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introduction: Metabolic profiling of intact tumor tissue by high-resolution magic angle 
spinning (HR MAS) MR spectroscopy (MRS) provides important biological information 
possibly useful for clinical diagnosis and development of novel treatment strategies. 
However, generation of high-quality data requires that sample handling from surgical 
resection until analysis is performed using systematically validated procedures. In this 
study, we investigated the effect of postsurgical freezing delay time on global metabolic 
profiles and stability of individual metabolites in intact tumor tissue.

Materials and methods: Tumor tissue samples collected from two patient-derived 
breast cancer xenograft models (n = 3 for each model) were divided into pieces that 
were snap-frozen in liquid nitrogen at 0, 15, 30, 60, 90, and 120  min after surgical 
removal. In addition, one sample was analyzed immediately, representing the metabolic 
profile of fresh tissue exposed neither to liquid nitrogen nor to room temperature. We also 
evaluated the metabolic effect of prolonged spinning during the HR MAS experiments in 
biopsies from breast cancer patients (n = 14). All samples were analyzed by proton HR 
MAS MRS on a Bruker Avance DRX600 spectrometer, and changes in metabolic profiles 
were evaluated using multivariate analysis and linear mixed modeling.

results: Multivariate analysis showed that the metabolic differences between the two 
breast cancer models were more prominent than variation caused by freezing delay time. 
No significant changes in levels of individual metabolites were observed in samples fro-
zen within 30 min of resection. After this time point, levels of choline increased, whereas 
ascorbate, creatine, and glutathione (GS) levels decreased. Freezing had a significant 
effect on several metabolites but is an essential procedure for research and biobank 
purposes. Furthermore, four metabolites (glucose, glycine, glycerophosphocholine, and 
choline) were affected by prolonged HR MAS experiment time possibly caused by physi-
cal release of metabolites caused by spinning or due to structural degradation processes.

conclusion: The MR metabolic profiles of tumor samples are reproducible and robust 
to variation in postsurgical freezing delay up to 30 min.

Keywords: cancer, freezing time delay, hr Mas, metabolic profile, Mr spectroscopy, metabolomics, snap-
freezing, degradation
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inTrODUcTiOn

The field of metabolomics has the potential to fill important gaps 
within the knowledge of cancer biology (1). Within this field, 
molecular pathways and interactions are studied through the 
expression of small molecular compounds called metabolites. 
These compounds are intermediates or end products of ongoing 
biochemical processes, and the overall metabolic profile repre-
sents a unique fingerprint of the cellular state at a specific time 
point. Metabolites constitute the final level in the -omics cascade, 
downstream to genomics, transcriptomics, and proteomics, 
reflecting the combined effect of all the upstream molecular levels 
(2). However, the metabolic snapshot obtained from a tumor tis-
sue specimen depends on additional factors, such as the tumor 
microenvironment and the polyclonality frequently observed in 
cancer, which introduces additional complexity for the interpre-
tation of the metabolic information. Nevertheless, metabolic pro-
filing of intact fresh frozen tissue is gaining popularity in clinical 
research, as it potentially can identify novel prognostic or predic-
tive metabolic biomarkers or explore the abnormal biochemical 
activity aiming to identify novel therapeutic approaches.

Metabolomic studies using high-resolution magic angle 
spinning MR spectroscopy (HR MAS MRS) enables investiga-
tion of tumor tissue with minimal sample preparation, thus 
limiting loss of information through tissue extraction and 
maintaining high reproducibility (3). HR MAS MRS is also a 
non-destructive technique (4) shown to retain histopathological 
characteristics (5) and high RNA quality (6) of analyzed tissue. 
This technology has been used to discriminate between tumor 
and normal tissues in several cancers (7), but is increasingly 
used to explore the role of metabolomics in patient stratification 
for personalized oncology (8–10). In these studies, biobanks 
have been established after collecting tumor tissue from large 
patient cohorts and the association between metabolic charac-
teristics and disease outcome has been investigated. The quality 
of data from such studies requires a high degree of analytical 
accuracy and precision, as well as highly standardized and 
validated protocols for sample collection, storage, and handling 
prior to analysis.

