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1. Introduction

In 1968 Veselago predicted that isotropic materials with simultaneously negative permittivity
ε and permeability μ may yield negative refraction [1]. Veselago referred to such materials
as left-handed due to the fact that the electric field, the magnetic field, and the wave vector
constitute a left-handed set of vectors. Thus, the phase velocity and Poynting vector point in
opposite directions, in contrast to the situation in right-handed materials. Left-handed materials
do not exist naturally; however, it is possible to make artificial metamaterials with negative ε
and μ in the same frequency range [2, 3, 4, 5].

Passive metamaterials often suffer from limited performance due to large losses. It has there-
fore been suggested to combine them with active gain media [6], or even create active metama-
terials [7]. Nonlinear processes such as parametric amplification have also been suggested as
a method for overcoming inherent losses in metamaterials [8]. As the interest in active meta-
materials seem to be increasing [9], it is crucial to understand fundamentally how they behave
electromagnetically.

Of particular interest are the sign of the refractive index (direction of phase velocity), and the
direction of the energy flow. The sign of the refractive index depends on the location of zeros
and poles of εμ in the complex ω-plane. This indicates that it is possible to obtain negative
refractive index without any magnetic resonances, μ = 1, but instead two electric resonances.
Indeed, it has been suggested that certain nonmagnetic media, with active and passive dielectric
resonances, can exhibit negative refraction [10]. In such right-handed materials the wave vector
and Poynting vector both point towards the source [11].

Recently, these results have been discussed in the literature [11, 12, 13, 14, 15, 16]. While
the conclusions differ, all authors seem to argue that causality must determine the sign of the
refractive index. However, the interpretations of causality differ and in fact, give different re-
sults for certain active media [10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. To identify the correct
interpretation and resolve this controversy, it is necessary to go back to first principles: Causal-
ity means that if an excitation starts at time t = 0, no effect can be detected a distance z away
before t = z/c. In other words, the front of an electromagnetic wave cannot travel faster than c,
the vacuum velocity of light [20]. Using this principle, it has been shown analytically how to
determine the sign of the refractive index in active media [11].

In this work, we will first present animations of numerical simulations, to demonstrate neg-
ative refractive index in right-handed, active media [10, 11]. The electromagnetic solution in

#85000 - $15.00 USD Received 9 Jul 2007; revised 14 Aug 2007; accepted 14 Aug 2007; published 15 Aug 2007

(C) 2007 OSA 20 August 2007 / Vol. 15,  No. 17 / OPTICS EXPRESS  10936



a slab of thickness d can be found unambiguously as it only dependents on ε , μ , and d, and
is independent of the refractive index. Moreover, by causality, the time-domain solution for
t < d/c must be identical to that of a semi-infinite medium when the slab is excited at one side,
starting at t = 0. Letting d be sufficiently large, the solutions can be compared in an arbitrarily
large time window. The movies clearly support the claim that negative refractive index may be
obtained in active, right-handed media.

To concretize this class of media, we propose a 1-D transmission line model with lumped
circuit elements, implementing a right-handed medium with negative refractive index. This
model can be used as a starting point for analysis and possible implementation. Although we
consider a one-dimensional structure, generalization to two dimensions is straightforward.

2. Determining the sign of the refractive index

When a plane wave is normally incident from vacuum to a semi-infinite medium, the reflection
R and transmission S are given by the Fresnel equations:

R =
η −1
η + 1

, (1a)

S =
2η

η + 1
exp(iωnz/c). (1b)

Here k = ωn/c, η = μ/n, and n2 = εμ ; ε and μ are the permittivity and permeability of
the semi-infinite medium. The interface between vacuum and the semi-infinite medium is the
plane z = 0; the region z > 0 is the location of the semi-infinite medium. For convenience,
the propagation factor exp(iωnz/c) is included in S. The sign of the refractive index n must be
identified to ensure causality; for passive materials this can be achieved simply by requiring that
the Poynting vector point in +z-direction, or that the wave decays in the +z-direction. As an
example of an active medium, we consider a material with ε(ω) = (1+ f (ω)) 2 and μ(ω) = 1,
where

f (ω) =
Fω2

0

ω2
0 −ω2 − iωΓ

. (2)

