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Summary and Conclusions

In this thesis we study iterations of a map in two complex variables. More precisely we study the

set of points which are such that iterates of a map approaches a fixed point. It has been shown

that for some such sets there exists a bijective and analytic map, a biholomorphic map, from

this set to the whole two-dimensional complex space C2. The following question is still open:

does there exist a subset of C2 that does not intersect the complex axes, where the points iterate

to a fixed point and which has an interior biholomorphic to the whole of C2 itself?

In an attempt to explore this question further we construct a map from C2 to C2 and analyze

if the set of points that iterate to the origin has a interior. The set of fixed points for this map is

the union of the complex axes. Since all points on the complex axes are fixed for this map, none

of them approach the origin as we iterate. This means that the set of points that approaches the

origin under iteration does not intersect with the complex axes. If this set has an interior then

we have a positive answer to the question above. The current research on the subject, however,

points to that any such set will not have an open interior and is therefor not biholomorphic toC2.

We study the set of iterates towards the origin and show that a part of this set will be located

close to a complex line. For an approximation of our maps this line will be the only part of the

set where iterates approaches the origin of C2. Outside of this line we show that points that are

sufficiently close to either of the complex axes will converge to the axis. We also show that the

region of points close to the line which approach the origin will also eventually hit one of the

complex axes.
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Sammendrag og Konklusjon

I denne masteroppgaven vil vi studere iterasjoner av funksjoner i to komplekse variable. Vi vil

studere mengden av punkter som under iterasjon konvergerer mot et fikspunkt. Det har blitt

vist at for visse slikre mengder så eksisterer det en bijektiv og analytisk, en biholomorf, funksjon

fra mengden til hele det to-dimensjonale komplekse rommet C2. Følgende spørsmål om slike

mengder er fortsatt åpent: eksisterer det en undermengde av C2 som ikke deler punkter med

de komplekse aksene, hvor punktene konvergerer under iterasjon mot et fikspunkt, har et indre

som er biholomorft med hele C2?

I et forsøk på å studere dette spørsmålet konstruerer vi en funksjon fra C2 til C2 og forsøker

å analysere om mengden med punkter som under iterasjon konvergerer til origo har et indre.

For denne funksjonen er mengden av fikspunkter unionen av de komplekse aksene. Siden de

komplekse aksene er fikspunkter vil ingen av de konvergere mot origo under iterasjon. Dette

betyr at mengden med punkter som konvergerer under iterasjon mot origo ikke vil inneholde

punkter som tilhører aksene. Hvis denne mengden viser seg å ha et indre så har vi et positivt

svar på spørsmålet over. Forskningen så langt indikerer derimot at en slik mengde ikke vil ha et

åpent indre og derfor ikke vil kunne være biholomorft med C2.

Vi vil studere mengden av punkter som under iterasjon konvergerer mot origo og vi vil vise

at en del av denne mengden vil være lokalisert nærme en kompleks linje. Vi studerer deretter en

tilnærming av vår funksjon nær origo hvor de eneste punktene som konvergerer mot origo ligger

på akkurat denne linjen. Utenfor linjen viser vi at for den tilnærmede funksjonen vil punkter

som er nærme både origo og en av aksene vil konvergere mot den respektive aksen. Vi benytter

oss av dette til å vise at punkter som er veldig nærme den komplekse linjen, men ikke på den, og

som beveger seg mot origo vil til slutt havne på en de komplekse aksene.
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Chapter 1

Introduction

In this thesis we explore a possible candidate for a Fatou-Bieberbach domain inC2 which avoids

the complex axes. We will do as in the classic examples of Fatou and Bieberbach and look for a

basin of attraction to a fixed point of an automorphism in C2. We will identify a region which is

a part of the stable set of this automorphism. This will also hold for a class of automorphisms

which has a similar power series close to the origin. Then we will study an approximation of

these automorphisms close to the origin in an attempt to identify the points which approaches

the origin. In the following section we will justify the motivation behind studying our map and

give a short overview of the research that has been done on the topic so far.

Chapter 2 will introduce definitions and prelimenary results. Chapter 3 will contain the main

analysis of this class of automorphisms. In the last chapter, chapter 4, we will give a summary of

our work and give suggestions for further work on the subject.

1.1 Motivation

In order to find the root of a complex polynomial f (z) = a0+a1z+a2z2+·· ·+an zn where ai ∈C
for i ∈ [0,n] and a j 6= 0 for at least one j ≥ 1, the traditional approach is to use a numerical

method like Newton’s method. Newton’s method involves making an initial guess at the root. Let

us denote this guess as z0. Then we inductively create a sequence of complex numbers {zn}n∈N

where zn+1 = zn − f (zn)/ f ′(zn). If the initial guess z0 was close enough to a root of f (z) the se-

2



CHAPTER 1. INTRODUCTION 3

quence will converge to that root. Now if we let H(z) := z − f (z)/ f ′(z) we see that zk = H k (z) for

zk ∈ {zn}n∈N, where H k (z) is the function H(z) iterated k-times. One can easily see that finding a

limit point for the sequence {zn}n∈N is the same as finding a fixed point z ∈C such that H(z) = z.

This is one of the problems that motivated the study of complex dynamical systems.

Complex dynamical systems in one variable have been extensively studied and is in large

parts complete. See John Milnor’s "Dynamics in One Complex Variable" [6] for an extensive sur-

vey on the subject. This thesis will be concerned with dynamical systems in several complex

variables. In particular we will be exploring an interesting property held by some dynamical

systems, first described by Fatou and Bieberbach in the 1920’s.