One of the critical points during sample collection, especially 
in a clinical setting, is the time period from blood supply cutoff 
during surgical resection until the sample is frozen for storage 
(freezing delay time). This interval may vary depending on 
the difficulty of the surgical procedure and the required tissue 
processing procedures, while cellular enzymatic and chemical 
reactions will take place and potentially cause alterations in the 
tissue metabolomic profile. Therefore, it is important to assess the 
susceptibility of these profiles to systematic variability resulting 
from sample handling and analysis. The main objective of this 
study was to investigate the metabolic effects of freezing delay 
time, aiming to validate the sample collection protocols normally 
used in biobanking for MR metabolomics studies. To minimize 
the impact of inter- and intratumor variability, tumor tissue was 
obtained from two well-characterized breast cancer xenograft 
models (11, 12). Furthermore, we describe the metabolic effects 
of snap-freezing tumor samples and the degradation pattern 
caused by prolonged HR MAS MRS acquisitions using human 

breast cancer samples. Finally, sample collection and handling 
procedures that ensure optimal data quality in metabolomic 
studies of cancer tissue are suggested.

MaTerials anD MeThODs

Tissue samples
Animal Model
The two orthotopic xenograft models MAS98.12 and MAS98.06 
were established by direct transplantation of biopsy tissue from 
primary mammary carcinomas in immunodeficient SCID mice 
and thereafter passaged as previously described (11). These models 
have been characterized by unsupervised hierarchical clustering 
of intrinsic genes (13, 14) to represent basal-like (poor prognosis) 
and luminal-like (better prognosis) breast cancer phenotype 
respectively (11), and they also have distinct metabolic profiles 
(12, 15). Mice carrying xenograft tumors [basal-like (n = 3) and 
luminal-like (n = 3)] were sacrificed by cervical dislocation and 
tumor tissue was harvested and snap-frozen in liquid nitrogen 
according to the protocol below. All procedures and experiments 
involving animals were approved by the National Animal Research 
Authority and carried out according to the European Convention 
for the Protection of Vertebrates used for Scientific Purposes.

Patient Material
Breast cancer tissue samples from 14 female patients undergoing 
surgery at St. Olav’s Hospital (Trondheim, Norway) and Molde 
Hospital (Molde, Norway) were included in the study. Patients 
were chosen without any other prior clinical information. The 
biopsies were snap-frozen immediately after excision during the 
surgical procedure and further stored in liquid nitrogen until 
subsequent analyses. All patients have signed a written informed 
consent, and the study was approved by the Regional Ethics 
Committee, Central Norway.

experimental Design and hr Mas Mrs 
experiments
Effect of Freezing Delay Time
One tumor from each mouse was divided into pieces and left at 
room temperature for 0, 15, 30, 60, 90, and 120 min, prior to snap-
freezing in liquid nitrogen. This procedure covers both realistic 
and extreme freezing time delays, which could occur in tissue 
harvesting procedures during breast cancer surgery. In addition, 
one sample was analyzed immediately after excision representing 
the metabolic profile of the tumor tissue without exposure to 
liquid nitrogen or freezing. The total number of samples analyzed 
for this study was 42.

Before HR MAS MRS experiments, 3  μL cold sodium for-
mate in D2O (24.29 mM) was added to a leak-proof disposable 
30-μL insert (Bruker, Biospin GmbH, Germany) as a shimming 
reference. Tissue samples were cut to fit the insert (mean sample 
weight 9.8 mg) on a dedicated work station designed to keep the 
samples frozen (16) during preparation. The insert containing the 
frozen sample was placed in a 4-mm diameter zirconium rotor 
(Bruker, Biospin GmbH, Germany) and kept at −20°C for 6–8 h 
before the experiments to minimize degradation.
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HR MAS MRS experiments were performed on a Bruker 
Avance DRX600 spectrometer (Bruker, Biospin GmbH, Germany) 
equipped with a 1H/13C MAS probe with gradient aligned with the 
magic angle (Bruker, Biospin GmbH, Germany). Samples were 
spun at 5000 Hz and experiments run at 5°C. The samples were 
allowed 5 min temperature acclimatization before shimming and 
spectral acquisition.

