
Tuning the Victim Selection Policy of Intel TBB

Alexandru C. Iordana,∗, Magnus Jahrea, Lasse Natviga

aNorwegian University of Science and Technology, Trondheim, Norway

Abstract

The wide adoption of Chip Multiprocessors (CMPs) in almost all ICT seg-

ments has triggered a change in the way software needs to be developed. Parallel

programming maximizes the performance and energy efficiency of CMPs, but

also comes with a new set of challenges. Parallelization overheads can account

for sub-linear speedups and can increase the energy consumption of applica-

tions. In past experiments we looked at specific operations such as spawning

new tasks, dequeuing the task queue and task stealing for Intel TBB. Our re-

sults showed that failed steals account for the largest overhead. In this work, we

focus on TBB’s victim selection policy. We implement a new occupancy-aware

policy and we improve the implementation of the pseudo-random policy we pro-

posed in a previous paper. We compare the results of our new policies against

an “oracle scheme” as well as against TBB’s random victim selection approach.

Our results show improvements in execution times and energy-efficiency of up

to 11.23% and 14.72% respectively when compared to TBB’s default policy.

Keywords: Intel TBB, victim selection, parallelization overheads.

1. Introduction

With Chip Multiprocessors present in almost any computing device today,

software developers need to leverage the potential of this hardware and move

towards parallel implementations. Parallel programming is a challenge mainly

because there is no widely adopted programming model that facilitates easy

∗Corresponding author
Email address: iordan@idi.ntnu.no (Alexandru C. Iordan)

Preprint submitted to Journal of Systems Architecture May 15, 2015

parallelization. Parallel software development requires tools and methodologies

to reduce time-to-market and maintenance effort. Over the last years, industry

and academia have developed several parallel libraries that aim at improving

application portability and programming efficiency [1, 2, 3, 4].

The introduction of CMPs almost a decade ago has enabled the mitigation

of development constraints like the power wall and the ILP wall [5]. The per-

formance potential of CMPs lies in exploiting thread level parallelism which

means that parallel software is required to fully take advantage of this architec-

ture. Intel’s Thread Building Blocks (TBB) [4] is a runtime library designed to

encourage software developers to create portable, parallel applications with task

parallelism. TBB was developed to dynamically scale on the existing resources

and employs task stealing to deal with workload imbalance. It was designed

to allow developers to focus on parallelizing their code by providing a runtime

system that handles parallelism management.

The cost of TBB’s dynamic parallelism management is increased paralleliza-

tion overhead. Developers may have to harness fine-grained parallelism from

their applications in order to fully utilize a CMP’s resources and this can incur

high parallelization overheads. Understanding and limiting these overheads is

a necessary step towards scalable and more efficient runtime parallel libraries.

To this end, we investigate the extra instructions added by parallelization man-

agement and the energy consumption of these instructions which we refer to as

the energy footprint. More precisely, the energy footprint is the energy spent

for executing the given application or section of code in the context of the test

system.

Our paper makes the following important contributions:

• We continue our study of the parallelism management costs of TBB [6, 7]

and their impact on a CMP’s energy efficiency. To allow for extensive

and noninvasive measurements under increasing core counts, we use a

performance simulator and a power estimation tool in our study.

• Extending our study into victim selection policies [7], we show that we

2

can reduce thread contention and improve both execution times and the

energy-efficiency of a parallel application when making an informed selec-

tion rather than a random one.

• We do a comparative study of several selection policies to show that with

increasing core counts, the random victim selection policy employed by

TBB is a serious performance bottleneck.

Our experiments show that parallelization overheads can cause sub-linear

speedups leading to an increased energy consumption for parallel applications.

In this paper, we look into mitigating the impact of these overheads and thereby

reducing thread contention for hardware resources. By changing TBB’s random

victim selection policy to an occupancy-aware or even to a pseudo-random policy

we can achieve better performance or improved energy efficiency.

The paper is organized as follows: Section 2 gives a general description of

Intel TBB and its mechanisms for parallelizations. Section 3 presents more

details about the victim selection policy used in TBB as well as the policies

we propose. The simulation tools and the benchmarks used in our experiments

are described in Section 4. In Section 5, we present our study of the victim

selection policies. Section 6 presents the related work and Section 7 concludes

the paper.

2. Intel TBB

The concept of parallel programming is almost as old as the computer itself,

yet it is a challenge for most developers. In today’s multi-core era the over-

all efficiency of the system suffers if parallel applications are not developed to

dynamically scale and take advantage of all the resources that are available to

them. Over the years, many parallel languages have been developed and a mul-

titude of research was done in an effort to improve performance and maximize

hardware utilization [8]. With the majority of those approaches, one factor was

often overlooked: the composability of the resulting solution. Composability

3

n worker threads

RML

Market

Arena Arena Arena

Worker
threads

Assigned
workers Arena

slots

MT1 MT2 MT3

Task
queues

Figure 1: Components of TBB’s task scheduler

of an application refers to its ability to run efficiently side by side with other

applications and to be able to cope with the fact that it does not have exclusive

access to the hardware resources [9]. We see this characteristic as a requirement

for efficient exploitation of CMPs. For this reason, we focus on Intel’s TBB

version 4.1.1, which was designed to provide a high degree of composability.