Fatou and Bieberbach [3] proved that there exists proper subdomains ofC2 which are biholo-

morphically equivalent to C2 itself. A subdomain like this is called a Fatou-Bieberbach domain,

or F-B domain for short. The examples they gave of such domains were basins of attraction of

fixed points of some automorphisms in C2. Basins of attraction became the classic way of con-

structing F-B domains. Even though it has now been proved that not all F-B domains are basins

of attraction of automorphisms [9], these still make up the majority of examples.

A major result on this topic was proved by Rosay and Rudin in 1988 [7]. In this paper they

prove the following theorem.

Theorem 1.1. Suppose that F ∈ Aut(Cn) fixes a point p ∈Cn and that all the eigenvaluesλ1, ... ,λn

of F ′(p) satisfy |λi | < 1 for ∀i ∈ {1,2, ...,n}. Let Ω(p) = {
z ∈Cn | limk→∞ F k (z) = p

}
. Then there

exists a biholomorphic mapΨ from Ω(p) onto Cn .

In the language we introduce in the next chapter, Theorem 1.1 says that ΩF (p) is a F-B do-

main for all attracting automorphisms F ∈ Aut(Cn). Rosay and Rudin gives several examples of

such F-B domains. For example in 9.7 of [7] they construct the following automorphism of C2.

Choose some α ∈C, 0 < |α| < 1, and find an entire function f :C→C such that

e f (0) = 1

α
, f ′(0) = 0, f (1) = 0, f ′(1) = (1+α2)/(1−α2).
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Then define the automorphism F (z, w) to be

F (z, w) =
(

1−α2 +αze f (zw), we− f (zw)
)

.

The point (1,1) is a fixed point of F and the eigenvalues of F ′((1,1)) are λ = ±αi . It follows

from Theorem 1.1 that Ω((1,1)) is a F-B domain. It can be easily shown that Ω((1,1)) does not

intersect the line
{

(z, w) ∈C2 | w = 0
}
. What is constructed here is a F-B domain whose closure

misses a complex line.

It was proved in 1972 by Green [4] that a holomorphic map F : Cn → CP1 that omits any 3

hyperplanes has an image lying in a proper projective linear subspace. Here CP1 denotes the

complex projective space of C2, which is the Riemann Sphere. This result means that we have

cannot have non-degenerate automorphism of C2 which avoids three complex lines. The work

of Green, together with the example described above, raises the natural question which Rosay

and Rudin posit at the end of their paper [7]:

Is there a biholomorphic map from C2 into the set {zw 6= 0}, i.e., into the complement of the

union of two intersecting complex lines?

Seeing as basins of attraction of automorphisms are the classical way of constructing F-B

domains, it is only natural to check those for a possible positive answer to this question. In [8]

Vivas studies a particular set of automorphisms of C2 which has the following properties

(i) F (0) = 0 and DF (0) = Id;

(ii) F (z,0) = (z ′,0) and F (0, w) = (0, w ′) for ∀z, z ′, w, w ′ ∈C.

We say that F is tangent to the identity at the origin and that F fixes the coordinate axes. The

definitions will become clear in the next chapter. For these automorphisms Vivas states that a

positive answer to either of the following gives a positive answer to the question posed by Rosay

and Rudin:

(a) There exists an attracting fixed point for F .
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(b) There exists a non-degenerate characteristic direction v of F at the origin such that ReA(v) >
0, where A(v) is a number associated to the direction v .

If we have (a) then Theorem 1.1 ensures that the basin of attraction to that point will be a F-B

domain. That (b) gives a positive answer is a bit more technical for us at this point, but it follows

from Theorem 5.1 of [5] that there exists some basin of attraction associated to the direction v .

For both cases there exists some basin of attractionΩ(p) ⊂ {
(z, w) ∈C2 | zw 6= 0

}
.

The main result of [8] is the following proposition, which states that neither (a) or (b) is

possible for such an automorphism. It is to be noted that the proof of the proposition relies

on the following conjecture which, by the time of this thesis, still has not been proved.

Conjecture 1.1. If F is an automorphism of C∗ ×C∗, where C∗ denotes the punctured plane

C\ {0}, then F preserves the form:
d z ∧d w

zw

Proposition 1.1. If Conjecture 1.1 is valid, and F is an automorphism of C2 tangent to the identity

that fixes the coordinate axes, then (a) and (b) are both false.

An interesting consequence of Conjecture 1.1 that Vivas show in the same paper is that any

automorphism of C2 that has property (i) and (ii) above, will be of the form

F (z, w) = (zew g (z,w), wezh(z,w)).

where

g (z, w) = ∑
α+β≥k

c(α,β)zαwβ and h(z, w) = ∑
α+β≥k

d(α,β)zαwβ

with

cα−1,β =−α
β

dα,β−1

for k ≤α+β≤ 2k.

We choose β ≡ 0 and for α ≥ 0 we let c(α,0) = 1
α! . Now let d(0,0) = 1 and d(α,0) = 0 for ∀α ≥ 1.
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Then h(z, w) = 1 and

g (z, w) =
∞∑

k=0

1

k !
zk = ez .

We now have the following automorphism of C2,

f (z, w) =
(
zewez

, wez
)

. (1.1)

This automorphism serves as the inspiration for this thesis. It was constructed to fix the

origin, and to have a region attracted by the origin that does not touch the complex axes. A

most interesting outcome would be if this region gave a basin of attraction. This would provide

a positive answer to Rosay and Rudins question. Our analysis in chapter 3 does not give a global

description about the stable set of this automorphism, but at least close to the origin the stable

set approaches a complex line.

