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Abstract

Reservoir compaction due to hydrocarbon production has been observed in several
North Sea reservoirs, especially the chalk reservoirs in the southern part. This com-
paction leads to changes in porosity and permeabilities which have implications for
production and the production performance. In addition, reservoir compaction is
often associated with stretching and arching of the overburden rocks and subsidence
of the sea bed. The change in geomechanical stress state for the overburden rocks
might cause damage in existing wells. It is therefore of significant importance to
monitor these changes during production not only for the reservoir itself but also for
the overburden rocks. This information can be obtained from well logs; however,
wells in most reservoirs are sparse and widely spread, making time-lapse seismic
data an important complementary tool.

Since compaction and stretching cause changes in both layer thickness as well as
seismic velocities, it is crucial to develop methods to distinguish between the two
effects. A new method based on detailed analysis of prestack time-lapse seismic
data is introduced to discriminate between layer thickness and velocity changes.
A key parameter in this discrimination process is the dilation factor, α, which is
the relative velocity change divided by the relative thickness change within a given
layer. This method incorporates lateral variations in relative velocity changes by
utilizing zero-offset and offset-dependent time shifts.

Monitoring fault movements is important to avoid the complications associated
with wells crossing faults that might be reactivated due to reservoir production.
In addition, reactivation of overburden faults near the reservoir zone might lead
to leakage of hydrocarbons and affect the reservoir drainage patterns. This thesis
shows that growing faults can be obtained from prestack time-lapse seismic data.
A growing fault tip appears as a distortion pattern with characteristic time shift
versus offset signatures. From raypath considerations and modeling, the position
and vertical extent of a distortion zone can be determined. The distortion patterns
disappear if the time-lapse data is stacked, meaning that prestack data contains
crucial information. The correlation between a time-lapse distortion zone and a
growing fault tip is investigated on high quality prestack time-lapse seismic ocean
bottom cable (OBC) data from the Valhall Field. A compacting reservoir zone
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exists directly beneath this fault tip, validating that a growing fault might cause
the observed anomalies. Growing faults complicate the interpretation of time-lapse
data since large vertical (in addition to lateral) variations in thickness and velocity
changes occur. This thesis presents an extended method to estimate the dilation
factor (α) in such cases. This method can be viewed as a simplified version of
time-lapse tomography, but involving fewer unknown parameters, giving more sta-
bility to the estimated changes in thickness and velocity. In addition, the presented
method is faster and cheaper than a full tomographic method.

In many reservoirs, 30-40% of the oil reserves remain unproduced. To identify
undrained areas and detect drainage patterns, it is crucial to monitor the reservoir
changes during production. Reservoir monitoring leads to saved costs due to re-
duced number of misplaced wells and increased production because of optimized
well planning. From time-lapse amplitude variation with offset (AVO) analysis,
it is possible to estimate reservoir pressure and saturation changes. This thesis
introduces a new method which also includes compacting reservoirs. This is ini-
tially a three-parameter problem, including pressure and saturation changes and
compaction. However, from laboratory measurements, the reservoir compaction is
related to the pressure and saturation changes. Using an empirical relation between
porosity, saturation, and pressure changes, the problem is reduced to involve only
the pressure and saturation changes, which can be solved from time-lapse AVO
analysis.
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Chapter 1

Thesis Introduction

Monitoring reservoir and overburden changes during hydrocarbon production is im-
portant to identify undrained areas and for planning placement of wells. Repeated
(time-lapse) seismic data is important to obtain this information. The objective of
this thesis is to improve the understanding of time-lapse seismic data analysis of
compacting hydrocarbon fields. I introduce new methods based on prestack time-
lapse seismic data analysis to monitor production-induced reservoir changes and
associated overburden changes. Production-induced compaction of reservoir rocks
has been observed in several North Sea reservoirs, especially chalk reservoirs like
Valhall and Ekofisk (in the southern part of the North Sea). Reservoir compaction
leads to changes in porosity and permeabilities which have implications for produc-
tion and the production performance. In addition, reservoir compaction is often
associated with stretching of the overburden rocks. The change in geomechanical
stress state for the overburden rocks might lead to damage in existing wells. It is
therefore of great interest to the industry to monitor both overburden and reservoir
changes during production.

1.1 Motivation for the thesis

Reservoirs producing oil or gas are subjected to pore pressure depletion. This cre-
ates changes in the stress and strain fields of the rock material both inside and
outside the reservoir. For reservoir rocks with high compressibility, such as chalks
and unconsolidated sands, pressure depletion leads to compaction, which has im-
plications for production by changing permeabilities and, hence, the production
performance (Hall et al., 2005).

Reservoir compaction due to hydrocarbon production has been observed in several
North Sea reservoirs, especially the chalk reservoirs in the southern part. Guilbot
and Smith (2002) utilized time isochron differences from 4D seismic data to detect
compaction and subsidence at the Ekofisk Field. They observed seismic time shifts
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2 Motivation for the thesis

up to 12-16 ms between 1989 and 1999, related to compaction values of up to 6 m
for the reservoir chalk formation.

In many reservoirs, compaction of the reservoir rocks represents the major drive
mechanism. Significant volumes of produced hydrocarbons may be credited to this
effect. However, compaction may also lead to subsidence of the sea bed. At the
Valhall Field, Barkved and Kristiansen (2005) report a maximum subsidence of the
sea bed larger than 5.4 m (since the field came on production in 1982) and increas-
ing by 0.25 m per year. At the Ekofisk Field, the extensive compaction resulted
in sea bed subsidence of nearly 8 m by 2000 (Chin and Nagel, 2004). It is typical
for these fields that the sea bed subsidence is less than the corresponding reservoir
compaction, meaning that the overburden rocks are stretched. Often the change
in geomechanical stress state for the overburden rocks leads to damage in existing
wells (especially when significant shear stresses are introduced as a byproduct of
the reservoir compaction). It is therefore of importance to map the velocity and
thickness changes during production not only for the reservoir itself, but also for
the overburden rocks. Time-lapse seismic data can be utilized to obtain this infor-
mation.

Reservoir compaction may also lead to movements of faults. Several authors (Ewing,
1985; White and Morton, 1997; Morton et al., 2006) discuss the coupling between
reservoir compaction and slip along growth faults that become active when suffi-
ciently large volumes of fluid (oil, gas, or formation water) are produced. Reynolds
et al. (2003) determined the relative attendant risk of reactivation of faults in the
Bight Basin by evaluating the in situ stress field. Mildren et al. (2002) studied re-
activation of faults by using the FAST (Fault Analysis Seal Technology) technique.
Monitoring fault movements is important for several reasons. Reactivation of faults
might lead to leakage of hydrocarbons and affect the reservoir drainage patterns.
Fault seal breach in the North Sea (Gaarenstroom et al., 1993), the Penola Through
(Jones et al., 2000), and the Gulf of Mexico (Finkbeiner et al., 2001) have been re-
lated to faulting and fracturing associated with the in situ stress. Based on seismic
data and wellbore information, Allan diagrams (Allan, 1989) are often used to iden-
tify potential petroleum leak points along a fault strike. In addition to leakage of
hydrocarbons, hazards are associated with wells crossing reactivated faults (Alsos
et al., 2002). Barkved et al. (2003) report a strong correlation between overburden
faults and drilling problems at the Valhall Field. Maury et al. (1992) discuss fur-
ther how slipping faults can pose serious problems in the field since it may cause
casing failure. Reactivated faults can also have close relationship with earthquakes.
Zoback and Zinke (2002) recorded numerous microearthquakes at the Valhall Field
during a six week monitoring period. They found the microearthquakes consistent
with a normal faulting stress regime.



Thesis Introduction 3

Monitoring reservoir and overburden layer changes and movements of faults is there-
fore important, and the combined use of time-lapse seismic data and geomechanical
knowledge is expected to be important in future monitoring projects.

1.2 Linking geomechanics and time-lapse seismic

Several authors (Rhett, 1998; Chin et al., 2002; Vikram and Settari, 2005) have
created geomechanical and fluid flow models of compacting reservoirs based on lab-
oratory studies of reservoir rocks. Minkoff et al. (2004) try to predict production
in compacting reservoirs by linking geomechanics and flow models with time-lapse
seismic. Hatchell et al. (2005) and Vidal et al. (2002) try to integrate time-lapse
seismic and geomechanics to characterize reservoir changes. Hatchell and Bourne
(2005a) constructed forward models of time-lapse time shifts from stress and strain
fields using geomechanical models and a stress/strain-dependent seismic velocity.
They found that a simple linear model relating seismic velocity with vertical normal
strain works well for several locations around the world.

It is important to notice that time-lapse time shifts capture the combined effects of
velocity and thickness changes within a given layer. For a layer undergoing thick-
ness changes, the seismic velocity is altered by the changes in the stress and strain
fields. For a layer of thickness, z, I express the relative time shift in terms of the
relative thickness change and velocity change as (Landrø and Stammeijer, 2004;
Hatchell and Bourne, 2005b; Røste et al., 2005)

∆T0

T0
≈ ∆z

z
− ∆v

v
, (1.1)

where T0 represents seismic two-way vertical traveltime within the layer and v is
the layer velocity. The notations ∆T0, ∆z, and ∆v represent changes in vertical
two-way traveltime, thickness, and velocity, respectively. (Note that the relative
thickness change ∆z/z is identical to the average vertical strain εzz over the layer.)
A major challenge for quantitative time-lapse analysis is to discriminate between
thickness changes and velocity changes for both the reservoir section and the over-
burden. Landrø and Janssen (2002) presented a method utilizing near and far offset
traveltime shifts to perform this discrimination procedure.

As a first order approximation for a relation between relative thickness and ve-
locity changes for a given subsurface layer it might be reasonable to assume that
the two changes are proportional to each other:

∆v

v
≈ α

∆z

z
, (1.2)



4 Reservoir changes and time-lapse seismic

where the ”dilation factor” α < 0 is a parameter dependent on the rock properties of
the layer. This is a crucial parameter, since it determines the ratio between velocity
and thickness changes. The knowledge of the dilation factor from a rock physics
point of view is limited; there are no measurements available to my knowledge. I
do not know if the dilation factor is the same for compaction and stretching of a
rock. Furthermore, the dilation factor might also be dependent on the magnitude of
the relative thickness change. Despite these concerns, I find it fruitful to introduce
the dilation factor, since it captures the important relation between velocity and
thickness changes. Furthermore, as later shown in section 2.4, the dilation factor
can easily be determined from empirical porosity-velocity relations, e.g. given by
Mavko et al. (1998).

1.3 Reservoir changes and time-lapse seismic

Hydrocarbon production will cause pore pressure and fluid saturation changes. Both
pressure and saturation changes might influence time-lapse seismic data (Landrø,
1999), and it is often difficult to separate the two effects based on stacked PP time-
lapse data only. In many time-lapse seismic studies, seismic differences between a
baseline and a monitor survey are analyzed as either a pressure effect (Watts et
al., 1996) or a fluid effect (Landrø et al., 1999; Gabriels et al., 1999). However,
for some fields or segments within the field, both fluid and pressure changes have
approximately the same degree of impact on the seismic data. In such cases the use
of time-lapse amplitude variation with offset (AVO) analysis (see Tura and Lumley,
1998, 1999a; Landrø, 1999; Landrø, 2001) or time-lapse PP- and PS-reflectivity
stacks (see Landrø et al., 2003; Stovas et al., 2003) offer an opportunity to discrim-
inate between the two effects. However, these methods do not include reservoir
compaction; that is, porosity changes are neglected. Modifications are therefore
needed for reservoirs where production or water injection induces porosity changes.

At first, one might assume that changes in saturation, pressure, and porosity are
three independent parameters. However, from laboratory measurements of chalk
Sylte et al. (1999) found that porosity changes are related to saturation and pres-
sure changes; that is, the pressure changes might induce fractures and compaction
of the weak chalk matrix, while water has a weakening effect on chalk. The rela-
tion between porosity changes (∆φ), saturation changes (∆Sw), and effective stress
changes (∆σ) can be given as (Sylte et al., 1999)

∆φ =
∂φ

∂σ
∆σ +

∂φ

∂Sw
∆Sw, (1.3)

where ∂φ/∂σ and ∂φ/∂Sw are partial differentiations of the porosity with respect
to stress and water saturation, respectively.



Thesis Introduction 5

In addition to reservoir stress and saturation changes, time-lapse seismic data might
be influenced by other effects, such as changes in temperature. Variations in reser-
voir temperature are usually small. However, cases where temperature changes
might occur are when steam (temperature around 300◦C) is injected in a shallow
reservoir with temperature between 10-30◦C (e.g. the Duri Field, Jenkins et al.,
1997), or when cold sea water (temperature 0-15◦C) is injected into deeper reser-
voirs with temperature 70-90◦C (Jack, 1997). Such temperature changes might
change both velocity and density (Mavko et al., 1998; Batzle and Wang, 1992).

1.4 The Valhall Field

The methods proposed in this thesis are mainly tested on prestack time-lapse seis-
mic data from the Valhall Field, situated in the southern part of the Norwegian
North Sea (see Figure 1.1). The Valhall Field is an over-pressured Late Cretaceous
chalk reservoir. The field was discovered in 1975 (after exploration drilling in the

Figure 1.1: Location of the Valhall Field in the Norwegian sector of the North
Sea (Barkved et al., 2003).



6 The Valhall Field

period 1969-1974) and started producing in October 1982. Daily production is on
the order of 100 000 barrels of light oil (Barkved and Kristiansen, 2005). The
reservoir layer is at depth 2500 m and ranges in thickness from 0-70 m. Porosity
is 35-50% and matrix permeability is generally low, less than 10 mD. Palaeocene
shale provides the cap rock. The water depth is 70 m.

The expected recovery rate in 1982 was 14%, a figure which has now increased
to 40% (Barkved and Kristiansen, 2005). Time-lapse seismic monitoring with high
quality in addition to improved methods to interpret and utilize the seismic might
increase the recovery further. The seismic response is very sensitive to production-
induced features (such as reservoir compaction, depletion, stretched overburden
layers, and seabed subsidence). This was first demonstrated by marine streamer
data, acquired in 1992 and 2002. Figure 1.2 shows time-lapse seismic data from the
south-east part of the Valhall Field (from 1992 and 2002). Large pull-down effects

Figure 1.2: Time-lapse seismic data from the south-east part of the Valhall Field,
acquired in 1992 and 2002. Large time shifts and amplitude changes are observed
near the reservoir zone.
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and amplitude changes are observed at the top and base of the reservoir layer. The
time-lapse seismic effects are mainly due to compaction of the reservoir (induced
by the pore pressure decrease and fluid saturation changes during hydrocarbon pro-
duction).

In 2003, a permanent ocean bottom cable (OBC) array was installed at the Valhall
Field, initiating the ”Life of Field Seismic” (LoFS) program which includes a series
of 3D OBC surveys. The first survey was acquired from September to November
2003 with subsequent surveys acquired in intervals of approximately 4 months. Re-
sults from the earliest surveys confirm that the system can provide high quality
data with good repeatability (Kommedal et al., 2004; Barkved, 2004).

In January 2004, water injection started in the center of the field. Field and lab ob-
servations indicate that water has a weakening effect on the reservoir chalk. For the
Ekofisk chalk field, this water-weakening phenomenon became the primary mech-
anism for reservoir compaction in 1993, 6 years after the start of water injection
(Sylte et al., 1999). Reservoir compaction due to water weakening is also expected
at the Valhall Field.

1.5 Thesis content

The thesis contains 7 chapters, including this introduction. The chapters 3, 4, and
6 represent independent papers.

This introductory chapter 1 states the motivation for the thesis. The challenges
regarding geomechanical changes during hydrocarbon production are mentioned.
Also included is a short description of the Valhall Field.

Chapter 2 contains background theory, including a derivation of the wave equa-
tion. Several rock physics models are discussed. By assuming uniaxial stress-strain
relations, the dilation factor α is determined based on porosity-velocity relations.

Chapter 3 introduces a new method which discriminates between velocity and thick-
ness changes of stretched or compacted rocks. The method is based on detailed
analysis of time-lapse prestack seismic data, and incorporates lateral variations in
(relative) velocity changes by utilizing zero-offset and offset-dependent time shifts.
The method is tested on a 2D synthetic model that undergoes severe reservoir
compaction as well as stretching of the overburden rocks. Finally, the method is
utilized to analyze a real 2D prestack time-lapse seismic line from the Valhall Field,
acquired in 1992 and 2002. The authors of this paper are T. Røste, A. Stovas,
and M. Landrø. The paper was published in the November-December 2006 issue of
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Geophysics (Røste et al., 2006). The work has been presented at the 67th EAGE
Conference & Exhibition in Madrid, Spain, June 2005, at the ROSE meeting in
Trondheim, Norway, June 2005, and at the FORCE seminar in Stavanger, Norway,
September 2005.

In chapter 4, time-lapse changes are investigated on prestack time-lapse seismic
ocean bottom cable (OBC) data from LoFS survey 1 and survey 3. The OBC
recording system provides data with high quality and good repeatability. By uti-
lizing the method introduced in chapter 3, changes in thickness and velocity are
estimated for a sequence from the sea bed to the top reservoir horizon. In addition,
time-lapse time shift distortion patterns that move systematically with offset are
observed. We show that one of the distortion zones (observed between LoFS sur-
vey 1 and 3) correlates with buried faults, indicating that a (time-lapse) distortion
zone might be produced by a localized slip in a fault zone. An extended method
is introduced to describe such positions. The authors of this paper are T. Røste,
M. Landrø, and P. Hatchell. The paper was submitted to Geophysical Journal In-
ternational in May 2006 and accepted for publication in January 2007. In April
2006, the paper was presented at the ROSE meeting in Trondheim, Norway and in
January 2007, an expanded abstract was submitted to the 69th EAGE Conference
& Exhibition.

The time-lapse discrimination method discussed in chapters 3 and 4 is developed for
isotropic cases. However, the earth is most probably anisotropic, and an isotropic
case is only a simplified description of the earth. Chapter 5 describes an extended
discrimination method which accounts for time-lapse anisotropy changes. Approx-
imations regarding the included anisotropy were necessary to avoid large, complex
terms. The method is tested on synthetic anisotropic models undergoing differ-
ent scenarios of thickness, velocity, and anisotropy changes. Compared with the
isotropic method, the proposed method produces better results for the anisotropic
time-lapse datasets. For cases with static anisotropy, the derived method becomes
identical to the isotropic method.

Chapter 6 introduces a method which discriminates between pressure and fluid
saturation changes in compacting reservoirs. The proposed method is based on
time-lapse amplitude variation with offset (AVO) analysis. Based on laboratory
measurements, the reservoir compaction (or porosity loss) is related to the pressure
and saturation changes. By using this empirical relation, explicit expressions for
computing pressure- and saturation-related changes from time-lapse seismic data
are obtained. The method is tested on synthetic models with different production
scenarios. The authors of this paper are T. Røste and M. Landrø. In January 2007,
an expanded abstract of this work was submitted to the 69th EAGE Conference &
Exhibition.
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Finally, chapter 7 completes the thesis with closing remarks.
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Chapter 2

Background theory

2.1 The wave equation

Seismic sound waves can be viewed as subsurface disturbances that propagate with
velocities given by the elastic stiffness and the density of the rock. Seismic waves in-
duce elastic deformation along the propagation path in the subsurface. The equation
of wave propagation in elastic solids is derived by using Hooke’s law and Newton’s
second law of motion. Most rocks have an ability to resist and recover from the
deformations produced by forces. This ability is called elasticity. When an elastic
material is subjected to stresses, changes in shape and dimensions occur. These
changes are referred to as strains. Fjær et al. (1992) evaluate in detail how rock
materials respond to a dynamic, time harmonic external stress (or strain).

Strain is defined as the relative change in a dimension or shape of a body. It is
common to discriminate between normal strains, shearing strains, and rotations.
Normal strains are related to volumetric changes, shearing strains are related to
angular deformations, and rotations occur without any deformations. Adding to-
gether the normal strains in the x-, y-, and z-direction of a Cartesian coordinate
system, gives the relative change in volume, ∆ (Sheriff and Geldart, 1995):

∆ = εxx + εyy + εzz, (2.1)

where εxx, εyy, and εzz denote the relative change in length in x-, y-, and z-direction
(respectively) of the material.

Hooke’s law states that for small volumetric changes, a given strain is directly
proportional to the stress producing it. The strains involved in seismic waves are
usually less than 10−8 (except very near the source), which validates the use of
Hooke’s law. When several stresses exist, each produces strains independently of
the others. This means that each strain is a linear function of all of the stresses
and vice versa. In general, Hooke’s law leads to complicated relations between

11



12 The wave equation

strain and stress. But for an isotropic medium, Hooke’s law can be expressed in
the following relatively simple form (Love, 1944; Timoshenko and Goodier, 1934):

σii = λ∆ + 2µεii, i = x, y, z, (2.2)

σij = 2µεij , i, j = x, y, z; i �= j, (2.3)

where the parameters λ and µ (Lame’s constants) denote elastic stiffness and shear
modulus, respectively. Equations (2.2) and (2.3) represent the stress-strain relations
for normal components and shear components, respectively, and are often expressed
as a matrix equation, σ = Cε:⎡

⎢⎢⎢⎢⎢⎢⎣

σxx

σyy

σzz

σxy

σyz

σzx

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

εxx

εyy

εzz

εxy

εyz

εzx

⎤
⎥⎥⎥⎥⎥⎥⎦

. (2.4)

Acoustic wave propagation can be described by Newton’s second law of motion.
The unbalanced force acting on a small volume element of rock equals the mass
times the acceleration. In the x-direction, this gives the equation of motion on the
following form:

ρ
∂2u

∂t2
=

∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
, (2.5)

where u is the particle displacement in the x-direction, ρ is the density, and t denotes
time. Substituting Hooke’s law into equation (2.5) gives an equation expressing the
displacement (in x-direction) in terms of strains (e.g. Sheriff and Geldart, 1995):

ρ
∂2u

∂t2
= (λ + µ)

∂∆

∂x
+ µ∇2u, (2.6)

where ∇2u is the Laplacian of u; that is, ∇2u = ∂2u/∂x2 + ∂2u/∂y2 + ∂2u/∂z2.
Similar equations can be found for the motion along the y- and z-axis. Adding
together the equations for motion in x-, y-, and z-direction gives the well-known
wave equation:

ρ
∂2∆

∂t2
= (λ + 2µ)∇2∆. (2.7)

The Lame constant λ can be related to other elastic constants, e.g. λ = K − 2
3
µ,

where K and µ denote bulk and shear moduli, respectively. Using this relation
gives the wave equation on following form:

ρ
∂2∆

∂t2
= (K +

4

3
µ)∇2∆, (2.8)
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which is the most common representation. If the wave propagation is parallel to
the displacement u; that is, a longitudinal (or compressional) wave, equation (2.8)
reduces to

vP =

√
K + 4

3
µ

ρ
, (2.9)

where vP denotes the velocity of a compressional or primary wave. For a mode of
motion in which the particles are displaced only in the x-direction, and the wave
propagation is only in the y-direction, equation (2.8) becomes

vS =

√
µ

ρ
. (2.10)

The subscript S denotes that this is a shear wave. The combined particle and wave
motion of compressional and shear waves are illustrated in Figure 2.1. Equations
(2.9) and (2.10) show that vP is always larger than vS. For a fluid media

vP =

√
K

ρ
, vS = 0, (2.11)

since no shear forces exist.

The relation between velocity (vP or vS), elastic moduli (K, µ), and density (ρ)
appears to be straightforward from equations (2.9) and (2.10). However, this is
not the case since K, µ, and ρ are also related to other characteristics of the rock.

Direction of
wave propagation

�

P-wave � � � � � � � � � � �

S-wave
� �

�
�

� � �
�

�
� �

Figure 2.1: Particle motion of P-wave and S-wave propagation (slightly modified
from Fjær et al., 1992).
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These characteristics may be material and structure of the rock, type or lithology,
porosity, degree of fluid saturation, pressure, depth, cementation, degree of com-
paction, etc. The most notable inhomogeneity of sedimentary rocks is that they are
porous and filled with fluid. Wang and Nur (1992) discuss theories relating seismic
velocity to the composition of rocks.

2.2 Sedimentary rocks

Sedimentary rocks (sandstones, limestones, shales, etc.) can be considered as packed
grains. The space between the grains is called the pore space. This pore space is
filled with fluid; that is, oil, water, or gas. Pore pressure is the fluid pressure in
the pore space. For a case with perfect communication between the pores, the pore
pressure is equal to the hydrostatic pressure caused by the weight of the fluid. The
pore pressure at depth z can then be expressed as

pf (z) =

∫ z

z0

ρf (z)gzdz + pf (z0), (2.12)

where ρf (z) is the fluid density at depth z and g is the gravitational constant.
The pressure at depth z0, denoted pf (z0), is usually the atmospheric pressure. Hy-
drostatic pressure is often referred to as normal pressure conditions. Rocks that
deviate from the hydrostatic pressure are either called overpressured or underpres-
sured, depending on whether the pressure is greater or less than the normal pressure.

The overburden pressure is defined as the combined weight of sediments and fluid
overlying a formation:

P (z) =

∫ z

z0

ρ(z)gzdz, (2.13)

where
ρ(z) = φ(z)ρf + (1 − φ(z))ρS. (2.14)

The parameters ρf and ρS denote the fluid and solid densities and φ is the porosity.
The difference between the pore fluid pressure (pf ) and the overburden pressure
(P ) is called the effective stress (σ):

σ = P − ηpf , (2.15)

where η is the Biot coefficient. For static compression of the rock frame, the Biot
coefficient is defined as (Mavko et al., 1998)

η = 1 − Kfr

KS
, (2.16)

where Kfr and KS are the bulk and solid moduli of the frame, respectively. For
soft materials, η ≈ 1.
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2.3 Rock physics models

Rock physics models that relate velocity and impedance to porosity and mineralogy
form a critical part of seismic analysis for porosity and lithofacies. Illustrations of
velocity-porosity relations are given by Mavko et al. (1998) and Avseth et al.
(2005).

2.3.1 A pack of uniform spheres

The simplest rock model consists of identical spheres arranged in a cubic pattern.
The porosity of such a model is 0.48 (that is, 1 − π/6) and the average density can
be estimated to π/6 times the density of the material of the spheres. Based on
Timoshenko and Goodier (1951), the effective elastic modulus K can be related to
the compressive pressure and elastic constants of the spheres.

Gassmann (1951) calculated the velocity for a hexagonal packing of identical spheres
under a pressure produced by the overburden spheres. The cubic and hexagonal
packed spheres give the same variation of velocity with depth. This velocity vari-
ation with depth is also consistent with Faust (1953), which found an empirical
formula for velocity in terms of depth of burial and formation resistivity. However,
individual measurements of the velocity at a given depth deviate largely between
these formulas. This is due to the fact that the porosity estimations are inaccurate
(Sheriff and Geldart, 1995).

Random packs of well-sorted particles have porosities in the range of 0.4-0.5, but
under pressure, the particles deform at the points of contact, and as a result the
density increases and the porosity decreases. Clearly, porosity is an important fac-
tor controlling velocities. In addition, the velocity is dependent of fluid in the pores,
which affect the density as well as the effective elasticity of the rock.

2.3.2 Velocity-porosity relations with bounds

A useful velocity-porosity relation can be provided by upper and lower bounds on
the elastic moduli of rocks. Specifying the volume fractions of the constituents
and their elastic moduli, without any geometric details of their arrangement, it is
possible to predict the upper and lower bounds on the moduli and velocities of the
composite rock.

The simplest bounds are the Voigt (1910) and Reuss (1929) bounds. The Voigt
upper bound on the effective elastic modulus MV of a mixture of N material phases
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is given as (Mavko et al., 1998)

MV =
N∑

i=1

fiMi, (2.17)

where fi and Mi are the volume fraction and elastic modulus, respectively, of the
i-th constituent. The Voigt upper bound (also called isostrain average) represents
the elastically stiffest rock that nature can put together. The Reuss lower bound
(also called isostress average) of the effective elastic modulus MR is

1

MR
=

N∑
i=1

fi

Mi
, (2.18)

which represents the elastically softest rock that nature can put together. The
variable M in the Voigt and Reuss formulas can represent any modulus. However,
it is most common to compute Voigt and Reuss averages of the bulk modulus
M = K and shear modulus M = µ. Figure 2.2 shows an illustration of Voigt
and Reuss bounds for the bulk modulus K for a mixture of two constituents. The
constituents might be two different minerals or a mineral plus fluid (water, oil, or
gas). A well-known example where the Reuss model gives a correct prediction is a
suspension of particles in a fluid. The undrained bulk modulus K of the suspension
is given by

1

K
=

φ

Kfluid
+

1 − φ

Ksolid
, (2.19)

where Kfluid and Ksolid are the bulk moduli of the fluid and the solid mineral ma-
terial, respectively, and φ is the porosity. Equation (2.19) is also known as Wood’s
(1941) equation.

