


4.4 Case studies
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Figure 4.11: Comparison between recorded and simulated GPS data, added arm

4.4.2 Case study: MRU lever arms - Gunnerus data

The data used for the MRU case study is different from the one used for the GPS case
studies. The reason for this is the update rate of the MARINTEK data. In August MAR-
INTEK logs with an update rate of 100Hz, and the MRUs also operate at 100Hz, whereas
in November MARINTEK logs with 50Hz. The GPS has an update rate of 1Hz, so it does
not matter whether data from November or August is used, but for the MRUs a higher up-
date rate is desirable. The data series that is used is one of the maneuvers intended for
lever arm estimation. However, this maneuver is shorter than the one used for the GPS
case studies.

The values for p, q, and r are shown in Figure 4.12. The yaw rate r appears to be somewhat
constant, but it is higher than for the GPS case study of Section 4.4.1.
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Figure 4.12: Plot of p, q, and r for MRU case study

Experimental measurements from MRU’s in Gunnerus are used, and the acceleration mea-
surements are transformed to NED-frame. There are no measurements of ν̇, and ν̈ avail-
able. The values for ν̇ are found from Eq. (4.69) as

ν̇ = R>A0 − Sν, (4.95)

and the value of ν̈ will be neglected from the observer equations in the case study.

Installed MRU’s

There were 4 MRU’s installed in R/V Gunnerus at the time of the sea trials, and in the case
study data from two of them will be used. The lever arms of those two MRU’s are given
in Table (4.6) below. measured by surveillance (Parker, 2013).

Table 4.6: MRU coordinates

Antenna Coordinates
x [m](pos fwd) y [m](pos stb) z [m](pos down)

MRU 1 0.358 0.804 4.321
MRU 2 14.978 0.039 0.568
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4.5 Conclusions and further work

Luenberger observer results

MRU accelerations from MRU’s with lever arms of coordinates[
0.358m 0.804m −4.321m

]>
,

and [
14.978m 0.039m 0.568m

]>
,

are used. The initial condition of the estimated arm coordinates are
[
30m 30m −30.0m

]>
,

and
[
30m 30m 30m

]>
.

The gains used in the simulation are

W =

[
W1 03×3

03×3 W2

]
, (4.96)

where

W1 = I3×3 (4.97)
W2 = diag{1, 0.8, 2} × 40000. (4.98)

The results of the observer are shown in Figure 4.13.
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Figure 4.13: Lever arm coordinates l1 (a), and l2 (b) MRU case study

4.5 Conclusions and further work

For the GPS case studies where GPS data is simulated it can be seen from Section 4.4.1
that the lever arms and P0 are clearly observable (and the adaptive observer is PE). Both
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observers have convergence in the lever arms, and the maneuver is sufficient for observ-
ability. The z-coordinate in the Luenberger observer have a (small) steady state offset, but
this coordinate seems to converge for the adaptive observer, although it is a bit noisy.

For the GPS case studies where the recorded GPS data is used both for the Luenberger and
the adaptive observer the lever arms converge close to the expected value. This becomes
clear when the lever arm estimates are initialized far from the expected value. However,
where the estimates of the lever arms were very accurate for the simulated GPS data, they
are quite inaccurate for the experimental GPS data.

This inaccuracy could be explained by the difference in the simulated, and the experimen-
tal GPS data, as shown in Figure 4.10 and 4.11. There are small deviations between the
GPS values, and this could be enough for the algorithms to become less accurate.

From Figure 4.13 is observed that the MRU estimation problem is observable. The lever
arms converge quite well, and is better than the GPS lever arms when using experimental
data. This is probably due to the fact that the MRU’s have an update rate of 100Hz,
whereas the GPS has an update rate of 1Hz.

For both the GPS and MRU case studies it would be interesting with a longer maneuver,
such that both observer algorithms could have time to converge with lower tuning. It could
also be interesting to look into the differences between the simulated GPS data, and the
actual.