1.2 Overview

In the next chapter we will describe the basic definitions used for dynamical systems. We will

also present results for complex dynamical systems in several variables which are relevant for

the analysis that follows in chapter 3.

Our analysis of the automorphisms (1.1) is done in chapter 3. After identifying the fixed

points and expanding the power series (1.1) in the first section, we use methods based on [5]

in order to find a region of C2 where iterations of (1.1) will approach the origin. This is done by

identifying a particular direction in the projective space of C2 and using a blow-up of the ori-

gin to show that there exists a connected set where iterations of the map approaches the origin

along this direction.

After we have found such a region we show via an approximation of (1.1) close to the origin

that points not on a particular complex line which approaches the origin will eventually hit one

of the complex axes. As mentioned, this result will hold for the class of automorphisms of C2

which have a power series expansion similiar to (3.3) close to the origin.



Chapter 2

Definitions and Preliminaries

This chapter will give a brief introduction to the notions and techniques used in this thesis.

There will mostly be definitions and notation from [5], [2] and [9]. We will also be discussing

some results that are relevant for this thesis, mainly from Hakim’s paper.

2.1 Basic Definitions

In this section we will cover the majority of definitions for complex dynamical systems rele-

vant for this thesis. Even though a lot of the definitions and techniques that follow are defined

for more general maps of complex manifolds, we will concern ourselves mostly with automor-

phisms of Cn . For the more general definitions we direct the reader to [2].

Definition 2.1. The set Aut(Cn) consists of all holomorphic mappings F : Cn → Cn which are

such that

(i) F is one-to-one

(ii) F is onto.

The elements of Aut(Cn) are called the automorphisms of Cn .

The theory of dynamical systems is mainly concerned with studying the behaviour of a map

when it is iterated. If F ∈ Aut(Cn) we define the k-th iterate of F to be F k = F ◦F k−1. It is natural

to define F 0 to be the identity map. Given some z0 ∈ Cn we will sometimes write z1 = F (z0),

7
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z2 = F 2(z0), ... , zn = F n(z0). The sequence {zk }k∈N given by these iterations is called the forward

orbit of z0. The backward orbit of z0 is simply the forward orbit of z0 with respect to the inverse

map F−1.

If the forward orbit of z0 converges to a limit point p, then we call p a fixed point for the map

F . The point p is fixed by F since if limn→∞ F n(z0) = p,then limn→∞ F n+1(z0) = F (p) so F (p) = p.

Definition 2.2. Let F ∈ Aut(Cn). Let p ∈Cn . The set
{

z ∈Cn | F n(z) → p as n →∞ }
is called the

stable set of p. The interior of the stable set of p is denoted by Ω(p) and is called the basin of

attraction of p. Sometimes it is necessary to specify for which map the basin of attraction of a

point p is defined for. For a map F we will then writeΩF (p).

For dynamical systems in one dimension it is common to classify the behaviour of an auto-

morphism F near a fixed point z0 by the value λ= F ′(z0). We call λ the multiplier of z0.

(i) If |λ| 6= 1 then we say that z0 is a hyperbolic fixed point. A hyperbolic fixed point is attract-

ing if 0 ≤ |λ| < 1 and repelling if |λ| > 1.

(ii) If |λ| = 1 and λn = 1 for some n ∈N, then we say that z0 is a parabolic fixed point.

(ii) If λ is not a root of unity, we say that the fixed point point z0 is elliptic.

When n > 1 we classify the automorphisms by the eigenvalues of the differential at a fixed

point z0 ∈Cn instead. This classification will mirror that of the one dimensional case.

Definition 2.3. Let F ∈ Aut(Cn) with z0 ∈Cn a fixed point of F . Then

(i) if all eigenvalues of DF (z0) have modulus different from 1, we call the fixed point hyper-

bolic. If all eigenvalues have modulus less than 1, we say that the fixed point is attracting.

If all eigenvalues have modulus greater than 1, we say that the fixed point is repelling.

(ii) if all eigenvalues of DF (z0) are roots of unity, we call the fixed point parabolic. In particu-

lar, if DF (z0) = Id we say the F is tangent to the identity.

(iii) if all eigenvalues of DF (z0) have modulus 1, but none are roots of unity we call the fixed

point elliptic.
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A very useful technique in the theory of dynamical systems is the idea of changing coordi-

nates by way of conjugation.

Definition 2.4. Let F,G ∈ Aut(Cn). We say that F is conjugated to G if there exists a biholomor-

phic map ϕ ∈ Aut(Cn) such that G ◦ϕ=ϕ◦F .

The usefulness of conjugation is the fact that it respects iteration and fixed points. Both of

these facts are easy to see. Rewrite G = ϕ◦F ◦ϕ−1. Now, G2 = G ◦G = ϕ◦F ◦ϕ−1 ◦ϕ◦ f ◦ϕ−1 =
ϕ◦F 2◦ϕ−1. It follows by induction that Gn =ϕ◦F n ◦ϕ−1. If p is fixed point for F then G ◦ϕ(p) =
ϕ◦F (p) =ϕ(p) soϕ(p) is a fixed point for G . It follows from these two facts that conjugation will

mapΩ(p) intoΩ(ϕ(p)).

2.2 The Cauliflower Set

Here we describe a classic dynamical system in one variable known as the cauliflower set. See

[6] and [1] for a more detailed description. The reason we bring up this set will become apparent

in the next chapter. The cauliflower set is the basin of attraction of the origin, Ω(0), of the map

g (z) = z +z2. The setΩ(0) is shaped much like a cauliflower, see figure 2.1, hence the name. It is

easy to see that the only fixed point of g (z) is the origin.

