
Chapter 1
Lever arm

TO DO list:

• legg til eksempel p PE

• fullfr Observability proof

• gjr simulering med null bevegelse

1.1 Introduction

For ships an accurate position measurement is important, and for a vessel with several
global navigation satellite system (GNSS) antennas, a pre-defined common reference point
for these antennas is normally introduced. The length from an antenna to the reference
point is called a lever arm. These lever arms needs to measured quite accurately to en-
sure good position measurements, and this is normally done done by surveying with laser
equipment. This process is accurate, but time consuming and expensive. If the lever arms
could be estimated numerically, this would save time and expenses.

For GPS and INS integration extensive research has been performed in [2], [3], and [4]. A
single antenna GPS with accurate measurements is used in combination with a low-grade
inertial measurement unit (IMU). In [2] the observability of the error states in the INS/GPS
integrated system is studied, and in [3] experimental studies verify the lever arm estima-
tion of the GPS antenna using a .

In the following a similar observability analysis will be performed, but only using the
GPS measurements, and allowing for several antennas. Other measurements needed are
assumed available.
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1.2 Scope
The scope of the chapter is to investigate what manuevre is needed for a vessel in order
to estimate the GNSS lever arms, of potentially several GNSS antennas. A Luenberger
type observer, and an adaptive approach are investigated. The GNSS Real data from a sea
trial perfomed with the NTNU owned vessel RV Gunnerus will be used to see how well
the lever arms can be estimated with the proposed approaches. 6 degrees of freedom will
be assumed, and measurements from all the global navigation satellite system (GNSS)
positions are available, but measurements of the common and pre-defined reference point,
P0, is not.

1.3 Problem formulation
The GNSS positions in the North-East-Down (NED) frame can be presented as

PGNSS1(t) = P0(t) +R(Θ)l1

PGNSS1(t) = P0(t) +R(Θ)l2 (1.1)
...

PGNSSm(t) = P0(t) +R(Θ)lm

where P0(t) is some common and pre-defined reference point in the vessel body frame,
R(Θ) is the rotation matrix between the body and the NED frame [1], and is given by

R(Θ) =

cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ


∈ R3×3 (1.2)

where c(·) = cos(·), s(·) = sin(·) and Θ =
[
φ θ ψ

]T
contains the Euler angles in

roll, pitch and yaw, respectively. p, q and r are the angular body velocities in roll, pitch
and yaw, respectively.
Also,

Ṙ(Θ) = R(Θ)S(ω) (1.3)

where

S(ω) =

 0 −r q
r 0 −p
−q p 0

 . (1.4)

This can be written on a state space form as

x =
[
P0 l1 l2 · · · lm

]T ∈ R3n, n = m+ 1 (1.5)

y =
[
PGNSS1 PGNSS2 · · · PGNSSm

]T ∈ R3m (1.6)



where ν =
[
u v w

]T
is the linear velocity of the vessel in body coordinates, assumed

measured. Thus, the dynamics of P0 can be represented as [1]

Ṗ0 = R(Θ, t)ν(t) (1.7)

The lever arms are constants and hence l̇i = 0, i = 1 · · ·m. The total system description
can be written as

ẋ = B(t)ν(t) (1.8)

y(t) = C(t)x (1.9)

The system can be thought of as a linear time varying (LTV) system, setting R(Θ) :=
R(t), since R (·) is not state dependent, but will vary in time. The matrices of (1.8) and
(1.9) are given by

B(t) =
[
R(t) 0 0 · · · 0

]T ∈ R3n×3 (1.10)

C(t) =


I3×3 R(t) 03×3 · · · 03×3

I3×3 03×3 R(t)
. . .

...
...

...
. . . . . . 03×3

I3×3 03×3 · · · 03×3 R(t)

 ∈ R3m×3n. (1.11)

x includes all the state parameters to be estimated. The only time-varying parameter is
P0(t), and in itself it is not of interest - the constant lever arms are. Time indexes might be
omitted for notational simplicity, when there is no ambiguity.

1.3.1 Observability assessment
In this section the observability criterion for the system given by Eq. (1.8) and (1.9) will
be investigated. Because the A(t) matrix of the system is zero, the state transition matrix
is identity. This gives the following observability criterion for the system as [? ],

W0(t0, t1) =

∫ t1

t0

C(τ)TC(τ)dτ (1.12)

if W0(t0, t1) is nonsingular (if this theorem is to be included, fix it).