For the GPS case study on experimental GPS data the x-coordinate of the lever arm seem-
ingly converges to a value close to 1m for both the Luenberger, and the adaptive observer.
It is difficult to say whether this is the case, because these results change slightly depend-
ing on the tuning of the observers. This again motivates a longer maneuver such that low
tuning can be used on both the observer designs, and more certain results can be obtained.
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Chapter 5
Hybrid integral action for DP

5.1 Introduction

5.1.1 Motivation

The motivation behind the hybrid integral action proposed in the following chapter is a
Dynamically Positioned (DP) marine vessel experiencing large unknown disturbances. DP
vessels normally experience wave loads, wind loads, and current. The loads that the inte-
gral action part of the controller normally compensate for are slowly varying forces, almost
constant for given periods of time. Because of this, the integral action is normally tuned
very low, such that it does not induce unnecessary oscillation.

However, if the vessel experiences sudden load changes such as ice loads, or a mooring
line that snaps, the integral action spends a long time (about 20 minutes) reaching the new
steady state value. This chapter proposes a method that improves the convergence for the
integral action when it is subject to large sudden disturbances that are constant some time
after impact. The proposed method augments the standard PID controller with a hybrid
integral action law.

5.1.2 Literature review

In El Rifai and El Rifai (2009), hybrid resetting of integral action for a PID controller is
discussed. Based on the sign of the position state and the integral state, the integral action
value is reset if they are of opposite sign, thereby reducing transient behavior of the closed
loop plant. For Prieur et al. (2012) a hybrid high-gain observer is constructed to reduce the
peaking behavior of the observer on a second order planar nonlinear system. Trajectories
with peaking are projected into areas without peaking behavior.
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A framework with several continuous controller and observer-pairs are proposed for hybrid
control of DP vessels in Nguyen et al. (2007). The operational window of a DP vessel is
extended by switching to different observer-controller pairs depending on the sea state.
This approach could have been used to augment the plant with a controller with a high
gain for the continuous integral action, and then switching back to a controller with lower
integral action gains when the integral error is small.

The method of El Rifai and El Rifai (2009) is similar to that of the following chapter in
that it uses the sign of the integral value and the states to determine when jumps can occur.
However, the goal of the following chapter is to use information about the states to update
the integral value, not only reset the integral value when the signs changes. This will be
especially useful when large constant disturbances should quickly be compensated for by
integral action.

5.1.3 Scope

The objective of the chapter is to improve performance of the PID controller when a sys-
tem is subject to large disturbance changes that remain constant for some time (step distur-
bance). A PID-controller is augmented with a hybrid (Goebel et al., 2012) integral action
law that changes the integral action value at discrete instances (jumps). When the absolute
value of the error in states are small, jumps are no longer allowed. This discrete change
in integral action value allows higher convergene of the integral action, with no, or small
overshoot. This will be developed for both a first order linear system, and a DP system.

Section 5.2 considers the mathematical modeling. Section 5.2.1 the preliminaries for hy-
brid control theory and the Lyapunov stability theory needed is summarized. The stability
conditions is then derived for both the first order system (Section 5.2.2), and the DP system
(Section 5.2.3). In these sections a theorem concludes the stability conditions for the hy-
brid system. In Section 5.3 there are case studies for both a linear system (Section 5.3.1),
and a DP system (Section 5.3.2).

5.2 Mathematical modelling

5.2.1 Preliminaries

The theory for hybrid control theory is based on Goebel et al. (2012). The benefit of the
theory is that continuous and discrete dynamics can be combined, and stability can be
proven. The aspects relevant for the approach of the chapter is mentioned below, but for a
more in-depth analysis of hybrid control theory, it is referred to Goebel et al. (2012).

Continous dynamics, here called flow, given generally by a differential inclusion F (x)
is allowed on the flow set C. The discrete dynamics, here called jumps, given by the
difference inclusion G(x) is allowed on the jump set D. In the following only a differen-
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5.2 Mathematical modelling

tial equation f(x), and difference equation g(x) will be used instead of F (x), and G(x)
respectively.