The best bounds, in the sense of giving the narrowest possible range of elastic
moduli without specifying anything about the geometries of the constituents, are
the Hashin-Shtrikman bounds (Hashin and Shtrikman, 1963). For a mixture of two
constituents, the Hashin and Shtrikman bounds are given by (Mavko et al., 1998)

KHS± = K1 +
f2

(K2 − K1)−1 + f1(K1 + 4
3
µ1)−1

, (2.20)

µHS± = µ1 +
f2

(µ2 − µ1)−1 + 2f1(K1+2µ1)

5µ1(K1+
4
3
µ1)

, (2.21)

where the two individual phases of the bulk modulus K, shear modulus µ, and vol-
ume fractions f are denoted with subscripts 1 and 2. Upper and lower bounds are
computed by interchanging which material is subscripted 1 and which is subscripted
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Figure 2.2: Illustration of the Voigt upper and Reuss lower bounds on the effective
bulk modulus of a mixture of two constituents (modified from Mavko et al., 1998).

2. Generally, the expressions give the upper bound when the stiffest material is sub-
scripted 1 in the expressions above, and the lower bound when the softest material
is subscripted 1.

The physical interpretation of the bounds for bulk modulus is shown schemati-
cally in Figure 2.3. The space is filled by an assembly of spheres of material 2, each
surrounded by a shell of material 1. Each sphere and its shell has exactly the volume
fractions f1 and f2. The upper bound is obtained when the stiffer material forms
the shell; the lower bound is obtained when it is in the core. A more general form
of the Hashin-Shtrikman bounds, which can be applied to more than two phases, is
discussed by Mavko et al. (1998).

The separation between the upper and lower bounds of Voigt-Reuss and Hashin-
Shtrikman depends on the difference in elasticity of the constituents. For mixed
solids that are elastically similar, the bounds are fairly close. In such cases, a
simple assumption for predicting the effective medium is the Hill’s (1963) average,
which is the average of the upper and lower bounds; that is, KHill = (K+ +K−)/2.
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Figure 2.3: Physical interpretation of the Hashin-Shtrikman bounds for bulk mod-
ulus of a two-phase material (slightly modified from Mavko et al., 1998): An as-
sembly of spheres of material 2, each surrounded by a shell of material 1.

However, when the constituents are quite different (for example minerals and pore
fluids), the bounds become quite separated, and the prediction is more difficult.

2.3.3 Critical porosity model

Sedimentary rocks form initially as unconsolidated deposits of gravels, sand, or mud
(see e.g. Boggs, 2001). Before deposition, sediments exist as particles in suspen-
sion. Newly deposited sediments are characterized by loosely packed, uncemented
fabrics; high porosities; and high interstitial water content. The porosity of newly
deposited sediments is referred to as the critical porosity φc (Nur, 1992). When the
porosity gets below the limiting φc, the grains start to carry load. Porosity may de-
crease further during diagenesis, which is the final stage of forming conglomerates,
sandstones, and shales (Boggs, 2001). Figure 2.4 illustrates the different stages in
the process of forming sedimentary rocks.

Nur et al. (1995) presented a simple method that separates the mechanical and
acoustic behavior of porous materials into two distinct domains separated by the
critical porosity φc. In the suspension domain; that is, φ > φc, the effective bulk and
shear moduli are quite accurately described by the Reuss average given in equation
(2.18). In the load-bearing domain; that is, φ < φc, the frame (or dry) bulk and
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Quartz Sandstone Sand

Porosity

φc

Figure 2.4: Different stages in the process of forming sedimentary rocks (slightly
modified from Nur et al., 1998). The critical porosity φc is defined as the porosity
of newly deposited sediments.

shear moduli can be expressed as the linear functions

Kfr = KS

(
1 − φ

φc

)
, (2.22)

µfr = µS

(
1 − φ

φc

)
, (2.23)

where KS and µS are the solid bulk and shear moduli, respectively. Figure 2.5
shows bulk modulus (K/KS) versus porosity for a water saturated rock, according
to Nur’s critical porosity model, Voigt-Reuss bounds, Voigt-Reuss-Hill, and Hashin
Shtrikman bounds. An empirical curve (dotted line) for clean sandstones, measured
by Murphy et al. (1993), is included for comparison.

The weakness of the critical porosity model is that the critical porosity is not an
universal constant (not even for a given class of rock, such as sandstones). The
strength is the simplicity: no other assumptions about the microstructure than the
knowledge of critical porosity are needed.

The loosest possible packing of spherical, equally sized grains is simple cubic packing
which gives a porosity of 0.48, while random loose packing gives porosities between
0.4 and 0.45. For clean, well sorted sands, the critical porosity is near 0.4. Chalk
has pores that are most likely spherical in shape, leading to critical porosity as high
as 0.6-0.7.

Figure 2.6 shows P-wave velocity versus porosity for a variety of water-saturated
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Figure 2.5: Bulk modulus versus porosity for a water-saturated rock, according to
various models (solid lines). For comparison, an empirical curve for clean sandstones
(Murphy et al., 1993) is included (dotted line).

sediments, ranging from ocean-bottom suspensions to consolidated sandstones. The
data is compared with Voigt and Reuss bounds computed for mixtures of quartz
and water. In the porosity domain above the critical porosity, sediments follow the
Reuss average of mineral and fluid (that is, the undrained bulk modulus K is given
by equation (2.19)). Below the critical porosity, the touching grains will induce
effective stress, compaction, and cementing, which lead the sediments off the Reuss
bound. In this porosity domain, the rock properties follow steep trajectories start-
ing at the critical porosity and ending at the mineral end point at zero porosity
(Figure 2.6). These trends are often described by empirical relations.

2.3.4 Empirical velocity-porosity relations

Porosity has an enormous impact on P- and S-wave velocities. Several authors (e.g.
Wyllie et al., 1956; Raymer et al., 1980; Tosaya and Nur, 1982; and Han et al.,
1986) have derived empirical relations for velocity versus porosity in the porosity
domain below critical porosity.
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Figure 2.6: P-wave velocity versus porosity for a variety of water-saturated sedi-
ments (Avseth et al., 2005). The data is compared with the Voigt-Reuss bounds.

Wyllie et al. (1956) introduced a relation that is still commonly used in the oil
industry. For a fluid-saturated rock with high effective pressure, they found the
following relation between P-wave velocity vP and porosity φ:

1

vP

=
φ

vP,f

+
1 − φ

vP,s

, (2.24)

where vP,s and vP,f are the P-wave velocities of the solid and fluid, respectively.
The interpretation of equation (2.24) is that the sound wave shares its time passing
through the rock in a volumetric portion in the solid and pore fluid. This is strictly
valid only if the wavelength is much shorter than the grain and pore size; that is,
for high frequencies. Improvements of Wyllie’s empirical formula are suggested by
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Raymer et al. (1980).

Han et al. (1986) show that velocity-porosity relations are dependent on the clay
content. These relations are obtained from ultrasonic measurements of sandstones
with porosities, φ, ranging from 0.03 to 0.3 and clay volume fractions, C , ranging
from 0 to 0.55. For an effective pressure of 40 MPa, Han’s velocity-porosity relation
for a water-saturated shaley sandstone reads

vP = (5.59 − 2.18C) − 6.93φ, (2.25)

vS = (3.52 − 1.89C) − 4.91φ, (2.26)

where vP and vS are given in km/s. Equations (2.25) and (2.26) indicate parallel
velocity-porosity trends with zero-porosity intercepts dependent on the clay content.

Tosaya and Nur (1982) determined similar trends based on other ultrasonic mea-
surements of velocity, porosity, and clay content. For water-saturated rocks at an
effective pressure of 40 MPa, they obtained the following relation:

vP = (5.8 − 2.4C) − 8.6φ, (2.27)

vS = (3.7 − 2.1C) − 6.3φ, (2.28)

where φ is porosity, and C is the clay content. Similar empirical regressions are
also found by Castagna et al. (1985). Klimentos (1991) obtained relations between
velocity, porosity, clay content, and permeability.

2.4 Determining α from porosity-velocity relations

The dilation factor α (that is, the relative thickness change divided by the relative
velocity change within a given layer) can be determined from empirical porosity-
velocity relations e.g. given by Mavko et al. (1998). If the seismic velocity is
some function of porosity, v(φ), where ∆v/∆φ = v′(φ), the α-value can be found
by assuming uniaxial stress-strain relations. For a porous material with uniaxial
stress-strain relations (e.g. Guilbot and Smith, 2002), the change in thickness is
related to the change in porosity approximately as ∆z/z ≈ ∆φ/(1− φ). This gives
the following relation between the velocity change and thickness change (compare
with Hatchell and Bourne, 2005a):

∆v

v
= (1 − φ)

v′(φ)

v(φ)

∆z

z
, (2.29)

and, hence,

α = (1 − φ)
v′(φ)

v(φ)
. (2.30)
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For rocks with linear relations between porosity and velocity; that is, v = a − bφ,
where a and b are positive constants, α can be given as (Appendix 3.A):

α =
a − b

v
− 1. (2.31)

As an example, using Tosaya’s empirical porosity-velocity relation, given by equa-
tion (2.27), I find the following for clean sandstones:

v = 5.8 − 8.6φ, (2.32)

α =
5.8 − 8.6

5.8 − 8.6φ
− 1, (2.33)

giving α = −1.7 for a sandstone with porosity 0.20. Figure 2.7 shows estimated
α versus porosity for the rock physics models given by Han (equation (2.25)) and
Tosaya and Nur (equation (2.27)). The estimations are based on clean sandstones
(solid lines) and sandstones with clay content 0.5 (dashed lines). (See Hatchell and
Bourne (2005a) for further estimations based on rock-properties trends.) Figure 2.7
shows that the dilation factor α increases in magnitude as the clay content increases.
Note, however, that this result gives the same dilation factor for a compacting rock
and a stretching rock. In comparison, Hatchell and Bourne (2005a) found that α
is larger in absolute value for rock elongation (stretch) than for rock contraction
(compaction) for several locations around the world. They estimate α-values around
−5 for rocks undergoing elongation strains and α-values ranging from −1 to −3 for
rocks undergoing contraction. Different α-values for stretched overburden rocks and
compacted reservoir rocks is also predicted by Røste et al. (2006) at the Valhall
Field.
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velocity-porosity relations for clean sandstones and sandstones with clay content of
0.5.
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3.1 Abstract

In some hydrocarbon reservoirs severe compaction of the reservoir rocks is observed.
This compaction is caused by production, and is often associated with stretching
and arching of the overburden rocks. Time-lapse seismic data can be used to mon-
itor these processes. Since compaction and stretching cause changes in both layer
thickness as well as seismic velocities, it is crucial to develop methods to distinguish
between the two effects.

We introduce a new method based on detailed analysis of time-lapse prestack seis-
mic data. The equations are derived assuming that the entire model consists of
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only one single layer with no vertical velocity variations. The method incorporates
lateral variations in (relative) velocity changes by utilizing zero-offset and offset-
dependent time shifts. To test the method, we design a 2D synthetic model that
undergoes severe reservoir compaction as well as stretching of the overburden rocks.
Finally, we utilize the method to analyze a real 2D prestack time-lapse seismic line
from the Valhall Field, acquired in 1992 and 2002. For a horizon at a depth of
around 2.5 km, which is near the top reservoir horizon, a subsidence of 2.7 m and a
velocity decrease of 4.5 m/s for the sequence from the sea surface to the top reservoir
horizon are estimated. By assuming that the base of the reservoir remains constant
in depth, a reservoir compaction of 3.6 % (corresponding to a subsidence of the top
reservoir horizon of 2.7 m), and a corresponding reservoir velocity increase of 6.7 %
(corresponding to a velocity increase of 200 m/s), are estimated.

3.2 Introduction

Production-related compaction has been observed in several North Sea reservoirs,
especially the chalk reservoirs in the southern part. For example, the compaction
of the Valhall Field, at 2.5 km depth, has led to 4.5 m of subsidence at the sea bed
since the field came on production in 1982 (Pattillo et al., 1998). Such reservoir
compaction will have significant implications for production by changing perme-
abilities and, hence, the production performance (Hall et al., 2005). It is typical
for these fields that the sea bed subsidence is less than the corresponding reservoir
compaction, meaning that the overburden rocks are stretched. Often the change in
geomechanical stress state for the overburden rocks might lead to damage in exist-
ing wells (especially when significant shear stresses are introduced as byproduct of
the reservoir compaction). It is therefore of significant importance to map the ve-
locity and thickness changes during production not only for the reservoir itself, but
also for the overburden rocks. Between the wells, time-lapse seismic data is a com-
plementary tool for obtaining this information, and the combined use of repeated
seismic measurements and geomechanical knowledge is expected to be important in
future monitoring projects.

Guilbot and Smith (2002) utilized time-isochron differences from 4D seismic data
to detect compaction and subsidence at the Ekofisk Field. They observed seismic
time shifts up to 12-16 ms between 1989 and 1999, related to compaction values
of up to 6 m for the reservoir chalk formation. They used a 4D tomographic tech-
nique where the nonuniqueness between velocity and thickness changes was solved
by introducing a velocity-porosity relationship for the reservoir chalk layer. It is
important to notice that the 4D time shifts capture the combined effects of velocity
and thickness changes within a given layer. For a layer of thickness, z, we express
the relative time shift in terms of the relative thickness change and velocity change



Estimation of layer thickness and velocity changes using 4D prestack seismic data 27

as (Landrø and Stammeijer, 2004; Hatchell and Bourne, 2005b; Røste et al., 2005)

∆T0(x0)

T0(x0)
≈ ∆z(x0)

z(x0)
− ∆v(x0)

v(x0)
, (3.1)

where T0 represents seismic two-way vertical traveltime within the layer and v is the
layer velocity. The parameter x0 denotes the global x-coordinate for a given CDP-
location (position), and ∆T0, ∆z, and ∆v represent changes in vertical two-way
traveltime, thickness, and velocity, respectively. A major challenge for quantita-
tive time-lapse analysis is to discriminate between thickness changes and velocity
changes for both the reservoir section and the overburden. Landrø and Janssen
(2002) presented a method utilizing near and far offset traveltime shifts to perform
this discrimination procedure. In this paper we introduce a prestack method which
utilizes all offsets. As a first order approximation for a relation between relative
thickness and velocity changes for a given subsurface layer we will simply assume
that the two changes are proportional to each other (Røste et al., 2005):

∆v(x0)

v(x0)
≈ α

∆z(x0)

z(x0)
, (3.2)

where the ”dilation factor” α is a parameter dependent on the rock properties
of the layer. This is a crucial parameter, since it determines the ratio between
velocity and thickness changes. In general, α varies with spatial coordinates. It is
important to stress that the knowledge of the dilation factor from a rock physics
point of view is limited; there are no measurements available to our knowledge. We
do not know if the dilation factor is the same for compaction and stretching of a
rock. Furthermore, the dilation factor might also be dependent on the magnitude of
the relative thickness change. Despite these concerns, we find it fruitful to introduce
the dilation factor, since it captures the important relation between velocity and
thickness changes. Furthermore, it can easily be determined if empirical porosity-
velocity relations are available. Assuming uniaxial stress-strain relations and a
linear relation between porosity (φ) and velocity (v); that is, v = a − bφ, it can be
shown (Appendix 3.A) that α is given by

α =
a − b

v
− 1. (3.3)

Note that α ≤ 0 because, by equation (3.A-1)), v ≥ a − b. From equation (3.3) it
is clear that α is rock (and lithology) dependent. However, in this paper, we will
assume that α is constant for the sequence of layers we study.

Using the empirical relations for the chalk reservoir at Valhall we obtain a value
for the dilation factor of −1.5. If we use the empirical porosity-velocity relation
published by Tosaya and Nur (1982) we find an α-value of −2.4 for sand and −3.6
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for clay. Han’s (1986) relation gives an α-value equal to −1.6 for sand and −2.7 for
clay. These observations indicate that rocks with high clay content will have dilation
factors that are larger in magnitude than clean sands and chalks. (However, note
that Han’s relation is only based on consolidated sandstones, not unconsolidated
sands or shales.)

In the following sections we introduce a method which estimates changes in layer
thickness and velocity based on prestack time-lapse seismic data. The developed
method is tested on a 2D synthetic model which consists of 7 layers, including an
anticline reservoir section. Both the reservoir layer and the overburden layers (of
the synthetic model) undergo changes in layer thickness and velocity that vary with
lateral position. Finally, we test the method on a 2D prestack time-lapse seismic
line from the Valhall Field.

3.3 Methodology

To discriminate between layer thickness and velocity changes, defined by the dilation
factor α, both zero-offset and offset-dependent time shifts are utilized. From raypath
considerations we include lateral variations in layer changes, which is normally the
case for both the reservoir layer and overburden layers when the reservoir undergoes
strong compaction.

3.3.1 Estimating α based on time shift analysis

Assume a prestack CDP-gather at position x0. The seismic two-way traveltime for a
raypath with offset 2h can be expressed as an integral over the total raypath length
S,

T (x0, h) =

∫
S

ds

v(s)
, (3.4)

where v(s) denotes the P-wave velocity at the ray position s(x0, h). Assume a one-
layer model with a P-wave velocity field, v(x), that varies along the lateral position
x, but is nonvarying with depth (Figure 3.1). By assuming straight raypaths, it can
be shown that (similar to assuming average slowness within the offset range 2h)

T (x0, h) =

√
1 +

z2(x0)

h2

x0+h∫
x0−h

dx

v(x)
, (3.5)

where z(x0) represents the layer thickness at the CDP-position x0. The straight
raypath assumption used above will lead to inaccuracies, so this equation should be
used with care if the variations in velocity are significant and heterogeneous. Equa-
tion (3.5) describes the initial (or pre-production) case. For the post-production
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v(x)
ds z

hx0

Figure 3.1: Sketch showing that we assume straight raypaths in a model with
lateral variations in velocity.

case, we find that it is essential to include the lateral variations in velocity changes,
since it is very likely that such changes will occur both within the reservoir layer
as well as the overburden layers of a producing hydrocarbon reservoir. It is also
possible to include vertical variations in velocity changes. This essentially means
that we approach time-lapse tomography (Vesnaver et al., 2003). However, the idea
of this paper is to develop something simpler than a full tomographic method, and
we therefore assume no vertical variations in velocity changes. From equation (3.5)
the two-way prestack traveltime for the monitor case (for a one-layer model) is then
given as

T
′
(x0, h) =

√
1 +

z2(x0)

h2

(
1 +

∆z(x0)

z(x0)

)2
x0+h∫

x0−h

dx

v(x)
(
1 + ∆v(x)

v(x)

) , (3.6)

where the relative change in velocity, ∆v(x)/v(x), might vary laterally but not with
depth. (Note that variations in thickness changes only affect the multiplier outside
the integral in equation (3.6) when assuming straight raypaths.) Assuming small
relative changes in velocity and thickness, the relative change in two-way traveltime
becomes (see Appendix 3.B)

∆T (x0, h)

T (x0, h)
≈

(
1 + z2(x0)

z2(x0)+h2
∆z(x0)
z(x0)

) x0+h∫
x0−h

dx
v(x)

(
1 − ∆v(x)

v(x)

)
x0+h∫
x0−h

dx
v(x)

− 1. (3.7)
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From equations (3.1) and (3.2) the relative changes in layer thickness and velocity
can be related to the relative change in two-way vertical traveltime T0:

∆z(x0)

z(x0)
≈
(

1

1 − α

)
∆T0(x0)

T0(x0)
,

∆v(x0)

v(x0)
≈
(

α

1 − α

)
∆T0(x0)

T0(x0)
. (3.8)

By assuming small lateral variations in initial layer velocity in the vicinity of each
position x0; that is, v(x) ≈ v(x0) for x0 − h ≤ x ≤ x0 + h, equation (3.7) can
be written in the simple form given by equation (3.9) (see Appendix 3.B). Note,
however, that we include the lateral variations in ∆v; that is, ∆v = ∆v(x).

∆T (x0, h)

T (x0, h)
≈ z2(x0)

z2(x0) + h2

(
1

1 − α

)
∆T0(x0)

T0(x0)
− 1

2h

(
α

1 − α

) x0+h∫
x0−h

dx
∆T0(x)

T0(x)
. (3.9)

The relative change in two-way traveltime (for a given half-offset h) is therefore de-
pendent on α and the estimated relative change in vertical traveltime. (Note that
the integration sign in equation (3.9) in practice means summation, since time shift
estimations only exist for discrete positions (or CDPs).) The parameter α is deter-
mined by minimizing the least square error in relative traveltime change (equation
(3.9)) over the entire offset range. This α-value is then inserted into equation (3.8)
to obtain the changes in layer thickness and velocity.

Equation (3.9) is only valid for one layer. However, equation (3.9) might be applied
for a sequence of layers if the relative velocity changes (captured by the relative
zero offset time shifts inside the integral sign in equation (3.9)) have no vertical
variations. Further, due to the assumption made for equation (3.2), α must be sim-
ilar for the layers within the investigated sequence. However, choosing a sequence
consisting of layers that undergo similar processes, for example, an overburden se-
quence that only undergoes stretch, we believe that the vertical variations in the
relative velocity changes are less important than the lateral variations. For a two-
layer model, it is possible to estimate the relative traveltime shift as a function of
offset (Appendix 3.C). A comparison between the two-layer traveltime shift and the
traveltime shift estimated using equation (3.9) is shown in Figure 3.2. This example
shows that the one-layer approximation given by equation (3.9) can be used if the
precautions listed above are taken into account. In addition, for stretched over-
burden rocks, Hatchell and Bourne (2005a) find α to be almost constant (around
−5) for several worldwide field examples. Equation (3.9) might therefore be tested
on an overburden sequence that only undergoes stretch. When applying equation
(3.9) to a sequence of layers, we find that the inaccuracies increase with increased
variations in (relative) velocity changes between the layers.

When both vertical and horizontal variations in velocity changes are significant
and appear to be heterogeneous, a full 4D tomographic approach is required.
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3.3.2 Uncertainty analysis

The method is strongly influenced by how accurately we can measure zero-offset
and offset-dependent time shifts from time-lapse seismic data. In addition, large
sensitivity in α is needed to be able to discriminate the correct α-value; that is, a
test of various values of α (for a given position) should give clearly distinct results
(from equation (3.9)). (This is later discussed for results from synthetic and field
data). Errors due to the approximations made from equation (3.6) to equation (3.9)
are given step by step in Appendix 3.D.
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Figure 3.2: Comparison between computed relative traveltime shifts for a two-
layer model (solid line) and equation (3.9) (dashed line). A maximum error of 3.3%
is observed at 4.0 km offset. Initial thickness of each layer is 1.0 km, velocity of
first layer is 1.8 km/s and second layer velocity is 2.5 km/s. The dilation factor
α is −4 for both layers, and the stretching of the two layers are 0.6 m and 1.0 m,
respectively.
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3.4 Synthetic example

3.4.1 The 2D synthetic model

The described method is tested on a 2D synthetic model with a total depth of 3.5
km and a total lateral size of 16 km (Figure 3.3). The model consists of 7 layers
including an anticline-shaped reservoir section with thickness (pre-production) given
as (all units in km)

zres = −5.600 × 10−3x2 + 8.960 × 10−2x − 0.2184. (3.10)

The reservoir thickness (equation (3.10)) varies from zero at position x = 3 km to
140 m at the crest (x = 8 km) to zero again at x = 13 km. P-wave velocity (vp),
S-wave velocity (vs), and density (ρ) for all 7 layers (pre-production) are given in
Table 3.1 (layer 1 is the water layer). The reservoir velocity (vp = 2900 m/s and vs

= 1500 m/s) yields a vp/vs-ratio similar to oil-bearing chalk (that is, vp/vs = 1.9 -
2.0).

Inside the compacting area (5.5 km < x < 10.5 km) the thickness change of the
reservoir, ∆zres, varies from zero at position x = 5.5 km to −10 m at the crest
(x = 8 km) to zero again at x = 10.5 km. The polynomial expression (effective only
inside the compacting area 5.5 km < x < 10.5 km) reads (all units in km)

∆zres = 1.600 × 10−3x2 − 2.560 × 10−2x + 9.240 × 10−2, (3.11)

where negative ∆zres corresponds to reservoir compaction. The reservoir thickness
changes (equation (3.11)) are shown in bottom of Figure 3.4 together with a plot
of the reservoir after compaction (top).

Table 3.1: Initial layer P-wave velocities (vp), S-wave velocities (vs), and densities
(ρ) used in the synthetic model. Layer 1 denotes the water layer and layer 6 denotes
the reservoir layer.

Layer vp (m/s) vs (m/s) ρ (g/cm3)
1 1476 0 1.00
2 1700 800 1.55
3 1800 900 1.60
4 2000 1000 1.70
5 2200 1200 1.75
6 2900 1500 1.80
7 4000 2500 2.30
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Changes in reservoir thickness can be linked to changes in other reservoir param-
eters (such as changes in porosity, velocity, and density). Empirical relationships
between reservoir velocity (vp,res, vs,res) and porosity (φres) have previously been used
(Guilbot and Smith, 2002) to estimate reservoir compaction. Here we adapt the
same technique to establish our forward compaction model. For a chalk reservoir it
is reasonable to assume

vp,res = a − bφres , vs,res = a′ − b′φres, (3.12)

where

a = 5500 m/s , b = 7000 m/s , a′ = 2845 m/s , b′ = 3621 m/s. (3.13)
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Figure 3.3: The initial (pre-production) 7-layer synthetic model, given in kilome-
ters. Changes are assumed to occur only in the area between the vertical dashed
lines; that is, between the positions 5.5 km and 10.5 km.



34 Synthetic example

0 2 4 6 8 10 12 14 16

2.5

2.6

2.7

2.8

2.9

3

Position, x (km)

D
ep

th
, z

 (
km

)

0 2 4 6 8 10 12 14 16

−15

−10

−5

0

5

Position, x (km)

∆z
 (

m
)

Figure 3.4: The compacted reservoir section of the synthetic model (top) after
applying the thickness changes plotted at bottom. Both figures plotted as a function
of position.

The above parameters are estimated from well logs. We assume that the reservoir
density follows the relation:

ρres = φresρF + (1 − φres)ρS , (3.14)

where ρF and ρS are the fluid and solid densities of the reservoir, respectively. By
assuming uniaxial strain conditions, differentiation of equations 3.12 and 3.14 reads
(see Appendix 3.E)

∆vp,res = −b(1 − φres)
∆zres

zres + ∆zres
, (3.15)

∆vs,res = −b′(1 − φres)
∆zres

zres + ∆zres

, (3.16)
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∆ρres = −(ρres − ρF )
∆zres

zres + ∆zres

, (3.17)

where we (still for the forward model) use the following reservoir parameters: poros-
ity φres = 0.37, fluid density ρF = 0.8 g/cm

3
, and reservoir density ρres = 1.8 g/cm

3
.

Note that ∆vp,res, ∆vs,res, and ∆ρres vary laterally since zres and ∆zres (given by
equations 3.10 and 3.11, respectively) vary laterally. The maximum ∆vp,res (at the
crest, position x = 8 km) is 339 m/s, found from equation (3.15) by substituting
the maximum reservoir thickness (zres = 140 m) and thickness change (∆zres = −10
m). This gives (equation (3.2))

αres ≈ ∆vp,res

vp,res

(
∆zres

zres

)−1

=
339 m/s

2900 m/s

(−10 m

140 m

)−1

= −1.6, (3.18)

for the crest. Further estimations by equation (3.2) show that αres varies with posi-
tion between −1.4 and −1.6. (Note also that αres can be found exactly by equation
(3.3), which gives (constant) αres = a−b

vp,res
− 1 = −1.5).