We take F = 2 and Γ = 0.005ω0. This material is causal and realizable as ε is analytic in the
upper half-plane of complex frequency and ε(ω)−1 ∼−2Fω 2

0 /ω2 as ω → ∞ [21]. Using the
method of Refs. [20, 10, 11, 12, 19], we find the refractive index n 1(ω) = 1 + f (ω). On the
other hand, using the approaches in Refs. [13, 15, 17, 18], we find the refractive index
n2(ω) = (1+ f (ω))Re (1+ f (ω))/|Re (1+ f (ω))|. The real and imaginary parts of the refrac-
tive index for the two different solutions are plotted in Fig. 1. Note that there is a frequency
band where Re n1(ω) < 0; thus the first solution predicts that both phase velocity and steady-
state energy flow may point towards the source. For the other solution, Re n 2(ω) > 0 for all
frequencies; thus this solution means that the phase velocity and energy flow are directed away
from the source. Note the two points, ω = ω0 and ω = 1.73ω0, where n2(ω) is discontinuous.

To resolve the above controversy, we first compute the time-domain solutions associated with
the choices n1(ω) and n2(ω). This is achieved with the inverse Laplace transform. We excite
the medium by a plane wave, normally incident at z = 0−, starting at t = 0. For example, if the
excitation at z = 0− is u(t)cos(ω1t), where u(t) is the unit step function and ω1 is the excitation
frequency, the time-domain field in the material can be expressed as

E(z,t) =
i

2π

∫ iγ+∞

iγ−∞

ωSexp(−iωt)
ω2

1 −ω2
dω . (3)
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Fig. 1. Refractive index vs. frequency for the two choices n1(ω) and n2(ω).

Here γ is a sufficiently large, positive number, such that Im ω < γ for all poles or nonanalytic
points. For S given by Eq. (1b), assuming that the refractive index has meaning for real fre-
quencies, the integral can be evaluated just above the real frequency axis (γ = 0 +) [11, 22].
The excitation frequency is taken to be ω1 = 1.4ω0; at this frequency ε(ω1) ≈ +1.13−0.32i.
Now we can examine the solutions associated with n(ω) = n1(ω) (Fig. 2) and n(ω) = n2(ω)
(Fig. 3), and judge whether they satisfy causality. Note that causality should be interpreted in
its most fundamental form; no field can arise at z before the time t = z/c. We clearly see that
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Fig. 2. Numerical simulation of the time-domain electric field E(z,t) for a semi-infinite
medium with refractive index n(ω) = n1(ω) and excitation frequency ω1 = 1.4. The exci-
tation, cos(ω1t), is initiated at t = 0. After roughly a time 70/ω0 the steady-state solution
(monochromatic solution) has been built up. The excitation is turned off at t = 100/ω0.
Frame grabbed at t = 31.6/ω0. [fig2.mov 2.5MB]
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Fig. 3. Numerical simulation of E(z,t) of a semi-infinite medium with n(ω) = n1(ω) and
ω1 = 1.4. Frame grabbed at t = 0.3/ω0. Note that fields exist in front of the red line z = ct.
The figure does not have the same axes and time scale as for Fig. 2. [fig3.mov 1.5MB]

the wave in Fig. 2 satisfies causality, while the wave in Fig. 3 does not. In fact, in Fig. 3 a
nonzero field exists everywhere, even at t = 0. In Fig. 2, the wave front propagates at exactly
the speed c [20]. Similarly, when the excitation is turned off, the high-frequency components
induced by the abrupt envelope propagate at c. Note that the field eventually dies out after the
excitation has been turned off. Some ripple can be seen in front of the red line in Fig. 2. This
is a numerical error, which relate to Gibbs’ effect, and can be reduced if a broader frequency
representation is used.

