
Resonances and Constructions of
Fatou-Bieberbach Maps

Nicholas Aidoo

Master of Science in Mathematics (for international students)

Supervisor: Berit Stensønes, MATH

Department of Mathematical Sciences

Submission date: May 2016

Norwegian University of Science and Technology



 



Resonances and Constructions of Fatou-Bieberbach

Maps

Nicholas Aidoo

Abstract

We study and analyze a proof of a theorem by Rosay and Rudin on the Fatou-Bieberbach

method of constructing biholomorphic images of Cn in Cn, starting with an automor-

phism with an attracting fixed point. We thoroughly investigate constructions of Fatou-

Bieberbach maps. As a result, we lay much emphasis on the concept of resonances and

how they affect our attempt to linearize an automorphism with an attracting fixed point,

by a biholomorphic change of variables. We give several examples and some basic ex-

planations to several concepts in order to give an in-depth and basic feel of the whole

proof.
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Chapter 1

Introduction

In the paper by Rosay and Rudin [6], they worked on an older topic in several complex

variables: The Fatou-Bieberbach method of constructing biholomorphic images of Cn in

Cn, starting with an automorphism with an attracting fixed point. In order to address

the question of linearization of contractions, they gave a proof of the following related

theorem:

Theorem 1.0.1. Suppose that F ∈ Aut(Cn) fixes a point p ∈ Cn and that all eigenvalues

λ1, λ2, . . . , λn of the operator F ′(p) satisfy |λi| < 1, for 1 ≤ i ≤ n. Let Ω be the set of

all z ∈ Cn for which lim
k→∞

F k(z) = p where F k = F ◦ F k−1, F 1 = F . Then there exists a

biholomorphic map Ψ from Ω onto Cn.

Based on this theorem, Rosay and Rudin constructed some new examples of Fatou-

Bieberbach regions Ω in C2. Most of these regions were ranges of biholomorphic maps

Φ = Ψ−1 : C2 → Ω with the Jacobian of Φ, JΦ ≡ 1. This is because most of the

automorphisms used in their constructions had constant Jacobians. In this thesis, we

attempt to break down the proof by Rosay and Rudin for easy understanding. Our major
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concern is to clearly understand how the Fatou-Bieberbach maps or biholomophic maps

Ψ are constructed as well as the effects that resonances, if they should occur, have on

these constructions.

Our choice of the biholomorphic map Ψ is obtained as a solution of the functional

equation

(∗∗) G−1 ◦Ψ ◦ F = Ψ

where G is a “normal form” for F . Thus, G is of the form Az + φ(z), where A = F ′(p)

is linear and φ(z) = O(|z|2) is non-linear. In other words, we say that F is formally

conjugated to its normal form G. In special cases, G = F ′(p). Thus, we refer to the

expression in (∗∗) as linearizing the map F by a biholomorphic change of variables Ψ. A

solution to the functional equation (∗∗) has been proved to be given as Ψ = lim
k→∞

G−k ◦F k

in Reich’s paper [5, page 142]. The interesting part here is that, the sequence {G−k ◦F k}

does not necessarily have to converge, not even in the formal power series sense, and not

even in some small neighborhood of the fixed point p. A counterexample given in [6,

page 74], is again given in this thesis (Example 3) to confirm this assertion. Because the

sequence {G−K ◦F k} does not always converge, we shall introduce polynomial maps, say,

T : Cn → Cn which satisfies some specific properties, and then analyze the new sequence

{G−k ◦ T ◦ F k}. This new sequence converges on every compact subset of Ω ⊂ Cn.

We shall give thorough and more basic approaches to understanding the proofs of the

related theorems and lemmas in the appendix of [6]. Like, Rosay and Rudin, the so-called

lower-triangular mappings will be used to give the proof of theorem 1.0.1. We will throw

more light on the concept of resonances, focusing carefully on the “threats” that they

pose when finding a solution to the functional equation in (∗∗). The set of eigenvalues of
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F ′(p) plays a crucial part in the construction of the biholomorphic map Ψ. If there exists

any resonance relations between the eigenvalues, they may affect our construction of a

solution. Particularly, they may alter our choice of triangular map needed to construct

the biholomorphic map Ψ. It is therefore necessary to study their behavior and how they

affect our results if they should occur. Thus, in writing out the proof of the theorem, we

shall consider cases where these resonances occur as well as cases where they do not.

Chapter 2 of this thesis gives some relevant definitions and also discusses some impor-

tant concepts that will guide us to fully grasp the proofs of the theorems and lemmas in this

thesis. In chapter 3, we give a simplified version of the main theorem stated, by assuming

that |λ1|2 < |λn|. This situation, as we shall see in later chapters, implies that there are no

resonance relations between the eigenvalues of F ′(p) since 1 > |λ1| ≥ |λ2| ≥ · · · ≥ |λn| > 0.

In this special case, our choice of G equals the linear operator F ′(p) = A. The simplified

version of the theorem fails to hold if the assumption is violated. A counterexample is

given in Example 3.

In chapter 4, we give the proof of the main theorem after we study and prove three

important lemmas. Several cases about the occurrences and non-occurrences of resonances

are considered during the proofs of the lemmas. We shall study some examples in C2 and

in C3 to help us to understand the importance of resonances in our construction as hinted

earlier on.

In recent times, many people have studied the so-called random iterations. The ques-

tion we ask is this: When given a sequence of automorphisms {Fj} with Fj(p) = p for

each j ∈ N, and the modulus of the eigenvalues of each F
′
j (p) is strictly between 0 and 1,

and we define the region of attraction Ω = {z ∈ Cn : Fj ◦ · · · ◦ F1(z) → p as j → ∞}; Is

3
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Ω biholomorphic to Cn?

E. F. Wold in [8] showed that if the sequence {Fj} is uniformly attracting, that is,

C||w|| ≤ ||Fj(w)|| ≤ D||w|| for all j ∈ N with 0 < C < D < 1 and D2 < C, then Ω is

biholomorphic to Cn. Also Han Peters and Iris Smit in [3] have shown that in C2 if the

sequence {Fj} is uniformly attracting and D
11
5 < C then Ω is biholomophic to C2.

Constructing Fatou-Bieberbach maps involves making the required choices of a trian-

gular map G and a polynomial map T . When given a sequence of automorphisms {Fj},

it is much difficult to choose these desired maps. If G is either a lower or upper triangular

map, it works out well for just one automorphism map, say, F . The problem however with

the sequence of automorphisms {Fj} is that we may have to switch between lower and

upper triangular maps when we iterate randomly. The last chapter of this thesis shows

that this method falls apart. We attempt to make the method by Rosay and Rudin more

transparent in the hope that one can find something that works for the sequence {Fj}.
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Chapter 2

Preliminaries

2.1 Holomorphic Mappings

We will consider holomorphic maps from Cn to Cn, where n ∈ N. We start with some

basic definitions:

Definition 2.1.1. A holomorphic mapping F of a domain Ω ⊂ Cl to a domain Ω
′ ⊂ Ck

is a function

F (z) =
(
f1(z), . . . , fk(z)

)
,

where fj is a complex-valued holomorphic function for all 1 ≤ j ≤ k and z = (z1, . . . , zl).

Holomorphic maps may also be represented by a system of linear equations

ηj = fj(z1, . . . , zl) j = 1, 2, . . . , k and ηj ∈ C.

A biholomorphic mapping F is a mapping which is holomorphic, injective, surjective,

and also has a holomorphic inverse F−1. We are interested in the case where l = k = n.

If we have a biholomorphic mapping F from Ω ⊂ Cn onto Ω
′ ⊂ Cn then we say that the

domains Ω and Ω
′

are biholomorphically equivalent.
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When n = 1, then the biholomorphic mappings are simply conformal mappings. The

Riemann Mapping Theorem, which says that any simply connected proper subdomian of

the plane is biholomorphically equivalent to the disc, is a very important result of the

case when n = 1. However, when n > 1 the same anology fails to be true. For example,

the ball and the polydiscs are not biholomorphically equivalent. An early result in several

complex variables established by Poincaré, showed that the ball and the bidisc in C2 are

not biholomorphic to each other.

Definition 2.1.2. An automorphism of Cn is a biholomorphic mapping of Cn onto itself.

Put differently, F is said to be an automorphism of Cn if it is holomorphic, one-to-one,

and onto, and also has a holomorphic inverse F−1. We denote the group of all such

automorphisms by Aut(Cn). The operation for this group is composition. For n = 1,

Aut(Cn) consists of all linear mappings (affine maps) F such that F (z) = az + b with

a, b ∈ C, and a 6= 0. However, when n ≥ 2, Aut(Cn) is a complicated group with infinite

dimension. The group Aut(Cn), for n ≥ 2 contains mappings F defined as

(i) F (z) =
(
z1, . . . , zj−1, zj + f(z1, . . . , ẑj, . . . , zn), zj+1 . . . , zn

)
or

(ii) F (z) = (z1, . . . , zj−1, zje
h(z1,...,ẑj ,...,zn), zj+1, . . . , zn)

where f, h are entire functions in all of Cn and ẑj means that zj is omitted.

We call the mappings F ∈ Aut(Cn) as defined in (i) Shears and those in (ii) are

called Overshears. The set consisting of all shears and overshears as well as all their

compositions is dense in Aut(Cn) [1]. So all shears and overshears are automorphisms of

Cn. There are other forms of automorphisms; some of which can be found in [6].

Definition 2.1.3. A point p ∈ Cn is said to be a fixed point of F ∈ Aut(Cn) if F (p) = p.

Let λi be the eigenvalues of the linear operator F ′(p) for 1 ≤ i ≤ n. We say that the
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automorphism F has an attracting fixed point if all the eigenvalues of F ′(p) are less than

one in absolute value, that is, |λi| < 1.

F has a repelling fixed point if |λi| > 1 for 1 ≤ i ≤ n. We say that F has a neutral

fixed point if |λi| = 1 for 1 ≤ i ≤ n.

Example 1. Let n = 1 and consider F ∈ Aut(C). By definition 2.1.2, F (z) = az+b,

a, b ∈ C, a 6= 0. We want F (p) = p, so let’s assume b = 0 and fix a point p = 0 in C.

Thus, F (z) = az and F (0) = 0. So we have that p = 0 is a fixed point of F . Taking

iterates of F gives us F n(z) = anz. Also F ′(z) = a and F ′(0) = a. Now observe the

following:

(α). If |a| < 1 then F n(z) −→ 0 as n→∞ for all z ∈ C.

(β). If |a| > 1 then F n(z) −→∞ if z 6= 0.

(γ). If |a| = 1 we can write a = eiθ, then F n(z) = einθz.

From the above, we see that in (α), the point p = 0 is an attracting fixed point. In

particular, F takes the whole C to the origin. In (β), the only point in C that converges

to the origin is the fixed point p = 0. Every other point aside the origin moves further

and further away from the origin with every iterate of F . So p = 0 is a repelling fixed

point here. Lastly, in (γ), p = 0 is a neutral fixed point. Every point in C remains the

same or is rotated.

Definition 2.1.4. Let F ∈ Aut(Cn), p ∈ Cn and F (p) = p. Assume that the eigenvalues

of F ′(p) satisfy |λi| < 1 for all i = 1, 2, . . . , n. Define

Ω =
{
z ∈ Cn : lim

k→∞
F k(z) = p

}
.

Then Ω is said to be a region attracted to a fixed point p by the automorphism F .

7
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We say that Ω is a Fatou-Bieberbach domain if it is a proper subset of Cn and is

biholomorphically equivalent to Cn. By proper subset, we mean that Ω ⊂ Cn and

Ω 6= Cn. Said differently, if F has more than one fixed point and Ω is biholomorphically

equivalent to Cn, then Ω is a Fatou-Bieberbach domain.