Figure 1 gives an overview of the structures TBB maintains in order to

create and balance its parallel executing threads. The library allows parallelism

to be annotated both explicitly and implicitly. Explicit task creation is achieved

through the use of methods like spawn() which gives the programmer complete

control over the work performed by each task. Implicit task creation makes use

of some templates like parallel for or parallel reduce which make code writing

faster but gives control of the task creation over to the TBB library. Tasks are

created and then added to the calling thread’s task queue inside the arena (see

Figure 1). From the arena the task is available for execution by its owner thread

or by other workers through stealing. A task can instantiate and spawn other

tasks resulting in a hierarchical task tree.

A TBB master thread (MT) is an application thread that instantiates the

tbb::task scheduler init object. All threads created by TBB to help complete

the work of the MT are called worker threads. The Resource Management

Layer (RML) is the component that hosts the pool of worker threads and gets

4

instantiated first (see Figure 1). No worker threads are created at this point,

this being postponed until the first task is spawned.

Continuing top-down in Figure 1, the Market is instantiated. This compo-

nent was added in version 3.0 of TBB to ensure the composability of the frame-

work. It separates the workload (the tasks) of one MT from other MTs that may

be executing on the same machine. The role of the market is to assign workers

to the arenas of each MT. The limit of the total number of workers available is

set to 1 less than the maximum of the argument of the tbb::task scheduler init

constructor and the total number of logical CPUs on the executing system.

The last structure to be created is the Arena associated with calling MT. An

arena encapsulates all the tasks and the execution resources (worker threads)

available to a MT. Each arena is assigned a number of slots representing the

number of workers that arena requires to complete its parallel tasks. This is de-

fined as 1 less than the minimum of the argument of the tbb::task scheduler init

constructor and the total number of workers available (limit set by the market).

Because several MTs can coexist, the total number of workers requested by all

arenas can be greater than the number of workers available in the RML’s pool.

In this situation, the market will allot workers proportionally to each MT’s

request.

All these components and limits are created once, during the first instance of

the tbb::task scheduler init object in the current execution. If an MT is not the

first one to call the task scheduler, it will create a new arena that will comply

with the limitation imposed by the market. Upon creation or destruction of an

arena, the worker threads can migrate between the active arenas.

After they are created, each worker thread runs a scheduling procedure called

wait for all() consisting of 3 nested loops. The inner loop executes the current

task by calling its execute() method. TBB is a continuation-passing style library

which means that the completion of this task returns a pointer to the next task

that needs to be executed. If a new task is not referenced, the inner loop exits.

In the middle loop the get task() method tries to dequeue the local task queue

in a LIFO order. If successful, the inner loop is called again. If unsuccessful

5

because the queue is empty, the middle loop exits and the outer loop invokes

the stealing mechanism by calling the receive or steal task() method.

3. The stealing mechanism

3.1. The TBB implementation

The receive or steal task() method is part of the outer loop in the scheduling

procedure and it looks for all work available at this level. This includes: tasks

mailed via the task-to-thread affinity mechanism, reload offloaded non-priority

tasks or reload tasks abandoned by other workers. If none of these calls return

a task to execute, a steal is attempted from a randomly selected victim thread

in the current arena. If the attempt is successful, the method returns and the

scheduler re-enters the inner loop of the scheduling procedure. If unsuccessful,

a failure counter is incremented and the execution pauses before looping back

to the beginning of receive or steal task() method. Also, if the failure counter

surpasses a given threshold (default value is 100) and the arena is still empty,

the current worker thread is freed and returns to the RML.

When attempting a steal, the thief must first get a lock on the victim’s queue

using the lock task pool() method. If that fails, the thief goes through a 5 step

exponential backoff. After 5 fails, the current thread yields its resources and

waits for its next time slot to try to lock the same victim again. This locking

mechanism assures the high composability of TBB we discussed in Section 2.

However, the most common situation is when only one thread is running on each

hardware core, making the yielding function return immediately. This means

that the thief thread will continue trying to lock its victim. In our experiments,

we match the simulated number of threads to the simulated number of cores

which makes us face this locking issue.

The most common situation for stealing failure is due to selecting a victim

with an empty task queue. Applications with an unbalanced workload distri-

bution face this problem often. The default random selection policy in TBB

cannot prevent against this type of failures.

6

Race contention is also a common situation for failure. When two or more

threads are trying to get exclusive access to the same task queue by call-

ing the lock task pool(), only one can succeed. A thief can return from the

lock task pool() only if it either succeeds or the victim’s task queue has been

depleted. This means that the thread who did not acquire the lock will wait

around until that lock is freed or until the victim queue has been emptied.

A special situation is when a thief thread is competing for access with the

owner thread of that task queue. If there is more than one task in the queue,

there is no race contention because the thief will steal at one end while the

owner will dequeue the other. However, if there is only one task in the queue,

the owner thread will have priority and the thief will backoff.