In order to prove stability of the systems in this paper, Theorem 3.18 of Goebel et al.
(2012), using a Lyapunov function is applied. This theorem proves global uniform (pre-
)asymptotic stability of the system, and requires the Lyapunov function to decrease in
value for both flow and for a jump. Since the jump augmentation of the PID controller
intends to improve performance, it makes sense to demand that V (x) also decreases in
jumps. To prove stability for a set A Theorem 3.18 in its most basic form is applied,
and restated below for convenience. Please note that ”pre-asymptotically stable” includes
solutions not being complete (Goebel et al., 2012), and since this is of no concern for the
systems considered, ”pre-asymptotically stable” is the same as ”asymptotically stable” for
this chapter.
Theorem 5 (Goebel et al. (2012) Theorem 3.18). (Sufficient Lyapunov conditions)
Let H = (C,F,D,G) be a hybrid system and let A ⊂ Rn be closed. If V is a Lyapunov
function candidate forH and there exists α1, α2 ∈ K∞, and a continuous positive definite
function ρ such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A) ∀x ∈ C ∪D ∪G(D) (5.1)
〈V (x), f〉 ≤ −ρ(|x|A) ∀x ∈ C, f ∈ F (x) (5.2)
V (g)− V (x) ≤ −ρ(|x|A) ∀x ∈ D, g ∈ G(D) (5.3)

then A is uniformly globally pre-asymptotically stable for H .

In the above theorem |x|A is the distance to the set A. In this paper the V̇ notation will be
used instead of 〈V (x), f〉, and for Eq. (??) V (g) and V (x) represents the value of V (x)
after and before a jump respectively. All stability proofs later in the chapter will use this
theorem to prove stability.

About the approach

The key for the proposed hybrid integral action in Section 5.2.2, and 5.2.3 is the location of
the jump set. It will be shown that when within the jump set, the proposed jump rule will
guarantee decrease of the Lyapunov function. The clue is therefore to restrict the jump set
to a set that will depend on the sign and size of the error in the integral value, and the sign
and error in other states. By construction of the problem, the integral error (the difference
between the unknown disturbance and the integral value) is unknown. Therefore, the
dynamic equations will be used to find an expression for the integral error, and a new jump
set will be formulated based on known states, and an estimate of a state derivative (that will
be found by sampling). Flow can occur in the entire state space. The jump rule proposed
is a linear jump rule, and jumps are proportional to the error in other state variables.

5.2.2 First order linear systems

In this approach a general first order system subject to an unknown constant disturbance
is presented. A control law with proportional control, and integral action is proposed, and
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the closed loop system dynamics is derived. Then the flow set, flow map, and the jump
map are defined, before Theorem 6 defines a jump set such that the jumps always decrease
the Lyapunov function. The theorem also gives conditions for stability in flow, such that
the combined system is stable.

Consider the first order system with an unknown constant disturbance d as input to the
system. The system is written as

ż = −az + d+ u (5.4)

ḋ = 0, (5.5)

where a > 0. Let zd be the desired z-value, and by selecting the control input u as

u = żd + azd − kp(z − zd)− d̂, (5.6)

with kp > 0, the closed loop error dynamics becomes

˙̃z = −(a+ kp)z̃ + d̃ = −a′z̃ + d̃ (5.7)
˙̃
d = ḋ− ˙̂

d = − ˙̂
d = −kiz, (5.8)

where d̃ = d− d̂, a′ = a+ kp > 0.

Below the flow set, flow map, and the jump map are defined. The jump set is defined in
Theorem 6. The states are defined as

x =

[
z̃

d̃

]
=

[
x1

x2

]
. (5.9)

.