A Fatou-Bieberbach map is the biholomorphic map Ψ from Ω onto Cn.

Example 2. Let F : C2 −→ C2 be defined as F (z, w) =
(
1
2
w + z2, 1

2
z
)
.

So F ′(0, 0) =

0 1
2

1
2

0

.

Clearly, F is one-to-one and onto, and also there exists an inverse F−1 which is holomor-

phic. We rewrite F as F = I ◦ J ◦K, where I(z, w) = (w, z), J(z, w) = (z, w + 4z2), and

K(z, w) = (1
2
z, 1

2
w). So F−1 = K−1 ◦ J−1 ◦ I−1. Thus F−1(z, w) = (2w, 2z − 8w2). The

automorphism F fixes the origin and the eigenvalues of F ′(0, 0) are λ1 = 1
2

and λ2 = −1
2

which in absolute value are all less than one. Also |λ1|2 < |λ2| and |λ2|2 < |λ1|. Define

Ω =
{

(z, w) ∈ C2 : lim
k→∞

F k(z, w) = (0, 0)
}

.

Then by theorem 1.0.1, there is a map Ψ : Ω −→ C2 such that Ω and C2 are biholomor-

phically equivalent.

We want to show that Ω is a Fatou-Bieberbach domain. So simply, we want to show

that Ω 6= C2. Now define W =
{

(z, w) ∈ C2 : |z| > 100 and |z| > |w|
}

. Then it is

enough to show that F (W ) ⊂ W . Note that since (0, 0) /∈ W , F k(z, w) cannot converge

to (0, 0) whenever (z, w) ∈ W .

Let (z, w) ∈ W . We want to show that |1
2
w + z2| > 100 and |1

2
w + z2| > |1

2
z|.

|1
2
w + z2| ≥ |z|2 − 1

2
|w| > 100|z| − 1

2
|z| since |z| > |w|

So |1
2
w + z2| > (100− 1

2
)|z| > |z| > 100.

8
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Also |1
2
w + z2| > (100 − 1

2
)|z| > 1

2
|z|. So we have shown that F (z, w) ∈ W which also

implies that F (W ) ⊂ W . Thus, Ω 6= C2 and so Ω is a Fatou-Bieberbach domain.

Alternatively, the map F has more than one fixed point. Particularly, (0, 0) and (3
4
, 3
8
)

are fixed points of F . This means that Ω cannot be all of C2.

2.2 Resonances

As stated in the introduction, finding a solution to the functional equation in (∗∗) simply

depends on the set of eigenvalues of F ′(p) = A, commonly referred to as the Spectrum of

A. Resonance relations between the eigenvalues of A can affect our approach to finding a

desired solution. This emphasizes how relevant these resonances are in our work. Thus,

we consider the following definitions:

Definition 2.2.1. A monomial is a polynomial with only one term. A monomial can

be expressed in one variable or several variables. For example, z2w4t3u is a monomial

in four variables. Also, homogeneous polynomial is a polynomial that has its nonzero

terms all having the same degree. For example, zw2t3 +8z2w2t2 +3w4t2 is a homogeneous

polynomial of degree 6, in three variables. We see that the sum of the exponents in each

term is 6.

We focus more on homogeneous polynomials and monomials in several variables, so

for z = (z1, . . . , zn) ∈ Cn, c constant, and a multi-index α = (α1, . . . , αn) ∈ Nn, we have

that zα = czα1
1 · · · zαn

n is a monomial in n variables and
∑
|α|=m

cαz
α =

∑
|α|=m

cαz
α1
1 · · · zαn

n is

a homogeneous polynomial in n variables of degree m, where |α| = α1 + · · ·+ αn.

9
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Definition 2.2.2. Let F be a map from Cn to Cn and let k = (k1, . . . , kn) ∈ Nn be a

multi-index with |k| ≥ 2 such that

λk − λj := λk11 · · ·λknn − λj = 0 for some 1 ≤ j ≤ n.

We call such a relation a resonance of F relative to the j-th coordinate. We call k a

resonant multi-index relative to the j-th coordinate. As defined in [4],

Resj(λ) :=
{
k ∈ Nn||k| ≥ 2 and λk = λj

}
.

Definition 2.2.3. A resonant monomial is a monomial zk = czk11 · · · zknn in the j-th

coordinate with k ∈ Resj(λ), that is, |k| ≥ 2 and λk = λj and for some constant c.

Now let Hm = (h1, . . . , hn) : Cn −→ Cn be a holomorphic map with its components hi

being homogeneous polynomials of degree m. We shall denote the vector space of all such

holomorphic maps by Hm. Let B be a basis for Hm, then B consists of all maps Hm

that have every component to be zero except for one. The only nonzero component, is a

monomial with degree m. So if hj is this nonzero component, then hj(z) = zα = zα1
1 · · · zαn

n

with |α| = α1 + · · ·+ αn = m. Now we define a new monomial h∗j as follows:

h∗j(z) = zα1
1 · · · z

αj−1

j−1

where α1 + · · ·+ αj−1 = m, for m ≥ 2 and also λj = λα1
1 · · ·λ

αj−1

j−1 .

The h∗j defined here is a resonant monomial in the j-th coordinate. All elements

Hm ∈ B for which the nonzero component is a resonant monomial in a specific coordinate

shall be termed as Special. We let Xm ⊂ Hm be the subspace of Hm spanned by the

special basis elements. We denote by Ym the subspace of Hm spanned by the other basis

elements that are not special. Consider 1 > |λ1| ≥ |λ2| ≥ · · · ≥ |λn| > 0.

When m is so large that |λ1|m < |λn|, then no member of B is special. Here is the

reason why:

10
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|λ1|m < |λn| and so |λi|m < |λn|. This implies that |λi|m < |λj| since |λ1| < 1.

For the special members of B, we know that λj = λα1
1 · · ·λ

αj−1

j−1 . This implies that there

is a resonance relation at the j-th coordinate. Let α1 + α2 + · · ·+ αj−1 = m. Thus

|λj| = |λ1|α1 · · · |λj−1|αj−1 ≤ |λ1|α1|λ1|α2 · · · |λ1|αj−1 = |λ1|m

|λj| ≤ |λ1|m < |λn| ≤ |λj| since |λ1|m < |λn| by assumption.

This means that λj cannot be expressed as λj = λα1
1 · · ·λ

αj−1

j−1 if |λ1|m < |λn| for m

sufficiently large.

We shall let the map ΓA be defined by ΓA(H) = A ◦H −H ◦ A for H ∈Hm. So ΓA

is a linear operator on Hm for each m.

2.3 Triangular Mappings

From the introduction, we stated clearly that we are interested in Lower-triangular map-

pings. The reason is that when constructing a Fatou-Bieberbach map, we need to find

a lower triangular map whose iterates takes the whole Cn to zero. In addition, the in-

verse of these iterates also takes any neighborhood of zero to the whole of Cn. In simple

terms, we need a lower triangular map that contracts uniformly and whose inverse ex-

pands uniformly. We shall therefore define this lower triangular map G, and study its

properties.

Consider the holomorphic maps G = (g1, . . . , gn) from Cn to Cn which is given by the

system of equations of the form

g1(z) = c1z1

g2(z) = c2z2 + h2(z1)

g3(z) = c3z3 + h3(z1, z2)

11
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...

gn(z) = cnzn + hn(z1, . . . , zn−1)

where cj’s are scalars and hj is a holomorphic function of (z1, . . . , zj−1) which vanishes

at zero for every j. This kind of map is referred to as a Lower Triangular Map. The

Jacobian matrix of G is given by

G′(z) =



∂g1
∂z1

∂g1
∂z2

· · · ∂g1
∂zn

∂g2
∂z1

∂g2
∂z2

· · · ∂g2
∂zn

...
...

. . .
...

∂gn
∂z1

∂gn
∂z2

· · · ∂gn
∂zn


=



c1 0 · · · 0

∂h2
∂z1

c2 · · · 0

...
...

. . .
...

∂hn
∂z1

∂hn
∂z2

· · · cn


.

Therefore the matrix that represents the linear operator G′(0) is also lower triangular.

We also know that for a triangular matrix, its determinant is simply the product of the

entries in the leading diagonal. Thus, G′(0) is invertible if and only if none of the cj’s

equals zero. So G is an automorphism of Cn if and only if none of the cj’s are zero.

Now if g1, g2, . . . , gn are polynomials, that is, gj : Cn −→ C is a polynomial map

in several variables, then we call the mapping G a polynomial mapping. G is then said

to be a Lower Triangular Polynomial Automorphism of Cn. The degree of the lower

triangular map G is given as degG = max
i

deg gi for 1 ≤ i ≤ n. We shall define the

iterates of G, as Gk = (g
(k)
1 , . . . , g

(k)
n ). Therefore the degree of the iterates Gk is given as

degGk = max
i

deg g
(k)
i for 1 ≤ i ≤ n.

A similar idea still holds if we have an upper triangular map F = (f1, . . . , fn) given

by the system of equations below.

f1(z) = a1z1 + q1(z2, . . . , zn)

f2(z) = a2z2 + q2(z3, . . . , zn)

12
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...

fn−1(z) = an−2zn−2 + qn−2(zn−1, zn)

fn−1(z) = an−1zn−1 + qn−1(zn)

fn(z) = anzn

where the ai’s are scalars and qj is a holomorphic function of (zj+1, . . . , zn) and qj(0) = 0

for every j. F is then said to be an upper triangular map. The Jacobian matrix of F is

given by

F ′(z) =



∂f1
∂z1

∂f1
∂z2

· · · ∂f1
∂zn

∂f2
∂z1

∂f2
∂z2

· · · ∂f2
∂zn

...
...

. . .
...

∂fn
∂z1

∂fn
∂z2

· · · ∂fn
∂zn


=



a1
∂q1
∂z2

· · · ∂q1
∂zn

0 a2 · · · ∂q2
∂zn

...
...

. . .
...

0 0 · · · an


.

Likewise, F is an automorphism of Cn if and only if none of the ai’s are zero. And so

we can also have an Upper Triangular Polynomial Automorphism of Cn if f1, . . . , fn are

polynomial maps. The degree of F as well as the degree of the iterates F k are all defined

in a similar way as in the case of lower triangular maps.
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Chapter 3

Proof of a simplified version of the

main theorem

As we clearly stated in the introduction, theorem 1.0.1 becomes very easy to prove when

the eigenvalues, λ1, . . . λn, of the linear operator are related such that |λ1|2 < |λn|, for

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|. This assumption simply implies that there cannot be any

resonance relations between the eigenvalues of the linear operator. We start by stating

the following theorem:

Theorem 3.0.1. Suppose F ∈ Aut(Cn), p ∈ Cn, F (p) = p and the eigenvalues λi of the

matrix A = F ′(p) satisfy |λ1| ≥ |λ2| ≥ · · · ≥ |λn| and |λ1|2 < |λn|.

Define Ω =

{
z ∈ Cn : lim

k→∞
F k(z) = p

}
.

Then Ω is a region and there is a biholomorphic map Ψ from Ω onto Cn which is given

by Ψ = lim
k→∞

A−kF k and its convergence on every compact subset of Ω is uniform.