For the forward model the thickness changes (or stretch) of an overburden layer
i, denoted ∆zi, are directly linked to the reservoir compaction; see Appendix 3.E.
The relative changes in P- and S-wave velocities of an overburden layer i (below
the sea bed) are given by

∆vp,i

vp,i
=

∆vs,i

vs,i
= −2 × ∆zi

zi
, (3.19)

which means that we assume α = −2 within each of the overburden layers (below
the sea bed) for the synthetic case. When looking at the total overburden sequence
from the sea surface to the top reservoir horizon the modeled α-value is obtained
from equation (3.2). For the crest (position x = 8 km) we get

αoverb ≈ ∆Voverb

Voverb

(
∆zoverb

zoverb

)−1

=
−4.95 m/s

1888.4 m/s

(
10 m

2660 m

)−1

= −0.7, (3.20)

where zoverb and ∆zoverb denote the thickness and thickness change (at the crest) of
the total overburden sequence, respectively. Note that the estimated αoverb = −0.7
(for the total overburden sequence) is independent of the subsidence of the sea bed,
meaning that the thickness change, ∆zoverb, is simply equal to the subsidence of the
top reservoir horizon. This leads to the different α-value for the total overburden
sequence (−0.7) and the individual overburden layers (−2). The relative change in
vertical velocity (at the crest of the given overburden sequence), ∆Voverb/Voverb, are
obtained from the Dix interval velocity (Sheriff and Geldart, 1995). Substituting
values for other positions in equation (3.20) show that αoverb varies with position,
between −0.69 and −0.72.
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Assuming that the mass within each layer is conserved, and that the stretch only
occurs in the z-direction, the relative changes in density can approximately be given
as (see Appendix 3.E)

∆ρi

ρi

≈ −∆zi

zi

. (3.21)

Note also that the overburden layer changes ∆vp,i, ∆vs,i, and ∆ρi vary laterally
since ∆zi is linked to ∆zres (see more details in Appendix 3.E).

3.4.2 Description of the survey

The prestack time-lapse seismic data were modeled by a 2D coarse grid finite dif-
ference scheme (Yerneni et al., 2002). A Ricker wavelet with central frequency of
23 Hz was used. The temporal step-length was 1 ms and the grid size was 4 m by
4 m. The receiver cable consisted of 300 receivers with a spacing of 12.5 m. The
distance between the source and the first receiver was 150 m, and the shot point
interval was 25 m. Based on the synthetic time-lapse seismic data, traveltime shifts
for all offsets were estimated.

3.4.3 Synthetic results

Prior to estimating traveltimes of events in a prestack gather we mute all signals
above and below the selected events; see Figure 3.5. Traveltimes are then picked
for interpolated maximum amplitude. Zero offset traveltimes (T0) are estimated by
assuming that the picked traveltimes (T ) follow standard hyperbolic moveout (Dix,
1955); that is,

T 2(x0, h) = T 2
0 (x0) +

4

V 2
rms(x0)

h2, (3.22)

where h denotes half-offset and Vrms denotes rms velocity. For a given position x0,
the picked traveltimes are interpolated along a straight line in the h2-T 2-domain,
according to equation (3.22), to obtain T0 (and Vrms). For the synthetic model we
have investigated the overburden sequence from the sea surface to the top reservoir
horizon (for both baseline and monitor). Figure 3.6 shows the estimated (crosses)
and lateral smoothed (solid line) relative time shifts for zero offset for the inves-
tigated sequence (for positions inside the compacting area, 5.5 km - 10.5 km),
together with the modeled values (dashed line). The thickness (pre-production) of
the investigated sequence, given by

z(x0) ≈ T0(x0)Vrms(x0)

2
, (3.23)

is necessary input to equation (3.9), as well as the zero-offset time shift. For an ini-
tial guess of α, equation (3.9) gives corresponding (relative) time shifts for different
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Figure 3.5: Example of event picking in a prestack gather (pre-production). We
mute above and below the marked lines prior to time shift analysis. After muting,
traveltimes are picked for interpolated maximum amplitudes.

half-offsets (h) which can be compared with the picked time shifts. We search for
the α-value that leads to the minimum least square error between the estimated
and picked relative time shifts, for all offsets. Figure 3.7 shows how this procedure
works for position x = 5.6 km: Starting with an initial α-value of 0 in equation
(3.9), we search in steps of −0.1 within the span from 0 to −5, until we obtain
an optimal α-value (solid line) that gives best fit to the picked relative time shifts
(crosses). The dashed lines in Figure 3.7 correspond to the initial and last guess
of α. Figure 3.7 shows an example with reasonably good sensitivity in α; that is,
inserting various α-values (between 0 and −5) in equation (3.9) gives clearly dis-
tinct results making it simpler to determine the correct α-value. The solid line in
Figure 3.7 indicates that an optimal α-value of −0.6 correlates best with the picked
offset-dependent relative time shifts (crosses). Bad (relative) time shift picks (solid
dots in Figure 3.7) are automatically excluded prior to estimating the best fit for
α. We interpret picked time shifts as bad (or unphysical) if they correspond to
picked traveltimes from either baseline or monitor that fit poorly with the hyper-
bolic moveout (equation (3.22)). In detail, for a given position (for either baseline
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Figure 3.6: Estimated (crosses) and smoothed (solid line) zero-offset relative time
shifts as a function of position (inside the compacted area 5.5 km < x < 10.5 km).
The modeled values are shown as a dashed line.

or monitor) this automatic procedure starts with excluding traveltimes that are
picked far away (typically ±10 ms) from an initial hyperbolic fit (equation (3.22)).
The existing picked traveltimes will be fitted to a new hyperbolic moveout curve
(equation (3.22)). Again, traveltimes picked far away from this new hyperbolic fit
are excluded, but this time the excluding limits are more narrow (typically ±8 ms).
This procedure is repeated several times until the excluding limits are narrowed
down to around ±2 ms (these limits should be larger for cases where undisturbed
prestack seismic reflections are expected to be strongly nonhyperbolic). In this way
we are able to exclude time shifts that correspond to picked traveltimes from either
baseline or monitor that are (most probably) disturbed (or bad). Investigations
show that bad time picks correlate well with noise and/or interference with multi-
ples.
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Figure 3.7: Example of finding α for position x = 5.6 km: The solid line indicates
the best fit (α = −0.6) of the picked relative time shifts (crosses) as a function of
offset. Bad picked (relative) time shifts (solid dots) are excluded prior to the best
fit. The dashed lines correspond to the initial and last guess of α (that is, α = 0
and α = −5).

Figure 3.8a shows the estimated α-values (for the investigated overburden sequence)
for all lateral positions, where positions with acceptable sensitivity in α (crosses)
are close to the modeled α = −0.7 (indicated with dotted line). Estimated α-values
for positions with low sensitivity in α are marked as solid dots. Examples of posi-
tions with low sensitivity in α are shown in figures 3.8b and 3.8c for the positions
x = 6.42 km and x = 6.45 km, respectively. The small window between the initial
and last guess of α (dashed lines) (that is, α = 0 and α = −5) makes it difficult to
find a trustable α-value. The optimal α-value for all lateral positions is found to
be −0.6, with a standard deviation as large as 0.7 when both acceptable and low
sensitivity in α are included. However, positions with low sensitivity in α are easy
to detect, and by excluding these uncertain α-values (solid dots in Figure 3.8a), we
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Figure 3.8: Estimated α-values (a) for all lateral positions, showing positions
with both acceptable (crosses) and low (solid dots) sensitivity in α. The dotted
line indicates the modeled α = −0.7. Examples of low sensitivity in α are given
for the positions x = 6.42 km (b) and x = 6.45 km (c). These positions show
the difficulties of fitting an accurate α to the picked time shifts (crosses) when the
window between the initial and last guess of α (that is, α = 0 and α = −5) (dashed
lines) is small. (The solid dots in (b) and (c) indicate bad picked time shifts.)

estimate a standard deviation of 0.2 for the optimal α-value of −0.6.

Substituting the optimal α-value into equation (3.8) gives changes in thickness and
velocity. The results are summarized in Figure 3.9 for the initial guess (α = 0),
the optimal α-value (−0.6), and the last guess (α = −5). The optimal result in
thickness and velocity changes (solid line in Figure 3.9) are very close to the mod-
eled changes (dashed line in Figure 3.9). The average error between estimated and
modeled changes is 3.5% for ∆z and 12.3% for ∆v.
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Figure 3.9: Results from the synthetic model. Estimated changes (solid line) in
thickness (top) and velocity (bottom), as a function of position (inside 5.5 km <
x < 10.5 km), for the sequence from the sea surface to the top reservoir horizon.
The modeled values are shown as a dashed line. The solid dots correspond to the
initial and last guess of α (that is, α = 0 and α = −5).

3.5 Field-data example

The method is tested on a prestack time-lapse 2D seismic line from the Valhall Field
(around well A30B, see top of Figure 3.10), acquired in 1992 and in 2002. Different
sources and source depths were used in the two surveys, causing some frequency
and wavelet differences between the two surveys. It was therefore necessary to
match the prestack datasets with respect to frequency, amplitudes, and residual
traveltimes prior to testing the method. The differences in amplitudes were not
entirely global, but were found to be almost constant inside a specific time window
for a specific offset range; that is, for a time window between 1.5 s and 3.0 s and
offsets between 0.25 km and 2.5 km. The residual time shifts inside this area were
found to be constant and therefore easy to correct. A frequency-wavenumber filter
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was applied to decrease the multiple energy (Yilmaz, 1987). Bottom of Figure 3.10
shows a poststack section (from 1992) of the selected portion of the 2D line. The
total length of the selected portion is 2.5 km and, for simplicity, we define the north-
west and south-east ends as positions 0 km and 2.5 km, respectively (see Figure
3.10). The top of the reservoir is around 2.6 s (two-way traveltime), corresponding

∆T(ms)

gas
cloud
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Near Top Res
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e
(s

)

Position (km)

Figure 3.10: Top: Time difference map of the Valhall Field between 1992 and 2002.
The selected 2D line (marked) intersects with well A30B. Bottom: Poststack section
from 1992 of the selected 2D line focused on the reservoir section. We investigate
a horizon around two-way traveltime 2.6 s, which is near the top reservoir horizon.
Results from position 0.93 km (marked) are shown in the next figures.
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to approximately 2.5 km in depth.

3.5.1 Estimating α for the overburden

We investigate an overburden sequence from the sea surface to a horizon (at 2.6
s) near the top of the reservoir, which will be referred to as the top reservoir hori-
zon. Figure 3.11 shows a prestack gather (from 1992) at lateral position 0.93 km
(marked vertical line on the poststack section at the bottom of Figure 3.10). We
mute above and below the solid lines (Figure 3.11) to isolate the top reservoir event.
After muting, traveltimes are picked for interpolated maximum amplitudes. Similar
to the synthetic case, traveltimes for zero offset are estimated from the standard
hyperbolic approximation (equation (3.22)). For some positions at the flanks, the
events from the top reservoir horizon are weak. (By flanks we mean the areas out-
side the circular anomaly around well A30B; see Figure 3.10.) Figure 3.12 shows
the estimated (crosses) and laterally smoothed (solid line) relative time shifts for

Figure 3.11: Example of event picking in a prestack gather from the Valhall
Field baseline (1992) at position 0.93 km. We mute above and below the top
reservoir horizon (marked with solid lines) prior to time shift analysis. After muting,
traveltimes are picked for interpolated maximum amplitudes.
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zero offset for the top reservoir horizon, where we force unphysical time shifts at
the flanks to be zero prior to smoothing. This zeroing of time shifts at the flanks
can be supported by the trend of the time shifts before reaching the flanks, and, in
addition, to the fact that no production effects are expected at the flanks.

Again, using equation (3.9), we search for the α-value which leads to the minimum
least square error between the estimated and picked relative time shifts. Figure
3.13 shows the picked time shifts (crosses) together with the best-fitting α (solid
line) for position 0.93 km from the investigated sequence. Bad picked time shifts
(solid dots in Figure 3.13) are automatically excluded prior to finding the optimal
α. The dashed lines in Figure 3.13 correspond to the initial and last guess of α;
that is, α = 0 and α = −5.
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Figure 3.12: Estimated (crosses) and smoothed (solid line) zero-offset relative
time shifts (field data) for the top reservoir horizon. Unphysical estimates at the
(anomaly) flanks are set to zero prior to smoothing.
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Figure 3.13: Example of finding α for the top reservoir horizon for position 0.93
km. The solid line indicates the best fit of the picked relative time shifts (crosses) as
a function of offset. Bad picked time shifts (solid dots) are automatically excluded
prior to finding the best fit (solid line). The dashed lines correspond to the initial
and last guess of α (that is, α = 0 and α = −5).

If too many bad time-shift picks are observed for a given position, we simply exclude
this position when searching for the optimal α-value. An example of such a position
is at 0.10 km (see Figure 3.14), where more than 70% of the picked time shifts are
bad (solid dots), and hence it is excluded from further analysis. (The bad picks for
position 0.10 km might also be predicted by investigating the estimated zero-offset
time shifts (Figure 3.12). Estimations around position 0.10 km have a larger devia-
tion from the smooth curve.) Furthermore, notice that the sensitivity for α is low for
position 0.10 km; that is, as mentioned in the last section, the window between the
initial and last guessed α-values (dashed lines in Figure 3.14) is small, which makes
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Figure 3.14: Example of a position (0.10 km) with poor picked time shifts; that
is, over 70% of the picked relative time shifts are (automatically) found to be bad
(solid dots). The existing picked time shifts (crosses) cannot be fitted to an optimal
α-value between the initial and last guess of α (that is, α = 0 and α = −5) (dashed
lines).

it difficult to determine an optimal α-value with high accuracy. Investigations show
that low sensitivity in α occurs especially at the anomaly flanks (for this dataset),
while the middle of the anomaly has higher α sensitivity and generally a smaller
number of bad time shift picks. We therefore decided to estimate an α only based
on a few positions in the middle (that is, the positions from 0.80 km to 1.13 km). All
estimated α-values for the sequence from the sea surface to the top reservoir hori-
zon are shown in Figure 3.15, where the chosen α-values are encircled. The chosen
estimates indicate an average α-value of −2.1, with a standard deviation of 0.5. A
more detailed uncertainty estimation method is discussed in Appendix 3.F. Assum-
ing an uncertainty of 0.3 × 10−3 for both zero-offset and offset-dependent relative
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Figure 3.15: Estimated α-values (crosses) for the sequence from the sea surface to
the top reservoir horizon for all positions. From investigations we decided to trust
only the estimates in the middle (encircled). This gives an average α-value of −2.1
(with a standard deviation of 0.5).

time shifts gives an uncertainty of 1.7 in the estimated α of −2.1 (see Appendix 3.F).

Figure 3.16 shows estimated thickness and velocity changes (solid line) using the
estimated α-value of −2.1, together with initial (α = 0) and last guess (α = −5) of
α (solid dots). The estimated optimal result in Figure 3.16 indicates a maximum
subsidence of the top reservoir horizon of 2.7 m and a maximum velocity decrease
for the overburden sequence of 4.5 m/s. Using the estimated uncertainty in α of 1.7
yields corresponding uncertainties in thickness and velocity changes of 1.6 m and
1.3 m/s, respectively (indicated with dashed lines in Figure 3.16).
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Figure 3.16: Results from the Valhall data. Estimated changes (solid line) in
thickness (top) and velocity (bottom) together with indicated uncertainties (dashed
lines), as a function of position, for the sequence from the sea surface to the top
reservoir horizon. The solid dots correspond to the initial and last guess of α (that
is, α = 0 and α = −5).

3.5.2 Estimating α for the reservoir layer and overburden

rocks

In addition to the top reservoir horizon, traveltimes are picked for the base reservoir
horizon to find the zero-offset time shifts within the reservoir layer. We assume that
the base reservoir horizon is constant in depth during production, which means that
the compaction of the reservoir layer is equal to the subsidence of the top reservoir
horizon (that is, 2.7 m at maximum). Rearranging equation (3.8) gives

αres ≈ 1 − ∆T0,res

T0,res

(
∆zres

zres

)−1

, (3.24)
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where zres is the reservoir thickness and T0,res is the zero-offset traveltime within
the reservoir layer. Figure 3.17 shows the estimated α-values for the reservoir using
equation (3.24). For areas with small time-lapse changes, typically at the anomaly
flanks, equation (3.24) becomes inaccurate (see Figure 3.17). However, estimates
at the (anomaly) crest (that is, for positions from 0.68 km to 1.68 km (see Figure
3.17)), indicate an optimal α close to −1.5, with a standard deviation of 0.35. This
value is identical to the value estimated from equation (3.3) using the empirical
velocity-porosity relation for chalk. Figure 3.18 shows the thickness and velocity
changes (solid line) of the reservoir layer when using the optimal α-value of −1.5,
indicating a maximum velocity increase of 200 m/s (and a maximum compaction
of 2.7 m, as expected). The uncertainty in zero-offset relative time shifts for the
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Figure 3.17: Estimated α-values (crosses) for the reservoir layer for all positions.
Estimations of α become difficult at the (anomaly) flanks (that is, for small zero-
offset time shifts). However, the estimates between positions 0.68 km and 1.68 km
(encircled) indicate an optimal (average) α of −1.5.
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Figure 3.18: Estimated changes (solid line) in thickness (top) and velocity (bot-
tom) for the reservoir layer (as a function of position) when using an optimal α-value
of −1.5. The dashed lines indicate the uncertainties.

reservoir layer is estimated to be 15 × 10−3 by assuming a deviation in zero-offset
relative time shifts for both top and base reservoir of 0.3 × 10−3. This gives an
uncertainty (marked as dashed lines in Figure 3.18) in the maximum estimated
reservoir velocity change (+200 m/s) of 85 m/s, when assuming an uncertainty of
0.35 in the estimated α (of −1.5) for the reservoir.

We estimated an average α from the sea surface to the top reservoir horizon of
−2.1. If we know the sea bed subsidence, this α-value can be used to estimate
the α-value for overburden rocks only, using equation (3.24). Bathymetry surveys
(Hall et al., 2005) show a maximum sea bed subsidence of approximately 0.5 m in
our area, corresponding to a maximum stretch of the overburden rocks of 2.2 m.
This gives an α-value of −2.6 for the overburden rocks, which is very close to the
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rock physics estimate based on equation (3.3) and Han’s (1986) empirical relation
for clay, which is −2.7. Tosaya and Nur’s (1982) relation for clay give a slightly
different value (−3.6).

3.5.3 Anisotropy

In cases with overburden thickness and velocity changes, we might expect changes
in anisotropy. For simplicity we have chosen not to incorporate anisotropy in the de-
veloped method. Investigations show that static anisotropy has almost no effect on
the method (equation (3.9)). However, large time-lapse anisotropy changes must be
included. We test the method on a synthetic model that consists of one overburden
layer with thickness 2500 m and velocity 2100 m/s, and a second layer which simu-
lates a reservoir. The overburden layer has initially anisotropic parameters similar
to Valhall; that is, Thomsen’s (1986) anisotropic parameters δ = 0.05 and ε = 0.05
(see Le Rousseau and De Hoop, 2001; Guerrero et al., 2002). For the monitor case,
the overburden layer undergoes a stretch of 2.0 m, and a vertical velocity decrease of
4.5 m/s. Corresponding changes in the anisotropic parameters δ and ε are tested for
two cases; that is, 1) 0.5% change in both ε and δ and 2) 1.0% change in both ε and δ.

The choices of change in anisotropic parameters (for the two given cases) are based
on Yongyi (2004). He links the anisotropic parameter ε to vertical (P-wave) veloci-
ties and clay volume (based on laboratory measurements) as follows:

ε =
0.7Vclay(vp − vp,water)

vp,quartz − vp,water − 2.29Vclay
, (3.25)

where vp denotes the vertical velocity and Vclay denotes the clay volume. The pa-
rameters vp,quartz = 6050 m/s and vp,water = 1500 m/s are velocities for quartz and
water, respectively. Assuming an average clay volume of 50% for the overburden
layer gives ε ≈ 0.06 from equation (3.25), when using the initial vertical velocity of
2100 m/s. Substituting the vertical velocity for the monitor case (that is, 2095.5
m/s) in equation (3.25) gives a change in ε of 0.75% (when assuming constant clay
volume). For simplicity, we assume that δ and ε have changes of the same order;
that is, around 0.75%.

For the overburden layer, we found the optimal α to be −2.1 for case 1 (that is, when
∆ε/ε = ∆δ/δ = 0.5%) and −1.5 for case 2 (that is, when ∆ε/ε = ∆δ/δ = 1.0%).
The modeled α = −2.6, which equals a deviation in the estimated α of 19% for case
1 and 42% for case 2. The estimated values of α give ∆z = 2.5 m and ∆v = −4.4
m/s for case 1 and ∆z = 3.1 m and ∆v = −3.9 m/s for case 2. The modeled values
are ∆z = 2.0 m and ∆v = −4.5 m/s, which equals a deviation in the estimated ∆z
and ∆v of 25% and 2% (respectively) for case 1, and 55% and 13% (respectively)
for case 2. This shows that the uncertainty in estimated thickness and velocity
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changes becomes severe when the changes in anisotropic parameters exceed 1%.

3.6 Discussion

Static anisotropy is found to be much less of a problem than time-lapse changes in
anisotropy. We find that changes of only 1% in the anisotropic parameters need to
be taken into account.

For the estimated α of −1.5 for the reservoir layer (field data), we assume that
the base of the reservoir is constant in depth during reservoir compaction. This
is not the case for a layer that consists of the same type of material as the sur-
roundings, in which case the base of the layer tends to move upward during layer
compaction (see Tura et al., 2005). At Valhall, hard chalk underlies the reservoir
chalk, and we believe that this hard chalk is less affected by reservoir changes.
However, a sequence of 0.4 km right below the reservoir layer shows time shifts
(maximum 1-2 ms) that indicate stretch. An uplift of the base reservoir horizon at
Valhall is also predicted by Hatchell and Bourne (2005b). This means (equation
(3.8)) that the magnitude of the estimated α is overestimated, and correspondingly
the velocity increase is also overestimated.

Our estimates of the dilation factor (α) is in good agreement with empirical rock
physics relations. However, it should be noted that these empirical relations are
based on ultrasonic measurements relating velocity to porosity. We do not know
to what extent such empirical relationships can be used for a dynamic case, where
velocity changes are introduced by for instance stretching of the rock.

The proposed method can be further improved by utilizing data with larger offsets.
In addition, new rock physics models can be used to constrain the α-parameter
estimation. Geomechanical modeling and reservoir simulation can give additional
information (Hatchell et al., 2005; Vidal et al., 2002). Improved results can also
be achieved by including ray-bending and by accounting for vertical variations in
(relative) velocity changes.

The proposed method was tested on a sequence from the sea surface to the top
reservoir horizon, and then, indirectly, the thickness and velocity changes for the
reservoir layer and overburden rocks (for the Valhall Field) were estimated. It may
also be possible to apply the method directly on one single layer (for example, the
reservoir layer). However, investigations show that picked offset-dependent relative
time shifts become more uncertain when based on picks from both top and base
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horizons of a layer, rather than a sequence from the sea surface to one (base) horizon
only. In addition, correction terms are needed if the top of the layer is changing in
depth, since our method was derived assuming that the top of the layer is constant
(zero) in depth.

The proposed method is almost unaffected by velocity-depth ambiguities and er-
rors in stacking velocity (see Bickel, 1990; Bube et al., 2004) which are well-known
phenomena in seismic exploration. This is due to the fact that we utilize offset-
dependent time shifts (rather than time-lapse changes in stacking velocity). How-
ever, it should be noted that stacking velocity is used to estimate the thickness (z),
which is needed in equation (3.9). Nevertheless, investigations (of the overburden
estimated α = −2.1) show that the deviation in α is almost unaffected by uncer-
tainties in z as large as 20%.

In all time-lapse monitoring, repeatability is crucial. Different sources and source
depths were used in the time-lapse surveys (1992-2002) from Valhall. This might
introduce nonrepeatability (Landrø, 1999b) even though a good match is found.
Further examples of nonrepeatability problems in time-lapse seismic are differences
in the source-receiver positions, changes in the water temperature, tidal differences,
random noise in the recording units, and coherent noise such as free surface multi-
ples. In addition, for cases with reservoir compaction and corresponding overburden
changes, the elastic wavefield parameters and, further, the quality factor Q (damp-
ing), change. Stewart et al. (1984) derived an equation that estimates the delay
in traveltimes based on traveltimes, frequency ratios, and quality factor Q. The
quality factor Q can be estimated from a constant-Q model (Kjartansson, 1979).
Combining the two models, assuming a constant Q equal to 70 for the baseline and
75 for the monitor, gives a difference in traveltime delay of 0.1 ms between baseline
and monitor. Another example, using Q equal to 70 and 90 for the baseline and
monitor, respectively, gives a time-lapse difference in traveltime delay of 0.5 ms.

3.7 Conclusions

Prestack analysis of time-lapse seismic traveltime shifts gives an opportunity to
discriminate between layer thickness and velocity changes, for both the reservoir
layer and the overburden layers. We find that the introduction of the dilation fac-
tor (ratio between relative velocity changes and relative thickness changes) is both
practical and a useful concept for the prestack time lapse analysis. The developed
method links the relative change in traveltime (for a given offset) with the dilation
factor and the relative change in zero-offset traveltime, where lateral variations in
relative velocity changes are incorporated. Basic assumptions in the derivation of
the equations are the assumption of one single horizontal layer, straight raypaths
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and neglecting vertical changes in the velocity field. If the method is applied to
a multilayer case we find that the errors increase if the velocity changes between
the layers are significant. For a synthetic model consisting of 5 overburden layers
that are stretched and a compacting reservoir layer, we find that our method can be
applied successfully to estimate the average dilation factor for the overburden layers.

For the top reservoir horizon at the Valhall Field we estimate a maximum sub-
sidence of 2.7 m ± 1.6 m and a corresponding velocity decrease for the sequence
from the sea surface to the top reservoir of 4.5 m/s ± 1.3 m/s. For the reservoir
section a maximum velocity increase of 200 m/s ± 85 m/s is calculated when related
to the maximum top reservoir subsidence (of 2.7 m).