C(t)T =


I3×3 I3×3 · · · I3×3
R(t)T 03×3 · · · 03×3

03×3 R(t)T
. . .

...
...

. . . . . . 03×3
03×3 · · · 03×3 R(t)T

 ∈ R3n×3m (1.13)



C(t)TC(t) =


(n− 1)I3×3 R(t) · · · R(t) R(t)

Rt)T I3×3 03×3 · · · 03×3
... 03×3

. . . . . .
...

R(t)T
...

. . . I3×3 03×3
R(t)T 03×3 · · · 03×3 I3×3

 ∈ R3n×3n (1.14)

From (1.11) it can be found that if R(t) has full rank, then C(t) and CT (t) also have full
rank, i.e. 3m. From [? ] it is found that the rank of C(t)TC(t) ∈ R3n×3n will at most be
3m, as

rank(AB) ≤ min(rank(A), rank(B)) (1.15)

where both A and B are matrices.

In other words the matrix is not full rank in the first place, and need to ”add rank” as
time increases [? ]. To find the observability condition(s), Theorem 6.O12 from [? ] is
used, and the theorem is restated here for its convenience.

Theorem 1 (Thm 6.O12 [? ]). Let A(t) and C(t) be continously differentiable, then the
n-dimensional pair (A(t),C(t)) is observable at t0 if there exists a finite t1 > t0 such that

rank


N0

N1

...
Nn−1

 = n

where Nm+1 = Nm(t)A(t) + d
dtNm(t) m = 0, 1 . . . n− 1

with N0 = C(t).

For the system at hand, both C(t) and A(t) are continuously differentiable, and C(t) has
rank 3m given that R(t) has full rank.

Hence, given C(t) full row rank, a rank of 3 is lacking to fulfil rank n of theorem 6.O12
(C(t) has three more columns than rows). Thus, N1 must contribute with 3 more indepen-
dent rows for the observability condition to be satisfied.
Finding N1:

N1 = N0(t)A(t) +
d

dt
N0(t) (1.16)

= 0 +
d

dt
C(t) (1.17)

Ċ =


03×3 R(t)S(t) 03×3 · · · 03×3

03×3 03×3 R(t)S(t)
. . .

...
...

...
. . . . . . 03×3

03×3 03×3 · · · 03×3 R(t)S(t)

 . (1.18)



Finding N2:

N2 = N1(t)A(t) +
d

dt
N1(t) (1.19)

= C̈(t) (1.20)

C̈ =


03×3 R(t)S(t)2 +RṠ 03×3 · · · 03×3

03×3 03×3 R(t)S(t)2 +RṠ
. . .

...
...

...
. . . . . . 03×3

03×3 03×3 · · · 03×3 R(t)S(t)2 +RṠ

 . (1.21)

giving

N0

N1

N2

 =



I3×3 R(t) 03×3 · · · 03×3

I3×3 03×3 R(t)
. . .

...
...

...
. . . . . . 03×3

I3×3 03×3 · · · 03×3 R(t)
03×3 R(t)S(t) 03×3 · · · 03×3

03×3 03×3 R(t)S(t)
. . .

...
...

...
. . . . . . 03×3

03×3 03×3 · · · 03×3 R(t)S(t)

03×3 R(t)S(t)2 +RṠ 03×3 · · · 03×3

03×3 03×3 R(t)S(t)2 +RṠ
. . .

...
...

...
. . . . . . 03×3

03×3 03×3 · · · 03×3 R(t)S(t)2 +RṠ



,

(1.22)

where

Ṡ =

 0 −ṙ q̇
ṙ 0 −ṗ
−q̇ ṗ 0

 . (1.23)

For the system to be observable, the requirement is that rank(
[
N0 N1 N2

]T
) = 3n.

From analysis in MATLAB (see Appendix), this requirement is found to be fulfilled if
either p, q, r 6= 0, and either ṗ, q̇, ṙ 6= 0.

Proposition 1. For the system of Eq. (1.8) and (1.9) to be observable, either p, q, r 6= 0,
and either ṗ, q̇, ṙ 6= 0.

