
0.1 GNSS

As discussed in Section ?? P0 is normally a pre-defined point on the vessel. From this
point the lever arms to the different GNSS antennas are measured by surveying with laser
equipment. Then the measurements from the GNSS antennas are used to find the NED
position of P0 as the vessel is in operation.

When the GNSS measurements are used in a estimation algorithm to find the lever arms,
the P0 position that is found is the NED-position of the rotation point of the vessel. De-
pending on the operation, or load condition this rotation point would move.

0.1.1 GNSS Luenberger observer design

The GNSS positions in the North-East-Down (NED) frame is given as

PGNSSi =
[
PGNSSiN PGNSSiE PGNSSiD

]> ∈ R3, (1)

where i denotes a GNSS sensor. For m GNSS sensors this can be written

PGNSS1(t) = P0(t) +R(Θ)l1

PGNSS2(t) = P0(t) +R(Θ)l2 (2)
...

PGNSSm(t) = P0(t) +R(Θ)lm

where

li =

lxilyi
lzi

 , i = 1 . . .m, (3)

is a vector that contains the body fixed coordinates of a lever arm, and P0(t) is the NED-
position of the vessel rotation point as discussed in Section ??. The rotation matrixR(Θ)
between the BODY and the NED frame given by Eq. (??) of Section ??.

Eq. (2) can be written as

x =


P0

l1
l2
...
lm

 ∈ R3n, n = m+ 1, (4)

y =


PGNSS1

PGNSS2

...
PGNSSm

 ∈ R3m, (5)



where x consists of the states to be estimated, and y is the output.

The Euler angles (φ, θ, and ψ) are viewed as an input signal to the system, so it is a linear
time varying (LTV) system, instead of a nonlinear system, setting R(Θ) := R(t). Also,
p, q, r, and ṗ, q̇, and ṙ are considered input signals.

The dynamics of P0 can be represented as (?)

Ṗ0 = R(t)ν(t), (6)

where ν =
[
u v w

]>
is the linear velocity of the vessel in BODY-coordinates, assumed

measured. The lever arms are constants, and hence

l̇i = 0, i = 1 . . .m. (7)

The dynamic lever arm system can be written as

ẋ = Ax+B(t)ν(t), (8)
y = C(t)x. (9)

The matrices of (8) and (9) are given by

A = 03n×3n, (10)

B(t) =
[
R(t)> 03×3 03×3 · · · 03×3

]> ∈ R3n×3, (11)

C(t) =


I3×3 R(t) 03×3 · · · 03×3

I3×3 03×3 R(t)
. . .

...
...

...
. . . . . . 03×3

I3×3 03×3 · · · 03×3 R(t)

 ∈ R3m×3n. (12)

Observability assessment

In this section an observability criterion for the system given by Eq. (8) - (9) will be
investigated. Because the A matrix of (8) is zero, the state transition matrix is identity.
This gives the following observability gramian for the system as (?),

W0(t0, t1) =

∫ t1

t0

C(τ)>C(τ)dτ, (13)

and ifW0(t0, t1) is nonsingular, the system is observable (?).

C(t)> for (8) - (9) is

C(t)> =



I3×3 I3×3 · · · I3×3
R(t)> 03×3 · · · 03×3

03×3 R(t)>
. . .

...
...

. . . . . . 03×3
03×3 · · · 03×3 R(t)>

 ∈ R3n×3m, (14)



and C(t)>C(t) is given as

C(t)>C(t) =



(n− 1)I3×3 R(t) · · · R(t) R(t)
R(t)> I3×3 03×3 · · · 03×3

... 03×3
. . . . . .

...

R(t)>
...

. . . I3×3 03×3
R(t)> 03×3 · · · 03×3 I3×3

 ∈ R3n×3n. (15)

From (12) it can be found that if R(t) has full rank, then C(t) and C(t)> also have full
rank, i.e. 3m. From ? it is found that the rank of C(t)>C(t) ∈ R3n×3n will at most be
3m, as

rank(AB) ≤ min(rank(A), rank(B)) (16)

where both A and B are matrices. In other words the matrix is not full rank in the first
place, and need to ”add rank” as time increases (?). To find the observability condition(s),
Theorem 6.O12 from ? is used.
Theorem 1 (Thm 6.O12 (?)). Let A(t) and C(t) be continously differentiable, then the
n-dimensional pair (A(t), C(t)) is observable at t0 if there exists a finite t1 > t0 such
that

rank


N0

N1

...
Nn−1

 = n

whereNm+1 = Nm(t)A(t) + d
dtNm(t) m = 0, 1 . . . n− 1

withN0 = C(t).