Spin-echo spectra were recorded using a Carr–Purcell–
Meiboom–Gill (cpmg) pulse sequence (cpmgpr1D; Bruker, 
L4  =  126). T2 filtering was obtained using a delay of 0.6  ms 
between each 180° pulse to suppress macromolecules and lipid 
signals and enhance signal from small molecules. This resulted in 
a total echo time (TE) of 77 ms. The total number of scans (NS) 
were 64 over a spectral width of 20 ppm (−5 to 15 ppm) with an 
acquisition time of 3.07 s.

Degradation during Prolonged HR MAS MRS 
Analysis
Frozen human breast cancer tissue samples were cut to fit a leak-
proof 30-μL disposable insert (mean sample weight: 8.8  mg) 
added 3  μL of phosphate-buffered saline (PBS) based on D2O 
with trimethylsilyl propionate (TSP, 1 mM) and sodium formate 
(1 mM). The insert was placed in a 4-mm diameter zirconium 
rotor (Bruker, Biospin GmbH, Germany). Spin-echo experi-
ments (cpmgpr1D; Bruker, L4 = 136) were run with 2 ms delay 
between 180° pulses, TE of 273.5 ms, spectral width of 20 ppm 
(−5 to 15 ppm) and NS of 256 scans (17). To evaluate the effect 
of prolonged HR MAS MRS experimental time, data acquisition 
was repeated after 1.5 h. The sample was kept spinning (5000 Hz) 
within the magnet at 5°C in this time interval.

Data Preprocessing and statistical 
analysis
The FIDs were multiplied by a 0.30  Hz exponential function 
and Fourier transformed into 64k real points. Phase correction 
was performed automatically for each spectrum using TopSpin 
3.1 (Bruker). Further preprocessing of the HR MAS spectra was 
performed in Matlab R2013b (The Mathworks, Inc., USA). Due 
to unavailability of a stable internal reference, human spectra 
were referenced to the TSP peak (0 ppm) while xenograft spectra 
were referenced to formate (8.46 ppm). Baseline correction was 
achieved by setting the minimum value of each spectrum to 0 
and subtracting the lowest value. Peak alignment was performed 
using icoshift (18). The spectral region of interest in the human 
samples (2.89–4.73 ppm), which excludes the main lipid peaks, 
was normalized to equal total mean area, while the total spectral 
region (0.62–4.70 ppm) was normalized to sample weight in the 
xenograft spectra. In human tissue, lipid signals mainly originate 
from adipose tissue, and the lipid peaks may be very dominant 
in samples with low tumor content. Thus, the normalization 
accounts for differences in sample size and tumor cell content, 
the latter not necessary in xenograft samples with homogenous 
distribution of cancer cells.

To find underlying structure and main differences in the data-
set, the unsupervised multivariate method principal component 
analysis (PCA) was used. PCA is a powerful method to decrease 

the complexity of collinear multivariate data, such as MR spectra, 
into a few principal components (PCs). PCA was performed 
(using PLS_Toolbox 7.5.2, Matlab, Eigenvector Research, Inc., 
Wenatchee, WA, USA) on xenograft spectra and human breast 
cancer spectra to explore the metabolic variation within samples 
exposed to increasing delays in postsurgical freezing and pro-
longed experiment time respectively.

For both cohorts, metabolite assignment was based on 
previous published data from HR MAS MRS analyses of breast 
tumors (19). Furthermore, metabolite levels were determined by 
integrating fixed spectral regions (performed in Matlab R2013b) 
corresponding to the metabolites of interest and used for uni-
variate analysis. For metabolites with baseline strongly affected by 
closely resonating lipids, a linear baseline ranging from the first to 
the last point of the integral area was used.