Flow set

The flow set is the entire state space, so C is given as

C =
{
x ∈ R2

}
. (5.10)

Flow map

From (5.9), (5.7), and (5.8) the time derivative of the state ẋ, or the flow map f(x) is given
as

ẋ =

[
˙̃z
˙̃
d

]
=

[
−a′x1 + x2

−kix1

]
=

[
−a′ 1
−ki 0

] [
x1

x2

]
= Ax = f(x). (5.11)
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Jump map

In the proposed jump map x1 remain the same, and x2 is updated based on the x1-value,
such that

x+ =

[
x+

1

x+
2

]
=

[
x1

x2 − λx1

]
=

[
1 0
−λ 1

] [
x1

x2

]
= Ωx = g(x) (5.12)

Theorem 6. Given a linear system with x ∈ R2 of (5.9), the flow set C given by (5.10),
and the closed loop flow map f(x) given by (5.11), and jump map g(x) given by (5.12),
where the constants a′, ki, λ > 0, let α1, α2 ∈ K∞, and a Lyapunov function be given as

α1(|x|A) ≤ V (x) = x>Px ≤ α2(|x|A), (5.13)

where

P =

[
p1 p2

p2 p3

]
= P> > 0, (5.14)

is set such that the Lyapunov function decreases in flow. That is,

V̇ (x) ≤ −ρ(|x|A) ∀x ∈ C. (5.15)

Let

β := 2λp3 > 0, (5.16)

γ := λ2p3 − 2λp2 > 0, (5.17)
ε > 0, (5.18)
σ > 0, (5.19)

where ε and σ are constants. For the jump set given by

D =

{
x ∈ R2 : |x1| ≥ ε, x1x2 ≥

(γ + σ)x2
1 + σx2

2)

β

}
, (5.20)

then

V (g(x))− V (x) ≤ −σ|x|2, (5.21)

and by Theorem 5 the set A = {0, 0} is uniformly globally pre-asymptotically stable for
H = (C, f,D, g).

Proof. Consider the Lyapunov function given by (5.13). The time derivative of the Lya-
punov function gives

V̇ (x) =
(
x>P ẋ+ ẋ>Px

)
(5.22)

=
[
x>(PA+A>P )x

]
, (5.23)
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so for

PA+A>P < 0, (5.24)

V̇ (x) < 0 ∀x ∈ C, (5.25)

so if the matrix P is set such that PA +A>P < 0, the Lyapunov function decrease in
flow.

The value of the Lyapunov function after a jump, V (g) is

V (g) = x>Ω>PΩx, (5.26)

such that

V (g)− V (x) = x>[Ω>PΩ− P ]x,

= x>
[
λ2p3 − 2λp2 −λp3

−λp3 0

]
x. (5.27)

Expanding (5.27) gives

V (g)− V (x) = (λ2p3 − 2λp2)x2
1 − 2λp3x1x2,

= γx2
1 − βx1x2, (5.28)

and by inserting for (5.20) the inequality of (5.28) becomes

V (g)− V (x) ≤ −σ|x|2 ∀x ∈ D, (5.29)

so by Theorem (5.3), uniform global pre-asymptotic stability is guaranteed.

For Theorem 6 knowledge of the integral error is used to find the jump set. The inte-
gral error is not known, since the integral action is used to compensate for an unknown
disturbance. Therefore, the results of Theorem (6) is not applicable for a practical im-
plementation. In Remark 1, knowledge of the system dynamics is used to estimate the
integral error, and to find a jump set based on x1 and ẋ1.
Remark 1 (Practical implementation). For a practical implementation of Theorem 6, the
jump set D can not depend on x2. From the flow map of (5.11) x1x2 can be written as

x1x2 = a′x2
1 + x1ẋ1, (5.30)

such that the jump set of (5.20) can be rewritten as

D =

{
x ∈ R2 : |x1| ≥ ε, x1ẋ1 ≥

(γ + σ − a′β)x2
1 + σx2

2)

β

}
. (5.31)

The value of σ can be set arbitrarily small, such that Eq. (5.31) does in practice not
depend on the value of x2.
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5.2.3 DP system

Similar to the first order system, a closed loop system with integral action in the controller
will be derived. Then the flow set, flow map, and jump map are defined. Thereafter
Theorem 7 will define stability of the system by specifying a jump set that depends on the
states of the system.