Proof. We begin this proof by letting p = 0. It is important to note that we do not

loose generality here if we take p = 0. Also let α, β1, β2, β be some constants satisfying

14
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β > β2 > β1 > |λ1| ≥ |λ2| ≥ · · · ≥ |λn| > α and β2 < α. This implies β < 1. At

p = 0, ∃ r > 0 such that z ∈ B(0, r) and so we have that

F (z) = Az +O(|z|2)

|F (z)| = |Az +O(|z|2)| ≤ ||A|| |z|+ |O(|z|2)|

By the definition of O(|z|2), it means that there exists a positive real number C such that

|F (z)| ≤ ||A|| |z|+ C|z|2 ≤ ||A|| |z|+ Cr|z| since |z| ≤ r

Now let Cr < δ.

So |F (z)| ≤ (||A||+ δ)|z| since ||A|| < β1 from the hypothesis of the above theorem.

|F (z)| ≤ β2|z| since ||A||+ δ < β1 + δ < β2

By the Spectral theorem, there exists m such that for z ∈ B(0, r) we get that Fm(z) ∈

B(0, r). Thus

|Fm(z)| ≤ βm2 |z| for some fixed m.

Let N = jm + i, j = 1, 2, . . . and 0 ≤ i ≤ m − 1. We put K = max
{
|F i(z)|
|z|

}
for

0 < |z| < r. Then we have that

|FN(z)| = |F i(F jm(z))| ≤ K|F jm(z)| ≤ Kβjm2 |z|.

And so for N large enough we get that

|FN(z)| < βN for every z ∈ B(0, r).

Now let q ∈ Ω then by the definition of Ω in the theorem we can see that F j(q) ∈ B(p, r)

for some j ∈ N.

So q ∈ F−j(B(p, r)) and Ω =
∞⋃
j=0

F−j(B(p, r))

This shows that Ω is a region and also F (Ω) = Ω. Let E be a compact subset of Ω. Then

we have that E ⊂ F−J(B(p, r)) for some J . Consider the sequence {A−kF k|E} and let

k = m+ J and ω ∈ B(p, r). Thus, A−kF k(ω) = A−(m+J)Fm+J(ω) = A−J(A−mFm)F J(ω).

15
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Hence for {A−kF k} to converge it is sufficient to show that {A−mFm} converges in B(p, r).

Therefore we want to show that for z ∈ B(p, r) the sequence {A−kF k(z)} is a Cauchy

sequence.

Let ω ∈ B(p, r)

ω − A−1F (ω) = ω − A−1(A(ω) +O(|ω|2))

= ω − ω − A−1O(|ω|2) since A−1 is linear

= A−1(O|ω|2))

|ω − A−1F (ω)| = |A−1(O(|ω|2))| ≤ b|ω|2 . . . . . . . . . . . . . . . . . . . . . (?)

b is some constant. Let z ∈ E.

|A−NFN(z)− A−(N+1)FN+1(z)| = |A−N(FN(z)− A−1F (FN(z)))|

≤ ||A−N || |FN(z)− A−1F (FN(z))| from (?)

≤ b||A−N || |FN(z)|2 since FN(z) ∈ B(p, r) forN large enough

< α−Nb
(
βN
)2
<

(
β2

α

)N
Now let ζk = A−kF k and consider the sequence {ζk}. Let m < n for some m,n ∈ N

|ζm − ζn| = |ζm − ζm+1 + ζm+1 − ζm+2 + · · ·+ ζn−1 − ζn|

≤ |ζm − ζm+1|+ · · ·+ |ζn−1 − ζn|

≤
n∑

j=m

(
β2

α

)j
≤

∞∑
j=m

(
β2

α

)j
=

(
β2

α

)m(
1

1− β2

α

)
for

β2

α
< 1

Hence the sequence {ζk} is Cauchy. Therefore its limit Ψ = lim
k→∞

ζk is a limit of a sequence

of automorphisms, hence it is holomorphic.

Claim 1. Ψ is one-to-one.

Assume Ψ = lim
k→∞

A−kF k is NOT one-to-one. This means that ∃ x, y : x 6= y and

Ψ(x) = Ψ(y). We also note that the Jacobian determinant, JΨ = det Ψ
′ 6= 0. This means

that Ψ is open. Let V, W be open neighborhoods, then Ψ(V ) and Ψ(W ) are also open.

16
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For x ∈ V and y ∈ W , we have that Ψ(x) = Ψ(y). This implies that Ψ(V ) ∩ Ψ(W ) 6= ∅

and so A−kF k(V ) ∩ A−kF k(W ) 6= ∅ for k large enough.

A−kF k(x̃) = A−kF k(ỹ) for some x̃ ∈ V and ỹ ∈ W .

Hence we have a contradiction. This proves that Ψ is one-to-one.

Claim 2. Ψ is onto.

We want to show that for Ψ : Ω −→ Cn, Ψ(Ω) = Cn for Ψ = lim
k→∞

A−kF k. All eigenvalues

of A−1 are larger than 1 in absolute value. Therefore A−1 is an expansion. Let B(p, ε) ⊂

Cn, since F ∈ Aut(Cn) has an attracting fixed point p, it implies that B(p, ε) ⊂ Ω. This

is because for z ∈ B(p, ε) we have that lim
k→∞

F k(z) = p. So A−1(B(p, ε) is larger than

B(p, ε). i.e. A−1(B(p, ε)) ⊃ B(p, (1 + δ)ε) for some small δ > 0. F (Ω) = Ω, and so

F k(Ω) = Ω. Ψ(Ω) = lim
k→∞

A−kF k(Ω) since A−k(B(p, ε)) −→ Cn as k −→∞.

So we have that Ψ is a biholomorphic map from Ω onto Cn.

Example 3. We shall define F ∈ Aut(C2) by F (z, w) = (αz, βw + z2), where

1 > α > β > 0. This implies that F (0, 0) = (0, 0), and A = F ′(0, 0) =

α 0

0 β

. Now

observe the following iterations of F :

F 2(z, w) =
(
α2z, β2w + β(1 + α2

β
)z2
)

F 3(z, w) =
(
α3z, β3w + β2

(
1 + α2

β
+ (α

2

β
)2
)
z2
)

...

F k(z, w) =
(
αkz, βkw + βk−1

(
1 + α2

β
+ · · ·+ (α

2

β
)k−1

)
z2
)

F k(z, w) −→ 0 as k −→∞ for all (z, w) ∈ C2. This is because α and β are less than 1.

17
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A−1 =

 1
α

0

0 1
β

 and A−k =

 1
αk 0

0 1
βk

.

Also we have that

(A−kF k)(z, w) =
(
z, w + β−1

(
1 + α2

β
+ · · ·+ (α

2

β

)k−1)
z2
)

.

The sequence {A−kF k} converges if α2

β
< 1 or α2 < β. Thus, the map Ψ : Ω → C2,

defined as Ψ = lim
k→∞

A−kF k exists if α2

β
< 1. The sequence however fails to converge if

α2

β
≥ 1.

The obvious conclusion here is this: the sequence {A−kF k} in theorem 3.0.1 fails to

converge if the assumption that |λ1|2 < |λn| does not hold. The sequence fails to converge,

not even locally, and even on the level of formal power series if this assumption is violated.

It is important to note that there are two (2) difficulties that arise when this assumption

is violated. The first is the presence of resonances and the second is when |λ1| ≮ |λn|. In

the latter case, we need the polynomial map Tm instead of just the identity map Id.

If we assume that α2 = β, then the sequence {A−kF k} will not converge as k tends

to infinity. However, there is a way to fix this problem when it occurs. The first case

of example 4 addresses this situation. Particularly, this situation implies that there is a

resonance relation between the eigenvalues α and β. Also if α2 > β, then we know that

we can no longer use the identity map but instead a polynomial map Tm for some m ≥ 2.

Thus, in both scenarios, we find a lower triangular map G : C2 → C2 with the desired

properties and a polynomial map T : C2 → C2 also with specific properties such that the

sequence {G−k◦T ◦F k} converges as k tends to infinity. In that case, Ψ = lim
k→∞

G−k◦T ◦F k.

We shall explain how this G and T are chosen in chapter 4.
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Chapter 4

Proof of Main Theorem

Before we prove the main theorem, we will first consider three important lemmas to help

prepare us for the proof of the theorem. The first lemma gives us the necessary details we

need to know about the ideal choice of the lower or upper triangular map of Cn as well

as its required properties.

Lemma 4.0.1. Let G be a lower triangular polynomial automorphism of Cn.

i). The degrees of the iterates Gk of G are then bounded, and there exists a constant

β <∞ so that

Gk(Un) ⊂ βkUn k = 1, 2, 3, · · ·

where Un is the unit polydisc in Cn.

ii). If |ci| < 1 for 1 ≤ i ≤ n then Gk(z) −→ 0 uniformly on every compact subset of

Cn and
∞⋃
k=1

G−k(V ) = Cn

for every neighborhood V of 0.
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Proof. (i). Let G = (g1, g2, · · · , gn) be a lower triangular polynomial automorphism of

Cn and let Gk = (g
(k)
1 , g

(k)
2 , · · · , g(k)n ). From the definition of G, we have that

g1(z) = c1z1

g2(z) = c2z2 + h2(z1)

...

gn(z) = cnzn + hn(z1, . . . , zn−1)

We observe that for G ◦ G, the first 3 components give us

g
(2)
1 (z) = (g1 ◦ g1)(z) = c21z1

g
(2)
2 (z) = (g2 ◦ g2)(z) = c22z2 + c2h2(z1) + h2(c1z1)

g
(2)
3 (z) = (g3 ◦ g3)(z) = c23z3 + c3h3(z1, z2) + h3(c1z1, c2z2 + h2(z1))

Similarly, the first 3 components of G ◦ G ◦ G, are as follows:

g
(3)
1 (z) = c31z1

g
(3)
2 (z) = c22(g2(z)) + c2h2(g1(z)) + h2(c1g1(z))

= c32z2 + c22h2(z1) + c2h2(c1z1) + h2(c
2
1z1)

g
(3)
3 (z) = c23(g3(z)) + c3h3(g1(z), g2(z)) + h3(c1g1(z), c2(g2(z)) + h2(g1(z))

= c33z3+c23h3(z1, z2)+c3h3(c1z1, c2z2+h2(z1))+h3(c
2
1z1, c

2
2z2+c2h2(z1)+h2(c1z1)).

It is easy to observe that the degree of the iterates of each of the components remains the

same at some particular point in the iteration. We shall now consider the more general

case.

Let µi = deg gi for 1 ≤ i ≤ n and let d = µ1 · · ·µn

We want to show that the statement S(n,k) : deg gi
(k) ≤ µ1 · · ·µi holds for all i =

1, 2, . . . , n. We show this by induction on i and k. Now consider the following three

(3) statements:
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S(m,k) : deg gi
(k) ≤ µ1 · · ·µi for 1 ≤ i ≤ m

S(1,k) : deg g1
(k) = µ1 true for all k

S(m,1) : deg gi = µi true for all 1 ≤ i ≤ m

We have that Gk+1 = G ◦Gk, hence

g
(k+1)
i = cig

(k)
i + hi(g

(k)
1 , . . . , g

(k)
i−1) for 2 ≤ i ≤ n.

deg gi
(k+1) = µi max

s ≤ i−1
deg gs

(k) and so deg gi
(k+1) ≤ µiµ1 · · ·µi−1

deg gi
(k+1) = µ1 · · ·µi ≤ µ1 · · ·µn = d. It is easy to see that degG = max

i
deg gi.

Therefore we have that degGk = max
i

deg gi
(k) for all i = 1, 2, 3, . . . , n. This implies that

deg gi
(k) ≤ µ1 · · ·µi for all i = 1, 2, . . . , n. As a result, the statement S(n,k) holds for

all i = 1, 2, . . . , n. Which means that the degree of the iterates Gk of G are bounded.