Linear mixed models (LMM), an extension of linear regression, 
can be used to model data where several measurements from the 
same object are available. LMM accounts for both fixed and ran-
dom effects in the modeling of the metabolite levels. Fixed effects 
are those that are of particular interest, e.g., effect of freezing delay 
time, while random effects are often not of interest but cannot be 
adjusted for prior to the modeling, e.g., effects originating from 
between subjects variation. In the current study, freezing delay 
time as well as type of xenograft model (basal-like or luminal-
like) were set as fixed effects (continuous and categorical variable 
respectively), while xenograft subject was set as an random effect 
(without interaction term). The modeling was performed in R 
(20) using the “nlme” package (21).

Paired t-test was used to find time points were the metabolic 
levels had changed compared to baseline and to evaluate the effect 
of snap-freezing. Wilcoxon signed-rank test were performed to 
test the effect of prolonged experiment time on metabolite levels 
in human tumor tissue.

To adjust for the multiple metabolites tested, calculated p 
values were corrected for using The Benjamini Hochberg false 
discovery rate (FDR) in Matlab R2013b (The Mathworks, Inc., 
USA), and the differences were considered statistically significant 
for adjusted p-values ≤0.05.

histopathology and nile red staining
Histopathological analysis was performed in order to evaluate 
the presence of viable tumor tissue and mobile lipid droplets in 
each individual xenograft sample. After HR MAS MRS analysis, 
samples were immediately frozen in liquid nitrogen. About 4 
and 10  μm frozen sections were stained with hematoxylin–
eosin–saffron (HES) and Nile Red as described in Ref. (22), 
respectively.

resUlTs

effect of Freezing Delay Time in Xenograft 
Tumor Tissue
To examine the metabolic effect of delayed freezing, samples from 
the same xenograft tumor were left in room temperature for 0, 
15, 30, 60, 90, and 120 min prior to freezing. A PCA score plot 
of the spectra from all 42 samples revealed a clear separation of 
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FigUre 1 | Pca of Mr spectra from xenografts tumors exposed to variable freezing delay time, (a) score plot with samples colored by xenograft 
type, (B) loading plots for Pc1 (identifying lipid content as the most significant contributor to variability) and Pc2 (identifying the metabolic 
difference between xenograft models as the second most significant contributor to variability), (c) Pca trajectory score plot. Samples from the same 
animal are connected with colored lines and numbered according to freezing delay time: (1) not frozen, (2) 0 min, (3) 15 min, (4) 30 min, (5) 60 min, (6) 90 min, and 
(7) 120 min.
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basal-like and luminal-like xenograft model samples (Figure 1A). 
The variability between samples was predominantly attributed 
to the lipid content (PC1), whereas the levels of taurine, glyc-
erophosphocholine, and phosphocholine (PC2) contributed to 
discrimination between the two xenograft models (Figure 1B).

A trajectory PCA score plot suggests that freezing delay time 
had no systematic effect on metabolic profiles (Figure 1C).

The impact of Freezing Delay Time on 
individual Metabolites in Xenograft 
samples
The LMM result for glucose was excluded due to non-normally 
distributed residuals. The percentage change in levels of 15 
metabolites measured by HR MAS MRS in samples subject to 
increasing delays before freezing (n = 36) are shown in Table 1. 
After adjusting p-values for multiple testing, LMM revealed that 
three metabolites were significantly affected by type of xenograft 
model (basal-like and luminal-like) and four metabolites were 
significantly affected by delayed freezing (Table 2).

Figure 2 illustrates the change in average level of ascorbate, 
choline, creatine, and glutathione (GS) with increasing freezing 
delay time. The levels of ascorbate, creatine, and GS decreased 
with time. Both ascorbate and creatine levels decreased with 
approximately 30% within the 120 min time frame, while levels 
of GS were approximately 40% lower. The choline levels increased 
with time, reaching a level approximately 110% higher than base-
line at freezing delay time of 120 min.

Ascorbate, choline, and creatine levels were significantly dif-
ferent from baseline sample (frozen immediately) after 60 min 
freezing delay time while the same was observed for GS levels 
after 90 min (Figure 2).