3.2. The oracle selection scheme

In an attempt to see how much performance can be improved by tuning

the victim selection, we introduced an “all knowing” scheme we call the oracle

selection [7]. This method leverages on the fact that we use a simulator and

not a real machine. Thus, we can provide TBB with information that would

be otherwise very “expensive” to obtain. Outside the simulated memory space,

we created a data structure that stores the occupancy of each task queue in the

arena as well as their level of congestion (the number of workers trying to steal

from each queue). This structure is updated by the application through special-

ized instructions called markers that only our simulator recognizes and executes.

Since we do all this computation outside the simulated environment, our TBB

application sees the victim selection as an extremely fast, zero-overhead pro-

cedure. The scheme selects as victim the queue with some available tasks for

stealing and with the lowest congestion level. Even though this oracle scheme

provides very fast and accurate results, it is not perfect. For our simulator there

are still a few situations when updates to our structure do not propagate fast

enough and the selected victim ends up creating conflicts.

7

3.3. The pseudo-random selection scheme

Our second selection method is a pseudo-random scheme inspired by the

Wool library [3]. This policy was also introduced in [7], but for this paper we

improved its implementation and tuned its performance. For the first stealing

attempt, we randomly select a task queue. If stealing from this victim fails, we

then start a loop and sequentially scan the other active task queues, excluding

the one of the current thread. In this way we will first try to steal from all

possible queues before looping back in the receive or steal task() and selecting

a new random victim. There are two major benefits to this approach. First,

all the stealing attempts during the sequential scan are very cheap in terms of

number of instructions, reducing the overheads. Second, we can conclude much

earlier than the TBB implementation that an arena is out of work and we can

put a worker thread to sleep sooner. To tune our implementation even further,

we removed the call to the yielding function from the lock task pool(). This

forces the method to return after the 5 steps exponential backoff and eliminates

the conflicts caused by the immediate return of the yielding function. However,

this makes the stealing mechanism a bit more aggressive since it allows it to

select new victims faster.

3.4. The occupancy-aware selection scheme

This method is inspired by the oracle scheme and tries to find the task queue

with the most work available to steal from. In contrast to the oracle scheme, we

now select our victim based solely on the level of occupancy of the task queues.

Also, in contrast to our “all knowing” policy, this scheme is implemented fully in

the TBB library and can be used outside of our simulated environment. We use a

2-dimensional array to store the occupancy level of the queues, with each thread

logging separately information about tasks that it spawned, tasks that it stole or

tasks that it executed. In this way we eliminate the possibility of races on writing

and the need for a locking mechanism. To increase selection speed, we also do

the scanning of the array with no locks. All these ensure that this approach

is fast enough to work with TBB. However it also means that a snapshot of

8

Table 1: Main characteristics of modeled processor

Parameter Value

Core

Clock frequency 2.66 GHz

Instruction set x86-64

Dispatch width 4

Window size 128

Core count 1,2,4,8,16,32 cores

Cache

Size Assoc.

L1 iCache/dCache #cores x 32KB 4/8

L2 Cache #cores x 256KB 8

L3 Cache 2/4/8/16/32/64 MB 16

Main memory
Size 2/4/8/16/32/64 GB

the occupancy array will not always be accurate. Since the congestion level of

the task queues are not monitored (like the oracle policy does), a queue can be

selected as victim by several thieves at the same time. To make sure the thieves

will first deplete the tasks of this victim before attempting a new selection, we

used the default TBB approach for the lock task pool() function. A thief will

not return from this function unless it either acquired the lock or the task queue

is empty. With this selection scheme, just like with the pseudo-random one, we

can find out faster than the default TBB approach that an arena is out of work.

4. Methodology

4.1. Simulation tools

We performed our experiments using a parallel, x86 computer architecture

simulator called Sniper [10]. Sniper uses the interval core model [11] and

Graphite simulation infrastructure [12] to provide fast and accurate simula-

tions. Our model is a Nehalem-based Xeon 5500-series multi-core CPU (code

name Gainestown) with a clock frequency of 2.66 GHz and 3 levels of cache.

9

The simulations do not include an operating system and no mechanism for fre-

quency and/or voltage control is used. Table 1 lists the main characteristics of

the modeled processor.

The performance results from Sniper are fed into a power estimation tool

called McPAT [13]. An important characteristic of McPAT is its ability to

model dynamic, static and short-circuit power. Dynamic power refers to the

power required by a circuit to switch from one logical state to the other. For each

system component, dynamic power is defined as: powerdynamic ∼ AF ·C ·V 2
dd ·f ,

where AF is the activity factor, C is the total load capacitance, Vdd is the supply

voltage and f is the clock frequency [14]. Switching circuits also dissipate short-

circuit power which McPAT modeles analytically. Static power is caused by

current leakage during periods of non-activity. McPAT estimates leakage current

using models of real-world CMOS circuits.