Expressing it mathematically, we write, degGk = max
1≤ i ≤ n

deg gi
(k) ≤ µ1 · · ·µn = d.

Let M be the number of multi-indices α = (α1, . . . , αn) that have |α| ≤ d and |α| =

α1 + · · · + αn. We need to place a bound on the coefficients of the g′is in order to avoid

the situation whereby they tend to infinity when iterated. Therefore, we choose C ≥ 1 so

that |gi| ≤ C on Un for 1 ≤ i ≤ n. Now we put β = MCd.

Claim 3. |g(k)i (z)| ≤ βk for z ∈ Un, 1 ≤ i ≤ n and k = 1, 2, . . .

We shall prove this by induction of k. Let g
(k)
i (z) =

∑
|α| ≤ d

aαz
α1
1 · · · zαn

n =
∑
|α| ≤ d

aαz
α

The above claim holds when k = 1, since |gi(z)| ≤ C ≤ β.

The coefficient aα =

∫
Tn

g
(k)
i (z) zα, where T n is the unit Torus. In terms of one variable,

we have that

1

2π

2π∫
0

eiαθe−iγθdθ =


0 if α 6= γ

1 if α = γ
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Claim 4. |aα| ≤ βk

Since Gk+1 = Gk ◦G we have that

g
(k+1)
i = g

(k)
i (g1, . . . , gn) =

∑
|α|≤ d

aαg
α1
1 · · · gαn

n

|g(k+1)
i | = |

∑
|α| ≤ d

aαg
α1
1 · · · gαn

n | ≤
∑
|α|≤d

|aα||g1|α1 · · · |gn|αn ≤MβkC |α|

≤MβkCd = βk+1

We can see that claim 3 is true since k has been replaced by k + 1. Hence claim 3 is true

if claim 4 holds. We shall now verify claim 4.

|aα| = |
∫
Tn

g
(k)
i (z)zα dθ| ≤

( 1

2π

)n 2π∫
0

· · ·
2π∫
0

|g(k)i (z)||z|α dθ1 · · · dθn

=
( 1

2π

)n 2π∫
0

· · ·
2π∫
0

|g(k)i (z)| dθ1 · · · dθn since |z|α = 1

≤
( 1

2π

)n 2π∫
0

· · ·
2π∫
0

βk dθ1 · · · dθn since |g(k)i (z)| ≤ βk

So |aα| ≤ βk. This implies that claim 3 true. Hence Gk(Un) ⊂ βkUn for k = 1, 2, . . .

(ii). We now want to show that for |ci| < 1 and 1 ≤ i ≤ n, Gk(z) −→ 0 uniformly on

every compact subsets of Cn and
∞⋃
k=1

G−k(V ) = Cn.

Let |ci| < 1 for 1 ≤ i ≤ n and let E be a compact subset of Cn. Let ||.||E denote

the supremum norm over E. So ||g(k)j ||E = sup{|g(k)j (z)| : z ∈ E}. Thus, ||g(k)1 ||E −→ 0

as k →∞. We prove by induction on i. We assume that 1 < i ≤ n and

(4.1) lim
k→∞
||g(k)j ||E = 0 for 1 ≤ j < i.

(4.2) lim
k→∞
||hi(g(k)1 , . . . , g

(k)
i−1)||E = 0 since hi(0) = 0 and from (4.1).

Let ε > 0. We know that g
(k+1)
i = gi ◦ g(k)i and so

|g(k+1)
i | = |cig(k)i + hi| ≤ |ci||g(k)i |+ |hi|

|g(k+1)
i | ≤ |ci||g(k)i |+ |hi(g

(k)
1 , . . . , g

(k)
i−1)| < |ci||g

(k)
i |+ ε
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for sufficiently large k. This follows from the fact that g
(k+1)
i = cig

(k)
i + hi(g

(k)
1 , . . . , g

(k)
i−1).

Let lim sup
k→∞

||g(k)i ||E = a. By taking lim sup of the above inequality, we get that

a ≤ |ci| a + ε and so a ≤ ε

1− |ci|
for all ε > 0. So (4.1) still holds if we replace i with

i+1. So by induction on i we conclude that Gk(z) −→ 0 uniformly on all compact subsets

of Cn.

We now use induction to confirm that ||g(k)i || are bounded on the set E. Now we assume

that the expression in (4.1) holds. Then it is enough to show this:

|g(k+1)
i | ≤ |ci||g(k)i |+ εk

≤ |ci|2|g(k−1)i |+ |ci|ε(k−1) + εk

≤ |ci|3|g(k−2)i |+ |ci|2εk−2 + |ci|εk−1 + εk

≤ |ci|k|gi|+ |ci|k−1ε1 + · · ·+ |ci|2εk−2 + |ci|εk−1 + εk

≤ |ci|k|gi|+
k−1∑
j=1

|ci|jB + εk

where B is any positive number. So ||gi||E is bounded.

The second part of (ii) follows directly as a consequence of the first part.

Lemma 4.0.2. Hm = Xm + ΓA(Hm), for m ≥ 2, where Hm, Xm, and ΓA = Ym are

defined as in section 2.2.

Proof. We will study the homogeneous polynomials h. Consider

h(z1, . . . , zj−1) =
∑

n≤|α|≤N

azα1
1 · · · z

αj−1

j−1 = hn + hn+1 + · · ·+ hN

Also hk =
∑
|α|=k

azα1
1 · · · z

αj−1

j−1 is a sum of monomials. Hm is spanned by monomials zβ

for |β| = m and Xm is a subspace of Hm spanned by the special monomials. From the
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definition in section 2.2, ΓA(H) = A ◦H −H ◦A, H ∈Hm. We choose coordinates so

that the matrix A is lower triangular.

Claim 5. Ym = ΓA(Hm)

Let D be a diagonal matrix which has λ1, λ2, . . . , λn down its main diagonal. Also let

H = (0, . . . , 0, zα, 0, . . . , 0) ∈ B with zα at the j-th spot and λ = (λ1, . . . , λn). The space

Ym is the the space spanned by the elements of the basis of B that are not special.

ΓD(H) = D ◦H −H ◦D

= (0, . . . , 0, λjz
α, 0, . . . , 0)− (0, . . . , 0, λαzα, 0, . . . , 0)

= (0, . . . , 0, (λj − λα)zα, 0, . . . , 0)

= (λj − λα)(0, . . . , 0, zα, 0, . . . , 0) = (λj − λα1
1 · · ·λαn

n )H

It is easy to see that if αk > 0 for k = j, j+1, . . . , n, then we have that λj−λα1
1 · · ·λαn

n 6= 0.

However, if H is special then

ΓD(H) = D ◦H −H ◦D

= (0, . . . , 0, λjz
α1
1 · · · z

αj−1

j−1 , 0, . . . , 0)− (0, . . . , 0, λα1
1 z

α1
1 · · ·λ

αj−1

j−1 z
αj−1

j−1 , 0, . . . , 0)

= (0, . . . , 0, (λj − λα1
1 · · ·λ

αj−1

j−1 )zα1
1 · · · z

αj−1

j−1 , 0 . . . , 0)

= (λj − λα1
1 · · ·λ

αj−1

j−1 )H = 0

Note that λj = λα1
1 · · ·λ

αj−1

j−1 whenever H is special in Hm. It is therefore clear that ΓD

“kills” precisely the elements in B which are special. Let H = (h1, h2, . . . , hn) ∈ Xm.

Each hj(z) =
∑

anz
α1
1 · · · z

αj−1

j−1 is a linear combination of resonant monomials which are

also homogeneous of degree m.

ΓD(H) = D ◦H −H ◦D = D(h1, . . . , hn)−H(Dz)

= (λ1h1, . . . , λnhn)− (h1(Dz), . . . , hn(Dz))

=
(
λ1h1 − h1(Dz), . . . , λnhn − hn(Dz)

)
.
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So if we consider the j-th component of ΓD(H) we can observe the following:

λjhj − hj(λ1z1, . . . , λnzn) = λjhj − λα1
1 z

α1
1 · · ·λ

αj−1

j−1 z
αj−1

j−1 . The reason for this is because

hj(λ1z1, . . . , λnzn) = λα1
1 z

α1
1 · · ·λ

αj−1

j−1 z
αj−1

j−1 .

So λjhj − hj(Dz) = λjhj − λα1
1 · · ·λ

αj−1

j−1 z
α1
1 · · · z

αj−1

j−1 = 0. This implies that ΓD(Xm) = 0

and so Hm = Xm + ΓD(Hm). Now the obvious question we ask ourselves is this:

Is ΓA(Xm) = ΓD(Xm)? We now focus on our given A and let ε > 0.

Let A =



a11 0 · · · 0

a21 a22 · · · 0

...
...

. . .
...

an1 an2 · · · ann


, Sε =



εn 0 · · · 0

0 εn−1 · · · 0

...
...

. . .
...

0 0 · · · ε


and

S−1ε =



1
εn

0 · · · 0

0 1
εn−1 · · · 0

...
...

. . .
...

0 0 · · · 1
ε



S−1ε ASε =



1
εn

0 · · · 0

0 1
εn−1 · · · 0

...
...

. . .
...

0 0 · · · 1
ε





a11 0 · · · 0

a21 a22 · · · 0

...
...

. . .
...

an1 an2 · · · ann





εn 0 · · · 0

0 εn−1 · · · 0

...
...

. . .
...

0 0 · · · ε


.
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S−1ε ASε =



a11 0 0 · · · 0

εa21 a22 0 · · · 0

ε2a31 εa32 a33 · · · 0

...
...

...
. . .

...

εn−1an1 εn−2an2 εn−3an3 · · · ann


.

This implies that S−1ε ASε −→



a11 0 · · · 0

0 a22 · · · 0

...
...

. . .
...

0 0 · · · ann


= D as ε −→ 0.

Now let π be the projection in Hm whose range is Xm and whose nullspace is Ym. Then

the map π + ΓD is a linear operator which is one-one and invertible on Hm. For ε > 0

small enough, the linear operator π + ΓS−1
ε ASε

is also invertible. Let S = Sε, to each

G ∈Hm, we will correspond some Ho ∈ Xm and some H ∈Hm such that S−1GS ∈Hm.

So S−1GS = Ho + ΓS−1AS(H) = Ho + (S−1AS)H −H(S−1AS) and

G = SHoS
−1 + A(SHS−1)− (SHS−1)A

Since S = Sε is a diagonal matrix then it implies that SHS−1 is just a scalar multiple of

H, for every H ∈ B. This is because

SHS−1(z) = S(0, . . . , 0, zα, 0, . . . , 0)
(

1
εn
z1, . . . ,

1
ε
zn

)
= S

(
0, . . . , 0,

(
1
εn
z1

)α1

· · ·
(

1
ε
zn

)αn

, 0, . . . , 0
)

=
(

0, . . . , 0, εn−(j−1)
((

1
εn
z1

)α1

· · ·
(

1
ε
zn

)αn
)
, 0, . . . , 0

)
.

Also for Ho ∈ Xm, SHoS
−1 ∈ Xm. Let SHoS

−1 = H1 and SHS−1 = H2, then

G = SHoS
−1 + A(SHS−1)− (SHS−1)A.

26



Resonances & Constructions of Fatou-Bieberbach Maps

G = H1 + AH2 −H2A, for H1 ∈ Xm, H2 ∈Hm

So G ∈ Xm+ΓA(Hm)

We shall now study an example in preparation towards our next lemma. The aim

of this example is to explain very simply the behavior of the occurrences of resonances

and how they affect our choices of G and H, where G is lower triangular polynomial

automorphism and H ∈Hm.