Metabolic effect of Freezing
Immediately snap-frozen samples (0 min, n = 6) were compared 
to samples analyzed directly after excision (not frozen, 0  min, 
n = 6). A clear effect of freezing compared to unfrozen tissue was 
seen for 12 of 16 metabolites (Figure 3). Increased levels were 
observed for all of these metabolites after snap-freezing.

histopathology
Visual inspection of HES-stained sections of xenograft samples 
analyzed by HR MAS MRS confirmed that the samples pre-
dominantly consisted of viable tumor tissue without significant 
necrosis or fibrosis. No adipose tissue or normal mammary 
gland tissue was observed. Due to the observed heterogeneity in 
lipid content of samples obtained from the same xenograft, we 
examined whether the lipids detected were located in adipose 
cells lining the tumor or in lipid droplets within the tumor. Visual 
inspection of the Nile Red stained histological sections showed 
good correlation between lipid signal intensity in spectral data 
and the amount of lipid detected by Nile Red staining (Figures S1 
and S2 in Supplementary Material). The lipids were also observed 
to be located inside tumors and were therefore considered to 
represent mobile lipids in the cancer cells and not adipose tissue 
adjacent to the tumors. No systematic difference in lipid content 
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TaBle 2 | lMM-results reporting the effect of xenograft model and freezing delay time on levels of 15 metabolites.

Metabolite Xenograft model Freezing time delay

adj. p-value est. effect sD adj. p-value est. effect sD

Ascorbate 0.628 1.6 2.2 0.037* −1.2 0.4

Lactate 0.849 −2.5 12.2 0.281 4.5 3.0

Tyrosine 0.059 128.3 33.4 0.343 −7.1 5.6

Glycine 0.649 −9.4 16.9 0.838 1.2 2.8

Myoinositol 0.373 −4.8 3.9 0.072 2.7 1.1

Taurine 0.025* 240.9 37.9 0.838 −2.2 7.0

Glycerophosphocholine 0.017* −477.3 56.6 0.255 23.9 14.6

Phosphocholine 0.040* 470.3 94.3 0.255 22.7 13.8

Choline 0.068 43.5 12.5 0.002** 16.2 3.7

Creatine 0.059 −41.6 10.3 0.037* −8.4 3.0

Glutathione (GS) 0.649 −4.1 7.3 0.005** −6.0 1.6

Succinate 0.112 8.7 3.1 0.301 −1.0 0.7

Glutamine 0.194 12.3 6.2 0.838 0.3 0.9

Glutamate 0.322 −20.9 14.4 0.348 −3.7 3.1

Alanine 0.194 17.1 8.4 0.838 0.4 1.6

The estimated effect (Est. effect) reports each fixed factors (i.e., xenograft model or freezing time delay) influence on metabolite levels. Adjusted p-values in bold indicates that the 
level is significantly different from the sample frozen after 0 min (*adjusted p < 0.05, **adjusted p < 0.01).

TaBle 1 | Metabolic effect of freezing delay time.