To see that n1(ω) not only gives a causal solution, but also the correct one, we compare the
solution in Fig. 2 to the electromagnetic field in a slab of finite thickness d. Such a comparison
makes sense since, by causality, the time-domain fields in a slab and in a semi-infinite medium
must coincide for t < d/c. In an active slab, the fields may blow up with time and thus Fourier
transformed fields may not exist. A natural remedy is to use Laplace transformed fields, i.e., to
introduce complex frequencies with Im ω > 0. For a normally incident electromagnetic field,
the reflected field R, the field in the slab S = S+ exp(ikz)+ S− exp(−ikz), and the transmitted
field T can be found as [11]

R =
(η2 −1)exp(−ikd)− (η 2 −1)exp(ikd)
(η + 1)2 exp(−ikd)− (η −1)2 exp(ikd)

, (4a)

S+ =
2η(η + 1)

(η + 1)2 − (η −1)2 exp(2ikd)
, (4b)

S− =
2η(η −1)

(η −1)2 − (η + 1)2 exp(−2ikd)
, (4c)

T =
4η

(η + 1)2 exp(−ikd)− (η −1)2 exp(ikd)
. (4d)

Note that R, S, and T are unchanged if n →−n; thus the sign of n is irrelevant in Eq. (4). The
time-domain field in the slab is computed by an inverse Laplace transform. The parameter γ
must be chosen such that the integration path is located above all poles of S in the upper half-
plane [23]. For the present choice of medium [ε(ω) = (1+ f (ω)) 2 and μ(ω) = 1], by choosing
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Fig. 4. Numerical simulation of E(z,t) for a medium with ε(ω) = (1+ f (ω))2, μ(ω) = 1,
finite thickness ω0d/c = 35, and ω1 = 1.4ω0. The excitation is initiated at t = 0 and turned
off at t = 100/ω0. The wave front z = ct is indicated with a vertical red line. Frame grabbed
at t = 31.6/ω0. [fig4.mov 3MB]

a sufficiently large d < ∞, it can be shown that there are no such poles. Then we can set γ = 0 +.
We take the thickness to be ω0d/c = 35, which in this case means that S does not have poles in
the upper half-plane. The resulting time-domain field is given in Fig. 4. We clearly see that the
solution in Fig. 4 equals the solution in Fig. 2 when t < d/c. Actually, the solutions are rather
similar also for later times, which can be attributed to the fact that the field is small at z = d.
Again we note that the field dies out after the excitation has been turned off; thus the excitation
of the amplified “backward” wave in Fig. 4 is fundamentally different to conventional lasing.

We conclude that n1(ω) is the correct refractive index function. The steady-state (monochro-
matic) solution, approached using the excitation u(t)cos(ω 1t) in the limit t → ∞, demonstrates
that the phase velocity points towards the source. Since μ = 1, also the energy flow points
towards the source. This backward wave draws energy from the active medium.

By analytic arguments, one can arrive at the same conclusion [11, 19]. Provided εμ is con-
tinuous for real frequencies, one finds that the refractive index of (possibly) active media can
be related to the permittivity and permeability using the formula

n =
√
|ε||μ |exp[i(ϕε + ϕμ)/2], (5)

where ϕε +ϕμ is the complex argument of εμ , unwrapped so that it is continuous and tends to
zero as ω → ∞.

More generally, ε and μ may not be continuous for real frequencies (the Kramers–Kronig
relations only imply analyticity in the upper half-plane Im ω > 0, not for Im ω = 0). Moreover,
εμ may contain odd-order zeros in the upper half-plane, which means that n cannot be identified
as an analytic function there. Excluding the latter possibility (which corresponds to materials
with so-called absolute instabilities [11]), we find the refractive index from the analytic branch
of

√εμ that tends to +1 as Im ω → ∞. The refractive index for real frequencies is the limit as
Im ω → 0+ of this analytic branch. However, if εμ contains only a single discontinuity or zero
for real frequencies (at ω = 0), we can still use Eq. (5), unwrapping in the frequency interval
(0,∞), and ensuring the limit ϕε + ϕμ → 0 as ω → +∞.