Figure 2.1: The filled Julia set of g (z)

Outside of Ω(0) all orbits tend to infinity

at an exponential rate. The boundary ∂Ω(0) is

the so-called Julia set of g , for more detail see

[6]. The Julia set is the set of points which have

chaotic behaviour, or sensitive dependence on

initial conditions. From the theory on Julia

sets for quadratic polynomials we know that

∂Ω(0) is closed, g -invariant and that it con-

tains the origin. The following two lemmata

describes the behaviour of orbits inside Ω(0)

and are from [1].
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Lemma 2.1. Let u0 ∈R and un = g n(u0).

(i) For all u0 ∈R\{0,−1} the sequence {un} is strictly increasing.

(ii) If u0 ∈ [−1,0] then un → 0. Otherwise un →+∞.

(iii) If u0 ∈ (−1,0), then for all n ≥ 1

− 1

n
≤ un ≤ u1

n
,

or in other words |un | =O(1/n).

As we see, if u0 ∈ (−1,0), then un approaches the orgin as 1/n. The next lemma tells us that

if we begin with any point in z0 ∈Ω(0) then as n →∞ the iterates will approach the origin along

the negative real axis.

Lemma 2.2. For all z0 ∈Ω(0), let zn = un + i vn = g n(z0). Then

lim
n→∞nzn = lim

n→∞nun =−1 and lim
n→∞nvn = 0.

More precisely, there exists c1,c2 > 0 dependent on z0 such that

|1+nun | ≤ |1+nzn | ≤ c1

n
logn

and

|vn | ≤ c2

n2

(
1+ c1

n
logn

)
for all n ≥ 1.

If we want to visualize the set Ω(0) it helps to conjugate g (z). A very useful property of

quadratic polynomials is that we can always conjugate them into the form f (z) = z2+c for some

c ∈C. Conjugating g (z) = z + z2 with the function γ(z) = z +1/2 we get

g̃ (z) = γ◦ g ◦γ−1(z) = z2 + 1

4
.

We plot the filled Julia set of g in figure 2.1. In order to do this we plot the filled Julia set of g̃

which is easier to work with and simply move all points 1/2 in the negative real direction.
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2.3 Parabolic Fixed Points Tangent to the Identity

Let F ∈ Aut(Cn) be an automorphism that has a parabolic fixed point at the origin which is tan-

gent to the identity. This means that DF (0) = Id. It follows then that F at z ∈ Cn is given by a

convergent series of the form

F (z) = z +Pk (z)+Pk+1(z)+·· · (2.1)

where k ∈ N and k ≥ 2. We have for ∀h ∈ N that Pk+h is a homogenous polynomial map of

degree k +h from Cn to Cn . We call k the order of F .

Automorphisms that are tangent to the identity are studied by Hakim in [5]. Her paper proves

a useful theorem for the class of automorphisms that has order 2, but before we write down the

theorem we need some more definitions.

Definition 2.5. Let F be as in (2.1). A characteristic direction is a direction v 6= 0 in Cn such that

Pk (v) =λv for some λ ∈C. A nondegenerate characteristic direction is a characteristic direction

v such that Pk (v) 6= 0.

Definition 2.6. A parabolic curve or an invariant piece of curve for F at the origin is an injective

holomorphic map h :∆→Cn satisfying the following properties:

(i) ∆ is a simply connected domain in C with 0 ∈ ∂∆;

(ii) h is continuous at the origin, and h(0) =O;

(iii) h(∆) is invariant under F , and
(
F n |h(∆)

)→O as n →∞

We say h is tangent to [v] at the origin if [h(ξ)] → [v] ∈ CPn−1 as ξ→ 0. Here CPn−1 is the

complex projective space ofCn and [·] is the projection ofCn\{0} ontoCPn−1. The main theorem

of [5] is the following.

Theorem 2.7. Let F be a germ of analytic transformation fromCn toCn which fixes the origin and

is tangent to the identity. For every nondegenerate characteristic direction v of F , there exists an

invariant piece of curve, tangent to v at the origin, attracted by the origin.
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Theorem 2.7 is an attempt at generalizing the one dimensional Leau-Fatou Flower theorem,

see [6]. What theorem 2.7 tells us is that if F has a nondegenerate characteristic direction, then

there exists some connected set with the origin in its boundary where F is both invariant and ap-

proaches the origin along the direction v . This gives us a lot of information on the local behavior

of the stable set of the origin for such a map. We will use this in the next chapter.



Chapter 3

Analysing the Stable Set

As stated in the introduction, the map we will be studying is given by (1.1). For the reader’s

convenience we will include the map again. Let F ∈ Aut(C2) be an automorphism given by

F (z, w) = (
f1(z, w), f2(z, w)

)= (
zewez

, wez
)

.

The main goal of this chapter is to explore if any automorphism which is similar to (1.1) has a

basin of attraction or not. This is the same as saying that the interior of the stable set is open or

not. We do not, however, give a definitive answer to this question.

3.1 Prelimenary Analysis

We start this section by identifying the fixed points of (1.1). If (z, w) ∈C2 is a fixed point of (1.1),

then

(z, w) =
(
zewez

, wez
)

which gives that

z = zewez
and w = wez .

The set of (z, w) ∈ C2 which solves these equations are the punctured complex planes X ={
(z,0) ∈C2 | z ∈C\ {0}

}
and Y = {

(0, w) ∈C2 | w ∈C\ {0}
}

together with the origin (0,0). This

means that (1.1) fixes the origin and both of the complex axes. We write {zw 6= 0} as shorthand

13
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for the set C2 \ {X ∪Y ∪ (0,0)} = {
(z, w) ∈C2 | zw 6= 0

}
.

