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HELSON’S PROBLEM FOR SUMS OF A RANDOM MULTIPLICATIVE FUNCTION

ANDRIY BONDARENKO AND KRISTIAN SEIP

ABSTRACT. We consider the random functions SN (z) :=
∑N

n=1 z(n), where z(n) is the completely
multiplicative random function generated by independent Steinhaus variables z(p). It is shown
that E|SN |≫

"
N(log N )−0.05616 and that (E|SN |q )1/q ≫q

"
N (log N )−0.07672 for all q > 0.

1. INTRODUCTION

This paper deals with the following

Question. Do there exist absolute constants c > 0, 0 < λ< 1 such that for every positive integer
N and every interval I whose length exceeds some number depending on N , we have
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on a subset of I of measure larger than λ|I |?

We do not know the answer and can only conclude from our main result that we have, for
every ε> 0 and suitable c = c(ε),
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N (log N )−0.07672

on a subset of measure (log N )−ε|I | of every sufficiently large interval I .
Our question fits into the following general framework. We begin by associating with every

prime p a random variable X (p) with mean 0 and variance 1, and we assume that these variables
are independent and identically distributed. We then define X (n) by requiring it to be a com-
pletely multiplicative function for every point in our probability space. Now suppose that a(n)
is an arithmetic function which is either 0 or 1 for every n. We refer to the sequence

CN (X ) :=
N
∑

n=1

a(n)X (n)

as the arithmetic chaos associated with X and a(n).
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Our question concerns the case when X (p) are independent Steinhaus variables z(p), i.e. the
random variable z(p) is equidistributed on the unit circle. When a(n) ≡ 1, we refer to the result-
ing sequence

SN (z) :=
N
∑

n=1

z(n)

as arithmetic Steinhaus chaos. The relation between our question and arithmetic Steinhaus chaos
is given by the well-known norm identity

(2) E(|SN |q ) = lim
T→∞

1

T

∫T

0
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d t ,

valid for all q > 0 (see [12, Section 3]).
The point of departure for our research is Helson’s last paper [10] in which he conjectured

that E(|SN |) = o(
"

N ) when N →∞. This means that Helson anticipated that our question has a
negative answer. Using an inequality from another paper of Helson [9], we get immediately that

(3) E(|SN |) ≫
"

N (log N )−1/4.

Our attempt to settle Helson’s conjecture has resulted in a reduction from 1/4 to 0.05616 in the
exponent of the logarithmic factor in (3). We note in passing that the problem leading Helson to
his conjecture was solved in [11] avoiding the use of the random functions SN .

To get a picture of what our work is about, it is instructive to return for a moment to a general
arithmetic chaos C := (CN (X )). To this end, let us assume that X (p) is such that the moments

∥CN∥q
q := E(|CN |q )

are well defined for all q > 0. We declare the number

q(C ) := inf

{

q > 0 : lim sup
N→∞

∥CN∥q+ε/∥CN∥q =∞ for every ε> 0

}

to be the critical exponent of C , setting q(C )=∞ should the set on the right-hand side be empty.
A problem closely related to Helson’s conjecture is that of computing the critical exponent of a
given arithmetic chaos. We observe that q(C ) ≥ 2 is equivalent to the statement that there exist
absolute constants c > 0, 0<λ< 1 such that

P

(

|CN |≥ c
"

N
)

≥λ

holds for all N , cf. our question. In our case, the critical exponent is strictly smaller than 4, and
then a serious obstacle for saying much more is that only even moments are accessible by direct
methods.

We will prove the following result about arithmetic Steinhaus chaos.

Theorem 1. We have

(4) ∥SN∥q ≫q

"
N (log N )−0.07672

for all q > 0.
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This estimate is of course of interest only for small q; our method allows us to improve (4) for
each individual 0 < q < 2 as will be demonstrated in the last section of the paper. In the range
q > 2, we note that the L4 norm has an interesting number theoretic interpretation and has been
estimated with high precision [1]:

∥SN∥4
4 =

12

π2
N 2 log N +cN 2 +O

(

N 19/13(log N )7/13
)

with c a certain number theoretic constant. This means in particular that the critical exponent of
arithmetic Steinhaus chaos S := (SN ) satisfies q(S)< 4. We mention without proof that, applying
the Hardy–Littlewood inequality from [2] to S2

N , we have been able to verify that in fact q(S) ≤
8/3. A further elaboration of our methods could probably lower this estimate slightly, but this
would not alter the main conclusion that it remains unknown whether q(S) is positive.

