]|*" = =2

1—r
2 1—7r

m(v(tﬁ)) 7. -

C. Fault accommodation

T:tﬁ-‘r

In order to compensate for the overall input supply of
faulty actuators, the control effect is updated as follows:

Te(t) = 7e(t) + 75(1),

with 75(¢) to be tuned. Referring to (22), let us set

n(t) = Q) ™ (W) — "M 1)
and define

75(t) == B_LV_Vn(t), us(t) = C:'_Rr(;(t).

Let us consider a copy of the original system as a reference
for the fault-free nominal dynamics:

{ *(t) = Ax*(t) + BT (t)
z*(ty) = z(ty)
with 725(¢) := Ka*(t) + Lw(t).
Theorem IV.3 Set the actuator inputs commanded to the

faulty actuators equal to zero, i.e. vy, =0 for t > ty, { =
1,...,q. Define

B (t) = (v = DZ(a(t) — @c(t) + (vZ + Br)us(t) + 0(1),

where v > 0, By is the matrix defined in (24) and v(t)
is given by (25). Then, referring to the system (1),(2),(4),(8)
where the actuators are driven by v, (t) and choosing -y such
that det(vZ + By) # 0, the following condition is satisfied:
. % _
i lz(t) —2*(1)]] = 0.

Proof: For sake of simplicity and without loss of
generality it can be assumed v = 1: see Remark IV.3 for
further details. Set

s(t) = x(t) — x*(¢),



Now by construction one has

i) = Za(t) + by (t) — G R (1)
GRix(t) = Ko (t) + Lyw(t) + BiGr(b).

Let us denote by éemt € R¥X™ the matrix obtained from G
by adding null-columns in the positions corresponding to the
faults, i.e. 1, ..., 44.; accordingly, we extend the vector
by adding null entries. We define the vector of faulty inputs

p(t) = “(t) — Uegt (t),
with (G — Geat)p(t) = Gp(t). One has
S(t) = As(t) + B(Gp(t) + éextﬂext (t) - ééiRTg (t)),

where Goplien:(t) = Ga(t). Setting X (t) = [s(t) (t) p(t)]
we are led to consider the system

' A BG  BG
X(t)=| K1 —ZGRK Z+B, 0 X(t)
0 0 AM)Z
0 ~ ~
- ur(f) (t) — ae(t)
| 1| (@ - )

(26)
By construction, condition (4) and Theorem IV.2 ensure that
the actuator input ¢(¢) defined in (25) guarantees asymptotic
stability of the closed-loop dynamics of [z(t) @(t) — G.(t)]
in the absence of exogenous signal w: this fact implies that
the matrix

A BG
Hy = S R -
Ky —-ZG"K Z+ DB
is Hurwitz stable; on the other hand one has p(t) = p+pf(t),
where by definition the transient pf(¢) converges to zero and
it does not influences the steady-state response of the system.
Moreover, by definition, the steady-state p verifies

(G = Gewt)D = Gp = B~ LW,
and hence

us(t) = GRBEW (@ + (n(t) - w"))
— GRGp+ GRB-LW (y(t) - a*),

where (n(t) — @*) converges to zero.
In conclusion, neglecting the null convergent terms, the
steady-state of the system [s(¢) r(¢)] is given by

[ ]tlggo (/t: (=) {(ZJFJ;();G—RG] ﬁds+E(t)> ,

where E(t) is the response of the system to the finite-time
controller. In particular, since by construction the presence
of E(t) helps to reduce the effect of the constant input j and
lim;, oo || E(t)]| = 0, the following estimate can be deduced
by integration:

(I

BG

i< 0wt | L e |7

On the other hand, recalling that by assumption (Z + Bj)
is invertible and using the formula for the inverse of a
partitioned matrix, one gets

I OJH{'=H"'[I —BG(Z+ B)™],

with H = (A — BG(Z + B,) Y (K, — ZG~RK)). Finally,
observing that

S BG
J— _1 ~ ~ P
[I BG<Z+ Bl) ] (Z+ Bl)GfRG 0,
the conclusion follows:
5= lim_|la(t) = *(t)]| = 0. .

Remark IV.3 If the choice v = 1 is not feasible, setting
v # 1 with det(yZ 4 By) # 0 yields an expression for X (t)
equal to (26) where Z is replaced by vZ, and therefore the
proof can be straightforward adapted.

V. SIMULATION RESULTS

Let us consider the following input-redundant linear plant

T = Ax + Bt
7 =Gu
with
0 1 0 1 0 0
2 -1 2 1 10
A=1"9 o001 B=lo 0|
-1 25 0 1 0 1
11 1 1
G=19 015 -1 |

The actuator dynamics is supposed to be governed by a drift
matrix Z given by

Z = diag[—0.03, —0.03, —0.07, —0.04]

and matrices K, L are designed such that the system output
y(t) = x1(t) tracks the reference signal w = 10sin(0.7¢).
The actuator u,(¢) is supposed to be affected by a high-
degrade fault 6 (t) = e~ 996" and the initial configuration
of the actuators is assumed to be null, 4(0) = 0. Figures 1-2
show the effects of the fault on the output tracking system
performances and on the actuators, respectively. A family of
unknown input observers {F(h),R(h),N(h),H(h)};t:l has
been designed such that