The Jacobian of (1.1) is

DF (z, w) =
(

ewez + zwez+wez ) (
zwez+wez )

wez ez


and it follows that at the origin we have

DF (0,0) =
1 0

0 1

 .

The map (1.1) is therefore tangent to the identity at the origin. On the sets X and Y we get the

following Jacobians

DF (z,0) =
1 0

0 ez

 and DF (0, w) =
ew 0

w 1

 .

In terms of proposition 1.1 we see that (a) is false for all fixed points since none of them

give eigenvalues which all have modulus less than 1. In other words, (1.1) does not have an at-

tractive fixed point. This gives that theorem 1.1 does not apply for any of the fixed points of (1.1).

It is useful to expand (1.1) into its power series. Since

ez =
∞∑

n=0

zn

n!
= 1+ z + z2

2!
+ z3

3!
+·· ·

we have

f1(z, w) = z exp

(
w +w z + w z2

2!
+O

(
w z3))

= z

(
1+w +w z + w z2

2
+w 2 +2w 2z +O

(
w z3, w 2z2, w 3))

= z +w z +w z2 +w 2z +O
(
w z3, w 2z2, w 3z

)
= z +w z +O

(
w z2, w 2z, w 2z2)

(3.1)
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and for f2(z, w) we have

f2(z, w) = w +w z + w z2

2!
+O

(
w z3)= w +w z +O

(
w z2) . (3.2)

Everything we prove in the following sections will hold for any automorphism of C2 which has

the same form as

F (z, w) =
 z1 = f1(z, w) = z +w z +O

(
w z2, w 2z, w 2z2

)
w1 = f2(z, w) = w +w z +O

(
w z2

) (3.3)

close to the origin.

3.2 The Stable Set

A lot of the existing theory on the global behavior of dynamical systems in two variables or more

rely on fixed points being isolated, see [2]. This is clearly not the case here. To describe the stable

set of the origin for (1.1) we will have to use a more local theory. From theorem 2.7 we have that

close to the origin the stable set is situated around the complex line
{

(z, w) ∈C2 | z = w
}
. We

write {z = w} as shorthand for this line. We dedicate this section to making the reason for this

more clear.

From the power series of (1.1) we see that the map has order 2 and that P2(z, w) = (zw, zw).

The nondegenerate direction is then a direction v = (v1, v2) such that P2(v1, v2) = λ(v1, v2) for

some λ ∈ C. Since P2(v1, v2) = (v1v2, v1v2) the only nondegenerate characteristic direction of

(1.1) is the complex line {z = w}. This line in the complex projective space CP1 is given by [v] =
(1,1). For this [v] we have P2(1,1) = (1,1). Thus we have that P2(λv) =λv for all λv ∈ {z = w}.

Hakim proves theorem 2.7 in [5] by using several linear transformations to transform any

general nondegenerate characteristic direction v = (v1, v2) into the form (1,0). This is done to

get the map into a particular form which she then uses to prove the existence of an invariant

curve which is tangent to (1,0). Hakim does this for Cn in general, but since we are working in
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n = 2 we will present the results for that.

The process begins by choosing new coordinates (x, y) in C×C such that v = (1,u) where

u ∈ C. Since for our map the characteristic direction is simply v = (1,1), we are already in this

situation.

For these new coordinates, if the forward orbit (xn , yn) = F n(x0, y0) converges to the origin in

such a way that limn→∞[(xn , yn)] = [v], then it can be shown that v is a characteristic direction.

See proposition 2.3 in [5].

Writing P2(x, y) = (
p2(x, y), q2(x, y)

)
we have that the behavior of xn as n →∞ is

xn ∼ 1

np2(1,u)
.

Since we have assumed that (xn , yn) approaches the origin tangentially to (1,u) we have that

lim
n→∞

yn

xn
= u.

This fact motivates the change of variable into un ∈C which is such that yn = un xn for all n ∈N.

This is called a blow-up of the origin. The blow-up is simply a map such as the following

γ : C2 →C2

(x,u) 7→ (x,ux) := (x, y).

In what follows we will use linear transformations to transform the characteristic direction into

(1,0) and then study the new map in the (x,u) coordinates instead.

In order to transform the characteristic direction into (1,0) we use a conjugation with the

linear transformation

φ=
 1 0

−1 1

 .
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Conjugating with (1.1) we get the map

G(x, y) =φ◦ F ◦φ−1

which looks like this

G(x, y) =
 x1 = x + (x + y)x + (x + y)2x + (x + y)x2 +O((x + y)x3, (x + y)2x2, (x + y)2x)

y1 = y − 1
2 (x + y)x2 − (x + y)2x +O((x + y)x3, (x + y)2x2, (x + y)2x).

Applying the blow-up y = ux and calculating u1 = y1
x1

gives us the following map

G̃(x,u) =
 x1 = x + (1+u)x2 + (1+u)2x3 + (1+u)x3 +O(ux4,u2x4,u2x2)

u1 = u −ux +O(u2x,ux2,u2x2)+x2ψ1(x).

This map has v = (1,0) as its characteristic direction. The functionψ1(x) is the polynomial given

by the pure x-terms. Hakim does another conjugation in order to get G̃(x,u) on a particular

form. This is done in order to prove proposition 3.1.