The method does not require any information or model for the mechanism cre-
ating the velocity change. Discrimination between pressure, fluid, or compaction
changes should be performed in a preceding analysis step. Compared to measured
compaction rates in other areas of this field, the estimated values are reasonable.
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3.A Rock physics

Well log observations show empirical relationships between velocity (v) and porosity(φ)
given as (Han, 1986; Rafavich et al., 1984)

v = a − bφ, (3.A-1)

where a and b are positive constants. Differentiation of equation (3.A-1) and sub-
stitution of b gives

dv

v
=
(
1 − a

v

) dφ

φ
. (3.A-2)

The uniaxial strain relationship reads (Guilbot and Smith, 2002)

dφ

1 − φ
=

dz

z + dz
, (3.A-3)

where z and dz denote thickness and thickness changes, respectively. By assum-
ing small changes and substituting for φ (given by rearranging equation (3.A-1)),
equation (3.A-3) reads

dφ

φ
=

dz

z

(
b

a − v
− 1

)
. (3.A-4)

Substituting equation (3.A-4) into equation (3.A-2) gives

dv

v
=

(
a − b

v
− 1

)
dz

z
. (3.A-5)

Equation (3.A-5) shows that relative thickness and velocity changes are linked by
the factor:

α =
a − b

v
− 1, (3.A-6)

which is spatially dependent since a, b, and v are expected to vary spatially.
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3.B Detailed derivation of the method

Assuming a one-layer model with straight raypaths, seismic two-way traveltime for
a ray with CDP-position x0 and offset 2h can be expressed as

T (x0, h) =

√
1 +

z2(x0)

h2

x0+h∫
x0−h

dx

v(x)
. (3.B-1)

For the post-production (or monitor) case, the two-way traveltime is

T
′
(x0, h) =

√
1 +

z2(x0)

h2

(
1 +

∆z(x0)

z(x0)

)2
x0+h∫

x0−h

dx

v(x)
(
1 + ∆v(x)

v(x)

) , (3.B-2)

where ∆v(x)/v(x) is assumed to vary with lateral position x, but not with depth.
The square root and functions (1 + ∆z(x0)/z(x0))

2 and (1 + ∆v(x)/v(x))−1 in
equation (3.B-2) can be expanded in Taylor series. Assuming small relative changes
in velocity and thickness; that is, keeping only the first expanded term, equation
(3.B-2) becomes

T
′
(x0, h) ≈

√
1 +

z2(x0)

h2

(
1 + 2

∆z(x0)

z(x0)

) x0+h∫
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dx

v(x)

(
1 − ∆v(x)

v(x)

)

T
′
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√
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z2(x0)

h2
+ 2

z2(x0)

h2
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. (3.B-3)
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From equations (3.B-1) and (3.B-3) the relative change in two-way traveltime be-
comes

∆T (x0, h)

T (x0, h)
=

(
1 + z2(x0)

h2+z2(x0)
∆z(x0)
z(x0)

) x0+h∫
x0−h

dx
v(x)

(
1 − ∆v(x)

v(x)

)
x0+h∫
x0−h

dx
v(x)

− 1. (3.B-4)

By assuming small lateral variations in initial layer velocity in the vicinity of each
position x0; that is, v(x) ≈ v(x0) for x0 − h ≤ x ≤ x0 + h, the term 1/v(x) can be
put outside the integration signs (given in both the numerator and denominator of
equation (3.B-4)) and be cancelled out. Note, however, that the lateral variations
in ∆v are included; that is, ∆v = ∆v(x):

∆T (x0, h)

T (x0, h)
≈

(
1 + z2(x0)

h2+z2(x0)
∆z(x0)
z(x0)

)
1
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dx
(
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v(x)

)
1

v(x0)
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dx

− 1

∆T (x0, h)

T (x0, h)
=

(
1 + z2(x0)

h2+z2(x0)
∆z(x0)
z(x0)

) x0+h∫
x0−h

dx
(
1 − ∆v(x)

v(x)

)
2h

− 1. (3.B-5)
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Rearranging equation (3.B-5) gives
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(
1 − ∆v(x)

v(x)

)

+
z2(x0)

h2 + z2(x0)

∆z(x0)

z(x0)

1

2h

x0+h∫
x0−h

dx

(
1 − ∆v(x)

v(x)

)
− 1

∆T (x0, h)

T (x0, h)
= 1 − 1

2h

x0+h∫
x0−h

dx
∆v(x)

v(x)
+

z2(x0)

h2 + z2(x0)

∆z(x0)

z(x0)

− z2(x0)

h2 + z2(x0)

∆z(x0)

z(x0)

1

2h

x0+h∫
x0−h

dx
∆v(x)

v(x)
− 1

∆T (x0, h)

T (x0, h)
= − 1

2h

x0+h∫
x0−h

dx
∆v(x)

v(x)
+

z2(x0)

h2 + z2(x0)

∆z(x0)

z(x0)

− z2(x0)

h2 + z2(x0)

∆z(x0)

z(x0)

1

2h

x0+h∫
x0−h

dx
∆v(x)

v(x)
, (3.B-6)

where the last term in equation (3.B-6) can be neglected for small changes in relative
velocity and thickness changes. This gives

∆T (x0, h)

T (x0, h)
≈ − 1

2h

x0+h∫
x0−h

dx
∆v(x)

v(x)
+

z2(x0)

h2 + z2(x0)

∆z(x0)

z(x0)
. (3.B-7)

The relative changes in thickness and velocity can be related to the relative change
in vertical traveltime as

∆z(x)

z(x)
≈
(

1

1 − α

)
∆T0(x)

T0(x)
,

∆v(x)

v(x)
≈
(

α

1 − α

)
∆T0(x)

T0(x)
, (3.B-8)

which gives equation (3.B-7) on the following form:

∆T (x0, h)

T (x0, h)
≈ z2(x0)

z2(x0) + h2

(
1

1 − α

)
∆T0(x0)

T0(x0)
− 1

2h

(
α

1 − α

) x0+h∫
x0−h

dx
∆T0(x)

T0(x)
.

(3.B-9)
Equation (3.B-9) shows that there exists a relationship between the parameter α,
the relative change in traveltime for zero offset, and the relative change in traveltime
for a given half-offset h.



Estimation of layer thickness and velocity changes using 4D prestack seismic data 59

3.C Testing equation (3.9) for a two-layer model

In order to test the accuracy of using the straight-ray approximation used in equa-
tion (3.9) and test how accurate it can be when applied to a stack of several layers,
we consider a two layer model, with initial layer thicknesses z1 and z2, respectively.
Let the incidence angle in the first layer be θ1 and the ray angle in the second layer
be θ2. Then the two-way traveltime for the pre-stretch situation is given as

T = 2

[
z1

v1 cos θ1
+

z2

v2 cos θ2

]
. (3.C-1)

The half-offset is given as

h = z1 tan θ1 + z2 tan θ2. (3.C-2)

After stretching (monitor survey), the offset is conserved; that is,

h = (z1 + ∆z1) tan(θ1 + ∆θ1) + (z2 + ∆z2) tan(θ2 + ∆θ2), (3.C-3)

where ∆θ represents change in ray angle due to stretching. Combining equations
(3.C-2) and (3.C-3) and assuming that the changes in ray angles are small due to
the stretching of the layers, lead to

∆z1 tan θ1 + ∆z2 tan θ2 = −z1∆θ1(1 + tan2 θ1) − z2∆θ2(1 + tan2 θ2). (3.C-4)

Now we apply Snell’s law for initial and monitor cases:

sin θ1

v1
=

sin θ2

v2
, (3.C-5)

sin(θ1 + ∆θ1)

(v1 + ∆v1)
=

sin(θ2 + ∆θ2)

(v2 + ∆v2)
. (3.C-6)

Combining equations (3.C-5) and (3.C-6) and assuming small changes in ray angles
gives

∆θ1 = tan θ1

(
∆v1

v1

− ∆v2

v2

)
+ ∆θ2

v1 cos θ2

v2 cos θ1

. (3.C-7)

Inserting equation (3.C-7) into equation (3.C-4) gives an explicit expression for the
change in ray angle in layer 2:

∆θ2 = −
z1 tan θ1

(
∆v1

v1
− ∆v2

v2

)
(1 + tan2 θ1) + ∆z1 tan θ1 + ∆z2 tan θ2

z1
v1 cos θ2

v2 cos θ1
(1 + tan2 θ1) + z2(1 + tan2 θ2)

. (3.C-8)

The traveltime after stretching for the two-layer model is given as

T
′
= 2

[
z1 + ∆z1

(v1 + ∆v1) cos(θ1 + ∆θ1)
+

z2 + ∆z2

(v2 + ∆v2) cos(θ2 + ∆θ2)

]
. (3.C-9)

From equations (3.C-1) and (3.C-9) the relative traveltime shift can be computed,
and compared to the one-layer approximation given in equation (3.9). An example
of such a comparison is shown in Figure 3.2.
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3.D Uncertainty estimates

Errors due to the approximations made from equation (3.6) to equation (3.9) can
be investigated step by step. The approximations made from equation (3.6) to
equation (3.7) are summarized by equation (3.D-1) (for small thickness changes)
and equation (3.D-2) (for small velocity changes).√

1 +
z2(x0)

h2

(
1 +

∆z(x0)

z(x0)

)2

≈
√

1 +
z2(x0)

h2

(
1 +

z2(x0)

h2 + z2(x0)

∆z(x0)

z(x0)

)
,(3.D-1)

x0+h∫
x0−h

dx

v(x)
(
1 + ∆v(x)

v(x)

) ≈
x0+h∫

x0−h

dx

v(x)

(
1 − ∆v(x)

v(x)

)
. (3.D-2)

These approximation steps lead to negligible error for general cases. As an example
for equation (3.D-1), assuming h = 0.5 km, z = 2.5 km, and ∆z = 2.5 m (that is,
∆z/z = 0.001) gives the left hand side (LHS) of equation (3.D-1) equal to 5.1039225
and the right hand side (RHS) equal to 5.1039224, which corresponds to 0.000002 %
relative error. Using ∆z/z = 0.01 in equation (3.D-1) gives LHS = 5.1480579 and
RHS = 5.1480485 corresponding to 0.0002 % relative error. A similar example
for equation (3.D-2), assuming h = 0.5 km, v = 2.0 km/s, and ∆v = −5 m/s
(that is, ∆v/v = −0.0025, where we for simplicity assume ∆v(x) and v(x) laterally
constant) gives the LHS in equation (3.D-2) equal to 0.501253 and the RHS equal
to 0.501250, which corresponds to 0.0006% relative error. Using ∆v/v = −0.01
in equation (3.D-2) gives LHS = 0.505051 and RHS = 0.505000 corresponding to
0.010 % relative error.

The approximations from equation (3.7) to equation (3.9) can be summarized in
three steps:

x0+h∫
x0−h

dx

v(x)

∆v(x)

v(x)
≈ 1

v(x0)

x0+h∫
x0−h

dx
∆v(x)

v(x)
, (3.D-3)

1

v(x0)

x0+h∫
x0−h

dx
∆v(x)

v(x)
≈ 1

v(x0)

(
α

1 − α

) x0+h∫
x0−h

dx
∆T0(x)

T0(x)
, (3.D-4)

z2(x0)

h2 + z2(x0)

∆z(x0)

z(x0)

1

2h

x0+h∫
x0−h

dx
∆v(x)

v(x)
≈ 0, (3.D-5)

where the approximation step given by equation (3.D-4) is only a substitution of
the relative velocity changes; that is, ∆v(x)/v(x) ≈ (α/(1 − α))∆T0(x)/T0(x). The
approximation given in equation (3.D-3) is the critical step. As an example, we
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assume linear lateral variations in the layer velocity and velocity changes, and that
position x is defined from zero to h; that is,

v(x) = v(0) + A
x

h
, (3.D-6)

∆v(x) = ∆v(0) + B
x

h
. (3.D-7)

Inserting equations (3.D-6) and (3.D-7) into equation (3.D-3), we obtain (skipping
the symmetric part of the integral)

h∫
0

dx(∆v(0) + B x
h
)

(v(0) + Ax
h
)2

≈ 1

v(0)

h∫
0

dx(∆v(0) + B x
h
)

(v(0) + Ax
h
)

. (3.D-8)

The integral on the LHS of equation (3.D-8) is equal to

−Ah∆v(0) + Bhv(0)

A2(A + v(0))
− −Ah∆v(0) + Bhv(0)

A2v(0)
+

B

A2
h ln(

A

v(0)
+ 1). (3.D-9)

The RHS of equation (3.D-8) is equal to

h

v(0)

[
B

A
−
(

Bv(0)

A2
− ∆v(0)

A

)
ln(

A

v(0)
+ 1)

]
. (3.D-10)

As an example, we assume ∆v(0) = 0 (note, however, that the lateral variations in
∆v(x) are still included by parameter B). This gives the LHS of equation (3.D-8)
on the following form:

h

v(0)

[
Bv2(0)

A2(A + v(0))
− Bv(0)

A2
+

Bv(0)

A2
ln(

A

v(0)
+ 1)

]
, (3.D-11)

and the RHS of equation (3.D-8) on the following form:

h

v(0)

[
B

A
− Bv(0)

A2
ln(

A

v(0)
+ 1)

]
. (3.D-12)

By assuming A = B = 0.01v(0), the LHS of equation (3.D-8) is equal to 0.0049341 h
v(0)

(from equation (3.D-11)), and the RHS of equation (3.D-8) is equal to 0.0049669 h
v(0)

(from equation (3.D-12)) corresponding to 0.66% relative error. Using A = B =
0.1v(0) in equation (3.D-8) gives LHS = 0.0440109 h

v(0)
and RHS = 0.0468982 h

v(0)

corresponding to 6.56 % relative error. This means that the approximation given
by equation (3.D-3) holds as long as the lateral variations in the layer velocity and
velocity changes are small (inside the offset range 2h).



62 Uncertainty estimates

The third approximation step from equation (3.7) to equation (3.9), given by equa-
tion (3.D-5), leads normally to small errors. As an example, assuming h = 0.5 km,
z = 2.5 km, ∆v/v = −0.0025 (laterally constant), and ∆z/z = 0.001 gives the LHS
in equation (3.D-5) equal to −2.4× 10−6. Since RHS = 0, this approximation leads
to an error of −2.4 × 10−6 in ∆T/T , where ∆T/T ≈ 0.0035 (from the given ∆v/v
and ∆z/z); that is, an error of 0.069% in ∆T/T .
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3.E Synthetic model parameters

For the forward model of the reservoir layer we express the P- and S-wave velocities
as a function of porosity (φres); that is,

vp,res = a − bφres , vs,res = a′ − b′φres, (3.E-1)

where

a = 5500 m/s , b = 7000 m/s , a′ = 2845 m/s , b′ = 3621 m/s. (3.E-2)

The above given parameters are based on well logs. Differentiation of equation
(3.E-1) yields

∆vp,res = −b∆φres, (3.E-3)

∆vs,res = −b′∆φres, (3.E-4)

where ∆φres denotes porosity changes in the reservoir. The reservoir density is
assumed to follow the relation:

ρres = φresρF + (1 − φres)ρS , (3.E-5)

where ρF and ρS denote fluid and solid densities of the reservoir, respectively. As-
suming that the fluid density is constant during compaction gives

∆ρres = (ρF − ρS)∆φres =
ρF − ρres

(1 − φres)
∆φres, (3.E-6)

by substituting ρS (obtained from equation (3.E-5)).

The uniaxial strain condition reads (Guilbot and Smith, 2002)

∆φres = (1 − φres)
∆zres

zres + ∆zres

, (3.E-7)

where zres and ∆zres denote the reservoir thickness and thickness changes, respec-
tively. Substituting ∆φres from equation (3.E-7) into the equations (3.E-3), (3.E-4),
and (3.E-6) gives the following changes in the reservoir parameters:

∆vp,res = −b(1 − φres)
∆zres

zres + ∆zres
, (3.E-8)

∆vs,res = −b′(1 − φres)
∆zres

zres + ∆zres
, (3.E-9)

∆ρres = −(ρres − ρF )
∆zres

zres + ∆zres

. (3.E-10)
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Associated with the reservoir compaction we define overburden changes (for the
forward model). For the overburden, Zi denotes the depth (from the sea surface)
down to the base interface of layer i and the change in this depth denotes ∆Zi

(where positive ∆Zi corresponds to subsidence). The subsidence of the sea bed
interface is set to

∆Z1 = 0.8 × ∆zres. (3.E-11)

We assume that the subsidence of the overburden interfaces increases linearly with
depth (down to the top reservoir interface); that is,

∆Zi = Fi × ∆zres, (3.E-12)

where Fi is a depth dependent factor given as (only valid for the overburden layers
below the sea bed; that is, 1 ≤ i ≤ 5)

Fi = 7.634 × 10−5Zi + 0.7939, (3.E-13)

where Zi (the depth down to the base interface of layer i) is given in meters. The
thickness change of an overburden layer i, ∆zi = ∆Zi−∆Zi−1, is given by equations
(3.E-12) and (3.E-13); that is,

∆zi = 7.634 × 10−5(Zi − Zi−1)∆zres. (3.E-14)

Assuming mass conservation and layer expansion only in the z-direction, the relation
between changes in thickness (∆zi) and density (∆ρi) for an overburden layer i is
given as

ρi + ∆ρi

ρi
=

zi

zi + ∆zi
, (3.E-15)

where zi and ρi denote the thickness and density of layer i, respectively. For small
thickness changes, equation (3.E-15) can be written

∆ρi

ρi
= −∆zi

zi
. (3.E-16)
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3.F Uncertainty in estimated α

The standard deviation of a function S = S(a, b, c, ...), where a, b, c, ... are parame-
ters assumed to be independent of each other, is given by (Landrø, 2002)

δS =

√(
∂S

∂a
δa

)2

+

(
∂S

∂b
δb

)2

+

(
∂S

∂c
δc

)2

+ ... , (3.F-1)

where δa denotes the standard deviation or uncertainty in parameter a, etc.

An expression for α is found by rearranging equation (3.9):

α =

z2(x0)
z2(x0)+h2

∆T0(x0)
T0(x0)

− ∆T (x0,h)
T (x0,h)

1
2h

x0+h∫
x0−h

dx∆T0(x)
T0(x)

− ∆T (x0,h)
T (x0,h)

. (3.F-2)

Using the notations

f1 =
z2(x0)

z2(x0) + h2
, (3.F-3)

f2 =
1

2h

x0+h∫
x0−h

dx
∆T0(x)

T0(x)
, (3.F-4)

f3 =
∆T0(x0)

T0(x0)
, (3.F-5)

f4 =
∆T (x0, h)

T (x0, h)
, (3.F-6)

the standard deviation in α can be written as

δα =

√(
∂α

∂f1
δf1

)2

+

(
∂α

∂f2
δf2

)2

+

(
∂α

∂f3
δf3

)2

+

(
∂α

∂f4
δf4

)2

, (3.F-7)

where

∂α

∂f1

=
f3

f2 − f4

, (3.F-8)

∂α

∂f2
=

f4 − f1f3

(f2 − f4)2
, (3.F-9)

∂α

∂f3
=

f1

f2 − f4
, (3.F-10)

∂α

∂f4

=
f1f3 − f2

(f2 − f4)2
. (3.F-11)
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Normal values for f1 are between 0.5 and 1.0, while f2, f3, and f4 are normally of the
order 10−3. All equations (3.F-8) to (3.F-11) are highly dependent of the difference
between f2 and f4 which is normally of the order 10−3 to 10−4. Investigations show
that it is crucial to have differences between f2 and f4 larger than 1.0 × 10−4. In
addition, any uncertainties in f1, f2, f3, and f4 must be small in order to estimate
α accurately.

As an example, we investigate the uncertainty in an estimated α of −2.1 for a
sequence with thickness z = 2.5 km and half-offset h = 1.0 km. The uncertainty
in f1 is assumed to be 3.9% (which is obtained from equation (3.F-1) by assuming
an uncertainty in both z and h of 10%). The difference between f2 and f4 is set to
0.66×10−3. The standard deviation in zero-offset relative time shifts is estimated to
be 0.33×10−3 for the positions 0.80 km to 1.13 km (see Figure 3.12). The standard
deviation in far offset relative time shifts is estimated to 0.32 × 10−3 for position
0.93 km (see Figure 3.13), when excluding the bad picked time shifts. Assuming
an uncertainty of 0.3 × 10−3 for both zero-offset and offset-dependent relative time
shifts gives an uncertainty of 1.7 in the estimated α (of −2.1).
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4.1 Abstract

A method developed by Røste et al. (2005), which discriminates between layer thick-
ness and velocity changes, is tested on prestack time-lapse seismic ocean bottom
cable (OBC) data from the Valhall Field. A key parameter in this discrimination
process is the dilation factor, α, which is the relative velocity change divided by
the relative thickness change within a given layer. The high quality and good re-
peatability of the OBC data enables us to estimate α with a reasonable accuracy
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for α-values between 0 and −5. For α-values below −5, complementary informa-
tion, like for instance geomechanics is required. For the top reservoir horizon we
estimate a maximum subsidence of 0.50 m ± 0.29 m and a corresponding velocity
decrease for the sequence from the sea bed to the top reservoir of 2.0 m/s ± 0.40 m/s.

Time-lapse distortion patterns with characteristic time shift versus offset signa-
tures are observed. The positions and vertical extents of the distortion zones are
determined from raypath considerations and modeling. The distortion zones cor-
relate with buried faults, indicating that a (time-lapse) distortion zone might be
produced by a localized slip in a fault zone. We present an extended method which
allows for vertical (in addition to lateral) variations in the relative thickness and
velocity changes. This method can be viewed as a simplified version of time-lapse
tomography, but involving less number of unknown parameters, giving more stabil-
ity to the estimated changes in thickness and velocity. Using this technique, we are
able to estimate α for positions with localized time-lapse distortions.

4.2 Introduction

Production-induced compaction is a significant drive mechanism for production in
several North Sea reservoirs, especially the chalk reservoirs in the south. Guilbot
and Smith (2002) utilized time isochron differences from 4D seismic data to detect
compaction and subsidence at the Ekofisk Field. They observed seismic time shifts
up to 12-16 ms between 1989 and 1999, related to compaction values of up to 6 m
for the reservoir chalk formation. Røste et al. (2005) developed a method, based
on prestack time-lapse seismic data, which discriminates between changes in layer
thickness and velocity. They estimated a subsidence up to 2.7 m for the top reser-
voir horizon at the Valhall Field (in the southern part of the field) from 1992 to
2002. Reservoir compaction might have implications for production by changing
permeabilities and, hence, the production performance (Hall et al., 2005). In ad-
dition, compaction might lead to subsidence of the sea bed. At the Valhall Field,
Barkved and Kristiansen (2005) report a maximum subsidence of the sea bed larger
than 5.4 m (since the field came on production in 1982) and increasing at 0.25 m per
year. It is typical for these fields that the sea bed subsidence is less than the cor-
responding reservoir compaction, meaning that the overburden rocks are stretched.
Often the change in geomechanical stress state for the overburden rocks leads to
damage in existing wells (especially when significant shear stresses are introduced
as a byproduct of the reservoir compaction). It is therefore of importance to map
the velocity and thickness changes during production not only for the reservoir it-
self, but also for the overburden rocks. Between the wells, time-lapse seismic data
is a complementary tool for obtaining this information, and the combined use of
repeated seismic measurements and geomechanical knowledge is expected to be im-
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portant in future monitoring projects.

Several authors (Ewing, 1985; White and Morton, 1997; Morton et al., 2006) show
that there is a coupling between reservoir compaction and slip along growth faults
that become active when sufficiently large volumes of fluid (oil, gas, or formation
water) are produced. Fluid extraction may cause pore pressure decrease within
the rocks and alter the state of stress near the faults (Geertsma, 1973). At the
Valhall and Ekofisk fields, Zoback and Zinke (2002) demonstrate that as a result
of production-induced pore pressure and stress changes, normal faulting appears
to have spread out from the crests of the structures on to the flanks. Reynolds
et al. (2003) determined the relative attendant risk of reactivation of faults in the
Bight Basin by evaluating the in situ stress field. Mildren et al. (2002) tried to
predict reactivation of faults by using the FAST (Fault Analysis Seal Technology)
technique. Monitoring fault movements is important for several reasons. Most im-
portant, hazards are associated with wells crossing reactivated faults (Alsos et al.,
2002). Maury et al. (1992) discuss how slipping faults can pose serious problems
since it may cause casing failure. Kristiansen (2004) reviews the drilling history at
Valhall with main focus on the increasing problems in the late 90’s where several
very expensive wells were lost. He concludes that wells (particularly high angle
wells) are vulnerable for changes in stress changes and cavings from fault zones
(see also Kristiansen, 1998). Barkved et al. (2003) report a strong correlation
between overburden faults and drilling problems at the Valhall Field. Casing de-
formations are expected to be part of the operational cost at Valhall (Kristiansen
et al., 2000). In the reservoir zone, reactivation of faults might lead to leakage of
hydrocarbons and affect the reservoir drainage patterns. Fault seal breach in the
North Sea (Gaarenstroom et al., 1993), the Penola Through (Jones et al., 2000),
and the Gulf of Mexico (Finkbeiner et al., 2001) has been related to faulting and
fracturing associated with the in situ stress. A fault can be a transmitter of or
barrier to fluid and pressure communication. Cerveny et al. (2004) discuss several
fault-seal analysis methods which evaluate the flow potential across a fault. Revil
and Cathles (2002) show an example from the Gulf of Mexico where fluids migrate
into active growing faults. Based on seismic data and wellbore information, Allan
(1989) diagrams are often used to identify potential petroleum leak points along a
fault strike. Reactivated faults can also have close relationship with earthquakes.
Zoback and Zinke (2002) recorded numerous microearthquakes at the Valhall Field
during a six week monitoring period. They found the microearthquakes consistent
with a normal faulting stress regime. Chen and Bai (2006) built a model which
relates the growth of microcracks with the occurrence of earthquakes.

The Valhall Field, situated in the southern part of the Norwegian North Sea, is
a high-porosity Late Cretaceous chalk (porosities between 35-50%). The daily pro-
duction is on the order of 100 000 barrels of light oil. The expected recovery rate
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in 1982 was 14%, a figure which has now increased to 40%. Time-lapse seismic
monitoring with high quality in addition to improved methods to interpret and uti-
lize the seismic might increase the recovery further. In 2003, a permanent ocean
bottom cable (OBC) array was installed at the Valhall Field, initiating the ”Life
of Field Seismic” (LoFS) program which includes a series of 3D OBC surveys. The
first survey was acquired from September to November 2003 with subsequent sur-
veys acquired in intervals of approximately 4 months. Results from the earliest
surveys confirm that the system can provide high quality data with good repeata-
bility (Kommedal et al., 2004; Barkved, 2004).

In the present paper we investigate time-lapse changes on 2D prestack time-lapse
seismic OBC lines from the LoFS survey 1 and survey 3. The 2D lines are situated
in the south-east part of the Valhall Field. By utilizing a method developed by
Røste et al. (2005), changes in thickness and velocity are estimated for a sequence
from the sea bed to the top reservoir horizon for one of the 2D lines. This method
utilizes time-lapse traveltime shifts for all offsets to find the dilation factor α which
discriminates between layer thickness changes and velocity changes. An advantage
of this method is that no information or model is required for the mechanism cre-
ating the velocity and thickness changes.

The LoFS data shows time shift patterns (between surveys 1 and 3) that move
systematically with offset. Analogous signatures have earlier been observed for sin-
gle prestack surveys (e.g. Allen and Bruso, 1989; Fagin, 1996; Hatchell, 2000) and
are associated with shallow distortion zones. As far as we know, such distortions
in time-lapse seismic are not so common. The location of the distortion zones are
determined from geometry and raypath considerations. At least one of the distor-
tions for the time-lapse time shifts observed between LoFS survey 1 and 3 is located
in the vicinity of an existing fault. The distortions can be produced by a localized
slip in this observed fault zone creating changes in the rock properties framework.
A time-lapse synthetic model is created to match the observed time shifts. To find
the dilation factor α for positions with time-lapse distortions we must account for
vertical variations (in addition to lateral variations) in the relative velocity and
thickness changes. An extended method is introduced to describe such positions.
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4.3 Discrimination between layer thickness and

velocity changes

It is important to notice that time-lapse seismic time shifts capture the combined
effects of velocity and thickness changes within a given layer. The relative time
shift for zero offset can be expressed in terms of the relative thickness change and
velocity change as (Landrø and Stammeijer, 2004; Røste et al., 2005; Hatchell and
Bourne, 2005b)

∆T0(x0)

T0(x0)
≈ ∆z(x0)

z(x0)
− ∆v(x0)

v(x0)
, (4.1)

where T0 represents two-way traveltime for zero offset, z is the layer thickness, and
v is the layer velocity. The parameter x0 denotes the global x-coordinate for a
given CDP-location (position), and ∆T0, ∆z, and ∆v represent changes in vertical
two-way traveltime, thickness, and velocity, respectively. The basic assumption in
equation (4.1) is that all relative changes are small; that is, ∆z

z
<< 1 and ∆v

v
<< 1.

As a first order approximation for a relation between relative thickness and velocity
changes for a given subsurface layer we assume that the two changes are proportional
to each other (Røste et al., 2005):

∆v(x0)

v(x0)
≈ α

∆z(x0)

z(x0)
, (4.2)

where the dilation factor α < 0 is a parameter dependent on the rock properties of
the layer. This is a crucial parameter, since it determines the ratio between veloc-
ity and thickness changes. In general, α varies with spatial coordinates. However,
similar to Røste et al. (2005, 2006), we assume that α is constant for the sequence
of layers we study.

The dilation factor α can be estimated based on time shift analysis. For a prestack
CDP gather at position x0, the seismic two-way traveltime for a raypath with offset
2h can be expressed as an integral over the total raypath length S,

T (x0, h) =

∫
S

ds

v(s)
, (4.3)

where v(s) denotes the P-wave velocity at the ray position s(x0, h). Assume a one-
layer model with a P-wave velocity field, v(x), that varies along the lateral position
x, but is nonvarying with depth. By assuming straight raypaths, it can be shown
that (similar to assuming average slowness within the offset range 2h)

T (x0, h) =

√
1 +

z2(x0)

h2

x0+h∫
x0−h

dx

v(x)
, (4.4)
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where z(x0) represents the layer thickness at the CDP-position x0. Equation (4.4)
describes the initial (or pre-production) case. For the post-production case, we find
that it is essential to include the lateral variations in velocity changes, since it is
very likely that such changes will occur both within the reservoir layer as well as
the overburden layers of a producing hydrocarbon reservoir (see also Røste et al.,
2006). From equation (4.4), the two-way prestack traveltime for the monitor case
(for a one-layer model) is then given as

T
′
(x0, h) =

√
1 +

z2(x0)

h2

(
1 +

∆z(x0)

z(x0)

)2
x0+h∫

x0−h

dx

v(x)
(
1 + ∆v(x)

v(x)

) , (4.5)

where the relative change in velocity, ∆v(x)
v(x)

, might vary laterally but not with depth.