The necessary phase unwrapping procedure means that the sign of the refractive index cannot
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Fig. 5. A general transmission line representation.

be determined at a single frequency without knowing the global behavior of ε(ω)μ(ω) (at all
frequencies). In other words, two media with ε = 1− iα , α > 0 at a single frequency may have
different refractive indices there. Thus the treatment of the example medium above does not
contradict the fact that conventional gain media, with e.g. inverted Lorentzian responses, have
positive real part of the refractive index. We note that any direct identification of n from ε and
μ at a single frequency, such as in Refs. [13, 15, 17, 18], are incorrect in general.

It may seem that we have used causality as an extra principle in addition to Maxwell’s equa-
tions, to calculate the field. However, causality is in fact built into the time-domain versions of
the Maxwell equations: Provided ε and μ describe a microscopically causal medium (i.e., the
polarization and magnetization do not precede the electric and magnetic fields), an electromag-
netic excitation cannot give any response before the time z/c, where z is the distance between
the excitation point and the observation point. Thus, one can actually verify Fig. 2 by solving
Maxwell’s equations in the time-domain, with no extra assumptions.

3. Effective medium based on a transmission line structure

The example in the previous section represents a novel class of active metamaterials [10, 11].
To realize this type of material both passive and active resonances are needed. An example of a
typical passive resonance that fits this model is the serial RLC-resonance circuit. The inverted
Lorentz function has similar behavior as a parallel RLC-resonance including an active element,
which points us towards a transmission line with lumped element inclusions.

In 2002 Eleftheriades et. al. [5] proposed a negative index medium based on periodically L-C
loaded transmission lines. As long as the periodicity of the structure remains less than roughly
λ0/30, where λ0 is the vacuum wavelength [24], the structure can be described electromagnet-
ically by an effective dielectric permittivity εε0 [F/m] and an effective magnetic permeability
μμ0 [H/m], where ε0 and μ0 are the vacuum permittivity and permeability. Consider a trans-
mission line as shown in Fig. 5, with series impedance per length unit Z, and shunt admittance
per length unit Y . The telegrapher’s equation for a general 1-D transmission line can be ex-
pressed as:

dV
dz

= −IZ, (6a)

dI
dz

= −VY. (6b)

Combining Eqs. (6a) and (6b) yields

d2V
dz2 + β 2V = 0, β 2 = −ZY, (7)

where β is the propagation constant. Mapping the voltage V to E y and the current I to −Hx [5],
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Fig. 6. Transmission line with additional shunt admittance Ys.

Eqs. (6a) and (6b) can be rewritten as field equations:

dEy

dz
= −iωμμ0Hx, (8a)

dHx

dz
= −iωεμ0Ey, (8b)

which yield the effective material parameters as

μ =
Z

−iωμ0
, (9a)

ε =
Y

−iωε0
. (9b)

The propagation constant satisfies

β 2 = −ZY =
ω2

c2 εμ . (10)

It can easily be seen that interchanging the inductance and the capacitance of a conventional
transmission line leads to negative ε and μ ; thus the transmission line becomes left-handed.
Since our goal is a right-handed transmission line medium with μ = 1, we will leave the im-
pedance inductive, Z = −iωμ0, and rather change the admittance Y so that ε becomes a sum of
one passive and one active resonance [10, 25]. An example circuit is given in Fig. 6, where the
total admittance is

Y = −iωCl − 1
iωLn

− iω/Lp

1
LpCp

−ω2 − iω Rp
Lp

+
Ra +Rn

RaRn

1
LaCa

−ω2 − iω
(Ra+Rn)Ca

1
LaCa

−ω2 − iω
RaCa

. (11)

Thus the effective relative permittivity and permeability become

ε(ω) =
1

ε0Λ

⎡
⎣Cl − 1

ω2Ln
+

1/Lp

1
LpCp

−ω2 − iω Rp
Lp

− Ra +Rn

iωRaRn

1
LaCa

−ω2 − iω
(Ra+Rn)Ca

1
LaCa

−ω2 − iω
RaCa

⎤
⎦ , (12a)

μ(ω) =
Ll

μ0Λ
. (12b)
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Fig. 7. Refractive index vs. frequency for the transmission-line effective medium.