We conjugate with the linear transformation

ϕ=
−1 0

0 1

 .

to get the map H(x,u) =ϕ◦G̃ ◦ϕ−1 which is as follows

H(x,u) =
 x1 = f (x,u) = x −x2 +O(ux2,u2x2, x3)

u1 =Θ(x,u) = u +ux +O(u2x,ux2,u2x2)+x2ψ1(x).
(3.4)

Finding an analytic invariant curve which is tangent to u = 0 is equivalent to finding the function

g (x) = u which is analytic in a neighborhood of zero, g (0) = 0, and which is such that

g ( f (x, g (x))) =Θ(x, g (x)). (3.5)
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In order to find such a function we define a sequence of polynomials which converges uniformly

to a polynomial with these properties. The proof of existence and uniqueness of this sequence

is identical to the proof of Proposition 3.1 of [5]. It is simply a special case of that proposition

with A(v) =α=−1. Without going into detail on the function A(v) we simply mention that since

A(v) = ReA(v) =−1 < 0 we have that (b) from proposition 1.1 is also false for our map.

Proposition 3.1. Let ( f ,Θ) be the analytic transformation (3.4). Then there exists a unique se-

quence {Pk }k∈N of polynomials Pk of degree k such that Pk (0) = 0, and

Θ(x,Pk (x)) = Pk ( f (x,Pk (x)))+xk+2ψk+1(x). (3.6)

Also

Pk+1(x) = Pk (x)+ ck+1xk+1

where ck+1 is given by

ck+1 =
ψk+1(0)

−(k +2)
.

Proof. This proposition is proved by induction. For k = 1 we have P1 = c1x. We simply need to

find a c1 such that it solves the equation

c1 f (x,c1x) =Θ(x,c1x)+O(x3). (3.7)

Inserting u = c1x into (3.4) we get (3.7) the following equation

x −x2 +O(x3) = c1x(1+x)+O(x3)+x2ψ1(x).

Expanding ψ1(x) around zero and rearranging terms we have

x −x2 − c1x(1+x)−x2ψ1(0) =O(x3).

From this we see that c1 solves (3.7) if and only if

c1 = ψ1(0)

−2
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Assume we have found a unique polynomial of degree k that satisfies (3.6). We want to find a

polynomial Pk+1 of degree k +1 such that

Pk+1( f (x,Pk+1(x)))−Θ(x,Pk+1(x)) =O(xk+3).

Write

Pk+1(x) = pk + ck+1xk+1

for some polynomial pk of degree k. We want to show that pk = Pk . From (3.4) we see that

Pk+1( f (x,Pk+1(x))) = pk ( f (x, pk (x)))+ ck+1xk+1(1− (k +1)x)+O(xk+3)

and

Θ(x, pk (x)+ ck+1xk+1) =Ψ(x, pk (x))+ ck+1xk+1(1+x)+O(xk+3).

Putting these results together, we get that (3.6) with Pk+1 becomes

Θ(x,Pk+1(x))−Pk+1( f (x,Pk+1(x))) =Θ(x, pk (x))+ ck+1xk+2(k +2)−pk ( f (x, pk (x)))+O(xk+3).

We see that pk is necessarily a solution to (3.6) and by the induction hypothesis pk is equal to

Pk . This gives that

Θ(x,Pk+1(x))−Pk+1( f (x,Pk+1(x))) = ck+1xk+2(k +2)+xk+2ψk+1(x)+O(xk+3).

Expanding ψk+1(x) around zero we get that Pk+1 solves (3.6) if and only if

ck+1 =
ψk+1(0)

−(k +2)
.

Proposition 3.1 shows the existence of a sequence of polynomials {Pk }k∈N and the conver-

gence can be read as formal at this point. Hakim does not directly prove that Pk converges

uniformly to a P , but instead proves the existence of a map with the property given by (3.5) in

general. Hakim does this by defining a operator T which is such that a g (x) is a fixed point for T
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if and only if it satisfies (3.5). She then proceeds to show that on a closed convex set of a suitable

Banach space, the operator T is a contraction and thus has a fixed point.

3.3 The Dynamical Behaviour of our Map

Trying to describe the behaviour of (1.1) under iteration will quickly become too complex. We

need a more well behaved map. If (z, w) ∈C2 are close enough to the origin we can safely ignore

the higher order terms of the power series of (1.1). Given this, it follows from (3.3) that (1.1) is

approximately equal to the map

F̃ (z, w) = (
f̃1(z, w), f̃2(z, w)

)= (z(1+w), w(1+ z)) . (3.8)

The map (3.8) has the benefit of being symmetrical and shares much of the same behaviour as

the main map (1.1). The set of fixed points for (3.8) is X ∪Y ∪ (0,0). This is easy to see. On the

line {z = w} we have that (3.8) takes on the values

F̃ (z, z) = (z + z2, z + z2).

This means that on the line {z = w} the map (3.8) admits a basin of attraction of zero in each

complex direction. From section 2.2 we know that both of these basins of attraction are cauliflower

sets. For all z outside of the closure of this set, the iterates of f̃ n
i (z), i ∈ {1,2}, will diverge to in-

finity. In the rest of this section we will be mainly concerned with points in the following region

of C2

U = {
z ∈C | |z| < 1, π−a < Argz <π+a

}×{
w ∈C | |w | < 1, π−a < Argw <π+a

}
for some a ∈ R with 0 ≤ a ≤ π/4. If |z| < 1/R for some large R ∈ R, the behaviour of z + z2 inside

the region can be described by changing coordinates 1/s = z and looking at sn = 1/ f̃ n
1 (1/s,1/s).
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(a) (b)

Figure 3.1: Plots of iterates of (3.8) for two points outside of {z = w}. Both zn (blue) and the wn

(green) is plotted on the same complex plane. The initial point is given above the plot.