Consider the linearized DP system of Section 2.1.4, that has kinematics and kinetics given
as

η̇ = R(ψ)ν, (5.32)

Mυ̇ = −Dν +R(ψ)>b+ τ , (5.33)

ḃ = 0, (5.34)

where b is considered a constant disturbance or bias force (from Eq. (5.34 )), and the linear
damping matrix satisfies D > 0, and the mass matrix is assumed to have the following
properties M = M> > 0, and Ṁ = 0. The system now contain a rotation matrix, mak-
ing it nonlinear. However, the jump map used will be linear, and similar to the approach
used in Section 5.2.2.

By using a backstepping approach with integral action (Skjetne and Fossen, 2004), the
x-variables can be defined as

x =

 R>η̃
ν − µ(η, t)

b̃

 =

x1

x2

x3

 , (5.35)

where µ(η, t) is a virtual control law to be defined later. An integral state b̂ is augmented
to the plant, and its dynamics are given as

˙̂
b = −KiR(ψ)x2, (5.36)

with Ki = K>i > 0. The other variables are defined as η̃ = η − ηd, b̃ = b − b̂, where
ηd is the desired position, and the desired velocity is zero (νd = 0). By setting the virtual
control law µ(η, t) as

µ(η, t) = −Kpx1 +R(ψ)>η̇d, (5.37)

withKp = K>p > 0, and the actual control input τ as

τ = −x1 −Kdx2 −R(ψ)>b̂+Dν +Mµ̇, (5.38)

whereKd = K>d > 0. This results in the closed loop continuous dynamics

ẋ1 = −rSx1 −Kpx1 + x2 (5.39)

Mẋ2 = −x1 −Kdx2 +R(ψ)>x3 (5.40)
ẋ3 = −KiR(ψ)x2, (5.41)
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and this is shown in Appendix A.

From the states defined in (5.35), and the continuous closed loop dynamics of (5.39 - 5.41),
the flow set, the flow map, and the jump map are defined below. The jump map is defined
similarly to that of Section 5.2.2, and the jump set is defined in Theorem 7.

Flow set

Flow should be allowed in the entire state space, and the flow map C is given as

C =
{
x ∈ R9

}
. (5.42)

Flow map

Rewriting the equations (5.39 - 5.41), the flow map f(x) is given as

ẋ1 = −rSx1 −Kpx1 + x2 (5.43)

Mẋ2 = −x1 −Kdx2 +R(ψ)>x3 (5.44)
ẋ3 = −KiR(ψ)x2. (5.45)

Jump map

For the jump map chosen the jump in integral action is proportional to x2. That is, the
same state variable used in the continuous integral action.

For a constant λ > 0,

Λ = diag{λ, λ, λ} > 0, (5.46)

the jump map is given as

x+ =

x+
1

x+
2

x+
3

 =

 x1

x2

x3 − Λx2

 =

I 0 0
0 I 0
0 −Λ I

x1

x2

x3

 = Ωe = g(x) (5.47)

Theorem 7. Given the closed loop DP system with x ∈ R9 of (5.35), the flow set given
by (5.42), and the closed loop flow map given by (5.43 - 5.45 ), and jump map given by
(5.47), let M = M>, Ṁ = 0, Ki = K>i , α1, α2 ∈ K∞, and a Lyapunov function be
given as

α1(|x|A) ≤ V (x) =
1

2
x>1 x1 +

1

2
x>2 Mx2 +

1

2
x>3 K

−1
i x3 ≤ α2(|x|A), (5.48)

such that V̇ (x) < 0, ∀x ∈ C can be shown.
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Let

β := 2ΛP3 > 0, (5.49)

Γ := Λ2P3 − 2ΛP2 > 0, (5.50)
ε1 > 0, (5.51)
ε2 > 0, (5.52)
σ > 0, (5.53)

where ε1, ε2, and σ are constants. For the jump set given by

D =
{
x ∈ R9 : |x1| ≥ ε1, |x2| ≥ ε2, (5.54)

x>2 K
−1
i x3 ≥

λ

2
x>2 K

−1
i x2 +

σ

2λ
[x>1 x1 + x>2 x2 + x>3 x3]

}
, (5.55)

then

V (g(x))− V (x) ≤ −σ|x|2, (5.56)

and the setA = {0,0,0} is uniformly globally pre-asymptotically stable forH = (C, f,D, g).