Before turning to the proof of Theorem 1, we mention the following simple fact: There exists a
constant c < 1 such that ∥SN∥1 ≤ c∥SN∥2 when N ≥ 2. To see this, we apply the Cauchy–Schwarz
inequality to the product of (1−εz(2))SN and (1−εz(2))−1 to obtain

∥SN∥2
1 ≤

1

(1−ε2)
·
(

(1−ε)2[N/2]+ (1+ε2)[(N +1)/2]
)

≤
N − (ε−ε2)(N −1)

1−ε2

for every 0 < ε< 1. Choosing a suitable small ε, we obtain the desired constant c < 1.

2. PROOF OF THEOREM 1

Our proof starts from a decomposition of SN into a sum of homogeneous polynomials. To this
end, we set

EN ,m := {n ≤ N : Ω(n) = m} ,

where Ω(n) is the number of prime factors of n, counting multiplicities. Correspondingly, we
introduce the homogeneous polynomials

SN ,m (z) :=
∑

n∈EN ,m

z(n)

so that we may write
(5) SN (z) =

∑

m≤(log N)/ log 2

SN ,m (z).

We need two lemmas. The first is a well-known estimate of Sathe; the standard reference for
this result is Selberg’s paper [13]. To formulate this lemma, we introduce the function

Φ(z) :=
1

Γ(z +1)

∏

p

(

1−1/p)
)z (

1− z/p
)−1

,

where the product runs over all prime numbers p. This function is meromorphic in C with simple
poles at the primes and zeros at the negative integers.

Lemma 2. When N ≥ 3 and 1≤ m ≤ (2−ε) loglog N for 0 < ε< 1, we have

|EN ,m | =
N

log N
Φ

(

m

loglog N

)

(loglog N )m−1

(m −1)!

(

1+O

(

1

loglog N

))

,

where the implied constant in the error term only depends on ε.
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The second lemma is a general statement about the decomposition of a holomorphic function
into a sum of homogeneous polynomials. For simplicity, we consider only an arbitrary holomor-
phic polynomial P (z) in d complex variables z = (z1, ..., zd ). Such a polynomial has a unique
decomposition

P (z) =
k
∑

m=0

Pm(z),

where k is the degree of P and
Pm(z) =

∑

|α|=m

aαzα

is a homogeneous polynomial of degree m. Here we use standard multi-index notation, which
means that α= (α1, ...,αd ), where α1, ..., αd are nonnegative integers,

zα = zα1
1 · · ·z

αd

d
,

and |α| =α1+·· ·+αd . At this point, the reader should recognize that if we represent an arbitrary
integer n ≤ N by its prime factorization pα1

1 · · ·p
αd

d
(here d = π(N )) and set α(n) = (α1, ...,αd ),

then we may write

SN (z) =
N
∑

n=1

zα(n).

Hence, as already pointed out, (5) is the decomposition of SN into a sum of homogeneous poly-
nomials, and we also see that |α(n)| =Ω(n).

We let µd denote normalized Lebesgue measure on T
d and define

∥P∥q
q :=

∫

Td
|P (z)|q dµd (z)

for every q > 0. The variables z1,..., zd can be viewed as independent Steinhaus variables so that
∥SN∥q has the same meaning as before.
Lemma 3. There exists an absolute constant C , independent of d , such that

∥Pm∥q ≤

{

∥P∥q , q ≥ 1

C m1/q−1∥P∥q , 0< q < 1

holds for every holomorphic polynomial P of d complex variables.
Proof. We introduce the transformation zw = (w z1, ..., w zd ), where w is a point on the unit circle
T. We may then write

P (zw ) =
k
∑

m=0

Pm(z)w m .

It follows that we may consider the polynomials Pm(z) as the coefficients of a polynomial in one
complex variable. Then a classical coefficient estimate (see [4, p. 98]) shows that

|Pm(z)|q ≤

{

∫

T
|Pm(zw )|q dµ1(w), q ≥ 1

C m1−q
∫

T
|Pm(zw )|q dµ1(w), 0 < q < 1.

Integrating this inequality over Td with respect to dµd (z) and using Fubini’s theorem, we obtain
the desired estimate. !
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We now turn to the proof of Theorem 1. The idea of the proof can be related to an interesting
study of Harper [6] from which it can be deduced that, asymptotically, the square-free part of the
homogeneous polynomial SN ,m /

"
N has a Gaussian distribution when m = o(loglog N ). When

m =β loglog N for β bounded away from 0, this is no longer so, but what we will use, is a much
weaker statement: When β is small enough, the L2 and L4 norms are comparable. The proof will
consist in identifying for which β this holds.

To this end, we first observe that

(6) ∥SN ,m∥2
2 = |EN ,m |.

To estimate ∥SN ,m∥4
4, we begin by noting that

|SN ,m |2 = |EN ,m |+
m
∑

k=0

∑

a,b∈EN ,k ,(a,b)=1

|EN/max(a,b),m−k |z(a)z(b).

