
0.1 MRU

By differentiating the Equation ?? for the GNSS equation twice,

GNSS : P1 = P0 +R(Θ)l1, (1)
V elocity : V2 = V0 +R(Θ)S(ω)l2, (2)

MRU : A3 = A0 +R(Θ)S(ω)2l3 +R(Θ)S(ω̇)l3. (3)

Where A3 is the linear NED-acceleration, and A0 is the linear NED-acceleration at the
reference point. The MRU measure a body fixed acceleration, so this acceleration will
have to transformed into NED-coordinates in order to be used in the above equation. In
the same way as for the GNSS equations of Eq. (??), the equations for several MRUs can
be written as

A1(t) = A0(t) +R(Θ)S(ω)2l1 +R(Θ)S(ω̇)l1

A2(t) = A0(t) +R(Θ)S(ω)2l2 +R(Θ)S(ω̇)l2 (4)
...

Am(t) = A0(t) +R(Θ)S(ω)2l3 +R(Θ)S(ω̇)lm

In the same manner as with the GNSS problem from Section ?? the rotation matrixR, and
the other signals, such as the angular rates, and the linear velocities are treated as input
signals to the system, such that R(Θ) = R(t), S(ω = S(t), and S(ω̇) = Ṡ(t). In
this way the system is treated as a time varying linear system, instead of a time invariant
nonlinear system.

0.1.1 MRU Luenberger observer design

Eq. (4) can be written on a state space form as

x =


A0

l1
l2
...
lm

 ∈ R3n, n = m + 1, (5)

y =


AMRU1

AMRU2

...
AMRUm

 ∈ R3m. (6)

From Eq. (??)

Ṗ0 = R(t)ν = V0(t),



and by (time) differentiating P0 twiceA0 can be found as

V̇0 = R(t)S(t)ν(t) +R(t)ν̇(t) = A0(t) (7)

Ȧ0 = (R(t)S2(t) +R(t)Ṡ(t))ν(t) +R(t)S(t)ν̇(t) +R(t)ν̈(t) (8)

As with the GNSS-setup, the system description can be written as

ẋ = Ax+B(t)u(t), (9)
y = C(t)x, (10)

where

A = 03n×3n, (11)

B(t) =


R(t)S(t)2 +R(t)Ṡ(t) R(t)S(t) R(t)

03×3 03×3 03×3
...

03×3 03×3 03×3

 ∈ R3n×3, (12)

u(t) =

ν(t)
ν̇(t)
ν̈(t)

 , (13)

and

C(t) =


I3×3 R(t)S(t)2 +R(t)Ṡ(t) 03×3 · · · 03×3

I3×3 03×3 R(t)S(t)2 +R(t)Ṡ(t)
. . .

...
...

...
. . . . . . 03×3

I3×3 03×3 · · · 03×3 R(t)S(t)2 +R(t)Ṡ(t)

 ∈ R3m×3n.

(14)

Observability assessment

Observability will be investigated in a similar way as with the GNSS set up of Section ??,
and Theorem ?? will be used. As discussed in Section ??, since theA(t) matrix of (??) is
zero, only Ċ, C̈, and so on are relevant for the analysis. In fact, it is sufficient to include
Ċ, and this is shown by a simple example (in Example 1).

The time derivative ofR(t)S(t)2 +R(t)Ṡ(t) gives

d

dt
[R(t)S(t)2 +R(t)Ṡ(t)] = R(t)S(t)3 +R(t)Ṡ(t)S(t) + 2R(t)S(t)Ṡ(t) +R(t)S̈(t)

=: R(t)G(t), (15)

and Ċ can be written

Ċ(t) =


03×3 R(t)G(t) 03×3 · · · 03×3

03×3 03×3 R(t)G(t)
. . .

...
...

...
. . . . . . 03×3

03×3 03×3 · · · 03×3 R(t)G(t)

 ∈ R3m×3n. (16)



Then, by Theorem ??
[
N0
N1

]
=
[
C
Ċ

]

=



I3×3 R(t)S(t)2 +R(t)Ṡ(t) 03×3 · · · 03×3

I3×3 03×3 R(t)S(t)2 +R(t)Ṡ(t)
. . .

...
...

...
. . . . . . 03×3

I3×3 03×3 · · · 03×3 R(t)S(t)2 +R(t)Ṡ(t)
03×3 R(t)G(t) 03×3 · · · 03×3

03×3 03×3 R(t)G(t)
. . .

...
...

...
. . . . . . 03×3

03×3 03×3 · · · 03×3 R(t)G(t)


. (17)

By the same argument as in Section ?? the observability requirement is that there has to
exists a time t1 where rank [G(t)] = 3. This is summarized in the proposition below.

Proposition 1. For the system of Eq. (9) and (10) to be observable at time t0, there have
to exist a time t1 > t0 where

rank[S(t)3 + Ṡ(t)S(t) + 2S(t)Ṡ(t) + S̈(t)] = 3

Example 1. For a constant yaw rate r = 1, ṗ = 0.1, and ṙ = 0.1, and p, q, q̇, p̈, q̈, r̈ = 0
at t1, and ,G(t) (Eq. (15) becomes

G(t) =

−0.3 1 0.2
−1 −0.3 −0.1
0.1 0 0


which has full rank, so the system is observable at t0 for this excitation.

0.1.2 Observer equations and stability
Given the observer dynamics below

˙̂x = B(t)u(t) +WC(t)>ỹ (18)

= B(t)u(t) +WC(t)>C(t)x̃, (19)

the error dynamics is given as

x̃ = −WC(t)>C(t)x̃, (20)

which is similar to the error dynamics of the observer of Section ??. Therefore, following
the same approach as Section ??, if uniform observability can be shown for this system,
and exponential stability is concluded if Proposition 1 is satisfied.
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