(Note that variations in thickness changes only affect the multiplier outside the in-
tegral in equation (4.5) when assuming straight raypaths.) Assuming small relative
changes in velocity and thickness, the relative change in two-way traveltime becomes
(see Appendix 4.A)

∆T (x0, h)

T (x0, h)
≈

(
1 + z2(x0)

z2(x0)+h2
∆z(x0)
z(x0)

) x0+h∫
x0−h

dx
v(x)

(
1 − ∆v(x)

v(x)

)
x0+h∫
x0−h

dx
v(x)

− 1. (4.6)

From equations (4.1) and (4.2), the relative changes in layer thickness and velocity
can be related to the relative change in two-way vertical traveltime T0:

∆z(x0)

z(x0)
≈
(

1

1 − α

)
∆T0(x0)

T0(x0)
,

∆v(x0)

v(x0)
≈
(

α

1 − α

)
∆T0(x0)

T0(x0)
. (4.7)

By assuming small lateral variations in initial layer velocity in the vicinity of each
position x0; that is, v(x) ≈ v(x0) for x0 − h ≤ x ≤ x0 + h, equation (4.6) can
be written in the simple form given by equation (4.8) (see Appendix 4.A). Note,
however, that we include the lateral variations in ∆v; that is, ∆v = ∆v(x).

∆T (x0, h)

T (x0, h)
≈ z2(x0)

z2(x0) + h2

(
1

1 − α

)
∆T0(x0)

T0(x0)
− 1

2h

(
α

1 − α

) x0+h∫
x0−h

dx
∆T0(x)

T0(x)
. (4.8)

The relative change in two-way traveltime (for a given half-offset h) is therefore
dependent on α and the estimated relative change in vertical traveltime. (Note
that the integration sign in equation (4.8) in practice means summation, since time
shift estimations only exist for discrete positions (or CDPs).) The parameter α
is determined by minimizing the least square error in relative traveltime change
(equation (4.8)) over the entire offset range. This α-value is then inserted into
equation (4.7) to obtain the changes in layer thickness and velocity. Røste et al.,
2006 discuss in detail the approximations made for equation (4.8).
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4.4 Estimate α from permanent OBC data

The method (given by equation (4.8)) is tested on a prestack time-lapse 2D OBC
line situated in the south-east part of the Valhall Field (denoted l in Figure 4.1),
acquired from survey 1 and survey 3 in the LoFS project. The selected 2D line

Amplitude difference map

Figure 4.1: Amplitude difference map of the top reservoir horizon in the south
part of the Valhall Field (between LoFS survey 1 and survey 3). The two selected
LoFS 2D lines (marked) follow buried cables. (The buried cables are given as dotted
lines.)
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follows a buried receiver cable, leading to excellent inline distribution of offsets.
The data is corrected for tidal statics and a frequency-wavenumber filter was ap-
plied to decrease multiple energy (Yilmaz, 1987). In addition, the signal to noise
ratio and repeatability was increased by stacking 5 shots to each receiver, leading
to normalized root-mean-square (NRMS) of 0.41 for a 1.0 s time gate centered at
2.0 s. Further, a 5x5 mixing operation of traces improved the NRMS to 0.19 for the
same time gate (of 1.0 s). This operation resulted in an effective offset spacing of
200 m between the traces. The original offset spacing was 50 m. The total length
of the selected 2D line is 2.3 km and, for simplicity, we define the north-west and
south-east ends of this selection as positions x = 0 km and x = 2.3 km, respectively.
Figure 4.2 shows the quality and repeatability of the LoFS data. Here the data from
LoFS survey 1 for zero offset is shown inside the letters ”NTNU” together with sur-
vey 3 given in the background. The top of the reservoir is around 2.6 s (two-way

Figure 4.2: LoFS survey 1 (inside the letters ”NTNU”) shown together with
survey 3 (in the background) for zero offset, as a function of position. Note the
good quality and high repeatability of the data.
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traveltime), corresponding to approximately 2.5 km in depth. We investigate an
overburden sequence from the sea bed to this top reservoir horizon.

The prestack events from the top reservoir horizon are picked for interpolated max-
imum amplitudes. To increase the accuracy of the picked zero-offset traveltime
(T0) (for a given position x0), it is normal to stack the picked offset-dependent
traveltimes (T ) by assuming standard hyperbolic moveout (Dix, 1955); that is,

T 2(x0, h) = T 2
0 (x0) +

4

V 2
rms(x0)

h2, (4.9)

where h denotes half-offset and Vrms denotes rms velocity. Due to the high quality of
the LoFS data, zero-offset traveltimes are estimated by stacking only the near offsets
(that is, offsets below 1 km). Figure 4.3 shows the estimated (crosses) and laterally
smoothed (solid line) relative time shifts for zero offset for the top reservoir horizon.
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Figure 4.3: Estimated (crosses) and smoothed (solid line) relative zero-offset time
shifts for the top reservoir horizon.
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The LoFS data shows high degree of repeatability, making it possible to detect
subtle traveltime changes. This is shown in Fig. 4.4, where LoFS data from survey
1 (solid black line) is shown together with survey 3 (solid blue line) for position 1.6
km at 1.0 km offset. For the reservoir section, solid black line is survey 1 and solid
red line is survey 3 (top right). By interpolating the seismic we are able to detect a
traveltime shift (measured at the maximum amplitude) of around 1.5 ms (bottom
right). The repeatability is maintained for increasing offsets. Fig. 4.5 shows LoFS
data from survey 1 (solid black line) together with survey 3 (solid blue line) at 2.0
km offset (for same position 1.6 km). For the reservoir section, solid black line is
survey 1 and solid red line is survey 3 (top right). A traveltime shift of 1.0 ms is
detected for interpolated maximum amplitude (bottom left).

Our analysis follows the method of Røste et al. (2005): For an initial guess of
α, equation (4.8) gives corresponding (relative) time shifts for different half-offsets
(h) which can be compared with the picked time shifts. We search for the α-value
that leads to minimum least square error between the estimated and picked relative
time shifts, for all offsets. Figure 4.6 shows this procedure (for the sequence from
the sea bed to the top reservoir horizon) for the 4 positions x = 0.3 km, x = 0.35
km, x = 0.4 km, and x = 0.45 km: Starting with an initial α-value of 0 in equation
(4.8), we search in steps of −0.1 within the span from 0 to −5, until we obtain an
optimal α-value (solid line), for each position, that gives the best fit to the picked
relative time shifts (crosses). (Multiple picked time shifts for a given offset occur
due to opposite shooting directions.) The dashed lines in Figure 4.6 correspond to
the initial and last guess of α; that is, α = 0 and α = −5. The positions shown
in Figure 4.6 (especially position x = 0.35 km) indicate an optimal α-value around
−5. For position x = 0.3 km, picked relative time shifts seem to be uncertain for
offsets around 0.5 km, which might explain why the optimal α is slightly above
−5 for this position. The picked relative time shifts for positions x = 0.4 km and
x = 0.45 km indicate an optimal α-value slightly below −5. This might be correct;
however, it is difficult to discriminate optimal α-values below −5, and we therefore
choose to stop our search at α = −5.

The difficulty of distinguishing α for decreasing values is shown in Figure 4.7 for
position x = 0.35 km. Here α-values ranging from 0 to −20 are inserted in equation
(4.8) to estimate relative time shifts as a function of offset. When the absolute
magnitude of α is large, changes in α of the order 1 have negligible influence on
the factors ( 1

1−α
) and ( α

1−α
) in equation (4.8), and, consequently, the relative time

shifts are almost unchanged. This is obtained in Figure 4.7 for α-values below −5.

Figure 4.6 shows the positions from the investigated 2D line that have the best
sensitivity in α; that is, various values of α (within the range 0 to −5) give clearly
distinct results from equation (4.8). Acceptable sensitivity in α is also observed for
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Figure 4.4: Left: LoFS data from survey 1 (solid black line) together with survey 3
(solid blue line) at 1.0 km offset for position 1.6 km. For the reservoir section, black
solid line is survey 1 and red solid is survey 3 (top right). Due to the high degree
of repeatability we are able to detect subtle traveltime changes. Interpolating the
seismic and picking for maximum amplitude gives a time shift (measured at the
maximum amplitude) of 1.5 ms (bottom left).

the 4 positions x = 2.15 km, x = 2.2 km, x = 2.25 km, and x = 2.3 km. These
positions are shown in Figure 4.8, where the optimal fitted α-values (solid lines) of
the picked relative time shifts (crosses) again indicate an α-value close to −5. (The
dashed lines indicate the initial and last guess of α; that is, α = 0 and α = −5.)

For the chosen 2D line we found locations characterized by both low sensitivity
in α as well as good sensitivity in α. Note that the sensitivity in α is not dependent
on the noise-level. Low sensitivity in α seems to occur for positions with small time
shifts, especially observed for the positions from x = 0.9 km to x = 1.4 km. Figure
4.9 shows 4 of these positions; that is, positions x = 1.05 km, x = 1.1 km, x = 1.15
km, and x = 1.2 km. Here the small size of the window between the initial and last
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Figure 4.5: Repeatability is maintained for higher offsets. At the left, LoFS data
from survey 1 (solid black line) is shown together with survey 3 (solid blue line)
at 2.0 km offset (for position 1.6 km). For the reservoir section, black solid line
is survey 1 and red solid is survey 3 (top right). A subtle time shift of 1.0 ms is
detected for interpolated maximum amplitude (bottom left).

guess of α (that is, α = 0 and α = −5) (dashed lines) makes it impossible to find a
trustable α-value. However, such positions are easy to detect and can be excluded
when determining the optimal α-value for all positions.

Results and uncertainties

The method, given by equation (4.8), is highly dependent on the accuracy of the
picked zero-offset and offset-dependent time shifts. Obviously, data quality has
a significant impact on our ability to estimate α from time-lapse prestack seismic
data. Values of α down to −5 can be determined; however, below this limit, the un-
certainties are large (as underlined in Figure 4.7). The standard deviation (denoted
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Figure 4.6: Example of finding α (for the sequence from the sea bed to the top
reservoir horizon) for the 4 positions x = 0.3 km, x = 0.35 km, x = 0.4 km, and
x = 0.45 km. For each position, the solid line indicates the best fit of the picked
relative time shifts (crosses) as a function of offset. The dashed lines correspond
to the initial and last guess of α; that is, α = 0 and α = −5. These 4 positions
indicate an α around −5.

δ) in α can be given as (Røste et al., 2006)

δα =

√(
∂α

∂f1
δf1

)2

+

(
∂α

∂f2
δf2

)2

+

(
∂α

∂f3
δf3

)2

+

(
∂α

∂f4
δf4

)2

, (4.10)
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Figure 4.7: Estimated relative time shifts (as a function of offset) for several values
of α for position x = 0.35 km. The solid line indicates the optimal α = −5. Note
the increased difficulty of distinguishing α-values as α decreases. The red and green
vertical bars indicate the standard and mean deviations (respectively) in picked
relative time shifts.

where

∂α

∂f1
=

f3

f2 − f4
, (4.11)

∂α

∂f2
=

f4 − f1f3

(f2 − f4)2
, (4.12)

∂α

∂f3
=

f1

f2 − f4
, (4.13)

∂α

∂f4
=

f1f3 − f2

(f2 − f4)2
, (4.14)
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Figure 4.8: Example of finding α (for the sequence from the sea bed to the top
reservoir horizon) for the 4 positions x = 2.15 km, x = 2.2 km, x = 2.25 km, and
x = 2.3 km. For each position, the solid line indicates the best fit of the picked
relative time shifts (crosses) as a function of offset. The dashed lines correspond to
the initial and last guess of α; that is, α = 0 and α = −5. Similar to Figure 4.6,
the above positions indicate an α close to −5.

and

f1 =
z2(x0)

z2(x0) + h2
, (4.15)

f2 =
1

2h

x0+h∫
x0−h

dx
∆T0(x)

T0(x)
, (4.16)

f3 =
∆T0(x0)

T0(x0)
, (4.17)

f4 =
∆T (x0, h)

T (x0, h)
. (4.18)
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Figure 4.9: Example of 4 positions (x = 1.05 km, x = 1.1 km, x = 1.15 km, and
x = 1.2 km) with low sensitivity in α. The small size of the window between the
initial and last guess of α (that is, α = 0 and α = −5) (dashed lines) makes it
impossible to find a trustable α-value.

Relative time shifts (also denoted f4) can be related to α according to equation
(4.8); that is,

∆T (x0, h)

T (x0, h)
≈ z2(x0)

z2(x0) + h2

(
1

1 − α

)
∆T0(x0)

T0(x0)
− 1

2h

(
α

1 − α

) x0+h∫
x0−h

dx
∆T0(x)

T0(x)
. (4.19)

Equations (4.10) to (4.19) make it possible to find the standard deviation in α ver-
sus two key parameters: α itself and the uncertainty in the picked time shifts. An
example is shown in Figure 4.10 for a picked time shift with offset 1.0 km (that
is, h = 0.5 km). Here a layer with initial thickness z = 2.5 km undergoes changes
corresponding to relative zero-offset time shifts (∆T0

T0
) (laterally constant) equal to

2.0 · 10−3. The uncertainty in z2

z2+h2 (denoted δf1 in equation (4.10)) is assumed
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Figure 4.10: Standard deviation in α versus α itself and standard deviation in a
picked time shift with offset 1.0 km. The example is based on a layer with thickness
2.5 km that undergoes changes corresponding to relative zero-offset time shifts of
2.0 · 10−3. A standard deviation of 3.3 is obtained for an α-value of −5 (indicated
with dashed line), when the standard deviation in picked time shifts is assumed to
be 0.35 ms.

to be 1.1 % (which can be obtained by assuming an uncertainty in both z and h
of 10 %, see Landrø, 2002) and we assume equal uncertainty in ∆T0

T0
and ∆T

T
(that

is, δf2 = δf3 = δf4 in equation (4.10)). As Figure 4.10 shows, the uncertainty
in α increases significantly with increasing deviation in time shifts and decreasing
α-values. The standard and mean deviations in picked relative time shifts are esti-
mated to be 0.17 · 10−3 and 0.13 · 10−3, respectively (based on the misfit between
picked relative time shifts and their best fit, see e.g. Figure 4.6) meaning that the
deviation in time shifts is around 0.3-0.4 ms. Assuming 0.35 ms deviation in time
shifts gives a standard deviation of 3.3 in the optimal estimated α of −5 for the
investigated overburden sequence on Valhall (marked with dashed line in Figure
4.10). Note, however, that the total uncertainty range is not symmetric around
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the optimal α-value of −5, since the distribution of α is non-linear (Figure 4.7).
The standard deviation in picked relative time shifts of 0.17 · 10−3 indicates that
α lies within the range −3 < α < −25 (marked as vertical red bar in Figure 4.7),
while the mean deviation in relative time shifts (of 0.13 · 10−3) indicates a narrower
range for α; that is, −3.4 < α < −17 (marked as vertical green bar in Figure 4.7).
Both results show that we are able to exclude α-values between 0 and −3 for the
investigated overburden rocks.

Figure 4.11 shows the estimated changes in thickness and velocity (solid line) for
the investigated sequence when using the optimal α-value of −5, together with un-
certainties (dashed lines) correlated to an uncertainty of 3.3 in the optimal α (of
−5). The solid dots indicate the initial guess of α; that is, α = 0. The estimated
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Figure 4.11: Estimated changes (solid line) in thickness (top) and velocity (bot-
tom), together with indicated uncertainties (dashed lines) as a function of position
(for the sequence from the sea bed to the top reservoir horizon) when using the
optimal α-value of −5. The solid dots correspond to the initial guess of α; that is,
α = 0.
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optimal result in Figure 4.11 indicates a maximum subsidence of the top reservoir
horizon of 0.50 m (with deviation 0.29 m) and a maximum velocity decrease for the
overburden sequence of 2.0 m/s (with deviation 0.40 m/s).

4.5 Time-lapse distortions

In the second 2D line shown in Figure 4.1 (denoted l′) we observe time shift patterns
that move systematically with offset. The positions on line l′ are denoted x′ and
range from x′ = 0 km (north-west) to x′ = 2.3 km (south-east). Figure 4.12 shows
the picked relative time shifts (crosses) for the top reservoir horizon as a function
of offset for the positions x′ = 1.55 km to x′ = 1.8 km. Note the marked positive
time shifts around zero offset for position x′ = 1.55 km (shown by arrow in Figure
4.12a). These time shifts move systematically with offset as the position increases
(Figure 4.12b-4.12f), as shown by the arrow. In top of Figure 4.13, the same picked
time shifts are displayed in the offset versus position domain (where the positive
and negative offsets only indicate opposite shooting directions). Here the time shift
pattern from the previous figure is clearly visible as a diagonal feature, moving from
zero offset at position x′ = 1.55 km towards increasing offset distance as the position
increases. In addition, a similar feature, starting at position x′ = 0.4 km for zero
offset, is observed with marked negative time shifts. Both features are indicated
with solid lines in top of Figure 4.13.

Similar patterns as shown in Figure 4.13 (top) have been previously observed on 3D
prestack datasets and are attributable to shallow velocity distortion zones. Hatchell
(2000) observed transmission distortions that produce anomalous amplitude versus
offset (AVO) signatures on 3D seismic data at two locations in the Gulf of Mexico.
He explains the distortion zones by velocity changes across faults and unconformity
surfaces. Fagin (1996) presents an example of seismic distortions (that is, time sags
and time pull-ups) resulting from extensional faults in the Wilcox trend of south
Texas. His analysis shows that these distortions are produced by faults related to
the stratigraphic-velocity alternations in the Wilcox Formation. Time anomalies
attributable to growth faults are also discussed by Allen and Bruso (1989). Further
discussions on transmission distortions are given by Kjartansson (1979) and Har-
lan (1994). As far as we know, distortions (or anomalies) are not as common in
time-lapse seismic.

Interpretation of time-lapse distortion zones

The location of an observed distortion zone, that produces anomalous time-lapse
time shift versus offset, can be determined by using geometry and ray tracing.
Bottom of Figure 4.13 illustrates a buried anomaly (marked as star) at depth ZA

that distorts a ray at position x0 for zero offset and a ray at position xh for offset 2h.
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Figure 4.12: Picked time shifts (crosses), as a function of offset, for the top
reservoir horizon for the 6 positions from x′ = 1.55 km to x′ = 1.8 km (from line l’
in Figure 4.1). Marked positive time shifts (shown by an arrow) starts at position
x′ = 1.55 km (a) around zero offset and moves systematically with increasing offset
as the position increases (b-f). The solid line represents time shifts from a synthetic
time-lapse model.

By assuming straight raypaths and horizontal reflectors, the following expression
for the anomaly depth can be obtained:

ZA = Z(1 − |x0 − xh|
h

), (4.20)

where Z is the depth of the reflector and |x0 − xh| is the absolute value of x0 − xh

(which includes both possibilities x0 < xh and x0 > xh). From equation (4.20), we
see that the slope of the distortion pattern observed in the offset versus position
domain determines the anomaly depth (ZA). This leads to anomaly depths around
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Figure 4.13: Picked time shifts for the top reservoir horizon displayed in the offset
versus position domain (top). Note the diagonal features (indicated with solid lines)
starting at positions x′ = 0.4 km and x′ = 1.55 km. The bottom figure shows the
relationship between a buried anomaly (marked as a star) and the distortion of
straight raypaths at position x0 for zero offset and position xh for offset 2h. This
relationship correlates the distortion zones shown in the top figure with buried
anomalies at depths around 1.3 km and 1.9 km.

1.3 km and 1.9 km for the observed distortion patterns (Figure 4.13 (top)) starting
at positions x′ = 0.4 km and x′ = 1.55 km, respectively.

We tried to match the observed time shift pattern starting at position x′ = 1.55
by creating a synthetic model with a time-lapse anomaly. Since we only want to
capture time-lapse time shifts, the synthetic baseline is a constant velocity-model
with velocity 1.95 km/s. The monitor case is shown in Figure 4.14, where we have
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assumed changes only inside an anomaly with depth 1.9 km and position close to
x′ = 1.55 km. The maximum velocity decrease is 25 m/s and occurs at the center
of the anomaly. The thickness of the model is 2.45 km, which is representative for
the Valhall overburden layers. Note that the anomaly is tilted and has larger extent
in vertical direction than lateral direction, which is found necessary to match the
distorted time shifts in the real data. The time shifts from the synthetic model are
given as solid line in Figure 4.12 and show good match with the real time shifts
(crosses in Figure 4.12).

Since the distortion patterns are observed in time-lapse seismic (and not for a
single dataset) the distortion zones should be connected to changes in buried faults
(or anomalies). The offset-dependent time shifts might therefore be produced by
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Figure 4.14: Synthetic model representing the observed anomaly at position x′ =
1.55 km in the monitor case. The initial case is a constant velocity-model with
velocity 1.95 km/s, which means that the model remains unchanged outside the
anomaly. A velocity decrease of 25 m/s occurs at the center of the anomaly.
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a localized slip in this observed fault zone creating changes in the rock properties
framework. To strengthen this theory we have investigated the anomaly at position
x′ = 1.55 km. The observations are summarized in Figures 4.15 and 4.16. Top of
Figure 4.15 shows a time-slice coherency map at 1960 ms of the Valhall poststack
streamer data (from 2002). Time 1960 ms is close to depth 1.9 km which is the
estimated depth for the anomaly at position x′ = 1.55 km. In bottom of Figure
4.15 we show the coherency time-slice with two interpreted faults (given in yellow
and red). The yellow fault is clearly older because it is cut by the red fault. The
red fault is a left-lateral strike probably caused by late structural tectonics. The
location of the time-lapse distortion anomaly (encircled) occurs at the south-west
tip of the red fault. In top of Figure 4.16, the interpreted faults and the anomaly
location (encircled) are shown together with the amplitude changes occurring at the
top reservoir horizon. Here we see large amplitude changes for the positions around
the tip of the fault, indicating that the reservoir level (700 m below the fault tip) is
compacting. These observations are significant for several reasons: 1) If any fault
were going to slip, the more recent faults are most expected. 2) The shear stresses
at the fault tip will be large and 3) given that a compacting zone exists directly
beneath the fault tip, we could expect changes in the overburden stress fields that
might cause this fault to grow at the tip. Sure enough, this is exactly where the
anomaly appears.

Extended method

Time-lapse distortions indicate locations that undergo relative velocity and thick-
ness changes that differ largely from the surrounding changes. This means that
the relative velocity and thickness changes are irregular in both vertical and lateral
directions. The method of Røste et al. (2005) (as given by equation (4.8)) captures
irregularities (or variations) in the lateral direction, but not in the vertical direction,
because relative velocity and thickness changes are assumed to be constant in verti-
cal direction. Therefore, we need to extend our method to handle vertical variations.

We divide the investigated sequence (that is, from the sea bed to the top reser-
voir horizon) into smaller horizontally sequences that undergo relative velocity and
thickness changes assumed to be vertically constant within each sub-sequence. In
Appendix 4.A we show an example with 3 divided sub-sequences. Figure 4.17
shows the sub-sequences and the intersection points between the interfaces and a
ray reflected at position x0. Note that the defined interfaces (that separates the
sub-sequences) do not necessarily correlate to any geological features. By assuming
straight raypath lines, the method of Røste et al. (2005), given by equation (4.8),
can be rewritten as (see Appendix 4.A and Figure 4.17)

∆T (x0, h)

T (x0, h)
≈ z2(x0)

z2(x0) + h2

(
1

1 − α

)
∆T0(x0)

T0(x0)
− 1

2h

(
α

1 − α

)
A(x0, h), (4.21)
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Figure 4.15: Top: Coherency slice at time 1960 ms of Valhall poststack streamer
data (from 2002). Bottom: Same coherency slice with two interpreted faults
(marked red and yellow). The younger red fault (strike slip) cuts the older yellow
fault. The location of the time-lapse distortion zone (encircled) is at the south-west
tip of the red fault.
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Figure 4.16: The time-slice (at 1960 ms) from last figure shown together with
RMS amplitude changes at the top reservoir horizon (top). Marked amplitude
changes occur directly beneath the location of the 4D anomaly (encircled). One
inline (marked as 1) and one xline (marked as 2) crossing the red and yellow faults
are shown at bottom left and right, respectively.
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where

A(x0, h) = F1

⎡
⎢⎣

x0−hp1∫
x0−h

dx
∆T0(x)

T0(x)
+

x0+h∫
x0+hp1

dx
∆T0(x)

T0(x)

⎤
⎥⎦

+F2

⎡
⎢⎣

x0−hp2∫
x0−hp1

dx
∆T0(x)

T0(x)
+

x0+hp1∫
x0+hp2

dx
∆T0(x)

T0(x)

⎤
⎥⎦

+F3

⎡
⎢⎣

x0+hp2∫
x0−hp2

dx
∆T0(x)

T0(x)

⎤
⎥⎦ , (4.22)

where hp1 and hp2 denote the horizontal distances from position x0 to the ray in-
tersections at the base interface of the sub-sequences 1 and 2, respectively, and h
denotes the half-offset. The factors F1, F2, and F3 define the vertical variations in
the relative velocity (and thickness) changes, where the case F1 = F2 = F3 = 1
leads to no vertical variations (giving equation (4.21) on the same form as equation

Figure 4.17: The investigated sequence (from the sea bed to the top reservoir
horizon) can be divided into 3 smaller horizontal sequences. For simplicity we
assume straight raypaths. The points where the ray intersects with the (fictitious)
interfaces are given by the depths zp1, zp2, and z, and the horizontal distances from
position x0, denoted hp1, hp2, and h.
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(4.8)). The factors must always follow the relation (Appendix 4.A):

F1

⎡
⎢⎣

x0−hp1∫
x0−h

dx +

x0+h∫
x0+hp1

dx

⎤
⎥⎦+ F2

⎡
⎢⎣

x0−hp2∫
x0−hp1

dx +

x0+hp1∫
x0+hp2

dx

⎤
⎥⎦+ F3

⎡
⎢⎣

x0+hp2∫
x0−hp2

dx

⎤
⎥⎦ =

x0+h∫
x0−h

dx,

(4.23)

where the integration signs mean summation over discrete positions (or CDPs).

Note that the extended method is similar to time-lapse tomography (Vesnaver et
al., 2003); however, the advantage of our method is that we typically assume 3-4 dif-
ferent factors Fi and that the lateral velocity function is simple (based on zero-offset
time shifts).

Examples with the extended method

The extended method is tested on positions around the buried anomaly that creates
the distortion pattern observed from positions x′ = 1.55 km to x′ = 1.8 km (see
Figure 4.12 or Figure 4.13 (top)). The synthetic model in Figure 4.14 shows that this
anomaly has position close to x′ = 1.55 km and vertical extent ranging from depth
1.6 km to 2.3 km. No changes occur above this anomaly. This is also indicated by
the real data for a horizon at depth 1.4 km, where no positive time-lapse changes can
be found in the area around position x′ = 1.55 km. This means that approximately
2/3 of the sequence from the sea bed to the top reservoir horizon has no influence on
the marked time shifts observed from positions x′ = 1.55 km to x′ = 1.8 km. In this
case, we might use the extended method (given by equation (4.21)), and assume
equal thickness for the 3 sub-sequences with values for the factors F1 and F2 close
to zero, giving F3 approximately equal to 3 (from equation (4.23)). These defined
factors indicate that time shifts for the top reservoir horizon contribute only from
the third sub-sequence (defined between depth 1.7 km and the top reservoir horizon
at depth 2.5 km), which might be realistic in this case. Figure 4.18 illustrates the
necessity of including these vertical variations for position x′ = 1.7 km to explain the
picked relative offset-dependent time shifts (crosses) for the top reservoir horizon.
Figure 4.18(a) shows that the picked (relative) time shifts are poorly described when
no vertical variations are included; that is, when F1 = F2 = F3 = 1 in equation
(4.22): Neither the initial nor the last guess of α (that is, α = 0 and α = −5), given
as dashed lines, reproduce the time shifts in the distorted area around offset 1.8
km (shown by an arrow). In comparison, Figure 4.18(b) shows the same position
(x′ = 1.7 km) when using the extended method with F1 = 0 and F2 = 0 (leading
to F3 ≈ 3.0). The extended method captures the picked time shifts (crosses) better
in the distorted area around offset 1.8 km (shown by an arrow). The solid line
in Figure 4.18(b) indicates that the best fit of α is close to −5. Even though the
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size of the window between the initial and last guess of α (dashed lines in Figure
4.18) is fairly small for the given position, this example confirms that the extended
method is applicable for cases with strong vertical variations in relative velocity and
thickness changes.
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Figure 4.18: Picked time shifts (crosses), as a function of offset, for the top
reservoir horizon for position x′ = 1.7 km (also shown in Figure 4.12d). The dashed
lines indicate the initial and last guess of α (that is, α = 0 and α = −5) when no
vertical variations are included (a) and when vertical variations are included with
F1 = 0, F2 = 0, and F3 ≈ 3 (b). The distorted time shifts around offset 1.8 km
(shown by an arrow) are better described in the latter case. The solid line indicates
an optimal α-value close to −5.