Here Λ, Cl , and Ll are the length, capacitance, and inductance for a section of conventional
transmission line; Lp, Cp, and Rp are the inductance, capacitance and resistance of the passive
resonator; La, Ca, and Ra are the inductance, capacitance and resistance of the parallel resonator
part of the circuit; Rn is the negative resistor element which provides gain. Negative resistance
can be realized in several ways [26, 27]; transistors and Gunn-diodes are feasible alternatives.
The parallel resonance has zero admittance at the resonance frequency. This acts together with
the gain element to give negative admittance and negative imaginary part of the permittivity.
The inductance Ln is included to remove a zero of ε from the positive imaginary frequency axis.

One must be careful when choosing the circuit parameters; it is not sufficient to have negative
real part of the refractive index to obtain a medium similar to that in Section 2. It is important
that ε does not have any odd-order zeros in the upper half plane, as this would create branch
cuts in n. When there are such branch cuts, the refractive index loses its usual interpretation for
real frequencies; moreover, the media are electromagnetically unstable (that is, with absolute
instabilities, see [11]).

We have found that the following parameters will give negative refractive index in a small
frequency window: Λ = 6.25cm, Ll = μ0Λ, Cl = ε0Λ, Rn = −300Ω, Ln = Ll , Rp = 20Ω,
Lp = 40nH, Cp = 2pF, Ra = 310Ω, La = 1.8nH, and Ca = 10pF. Figure 7 shows the re-
fractive index versus frequency calculated by Eq. (5). Figure 8 shows the reflection coefficient
calculated by Eq. (4a) using d = 20Λ. Negative real part of the refractive index exists in a small
bandwidth from 1.11GHz to 1.30GHz, with the minimum value Re n = −0.48 at 1.20GHz. A
maximum 2.1 of the reflection coefficient is attained at a slightly larger frequency. At 1.22GHz
the permittivity has positive real part, ε = 0.0063−0.23i, corresponding to n = −0.34+ 0.33i
and |R| = 1.9. The bandwidth where Re n < 0 coincides with the bandwidth where |R| > 1.

4. Periodic structure

The effective medium theory yields a useful design guide for realization of the effective pa-
rameters as a transmission line with discrete elements. To investigate such periodic structures
exactly, we use the transmission matrix method. The transmission matrix of a transmission line
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Fig. 8. R vs. frequency for total length d = 20Λ.

can be written [28]

Ttl =
[

cos(β0Λ) −isin(β0Λ)Z0

−isin(β0Λ)/Z0 cos(β0Λ)

]
, (13)

where Λ, β0 = ω
√

LlCl , and Z0 =
√

Ll/Cl are the length, propagation constant, and character-
istic impedance, respectively. For a general shunt admittance Ys, the transmission matrix is

Ts =
[

1 0
Ys 1

]
. (14)

The transmission matrix for a unit cell is Tuc = TtlTs, and the transmission matrix for N unit
cells becomes

T = T N
uc =

[
A B
C D

]
. (15)

Since detTuc = 1, the Nth power of Tuc can be calculated analytically with Chebyshev’s identity
[29]. T can now be converted into a scattering matrix [28]

S =
[
S11 S12

S21 S22

]
=

⎡
⎢⎢⎣

A+B/Z0−CZ0 −D
A+B/Z0 +CZ0 +D

2(AD−BC)
A+B/Z0 +CZ0 +D

2
A+B/Z0 +CZ0 +D

−A+B/Z0−CZ0 +D
A+B/Z0 +CZ0 +D

⎤
⎥⎥⎦ . (16)

The scattering matrix element S11 is the reflection coefficient and S21 is the transmission coef-
ficient. Note that S is symmetric due to reciprocity.