In practice, by trying to manoeuvre with a constant yaw rate r, there will be some
nonzero ṙ, and observability will be assured. The will also be some motion in the other
degrees of freedom. The fact that a constant yaw rate manoeuvre is sufficient will be
investigated with sea trial results from RV Gunnerus.



1.4 Observer design
The following observer is proposed

˙̂x = B(t)v(t) + C(t)>Wỹ

= B(t)v(t) + C(t)>WCx̃ (1.24)

ỹ = C(t)x̃, (1.25)

where W = WT > 0 ∈ R3m×3m, x̃ = x − x̂, ỹ = y − ŷ, and with closed loop error
dynamics as

˙̃x = −C(t)>WC(t)x̃. (1.26)

In order to show exponential stability of the observer, the following lemma from [? ] is
applied.

Lemma 1. Exponential stability of LTV system [? ]
For a system given by ẋ = F (t), and the function F (·) is locally integrable. Suppose there
exits a positive definite matrix P = PT > 0 such that

PF (t) + F>(t)P ≤ −N(t)TN(t) (1.27)

for some matrix function N(·) and all t. Then ẋ = F (t) is uniformly stable in the sense of
Lyapunov.

If, further the pair [F (t), N(t)] is uniformly completely observable, that is, writing φ(t, τ)
as the transition function of ẋ = F (t), there exits T > 0, β > 0, α > 0 such that ∀

βI ≥
∫ t+T

t

φ(t, τ)TC(τ)TC(τ)φ(t, τ)dτ ≥ αI

then ẋ = F (t) is exponentially stable.

From equations (1.25) and (1.26), F (t) = −C(t)>WC(t) and
P = I3n×3n gives

PF (t)− F (t)>P = −2C(t)>WC(t)

= −N(t)TN(t), (1.28)

where

N(t) =
√

2WC(t) (1.29)

W can be adjusted, and as long as (1.28) is satisfied, stability is assured. The system will
be assumed uniformly completely observable for ”rich” input signal. Then (1.28) assures
exponential stability of the observer. By ”rich” input signals, it is meant signals such as
sinusoids. Observability will be confirmed by simulations of section 1.6.1. It must be
noted that the error dynamics of the observer is different from the observability analysis
done in section 1.3.1, where the transition matrix was identity, due to A(t) zero. In the
observer design, the transition matrix will be different from identity, due to nonzero A(t)
of (1.26).



1.5 analysis results

1.6 Adaptive design
Another way to solve the lever arm estimation problem is an adaptive solution. This set up
will remove P0 as a variable to be estimated, and thus have full state measurements avail-
able. This is reasonable as P0 can be found from (1.1) once all the lever arms are estimated.

By taking the time derivative of (1.1), using (1.7) and R(Θ) = R(t), S(ω) = S(t),
the lever arm problem can be formulated as

ṖGNSS1(t) = R(t)υ(t) +R(t)S(t)l1

ṖGNSS2(t) = R(t)υ(t) +R(t)S(t)l2

...

ṖGNSSn(t) = R(t)υ(t) +R(t)S(t)ln

Where PGNSSi =
[
PGNSSiN PGNSSiE PGNSSiD

]T ∈ R3 and contains the coordi-
nates of the GNSS measurement expressed in the NED frame [1].

x(t) =
[
PGNSS1 PGNSS2 · · · PGNSSn

]T ∈ R3n (1.30)
y(t) = I3n×3nx, (1.31)

where υ =
[
u v w

]T ∈ R3 is the measured velocity of the vessel in body coordinates.
Written in state space form

ẋ(t) = A(t)x(t) +B(t)υ(t) + Ωϕ (1.32)
y(t) = C(t)x(t), (1.33)

where

A(t) = 03n×3n (1.34)

B(t) =
[
R(t) R(t) · · · R(t)

]T ∈ R3n×3 (1.35)
C = I3n×3n (1.36)

ϕ =
[
l1 l2 · · · ln

]T ∈ R3n (1.37)

Ω =


R(t)S(t) 03×3 · · · 03×3

03×3 R(t)S(t)
. . .

...
...