4.6 Discussion

The quality of the LoFS data appears to be very good, and the permanent installed
OBC array offers a high degree of repeatability (NRMS=0.19). Investigations show
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an uncertainty in picked relative time shifts of around 0.17 · 10−3; that is, an un-
certainty in time shifts of around 0.4 ms. For the estimated optimal α of −5 for
the overburden layers we find a standard deviation ranging from −3 to −25. This
uncertainty in α is expected to decrease for time-lapse data with larger time shifts,
given that the accuracy of the picked time shifts remains at 0.4 ms.

The α-values estimated in this study correspond well with previous work based
on other techniques. Hatchell et al. (2005) determine α to be −5 by matching
observed poststack time shift magnitudes for overburden rocks at the Valhall Field.
Hatchell and Bourne (2005a) constructed forward models from stress and strain
fields using geomechanical models and a stress/strain-dependent seismic velocity.
They compared various stress/strain models with observed time shifts for several
worldwide field examples, all leading to good match when using α equal to −5
for overburden rocks. A rock physics based study by Carcione et al. (2006) give
α-predictions around −5. Future research will hopefully make this picture clearer:
Why is the α-value different for overburden rocks compared to reservoir rocks? Is
it the difference between compaction and stretching that is the key issue, or is it
a lithological effect? Or maybe a combination of the two effects. It might also be
that one effect is more dominant for shallow depths.

The accuracy of the present method is dependent on the degree of sensitivity in
α (that is, on the size of the window between the initial and last guess of α). How-
ever, positions with low sensitivity in α are easy to detect, and therefore easily
excluded when estimating the optimal α-value (of −5) for all lateral positions. The
method is dependent of small time-lapse changes in anisotropy (less than 1%) and
small time-lapse changes in layer thickness and velocity (less than 10%). Further
discussions on uncertainties and suggestions for improvements of the method are
given by Røste et al. (2006).

The estimated results in this paper are based on receivers (or OBC) assumed to
be constant in depth during reservoir compaction (between LoFS surveys 1 and 3).
This means that negligible subsidence of the sea bed is assumed, and this is realistic
for the investigated 2D lines since the sea bed subsidence during LoFS 1 and 3 is
much less than the top reservoir subsidence of the compacting zone studied here.
For cases with non-negligible sea bed subsidence, corrections should be made for
the subsided receiver-cables.

Observed anomalous time-lapse time shifts systematically moving with offset can
be interpreted as slipping faults. Further investigations should be made to decide
if such features are common in time-lapse data. It is important to note that such
anomalies cannot be detected from poststack time-lapse analysis. In addition, time
shift versus offset signatures might lead to uncertainties in stacked zero-offset time
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shifts.

Permanent OBC surveys lead to high repeatability. However, non-repeatability
problems might still occur. Examples are differences in the source signature and
source positions, changes in the water temperature, random noise in the record-
ing units, coherent noise such as free surface multiples, and changes in the quality
factor (damping). Saunders et al. (2004) studied differences in source signature
from shot to shot and survey to survey at Valhall and concluded that the source
signature is sufficiently stable. This is also mentioned by Kommedal et al. (2004),
which further discuss the non-repeatability sources of noise, such as noise from rig
activity, vessels and other seismic activities on the field. Different traveltime delays
for baseline and monitor might occur due to changes in elastic wavefield parameters
and quality factor. Stewart et al. (1984) derived an equation that estimates the
delay in traveltimes based on traveltimes, frequency ratios, and quality factor Q.

4.7 Conclusions

For reservoir and overburden rocks undergoing compaction and stretching due to
reservoir production, it is a challenge to discriminate between velocity and thickness
changes. By exploiting differences in zero-offset and offset-dependent time-lapse
time shifts, we find that it is possible to estimate thickness and velocity changes
simultaneously using high repeatable time-lapse sea bed seismic data from the Val-
hall Field. For this field data example, we find that we can reliably estimate the
ratio between relative velocity and thickness changes, α, for values between 0 and
−5. However, for α-values below −5, the uncertainty becomes significant, and
other methods, like for instance geomechanical modeling, are needed to constrain
the discrimination process. For the top reservoir horizon we estimate a maximum
subsidence of 0.50 m ± 0.29 m and a corresponding velocity decrease for the se-
quence from the sea bed to the top reservoir of 2.0 m/s ± 0.40 m/s.

Two localized time-lapse anomalies with characteristic time shift versus offset pat-
terns are observed. The depths and positions of the time shift distortions are deter-
mined from geometry and ray tracing. The location of at least one of the time-lapse
distortion zones correlates with the tip of a fault. A compacting zone exists directly
beneath this fault tip, indicating that a growing fault might be producing the ob-
served anomalies. Detection of fault movements might decrease drilling problems
and indicate where fluids have migrated. A semi-tomographic approach which al-
lows vertical (in addition to lateral) variations in the relative thickness and velocity
changes is introduced and tested on a position with time shift anomalies.

A major conclusion from this work is that given the high repeatability provided
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by a stationary 4D recording system, prestack time-lapse analysis will be an impor-
tant tool to obtain more precise and quantitative 4D results.
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4.A Detailed derivation of the method

Assuming a one-layer model with straight raypaths, seismic two-way traveltime for
a ray with CDP-position x0 and offset 2h can be expressed as

T (x0, h) =

√
1 +

z2(x0)

h2

x0+h∫
x0−h

dx

v(x)
. (4.A-1)

For the post-production (or monitor) case, the two-way traveltime is

T
′
(x0, h) =

√
1 +

z2(x0)

h2

(
1 +

∆z(x0)

z(x0)

)2
x0+h∫

x0−h

dx

v(x)
(
1 + ∆v(x)

v(x)

) , (4.A-2)

where ∆v(x)
v(x)

is assumed to vary with lateral position x, but not with depth. The

square root and functions (1 + ∆z(x0)
z(x0)

)2 and (1 + ∆v(x)
v(x)

)−1 in equation (4.A-2) can
be expanded in Taylor series. Assuming small relative changes in velocity and
thickness; that is, keeping only the first expanded term, equation (4.A-2) becomes

T
′
(x0, h) ≈

√
1 +

z2(x0)
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. (4.A-3)
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From equations (4.A-1) and (4.A-3), the relative change in two-way traveltime be-
comes

∆T (x0, h)

T (x0, h)
=

(
1 + z2(x0)

h2+z2(x0)
∆z(x0)
z(x0)

) x0+h∫
x0−h

dx
v(x)

(
1 − ∆v(x)

v(x)

)
x0+h∫
x0−h

dx
v(x)

− 1. (4.A-4)

By assuming small lateral variations in initial layer velocity in the vicinity of each
position x0; that is, v(x) ≈ v(x0) for x0 − h ≤ x ≤ x0 + h, the term 1

v(x)
can be

put outside the integration signs (given in both the numerator and denominator of
equation (4.A-4)) and be canceled out. Note, however, that the lateral variations
in ∆v are included; that is, ∆v = ∆v(x):

∆T (x0, h)

T (x0, h)
≈

(
1 + z2(x0)
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− 1
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) x0+h∫
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dx
(
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)
2h

− 1. (4.A-5)
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Rearranging equation (4.A-5) gives
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∆z(x0)

z(x0)

1

2h

x0+h∫
x0−h

dx
∆v(x)

v(x)
− 1

∆T (x0, h)

T (x0, h)
= − 1

2h

x0+h∫
x0−h

dx
∆v(x)

v(x)
+

z2(x0)

h2 + z2(x0)

∆z(x0)

z(x0)

− z2(x0)

h2 + z2(x0)

∆z(x0)

z(x0)

1

2h

x0+h∫
x0−h

dx
∆v(x)

v(x)
, (4.A-6)

where the term z2(x0)
h2+z2(x0)

∆z(x0)
z(x0)

1
2h

x0+h∫
x0−h

dx∆v(x)
v(x)

can be neglected for small changes in

relative velocity and thickness changes. This gives

∆T (x0, h)

T (x0, h)
≈ − 1

2h

x0+h∫
x0−h

dx
∆v(x)

v(x)
+

z2(x0)

h2 + z2(x0)

∆z(x0)

z(x0)
. (4.A-7)

The relative changes in thickness and velocity can be related to the relative change
in vertical traveltime as

∆z(x)

z(x)
≈
(

1

1 − α

)
∆T0(x)

T0(x)
,

∆v(x)

v(x)
≈
(

α

1 − α

)
∆T0(x)

T0(x)
, (4.A-8)

which gives equation (4.A-7) on the following form:

∆T (x0, h)

T (x0, h)
≈ z2(x0)

z2(x0) + h2

(
1

1 − α

)
∆T0(x0)

T0(x0)
− 1

2h

(
α

1 − α

) x0+h∫
x0−h

dx
∆T0(x)

T0(x)
.

(4.A-9)
Equation 4.A-9 shows that there exists a relationship between the parameter α, the
relative change in traveltime for zero offset, and the relative change in traveltime
for a given half-offset h.
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4.B Extended method

It is possible to extend the method of Røste et al. (2005) to handle vertical (in
addition to lateral) variations in the relative velocity and thickness changes. This
can be done by dividing the investigated (overburden) sequence into several smaller
horizontal sequences, where the relative velocity and thickness changes are vertically
constant within each sub-sequence. By assuming straight raypaths, the method of
Røste et al. (2005), given by equation (4.8), can be rewritten:

∆T (x0, h)

T (x0, h)
≈ z2(x0)

h2 + z2(x0)

∆z(x0)

z(x0)

− 1

2h

⎛
⎝∫

L1

dx
∆v1(x)

v1(x)
+

∫
L2

dx
∆v2(x)

v2(x)
+ .... +

∫
Li

dx
∆vi(x)

vi(x)

⎞
⎠ ,(4.A-1)

where L1, L2, and Li denote the lengths of the lateral components of the ray inside
the sub-sequences 1, 2, and i, respectively, and ∆v1

v1
, ∆v2

v2
, and ∆vi

vi
denote the relative

(vertical) velocity changes for the sub-sequences 1, 2, and i, respectively. Note that
the first term on the right side of equation (4.A-1) is unchanged from equation (4.8)
since the ray is not influenced by the thickness changes inside each sub-sequence
(when assuming straight raypaths), but only by the thickness change for the total
investigated sequence at position x0.

In this paper we will (for simplicity) divide the total sequence into 3 smaller se-
quences; that is,

∆T (x0, h)

T (x0, h)
≈ z2(x0)

h2 + z2(x0)

∆z(x0)

z(x0)

− 1

2h

⎛
⎝∫

L1

dx
∆v1(x)

v1(x)
+

∫
L2

dx
∆v2(x)

v2(x)
+

∫
L3

dx
∆v3(x)

v3(x)

⎞
⎠ .(4.A-2)

Utilizing equation (4.7) and assuming constant α for all the 3 sub-sequences, equa-
tion (4.A-2) may be given as

∆T (x0, h)

T (x0, h)
≈ z2(x0)

z2(x0) + h2

(
1

1 − α

)
∆T0(x0)

T0(x0)
− 1

2h

(
α

1 − α

)
A(x0, h), (4.A-3)



102 Extended method

where

A(x0, h) = F1

⎡
⎢⎣

x0−hp1∫
x0−h

dx
∆T0(x)

T0(x)
+

x0+h∫
x0+hp1

dx
∆T0(x)

T0(x)

⎤
⎥⎦

+F2

⎡
⎢⎣

x0−hp2∫
x0−hp1

dx
∆T0(x)

T0(x)
+

x0+hp1∫
x0+hp2

dx
∆T0(x)

T0(x)

⎤
⎥⎦

+F3

⎡
⎢⎣

x0+hp2∫
x0−hp2

dx
∆T0(x)

T0(x)

⎤
⎥⎦ , (4.A-4)

where hp1 and hp2 denote the lateral distances from position x0 to the ray intersec-
tions at the base interface of the sub-sequences 1 and 2, respectively, and h denotes
the half-offset (see Figure 4.17). The factors F1, F2, and F3 define the vertical vari-
ations in relative velocity and thickness changes (where F1 = F2 = F3 = 1 give no
vertical variations). By defining two of the factors, the last factor is constrained,
since the factors need a valid relation; that is,

F1

⎡
⎢⎣

x0−hp1∫
x0−h

dx +

x0+h∫
x0+hp1

dx

⎤
⎥⎦+ F2

⎡
⎢⎣

x0−hp2∫
x0−hp1

dx +

x0+hp1∫
x0+hp2

dx

⎤
⎥⎦+ F3

⎡
⎢⎣

x0+hp2∫
x0−hp2

dx

⎤
⎥⎦ =

x0+h∫
x0−h

dx,

(4.A-5)

where the integration signs mean summation over discrete positions (or CDPs).



Chapter 5

Estimation of layer thickness and
velocity changes in anisotropic
rocks

5.1 Abstract

A method developed by Røste et al. (2005), which estimates the dilation factor, α,
to discriminate between changes in layer thickness and velocity, is here further ex-
tended to handle weak anisotropic cases. The dilation factor is the relative velocity
change divided by the relative thickness change for a rock undergoing either stretch
or compaction. Based on prestack time-lapse seismic data and information about
the time-lapse anisotropy changes, the dilation factor α is obtained. The method
is tested on synthetic anisotropic models undergoing changes in layer thickness, ve-
locity, and anisotropy. The results are compared with Røste et al.’s (2005) isotropic
method.

5.2 Introduction

Based on time-lapse seismic data, Røste et al. (2005, 2006) have tried to monitor
thickness and velocity changes of compacting reservoir layers and stretched over-
burden layers. Since 4D time shifts capture the combined effects of velocity and
thickness changes within a given layer, it is a challenge to discriminate the two ef-
fects. The relative time shift for zero offset can be expressed in terms of the relative
thickness change and velocity change as (Landrø and Stammeijer, 2004; Røste et
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al., 2005; Hatchell and Bourne, 2005b)

∆T0(x0)

T0(x0)
≈ ∆z(x0)

z(x0)
− ∆v(x0)

v(x0)
, (5.1)

where T0 represents two-way traveltime for zero offset, z is the layer thickness, and
v is the layer P-wave velocity. The parameter x0 denotes the global x-coordinate
for a given CDP-location (position), and ∆T0, ∆z, and ∆v represent changes in
vertical two-way traveltime, thickness, and P-wave velocity, respectively. The basic
assumption in equation (5.1) is that all relative changes are small; that is, ∆z/z <<
1 and ∆v/v << 1. The relation between relative thickness and velocity changes for
a given subsurface layer is approximately proportional to each other (Røste et al.,
2005):

∆v(x0)

v(x0)
≈ α

∆z(x0)

z(x0)
, (5.2)

where the dilation factor α < 0 is a parameter dependent on the rock properties of
the layer. This is a crucial parameter, since it determines the ratio between velocity
and thickness changes.

By assuming straight raypaths and small relative changes in velocity and thick-
ness, Røste et al. (2006) obtained a relation between the relative change in two-way
traveltime (for a given half-offset h), the dilation factor (α), and relative change in
zero-offset traveltime as follows:

∆T (x0, h)

T (x0, h)
≈ z2(x0)

z2(x0) + h2

(
1

1 − α

)
∆T0(x0)

T0(x0)
− 1

2h

(
α

1 − α

) x0+h∫
x0−h

dx
∆T0(x)

T0(x)
. (5.3)

Equation (5.3) is only valid for isotropic cases. However, the earth is most likely
anisotropic, so the isotropic equation (5.3) is a simplification.

Investigations show that static anisotropy has almost no effect on equation (5.3).
However, large time-lapse anisotropy changes must be included. Røste et al. (2006)
find that changes of only 1% in Thomsen’s (1986) anisotropic parameters δ and ε
need to be taken into account. In this paper, I try to extend equation (5.3) to handle
time-lapse anisotropy changes. By introducing velocities valid for weak anisotropic
layers, it is possible to discriminate between velocity and thickness changes for cases
with anisotropy changes. Simple synthetic models are made to test the method. As
a comparison, the isotropic method of Røste et al. (2005, 2006) (given by equation
(5.3)) is tested on the same synthetic time-lapse dataset.
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5.3 Estimating α for rocks undergoing time-lapse

changes in anisotropy

For layers with weak anisotropy, the P-wave phase velocity can be given as (Thom-
sen, 1986)

v(θ) = v0

(
1 + δ sin2 θ cos2 θ + ε sin4 θ

)
, (5.4)

where v0 denotes the vertical P-wave velocity and δ and ε are Thomsen’s anisotropic
parameters. The parameter θ denotes the phase (wavefront) angle. For small angles
θ, equation (5.4) can be given as

v(θ) = v0

(
1 + δ sin2 θ

)
. (5.5)

Note that the approximation (5.5) does not include the anisotropic parameter ε. For
weak anisotropy, the phase velocity is approximately equal to the group velocity,
which means that the phase angle θ is approximately equal to the ray angle.

Assume a one-layer model with vertical P-wave velocity, v0(x), and weak anisotropy,
characterized by δ(x), that vary along the lateral position x, but are nonvarying
with depth (Figure 5.1). By assuming straight raypaths, it can be shown that

v(x, h) = v0(x)

(
1 + δ(x)

h2

h2 + z2(x0)

)
, (5.6)

where h denotes half offset and z is depth.

For a prestack CDP gather at position x0, the seismic two-way traveltime for a
raypath with offset 2h can be given as an integral over the total raypath length S,

T (x0, h) =

∫
S

ds

v(s)
, (5.7)

v0(x)

δ(x)

�θ

ds z

hx0

Figure 5.1: Sketch showing that straight raypaths is assumed in an anisotropic
model with horizontal variations in vertical velocity and anisotropy. For weak
anisotropy, the phase angle θ is approximately equal to the ray angle.



106 Estimating α for rocks undergoing time-lapse changes in anisotropy

where v(s) denotes the P-wave velocity at the ray position s(x0, h). For straight
raypaths, equation (5.7) can be written as (similar to assuming average slowness
within the offset range 2h)

T (x0, h) =

√
1 +

z2(x0)

h2

x0+h∫
x0−h

dx

v(x)
, (5.8)

where z(x0) represents the layer thickness at the CDP-position x0. Inserting the
velocity given by equation (5.6) for weak anisotropic cases into equation (5.8), gives
the following expression for two-way prestack traveltime:

T (x0, h) =

√
1 +

z2(x0)

h2

x0+h∫
x0−h

dx

v0(x)
(
1 + δ(x) h2

h2+z2(x0)

) . (5.9)

Equation (5.9) describes the initial (or preproduction) case for weak anisotropic
layers. Similar to Røste et al. (2006), I find it essential to include the lateral
variations in velocity changes, since it is very likely that such changes will occur both
within the reservoir layer as well as the overburden layers of a producing reservoir.
For this anisotropic case, I capture the lateral variations in anisotropy changes as
well. From equation (5.9), the two-way prestack traveltime for the monitor case is
then given as

T
′
(x0, h) =

√
1 +

z2(x0)

h2

(
1 +

∆z(x0)

z(x0)

)2

×
x0+h∫

x0−h

dx

v0(x)
(
1 + ∆v0(x)

v0(x)

)(
1 + (δ(x) + ∆δ(x))

(
h2

h2+z2(x0)(1+
∆z(x0)
z(x0)

)2

)) ,

(5.10)

where the relative change in vertical velocity, ∆v0(x)/v0(x), and change in anisotropy,
∆δ(x), might vary laterally but not with depth. (Note that variations in thickness
changes only affect the multiplier outside the integral in equation (5.10) when as-
suming straight raypaths.) Assuming small relative changes in vertical velocity and
thickness, and small change in anisotropy, the relative change in two-way traveltime
becomes (Appendix 5.A)

∆T (x0,h)

T (x0,h)
=

(
1+

z2(x0)

h2+z2(x0)

∆z(x0)

z(x0)

)

×
x0+h∫
x0−h

dx

(
1−∆v0(x)

v0(x)
− h2

h2(1+δ(x))+z2(x0)

(
∆δ(x)−δ(x)

2z2(x0)

z2(x0)+h2
∆z(x0)
z(x0)

))

v0(x)

(
1+δ(x) h2

h2+z2(x0)

)
x0+h∫
x0−h

dx

v0(x)

(
1+δ(x) h2

h2+z2(x0)

)
−1. (5.11)
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From equations (5.1) and (5.2), the relative changes in layer thickness and velocity
can be related to the relative change in two-way vertical traveltime T0:

∆z(x0)

z(x0)
≈
(

1

1 − α

)
∆T0(x0)

T0(x0)
,

∆v(x0)

v(x0)
≈
(

α

1 − α

)
∆T0(x0)

T0(x0)
. (5.12)

I assume that the initial anisotropy is small; that is, δ(x) � 1. In addition, I assume
small lateral variations in initial vertical velocity and anisotropy in the vicinity of
each position x0; that is, v0(x) ≈ v0(x0) and δ(x) ≈ δ(x0) for x0 − h ≤ x ≤ x0 + h.
This gives equation (5.11) on the simpler form given by equation (5.13). Note,
however, that I include the lateral variations in ∆v0 and ∆δ; that is, ∆v0 = ∆v0(x)
and ∆δ = ∆δ(x) (Appendix 5.A).

∆T (x0, h)

T (x0, h)
≈ z2(x0)

z2(x0) + h2

(
1

1 − α

)
∆T0(x0)

T0(x0)

− 1

2h

(
α

1 − α

) x0+h∫
x0−h

dx
∆T0(x)

T0(x)
+ Aδ(x0, h), (5.13)

Thus, compared to the isotropic case (Røste et al, 2006), an additional term is
added:

Aδ(x0, h) ≈ − h2

h2 + z2(x0)

1

2h

x0+h∫
x0−h

dx∆δ(x), (5.14)

where the anisotropy change ∆δ is normally unknown. Equation (5.13) shows that
the relative change in two-way traveltime (for a given half-offset h) for a medium
with time-lapse anisotropy changes is dependent on the anisotropy change (∆δ),
the estimated relative zero-offset time shifts (∆T0/T0), and the dilation factor (α).
This means that the anisotropy change ∆δ is needed as input in equation (5.13) as
well as the estimated relative zero-offset time shifts. The parameter α is determined
by minimizing the least square error in relative traveltime change (equation (5.13))
over the entire offset range.

Note that the anisotropic term Aδ(x0, h) is not influenced by static anisotropy. For
cases with no time-lapse anisotropy changes; that is, ∆δ(x) = 0, the anisotropic
term Aδ(x0, h) becomes zero, giving equation (5.13) on the isotropic form given by
equation (5.3).

5.3.1 Synthetic examples for time-lapse anisotropy changes

To test the described anisotropic method, simple synthetic two-layer models (repre-
senting one overburden layer and one reservoir layer) are created. The overburden
layer models are initially anisotropic and undergo different scenarios of time-lapse
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anisotropy changes. The rock physical properties of the layer below the reservoir
zone (including the base reservoir horizon) are kept constant. The reservoir layer
model preproduction has thickness zres = 100 m and undergoes a compaction of
∆zres = 2 m. The initial thickness of the overburden layer is zoverb = 2500 m and
the top horizon of the overburden layer is kept constant in depth, meaning that
the thickness change of the overburden layer is equal to the reservoir compaction;
that is, ∆zres = ∆zoverb = 2 m. The corresponding relative changes in P- and S-
wave velocities for the overburden layer model are found by using a dilation factor
α = −2.7; that is,

∆vp,overb

vp,overb
=

∆vs,overb

vs,overb
= −2.7

∆zoverb

zoverb
, (5.15)

where vp,overb and vs,overb denote the initial overburden P- and S-wave velocities,
respectively. Assuming mass conservation, the relative change in density is given as

∆ρoverb

ρoverb
=

∆zoverb

zoverb
, (5.16)

where ρoverb denotes the initial overburden density. Different scenarios for the cor-
responding time-lapse anisotropy changes for the overburden are created. In all
models, the initial overburden anisotropic parameters δ and ε are both set to 0.05.
Only the overburden layer is investigated, so, for simplicity, the reservoir layer model
is isotropic both pre- and postproduction. The reservoir layer model has a dilation
factor of -1.5 and mass conservation is assumed.

Figure 5.2 shows the baseline (top) and monitor (bottom) prestack synthetic seismo-
grams for a scenario with initial anisotropic parameters δ = 0.05 and ε = 0.05 and
time-lapse changes of 1% in both δ and ε. The modeled overburden changes in P-
and S-wave velocities and density are given by equations (5.15) and (5.16) for a case
with ∆zoverb = 2 m and zoverb = 2500 m. Prestack traveltimes for the top reservoir
horizon are picked for interpolated maximum amplitudes. Zero-offset traveltime
(T0), for a given position x0, is estimated by stacking the picked offset-dependent
traveltimes (T ) according to standard hyperbolic moveout (Dix, 1955):

T 2(x0, h) = T 2
0 (x0) +

4

V 2
rms(x0)

h2, (5.17)

where h denotes half-offset and Vrms is rms velocity. For an anisotropic layer,
the relation between rms and vertical P-wave velocities for position x0 is given by
(Thomsen, 1986)

Vrms(x0) = v0(x0)
√

1 + 2δ(x0). (5.18)

The thickness (preproduction) of the investigated sequence is given by

z(x0) =
T0(x0)v0(x0)

2
. (5.19)
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Figure 5.2: Synthetic seismograms (offset gathers) for baseline (top) and monitor
(bottom) for an overburden layer model with initial anisotropy δ = 0.05 and ε = 0.05
and 1% change in both δ and ε. The overburden dilation factor α = −2.7.

In contrast to the method of Røste et al. (2005), information about the anisotropy
change ∆δ is needed as input in equation (5.13). For all analysis given here, I
assume that the anisotropy change ∆δ is known (however, in practice, estimating
∆δ is difficult). When the input parameters are set, the discrimination procedure
can start: For an initial guess of α, equation (5.13) gives corresponding (relative)
time shifts for different half offsets (h) which can be compared with the picked time
shifts. I search for the α-value that leads to the minimum least square error between
the estimated and picked relative time shifts, for all offsets.

Figure 5.3 shows this procedure for an overburden layer model with α = −2.7
and where the anisotropic parameters δ = 0.05 and ε = 0.05 are kept constant;
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that is, no time-lapse anisotropy changes occur. The solid line indicates the best
fit of the picked relative time shifts (crosses) as a function of offset based on the
anisotropic equation (5.13). In this static anisotropic case, the optimal α-value is
found to be equal to the modeled value; that is, −2.7. The dashed lines correspond
to the initial and last guess of α; that is, α = 0 and α = −5. Note that the result
shown in Figure 5.3 can also be obtained by using the isotropic equation (5.3), since
the anisotropic equation (5.13) becomes identical to the isotropic equation (5.3) for
cases with static anisotropy (that is, when ∆δ = 0).

Figure 5.4 shows an example of finding α for an overburden layer model with 1%
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Figure 5.3: Example of finding α for a stretched overburden layer model with
α = −2.7 and static anisotropy parameters δ = 0.05 and ε = 0.05. The solid line
indicates the best fit (α = −2.7) of the picked relative time shifts (crosses) as a
function of offset. The dashed lines correspond to the initial and last guess of α
(that is, α = 0 and α = −5).
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time-lapse changes in both δ and ε and a dilation factor α of −2.7. The initial
overburden parameters δ and ε are both set to 0.05. The top of Figure 5.4 shows
the result of using the anisotropic equation (5.13), where an optimal α-value of −3.1
(solid line) fits best with the relative picked time shifts (crosses). As a comparison,
bottom of Figure 5.4 shows the result of using the isotropic equation (5.3) on the
same synthetic dataset. With the isotropic method, an optimal α-value of −1.5
(solid line) fits best with the picked relative time shifts (crosses).