Squaring this expression and taking expectation, we obtain

∥SN ,m∥4
4 = |EN ,m |2 +2

m
∑

k=0

∑

a,b∈EN ,k ,(a,b)=1,a<b

|EN/b,m−k |
2

≤ |EN ,m |2 +2
m
∑

k=0

∑

b∈EN ,k

|Eb,k | · |EN/b,m−k |2

≤ 5|EN ,m |2 +
m−1
∑

k=1

∑

b∈EN ,k

|Eb,k | · |EN/b,m−k |2.(7)

Here we used that, plainly,
∑

b∈EN ,0

|EN/b,m |2 = |EN ,m |2 and
∑

b∈EN ,m

|Eb,m |≤ |EN ,m |2.

To estimate the sum over b in (7), we begin by observing that Lemma 2 implies that

|EN/b,m−k |≪ b−1|EN ,m−k |, b ≤
"

N ,

|Eb,k |≪ bN−1|EN ,k |,
"

N < b ≤ N .(8)

We split correspondingly the sum into two parts:

(9)
∑

b∈EN ,k

|Eb,k |·|EN/b,m−k |2 ≪ |EN ,m−k |2
∑

b∈E"
N ,k

b−2|Eb,k |+|EN ,k |
∑

b∈EN ,k \E"
N ,k

bN−1|EN/b,m−k |2.

To deal with the first of the two sums in (9), we begin by using Lemma 2 so that we get smooth
terms in the sum:

∑

b∈E"
N ,k

b−2|Eb,k |≪
∑

b∈E"
N ,k \{1,2}

(loglogb)k−1

b(logb)(k −1)!
=

∑

2<b≤
"

N

g (b)
(loglogb)k−1

b(logb)(k −1)!
,
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where g (n) is the characteristic function of the set E"
N ,k . We apply Abel’s summation formula

to the latter sum and obtain, using also Lemma 2,
∑

b∈E"
N ,k

b−2|Eb,k |≪
∣

∣E"
N ,k

∣

∣N−1/2 (loglog N )k−1

(log N )(k −1)!
+

∫N

3

∣

∣Ex,k

∣

∣

(loglog x)k−1

x2(log x)(k −1)!
d x

≪
(loglog N )2(k−1)

(log N )2((k −1)!)2
+

∫N

3

(loglogx)2(k−1)

x(log x)2((k −1)!)2
d x

≪
1

((k −1)!)2

∫∞

0
y2(k−1)e−y d y =

(2k −2)!

((k −1)!)2
≪

22k

"
k

.(10)

Arguing in a similar fashion, using Abel’s summation formula and again (8), we get

∑

b∈EN ,k \E"
N ,k

bN−1|EN/b,m−k |2 ≪ N

∫N/3

"
N

∣

∣Ex,k

∣

∣

(

loglog N
x

)2(m−k−1)

x2
(

log N
x

)2
((m −k −1)!)2

d x

≪
|EN ,k |

((m −k −1)!)2

∫∞

0
y2(m−k−1)e−y d y

≪ |EN ,k | ·
22(m−k)

"
m −k

.(11)

Inserting (10) and (11) into (9), we obtain
∑

b∈EN ,k

|Eb,k | · |EN/b,m−k |2 ≪ |EN ,m−k |2 ·
22k

"
k
+|EN ,k |2 ·

22(m−k)

"
m −k

.

Returning to (7) and using (6), we therefore find that

∥SN ,m∥4
4 ≪∥SN ,m∥4

2

(

1+
m−1
∑

k=1

|EN ,m−k |2

|EN ,m |2
·

22k

"
k

)

.

Applying again Lemma 2, we get
m−1
∑

k=1

|EN ,m−k |2

|EN ,m |2
·

22k

"
k
≪

m−1
∑

k=1

1
"

k
·
(

(m −1)!

(m −k −1)!

)2

·
(

2

loglog N

)2k

≪
m−1
∑

k=1

1
"

k
·e− k2

m ·
(

2m

loglog N

)2k

.(12)

It follows that the two norms are comparable whenever m = e−ε

2 loglog N for ε> 0, in which case
Hölder’s inequality yields

(13) ∥SN ,m∥2 ≪ε ∥SN ,m∥q

for 0 < q < 2. By (6), Lemma 2, and Stirling’s formula, we have

(14) ∥SN ,m∥2 = |EN ,m |1/2 ≍
"

N (log N )−δ(ε)m−1/4
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when m ≤ e−ε

2 loglog N , where

δ(ε) := (2−e−ε(1+ log2+ε))/4 = (1− log2)/4+O(ε)

when ε→ 0. Combining this with (13) and applying Lemma 3, we infer that
"

N (log N )−δ(ε)(loglog N )−1/4 ≪∥SN ,m∥q ≪ (loglog N )max(1/q−1,0)∥SN∥q

when 0< q < 2. Theorem 1 follows since (1− log2)/4< 0.07672.