Metabolite ppm 15 min 30 min 60 min 90 min 120 min

Glucose 4.65 22 ± 107% −8 ± 19% 31 ± 41% 6 ± 50% 26 ± 71%

Ascorbate 4.53 −18 ± 37% −15 ± 20% −25 ± 17% −31 ± 22% −31 ± 24%

Lactate 4.13 4 ± 44% 10 ± 24% 12 ± 29% 16 ± 27% 19 ± 45%

Tyrosine 3.99 −8 ± 32% −10 ± 21% −13 ± 19% −15 ± 22% −17 ± 29%

Glycine 3.55 −7 ± 45% −4 ± 22% −5 ± 25% 1 ± 45% 6 ± 62%

Myoinositol 3.53 12 ± 49% 11 ± 19% 26 ± 28% 26 ± 27% 43 ± 64%

Taurine 3.42 −7 ± 38% −7 ± 15% −8 ± 16% −8 ± 20% −4 ± 31%

Glycerophosphocholine 3.23 −9 ± 22% −10 ± 18% −3 ± 25% 0 ± 34% 28 ± 40%

Phosphocholine 3.22 −19 ± 24% −7 ± 16% 1 ± 32% 7 ± 25% 34 ± 63%

Choline 3.21 6 ± 72% 20 ± 31% 56 ± 44% 62 ± 49% 111 ± 111%

Creatine 3.03 −16 ± 31% −19 ± 18% −28 ± 22% −25 ± 22% −29 ± 26%

Glutathione (GS) 2.55 −18 ± 32% −19 ± 15% −24 ± 25% −35 ± 18% −37 ± 26%

Succinate 2.41 −5 ± 35% −13 ± 22% −2 ± 33% −13 ± 29% −15 ± 38%

Glutamine 2.44 5 ± 49% −1 ± 40% 28 ± 55% −1 ± 22% 7 ± 54%

Glutamate 2.37 −10 ± 35% −11 ± 17% −20 ± 17% −16 ± 25% −14 ± 37%

Alanine 1.49 −7 ± 42% 9 ± 40% 2 ± 42% 17 ± 72% 23 ± 108%

Percentage (average ± SD) increase or decrease of metabolite level in samples exposed to freezing delay time compared to samples frozen immediately after tumor collection.
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due to delayed freezing time was observed. While Figure S1 in 
Supplementary Material shows a pattern of decreasing Nile 
Red signal with increased delay before freezing, Figure S2 in 
Supplementary Material shows an example where the same pat-
tern was not observed.

Degradation during Prolonged hr Mas 
analysis
Repeated HR MAS MRS analysis of 14 human breast cancer samples 
was performed with 1.5 h interval to observe the metabolic effect 
of prolonged time in the magnet. The levels of glucose, glycine, 
glycerophosphocholine, and choline were found to significantly 
change from the first to the second acquisition (Table 3). While 
glucose, glycine, and choline increased, levels of glycerophospho-
choline decreased with prolonged experiment time. A PCA score 

plot of all spectra showed that the metabolic variation between 
samples was higher than variation in spectra obtained from the 
same sample (Figure S3 in Supplementary Material).

DiscUssiOn

In this study, we evaluated the metabolic effect of freezing delay 
time, snap-freezing in liquid nitrogen and prolonged experimen-
tal time using HR MAS MRS. The results show that levels of HR 
MAS MRS visible metabolites in breast tumors are not subject to 
significant degradation if snap-frozen within 30 min after surgi-
cal excision.

Principal component analysis showed that differences in lipid 
content explained most of the variance between the samples 
from the two different breast cancer xenograft models. This was 
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FigUre 3 | Metabolic effect of snap-freezing. Percentage change in metabolite levels measured in frozen samples relative to samples not frozen prior to HR 
MAS MRS analysis. * indicates that the level is significantly different from the sample not frozen (*adjusted p < 0.05).

FigUre 2 | impact of freezing delay time on level of (a) ascorbate, (B) choline, (c) creatine, and (D) glutathione. Metabolite integrals from samples 
subject to 15, 30, 60, 90, and 120 min freezing delay time compared with samples frozen immediately (0 min). * and ** indicates that the level is significantly different 
from the sample frozen after 0 min (*p < 0.05, **p < 0.01).

January 2016 | Volume 6 | Article 176

Haukaas et al. Metabolic Effect of Freezing Delay Time

Frontiers in Oncology | www.frontiersin.org

further examined by histopathological staining of frozen sec-
tions with Nile Red, which showed no correlation between lipid 
content and freezing delay time. Hence, the variability explained 
by lipid content most likely reflects tumor heterogeneity rather 

than the sample handling conditions. Furthermore, PCA clearly 
discriminated between samples from the two xenograft models 
(i.e., basal-like or luminal-like breast cancer subtype). Basal-like 
xenografts had higher levels of glycerophosphocholine, while 
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TaBle 3 | Metabolic effect of prolonged experiment time.