. . . 03×3
03×3 · · · 03×3 R(t)S(t)

 ∈ R3n×3n. (1.38)



Let a state observer be given as

˙̂x = Bυ + Ωϕ̂+ Ly − LCx̂
= Bυ + Ωϕ̂+ LCx̃ (1.39)

where L ∈ R3n×3n and x̃ = x− x̂. Let ϕ̃ = ϕ− ϕ̂, and

˙̃x = ẋ− ˙̂x = −LCx̃+ Ωϕ̃, (1.40)
˙̃ϕ = ϕ̇− ˙̂ϕ = − ˙̂ϕ. (1.41)

Define the following Control Lyapunov Function (CLF) [? ]

V =
1

2
x̃T x̃+

1

2
ϕ̃T Γ−1ϕ̃, (1.42)

where the constant matrix Γ−1 > 0, and hence also invertible.

V̇ = x̃T [−LCx̃+ Ωϕ̃] + ϕ̃T Γ−1(− ˙̂ϕ) (1.43)

= −x̃TLCx̃+ x̃T Ωϕ̃− ϕ̃T Γ−1 ˙̂ϕ (1.44)

For the following update law for ϕ̂

˙̂ϕ := ΓΩT x̃, (1.45)

Sigma-modification

˙̂ϕ := ΓΩT x̃+ σΓφ̂, (1.46)

V̇ becomes

V̇ = −x̃TLCx̃ ≤ 0. (1.47)

Let LC > 0, then V̇ is negative semidefinite. Barbalat’s lemma [? ] is applied, and re-
stated here for convenience.

Lemma 2. (Barbalat’s lemma) If the differentiable function f(t) has a finite limit as
t→∞, and if ḟ is uniformly continuous, then f(t)→ 0 as t→∞.

To assess uniform continuity, [? ] states that a sufficient condition for a differentiable
function is that its derivative is bounded. For the above CLF, this implies that V̈ should be
bounded. V̈ is given as

V̈ = −2x̃TLC ˙̃x (1.48)

From the fact that V̇ ≤ 0 it is shown that V is bounded, and from (1.42) it can be con-
cluded that both x̃ and ϕ̃ are bounded. From (1.40), since both x̃ and ϕ̃ are bounded, ˙̃x is
bounded, and hence is V̈ bounded. So V̇ is uniformly continous, and by Barbalat’s lemma



V̇ → 0 as t → ∞, and hence x̃ → 0 as t → ∞. This implies that ˙̃x → 0 as t → ∞, and
from (1.40) it follows that Ωϕ̃→ 0 as t→∞.

Consider Ωϕ̃ = 0. In order to have ϕ̃ = 0 as only solution Ω need to be persistently
excited. For a update law of the form (1.45), then persistence of excitation (PE) can be
formulated as [? ]

Theorem 2. (Persistence of excitation) The matrix Ω is persistently excited if there exists
α, T > 0 such that ∀t ∫ t+T

t

Ω(τ)T Ω(τ)dτ > αI (1.49)

Seeing that Ω(t) is diagonal, condition (1.49) will only depend on R(t)S(t), and PE
criterion can be evaluated based on R(t)S(t) as the integrand (with I := I3×3 in (1.49) ).
Looking at the integrand

(R(t)S(t))TR(t)S(t) = S(t)TR(t)TR(t)S(t) (1.50)

= S(t)TS(t). (1.51)

This result is valid due to RTR = I , which is a fundamental property of the rotation
matrix [1]. The expression for S(t)TS(t) is given as

S(t)TS(t) =

r(t)2 + q(t)2 −p(t)q(t) −p(t)r(t)
−p(t)q(t) r(t)2 + p(t)2 −q(t)r(t)
−p(t)r(t) −q(t)r(t) p(t)2 + q(t)2

 , (1.52)

and the PE criteria can be written as∫ t+T

t

S(τ)TS(τ)dτ =
∫ t+T

t
[q(τ)2 + r(τ)2]dτ −

∫ t+T

t
p(τ)q(τ)dτ −

∫ t+T

t
p(τ)r(τ)dτ

−
∫ t+T

t
p(τ)q(τ)dτ

∫ t+T

t
[p(τ)2 + r(τ)2]dτ −

∫ t+T

t
q(τ)r(τ)dτ

−
∫ t+T

t
p(τ)r(τ)dτ −

∫ t+T

t
q(τ)r(τ)dτ

∫ t+T

t
[p(τ)2 + q(τ)2]dτ


> I3×3α,

(1.53)