Example 4. Let F (z, w) = (αz, βw + z2), (z, w) ∈ C2 and α, β are real positive

numbers and 1 > α > β > 0. F ′(0, 0) = A =

α 0

0 β



F (z, w) = A

z
w

+O(|z|2) =

α 0

0 β


z
w

+ (0, z2)

Now let Tm : Cn −→ Cn be a polynomial map with Tm(0) = 0 and T
′
m(0) = Id, where

Id is the identity map. Let G be defined as in lemma 4.0.1 and consider the equation

below:

(∗) G−1 ◦ Tm ◦ F − Tm = O(|z|m) m ≥ 2.

Applying G to (∗) we get the following:

(∗∗) Tm ◦ F −G ◦ Tm = O(|z|m) m ≥ 2

CASE I: We assume that α2 = β. This implies a resonance relation between the

eigenvalues of A. Let G2 = A and T2 = Id for m = 2. Then by (∗∗) we get that;

(Id ◦ F −G2 ◦ Id)(z, w) = F (z, w)− A

z
w

 = (0, z2). Let P2(z, w) = (0, z2) ∈H2.

By our assumption, we see that the entry in the second coordinate of (F − A)(z, w) is a
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resonant monomial. Let Q2(z, w) = (0, z2), then Q2 ∈ X2 ⊂H2.

We define Gm+1 = Gm + Qm and Tm+1 = Tm + Hm ◦ Tm, for Qm ∈ Xm and Hm ∈ Hm.

So we get that;

G3(z, w) = G2(z, w) +Q2(z, w) = (αz, βw) + (0, z2) and

T3(z, w) = (T2 +H2 ◦ T2)(z, w) = (z, w) +H2(z, w).

We now need to find H2 to compute T3. By Lemma 4.0.2, we can decompose to get

P2 = A ◦H2 −H2 ◦ A+Q2.

Let H2(z, w) = (a1z
2 + a2w

2 + a3zw, b1z
2 + b2w

2 + b3zw), for a1, a2, a3, b1, b2, b3 ∈ C.

(P2 −Q2)(z, w) = (0, 0) = A
(
H2(z, w)

)
−H2(αz, βw)

= (αa1z
2 + αa2w

2 + αa3zw, βb1z
2 + βb2w

2 + βb3zw) −

(α2a1z
2 + β2a2w

2 + αβa3zw, α
2b1z

2 + β2b2w
2 + αβb3zw)

=
(

(α−α2)a1z
2+(α−β2)a2w

2+(α−αβ)a3zw, (β−α2)b1z
2+(β−β2)b2w

2+(β−αβ)b3zw
)

So (α− α2)a1 = (α− β2)a2 = (α− αβ)a3 = (β − α2)b1 = (β − β2)b2 = (β − αβ)b3 = 0.

We get that a1 = a2 = a3 = b1 = b2 = b3 = 0. Hence, H2(z, w) = (0, 0).

G3(z, w) = (αz, βw + z2) and T3(z, w) = (z, w) since H2 ◦ T2 = 0.

(T3 ◦ F −G3 ◦ T3)(z, w) = (Id ◦ F −G3 ◦ Id)(z, w)

= F (z, w)−G3(z, w)

= (αz, βw + z2)− (αz, z2 + βw) = (0, 0)

So we choose G(z, w) = G3(z, w) = (αz, βw + z2). So Gk(z, w) → 0 as k → ∞ for

all (z, w) ∈ C2 since Gk(z, w) =
(
αkz, βkw + βk−1(1 + c + · · · + ck−1)z2

)
. We choose

T = T3 = Id. Note that if α2 = β, it implies that α3 < β. This means that there cannot

be any resonance relations between the eigenvalues after m = 3. Thus, our choice of T .

We want to find G−k ◦ T ◦ F k, so we will first calculate G−1.
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Define J and K such that

J(z, w) = (αz, βw) and K(z, w) =
(
z, ( 1

α
z)2 + w

)
.

Then G = K ◦ J, G−1 = J−1 ◦ K−1 , and J−1 =

 1
α

0

0 1
β

. Also J−1(z, w) = ( 1
α
z, 1

β
w)

and K−1(z, w) =
(
z, w − ( 1

α
z)2
)
. Thus,

G−1(z, w) = J−1
(
z, w − ( 1

α
z)2
)

=
(
1
α
z, 1

β
w − 1

β
( 1
α
z)2
)
.

G−1 ◦ T ◦ F (z, w) = G−1(αz, βw + z2)

=
[
1
α

(αz), 1
β
(βw + z2)− 1

β

(
1
α

(αz)
)2]

=
(
z, w + 1

β
z2 − 1

β
z2
)

= (z, w)

So G−1 ◦ F = Id.

Let Ψ : Ω −→ C2 be defined as Ψ = lim
k→∞

G−k ◦ T ◦ F k. Then Ψ = Id.

Ω =
{

(z, w) ∈ C2 : lim
k→∞

F k(z, w) = (0, 0)
}

= C2 and so we see that Ψ(Ω) = Id(C2) = C2.

Alternative

G−1(z, w) =
( 1

α
z,

1

β
w − 1

βα2
z2
)

and so we get that

G−k(z, w) =

[
1

αk
z,

1

βk
w − 1

α2βk

(
1 +

β

α2
+ · · ·+

( β
α2

)k−1)
z2

]
. Thus, for T = Id,

G−k ◦ Id ◦ F k(z, w) = G−k
(
F k(z, w)

)
=

[
z, w+

1

β

(
1+

α2

β
+ · · ·+

(α2

β

)k−1
−
(α2

β

)k−1(
1+

β

α2
+ · · ·+

( β
α2

)k−1))
z2

]

=

[
z, w +

1

β
(k − k)

]
=
(
z, w

)
Remark. In certain situations, calculating the Tm’s for m ≥ 2 can go on forever as long

as there are higher order terms. The ideal choice of T is made based on the relation

between the smallest (|λn|) and largest (|λ1|) eigenvalues in absolute values. i.e. If there

exists an m0 large enough such that |λ1|m0 < |λn|, then we choose T = Tm0.
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Hm cannot contain resonant monomials. Therefore the polynomial map Tm cannot

contain resonant monomials.

CASE II: We assume that α2 < β. This implies that there are no resonances. This

also means that Qm ∈ Xm ⊂Hm is equal to zero for all m ≥ 2. Hence

G2 = G3 = · · · = Gm = A, T2 = Id and P2 = A ◦H2 −H2 ◦ A.

F (z, w) = A

z
w

+ (0, z2), where A =

α 0

0 β

 and P2(z, w) = (0, z2).

Let H2 ∈H2 be as in case I. Then by similar computation we solve for H2 in the equation

P2 = A◦H2−H2◦A. So a1 = a2 = a3 = b2 = b3 = 0 and b1(β−α2) = 1. Thus, b1 = 1
β−α2 .

Hence H2(z, w) =
(

0, 1
β−α2 z

2
)

. It is easy to see that when α2 = β we run into a problem.

T3 = T2 +H2 ◦ T2 =⇒ T3(z, w) =
(
z, w + 1

β−α2 z
2
)
.

Now (T3 ◦ F − A ◦ T3)(z, w) = (0, 0). So we choose G = A and T = T2 = Id. Thus,

Ψ(z, w) = lim
k→∞

A−kF k(z, w) =
(
z, w + 1

β−α2 z
2
)
.

Remark. We can observe that since G−k(z, w) =
(

1
αk z,

1
βkw

)
, then G−k ◦ T3 ◦ F k =(

z, w+ 1
β
(1 + c+ · · ·+ ck−1 + ck

1−c)z
2
)

=
(
z, w+ 1

β−α2 z
2
)
. Thus, Ψ(z, w) =

(
z, w+ 1

β−α2 z
2
)
.

So if we should choose T = T3 we still get Ψ as desired but it is not necessary since the

assumption that α2 < β is enough to make us choose T = T2.

We shall consider another example in C3. We begin by stating the following theorem

in [7]:

Theorem 4.0.3. Let P = (P1, . . . , Pn) be any polynomial mapping from Cn to itself with

P ′(0) invertible. Let max
i

(deg(Pi)) ≤ d. Then there exists an automorphism ψ of Cn such

that ψ(z)− P (z) = O(|z|d+1).
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Example 5. Let F̃ (τ) = (αz+t5, βw+z2+z6, γt+w2+z2w), for τ = (z, w, t) ∈ C3,

be a germ of an automorphism of C3. F̃ ′(0) is also invertible. So by theorem 4.0.3, the

germ of automorphism F̃ of C3 can be realized as an automorphism F defined as

F (τ) = (αz, βw+z2, γt+w2+z2w), for 1 > |α| ≥ |β| ≥ |γ| > 0. So F (0, 0, 0) = (0, 0, 0)

and A = F ′(0, 0, 0) =


α 0 0

0 β 0

0 0 γ

.

CASE I: Assume that there are no resonance relations between the eigenvalues of A.

F (τ) = Aτ +O(|τ |2) = (αz, βw, γt) + (0, z2, w2 + z2w).

Consider the expression below:

G−1m ◦ Tm ◦ F − Tm = O(|τ |m) for m ≥ 2.

We need to find G, lower triangular map in C3 and T , a polynomial map in C3, such that

the sequence {G−k ◦ T ◦ F k}k converges as k tends to infinity. Let G2 = A and T2 = Id

for m = 2. We get that,

(T2 ◦ F −G2 ◦ T2)(τ) = F (τ)− Aτ = (0, z2, w2 + z2w). So P2(τ) = (0, z2, w2) ∈H2.

F (τ)−Aτ − P2(τ) = (0, 0, z2w). Also P2 = Q2 +A ◦H2 −H2 ◦A = A ◦H2 −H2 ◦A

since Q2 = 0.

Now let Gm+1 = Gm + Qm and Tm+1 = Tm + H ◦ Tm, m ≥ 2. So Gm = A for

m ≥ 2 and T3 = T2 + H2 ◦ T2 = Id + H2 ◦ Id. We shall then find H2 by considering

P2 = A ◦H2 −H2 ◦ A.

Let hi(τ) = ai1z
2 + ai2w

2 + ai3t
2 + ai4zw + ai5zt+ ai6wt, where aij ∈ C for i = 1, 2, 3 and

1 ≤ j ≤ 6. Now let H2(τ) =
(
h1(τ), h2(τ), h3(τ)

)
. Substituting this into P2 and solving

similarly as in example 4, we get the following:
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a1j = a2k = a3l = 0 for 1 ≤ j ≤ 6, 2 ≤ k ≤ 6 and l = 1, 3, 4, 5, 6. So a21 = 1
β−α2 and

a32 = 1
γ−β2 . Thus, H2(τ) =

(
0,

1

β − α2
z2,

1

γ − β2
w2

)
.

So T3(τ) = (z, w, t) +

(
0,

1

β − α2
z2,

1

γ − β2
w2

)
=

(
z, w +

1

β − α2
z2, t+

1

γ − β2
w2

)
.

(T3 ◦ F −G3 ◦ T3)(τ) = T3 ◦ F (τ)− A ◦ T3(τ)

=

[
0, 0,

(
1 +

2β

γ − β2

)
z2w +

1

γ − β2
z4

]
.

So P3(τ) =

[
0, 0,

(
1 +

2β

γ − β2

)
z2w

]
and P3 = A ◦H3 −H3 ◦A, since Q3 = 0. Now

we simply assume that H3(τ) = (az3, bw3, ct3 + dz2w), for a, b, c, d ∈ C. Substituting H3

into P3 and solving, we get that:

a = b = c = 0 and d =
1

γ − α2β
+

2β

(γ − α2β)(γ − β2)
. So H3(τ) = (0, 0, dz2w).