A recent study shows that McPAT’s area and power models can have signifi-

cant errors [15]. The authors assess McPAT’s estimations against measurements

of an IBM POWER7 CMP. They note that read/write port overestimates caused

by high issue width and modeling of simultaneous multithreading (SMT) are

two of the major sources of error they observed. For this reason, our measure-

ments are only marginally affected by these errors since our modeled CPU has

a relative low issue width (4 compared to 8 for the POWER7) and no SMT

enabled.

To account for both active and idle core time, we use the dynamic power and

static power (totaling subthreshold and gate leakage) outputted by McPAT for

each core. In estimating the energy footprint, we multiply these by the active

runtime and the idle time respectively of the cores to get a measure of the energy

they use. Adding them all together gives us the CPU energy usage.

4.2. Benchmarks

For our experiments, we used the default TBB implementations of Blacksc-

holes, Bodytrack, Fluidanimate, Streamcluster and Swaptions benchmarks with

the simlarge input set from the PARSEC suite [16]. All of them were built us-

10

ing the 4.1.1 version of TBB. Collectively, these benchmarks express parallelism

both explicitly as well as implicitly and employ some special TBB constructs

like cache affinity partitioners and cache allocators. They provide a wide test

base for our study.

Blackscholes uses the Black-Scholes partial differential equation to analyti-

cally calculate the prices for a portfolio of European options. The differential

equation is implemented numerically and parallel for templates are employed

to divide the work among worker threads. In order to improve cache affinity, a

TBB affinity partitioner is used.

Bodytrack is a computer vision application which tracks a human body with

multiple cameras. It uses pipeline parallelism and parallel for templates to

express parallelism.

Fluidanimate simulates an incompressible fluid for interactive animation

purposes. It uses an extension of the Smoothed Particle Hydrodynamics method

to describe the fluid. Parallelism is annotated explicitly through spawn(task list).

Streamcluster is a mining application that tries to solve the online clustering

problem. Parallelism is annotated explicitly through spawn(task list) as well as

using parallel for and parallel reduce templates. TBB’s cache allocators are also

used to optimize access to shared data.

Swaptions uses the Heath-Jarrow-Morton framework to price a portfolio of

swaptions. Price computation is achieved through the Monte Carlo simulation.

Swaptions uses parallel for templates and cache allocators to express parallelism

and optimize access to shared data.

Our experiments are meant to study the impact of the victim selection policy

on the overall performance of the parallel execution. To that end, we want to

minimize all possible interference on our test policies and quantify their impact

as accurately as possible. To eliminate context switching on the simulated

cores, we always match their number with the number of parallel threads. Also,

we simulated only one benchmark at a time. It will be very difficult (if not

impossible) to account for the effects of thread interleaving when two or more

applications are executed at the same time.

11

0

5

10

15

20

25

30

35

40

0

5E+09

1E+10

1.5E+10

2E+10

2.5E+10

3E+10

3.5E+10

4E+10

4.5E+10

5E+10

2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

Blackscholes Bodytrack Fluidanimate Streamcluster Swaptions

Sp
e

e
d

u
p

o
f

ex
e

cu
te

d
 in

st
ru

ct
io

n
s

Serial Overheads Speedup

Figure 2: Overheads and speedups for the default random selection policy

To account for the non-deterministic simulation of Sniper, we performed 10

simulations of each benchmark for every core count. We averaged the perfor-

mance results (µ) and used these to estimate the power requirements. We also

computed the standard deviation (σ) of the execution time for each of the 10

simulation set. In none of our experiments we found any outliers, where an out-

lier is a value beyond 3σ ± µ. For Blackscholes, Bodytrack, Fluidanimate and

Streamcluster, our results show a σ/µ in the 0.012% - 1.83% range. Swaptions,

due to its use of the Monte Carlo simulation has a higher variability between

simulation, with σ/µ in the 1.18% - 14.73% range.

5. Results

As described by Amdahl’s law, the maximum expected speedup of paral-

lelization is limited by the sequential fraction of the program. When managing

overheads are taken into consideration, this theoretical maximum becomes even

harder to achieve. As we showed in our previous study, these overheads become

larger as we scale the core count [7]. Even though with parallel executions the

work gets done faster, the energy required to complete it is often equal or greater

than the sequential execution.

12

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

Blackscholes Bodytrack Fluidanimate

R
e

la
ti

ve
 e

xe
cu

ti
o

n
 t

im
e

Oracle OA Pseudo

Figure 3: Total execution times relative to the random selection policy

5.1. Parallelization overheads

As mentioned in Section 2, each worker thread runs a scheduling procedure

containing an infinite nested loop. This loop tries to execute tasks from its

own queue or to obtain some work through the receive or steal task() method.

By default, the receive or steal task() method loops a maximum of 100 times

in an attempt to obtain a task before reporting that the arena is empty and

returning the thread to RML. This means that each time a steal fails, the

receive or steal task() will loop to the beginning adding overheads and delay to

the execution.