Metabolite ppm 1.5 h adj. p-value

Glucose 4.65 21 ± 20% 0.006**

Ascorbate 4.53 −4 ± 6% 0.078

Lactate 4.15 0 ± 7% 0.903

Tyrosine 3.98 3 ± 6% 0.08

Glycine 3.56 8 ± 7% 0.006**

Myoinositol 3.54 7 ± 11% 0.08

Taurine 3.42 0 ± 5% 0.903

Glycerophosphocholine 3.23 −15 ± 12% 0.001**

Phosphocholine 3.22 −4 ± 6% 0.08

Choline 3.21 11 ± 13% 0.011*

Creatine 3.03 0 ± 6% 0.903

Percentages (average ± SD) were calculated relative to the metabolite levels (integrals) 
from the initial experiment. Adjusted p-values in bold indicates that the level is 
significantly different from the sample frozen after 0 min (*adjusted p < 0.05, **adjusted 
p < 0.01).
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luminal-like xenografts had higher levels of phosphocholine and 
taurine, in accordance with previously published data from these 
xenograft models (15). The same metabolic differences between 
the xenograft models were observed in LMM.

Discrimination between the two xenograft models based on 
overall metabolic profile did not depend on freezing delay time. 
Furthermore, no significant changes in individual metabolite lev-
els were observed at 30 min past tumor excision. At 60 min, levels 
of three metabolites had significantly changed from baseline 
measurements. Thus, samples should be frozen within 30 min of 
resection, which in general should be sufficient when obtaining 
tissue biopsies during surgical procedures. Ascorbate, choline, 
creatine, and GS were the only metabolites exhibiting significant 
changes within the time frame (0–120 min) used in the current 
study. For the majority of metabolites, no systematic dependency 
on freezing time delay was observed, suggesting that intratumor 
heterogeneity is the predominant source of variability.

Ascorbate, also known as vitamin C, and GS are important 
antioxidants in animal cells that, together with other antioxidants, 
are responsible for eliminating reactive oxygen species (ROS) 
from oxidative stress (23, 24). As a consequence of high ROS 
levels in cancer cells, GS levels are often elevated compared to 
normal tissue (25). GS has also been reported to be increased in 
estrogen receptor (ER) negative tumors compared to ER-positive 
(26). ROS levels can increase as a consequence of ischemia, 
potentially leading to oxidative damage. It is therefore plausible 
that the decreased levels of GS and ascorbate reflect oxidative 
stressed caused by prolonged ischemia. Ascorbate levels obtained 
from samples frozen 60, 90, and 120 min after excision were sig-
nificantly lower than the levels from samples frozen immediately. 
The same was observed for GS levels at 90 and 120 min of freezing 
delay. Consequently, biological interpretation of the levels of these 
antioxidants should only be considered if the experimental design 
of the study includes a controlled freezing delay time of <30 min.

The levels of choline increased with increasing freezing delay 
time. Although not significant, a similar trend was observed 
for the choline-containing metabolites phosphocholine and 
glycerophosphocholine, suggesting that ischemia affects 
choline metabolism. Studying the effect of hypoxia in human 

MDA-MB-231 breast cancer cell and tumors, Jiang et al. detected 
higher concentrations of total choline-containing metabolites 
(tCho; composed of phosphocholine, glycerophosphocholine, 
and free choline), mainly contributed by phosphocholine, in 
hypoxic regions (27). Altered choline metabolism is considered 
an emerging hallmark in malignant transformation (28). A major 
component of mammalian cell membranes, phosphatidylcholine 
(PtdCho), is synthesized from choline, thus making choline and 
choline-containing intermediates essential for the increased pro-
liferation observed in tumor cells. Several ex vivo breast cancer 
studies using HR MAS MRS have detected increased concentra-
tions of choline, phosphocholine, and glycerophosphocholine 
in tumor tissue compared to non-involved breast tissue (19, 29, 
30). Differences in tCho have been found to have predictive value 
for the 5-year survival of breast cancer patients receiving neo-
adjuvant chemotherapy (31) and higher choline concentrations 
have been found in core needle biopsies from patients that are 
ER- and/or PgR-negative compared to ER- and/or PgR-positive 
patients (10). Delays in freezing time up to 30 min had no sig-
nificant impact on choline levels. While choline levels at 60 and 
90 min delay were significantly increased, this was not observed 
at 120 min (p = 0.065), probably due to variability within these 
last measurements. However, because of the biological relevance 
of choline metabolism in cancer, this trend of increasing levels 
with freezing delay time emphasize the importance of reporting 
and controlling sample handling to limit possible effects.