0 0.5 1 1.5 2 2.5 3

2.2

2.4

2.6

2.8

3

α = 0

α = −5

α =−3.1

Anisotropic method

∆T
 / 

T
 (

10
−

3 )

0 0.5 1 1.5 2 2.5 3

2.2

2.4

2.6

2.8

3

α = 0

α = −5

α =−1.5

Isotropic method

Offset (km)

∆T
 / 

T
 (

10
−

3 )

Figure 5.4: Comparing α-estimations by using the anisotropic method (top) and
the isotropic method (bottom) on an overburden layer model with 1% change in
both the anisotropic parameters δ and ε. The initial modeled δ = 0.05 and ε = 0.05
and the modeled α = −2.7. The solid line indicates the best fit of the picked
relative time shifts (crosses) as a function of offset. The dashed lines correspond to
the initial and last guess of α (that is, α = 0 and α = −5).
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Figure 5.5 shows an example of finding α for an overburden layer model that un-
dergoes 2% change in both the anisotropic parameters δ and ε. The modeled α
is −2.7 and the initial δ and ε are both set to 0.05. The optimal fitted α (solid
line) of the picked relative time shifts (crosses) is −3.6 when using the anisotropic
method (top) and −0.9 when using the isotropic method (bottom). By increasing
the modeled change in both anisotropic parameters δ and ε to 3%, shown in Figure
5.6, the optimal fitted α (solid line) of the picked relative time shifts (crosses) is
−4.2 when using the anisotropic method (top) and −0.5 when using the isotropic
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Figure 5.5: Comparing α-estimations by using the anisotropic method (top) and
the isotropic method (bottom) on an overburden layer model with 2% change in
both the anisotropic parameters δ and ε. The initial modeled δ = 0.05 and ε = 0.05
and the modeled α = −2.7. The solid line indicates the best fit of the picked
relative time shifts (crosses) as a function of offset. The dashed lines correspond to
the initial and last guess of α (that is, α = 0 and α = −5).
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method (bottom).

Figures 5.4-5.6 show that in anisotropic cases (with time-lapse anisotropy changes),
the anisotropic method is better than the isotropic method. However, even the
anisotropic method gives inaccurate estimates of α when the changes in anisotropic
parameters exceed 3%.
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Figure 5.6: Comparing α-estimations by using the anisotropic method (top) and
the isotropic method (bottom) on an overburden layer model with 3% change in
both the anisotropic parameters δ and ε. The initial modeled δ = 0.05 and ε = 0.05
and the modeled α = −2.7. The solid line indicates the best fit of the picked
relative time shifts (crosses) as a function of offset. The dashed lines correspond to
the initial and last guess of α (that is, α = 0 and α = −5).
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5.4 Discussion

The proposed method makes it possible to estimate the dilation factor (α) in
anisotropic cases with time-lapse anisotropy changes. No information about the
initial anisotropic parameters δ and ε is needed. However, the anisotropy change
∆δ is necessary input to estimate the dilation factor α. In the analysis given here,
I have assumed that ∆δ is known; however, in practice, it is difficult to estimate ∆δ.

Attempts to estimate time-lapse anisotropy changes have been proposed by Angerer
et al. (2000). Angerer et al. (2002) analyze and identify anisotropic time-lapse ef-
fects for a model incorporating saturation and pressure changes in a fractured reser-
voir. They observe that changes in crack aspect ratios (due to pore-fluid pressure
changes) influence the shear-wave splitting. This might indicate that shear-wave
splitting can be used to estimate anisotropy changes also for overburden layers.
Other ways to estimate ∆δ may be to utilize changes in amplitudes or changes in
critical reflection angles. It may also be possible to utilize the anisotropic method
given in this chapter; that is, assuming that the dilation factor α is known, ∆δ
can approximately be estimated by use of equation (5.13) (for changes in ∆δ less
than 3%). However, to determine anisotropy changes was not the objective of this
chapter.

The derived anisotropic method is based on Thomsen’s (1986) expression for P-
wave velocity for layers with weak anisotropy. Further, I have assumed a one-layer
model and straight raypaths with small incidence angles, and that the phase ve-
locity is approximately equal to the group velocity. Due to these approximations,
the anisotropic parameter ε is excluded, and changes in ε is not captured by the
proposed method. It is possible to develop a method that describes the anisotropy
more exact. However, this gives the anisotropic equation (5.13) on a more complex
form. In addition, more input parameters, such as ∆ε and maybe even δ and ε
(dependent on the accuracy of the method) become necessary.

If no time-lapse anisotropy changes exist, the derived equation (5.13) becomes iden-
tical to the isotropic case given by Røste et al. (2005).

5.5 Conclusions

Based on prestack time-lapse seismic traveltime shifts and information about the
anisotropy change, I propose a method to estimate the dilation factor (ratio between
layer thickness and velocity changes) in anisotropic cases with time-lapse anisotropy
changes. The developed method links the relative change in traveltime (for a given
offset) with the dilation factor, the change in anisotropy, and the relative change in
zero-offset traveltime.
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The main conclusion from this study is that if there exist time-lapse anisotropy
changes, it is important to account for them when determining the dilation factor
α. Synthetic results show that the given anisotropic method produces better results
compared to an isotropic method for an anisotropic time-lapse dataset. However,
due to approximations, the proposed method becomes inaccurate when the changes
in anisotropic parameters exceed 3%. For a synthetic case with static anisotropy;
that is, no time-lapse anisotropy changes, it is possible to estimate α accurately.
However, in this static anisotropic case, the proposed method becomes identical to
the isotropic method.
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5.A Detailed derivation of the method

Assume a one-layer model with weak anisotropy defined by the Thomsen parameter
δ. Assuming straight raypaths, seismic two-way traveltime for a ray with CDP
position x0 and offset 2h can be expressed as

T (x0, h) =

√
1 +

z2(x0)

h2

x0+h∫
x0−h

dx

v0(x)
(
1 + δ(x) h2

h2+z2(x0)

) . (5.A-1)

For the postproduction (or monitor) case, the two-way traveltime is

T
′
(x0, h) =

√
1 +

z2(x0)

h2

(
1 +

∆z(x0)

z(x0)

)2

×
x0+h∫

x0−h

dx

v0(x)
(
1 + ∆v0(x)

v0(x)

)(
1 + (δ(x) + ∆δ(x))

(
h2

h2+z2(x0)(1+
∆z(x0)
z(x0)

)2

)) ,

(5.A-2)

where ∆v0(x)/v0(x) and ∆δ(x) might vary with lateral position x but not with

depth. The functions (1 + ∆z(x0)
z(x0)

)2 and (1 + ∆v(x)
v(x)

)−1 in equation (5.A-2) can be ex-
panded in Taylor series. Assuming small relative changes in velocity and thickness,
and small changes in anisotropy; that is, keeping only the first expanded term, the
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integral in equation (5.A-2) becomes
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x0−h

dx

v0(x)
(
1 + ∆v0(x)
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)(
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(5.A-3)

For small relative change in thickness, the square root term in equation (5.A-2) can
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be expanded in Taylor series. This gives√
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. (5.A-4)

Collecting the results from equations (5.A-3) and (5.A-4) gives equation (5.A-2) on
the following form:

T
′
(x0, h) =

√
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(5.A-5)

From equations (5.A-1) and (5.A-5) the relative change in two-way traveltime be-
comes
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(5.A-6)

Assuming small lateral variations in initial vertical velocity and anisotropy in the
vicinity of each position x0; that is, v0(x) ≈ v0(x0) and δ(x) ≈ δ(x0) for x0 − h ≤
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x ≤ x0 + h, equation (5.A-6) can be written in the simpler form given by equation
(5.A-7). Note, however, that I include the lateral variations in ∆v0 and ∆δ, that
is, ∆v0 = ∆v0(x) and ∆δ = ∆δ(x)).
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(5.A-7)

Rearranging equation (5.A-7) and assuming small relative changes in thickness and
velocity, and small changes in anisotropy gives
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Assuming small δ(x0) (in addition to small ∆z(x0)/z(x0) and ∆δ(x)), equation
(5.A-8) becomes
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The two first terms on the right hand side of equation (5.A-9) describe the isotropic
case, while the last term includes anisotropic cases. Simplified, the relative change
in traveltime can be given as
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+ Aδ(x0, h), (5.A-10)

where the anisotropic term Aδ(x0, h) is only dependent on the anisotropy change;
that is,

Aδ(x0, h) ≈ − h2

h2 + z2(x0)

1
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dx∆δ(x). (5.A-11)

The relative changes in thickness and velocity can be related to the relative change
in vertical traveltime as
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which gives equation (5.A-10) on the following form:
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6.1 Abstract

A method based on time-lapse amplitude variation with offset (AVO) analysis is
presented to discriminate between pressure and saturation changes in compacting
reservoirs. This might be a three-parameter problem, including pressure, saturation,
and porosity changes. However, laboratory measurements show that the porosity
changes are related to pressure and saturation changes, which reduces the problem
to two parameters.

Due to pressure and saturation changes, the reservoir rocks might undergo changes
in porosity, rock framework moduli, fluid density, and fluid bulk modulus. These
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processes occur simultaneously; however, we assume that they can be treated inde-
pendently. Based on this assumption, explicit expressions for computing pressure-
and saturation-related changes from time-lapse seismic data are presented. The
expressions are tested on 10 synthetic models for different reservoir scenarios. The
fit between estimated and ”real” changes in pressure and water saturation is good,
except for cases where the pressure change becomes larger than 2 kpsi (13.8 MPa).

6.2 Introduction

Several researches (Dutta et al., 2002; Carcione et al., 2003) have tried to predict
overpressured zones from seismic data. The basic tool in such studies has been
velocity analysis. For most reservoirs, pore pressure changes and fluid saturation
changes create abnormal seismic responses. It is difficult to separate the effects
based on stacked PP seismic data only. In most time-lapse seismic studies, seismic
differences between a baseline and a monitor survey are analyzed and interpreted as
either a pressure effect or a fluid effect. In the Magnus study (Watts et al., 1996),
the main seismic changes were attributed to pore pressure changes, while in the
Gullfaks (Landrø et al., 1999) and the Draugen (Gabriels et al., 1999) 4D seismic
studies, most of the seismic changes were interpreted as fluid related.

For some fields or segments within the field, both fluid and pressure changes have
approximately the same degree of impact on the seismic data. In such cases the use
of time-lapse amplitude variation with offset (AVO) analysis (see Tura and Lumley,
1998, 1999a; Landrø, 1999a; Landrø, 2001) or time-lapse PP- and PS-reflectivity
stacks (see Landrø et al., 2003; Stovas et al., 2003) offer an opportunity to discrim-
inate the two effects. However, these methods do not include reservoir compaction;
that is, porosity changes during hydrocarbon production and water injection are
neglected. Modifications are therefore needed for reservoirs where pressure and wa-
ter saturation changes induce porosity changes.

At first, one might assume that changes in pressure, saturation, and porosity are
three independent parameters. However, from laboratory measurements Sylte et al.
(1999) found that porosity changes are related to pressure and saturation changes.
By using this empirical relation, we reduce our three parameter estimation problem
to a two-parameter problem. We therefore need two equations to determine these
two parameters (for instance pressure and saturation changes), and our approach
is to assume that time-lapse amplitude changes versus offset can be used.

Examples of reservoirs compacting due to pressure and saturation changes are the
Ekofisk and Valhall chalk fields. At the Ekofisk Field, pressure depletion and water
injection have induced significant compaction of the reservoir, and, as a result, the
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sea bed has subsided up to 7.8 meters (Sylte et al., 1999). At the Valhall Field, the
compaction of the chalk reservoir has led to a maximum subsidence of the sea bed
of the order of 5-6 meters (Barkved and Kristiansen, 2005). So far, the compaction
at Valhall has been primarily due to pressure depletion, but a recent (January 2004)
water injection program is expected to induce additional reservoir compaction. Al-
though compaction effects are most significant for chalk fields, it is also expected
that sandstone reservoirs will compact. Tura et al. (2005) show an example from
a turbidite field in the deepwater Gulf of Mexico, where production-induced com-
paction is the main drive mechanism.

A difficult task for compacting reservoirs is that changes in the solid framework
and pore-fluid density occur simultaneously with porosity changes. However, in
this paper we assume that the framework and fluid density changes can be treated
independently of the porosity changes. We describe a method which estimates
changes in fluid saturation and pore pressure in a compacting reservoir based on
time-lapse PP AVO seismic data. The developed method is based on parameters
similar to the Ekofisk Field. A suggestion on how to use two-way traveltime shifts
for PP- and PS-waves is given in Appendix 6.C.

6.3 Saturation and stress versus seismic parame-

ters

Distinguishing between fluid saturation and pore pressure changes from seismic data
requires knowledge about how seismic parameters are influenced by such changes.
Landrø (2001) and Landrø et al. (1999, 2003) used a rock physics model calibrated
with well-log measurements from the Gullfaks Field to predict the seismic effect
of substituting oil with water. Other methods are proposed by Tura and Lumley
(1998, 1999a, 1999b) and Brevik (1999). The basic equation in this rock physics
modeling is the Gassmann equation (Gassmann, 1951). It is assumed that the Gull-
faks reservoir sand layers do not compact during production, meaning that there
are no porosity changes. For compacting reservoirs such as Valhall and Ekofisk,
additional terms for porosity loss are therefore needed in the rock physics modeling.

In this paper the initial (or preproduction) P-wave velocity, S-wave velocity, and
density for the cap rock layer are α1, β1, and ρ1, respectively. In layer 2 (which is
assumed to be the reservoir layer), the corresponding preproduction parameters are
denoted α2, β2, and ρ2. For chalk reservoir rocks, we might discriminate between
the processes that lead to porosity changes, and the processes that lead to reservoir
changes independently of the porosity changes. Simplified, the change in P-wave
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velocity for the reservoir can be given as a function of these parameters; that is,

∆α2 =
∂α2

∂φ2
∆φ2 +

∂α2

∂Sw
∆Sw +

∂α2

∂σ
∆σ. (6.1)

where ∆φ2, ∆Sw, and ∆σ denote changes in porosity, water saturation, and effective
stress, respectively. According to equation (6.1), we assume that the velocity change
is a function of three independent parameters. However, according to Sylte et al.
(1999) there is a relation between the porosity changes and the saturation and stress
changes; that is,

∆φ2 =
∂φ2

∂σ
∆σ +

∂φ2

∂Sw
∆Sw. (6.2)

Combining equations (6.1) and (6.2), we reduce the number of parameters from
three to two. Equation (6.2) is based on rock physics laboratory measurements.
However, based on simple physical considerations, it is reasonable to assume that
porosity might change as stress and saturation changes. The important, remaining
question is if there are other reservoir parameters that might influence the porosity,
which should be included in equation (6.2). One such parameter might be tem-
perature, since we know that the rock framework (solid rock) and the pore fluids
will expand at different rates as the temperature changes. Despite these concerns,
we choose to disregard other parameters in equation (6.2), and assume that other
terms in this equation can be neglected.

For weak reservoir chalk, porosity changes (or compaction) may occur as a result
of pressure depletion or water injection. Pressure depletion is normally the main
contribution to compaction in the early phases of a chalk field’s life. Later, water
injection becomes a large additional drive mechanism to reservoir compaction. The
strong compaction of chalk when reacting with water is confirmed by laboratory
experiments. Sylte et al. (1999) found a quantitative model of Ekofisk chalk behav-
ior, where porosity loss is a function of initial porosity, effective stress, and water
saturation. From extensive rock mechanics testing they found that a good approxi-
mation for chalk is that the porosity is a linear function of water saturation over the
range of stresses encountered during production from the Ekofisk reservoir. Based
on the result of Sylte et al. (1999) for a chalk sample with initial porosity 42%
(Figure 6.1), we find the following relation between porosity (φ), water saturation
(Sw), and effective stress (σ):

φ2 = AφSSw + Aφσσ + AφSσSwσ + Aφ, (6.3)

where AφS = 0.128, Aφσ = −0.00283 1
kpsi

, AφSσ = −0.064 1
kpsi

, and Aφ = 0.426
when the effective stress is given in kpsi and the water saturation is given as a
number between 0 and 1. Partial differentiations of equation (6.3) with respect to
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Figure 6.1: Porosity as a function of effective stress (given in kpsi) and water
saturation for chalk (as given by equation (6.7)) with initial water saturation of 5%
and 2 kpsi initial stress. The model is based on laboratory data from Sylte et al.
(1999) for a 42% porosity chalk sample.

saturation and stress give

∂φ2

∂Sw
= AφS + AφSσσ, (6.4)

∂φ2

∂σ
= Aφσ + AφSσSw. (6.5)

The expression for porosity changes can then be written as

∆φ2 = (AφS + AφSσσ)∆Sw + (Aφσ + AφSσSw)∆σ. (6.6)

Substituting initial values for Sw and σ in equation (6.6) gives a first order approxi-
mation for ∆φ2. This means that ∆φ2 versus ∆Sw and ∆σ become a plane surface,
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which will not capture the curved surface shape of ∆φ2, originating from the cross
term (AφSσSwσ) in equation (6.3) (Figure 6.1). Since porosity changes have large
influence on the seismic parameter changes, we choose to capture this cross term.
This can be done by inserting the initial value for water saturation (Swi) and the
postproduction value for stress (σi + ∆σ) in equation (6.6):

∆φ2 = (AφS + AφSσσi)∆Sw + (Aφσ + AφSσSwi)∆σ + AφSσ∆Sw∆σ, (6.7)

where Swi and σi denote the initial states of water saturation and stress, respec-
tively. Figure 6.2 shows the change in porosity versus water saturation and effective
stress (equation (6.7)) for initial water saturation of 5% and 2 kpsi initial stress,
which is similar to the initial reservoir state at Ekofisk (Gauer et al., 2002; Sylte et
al., 1999).
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Figure 6.2: Change in porosity as a function of water saturation Sw and effective
stress σ based on laboratory data for a 42% porosity chalk sample. Initial water
saturation of 5% and 2 kpsi initial effective stress are assumed.
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Changes in reservoir P-wave velocity, S-wave velocity, and density, due to porosity
changes only, can be written as

[∆α2]∆φ =
∂α2

∂φ2

∆φ2, (6.8)

[∆β2]∆φ =
∂β2

∂φ2
∆φ2, (6.9)

[∆ρ2]∆φ =
∂ρ2

∂φ2
∆φ2, (6.10)

where the porosity changes ∆φ2 are given by equation (6.7). The partial derivatives
∂α2

∂φ2
and ∂β2

∂φ2
(given in equations (6.8) and (6.9), respectively) can be estimated from

well logs. Based on ultrasonic measurements on core samples, Han (1986) found
the following empirical relationships between velocity and porosity:

α2 = Bα + Bαφφ2, (6.11)

β2 = Bβ + Bβφφ2, (6.12)

where Bα, Bαφ, Bβ , and Bβφ are positive constants. Differentiation of equations
(6.11) and (6.12) gives

∂α2

∂φ2
= Bαφ, (6.13)

∂β2

∂φ2
= Bβφ. (6.14)

For a chalk reservoir, we find from well logs that Bαφ = −5500 m/s and Bβφ =
−3000 m/s. The partial derivative ∂ρ2

∂φ2
(given in equation (6.10)) can be found by

using the following density relation for the reservoir chalk:

ρ2 = φ2 (ρwSw + ρo(1 − Sw)) + (1 − φ2)ρS , (6.15)

where ρw, ρo, and ρS are the water, oil, and solid densities of the reservoir, respec-
tively, and Sw is the water saturation. The density change due to porosity changes
can then be given as

∂ρ2

∂φ2
= Bρφ, (6.16)

where Bρφ = ρwSw−ρo(1−Sw)−ρS . We assume oil density ρo = 0.75 g/cm3, water
density ρw = 1.02 g/cm3, solid density ρS = 2.70 g/cm3 (for chalk), and water
saturation Sw = 0.05 (similar to initial saturation state of Ekofisk).
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Equations (6.8), (6.9), and (6.10) describe changes in reservoir seismic parame-
ters only influenced by porosity changes. However, compacting reservoirs might
also undergo changes in the solid framework due to stress changes and changes in
density due to pore fluid changes. In practice, these changes occur simultaneously
with the porosity changes in a compacting reservoir. However, we will assume that
the framework changes (that is, changes in bulk and shear moduli) and pore fluid
density changes can be treated independently of the porosity changes. It is im-
portant to stress that this stepwise view is idealized. Changes in reservoir P-wave
velocity, S-wave velocity, and density can be given as (assuming constant porosity)

[∆α2]φc
=

[
∂α2

∂Sw
∆Sw +

(
∂α2

∂Kfr

∂Kfr

∂σ
+

∂α2

∂Gfr

∂Gfr

∂σ

)
∆σ

]
φc

, (6.17)

[∆β2]φc
=

[
∂β2

∂Sw
∆Sw +

∂β2

∂Gfr

∂Gfr

∂σ
∆σ

]
φc

, (6.18)

[∆ρ2]φc
=

[
∂ρ2

∂Sw

∆Sw

]
φc

, (6.19)

where φc denotes constant porosity, indicating that the seismic parameter changes
given by equations (6.17) to (6.19) occur independently of the porosity changes.
(Note that the density changes given by equation (6.19) are not influenced by stress
changes under the assumption of constant porosity.) We will use the following
notations: [

∂α2
α2

∂Sw

]
φc

= LαS ,

[
∂β2
β2

∂Sw

]
φc

= LβS,

[
∂ρ2
ρ2

∂Sw

]
φc

= LρS ,[
∂α2
α2

∂Kfr

]
φc

= MαK ,

[
∂α2
α2

∂Gfr

]
φc

= MαG,

[
∂β2
β2

∂Gfr

]
φc

= MβG, (6.20)[
∂Kfr

∂σ

]
φc

= NKσ,
[

∂Gfr

∂σ

]
φc

= NGσ,

where the first 6 parameters in equation (6.20); that is, LαS, LβS, LρS , MαK , MαG,
and MβG, are estimated by calibrating the Gassmann model to parameters valid for
the field under consideration. In general, the Gassmann equation should be used
with care for compacting reservoirs, since the equation is only valid for static cases.
The validity of the Gassmann equation for chalk may also be discussed (see e.g.
Røgen et al., 2005). However, we assume that the Gassmann equation is valid for
the static case described by equations (6.17) to (6.19). Figure 6.3 shows the change
in P-wave velocity versus saturation for calibrated Gassmann model valid for the
Ekofisk Field (see Table 6.1). The initial (preproduction) water saturation is set
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Figure 6.3: Relationship between relative change in P-wave velocity and water
saturation based on a calibrated Gassmann model (line with squares). Initial water
saturation is set to 5% (which is similar to Ekofisk) and we assume a maximum water
saturation of 60%. The line with diamonds shows the straight-line approximation
used in this study.

to 5% and we assume a maximum water saturation of 60%. Within this span, the
slightly nonlinear relationship between seismic parameters and saturation changes
are approximated by linear functions (however, we assume uniform saturation dis-
tribution). The relationship between change in P-wave velocity and bulk modulus
(when assuming constant porosity) for a calibrated Gassmann model is shown in
Figure 6.4. The relation is linear and the initial bulk modulus is assumed to be 4.55
GPa (similar to Ekofisk).

Dvorkin and Nur (1996) presented a Hertz-Mindlin model (Mindlin, 1949) to de-
scribe the stress effect on sandstones. Here we calibrate a Hertz-Mindlin model to
ultrasonic measurements of a dry chalk sample (with porosity 40%) to obtain the
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Figure 6.4: Relative change in P-wave velocity versus bulk modulus based on a
calibrated Gassmann model. The relation is linear. Initial bulk modulus is assumed
to be 4.55 GPa (similar to Ekofisk).

two last parameters, NKσ and NGσ, in equation (6.20). Figure 6.5 shows the bulk
(left) and shear (right) moduli versus effective stress using the Hertz-Mindlin model
(dashed line with diamonds) together with the laboratory measurements (solid line
with squares). The calibrated Hertz-Mindlin model is given by (Yin, 2002)

Kfr = aK × 3

√
C2(1 − φ)2G2

S

18π2(1 − νS)2
σdK , (6.21)

Gfr = aG × 5 − 4νS

5(2 − νS)
3

√
3C2(1 − φ)2G2

S

2π2(1 − νS)2
σdG, (6.22)

where our calibration gives aK = 16, aG = 13, dK = 0.705, and dG = 0.601. The
coordination number C denotes the average number of contacts per sphere. We
assume C = 9, which is the case for random packed identical spherical grains. The
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Figure 6.5: Bulk (left) and shear (right) moduli of the solid framework versus
effective stress for a chalk sample with 40% porosity. The dashed lines are estimated
using a calibrated Hertz-Mindlin model, while the solid lines are obtained from
laboratory measurements taken from Yin (2002).

Poisson’s ratio νs is given by

νS =
3KS − 2GS

2(3KS + GS)
. (6.23)

Values for KS , GS , and φ are given in Table 6.1. Differentiation of equations (6.21)
and (6.22) give relationships between moduli changes (∆Kfr and ∆Gfr) and stress
changes. Figure 6.6 shows the change in bulk modulus versus effective stress. Ex-
pected values of effective stress might range from 2 kpsi to maximum around 6 kpsi
(similar to Ekofisk). We approximate the relationships between moduli changes
(∆Kfr and ∆Gfr) and stress by linear functions.
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Figure 6.6: Relationship between relative change in bulk modulus and effective
stress (line with squares). The curve is based on a calibrated Hertz-Mindlin model
(shown on left side of Figure 6.5). Expected values of effective stress might range
from 2 kpsi to maximum around 6 kpsi (similar to Ekofisk). The line with diamonds
shows the straight-line approximation used in this study.

The total changes in seismic parameters for a compacting reservoir are found by
adding together the changes in seismic parameters due to porosity changes (∆φ)
and due to moduli and pore-fluid changes independent of porosity changes (φc);
that is,

∆α2 = [∆α2]∆φ + [∆α2]φc
, (6.24)

∆β2 = [∆β2]∆φ + [∆β2]φc
, (6.25)

∆ρ2 = [∆ρ2]∆φ + [∆ρ2]φc
. (6.26)

Expressions for [∆α2]∆φ, [∆β2]∆φ, and [∆ρ2]∆φ are obtained by substituting equa-
tions (6.7), (6.13), (6.14), and (6.16) into equations (6.8), (6.9), and (6.10), and
expressions for [∆α2]φc

, [∆β2]φc
, and [∆ρ2]φc

are obtained by substituting equa-
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Table 6.1: Initial reservoir rock and fluid parameters.

P-wave velocity, α 2339 m/s
S-wave velocity, β 1211 m/s
Density, ρ 1.887 g/cm3

Water Saturation, Sw 0.05
Stress, σ 2.0 kpsi
Porosity, φ 0.42
Bulk modulus of dry frame, Kfr 4.55 GPa
Shear modulus of dry frame, Gfr 2.77 GPa
Bulk modulus of solid grain, KS 65 GPa
Shear modulus of solid grain, GS 25 GPa
Bulk modulus of water, Kw 2.3 GPa
Bulk modulus of oil, Ko 1.0 GPa
Density of oil, ρo 0.75 g/cm3

Density of water, ρw 1.02 g/cm3

Density of rock matrix, ρS 2.7 g/cm3

tion (6.20) into equations (6.17), (6.18), and (6.19). Adding the results together
gives the following for the total relative changes in reservoir P-wave velocity, S-wave
velocity, and density:

∆α2

α2
= Pα∆Sw + Qα∆σ + Zα∆Sw∆σ, (6.27)

∆β2

β2
= Pβ∆Sw + Qβ∆σ + Zβ∆Sw∆σ, (6.28)

∆ρ2

ρ2
= Pρ∆Sw + Qρ∆σ + Zρ∆Sw∆σ, (6.29)

where Pα, Qα, Zα, Pβ , Qβ, Zβ , Pρ, Qρ, and Zρ are given in Appendix 6.A for
a compacting reservoir with parameters similar to Ekofisk Field. For other fields
with different reservoir properties, other expressions should be used. The unknown
reservoir parameters ∆σ and ∆Sw can be found in several ways from time-lapse
seismic data. We will focus in detail on a method which utilizes the variation in
PP-reflectivity changes versus offset. However, an example using stacked PP- and
PS-reflectivity changes can be found in Landrø et al. (2003) for the Gullfaks Field.
The parameters ∆σ and ∆Sw can also be found by using traveltime shifts (Appendix
6.C).