We have that s1 is of the following form

1

f̃1(1/s,1/s)
= 1/

(
1/s +1/s2)

= s

(
1− 1

s
+O

(
1

s2

))
= s −1+O

(
1

s

)
.

We have that Re(s) <−|R ′| for some large |R ′| and from above we see that sn is of the form

1

f̃ n
1 (1/s,1/s)

= s −n +O

(
1

s

)
.

This gives us that sn approaches −∞ almost as −n and from this we see that |zn | approaches the

origin almost as 1/n.

In figure 3.1 we have plotted some iterations of (3.8) with initial points outside of the line

{z = w}. We see that the iterates seem to move with a constant distance apart. We will show that

this is always the case for the approximated map.

This section is dedicated to exploring the dynamical behaviour of (3.8) when we are close to
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the origin. We begin by looking at a region close to the origin where we are also close to either X

or Y . We define the two regions Rz and Rw in the following way,

Rz =
{

(z0, w0) ∈C2 | ∃0 < c < 1/2, 0 < b0 < c/4 where |z0 + c| < b0 and |w0| < a0 < c/16
}

.

We define Rw in the same way, just z0 interchanged with w0.

We will show that if we have initial points inside either Rz or Rw , then the iterates will always

approach the complex axes. We begin by the proving the following preliminary lemma.

Lemma 3.1. Let 0 < a,b,c < 1. Assume |z0 + c| < b and |w0| < a. Then we have that

|z1 + c| < b + (b + c)a and |w1| < a(1− c +b). (3.9)

Proof.

|z1 + c| = |z0 + z0w0 + c|
≤ b +|z0w0| < b + (b + c)a

|w1| = |w0||1+ z0|
< a|1− c + (z0 + c)|
< a(1− c +b)

We now use lemma 3.1 to get estimates for the orbit (zn , wn) = F̃ n(z0, w0) when (z0, w0) ∈ Rz .

Lemma 3.2. Suppose that (z0, w0) ∈ Rz . Then we have the following inductive estimate on the

orbit (zn , wn) = F̃ n(z0, w0):

|zn + c| < b0 +2ca0

n∑
j=0

(
1− c

2

) j
and |wn | < a0

(
1− c

2

)n
. (3.10)

Proof. By assumption the estimate holds for n = 0. Suppose that it valid for (zn , wn). Let
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b = b0 +2ca0

n∑
j=0

(
1− c

2

) j
and a = a0

(
1− c

2

)n

and apply (3.9). Observe that

b ≤ b0 +2ca0
1

1− (
1− c

2

) = b0 +4a0 < c/2.

Hence we get that

|zn+1 + c| < b0 +2ca0

n∑
j=0

(
1− c

2

) j
+ 3c

2
a0

(
1− c

2

)n

< b0 +2ca0

n+1∑
j=0

(
1− c

2

) j

and

|wn+1| < a0

(
1− c

2

)n (
1− c + c

2

)
= a0

(
1− c

2

)n+1

which completes the proof.

Lemma 3.2 gives us the following corollary. What it tells us is that given (z0, w0) ∈ Rz we have

|zn | > 0 for ∀n ∈N, while |wn |→ 0 as n →∞.

Corollary 3.1. If (z0, w0) ∈ Rz , then |zn + c| < c/2 and |wn |→ 0 as n →∞

Proof. This follows almost directly from the lemma above. That |wn |→ 0 is trivial. As n →∞ we

see that

|zn + c| < b0 +2ca0

n∑
j=0

(
1− c

2

) j
−→ b0 +2ca0

2

c
< c/4+ c/4 = c/2

Now if (z0, w0) ∈ Rw , then (zn , wn) → (0, w ′) for some w ′ ∈C\{0} when n →∞. The argument

is identical as the one for Rz , just change z0 and w0.
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Our hypothesis is that if we are close to the line {z = w} (but not on it) and sufficiently close

to the origin, then iterates of (3.8) will always eventually reach a point inside either Rz or Rw .

We mentioned above that the iterates of the (3.8) seemed to move in a constant distance

apart when we did simulations. We will now show that if λ = w0 − z0, then λ = wn − zn for

∀n ∈N. If λ= w0 − z0, then

w1 − z1 = w0 + z0w0 − z0 − z0w0 = w0 − z0 =λ.

Now it follows by induction that this holds for ∀n > 0. If it holds for n−1, then we have for n that

wn − zn = wn−1 + zn−1wn−1 − zn−1 − zn−1wn−1 = wn−1 − zn−1 =λ.

The value of λ is a way of measuring how far we are from the line {z = w}. If |λ| is very small, but

non-zero, when does zn or wn approach zero? In order to simplify the study of when zn → 0 we

conjugate (3.8) with the linear transformation

φ=
 1 0

−1 1

 .

We see that φ(z0, w0) = (z0,λ). Conjugating we get the following map

G̃(z0,λ) =φ◦ F̃ ◦φ−1(z0, λ )

=φ◦ (z0 + z0(λ+ z0), λ+ z0 + z0(λ+ z0) )

= (
z0(1+λ)+ z2

0 , λ
)

.

(3.11)

The conjugation done in (3.11) is a way of rotating the line {z = w} so that it coincides with the

complex plane X ∪ (0,0). We see that iterations of G̃ will only change the z-coordinate so we let

zn = g̃ n(z0) = zn−1(1+λ)+ z2
n−1.

The behaviour of g̃ n(z0) depends on the value of λ. This means that the behaviour of zn is

very dependent on the initial orientation between z0 and w0. We describe different situations
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for different values of λ.