A matrix is positive definite if the leading principal minors are positive [? ]. This gives the
following three conditions for Eq. (1.53) to be satisfied

1. ∫ t+T

t

[q(τ)2 + r(τ)2]dτ > 0 (1.54)



2. ∫ t+T

t

[q(τ)2 + r(τ)2]dτ

∫ t+T

t

[p(τ)2 + r(τ)2]dτ

−

[∫ t+T

t

p(τ)q(τ)dτ

]2
> 0 (1.55)

3. ∫ t+T

t

[q(τ)2 + r(τ)2]dτ

{∫ t+T

t

[p(τ)2 + r(τ)2]dτ

∫ t+T

t

[p(τ)2 + q(τ)2]dτ−

[∫ t+T

t

q(τ)r(τ)dτ

]2−∫ t+T

t

p(τ)q(τ)dτ

{∫ t+T

t

p(τ)q(τ)dτ

∫ t+T

t

[p(τ)2 + q(τ)2]dτ+

∫ t+T

t

q(τ)r(τ)dτ

∫ t+T

t

p(τ)r(τ)dτ

}
−

∫ t+T

t

p(τ)r(τ)dτ

{∫ t+T

t

p(τ)q(τ)dτ

∫ t+T

t

q(τ)r(τ)dτ+

∫ t+T

t

p(τ)r(τ)dτ

∫ t+T

t

[p(τ)2 + r(τ)2]dτ

}
(1.56)

Equation (1.54) requires either q, r 6= 0, and considering Equation (1.55) with p = 0,
gives that r needs to be nonzero. Looking at (1.56) with p = 0, and r 6= 0, gives that q
needs to be nonzero, and that∫ t+T

t

r(τ)2dτ

∫ t+T

t

q(τ)2dτ >

[∫ t+T

t

q(τ)r(τ)dτ

]2
(1.57)

Proposition 2 (PE of adaptive observer). The adaptive observer of Eq. (1.40 and (1.41) is
persistently excited if the conditions of (1.54) - (1.56) are satisfied. The minimum require-
ment is that r 6= 0 and either q 6= 0 and∫ t+T

t

r(τ)2dτ

∫ t+T

t

q(τ)2dτ >

[∫ t+T

t

q(τ)r(τ)dτ

]2
(1.58)

or p 6= 0 and ∫ t+T

t

r(τ)2dτ >

[∫ t+T

t

p(τ)r(τ)dτ

]2
(1.59)



Both Equation (1.58) and (1.59) are satisfied for sufficiently large T for r constant,
and p and q oscillating with zero mean. Simulation on real data from a sea trial with RV
Gunnerus will later show that for a manoeuvre of a constant yawing rate r, the motion in
pitch and roll will be small (but present), such that PE is satisfied.

1.6.1 Case study - Observer

For the sea trials with Gunnerus, three manuevers were performed.

Lever arm manuevers

• 3032: 1 turn of the vessel, with 100◦/min

• 3033: 1 turn of the vessel, with 200◦/min

• 3034: rotation of the vessel, with varying rotation velocity

Onboard Gunnerus there were two GPS antennas installed. One that was integrated with
the DP system, and one that MARINTEK installed. Unfortunately, for these three manuev-
ers, only the GPS antenna of the DP system gives results with sufficient resolution. The
case study will therefore only be run with one GPS antenna. This should not affect the re-
sults, since the way the algorithm is implemented, does not require more than one antenna.

Data from GPS

The data from the GPS antenna is given as data from the centre of origin, P0. Therefore,
running the observer on the data should yield a lever arm of zero length. This will be
verified. Also, in order to find a lever arm a artificial lever arm will be added to the GPS
signal, such that the GPS input to simulation will be

yGPS1
= yGPS,measured +R(t)l1, (1.60)

where yGPS1 is the measurement fed to the observer, yGPS,measured is the signal actually
measured by the GPS, and R(t)l1 is the lever arm coordinate.