A very simple way to see what trend parallelization overheads form as you

scale up the number of cores is to look at the execution statistics reported by

TBB. There you can see how many times each parallel thread successfully stole

a task, how many times it failed, how many times out of those fails was due

to conflicts with other threads and many other. Looking at these statistics

for the default TBB implementation, it becomes apparent that random victim

selection policy is a serious bottleneck for high core counts. For applications

with high numbers of parallel tasks like Swaptions, failed tasks range from an

average of 40000 for 2-cores executions to almost 18 millions for 32-cores ones.

That translates into 38.18% increase in instruction count when compared to the

serial execution (see Figure 2). A detailed analysis of the results presented in

13

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2 4 8 16 32 2 4 8 16 32

Streamcluster Swaptions

R
e

la
ti

ve
 e

xe
cu

ti
o

n
 t

im
e

Oracle OA Pseudo

Figure 4: Total execution times relative to the random selection policy

Figure 2, including a breakdown of the overheads and a discussion on speedups,

can be found in [7].

With the occupancy-aware selection scheme we wanted to reduce the over-

heads by removing all (or as many as possible) failed tasks caused by conflicts.

Although we managed to do that, the overall overheads are generally higher

than those of the random selection experiments. This is due to the fact that

we scan the occupancy array for each steal attempt and this adds up fast. For

all our low core counts (2 or 4) results there is not enough contention among

threads in order to balance-out the added number of instructions of the scan-

ning operation. In addition, some benchmarks like Blackscholes, Bodytrack and

Fluidanimate have low numbers of total tasks to execute which again makes it

hard to make up for the overhead of the scanning operation.

In the case of the pseudo-random selection policy, things are almost the

opposite of occupancy-aware scheme: we generally have more failed steal at-

tempts, but overall the overheads are lower. This is explained by the fact that

the pseudo-random policy is far more aggressive in trying to find new work, but

due to our sequential scanning implementation each attempt is cheaper. Also,

the receive or steal task() method returns much faster reducing the overheads

even further.

14

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

2 4 8 16 32 2 4 8 16 32 2 4 8 16 32

Blackscholes Bodytrack Fluidanimate

R
e

la
ti

ve
 e

n
e

rg
y

fo
o

tp
ri

n
t

Oracle OA Pseudo

Figure 5: Energy footprint relative to the random selection policy

5.2. Victim selection policies - comparative study

The main issue faced by the random selection policy is its inability to scale.

For high core counts or when we are dealing with very fine parallelism which

forces the worker threads to steal often, random selection causes overheads to

grow exponentially. We developed the occupancy-aware and the pseudo-random

schemes to address this limitation, by adding some information gathering in the

selection process. By doing this we increased the work the threads need to

do, so the added performance has to pay for this as well. Because of its very

simple nature, the random victim selection policy remains hard to outperform

in situations when race contention among threads are rare (see Figure 3). Our

occupancy-aware policy proves to be great in theory but difficult in practice.

Our results show that it manages to significantly reduce the conflicts among

threads. However, our implementation relies on scanning the occupancy array

for each steal attempt which proves to be very costly. In addition, we imple-

mented some guards against conflicts with the main thread which proved to

have unexpected effects in some situations (see the 2-core results for Streamline

in Figure 4). What becomes apparent when looking at the results in Figure 3

and 5 is that we can’t always afford the added complexity. However, when there

is enough congestion for this policy to make a difference, it can reduce execution

time with up to 11.23% and the energy footprint with up to 7.83% (see Figure 4

15

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

2 4 8 16 32 2 4 8 16 32

Streamcluster Swaptions

R
e

la
ti

ve
 e

n
e

rg
y

fo
o

tp
ri

n
t

Oracle OA Pseudo

Figure 6: Energy footprint relative to the random selection policy

and 6).

The pseudo-random selection is much lighter in terms of extra-work com-

pared to the occupancy-aware policy, but is also more aggressive. Our results

with this scheme show that it can only be marginally faster than the default

random selection, but it constantly does better in terms of energy-footprint (see

Figure 3, 4, 5 and 6). This happens because with this policy it is very easy to

identify the situations when there is no work to be done by the worker threads.

By putting them to sleep sooner, we save energy. In this way it manages to

reduce the energy footprint with up to 14.72%.

6. Related Work

The energy efficiency of parallel systems and the overheads parallelization

brings have been the subject of many studies. Reducing the power requirements

of multi-core CPUs, improving the energy efficiency of big parallel systems or

reducing the overheads of parallel implementations have been explored by many

researchers and plenty of solutions have been found.

Li and Martinez studied the power-performance implications of running

parallel applications on CMPs [17]. Using both an analytical model and de-

tailed simulations, the authors show that parallel computing can bring signif-

16

icant power savings through judiciously selections of the granularity and volt-

age/frequency levels.

Contreras and Martonosi study and characterize some of the overheads of

Intel’s TBB [18]. They concluded that task management operation can have a

detrimental effect on the performance of parallel execution. The authors also

note that random stealing fails to scale with increasing core counts and that

alternative policies can improve performance.