RMBG, =0, h=1,..,4,

and the associated residual () (¢) turns out to be insensitive
to faults affecting the actuator uj. Figure 3 shows that all
residuals except e(!)(#) exceed a suitable detection threshold
and therefore the fault can be correctly isolated for ¢ > 6Gsec.
The control reconfiguration policy is applied for ¢t > 10sec
and the nominal system performances are recovered, as
shown in Figure 4. The behavior of reconfigured actuators is
depicted in Figure 5: the faulty actuator state u; (¢) converges
to the steady-state u; ~ 0.39.
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CONCLUSIONS

This paper, which is part of a wide research project
initiated with [8], is devoted to the design of fault-tolerant
control allocation schemes for overactuated linear systems
with actuator dynamics. Extending some results obtained by
the authors [9], faulty actuators can be identified through an
UIO-based fault detection and isolation module. A finite-time
control reconfiguration strategy has been proposed with the
aim of compensating for faulty actuators steady-states and
recovering the desired system performances.

[1]
[2]
[3]

[4]

[6]
[7]

[9]
[10]
(1]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

S.P. Bhat and D.S. Bernstein (2000), Finite-time stability of continuous
autonomous systems, SIAM J. Control Optimization, 38, 751-766.

M. Bodson (2002), Evaluation of optimization methods for control
allocation, J. of Guidance, Control and Navigation, 25, 703-711.
J.M. Buffington and D.F. Enns (1996), Lyapunov stability analysis of
daisy chain control allocation, J. of Guidance, Control and Navigation,
19, 1226-1230.

J.J. Burken, P. Lu, Z.L. Wu and C. Bahm (2001), Two reconfigurable
flight control design methods: robust servomechanisms and control
allocation, J. of Guidance, Control and Navigation, 24, 482-493.

A. Casavola and E. Garone (2010), Fault-tolerant adaptive control allo-
cation schemes for overactuated systems, Int. J. Robust and Nonlinear
Control, vol. 20, 1958-1980.

J. Chen, R.J. Patton and H.Y. Zhang (1996), Design of unknown input
observers and robust detection filters, Int. J. of Control, 63, 85-105.
M.L. Corradini, G. Orlando and G. Parlangeli (2005), A fault tolerant
sliding mode controller for accommodating actuator failures, Proc.
44th IEEE Conf. on Decision and Control, 3091-3097.

A. Cristofaro and T.A. Johansen (2013), Fault-tolerant control alloca-
tion: an Unknown Input Observer based approach with constrained
output fault directions, Proc. 52nd IEEE Conf. on Decision and
Control, 3818-3824.

A. Cristofaro and T.A. Johansen (2014), Fault-Tolerant Control Alloca-
tion using Unknown Input Observers, Automatica, 50 (7), 1891-1897.
W.C. Durham (1993), Constrained control allocation, J. of Guidance,
Control and Navigation, 16, 717-725.

B.A. Francis (1977), The linear multivariable regulator problem, SIAM
J. Control Optimization, 15, 486-505.

S. Galeani, A. Serrani, G. Varano and L. Zaccarian (2011), On linear
over-actuated regulation using input allocation, Proc. 50th IEEE Conf.
on Decision and Control, 4771-4776.

G.H. Golub and C.F. van Loan (1983), Matrix computations, North
Oxford academic press.

M.T. Hamayun, C. Edwards and H. Alwi (2013), A fault tolerant con-
trol allocation scheme with output integral sliding modes, Automatica,
49, 1830-1837.

O. Hirkegérd (2004), Dynamic control allocation using constrained
quadratic programming, J. of Guidance, Control and Navigation, 27,
1028-1034.

T.A. Johansen and T.I. Fossen (2013), Control allocation: A survey,
Automatica, 49, 1087-1103.

N. Sarkar, T.K. Podder and G. Antonelli (2002), Fault-accommodating
thruster force allocation for an AUV considering thruster redundancy
and saturation, IEEE Trans. on Robotics and Automation, 18, 223-233.
J. Tj¢nnas and T.A. Johansen (2007), Optimizing adaptive control
allocation with actuator dynamics, Proc. 46th IEEE Conf. on Decision
and Control, 3780-3785.

J. Tjgnnas and T.A. Johansen (2008), Adaptive control allocation,
Automatica, 44, 2754-2766.

T. Ymeng, R. J. Patton (2012), Fault-tolerant flight control for non-
linear UAV, Proc. of 20" Med. Conf. on Control and Automation,
512-517.

L. Zaccarian (2009), Dynamic allocation for input redundant control
systems, Automatica, 45, 1431-1438.

Y. Zhang, S. Suresh, B. Jiang and D. Theilliol (2007), Reconfigurable
control allocation against aircraft control effector failures, Proc. 16th
IEEE Conf. on Control Applications, 1197-1202.

Y. Zhang and J. Jiang (2008) Bibliographical review on reconfigurable
fault tolerant control systems, Annual Reviews in Control, 32, 229-252.



