
Chapter 1
Modelling

1.1 Vessel models
The modelling of following section is to a high degree based on material from ?.

Vessel kinetics is normally expressed in BODY-frame, and the kinematics in North-
East-Down (NED)-frame. There exists numerous models with varying complexity, depen-
dent on operation. The main difference is for high- and low-speed applications, where
different forms of hydrodynamic damping dominate for different speed regimes, and the
Coriolis and centripetal terms become negligible for low speed.

1.1.1 High fidelity model
Kinematics

Vessel kinematics is given as (?)

η̇ = R(Θ)ν, (1.1)

where

η =
[
N E D φ θ ψ

]> ∈ R6×1, (1.2)

contain the North, East, and down positions, and the angular orientation (Euler angles) in
roll (φ), pitch (θ), and yaw (ψ). The velocity vector ν is given as

ν =
[
u v w p q r

]> ∈ R6×1, (1.3)

where u, v, and w are the velocities in surge (x-direction), sway (y-direction), and heave
(down-direction), respectively. The other half of ν is given by the angular velocities in roll
(p), pitch (q), and yaw (r). The η vector is given in NED-coordinates, and ν in BODY-
coordinates. The rotation matrix R(Θ) transforms the coordinate frame between BODY
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to NED and is given as

R(Θ) =

cψcθ −sψcφ+ cψsθsφ sψsφ+ cψcφsθ
sψcθ cψcφ+ sφsθsψ −cψsφ+ sθsψcφ
−sθ cθsφ cθcφ

 ∈ R3×3, (1.4)

where c(·) = cos(·), s(·) = sin(·).
Also, the time derivative of the rotation matrix is given by

Ṙ(Θ) = R(Θ)S(ω) (1.5)

where S(ω) is a skew-symmetric matrix given by

S(ω) =

 0 −r q
r 0 −p
−q p 0

 . (1.6)

Kinetics

The vessel kinetics is generally given as (?)

MRBν̇ +CRB(ν)ν +MA(νr)νr +CA(νr)νr +D(νr)νr + g = τ + τwind + τwave.
(1.7)

The terms in the equations are

• relative velocity νr = ν − νc, where νc is the velocity of the current,

• interia terms: MRB (rigid body) andMA (added mass)

• Coriolis and centripetal terms: CRB (rigid body), and CA (due to added mass),

• damping forces: D(νr) = (Dp +Dv), where Dp is the linear potential damping,
andDv contains the viscous damping (vortex shedding, skin friction),

• restoring forces: g (hydrostatics),

• environmental forces:

– τwind: wind forces,

– τwave: first order oscillatory waves forces and second order waves forces
(mean drift, slowly varying drift forces, sum-frequency forces) (?).

– current: the forces from the current are included in D(νr) due to the relative
velocity νr,

• propulsion forces, τ : the forces generated by the thrusters of the vessel

The Coriolis terms are present in the equation because the kinetics is expressed in BODY
frame, which is a rotating moving reference frame with respect to an inertial reference
frame (?).



1.1.2 Uncoupled surge dynamics
From ? the uncoupled surge dynamics for a longitudinally symmetric ship, where m is
the mass, Xu̇ is the added mass in surge, Xu and X|u|u| are linear and nonlinear damping,
respectively, can be written

(m−Xu̇)u̇−Xuur −X|u|u|ur|ur = χ, (1.8)

where χ comprise of the external forces, and the control input. The nonlinear damping
will dominate for higher vessel speeds, and the linear damping dominates for low speeds.

1.1.3 Sway-yaw subsystem
For a constant surge velocity u ≈ u0, a linear sway-yaw subsystem, known as the second
order Nomoto Model, can be written (?)

Mν̇ +N(u0)vr = bα (1.9)

with

M =

[
m− Yv̇ mxg − Yṙ
mxg − Yṙ Iz −Nṙ

]
∈ R2×2, (1.10)

and N ∈ R2×2 contain the speed dependent terms from C(v) and the linear damping
matrix,D from Eq. (1.7) (?). The rudder angles are collected in the vector α. Let the α in
Eq. (1.9) be a scalar. To relate this to the tests with R/V Gunnerus, that has two rudders,
assume that the rudders have an equal angle, and thus modelled as a single rudder. Looking
at the transfer function from the rudder angle to the yaw-rate, it can be written as (?)

r

α
(s) =

Ky(1 + T3s)

(1 + T1s)(1 + T2s)
. (1.11)

Also, for the sway motion a similar relationship is found as

v

α
(s) =

Kv(1 + Tvs)

(1 + T1s)(1 + T2s)
, (1.12)

where r is the yaw rate, and v is the sway velocity, Ky, Kv are the steady state gains, and
T1, T2, and T3 are the time constants.

First order approximation

? defines a equivalent time constant so that from (1.11) the equivalent time constant Tr is
defined as

Tr := T1 + T2 − T3, (1.13)

and from (1.12) the equivalent time constant Tv̄ is defines as

Tv̄ := T1 + T2 − Tv, (1.14)



and hence, the models given by (1.11) and (1.12) can be approximated by the first order
models as

r

δ
(s) =

Ky

1 + Trs
, (1.15)

and

v

δ
(s) =

Kv

1 + Tv̄s
. (1.16)

1.1.4 Low speed models
For low speed applications, like dynamic positioning, the linear damping will dominate the
nonlinear part (?), so D(νr) ≈ Dν, where D is the linear damping matrix. The Coriolis
and centripetal terms can be neglected, also due to low speed.

DP (3 DOF) - Linearized model

For dynamic positioning of a vessel it is common to restrict the workspace to 3 degrees of
freedom (DOF). Only the horizontal plane (surge, sway and yaw) is considered, and this
gives η and ν as

η =
[
N E ψ

]>
(1.17)

ν =
[
u v r

]>
, (1.18)

and the rotation matrix reduces to

R(Θ) = R(ψ) =

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 . (1.19)

In the linearized DP model the slowly varying drift forces, mean drift forces, and the cur-
rent are all collected into a bias b. Since current is captured in the bias, the relative velocity
vector is not included in the model anymore (it becomes superfluous) (?).

The kinematics and kinetics for the linearized 3 DOF DP model is written as (?)

η̇ = R(ψ)ν (1.20)

Mν̇ +Dν = RT (ψ)b+ τ + τwind + τwave1 (1.21)

ḃ = −T−1b+wb ( or ḃ = wb), (1.22)

where wb is white Gaussian noise (?), and τwave1 comprise only of the first order wave
forces. The bias force is modeled by a Gauss-Markov process above, and could also be
modeled as a white noise process (?), which is given in parenthesis in Eq. (1.22). Here b is
a slowly varying disturbance or bias force, and the linear damping matrix satisfiesD > 0.
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