3. CONCLUDING REMARKS

1. We will now deduce (1) from Theorem 1. Since t -→
∑N

n=1 n−i t is an almost periodic function,
it suffices to consider the interval I = [0,T ] for some large T . Moreover, by (2), it amounts to the
same to estimate the measure of the subset

E :=
{

z : |SN (z)|≥ c
"

N (log N )−0.07672
}

of Tπ(N) for a suitable c depending on ε. We find that

∥SN∥q
q ≤ cq N q/2(log N )−0.07672q +

∫

E

|SN (z)|q dµπ(N)(z)

≤ cq N q/2(log N )−0.07672q +∥SN∥q
2 |E |1−q/2,

where we in the last step used Hölder’s inequality. Using Theorem 1 to estimate ∥SN∥q
q from

below and recalling that ∥SN∥2 =
"

N , we therefore get

(15) κq (log N )−0.07672q ≤ cq (log N )−0.07672q +|E |1−q/2,

where κq is a constant depending on q . Given ε> 0, we now choose q such that ε= 0.07672q/(1−
q/2) and cq = κq /2. Then (15) yields

|E |≥ (κq /2)(1−q/2)−1
(log N )−ε.

2. We may improve (4) in the following way. If m = e y

2 loglog N with y > 0, then we see from
(12) that

m−1
∑

k=1

|EN ,m−k |2

|EN ,m |2
·

22k

"
k
≪y emy2

which in turn implies that ∥SN ,m∥2/∥SN ,m∥4 ≫y e−my2/4. By Hölder’s inequality,

∥SN ,m∥2 ≤ ∥SN ,m∥
q

4−q

q ∥SN ,m∥
4−2q
4−q

4 ,

and we therefore get

∥SN ,m∥q ≫y ∥SN ,m∥2e−my2(2/q−1)/2 = ∥SN ,m∥2(log N )−e y y2(2/q−1)/4.

We also observe that (14) now takes the form

∥SN ,m∥2 = |EN ,m |1/2 ≍
"

N (log N )(e y (1+log 2−y)−2)/4m−1/4.
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We find that the exponent of log N in the lower bound for ∥SN ,m∥q becomes optimal if we choose
y as the positive solution to the quadratic equation (2/q−1)y2+(4/q−1)y−log2= 0; when q = 1,
we get for instance y = 0.21556... and hence, after a numerical calculation,

∥SN∥1 ≫
"

N (log N )−0.05616.

3. Our proof shows that we essentially need β≤ 1/2 for the projection

PβSN :=
∑

m≤β log logN

SN ,m

to have comparable L2 and L4 norms. To use our method of proof to show that Helson’s conjec-
ture fails, it would suffice to know that the projection P1SN has comparable L2 and Lq norms for
some q > 2, because in that case ∥P1SN∥2 ≥ (1+o(1))

"
N . However, we see no reason to expect

that such a q exists.
4. A careful examination of our proof, including a detailed estimation of the last sum in (12),
shows that

(16) ∥SN ,m∥4/∥SN ,m∥2 ≍ (loglog N )1/16

when m = 1
2 loglog N +O(

√

loglog N ). This means that 1
2 loglog N is indeed the critical degree

of homogeneity and, moreover, that the two norms fail to be comparable in the limiting case.
5. Helson’s problem makes sense for other distributions; an interesting case is when X (p) are
independent Rademacher functions ϵ(p) taking values +1 and −1 each with probability 1/2. If
we set a(n) = |µ(n)| (here µ(n) is the Möbius function), then we obtain arithmetic Rademacher
chaos:

RN (ϵ) :=
N
∑

n=1

|µ(n)|ϵ(n).

Rademacher chaos was first considered by Wintner [14] and has been studied by many authors,
see e.g. [5, 6]. Here it is of interest to note that Chatterjee and Soundararajan showed that
RN+y −RN is approximately Gaussian when y = o(N/log N ) [3], which means that the analogue
of Helson’s conjecture is false in short intervals [N , N + y].
6. While we were preparing a revision of this paper, further progress on Helson’s problem was
announced by Harper, Nikeghbali, and Radziwiłł [8]. By a completely different method, relying
on Harper’s lower bounds for sums of random multiplicative functions [7], these authors obtained
the lower bound

"
N (loglog N )−3+o(1) for both E|RN | and E|SN |. In view of this result, it seems

reasonable to conjecture that ∥SN ,m∥2/∥SN ,m∥1 is bounded whenever m = e−ε loglog N for ε> 0
and that m = loglog N is the limiting case for the boundedness of this ratio. Comparing with
(16) and taking into account Remark 3 above, one might wonder if the ratio ∥SN∥2/∥SN∥1 does
indeed grow as a power of loglog N .
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