In the limit N → ∞ while d ≡ NΛ and Ys/Λ are fixed, the transmission matrix model should
correspond exactly to the effective medium theory. Indeed, we may expand T uc to first order in
Λ to obtain Tuc = I + ϒΛ+ O(Λ2) = exp(ϒΛ)+ O(Λ2), where I is the identity matrix and

ϒ =
[

0 −iβ0Z0

−iβ0/Z0 +Ys/Λ 0

]
. (17)

Thus, in the above limit, T = exp(ϒd), and analytical expressions for the scattering parameters
S11 and S21 can be found and verified to be equal to Eqs. (4a) and (4d).
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To analyze the behavior of the periodic structure for finite Λ, the fields are calculated for each
unit cells of the periodic structure. This is achieved by first calculating the scattering matrix
for the total structure and then utilizing the transmission matrix method to calculate the fields
within the slab. Let the field (or voltage) incident to the structure be V +(ω). The reflected
voltage is V−(ω) = V+(ω)S11(ω), and the voltage and current at the material interface are
calculated as V1(ω) =V +(ω)+V−(ω) and I1(ω) = (V +(ω)−V−(ω))/Z0, respectively. Then
the voltage and current in the next unit cell are given by[

V2(ω)
I2(ω)

]
= T−1

uc

[
V1(ω)
I1(ω)

]
, (18)

and so forth. (Since detTuc = 1, Tuc is invertible.) By standard inverse Laplace transforms, we
finally find the time-domain fields at each unit cell of the structure.
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Fig. 9. |S11−R| vs frequency for Λ = λ0/8,λ0/16,λ0/30,λ0/60. λ0 = 25cm is the vacuum
wavelength where |R| is maximal.

Figure 9 shows the difference between the scattering parameter S 11 for the periodic structure
and the reflection coefficient R for the effective medium slab. The length scale Λ is varied
while Y/Λ and d = ΛN are fixed. To enable fair comparison, the reference plane of the periodic
structure is shifted by an amount Λ/2 to the right, i.e., the periodic structure is symmetrized with
respect to the point z = d/2. We see that there is a good agreement between the two calculations
for Λ = λ0/30 and even better when Λ = λ0/50, as predicted by [24]. Figure 10 shows the time-
domain field when exciting the periodic structure with the frequency f 1 = 1.22GHz. At this
frequency the effective medium has ε = 0.063−0.23i. The excitation, cos(2π f 1t), is initiated
at t = 0 and shut off at t = 20ns. We observe that the forerunner propagates straight through
the material at the vacuum light velocity. The backward wave builds up before the reflection
from the far end has returned to the region near z = 0 +. After 20ns the excitation is turned off.
Then the associated transient propagates at c, and the backward wave dies out, demonstrating
stability. This behavior is consistent with the example given in Sec. 2. We stress that we have
analyzed a discrete lumped model with finite d; the scattering parameters are calculated by the
transmission matrix method so that the refractive index is not considered.

The periodic circuit model is based on ideal passive components along with an ideal, constant
negative resistor. For a more realistic model of the components it is possible to include resis-
tive, capacitive and inductive parasitics into the components in use. Nevertheless, preliminary
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Fig. 10. Electrical field vs. distance and time, for a causal excitation [u(t) − u(t −
20ns)]cos(2π f1t); f1 = 1.22GHz, d = 150Λ, and Λ = 0.83cm. Frame grabbed at t =
3.1ns. [fig10.mov 3.4 MB]

sensitivity studies show that the circuit is not particularly sensitive to perturbations. The imple-
mentation of the negative resistor element should yield a broad-banded response compared to
the two resonances.

5. Conclusion

We have presented theory and simulations which demonstrate how to determine the refractive
index in active metamaterials. We have also proposed and analyzed a lumped circuit transmis-
sion line model for an active right-handed metamaterial with negative refractive index. This
model demonstrates a backward propagating wave with phase velocity and Poynting’s vector
towards the source, and can be used as a starting point for implementation.
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