T4(τ) =

[
z, w +

1

β − α2
z2, t+

1

γ − β2
w2 + dz2w +

d

β − α2
z4

]
.

(T4 ◦ F −G4 ◦ T4)(τ) = T4 ◦ F (τ)− A ◦ T4(τ)

=

[
0, 0,

(
1

γ − β2
+
(
α2 +

α4 − γ
β − α2

)
d

)
z4

]
.

Then P4(τ) = (0, 0, µz4), where µ =
1

γ − β2
+
(
α2 +

α4 − γ
β − α2

)
d. Similarly, we simply, let

H4(τ) = (ez4, fw4, gz4). Computing P4 = A ◦H4 −H4 ◦ A gives the following results:

e = f = 0 and g =
µ

γ − α4
. So H4(τ) = (0, 0, gz4).

So T5(τ) =

[
z, w +

1

β − α2
z2, t+

1

γ − β2
w2 + dz2w +

1

γ − α4

( 1

γ − β2
+ α2d

)
z4

]
.

(T5 ◦ F −G5 ◦ T5)(τ) = T5 ◦ F (τ)− A ◦ T5(τ) = (0, 0, 0).

We therefore choose G(τ) = Aτ = (αz, βw, γt). Hence G−1(τ) =
(

1
α
z, 1

β
w, 1

γ
t
)

and
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G−k(τ) =
(

1
αk z,

1
βkw,

1
γk

)
. Let t∗ be the expression below:

k∑
j=2

([
βj−1w+βj−2

( j∑
i=2

(α2

β

)i−2)
z2
]2

+(α2)j−1z2
[
βj−1w+βj−2

( j∑
i=2

(α2

β

)i−2)
z2
])
γk−j.

Then F k(τ) =
[
αkz, βkw+ βk−1

(
1 +

α2

β
+ · · ·+

(α2

β

)k−1)
z2, γkt+ γk−1(w2 + z2w) + t∗

]
.

Clearly F k(τ)→ 0 as k →∞. So we shall find Ψ = lim
k→∞

G−k ◦ T ◦ F k.

Observations:

1. If αj < γ, we choose T = Tj for 1 ≤ j ≤ 4 and so Ψ(τ) = lim
k→∞

A−k ◦Tj ◦F k(τ) = T5(τ).

Clearly, T5 ◦ F −G5 ◦ T5 = 0. This implies that Ψ(τ) = T5(τ).

2. For αm < γ, m ≥ 5, then we choose T = Tm = T5 since Tq = T5 for m ≥ 6. Also

Ψ(τ) = lim
k→∞

A−k ◦ Tm ◦ F k = T5(τ).

CASE II: Assume β2 = γ and α5 = γ.These are resonance of F relative to the third

coordinate. We can simply conclude that α6 < γ. In a similar way, we need to find G

and T such that

G−1 ◦ Tm ◦ F − Tm = O(|z|m), m ≥ 2

and also the sequence {G−k ◦T ◦F k}k converges as k tends to infinity. By letting G2 = A

and T2 = Id for m = 2, we consider (T2◦F−G2◦T2)(τ). We get P2(τ) = (0, z2, w2) ∈H2.

P2 = Q2 + A ◦H2 −H2 ◦ A, H2 ∈ H2 and Q2 ∈ X2. The entry in the third coordinate

of P2 together with the assumption that β2 = γ implies a resonance monomial. Thus,

Q2(τ) = (0, 0, w2) ∈ X2.

Let Gm+1 = Gm +Qm and Tm+1 = Tm +Hm ◦ Tm, for m ≥ 2.

G3 = G2 +Q2 and so G3(τ) = (αz, βw, γt+w2) and T3 = Id+H2 ◦ Id. We then find H2

by solving P2 −Q2 = A ◦H2 −H2 ◦A. If we were to solve P2 = A ◦H2 −H2 ◦A for H2,

we will end up getting 0 = 1 in one of the equations. So by subtracting Q2, we can now
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solve for H2. Let H2 be as in case I, then we get that H2(τ) =
[
0,

1

β − α2
z2, 0

]
.

So T3(τ) = (z, w, t) +

(
0,

1

β − α2
z2, 0

)
=

(
z, w +

1

β − α2
z2, t

)
.

This implies that (T3 ◦ F −G3 ◦ T3)(τ) =

[
0, 0,

(
1− 2

β − α2

)
z2w − 1

(β − α2)2
z4

]
.

So P3(τ) =

[
0, 0,

(
1− 2

β − α2

)
z2w

]
. Let λ = 1− 2

β − α2
. P3 = A ◦H3 −H3 ◦ A

since Q3 = 0. Now, by simply letting H3(τ) = (a
′
z3, b

′
w3, c

′
t3 + d

′
z2w) and solving

P3 = A ◦H3 −H3 ◦ A, we get d
′
=

λ

γ − α2β
. ∴ H3(τ) = (0, 0, d

′
z2w).

T4(τ) =

[
z, w+

1

β − α2
z2, t+ d

′
z2w+

d
′

β − α2
z4

]
and G4(τ) = G3(τ). We get that

(T4 ◦ F −G4 ◦ T4)(τ) =

[
0, 0,

(
d
′
α2 +

d
′
α4

β − α2
− d

′
γ

β − α2
− 1

(β − α2)2

)
z4

]
.

So P4(τ) = (0, 0, µz4), where µ = d
′
α2 +

d
′
α4

β − α2
− d

′
γ

β − α2
− 1

(β − α2)2
. Also Q4 = 0

and G5(τ) = G3(τ). Simply let H4(τ) = (k1z
4 + k2w

4, l1z
4 + l2w

4,m1z
4 + m2w

4) and

consider P4 = A ◦H4 −H4 ◦ A. We get that

k1 = k2 = l1 = l2 = m2 = 0 and m1 =
µ

γ − α4
. Thus, H4(τ) = (0, 0, m1z

4).

So T5(τ) =

[
z, w +

1

β − α2
z2, t+ d

′
z2w +

(
d
′

β − α2
+m1

)
z4

]
.

Hence (T5 ◦ F −G5 ◦ T5)(τ) = (0, 0, 0).

So we choose G(τ) = G3(τ) = (αz, βw, γt+w2) and T = T6 = T5 since Q5 = 0. Thus,

we have that G−1(τ) =
( 1

α
z,

1

β
w,

1

γ
t− 1

β2γ
w2
)

and

G−k(τ) =

[
1

αk
z,

1

βk
w,

1

γk
t− 1

β2γk

(
1 +

γ

β2
+ · · ·+

( γ
β2

)k−1)
w2

]
and so we have that
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Ψ(τ) = lim
k→∞

G−k ◦ T ◦ F k(τ) = T5(τ).

Lemma 4.0.4. Suppose that V is a neighborhood of 0 in Cn, F : V → Cn is holomorphic,

F (0) = 0, and that all eigenvalues λi of A = F ′(0) satisfy 0 < |λi| < 1. Then there exists

i). a lower triangular polynomial automorphism G of Cn with G(0) = 0, G′(0) = A,

and

ii). polynomial maps Tm : Cn → Cn with Tm(0) = 0, T ′m(0) = Id, so that

G−1 ◦ Tm ◦ F − Tm = O(|z|m|) m = 2, 3, . . .

Proof. We start by choosing coordinates so that A is lower triangular with eigenvalues λi

such that |λ1| ≥ · · · ≥ |λn|. Suppose that Tm : Cn −→ Cn with Tm(0) = 0, T ′m(0) = Id,

Gm is a lower triangular polynomial automorphism of Cn with G′m(0) = A and for m ≥ 2,

we get that

Tm ◦ F −Gm ◦ Tm = O(|z|m) (4.1)

If for m = 2 we put G2 = A and T2 = Id, then (4.1) is true. This is because

T2 ◦ F −G2 ◦ T2 = O(|z|2) and so (Id ◦ F − A ◦ Id)(z) = F (z)− Az = O(|z|2).

Let Pm ∈ Hm. Pm is defined as all the mth order terms of Tm ◦ F − Gm ◦ Tm and Qm

represents all the mth order terms of Tm ◦ F − Gm ◦ Tm spanned by the special basis

elements. By lemma 4.0.2 we can decompose Pm as Pm = Qm + A ◦Hm −Hm ◦ A for

some Qm ∈ Xm and Hm ∈Hm. We therefore rewrite (4.1) as :

Tm ◦ F −Gm ◦ Tm − Pm = O(|z|)m+1 (4.2)

The above expression, (4.2), means that the power series expansion on the left side has

terms of degree m + 1 or more. This is so because from (4.1) we know that the power
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series expansion of its left side has terms of degree m or more and since Pm ∈ Hm, has

terms of degree exactly m, the power series expansion of the left side of (4.2) has terms

of degree m+ 1 or more. Here is why

Tm ◦ F −Gm ◦ Tm =
(
. . . ,

∑
|α|=m

aαz
α +

∑
|α|≥m+1

aαz
α , . . .

)
and

Pm =
(
. . . ,

∑
|α|=m

aαz
α , . . .

)
.

We get that Tm ◦ F −Gm ◦ Tm − Pm =
(
. . . ,

∑
|α|≥m+1

aαzα , . . .
)

= O(|z|m+1).

Now we define the following:

Gm+1 = Gm +Qm and Tm+1 = Tm +Hm ◦ Tm.

We want to show that (4.1) holds for m+ 1. We shall prove this by also considering the

idea of resonance as explained in section 2.2. In the first case, we assume that there is no

occurrence of resonance and prove that (4.1) holds for m+ 1. Secondly, we shall consider

the case where there is resonance.

CASE I: We assume that there are no resonances. This implies that Qm ∈ Xm = 0,

thus, Qm = 0. Therefore Pm = Qm +A ◦Hm−Hm ◦A = A ◦Hm−Hm ◦A. By the given

definition, Gm+1 = Gm = A and Tm+1 = Tm +Hm ◦ Tm.

Tm+1 ◦ F −Gm+1 ◦ Tm+1 = Tm+1 ◦ F − A ◦ Tm+1

= (Hm ◦ Tm + Tm) ◦ F − A ◦ (Hm ◦ Tm + Tm)

= Tm ◦ F +Hm ◦ Tm ◦ F − A ◦Hm ◦ Tm − A ◦ Tm

= Tm ◦F −A ◦ Tm +Hm ◦
(
I +O(|z|2)

)
◦
(
A+O(|z|2)

)
−A ◦Hm ◦

(
I +O(|z|2)

)
= Tm ◦ F − A ◦ Tm +Hm ◦ I ◦ A+O(|z|m+1)− A ◦Hm ◦ I +O(|z|m+1)

= Tm ◦ F − A ◦ Tm + (Hm ◦ A− A ◦Hm) +O(|z|m+1)

= Tm ◦ F − A ◦ Tm − Pm +O(|z|m+1) = O(|z|m+1) from (4.2)

We therefore need to find an H such that Pm = A ◦Hm −Hm ◦ A
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CASE II: We assume that there are resonances. So Pm = Qm + A ◦Hm −Hm ◦ A.