Bhattacharjee and Martonosi propose a hardware thread criticality predic-

tor which they build using already-accessible on-chip information like memory

statistics [19]. The authors test this predictor in two different scenarios. First,

they use it to assist TBB’s task scheduler and show that task stealing can be

improved over the original random approach. Second, they use the predictor to

guide DVFS and to reduce dynamic energy in barrier-based applications. The

authors conclude that the thread criticality predictor offers good accuracy at

very low hardware overhead.

Podobas et al. do a performance comparative study of several parallelization

libraries, including TBB [20]. They use both micro-benchmarks and a subset of

the BOTS suite to characterize application performance and the costs for task

creation and stealing. The study concludes that Wool has the lowest overhead

for task spawning and task stealing. However, our previous study showed Wool

to be far more aggressive when stealing than TBB which means that as we scale

up the core number, Wool will perform worse [6].

The direct task stack is a TBP algorithm for extremely fine grained par-

allel applications [21]. Its implementation in the Wool library shows very low

overheads for task creation and task stealing. The experimental results show

that Wool significantly outperforms other implementations like Cilk++, TBB or

OpenMP for extremely fine grained parallel applications (tens of cycles/task).

Vandierendonck et al. advocate the use of TBP models with nested task

spawning for writing general-purpose programs [22]. The authors developed a

Cilk-like language to express parallel pipelines and extended a Cilk-like scheduler

to recognize and enforce argument dependency types on task spawns. This

17

programming model enhances the ease of programming parallel pipelines.

Chen et al. do a study to evaluate TBB’s scalability against Pthreads imple-

mentations and to measure some of TBB’s overheads [23]. Their results show

possible bottlenecks that limit the scalability of TBB. They also show that TBB

runtime overheads increase with core counts and in the current implementation

will become the main performance bottleneck when scaling to tens of cores.

Ami Marowka introduces TBBench, a micro-benchmark suite designed for

Intel’s TBB [24]. TBBench is designed to measure the overheads associated with

parallel for and parallel reduce constructs and mutual exclusion mechanisms like

Mutex, Spin mutex and Queuing mutex. The experimental results show that

TBB’s mutual exclusion mechanisms and scheduler exhibit less overheads than

the equivalent OpenMP constructs.

7. Conclusion

Intel’s TBB is a runtime library designed to encourage programmers to create

portable, parallel applications using task parallelism. TBB was developed to

dynamically scale on the existing resources, employing task stealing to deal

with workload imbalance. However, as CPU’s core counts are ever-increasing,

TBB proves to have a performance bottleneck in its use of a random victim

selection policy.

Continuing our previous study [7], we propose two alternatives for the vic-

tim selection process. Based on the “all knowing” oracle scheme, we developed

an occupancy-aware policy to reduce the number of failed steals. However, our

implementation proved to be too complex and in many situation we recorded

an overall increase in overheads. Nevertheless, for applications with very high

thread contention, this scheme proved to be very beneficial, reducing the exe-

cution time and the energy footprint with up to 11.23% and 7.83% respectively.

We think that our implementation can be improved and we will pursue this in

future work.

The pseudo-random victim selection is the second policy we experimented

18

with. The implementation in this paper is a refinement of the one in [7] and it

showed better energy footprints across the board when compared to the default

TBB scheme. Even though it copes better in situations with many races between

threads than the random one, the pseudo-random selection’s performance is still

affected in such scenarios.

With this work we showed that TBB can be improved for both performance

and energy efficiency, even though not always at the same time. The results of

our occupancy-aware scheme can be improved and we plan to do this in future

work. Also, seeing how the pseudo-random approach performs well under low

core counts, we are also considering a combined selection policy. The idea is

to use each scheme for the core counts that they perform best. Based on our

experiments so far, for core counts of 2 to 8 pseudo-random could be used and

occupancy-aware for anything above. However, a more extensive testing needs

to be done on a larger number of benchmarks before confirming this threshold.

References

[1] C. Leiserson, The Cilk++ concurrency platform, The Journal of Super-

computing 51 (3) (2010) 244–257. doi:10.1007/s11227-010-0405-3.

URL http://dx.doi.org/10.1007/s11227-010-0405-3

[2] D. Leijen, W. Schulte, S. Burckhardt, The Design of a Task Parallel Li-

brary, in: Proceedings of the 24th ACM SIGPLAN Conference on Ob-

ject Oriented Programming Systems Languages and Applications, OOP-

SLA ’09, ACM, New York, NY, USA, 2009, pp. 227–242. doi:10.1145/

1640089.1640106.

URL http://doi.acm.org/10.1145/1640089.1640106

[3] K.-F. Faxén, Wool - A Work Stealing Library, SIGARCH Comput. Archit.

News 36 (5) (2009) 93–100. doi:10.1145/1556444.1556457.