(i) If |1+λ| = 1 then λ= 0 and we are back in the situation g̃ (z0) = (z0 + z2
0). Here g̃ n(z0) → 0

given that z0 is inside the cauliflower set.

(ii) For |1+λ| ∉ {0,1} we have from Koenigs Linerization Theorem, see [6], that there exists

a linear change of coordinate x = µ(z) with µ(0) = 0, such that µ ◦ g̃ ◦µ−1 is the linear

map x 7→ (1+λ)x for all x in some neighborhood of the origin. We see that inside this

neighborhood we have µ ◦ g n ◦µ−1(x) = (1+λ)n x. Depending on if |1+λ| is less than 1

or greater than 1 the iterates inside this neighborhood will be attracted or repelled by the

origin respectively.

(iii) In the special case where λ = −1 we have that g̃ (z0) = z2
0 . This is a well understood map,

as the Julia set is simply the unit circle. For ∀z0 ∈ C \∆(0,1), where ∆(0,1) is the unit disk,

the iterates diverge to infinity. For ∀z0 ∈∆(0,1), however, the iterates converge to zero.

Analysing the dynamical behaviour of wn takes a very similar approach, it is a simple matter of

transposing the linear transformation φ and conjugating (3.8) with this new linear transforma-

tion.

As mentioned, a major question for us has been to identify the set close to {z = w} where the

iterates approach either of the complex axes.

We have identified some points which will converge to either X or Y though. Assume |z0| >
|w0| with Reλ< 0. We then have that |1+λ| < 1 if

(1−|Reλ|)2 + Imλ2 < 1

1−2|Reλ|+ |λ|2 < 1

|Reλ| > 1

2
|λ|2.
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When |1+λ| < 1 we have that |zn+1| < |zn | when

|z(1+λ)+ z2| < |z|
|z(1+λ)+ z2| ≤ |z||1+λ|+ |z|2 < |z|

|z| < 1−|1+λ|.

This motivates the definition of the following set in C2,

L =
{

(z, w) ∈C2 |λ= w − z , 0 < |λ| < 1

2
,Reλ< 0 , |Reλ| > 1

2
|λ|2 , |z| < (1−|1+λ|)

}
.

It is easy to see that inside this set zn → 0. Furthermore, we have that there exists some n ∈ N
such that (zn , wn) → (0, w ′) for some w ′ ∈C\ {0}. This is what we show in the following lemma.

Lemma 3.3. Let (z0, w0) ∈ L. Then zn → 0 and wn → w ′ 6= 0.

Proof. The proof follows almost directly from λ= wn − zn . Since zn → 0 there exists some N ∈N
such that for ∀n ≥ N we have that |zn | < |λ|

16 . Then we have that |wn −λ| < |λ|
16 and by simply

rotating with some e iθ such that e iθλ= |λ|e iπ we are inside Rw . Then we know from lemma 3.1

that zn → 0 and wn → e iθw ′ 6= 0.

By the exact same procedure we can prove for the set

K =
{

(z, w) ∈C2 |λ′ = z −w , 0 < |λ′| < 1

2
,Reλ′ < 0 , |Reλ′| > 1

2
|λ′|2 , |w | < (

1−|1+λ′|)}
.

that as wn → 0 we have that zn → z ′ ∈C\ {0} when n →∞.

The proof of lemma 3.3 is valid if either zn or wn approaches zero. Since λ is constant we

cannot have them both reach zero if z 6= w . We have, however, situations for points close to the

line {z = w} where the techniques above does not immediately show that we approach either X

or Y . If, for example, λ= i y we have even for some very small y ∈R that |1+ i y | > 1 and from (ii)

above we have that in some neighborhood of zero the iterates of g̃ (z0) will be repelled by zero.

Since λ′ =−λ, we have |1− i y | > 1 and the same applies for wn .
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Summary and Recommendations for

Further Work

In this final chapter we give a brief overview of our results and discuss suggestions for future

work.

4.1 Summary and Conclusions

We have shown that for any class of automorphisms of the form (3.3) the stable set will be con-

centrated around the complex line {z = w} when we are close enough to the origin. To show

this we closely followed the approach of Hakim. This involved conjugating our map by several

linear transformations which gave us a new map in a very particular form. This new map was

constructed to be able to show the existence of an analytic invariant curve which was tangent to

the characteristic direction.

In the next section we studied an approximation of our original map. This approximation

will be valid when we are sufficiently close to the origin. On the line {z = w} this approximation

gives a cauliflower set in each complex direction where points will approach the origin. Just

outside of this line the behaviour is different. An interesting feature of this map is that if we

are close to one of the complex axes we have shown that iterates will always approach this axis.

We have also shown that for points close to, but not on the line {z = w}, that if either of the

27
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coordinates approach zero we will eventually be inside the region where iterates will approach

one of the complex axes.

4.2 Recommendations for Further Work

Here we list some suggestions for further work

• The natural next step for the approximated map is exploring if all points (z, w) where |λ| is

small will always approach one of the complex axes when we are sufficiently close to the

origin. We have only shown it when we know that either zn → 0 or wn → 0. Our techniques

does not show if either of these iterates always will approach zero when we are close to the

origin.

• Analysing the stable set of the origin of any germ of the form (3.3) globally. This would

decide if the automorphism (1.1) admits a basin of attraction or not at the origin. If it has

a basin of attraction this would give a positive answer to the question of Rosay and Rudin

described in chapter 1.

• Showing explicitly that the sequence of polynomials {Pk } from proposition 3.1 converges

uniformly to a polynomial P in a neighborhood of the origin.
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