Then we have that

Qm ◦ Tm+1 −Qm = O(|z|m+1) (4.3)

Tm+1 − Tm −Hm = O(|z|m+1) (4.4)

Proof of 3.5

Let m = 2, T2 = Id, and G2 = A. So we get that;

T3 = T2 +H2 ◦ Id H2 ∈H2

And so Q2 ◦ T3 −Q2 = Q2 ◦ (Id+H ◦ Id)−Q2 Q2 ∈ X2

= Q2 +Q2 ◦H2 −Q2 = Q2 ◦H2 = O(|z|3)

Even more generally, we have that

Qm ◦ Tm+1 =m ◦(Id+ S2) where S2 represents the higher order terms

=

( ∑
|α|=m

aαz
α

)
◦ (Id+ S2)

=
∑
|α|=m

[(Id+ S2)(z)]α =
∑
|α|=m

aαz
α +O(|z|m+1)

Qm◦Tm+1−Qm =
∑
|α|=m

aαz
α+O(|z|m+1)−

∑
|α|=m

aαz
α = O(|z|m+1) �

Proof of 3.6

Tm+1 − Tm −Hm = Hm ◦ Tm −Hm

= Hm ◦ (Id + O(|z|2) − Hm = O(|z|m+1) �

Now we want to show that (4.1) is true for m+ 1. Said differently, we shall show that
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Tm+1 ◦ F −Gm+1 ◦ Tm+1 = O(|z|m+1) is also true.

Let I = Tm+1 ◦ F −Gm+1 ◦ Tm+1 and II = Tm ◦ F −Gm ◦ Tm − Pm

Claim 6. I - II = O(|z|m+1)

If this claim is true, then I = II + O(|z|m+1) = O(|z|m+1) since from equation 4.2 we

know that II = O(|z|m+1). Now by substituting the definitions of Gm+1 and Tm+1 into I

and II, we arrive at the following:

I− II = (Tm+1 ◦ F −Gm+1 ◦ Tm+1)− (Tm ◦ F −Gm ◦ Tm − Pm)

= (Tm +Hm ◦ Tm) ◦ F − (Gm +Qm) ◦ Tm+1 − Tm ◦ F +Gm ◦ Tm + Pm

= Tm ◦F +Hm ◦Tm ◦F −Gm ◦Tm+1−Qm ◦Tm+1−Tm ◦F +Gm ◦Tm +Pm

I− II = Hm ◦ Tm ◦ F +Gm ◦ Tm −Gm ◦ Tm+1 −Qm ◦ Tm+1 +Qm +A ◦Hm −Hm ◦A

So I−II = Hm ◦ Tm ◦ F −Hm ◦ A︸ ︷︷ ︸
α

+Gm ◦ Tm −Gm ◦ Tm+1 + A ◦Hm︸ ︷︷ ︸
β

+Qm −Qm ◦ Tm+1︸ ︷︷ ︸
γ

We will show that α, β, and γ are all equal to O(|z|m+1) and we will be done.

Proof of α

Hm ◦ Tm ◦ F −Hm ◦ A = Hm ◦ (Id+O(|z|2)) ◦ (A+O(|z|2))−Hm ◦ A

= Hm ◦Id ◦A+O(|z|m+1) − Hm◦A = O(|z|m+1) �

Proof of β

G2 = A

G3 = G2 +Q2 = A+Q2, Q2 ∈ X2

G4 = G3 = Q3 = A+Q2 +Q3, Q3 ∈ X3

...
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Gm = A+
m−1∑
j=2

Qj, Qj ∈ Xj

Gm◦Tm−Gm◦Tm+1+A◦Hm = A◦Tm+
m−1∑
j=2

Q◦Tm−(A+
m−1∑
j=2

Qj)(Tm+Hm◦Tm)+A◦Hm

= A◦Tm+
m−1∑
j=2

Qj ◦Tm−A◦ (Tm+Hm ◦Tm)−
m−1∑
j=2

Qj ◦ (Tm+Hm ◦Tm) +A◦Hm

= A◦Tm−A◦Tm−A◦Hm ◦Tm+A◦Hm+
m−1∑
j=2

[
Qj ◦Tm−Qj ◦ (Tm+Hm ◦Tm)

]
= A ◦Hm − A ◦Hm ◦ Tm +

m−1∑
j=2

[
Qj ◦ Tm −Qj ◦ (Tm +Hm ◦ Tm)

]
= A ◦Hm − A ◦Hm ◦ (Id+O(|z|2)) +

m−1∑
j=2

[
Qj ◦ Tm −Qj ◦ (Tm +Hm ◦ Tm)

]
= A ◦Hm − A ◦Hm +O(|z|m+1) +

m−1∑
j=2

(
Qj ◦ Tm −Qj ◦ Tm +O(|z|m+1)

)
= O(|z|m+1) +O(|z|m+1)

Hence Gm◦Tm−Gm◦Tm+1+A◦Hm = O(|z|m+1). �

Remark. A ◦Hm is of degree m. In the above proof of β we can simply take Qj(z) = z2.

This implies that Qj(Tm)−Qj(Tm +Hm ◦ Tm) = T 2
m − T 2

m +O(|z|m+1). Also if B,C,D,

and E are maps, then the following holds: (B + C + D) ◦ E = B ◦ E + C ◦ E + D ◦ E.

However, E ◦ (B +C +D) 6= E ◦B +E ◦C +E ◦D. Equality will hold in this situation

if only E is linear. Tm consists of polynomials of degree at most (m - 1)! or less.

Proof of γ

β is the exact negation of (4.3) and so Qm−Qm ◦ Tm+1 = O(|z|m+1). �

So we have that I− II = O(|z|m+1) which further implies that I = II +O(|z|m+1). Hence

equation 4.1 is true for m+ 1.

Now if m grows large enough, Xm = 0, which means that Q ∈ Xm = 0 and so

Gm+1 = Gm. This therefore implies that we have the G as defined in part (i) of lemma
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4.0.2 which satisfies

Tm ◦ F −G ◦ Tm = O(|z|m) for all m ≥ 2.

If we then apply G−1 to the above equation we get that G−1 ◦Tm ◦F −Tm = O(|z|m).

We are now well prepared for the main proof of the theorem since we have stated and

proved the above three (3) lemmas. We state the following theorem:

Theorem 4.0.5. Suppose that F ∈ Aut(Cn), F (0) = 0, and all eigenvalues λi of F ′(0)

satisfy |λi| < 1 for i = 1, 2, . . . , n. Then there exists a biholomorphic map Φ from Cn onto

the region

Ω =

{
z ∈ Cn : lim

k→∞
F k(z) = 0

}
.

Moreover, Φ can be chosen so that JΦ ≡ 1 if JF is constant and also Φ = Ψ−1.

Proof. We shall again choose coordinates so that A = F ′(0) is lower diagonal, and

|λ1| ≥ · · · ≥ |λn|. As a result of the proof of Lemma 4.0.2, we can find a diagonal

operator S such that A0 = S−1AS is close to being diagonal and that |A0z| ≤ c|z| holds

for some constant c < 1 and all z ∈ Cn. This is true because of the assumption that

|λ1| < 1. Now if we put F0 = S−1FS and prove the above theorem for F0 to obtain Φ0

and Ω0, then it also holds for F , with Φ = SΦ0S
−1 and Ω = S(Ω0).

We now assume further that ||A|| < 1. We fix α such that ||A|| < α < 1. So at the

point 0, ∃r > 0 such that for z ∈ B(0, r) we have that

(1) |F (z)| ≤ α|z| for |z| ≤ r

It is obvious that B(0, r) ⊂ Ω and that Ω is a region, and F (Ω) = Ω. The proof

is similar to that of theorem 3.0.1. We shall consider three steps here. First, we will

associate G to F as in lemma 4.0.4. Secondly, we will apply lemma 4.0.1 (i) to G−1 in
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place of G and lastly we shall apply the Schwarz’s lemma to G−1. Then there is a constant

γ <∞ such that

(2) |G−k(ω)−G−k(ω′)| ≤ γk|ω − ω′ | k = 1, 2, . . .

for all ω, ω
′

with |ω| ≤ 1
2
, |ω′| ≤ 1

2
.

From part (i) of lemma 4.0.1 (by replacing G with G−1) we have that G−k(Un) ⊂ γkUn

for k = 1, 2, . . . and so γ > 1
|λn| . i.e. γ > 1

|λn| ≥ · · · ≥
1
|λ1| . Also we know by assumption

that ||A|| < α < 1 and the fact that we associate G to F in lemma 4.0.4, we get that

α > |λ1| ≥ · · · ≥ |λn|. Recall that we can always find m positive such that αm < |λn|.

This means that |λ1|m < αm < 1
γ
< |λn|. So for a fixed positive integer m, we have that

αm < 1
γ
.

By lemma 4.0.4, we can find a polynomial map T = Tm, with T (0) = 0, T ′(0) = I

such that G−1 ◦ T ◦ F − T = O(|ω|m) for m = 2, 3, . . . This means that there exists δ > 0

and a positive number M1 such that

(3) |G−1TF (ω)− T (ω)| ≤M1|ω|m for |ω| < δ.

Let E be a compact subset of Ω. Then we have that F s(E) ⊂ B(0, r) for some integer s.

Let k′ = s + k, then F k′(E) = F s+k(E) ⊂ F k
(
B(0, r)

)
⊂ αkB(0, r), for all k ≥ 0 by (1).

It implies that we can find a positive number M2 such that

(4) |F k(z)| ≤M2α
k < δ

for all z ∈ E. So for |F k(z)| < δ we have that

(5) |G−1TF k+1(z)− TF k(z)| =
∣∣G−1TF(F k(z)

)
− TF k(z)

∣∣
≤M1|F k(z)|m ≤M1M

m
2 α

mk

Since m is fixed and α < 1, for k large enough, |TF k(z)| < 1
2

and |G−1TF k(z)| < 1
2
, for

all z ∈ E. Now let ω = G−1TF k+1(z) and ω
′
= TF k(z). Therefore by applying (2) to (5)
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we get that

|G−k(ω)−G−k(ω′)| =
∣∣G−k(G−1TF k+1(z)

)
−G−k

(
TF k(z)

)∣∣
≤ γk|G−1TF k+1(z)− TF k(z)|

(6)
∣∣G−(k+1)TF k+1(z)−G−kTF k(z)

∣∣ ≤ γkM1M
m
2 α

mk = M1M
m
2 (γαm)k

We now put Ψk = G−k ◦ T ◦ F k(z) and consider the sequence {Ψk}k. We want to show

that {Ψk}k is a cauchy sequence. Let ε > 0 and k1 < k2 for some k1, k2 ∈ N with

k1, k2 > N ∈ N.

|Ψk2 −Ψk1| = |Ψk2 −Ψk2−1 + Ψk2−1 −Ψk2−2 + · · ·+ Ψk1+1 −Ψk1|

≤ |Ψk1+1 −Ψk1|+ · · ·+ |Ψk2 −Ψk2−1|

≤
k2−1∑
k1=m

Dtj ≤
∞∑

k1=m

Dtj = D
tm

1− t
< ε

where tj = (γαm)j and D = (k2 −m)M1M
m
2 . The sequence {Ψk}k converges since E

is a complete space. Thus, its limit

Ψ(z) = lim
k→∞

Ψk = lim
k→∞

(G−k ◦ T ◦ F k)(z)

exists uniformly on every compact subset of Ω. It also defines a map Ψ : Ω −→ Cn which

is holomorphic and also satisfies Ψ(0) = 0, Ψ′(0) = Id as well as the functional equation

(7) G−1 ◦Ψ ◦ F = Ψ

Claim 7. Ψ : Ω −→ Cn is onto.

We know that F (Ω) = Ω and so by (7) we can see that the range of Ψ and that of G−1 ◦Ψ

are equal. So we have that

G−1
(
Ψ(Ω)

)
= G−1

(
Ψ
(
F (Ω)

))
= Ψ(Ω)

G−2
(
Ψ(Ω)

)
= G−1

(
Ψ(Ω)

)
= Ψ(Ω)

G−3
(
Ψ(Ω)

)
= G−2

(
Ψ(Ω)

)
= Ψ(Ω)
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...