URL http://doi.acm.org/10.1145/1556444.1556457

[4] C. Pheatt, Intel Threading Building Blocks, J. Comput. Sci. Coll. 23 (4)

19

http://dx.doi.org/10.1007/s11227-010-0405-3
http://dx.doi.org/10.1007/s11227-010-0405-3
http://dx.doi.org/10.1007/s11227-010-0405-3
http://doi.acm.org/10.1145/1640089.1640106
http://doi.acm.org/10.1145/1640089.1640106
http://dx.doi.org/10.1145/1640089.1640106
http://dx.doi.org/10.1145/1640089.1640106
http://doi.acm.org/10.1145/1640089.1640106
http://doi.acm.org/10.1145/1556444.1556457
http://dx.doi.org/10.1145/1556444.1556457
http://doi.acm.org/10.1145/1556444.1556457
http://dl.acm.org/citation.cfm?id=1352079.1352134

(2008) 298–298.

URL http://dl.acm.org/citation.cfm?id=1352079.1352134

[5] S. Fuller, L. Millett, Computing Performance: Game Over or Next Level?,

Computer 44 (1) (2011) 31–38. doi:http://doi.ieeecomputersociety.

org/10.1109/MC.2011.15.

[6] A. C. Iordan, M. Jahre, L. Natvig, On the Energy Footprint of Task Based

Parallel Applications, in: High Performance Computing and Simulation

(HPCS), 2013 International Conference on, 2013, pp. 164–171. doi:10.

1109/HPCSim.2013.6641409.

[7] A. C. Iordan, M. Jahre, L. Natvig, Victim Selection Policies for Intel TBB:

Overheads and Energy Footprint, in: E. Maehle, K. Rmer, W. Karl, E. To-

var (Eds.), Architecture of Computing Systems - ARCS 2014, Vol. 8350

of Lecture Notes in Computer Science, Springer International Publishing,

2014, pp. 13–24. doi:10.1007/978-3-319-04891-8_2.

URL http://dx.doi.org/10.1007/978-3-319-04891-8_2

[8] D. Patterson, The Trouble With Multicore, IEEE Spectrum 47 (7) (2010)

28–32, 53. doi:10.1109/MSPEC.2010.5491011.

[9] H. Pan, B. Hindman, K. Asanović, Composing Parallel Software Efficiently

with Lithe, in: Proceedings of the 2010 ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI ’10, ACM, New

York, NY, USA, 2010, pp. 376–387. doi:10.1145/1806596.1806639.

URL http://doi.acm.org/10.1145/1806596.1806639

[10] T. E. Carlson, W. Heirman, L. Eeckhout, Sniper: Exploring the Level

of Abstraction for Scalable and Accurate Parallel Multi-core Simulation,

in: Proceedings of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis, SC ’11, ACM, New York,

NY, USA, 2011, pp. 52:1–52:12. doi:10.1145/2063384.2063454.

URL http://doi.acm.org/10.1145/2063384.2063454

20

http://dl.acm.org/citation.cfm?id=1352079.1352134
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MC.2011.15
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MC.2011.15
http://dx.doi.org/10.1109/HPCSim.2013.6641409
http://dx.doi.org/10.1109/HPCSim.2013.6641409
http://dx.doi.org/10.1007/978-3-319-04891-8_2
http://dx.doi.org/10.1007/978-3-319-04891-8_2
http://dx.doi.org/10.1007/978-3-319-04891-8_2
http://dx.doi.org/10.1007/978-3-319-04891-8_2
http://dx.doi.org/10.1109/MSPEC.2010.5491011
http://doi.acm.org/10.1145/1806596.1806639
http://doi.acm.org/10.1145/1806596.1806639
http://dx.doi.org/10.1145/1806596.1806639
http://doi.acm.org/10.1145/1806596.1806639
http://doi.acm.org/10.1145/2063384.2063454
http://doi.acm.org/10.1145/2063384.2063454
http://dx.doi.org/10.1145/2063384.2063454
http://doi.acm.org/10.1145/2063384.2063454

[11] D. Genbrugge, S. Eyerman, L. Eeckhout, Interval simulation: Raising the

level of abstraction in architectural simulation, in: High Performance Com-

puter Architecture (HPCA), 2010 IEEE 16th International Symposium on,

2010, pp. 1–12. doi:10.1109/HPCA.2010.5416636.

[12] J. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Ce-

lio, J. Eastep, A. Agarwal, Graphite: A distributed parallel simulator

for multicores, in: High Performance Computer Architecture (HPCA),

2010 IEEE 16th International Symposium on, 2010, pp. 1–12. doi:

10.1109/HPCA.2010.5416635.

[13] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, N. P. Jouppi,

McPAT: An Integrated Power, Area, and Timing Modeling Framework for

Multicore and Manycore Architectures, in: Proceedings of the 42Nd Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 42,

ACM, New York, NY, USA, 2009, pp. 469–480. doi:10.1145/1669112.

1669172.

URL http://doi.acm.org/10.1145/1669112.1669172

[14] S. Kaxiras, M. Martonosi, Computer Architecture Techniques for Power-

Efficiency, 1st Edition, Morgan and Claypool Publishers, 2008.

[15] S. L. Xi, H. Jacobson, P. Bose, G.-Y. Wei, D. Brooks, Quantifying sources

of error in McPAT and potential impacts on architectural studies, in:

High Performance Computer Architecture (HPCA), 2015 IEEE 21st In-

ternational Symposium on, 2015, pp. 577–589. doi:10.1109/HPCA.2015.