Proof. Stability in flow:

The time derivative of the Lyapunov function given by (5.48) gives

V̇ (x) = x>1 ẋ1 + x>2 Mẋ2 + x>3 K
−1
i ẋ3

= x>1 [−rSx1 −Kpx1 + x2] + x>2 [−x1 −Kdx2 +R(ψ)>x3]

+ x>3 K
−1
i [−KiR(ψ)x2]

= −x>1 Kpx1 − x>2 Kdx2 ≤ 0, (5.57)

and the continuous dynamics is uniformly globally stable (UGS) (Khalil, 2002), and to
proove UGAS Barbalats Lemma (Lemma (2)) is applied, since the system is time varying.
The double time derivative of V (x), V̈ (x) is

V̈ (x) = −2x>1 Kpẋ1 − 2x>2 Kdẋ2. (5.58)

From Eq. (5.48) it is known that x1, x2, and x3 are bounded. From Eq. (5.43) is can be
seen that ẋ1 is bounded, and from Eq. (5.44) ẋ2 is bounded, and hence, V̈ (x) is bounded,
and

lim
t→∞

V̇ = lim
t→∞

(−x>1 Kpx1 − x>2 Kdx2) = 0

Since x2 goes to zero as time goes to infinity, then

lim
t→∞

ẋ2 = 0,
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and by Eq. (5.44)

lim
t→∞

x3 = 0,

and UGAS can be concluded for flow ∀x ∈ C.
Stability in jumps:

The value of the Lyapunov function after a jump V (g) is given as

V (g) =
1

2
x>1 x1 +

1

2
x>2 Mx2 +

1

2
(x3 −Λx2)>K−1

i (x3 −Λx2)

=
1

2
x>1 x1 +

1

2
x>2 Mx2

+
1

2
[x>3 K

−1
i x3 − x>3 K−1

i Λx2 − x>2 Λ>K−1
i x3 + x>2 Λ>K−1

i Λx2], (5.59)

such that

V (g)− V (x) = −x>3 K−1
i Λx2 − x>2 Λ>K−1

i x3 + x>2 Λ>K−1
i Λx2, (5.60)

and since Λ = λI ,

V (g)− V (x) = −2λx>2 K
−1
i x3 + λ2x>2 K

−1
i x2. (5.61)

For

x>2 K
−1
i x3 ≥

λ

2
x>2 K

−1
i x2 +

σ

2λ
[x>1 x1 + x>2 x2 + x>3 x3], (5.62)

V (g)− V (x) ≤ −σ|x|2 < 0. (5.63)

As with the approach of the first order system, σ can be arbitrary small, so it does not
matter that x3 is unknown.

Since UGAS can be proved for both flow and jumps, UGAS (UGpAS) for the hybrid
system is concluded.

Remark 2 (Practical implementation). For a practical implementation of Theorem 7, the
jump set D can not depend on x3. From the flow map equation of (5.44) x>2 K

−1
i x3 can

be written as

x>2 K
−1
i x3 = x>2 K

−1
i R(ψ)[Mẋ2 + x1 +Kdx2] (5.64)

such that the jump set of (5.55) can be rewritten as

D =
{
x ∈ R9 : |x1| ≥ ε1, |x2| ≥ ε2, (5.65)

x>2 K
−1
i R(ψ)M ẋ2 ≥

λ

2
x>2 KIx2 +

σ

2λ
[x>1 x1 + x>2 x2 + x>3 x3] (5.66)

−x>2 K−1
i R(ψ)[x1 +Kdx2]

}
(5.67)