Synching of data

A problem for the case study is that the GPS data comes from the DP system, and the other
data needed for the observer, such as the linear velocities of the vessel, the Euler angles,
the angular rates, they all come from MARINTEK data. The DP data needs to be synched
with the MARINTEK data. The time difference between these data sets is not constant
(VERIFY THIS), and could cause problems.



show plot of GPS data

Observer design for the case study

x(t) =
[
P0 l1

]T ∈ R6 (1.61)
y(t) = Cx, (1.62)

where

C =
[
I3×3 R(t)

]
∈ R3×6, (1.63)

with closed loop error dynamics as

˙̃x = −C(t)>WC(t)x̃ (1.64)

where W is chosen as W = 10000I3×3. The observer is then given as

˙̂x = B(t)v(t) + C(t)>WC(t)x̃ (1.65)

Added lever arm

For all the cases below, a lever arm of body coordinates

l1 =

l1xl1y
l1z

 =

 12m
0.56m
13m

 (1.66)

is added. These are the coordinates of the MARINTEK GPS antenna, so these are realistic
numbers. The observer is also run without this lever arm, such that the P0 estimate can be
verified to be good.

1.6.2 Results - observer

The results in Table (1.1) are for all the cases, and the average value and standard devi-
ation of the lever arm coordinates are given. The values are obtained from an interval
where the measurement variance is low, and the selected interval in given in the table.
The results obtained are for the plots shown in Figure (1.3, (1.4), and (1.5) - all with the
same lever arm added. The lever arm that supposed to be estimated has coordinates of[
12.0m 0.56m 13m

]T
.

1.6.3 Case study 3032

For this case study the simulation results for when no lever arms are added to the GPS
measurement will be shown. This will show that how well P0 is estimated, and also show
that the lever arm is in fact estimated to be zero when no arm is added.



Table 1.1: Results, lever arm - observer

Case Lever arm coordinates Collected from interval
x [m] y y [m] z [m]
Avg Std. Avg Std. Avg Std.

3032 12.003 0.032 0.569 0.0446 13.005 0.035 60 - 140 [s]
3033 12.042 0-049 0.522 0.086 13.009 0.080 40 - 140 [s]
3034 11.989 0.0657 0.540 0.084 12.984 0.117 100 - 150 [s]

Estimation of P0

For this simulation no lever arm is added, and GPS measurement coincide with the P0

measurement. Figure (1.1 show the GPS measurement and the estimated position of P0.

Leverarmplots/GPSLeverarmsNEP03032-eps-converted-to.pdf

Figure 1.1: P0 3032

Estimation of lever arm - no added lever arm

Since no lever arm is added, the position in body frame should be zero in x-, y- and
z-direction. Figure (1.2) show the results. The initial condition of the estimated arm
coordinate is

[
−0.5m 1m 2m

]T



Leverarmplots/GPSLeverarmsZero3032-eps-converted-to.pdf

Figure 1.2: Lever arm coordinates, 3032 - no lever arm added

Estimation of lever arm - added lever arm

A lever arm of coordinates
[
12.0m 0.56m 13m

]T
is added. The initial condition of

the estimated arm coordinate is
[
8m 0.3m 16m

]T



Leverarmplots/GPSLeverarmsAdded3032-eps-converted-to.pdf

Figure 1.3: Lever arm coordinates, 3032

1.6.4 Case study 3033

Estimation of lever arm - added lever arm

A lever arm of coordinates
[
12.0m 0.56m 13m

]T
is added. The initial condition of

the estimated arm coordinate is
[
8m 0.3m 16m

]T



Leverarmplots/GPSLeverarmsAdded3033-eps-converted-to.pdf

Figure 1.4: Lever arm coordinates, 3033

1.6.5 Case study 3034

Estimation of lever arm - added lever arm

A lever arm of coordinates
[
12.0m 0.56m 13m

]T
is added. The initial condition of

the estimated arm coordinate is
[
8m 0.3m 16m

]T



Leverarmplots/GPSLeverarmsAdded3034-eps-converted-to.pdf

Figure 1.5: Lever arm coordinates, 3034

1.6.6 Case study - Adaptive solution
The data does not seems to sufficiently accurate or sampled often enough for the adaptive
solution. The estimates of the lever arms diverges.
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