G−k
(
Ψ(Ω)

)
= Ψ(Ω)

...

Since B(0, r) ⊂ Ω, it means that Ψ(Ω) contains a neighborhood of 0. Hence by lemma

4.0.1 we can conclude that Ψ(Ω) = Cn = G−k
(
Ψ(Ω)

)
. Hence Ψ is surjective.

Claim 8. Ψ is one-to-one.

We assume that Ψ(x) = Ψ(y) for x, y ∈ Ω. The functional equation in (7) can be rewritten

as

(??) Ψ ◦ F = G ◦Ψ

by applying G−1 to both sides of (7). Therefore by (??) and the assumption that Ψ(x) =

Ψ(y), we have that

(? ? ?) Ψ
(
F (x)

)
= G

(
Ψ(x)

)
= G

(
Ψ(y)

)
So Ψ

(
F 2(x)

)
= Ψ

(
F
(
F (x)

))
= G

(
Ψ
(
F (x)

))
= G

(
Ψ
(
F (y)

))
by (? ? ?)

= Ψ
(
F
(
F (y)

))
= Ψ

(
F 2(y)

)
Continuing similarly, we get that Ψ

(
F k(y)

)
= Ψ

(
F k(y)

)
for every positive k. When k is

sufficiently large, F k(x) and F k(y) are in a neighborhood of 0 in which Ψ is one-to-one.

Thus F k(x) = F k(y), hence x = y. Therefore Ψ is one-to-one.

So we have shown that Ψ is a biholomorphic map from Ω onto Cn and since Φ = Ψ−1,

we are done.

Claim 9. JΦ ≡ 1 if JF is constant.

Assume that JF is constant. IfG is a polynomial automorphism of Cn then the polynomial

JG has no zero in Cn. Particularly, we have that JG = JF since G′(0) = F ′(0), thus,
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detG′(0) = detF ′(0).

Now we apply the chain rule to (??) to get

(JΨ)
(
F (z)

)
(JF )(z) = (JG)

(
Ψ(z)

)
(JΨ)(z)

(JΨ)(z) = (JΨ)
(
F (z)

)
since (JF )(z) = (JG)

(
Ψ(z)

)
= (JΨ)

(
F 2(z)

)
...

= (JΨ)
(
F k(z)

)
...

since F k(z) −→ 0 as k −→∞ we get that (JΨ)(z) = (JΨ)(0) = 1.

Therefore (JΨ)(0) = det
(
Ψ′(0)

)
= det I = 1, for all z ∈ Ω. Hence JΦ ≡ 1 on Cn if

JF is constant.
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Chapter 5

Constructing Fatou-Bieberbach

Maps

Given a sequence of automorphisms {Fj}, we attempt to construct Fatou-Bieberbach

maps. Choosing the desired triangular map as well as the right polynomial map, becomes

quite difficult here as compared to the case of just one automorphism map, say F . In

making the ideal choice of a triangular map, we realize that we sometimes will have

to switch between lower and upper triangular maps when dealing with a sequence of

automorphisms. When this happens, the method fails to work out.

The degree of the random iterates of lower and upper triangular maps is not bounded,

which makes it impossible for our choice of a triangular map to be a composition of lower

and upper triangular maps. We give an example to verify that the random iterates of

lower and upper triangular maps does not uniformly expand.

However, if we have random iterates of only lower triangular or only upper triangular

maps the method still works out well. We explain this by starting with the theorem below.
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The theorem is also true for a family of upper triangular maps.

Theorem 5.0.1. Let {Gj}j be a family of lower triangular maps with Gj(0) = 0. Suppose

that the modulus of the eigenvalues of G
′
j(0) is between 0 and 1 for each j ∈ N. Also

suppose that there exists a constant m such that degGj ≤ m for all j ∈ N. Then
∞⋃
N=1

G−1N ◦ · · · ◦G
−1
1

(
B(0, r)

)
= Cn, for r > 0

where B(0, r) is a ball in Cn centered at 0 with radius r.

Proof. Let Gj = (g(1,j), . . . , g(n,j)) be a lower triangular polynomial automorphism of Cn

for j ∈ N. So we define each Gj by the system of equations below.

g(1,j)(z) = c(1,j)z1

g(2,j)(z) = c(2,j)z2 + h(2,j)(z1)

g(3,j)(z) = c(3,j)z3 + h(3,j)(z1, z2)

...

g(n,j)(z) = c(n,j)zn + h(n,j)(z1, . . . , zi−1).

By definition of each Gj, we know that c(i,j)’s are scalars such that 0 < |c(i,j)| < 1 and

h(i,j)(0) = 0 for 1 ≤ i ≤ n and for all j ∈ N. Following a similar approach as with the

proof of part (i) of lemma 4.0.1 we see that the degrees of the random iterates of the

family of lower triangular maps {Gj} are also bounded. We shall therefore show that the

random iterates of the family of lower triangular maps converges to zero on every compact

subset of Cn.

Now let E ⊂ Cn be compact. For GN ◦ · · · ◦G1(z), we get that the first coordinate is

g(1,N) ◦ · · · ◦ g(1,1)(z) =
( N∏
k=1

c(1,N+1−k)

)
z1.

We should however note that if c(1,n) = an =
(
1 − 1

2n

)
then

∞∏
n=1

an =
∞∏
n=1

(
1 − 1

2n
)

is

greater than some positive number t > 0. Thus, ||g(1,N) ◦ · · · ◦ g(1,1)||E 9 0 as N −→ ∞.
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So we need to place a bound on the eigenvalues of G
′
j(0) to avoid running into a situation

like the one given above. In that case, we appropriately choose some constants p and q

such that 0 < p < |c(i,j)| < q < 1, for all j ∈ N and 1 ≤ i ≤ n. For instance, if we choose p

and q such that q2 < p, then ||g(1,N) ◦ · · · ◦ g(1,1)||E −→ 0 as N −→∞. So we assume that

the constants B and D have been appropriately chosen such that 0 < B < |c(i,j)| < D < 1.

Then ||g(1,N) ◦ · · · ◦ g(1,1)||E −→ 0 as N −→∞.

Assume now that 1 < i ≤ n and that

(5.1) lim
N→∞

||g(j,N) ◦ · · · ◦ g(j,1)||E = 0 for 1 ≤ j ≤ i− 1.

We will show that (5.1) still holds if i−1 is replaced by i. Consider GN+1◦GN ◦· · ·◦G1,

then we have that

g(i,N+1) ◦ g(i,N) ◦ · · · ◦ g(i,1) = c(i,N+1)

(
g(i,N) ◦ · · · ◦ g(i,1)

)
+

h(i,N+1)

(
g(1,N) ◦ · · · ◦ g(1,1), . . . , g(i−1,N) ◦ · · · ◦ g(i−1,1)

)
.

It follows from (5.1) that

(5.2) lim
N→∞

||h(i,N+1)

(
g(1,N) ◦ · · · ◦ g(1,1), . . . , g(i−1,N) ◦ · · · ◦ g(i−1,1)

)
|| = 0

since h(i,j)(0) = 0 for all j ∈ N and 1 ≤ i ≤ n. So given ε > 0, we get that

|g(i,N+1) ◦ · · · ◦ g(i,1)| ≤ |c(i,N+1)| |g(i,N) ◦ · · · ◦ g(i,1)|+

|h(i,N+1)

(
g(1,N) ◦ · · · ◦ g(1,1), . . . , g(i−1,N) ◦ · · · ◦ g(i−1,1)

)
|.

≤ |c(i,N+1)| |g(i,N) ◦ · · · ◦ g(i,1)|+ ε(1− |c(i,N+1)|) from (5.2).

Let b = lim sup
N→∞

||g(i,N) ◦ · · · ◦ g(i,1)||E. Then

b ≤ |c(i,N+1)| b+ ε(1− |c(i,N+1)|) and so lim sup
N→∞

||g(i,N) ◦ · · · ◦ g(i,1)||E ≤ ε.

Hence lim
N→∞

||g(i,N) ◦ · · · ◦ g(i,1)||E = 0 for 1 < i ≤ n. So (5.1) holds if i − 1 is replaced

by i. Therefore GN ◦ · · · ◦ G1(z) −→ 0 uniformly on every compact set E of Cn. As an

immediate consequence of this result, we see that when given any neighborhood of 0, say
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B(0, r), we conclude that
∞⋃
N=1

G−1N ◦ · · · ◦G
−1
1

(
B(0, r)

)
= Cn.

Example 6. There exists a family of triangular maps {Gj}j with Gj(0) = 0 and

with the eigenvalues of G
′
j(0),in absolute value, greater than 1 + ε for all j ∈ N and for a

fixed ε > 0 such that for all ro > r > 0, we get that
∞⋃
N=1

GN ◦ · · · ◦G1

(
B(0, r)

)
6= C2.

Proof. Let G1(z, w) = (z + w,w), G2(z, w) = (z, w − z) and G3(z, w) = (αz,−αw + z2),

for |α| ≥ 1. So G1 is an upper triangular map. G2 and G3 are both lower triangular

maps. Now

G2 ◦G1(z, w) = (z + w,−z)

G1 ◦G2 ◦G1(z, w) = (w,−z)

G3 ◦G1 ◦G2 ◦G1(z, w) = (αw, αz + w2). Let G3 ◦G1 ◦G2 ◦G1 = H.

So H−1(z, w) =
(

1
α
w − 1

α
( 1
α
z)2, 1

α
z
)

and H−1 ∈ Aut(C2), with H−1(0) = 0. The

eigenvalues of (H−1)′(0) are ± 1
α

.

We now define Ω =
{

(z, w) ∈ C2 : lim
k→∞

H−k(z, w) = (0, 0)
}

.

However, Ω 6= C2. Simply, the fixed point
(
α(1 − α2), 1 − α2

)
/∈ Ω and so Ω cannot be

the whole of C2. Thus,
∞⋃
k=1

Hk(B(0, r)
)
6= C2.

This example confirms that whenever we have random iterations of lower and upper

triangular maps our method of constructing a suitable triangular map with the required

properties fails.

We already know from the proof of the main theorem that when we have an automor-

phism F of Cn and F ′(0) = 0, with its eigenvalues in absolute values, strictly between 0

and 1, then Ω =
{
z ∈ Cn : lim

k→∞
F k(z) = 0

}
is biholomorphic to Cn. Likewise, when given
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a sequence of automorphisms {Fj} of Cn, we find out whether or not Ω is biholomorphic

to Cn, where Ω = {z ∈ Cn : FN ◦ · · · ◦ F1(z)→ 0}.

B. Stensønes and J. E. Fornæss in [2] showed that when given a sequence of auto-

morphisms {Fj} of a complex manifold M of dimension n, with Fj(0) = 0 and with the

modulus of the eigenvalues of F
′
j (0) strictly between 0 and 1, then Ω is biholomorphic to

some domain of Cn.

Let Fj : M −→ M be as defined above. Let Aj = F
′
j (0). Also let U be a small

neighborhood of 0 in M . Then the projection map π from U to the tangent space of M

at 0 T0M , is one to one. Let Ω ⊂M . Then for sufficiently large N , we get that

KN = {z ∈ Ω : FN ◦ · · · ◦ F1(z) ∈ U} for KN compact in Ω, and also

A−11 ◦ · · · ◦ A−1N ◦ π ◦ FN ◦ · · · ◦ F1(KN) = BN ⊂ BN+1, where BN ⊂ Cn.

Now for N sufficiently large, let
∞⋃
j=N

Bj = D ⊂ Cn. Then Ω is biholomorphic to the

domain D of Cn.
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