As in Remark 1, the value of σ can be set arbitrarily small, such that Eq. (5.67) does in
practice not depend on the value of the integral state error x3.
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5.3 Case studies

5.3.1 First order linear system

For this example both the cases when knowledge of x2 is assumed known, and when x2 is
estimated from sampling of ẋ1 are simulated. Consider the first order system

ż = −z + d+ u (5.68)

ḋ = 0, (5.69)

and control input u as

u = żd + zd − 9(z − zd)− d̂, (5.70)

so that the closed loop continuous dynamics becomes

˙̃z = −10z̃ + d̃ (5.71)
˙̃
d = −kix1. (5.72)

Let the state vector be given as

x =

[
z̃

d̃

]
=

[
x1

x2

]
. (5.73)

Typically the integral action would have a low tuning, so set ki = 1, and a′ is given as 10
by (5.71), so ẋ is written as

ẋ =

[
−10 1
−1 0

] [
x1

x2

]
= Ax, (5.74)

and for

P =

[
1 −0.1
−0.1 1

]
(5.75)

the condition given by (5.24) is satisfied, and the Lyapunov function decrease in flow.

For this example, the values chosen for λ, and ε are

λ = 3, (5.76)
ε = 0.3, (5.77)

such that Eq. (5.16), and (5.17) gives β = 6, and γ = 9.6, and the jump set given by
(5.20) becomes

D =

{
x ∈ R2 : |x1| ≥ 0.3, x1x2 ≥ 1.6x2

1 +
α3

β
(x2

1 + x2
2)

}
. (5.78)
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Note that α3 can be arbitrary small, so it is not considered in the simulation.

The jump set for when x2 is not assumed known, given by (5.31) becomes

D =

{
x ∈ R2 : |x1| ≥ 0.3, x1ẋ1 ≥ −8.4x2

1 +
α3

β
(x2

1 + x2
2)

}
. (5.79)

For both simulations a step of magnitude 100 at time t = 5s, and a step of −50 at time
t = 30 is applied.

Even though it is not necessary in terms of stability, a dwell-time (Goebel et al., 2012)
(minimum amount of time between jumps) of T = 0.1s is demanded between each jump
in the simulations. For the simulation run with x2 assumed known, it would work fine
without a dwell time, but if ε is set small, then all jumps necessary would be performed
with a magnitude λε2, which could require a lot of jumps. A method without dwell-time
could be computationally unfeasible. Also, a method without a dwell-time constraint could
be less robust, since it allows for an infinite number of jumps in no time, which means that
is could respond too quickly to noise. However, if the dwell-time is slower than the noise,
this would work as a noise filter. For the sampled version a dwell-time is needed in order
to sample values of x1.

For the second simulation run where ẋ1 is found by sampling, a sampling period of Ts =
0.03s is applied. Let x′1 be the value of x1 at previous sampling instant. Then ẋ1 is found
from

ẋ1 =
x1 − x′1
Ts

. (5.80)

White noise of power 0.1 is added to make the sampling process more realistic. It is not
crucial that the value for ẋ1 is correct, but it should be close in magnitude to the true value,
at least when close to the boundary of the jump set. This is because ẋ1 is just used as a
jump condition (defines the jump set), and the value itself is not used in any feedback.
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Results first order system - with knowledge of x2
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Figure 5.1: Position and integral state error first order system, no sampling
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Figure 5.2: Lyapunov function and integral state error zoom at time t = 5s, no sampling
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Results first order system - without knowledge of x2
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Figure 5.3: Position and integral state error first order system, with sampling, and white noise.
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Figure 5.4: Lyapunov function and integral state error zoom at time t = 5s, with sampling, and
white noise.
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5.3.2 Example - DP

In this example, knowledge of x3 will be assumed known for the first simulation run. For
the second simulation, x2 will be sampled to find an estimate of ẋ2. Some noise will be
added to this simulation, to make the sampling process more realistic.