Levels of creatine significantly decreased as a result of 
prolonged time before freezing, where 60 min was found to be 
the first time point significantly different from samples frozen 
directly after exiting. Creatine is involved in energy storage 
through formation of phosphocreatine and thus functions as a 
carrier of energy within cells. Decreasing levels of creatine (or 
phosphocreatine) could be suggestive of energy depletion caused 
by ischemia. Several studies use creatine for calculation of meta-
bolic ratios to allow for comparable quantities between samples 
(10, 32–34) and in studies of breast cancer tissue, higher level of 
this metabolite have been correlated to ER-positive (35) and PgR-
positive tumors (15). As the tendency of decreasing levels is seen 
from the initial time point, it is important to keep the time before 
freezing minimal to allow the usage of ratios involving creatine.

Rapid metabolic phenotyping in operating theaters of unfrozen 
tissue has been proposed to facilitate real-time diagnostics and 
further aid decision making during surgery (36). To evaluate the 
metabolic effect of snap-freezing, tumor tissue was analyzed by 
HR MAS MRS without any exposure to liquid nitrogen and com-
pared to tissue from the same xenografts that were immediately 
frozen after excision. Freezing was found to significantly increase 
the level of 12 metabolites. In previous studies, the freezing of rat 
kidney and liver tissue has reportedly led to increased amounts 
of amino acids (37, 38) and decreased contents of choline, glycer-
ophosphocholine, glucose, myoinositol, trimethylamine N-oxide 
(TMAO), and taurine (38) using HR MAS MRS. The increased 
levels of multiple metabolites observed in the current study might 
be caused by intracellular lysis releasing metabolites. Metabolites 
bound to cellular molecules or compartments are more restricted 
and thus less MR-visible. If these metabolites are released as a 
consequence of freezing, HR MAS MRS will detect higher levels 
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than in unfrozen tissue as found here. The findings underpin that 
studies of fresh and frozen tissue are not directly comparable. 
Although the effect of freezing was significant for the majority 
of metabolites, we believe that analyzing fresh tissue samples is 
neither feasible nor optimal in the current clinical and research 
setting. Care must therefore be taken not to compare metabolic 
information obtained in unfrozen samples with data from frozen 
biobank tissue.

We also examined the effect on the metabolic profile of 
prolonged HR MAS MRS analysis. After the first acquisition, the 
sample was kept spinning inside the magnet and reanalyzed after 
1.5 h. The level of four metabolites was found to differ signifi-
cantly from the initial acquisition. Glucose, glycine, and choline 
were found to increase with time, while glycerophosphocholine 
decreased. Similar effects on glycine, choline, and glycerophos-
phocholine levels have been observed in lung cancer tissue (39) 
and in brain tumor tissue (40) supporting the current findings. As 
Rocha et al. describe, the changes might be caused by spinning 
effects causing release of bound metabolites or due to ongoing 
metabolic activity (39). Importantly, these metabolic effects 
should be considered for quantitative two-dimensional HR MAS 
MRS studies where long acquisition time is required.

In conclusion, this study confirms that HR MAS MRS metabolic 
profiles are robust to metabolic changes due to delayed freezing 
within a timeframe of 30 min. This allows biological interpretation 
of metabolic profiles, including metabolites involved in protection 
against ROS formation/oxidative stress, such as GS and ascorbate, 
as well as evaluation of the levels of creatine and choline-containing 
metabolites. Within the 30 min freezing delay time window, the 
effect of structural or biochemical degradation on metabolic pro-
files is insignificant. A clear effect of freezing was observed for most 
of the detected metabolites. However, this step in sample handling 
is considered essential for biobanking and research purposes. The 
study also identified moderate metabolic consequences of pro-
longed HR MAS experiment time, and thus, the protocol should 
be designed to keep experiment time to a minimum.
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