7056064.

[16] C. Bienia, Benchmarking Modern Multiprocessors, Ph.D. thesis, Princeton,

NJ, USA, aAI3445564 (2011).

[17] J. Li, J. F. Mart́ınez, Power-performance Considerations of Parallel Com-

puting on Chip Multiprocessors, ACM Trans. Archit. Code Optim. 2 (4)

(2005) 397–422. doi:10.1145/1113841.1113844.

URL http://doi.acm.org/10.1145/1113841.1113844

21

http://dx.doi.org/10.1109/HPCA.2010.5416636
http://dx.doi.org/10.1109/HPCA.2010.5416635
http://dx.doi.org/10.1109/HPCA.2010.5416635
http://doi.acm.org/10.1145/1669112.1669172
http://doi.acm.org/10.1145/1669112.1669172
http://dx.doi.org/10.1145/1669112.1669172
http://dx.doi.org/10.1145/1669112.1669172
http://doi.acm.org/10.1145/1669112.1669172
http://dx.doi.org/10.1109/HPCA.2015.7056064
http://dx.doi.org/10.1109/HPCA.2015.7056064
http://doi.acm.org/10.1145/1113841.1113844
http://doi.acm.org/10.1145/1113841.1113844
http://dx.doi.org/10.1145/1113841.1113844
http://doi.acm.org/10.1145/1113841.1113844

[18] G. Contreras, M. Martonosi, Characterizing and improving the perfor-

mance of Intel Threading Building Blocks, in: Workload Characterization,

2008. IISWC 2008. IEEE International Symposium on, 2008, pp. 57–66.

doi:10.1109/IISWC.2008.4636091.

[19] A. Bhattacharjee, M. Martonosi, Thread Criticality Predictors for Dynamic

Performance, Power, and Resource Management in Chip Multiprocessors,

in: Proceedings of the 36th Annual International Symposium on Computer

Architecture, ISCA ’09, ACM, New York, NY, USA, 2009, pp. 290–301.

doi:10.1145/1555754.1555792.

URL http://doi.acm.org/10.1145/1555754.1555792

[20] A. Podobas, M. Brorsson, K.-F. Faxén, A Comparison of Some Recent

Task-based Parallel Programming Models, in: Third Workshop on Pro-

grammability Issues for Multi-Core Computers, 2009.

[21] K.-F. Faxén, Efficient Work Stealing for Fine Grained Parallelism, in: Par-

allel Processing (ICPP), 2010 39th International Conference on, 2010, pp.

313–322. doi:10.1109/ICPP.2010.39.

[22] H. Vandierendonck, P. Pratikakis, D. S. Nikolopoulos, Parallel Program-

ming of General-purpose Programs Using Task-based Programming Mod-

els, in: Proceedings of the 3rd USENIX Conference on Hot Topic in Par-

allelism, HotPar’11, USENIX Association, Berkeley, CA, USA, 2011, pp.

13–13.

URL http://dl.acm.org/citation.cfm?id=2001252.2001265

[23] X. Chen, W. Chen, J. Li, Z. Zheng, L. Shen, Z. Wang, Characterizing

Fine-Grain Parallelism on Modern Multicore Platform, in: Parallel and

Distributed Systems (ICPADS), 2011 IEEE 17th International Conference

on, 2011, pp. 941–946. doi:10.1109/ICPADS.2011.41.

[24] A. Marowka, TBBench: A Micro-Benchmark Suite for Intel Threading

Building Blocks., JIPS 8 (2) (2012) 331–346.

22

http://dx.doi.org/10.1109/IISWC.2008.4636091
http://doi.acm.org/10.1145/1555754.1555792
http://doi.acm.org/10.1145/1555754.1555792
http://dx.doi.org/10.1145/1555754.1555792
http://doi.acm.org/10.1145/1555754.1555792
http://dx.doi.org/10.1109/ICPP.2010.39
http://dl.acm.org/citation.cfm?id=2001252.2001265
http://dl.acm.org/citation.cfm?id=2001252.2001265
http://dl.acm.org/citation.cfm?id=2001252.2001265
http://dl.acm.org/citation.cfm?id=2001252.2001265
http://dx.doi.org/10.1109/ICPADS.2011.41
http://dblp.uni-trier.de/db/journals/jips/jips8.html#Marowka12
http://dblp.uni-trier.de/db/journals/jips/jips8.html#Marowka12

URL http://dblp.uni-trier.de/db/journals/jips/jips8.html#

Marowka12

23

http://dblp.uni-trier.de/db/journals/jips/jips8.html#Marowka12
http://dblp.uni-trier.de/db/journals/jips/jips8.html#Marowka12

	Introduction
	Intel TBB
	The stealing mechanism
	The TBB implementation
	The oracle selection scheme
	The pseudo-random selection scheme
	The occupancy-aware selection scheme

	Methodology
	Simulation tools
	Benchmarks

	Results
	Parallelization overheads
	Victim selection policies - comparative study

	Related Work
	Conclusion