6.3.1 Using PP-reflectivity changes

For a two-layer model (1 = cap rock, 2 = reservoir rock), let the contrast in P-wave
velocity, S-wave velocity, and density be denoted by ∆α = α2 − α1, ∆β = β2 − β1,
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and ∆ρ = ρ2 − ρ1, respectively. We choose to neglect P-wave velocity changes
in layer 1 (∆α1) as well as S-wave velocity changes (∆β1) and density changes
(∆ρ1), since these changes are expected to be small compared to the changes in the
reservoir layer (2). Following the same procedure as outlined in Landrø (2001), we
use the Smith and Gidlow (1987) approximation for the PP-reflection coefficient.
The PP-reflection coefficient prior to production is (Smith and Gidlow, 1987)

RPP (θ) =
1

2

(
∆α

α
+

∆ρ

ρ

)
− 2

β2

α2

(
2
∆β

β
+

∆ρ

ρ

)
sin2 θ +

1

2

∆α

α
tan2 θ, (6.30)

where α = (α1+α2)/2, β = (β1+β2)/2, and ρ = (ρ1+ρ2)/2. For the postproduction
case, the reflection coefficient becomes

R
′PP (θ) =

1

2

(
∆α

′

α′ +
∆ρ

′

ρ′

)
− 2

β
′2

α′2

(
2
∆β

′

β ′ +
∆ρ

′

ρ′

)
sin2 θ +

1

2

∆α
′

α′ tan2 θ. (6.31)

where ∆α
′
= α

′
2 − α1 = α2 + ∆α2 − α1, α

′
= (α1 + α2 + ∆α2)/2, etc. Assuming

∆α
α

� 1, ∆β
β

� 1, and ∆ρ
ρ

� 1, and ∆α2

α
� 1, etc., we find

R
′PP (θ) ≈ RPP (θ) +

1

2

(
∆α2

α2
+

∆ρ2

ρ2

)

−2
β2

α2

(
2
∆β2

β2
+

∆ρ2

ρ2

)
sin2 θ +

1

2

∆α2

α2
tan2 θ. (6.32)

The change in PP-reflectivity is then given as

∆RPP (θ) =
1

2

(
∆α2

α2
+

∆ρ2

ρ2

)

−2Y 2

(
2∆β2

β2
+

∆ρ2

ρ2

)
sin2 θ +

∆α2

2α2
tan2 θ, (6.33)

where Y = β/α. Assuming tan2 θ ≈ sin2 θ, equation (6.33) can be split into one
intercept and one gradient term (similar to Landrø, 2001); that is, ∆RPP (θ) ≈
∆RPP

0 + ∆GPP sin2 θ, where

∆RPP
0 =

1

2

(
∆α2

α2
+

∆ρ2

ρ2

)
, (6.34)

∆GPP = −2Y 2

(
2∆β2

β2

+
∆ρ2

ρ2

)
+

∆α2

2α2

. (6.35)

Substituting equations (6.27), (6.28), and (6.29) into equations (6.34) and (6.35),
the intercept and gradient terms become functions of pressure and water saturation
changes; that is, ∆R0 = f1(∆σ, ∆Sw) and ∆G = f2(∆σ, ∆Sw). By direct inversion,
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we are then able to find explicit expressions for changes in stress and saturation.
The solutions for the estimated saturation change can be written

∆Sw =
−b +

√
b2 − 4ac

2a
, (6.36)

where the constants a, b, and c are given in Appendix 6.A. The corresponding
expression for change in stress (given in kpsi) can be written as

∆σ =
2∆R0 − ∆Sw(Pα + Pρ)

∆Sw(Zα + Zρ) + Qα + Qρ

. (6.37)

The parameters Pα, Pβ , Pρ, Qα, Qβ , Qρ, Zα, Zβ , and Zρ, valid for the Ekofisk Field,
are given in Appendix 6.A. The corresponding porosity change is given by equation
(6.7):

∆φ2 = (AφS + AφSσσi)∆Sw + (Aφσ + AφSσSwi)∆σ + AφSσ∆Sw∆σ, (6.38)

where AφS, Aφσ, and AφSσ are given in appendix C.

6.4 Synthetic data example

Simple synthetic models with two layers are generated to test the validity of the
methodology for time-lapse PP AVO seismic data. In all synthetic models, the
rock physical properties of the layer below the reservoir zone are kept constant and
only the reservoir rock is changed. The reservoir rock is assumed to be buried at
3000 m depth, and the initial properties are similar to the Ekofisk chalk field (see
e.g. Gauer et al., 2002; Sylte et al., 1999; Yin, 2002), given in Table 6.1. For the
overburden rocks, different scenarios are modeled: In 10 of the models, the rock
physical properties of the overburden undergo changes dependent of the reservoir
compaction (Appendix 6.A), while in the remaining 10 models the overburden rock
physical properties are kept constant.

For the reservoir layer models, we assume that framework and pore-fluid den-
sity changes occur independently of porosity changes. The relationship between
framework moduli and stress is found through calibrating a Hertz-Mindlin model
to laboratory measurements (Figure 6.5). The framework moduli are related to P-
and S-wave velocities through Gassmann’s equation (Figure 6.4). The relationship
between seismic parameters and saturated reservoir rock (independent of poros-
ity changes) is calculated using Gassmann’s equation (Figure 6.3). The porosity
changes are related to stress, and saturation according to laboratory data for a 42%
porosity chalk sample (Figure 6.2). The porosity is related to P- and S-wave ve-
locities through empirical relationships (given by equations (6.11) and (6.12)). The



136 Synthetic data example

relation between density and porosity is found from equation (6.15).

Different scenarios of stress and water saturation changes are made. All models
have the same initial (preproduction) scenario with a water saturation of 5%, effec-
tive stress equal to 2 kpsi, and porosity of 42%. For a scenario with given saturation
and stress changes, the modeled porosity change is given by equation (6.7). Assum-
ing uniaxial strain relations (e.g. Guilbot and Smith, 2002), the modeled relative
change in reservoir thickness can be expressed in terms of the porosity changes; that
is,

∆z2

z2

≈ ∆φ2

1 − φ2

. (6.39)

Figure 6.7 shows PP prestack synthetic seismograms (angle gathers) for baseline
(a) and monitor (b) for a model undergoing a water saturation change of 20% and
1.5 kpsi change in stress. This means (from equation (6.7)) that the porosity de-
crease is 2.8% and the corresponding relative compaction is 4.8% (from equation
(6.39)). Amplitude changes (versus angle) between baseline and monitor are picked
for maximum amplitude. Figure 6.7 shows the picked amplitude changes (c) and
relative amplitude changes (d). Reflection coefficients are calculated using Zoep-
pritz’ equations for offsets from 0 m to 3000 m (that is, for angles θ from 0◦ to 27◦),
for the different models. By plotting the change in calculated reflection coefficients
as a function of sin2 θ, the change in intercept (∆R0) and gradient (∆G) terms are
found. In the final step, the intercept and gradient changes are substituted into the
derived equations (6.36) and (6.37) to obtain changes in saturation and stress. The
results are given in Table 6.2 together with the modeled values for saturation and
stress changes. Here the modeled rock physical properties of the overburden rocks
are kept constant. As an example, the first row in Table 6.2 indicates a reservoir
model with ∆Sw = 0.2 and ∆σ = 1.5 kpsi (which means ∆φ = −0.028 from equa-
tion (6.7)). For a test with no noise, we estimate ∆Sw = 0.287 and ∆σ = 1.04,
which corresponds to relative errors of 44% in ∆Sw and 31% in ∆σ.

Figure 6.8 shows a plot of the same initial and monitor parameters with random
noise added. The signal to noise ratio (SNR) is approximately 0.4 for baseline (a)
and monitor (b). Amplitude changes (c) and relative amplitude changes (d) are
obtained by picking interpolated maximum amplitudes. With this noise level, we
estimate the saturation change to be 0.281 and the stress change to be 1.07. This
gives a relative error of 41% for the saturation change estimate and 29% for the
stress change estimate. (Note that random noise might sometimes lead to decreased
error in the estimated saturation and stress changes.)

Tests of synthetic models including overburden changes are given in Table 6.3.
The modeled overburden changes are dependent on the modeled porosity change in
the reservoir (see Appendix 6.B). The reservoir models in Table 6.3 are identical to
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Figure 6.7: Synthetic seismograms for PP reflections (angle gathers) for baseline
(a) and monitor (b). For the baseline model, the stress is 2 kpsi and water saturation
is 5%. The monitor changes are 1.5 kpsi in stress and 20% in water saturation. By
picking maximum amplitude for the baseline and monitor seismograms, we obtain
amplitude changes (c) and relative amplitude changes (d).

the reservoir models in Table 6.2.

6.5 Discussion

In the methodology we have assumed no overburden changes during reservoir com-
paction. However, the method is tested on synthetic models which include overbur-
den changes (Table 6.3). For the given tests, we conclude that overburden changes
might be neglected. (Note, however, that the influence of overburden changes might
be different when using time-lapse time shifts (Appendix 6.C) instead of ampli-
tudes.)
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Figure 6.8: Synthetic seismograms for PP reflections (angle gathers) with noise
for baseline (a) and monitor (b) for the same model parameters as used in Figure
6.7. By picking maximum amplitude for the baseline and monitor seismograms, we
obtain amplitude changes (c) and relative amplitude changes (d).

In this study we predict the reservoir porosity change by assuming that porosity is a
linear function of initial porosity, water saturation, and effective stress. This linear
relationship is consistent with laboratory measurements from Sylte et al. (1999) for
small, intact rock samples. However, nonlinear behavior is often seen in the field
due to the impact of fractures and other properties of large rock masses (Sylte et
al., 1999).

In addition to porosity changes, we have calibrated the Gassmann equation and
Hertz-Mindlin model with well log measurements (from the Ekofisk Field) to pre-
dict the seismic effect of changing the saturation and stress. Results from Landrø
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Table 6.2: Estimation of saturation and effective stress changes from time-lapse
PP AVO seismic data. Sw1 and Sw2 are the saturation before and after production,
and σ1 and σ2 are the effective stress before and after production.

Real Sw Est. Sw with noise σ1/σ2 Real σ Est. σ with noise
Sw1/Sw2 change change SNR = 0.4 (kpsi) change change SNR = 0.4
0.05/0.25 0.2 0.287 0.281 2/3.5 1.5 1.04 1.07
0.05/0.1 0.05 0.117 0.107 2/4 2 1.40 1.39
0.05/0.35 0.3 0.376 0.435 2/3 1 0.73 0.57
0.05/0.3 0.25 0.354 0.390 2/2.5 1.5 1.01 0.86
0.05/0.45 0.4 0.403 0.389 2/2 0 -0.05 -0.05
0.05/0.40 0.35 0.723 0.409 2/5 3 1.22 2.09
0.05/0.05 0 0.014 0.024 2/2.5 0.5 0.64 0.48
0.05/0.35 0.3 0.322 0.289 2/2.5 0.5 0.42 0.46
0.05/0.15 0.1 0.117 0.070 2/2.75 075 0.71 0.92
0.05/0.40 0.35 0.360 0.295 2/2.25 0.25 0.20 0.27

Table 6.3: Estimation of saturation and effective stress changes from time-lapse
PP AVO seismic data. Here the forward models include time-lapse overburden
changes. Sw1 and Sw2 are the saturation before and after production, and σ1 and
σ2 are the effective stress before and after production.

Real Sw Est. Sw with noise σ1/σ2 Real σ Est. σ with noise
Sw1/Sw2 change change SNR = 0.4 (kpsi) change change SNR = 0.4
0.05/0.25 0.2 0.287 0.193 2/3.5 1.5 1.04 1.35
0.05/0.1 0.05 0.118 0.181 2/4 2 1.40 1.01
0.05/0.35 0.3 0.366 0.378 2/3 1 0.77 0.69
0.05/0.3 0.25 0.354 0.310 2/2.5 1.5 1.02 1.13
0.05/0.45 0.4 0.403 0.389 2/2 0 -0.05 -0.06
0.05/0.40 0.35 0.726 0.623 2/5 3 1.24 1.42
0.05/0.05 0 0.014 0.009 2/2.5 0.5 0.64 0.56
0.05/0.35 0.3 0.318 0.275 2/2.5 0.5 0.43 0.50
0.05/0.15 0.1 0.114 0.191 2/2.75 0.75 0.73 0.41
0.05/0.40 0.35 0.358 0.480 2/2.25 0.25 0.20 0.07

(2001), show that the Gassmann equation successfully describes the relation be-
tween change in seismic parameters and water saturation for the static Gullfaks
sandstone reservoir. Dvorkin and Nur (1996) presented Hertz-Mindlin theory to
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describe the relationship between stress and moduli for high porosity sandstones.
The validity of the Gassmann and Hertz-Mindlin models may be different for com-
pacting chalk reservoirs. However, as an attempt, we assume that these models can
describe processes occurring independently of the porosity changes in a compacting
reservoir.

The proposed method does not account for tuning effects between the seismic
events from the top and base of the reservoir layer. Tuning effects might influ-
ence the amplitude change and lead to incorrect estimations of the saturation and
stress changes. However, for the presented numerical example, we have used data
relevant the Ekofisk Field, which is a relatively thick reservoir. Vertical resolution
of two horizontal reflectors with distance z is gained when the seismic wavelength
is larger than z/4 (Sheriff and Geldart, 1995).

In this paper we have assumed that changes in saturation and stress are the only
production-related changes that lead to porosity changes. However, porosity changes
might also be induced by for instance temperature changes and bacterial changes.
It is possible to extend the proposed method to include more than saturation and
stress changes, by using PS reflectivity (stacked or AVO) data, in addition to the PP
reflectivity AVO data used here. (Another way might be to utilize both reflectivity
and traveltime data (Landrø and Stammeijer, 2004).) However, porosity changes
of compacting reservoirs are mainly due to saturation and stress changes (Sylte et
al., 1999). Other production-related changes are therefore neglected in this paper.

The uncertainty in estimated changes in saturation and stress is strongly dependent
on the accuracy of the measured seismic amplitudes. Different synthetic scenarios
with SNR level 0.4 are tested. To reduce the uncertainty, we may use data with
larger offset, improve the quality and repeatability of time-lapse seismic data, and
introduce additional constraints (such as PS-data, well data, rock physics models).

Our analysis is based on the assumption that decrease in porosity in a compacting
reservoir occur due to hydrocarbon production (leading to an increase in effective
stress) and water injection. This is an irreversible process, since the increased effec-
tive stress leads to fractures and the increased water saturation leads to a weakening
of the chalk. Therefore, for the reverse case, with decrease in effective stress or de-
crease in water saturation, we expect negligible porosity changes.

6.6 Conclusions

The proposed method uses time-lapse AVO seismic data to estimate pressure and
saturation changes in compacting reservoirs. According to laboratory measure-
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ments, the porosity loss due to reservoir compaction is related to the pressure and
saturation changes. By assuming that the porosity changes of the reservoir rock
can be treated independently of the changes in framework and pore-fluid density,
approximate formulas for computing pressure- and saturation-related changes from
time-lapse AVO data have been derived. Rock physics models calibrated to the
Gassmann equation and Hertz-Mindlin model are necessary input to relate the
changes in seismic parameters to changes in pressure and water saturation.

The method is tested on synthetic time-lapse seismic data for 10 different produc-
tion scenarios, representing various degrees of pressure and saturation changes and
corresponding compaction. The uncertainties in the estimated changes in pressure
and saturation changes increase as the modeled pressure changes increase. However,
for pressure changes below 2 kpsi, the method captures the modeled changes well,
even in cases with large saturation changes (up to 40%).
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6.A The inversion procedure

The total changes in seismic parameters for a compacting reservoir are found by
adding together the changes in seismic parameters due to porosity changes (∆φ)
and due to moduli and pore-fluid density changes independent of porosity changes
(φc); that is,

∆α2 = [∆α2]∆φ + [∆α2]φc
, (6.A-1)

∆β2 = [∆β2]∆φ + [∆β2]φc
, (6.A-2)

∆ρ2 = [∆ρ2]∆φ + [∆ρ2]φc
. (6.A-3)

Substituting for [∆α2]∆φ, [∆β2]∆φ, and [∆ρ2]∆φ (given by equations (6.8), (6.9),
and (6.10)) and [∆α2]φc

, [∆β2]φc
, and [∆ρ2]φc

(given by equations (6.17), (6.18),
and (6.19)) gives the following for the total relative changes in reservoir P-wave
velocity, S-wave velocity, and density:

∆α2

α2
= Pα∆Sw + Qα∆σ + Zα∆Sw∆σ, (6.A-4)

∆β2

β2
= Pβ∆Sw + Qβ∆σ + Zβ∆Sw∆σ, (6.A-5)

∆ρ2

ρ2
= Pρ∆Sw + Qρ∆σ + Zρ∆Sw∆σ, (6.A-6)

where

Pα =
Bαφ

α2
(AφS + AφSσσi) + LαS ,

Qα =
Bαφ

α2
(Aφσ + AφSσSwi) + MαKNKσ + MαGNGσ,

Zα =
Bαφ

α2
AφSσ,

Pβ =
Bβφ

β2
(AφS + AφSσσi) + LβS,

Qβ =
Bβφ

β2
(Aφσ + AφSσSwi) + MβGNGσ,

Zβ =
Bβφ

β2
AφSσ,

Pρ =
Bρφ

ρ2

(AφS + AφSσσi) + LρS ,

Qρ =
Bρφ

ρ2
(Aφσ + AφSσSwi),

Zρ =
Bρφ

ρ2
AφSσ, (6.A-7)
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where Swi and σi denote the initial water saturation and stress, respectively. For a
compacting reservoir with rock physical properties similar to Ekofisk Field, we find

AφS = 0.128, Aφσ = −0.00283 kpsi−1, AφSσ = −0.064 kpsi−1,

Bαφ = −5500 m/s, Bβφ = −3000 m/s, Bρφ = −3.362 g/cm3,

LαS = 0.054, LβS = −0.030, LρS = 0.060,

MαK = 0.045 GPa−1, MαG = 0.065 GPa−1, MβG = 0.181 GPa−1,

NKσ = 0.231 GPa/kpsi, NGσ = 0.115 GPa/kpsi. (6.A-8)

Based on the Smith and Gidlow (1987) approximation for the PP-reflection co-
efficient, the change in PP-reflectivity can be expressed in terms of relative changes
in P- and S-wave velocities and density, as given by equation (6.33). Assuming
tan2 θ ≈ sin2 θ, the change in PP-reflectivity can be expressed in one intercept and
one gradient term; that is, ∆RPP (θ) ≈ ∆RPP

0 + ∆GPP sin2 θ, where

∆RPP
0 =

1

2

(
∆α2

α2
+

∆ρ2

ρ2

)
, (6.A-9)

∆GPP = −2Y 2

(
2∆β2

β2
+

∆ρ2

ρ2

)
+

∆α2

2α2
. (6.A-10)

Substituting equations (6.A-4), (6.A-5), and (6.A-6) into equations (6.A-9) and
(6.A-10), the intercept and gradient terms become functions of pressure and water
saturation changes; that is, ∆R0 = f1(∆σ, ∆Sw) and ∆G = f2(∆σ, ∆Sw). By direct
inversion, the estimated saturation change can be written

∆Sw =
−b +

√
b2 − 4ac

2a
. (6.A-11)

where

a = Pα(Zρ + 4Y 2Zρ + 8Y 2Zβ) − 8Y 2Pβ(Zα + Zρ) − Pρ(Zα + 4Y 2Zα − 8Y 2Zβ),

b = 2∆R0(Zα − 4Y 2Zρ − 8Y 2Zβ) − 2∆G(Zα + Zρ) + Pα(Qρ + 4Y 2Qρ + 8Y 2Qβ)

− 8Y 2Pβ(Qα + Qρ) − Pρ(Qα + 4Y 2Qα − 8Y 2Qβ),

c = 2∆R0(Qα − 4Y 2Qρ − 8Y 2Qβ) − 2∆G(Qα + Qρ). (6.A-12)

The corresponding expression for change in stress (given in kpsi) can be written as

∆σ =
2∆R0 − ∆Sw(Pα + Pρ)

∆Sw(Zα + Zρ) + Qα + Qρ
. (6.A-13)

The parameters Pα, Pβ , Pρ, Qα, Qβ, Qρ, Zα, Zβ , and Zρ are given by equation
(6.A-7).
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6.B Synthetic models undergoing overburden changes

In the methodology we have assumed that changes in the overburden layer are
negligible compared with the changes in the reservoir layer. To test the validity
of this approximation, we have made synthetic models with overburden time-lapse
changes. The changes in seismic parameters of the overburden are dependent on
the reservoir compaction. Using the uniaxial strain relationship (e.g. Guilbot and
Smith, 2002), the change in reservoir thickness can be given as

∆z2 ≈ z2
∆φ2

1 − φ2

, (6.B-1)

where φ2 and z2 denote initial porosity and thickness of the reservoir layer. The
change in porosity (∆φ2) is calculated from a quantitative model of Ekofisk chalk
behavior, given by equation (6.7). A normal assumption for Ekofisk is that the sub-
sidence of the seabed is 4/5 of the subsidence of the top reservoir horizon. Keeping
the base reservoir horizon constant during the reservoir compaction will then give
the following relation between the thickness change of the overburden layer (1) and
the thickness change of the reservoir layer (2):

∆z1 ≈ −1

5
∆z2. (6.B-2)

As a first order approximation, we assume that the relation between relative velocity
and thickness changes is proportional to each other (Røste et al., 2005; Hatchell and
Bourne, 2005):

∆v1

v1
= −R1

∆z1

z1
, (6.B-3)

where R1 is a positive constant and v1 represents both the P-wave and S-wave
velocities for the overburden layer. Substituting equation (6.B-2) into equation
(6.B-3) and using R1 = 5 for the overburden, gives the following changes in P- and
S-wave velocities:

∆α1 = α1
R1

5

∆z2

z1
= α1

∆z2

z1
, (6.B-4)

∆β1 = β1
R1

5

∆z2

z1
= β1

∆z2

z1
, (6.B-5)

Assuming mass conservation, the change in density can be expressed as

∆ρ1 = −ρ1
∆z1

z1
=

ρ1

5

∆z2

z1
, (6.B-6)

by substitution of equation (6.B-2).
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6.C Using PP and PS time shifts

For a reservoir layer with thickness z2, the relative PP-traveltime change for zero
offset can be expressed in terms of the relative thickness and velocity change (Landrø
and Stammeijer, 2004; Røste et al., 2005; Hatchell and Bourne, 2005); that is,

∆T PP
N,2

T PP
N,2

=
∆z2

z2
− ∆α2

α2
, (6.C-1)

where T PP
N,2 represents seismic two-way vertical traveltime for PP-waves within the

reservoir layer and α2 is the reservoir velocity. The basic assumption in equation
(6.C-1) is that all relative changes are small; that is, ∆z2

z2
� 1 and ∆α2

α2
� 1. For far

offsets, we assume the following approximate expression for relative PP-traveltime
shift (Landrø and Stammeijer, 2004):

∆T PP
F,2

T PP
F,2

=

(
T PP

N,2

T PP
F,2

)2
∆z2

z2
− ∆α2

α2
, (6.C-2)

where T PP
F,2 represents far offset two-way traveltime for PP-waves within the reservoir

layer. Assuming small relative change in the S-wave velocity (that is, ∆β2

β2
� 1) the

relative SS-traveltime shift for zero offset can be given as

∆T SS
N,2

T SS
N,2

=
∆z2

z2
− ∆β2

β2
, (6.C-3)

where T SS
N,2 denotes zero offset two-way traveltime for SS-waves within the reservoir

layer. Note that SS-traveltimes do not exist for zero offset, but can approximately
be estimated from near- or full-offset SS-stacks. For PS-waves, we use Grechka
and Tsvankin’s (2002) to find the following approximate expression for the relative
traveltime shift for zero offset:

∆T PS
N,2

T PS
N,2

=
∆T PP

N,2 + ∆T SS
N,2

T PP
N,2 + T SS

N,2

. (6.C-4)

Substituting equations (6.C-1) and (6.C-3) into equation (6.C-4), the PS-traveltime
shift for the reservoir layer is given as

∆T PS
N,2

T PS
N,2

=
T PP

N,2

T PS
N,2

(
∆z2

z2
− ∆α2

α2

)
+

T SS
N,2

T PS
N,2

(
∆z2

z2
− ∆β2

β2

)
. (6.C-5)

Based on laboratory measurements of chalk and Ekofisk parameters calibrated to
Gassmann and Hertz-Mindlin models (e.g. figures 6.2, 6.3, 6.4, and 6.6), the relative
changes in P- and S-wave velocities (∆α2

α2
and ∆β2

β2
) can be expressed in terms of
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stress and saturation changes, as given by equations (6.27) and (6.28). Inserting
equations (6.27) and (6.28) into equations (6.C-1), (6.C-2), and (6.C-5), gives the
relative near and far PP-traveltime shifts and near PS-traveltime shift expressed in
terms of stress and saturation changes and relative thickness changes; that is,

∆T PP
N,2

T PP
N,2

= f1(∆σ, ∆S,
∆z2

z2
), (6.C-6)

∆T PP
F,2

T PP
F,2

= f2(∆σ, ∆S,
∆z2

z2
), (6.C-7)

∆T PS
N,2

T PS
N,2

= f3(∆σ, ∆S,
∆z2

z2
). (6.C-8)

By direct inversion, we are then able to find explicit expressions for changes in stress
and saturation and relative reservoir compaction.



Chapter 7

Closing remarks

Monitoring reservoir and overburden changes during hydrocarbon production leads
to production enhancement by optimizing well placement and by improving pro-
duction and injection operations. Time-lapse seismic data is an important tool for
monitoring. Several researches have developed methods based on time-lapse seismic
data to monitor changes in layer thickness and velocity (Landrø and Stammeijer,
2004; Røste et al., 2005; Hatchell and Bourne, 2005b) and changes in reservoir
pressure and saturation (Tura and Lumley, 1998, 1999; Landrø, 2001; Landrø et al.,
2003). The focus of this thesis has been to develop new methods based on prestack
time-lapse seismic data to monitor compacting reservoirs and overburden layers.
Before this work started, I tried to develop a method based on stacked time-lapse
data to discriminate between layer thickness and velocity changes. By testing this
method on several synthetic models undergoing reservoir compaction, I concluded
that changes in stacking velocities poorly describe cases with large lateral variations
in the layer changes. Since lateral variations most likely occur in fields with com-
pacting reservoirs, a method based on stacked PP-seismic data only was rejected
and a theory based on prestack seismic data was initiated (chapter 3).

This new theory introduces a dilation factor (α), which discriminates the relative
thickness changes and relative velocity changes. The introduction of the dilation
factor seems both practical and useful, and during the writing of this thesis I also
discovered that other researches (Hatchell and Bourne, 2005b) used (independently
of my work) a similar dilation factor in their work. The proposed method given in
chapter 3 was initially tested on a synthetic model with large lateral variations in
velocity and thickness changes, and then later tested on real prestack 2D streamer
data (chapter 3) and real prestack 2D ocean bottom cable (OBC) data (chapter
4). An advantage of this method is that no information or model is required for
the mechanism creating the velocity and thickness changes. Chapter 4 proposes
an extended method which handles vertical (in addition to lateral) variations in
velocity and thickness changes. This can be viewed as a simplified version of time-
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lapse tomography (Vesnaver et al., 2003). However, for cases with significant and
heterogeneous variations in both vertical and horizontal velocity changes, a full 4D
tomographic method is required.

In chapter 5, I try to extend the proposed method given in chapter 3 to han-
dle anisotropic cases. The given approximate anisotropic expression for relative
prestack seismic time shifts shows that static anisotropy can be neglected (also
discussed in chapter 3). However, time-lapse changes in anisotropy influence the
time shifts. To avoid large, complex terms in the anisotropic expression, several
approximations were necessary in the derivations. Due to these approximations,
the methodology given in chapter 5 does not handle cases with relative anisotropic
changes larger than 3%. It is possible to compute expressions for relative prestack
time shifts that include anisotropy changes more accurately. However, this leads to
more complex expressions, and, in addition, more input parameters become neces-
sary.

In chapter 4, time-lapse distortion patterns with characteristic time shift versus
offset signatures are observed. The distortion zones are correlated to fault move-
ments. As far as I know, distortions in time-lapse seismic are not so common.
Monitoring fault movements is important for several reasons. Most important, haz-
ards are associated with wells crossing reactivated faults (Alsos et al., 2002). In
addition, reactivation of faults in the reservoir zone might lead to leakage of hydro-
carbons and affect the reservoir drainage patterns (see for example Gaarenstroom
et al., 1993; Finkbeiner et al., 2001). For future work, an automatic procedure for
detecting time-lapse distortions and correlate them to growing faults will be helpful.

There are still unexplored methods for time-lapse seismic analysis. In all time-
lapse seismic studies, low signal to noise ratio and high repeatability are crucial.
In the future, improved acquisition equipment will increase the quality of seismic
data. In addition, installation of ocean bottom cables (OBC) is expected to be more
frequently used. Permanent cable installations lead to improved seismic quality and
repeatability, and make it possible to acquire PS-seismic data. This means that the
use of time-lapse seismic data will be even more valuable in future monitoring.
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