Consider the closed loop DP system of Eq. (5.43 - 5.45) as

ẋ1 = −rSx1 −Kpx1 + x2 (5.81)

Mẋ2 = −x1 −Kdx2 +R(ψ)>x3 (5.82)
ẋ3 = −KiR(ψ)x2 (5.83)

with

M = diag{450, 450, 100} (5.84)
Kp = diag{100, 100, 50} (5.85)
Ki = diag{10, 10, 5} (5.86)
Kd = diag{500, 500, 200}, (5.87)

and λ, ε1, and ε2 chosen as

λ = 25, (5.88)
ε1 = 0.0001, (5.89)
ε2 = 0.01. (5.90)

For both simulations a step of magnitude

b =

3000
2000
1000

 , (5.91)

is applied at time t = 10s.

By the same reasoning as for the example for the first order system of Section 5.3.1 a
dwell-time is added between jumps here as well. The dwell chosen is T = 0.1s.

Similar to the example for the first order system of Section 5.3.1 a dwell-time is needed
in order to sample values of x2. For the second simulation run where ẋ2 is found by
sampling, a sampling period of Ts = 0.03s is applied. Let x′2 be the value of x2 at
previous sampling instant then ẋ2 is found from

ẋ2 =
x2 − x′2
Ts

. (5.92)

In the second simulation noise of power 20 has been added in all DOF.
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Results DP - with knowledge of x3

For the results below is says (N), (E), (Heading), on the plots, but this is not entirely
the case. The x1 state is η̃ transformed to body coordinates, and x2 is not equal to ν, but
in the plots x1, and x2 are called ”position” and ”velocity”.
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Figure 5.5: Position error DP, no sampling
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Figure 5.6: Velocity error DP, no sampling
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Figure 5.7: Integral error DP, no sampling
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Figure 5.8: Lyapunov function and zoom on integral error, no sampling
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Results DP - without knowledge of x3 - sampling of x2
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Figure 5.9: Position error DP, with sampling
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Figure 5.10: Velocity error DP, with sampling
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Figure 5.11: Integral error DP, with sampling
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Figure 5.12: Lyapunov function and zoom on integral error, with sampling

5.4 Conclusions and further work

For both the first order linear system, and the DP system the hybrid integral action im-
proves performance for large constant disturbances. The state estimates, and the integral
action error converge much faster than in the case without jumps. After a step the integral
action converge to the new value quickly, and (almost) without overshoot. When sampling
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is used to find the jump set, the performance decrease is negligible compared to the ideal
case, and the noise does not induce problems.

For further work the algorithm should be tested on more realistic data, either a compre-
hensive numerical ice simulation, or a model test for a DP vessel subject to large step
changes in disturbances. It would be interesting to see how this approach could improve
performance (offset from desired position), thrust, and power consumption. One other
interesting aspect for a model test is how performance is affected by sensor noise. For
the DP system an alternative to sampling the velocity is to use accelerometers to find the
accelerations.
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Appendix

By differentiating Eq. (5.35), using the dynamics from Eq. (5.32), (5.33), and (5.36),
and inserting for the virtual control µ(η, t) given by (5.37), and the controller τ given by
(5.38), the resulting closed loop dynamics for ẋ becomes

ẋ1 = Ṙ(ψ)>(η − ηd(t)) +R(ψ)>(η̇ − η̇d(t))
= −rSR(ψ)>(η − ηd(t)) + ν −R(ψ)>η̇d(t))

= −rSx1 + x2 + µ(η, t)−R(ψ)>η̇d(t))

= −rSx1 −Kpx1 + x2,

Mẋ2 = Mν̇ −Mµ̇

= −Dν +R(ψ)>b(t) + τ −Mµ̇

= −x1 −Kdx2 −R(ψ)>(b̂− b)
= −x1 −Kdx2 −R(ψ)>x3,

such that the closed loop dynamics is given as

ẋ1 = −rSx1 −Kpx1 + x2

Mẋ2 = −x1 −Kdx2 +R(ψ)>x3

ẋ3 = −KiR(ψ)x2
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