For the system of (8) - (9) both C(t) and A(t) are continuously differentiable, and C(t)
has rank 3m given that R(t) has full rank. Hence, given C(t) full row rank, a rank of
3 is lacking to fulfil rank n of theorem 6.O12 (C(t) has three more columns than rows).
Thus, N1, ...Nn−1 must contribute with 3 more independent rows for the observability
condition to be satisfied.

N1:

N1 = N0(t)A(t) +
d

dt
N0(t) (17)

= 03×3 +
d

dt
C(t), (18)

Ċ =


03×3 R(t)S(t) 03×3 · · · 03×3

03×3 03×3 R(t)S(t)
. . .

...
...

...
. . . . . . 03×3

03×3 03×3 · · · 03×3 R(t)S(t)

, (19)



where it has been used that Ṙ(t) = R(t)S(t) from Eq. ??, and S(t) is given by Eq. ??.

N2:

N2 = N1(t)A(t) +
d

dt
N1(t) (20)

= C̈(t), (21)

C̈ =


03×3 R(t)[S(t)2 + Ṡ(t)] 03×3 · · · 03×3

03×3 03×3 R(t)[S(t)2 + Ṡ(t)]
. . .

...
...

...
. . . . . . 03×3

03×3 03×3 · · · 03×3 R(t)[S(t)2 + Ṡ(t)]

. (22)

giving

[
N0
N1
N2

]
=



I3×3 R(t) 03×3 · · · 03×3

I3×3 03×3 R(t)
. . .

...
...

...
. . . . . . 03×3

I3×3 03×3 · · · 03×3 R(t)
03×3 R(t)S(t) 03×3 · · · 03×3

03×3 03×3 R(t)S(t)
. . .

...
...

...
. . . . . . 03×3

03×3 03×3 · · · 03×3 R(t)S(t)
03×3 R(t)[S(t)2 + Ṡ(t)] 03×3 · · · 03×3

03×3 03×3 R(t)[S(t)2 + Ṡ(t)]
. . .

...
...

...
. . . . . . 03×3

03×3 03×3 · · · 03×3 R(t)[S(t)2 + Ṡ(t)]



, (23)

where

Ṡ =

 0 −ṙ q̇
ṙ 0 −ṗ
−q̇ ṗ 0

 . (24)

For the system to be observable, the requirement is that there exists a time t1 such that

rank(

N0

N1

N2

) = 3n.

Since S(t) is a skew-symmetric matrix, it is always singular. The observability require-
ment is therefore that there has to exists a time t1 where rank (R(t)[S(t)2 + Ṡ(t)]) = 3.
Since detR(t) = 1, R(t) is always nonsingular (?), and the observability requirement
reduce to that [S(t)2 + Ṡ(t)] need to have full rank. This is summarized in the proposition
below.



Proposition 1. For the system of (8) and (9) to be observable at time t0, there have to
exist a time t1 > t0 where

rank[S(t)2 + Ṡ(t)] = 3. (25)

Example 1. For a constant yaw rate r = 1, p, q, ṙ, q̇ = 0, and ṗ = 0.1 at t1, S(t)2 + Ṡ(t)
becomes

S(t)2 + Ṡ(t) =

−1 0 0
0 −1 −0.1
0 0.1 0


which has full rank.

By trying to maneuver the vessel with a constant yaw rate r, observability will be assured
if there also exists some acceleration in roll or pitch. This will in practice always be the
case.

Luenberger observer design and stability analysis

For the system dynamics of equations (8), and (9) the following observer is proposed

˙̂x = B(t)ν(t) +WC(t)>ỹ

= B(t)v(t) +WC(t)>C(t)x̃, (26)

ỹ = C(t)x̃, (27)

where W = W> > 0 ∈ R3n×3n, x̃ = x − x̂, ỹ = y − ŷ, and with closed loop error
dynamics as

˙̃x = −WC(t)>C(t)x̃. (28)

In order to evaluate the stability properties of the observer design, the following lemma
from ? is applied.
Lemma 1. Exponential stability of LTV system (?)
For a system given by ẋ = F (t)x, and the function F (·) is locally integrable. Suppose
there exits a positive definite matrix P = P> > 0 such that

PF (t) + F (t)>P ≤ −N(t)>N(t) (29)

for some matrix functionN(·) and all t. Then ẋ = F (t)x is uniformly stable in the sense
of Lyapunov.

If, further the pair [F (t),N(t)] is uniformly completely observable, that is, writingφ(t, τ)
as the transition function of ẋ = F (t)x, there exits T > 0, β > 0, α > 0 such that

βI ≥
∫ t+T

t

φ(t, τ)>C(τ)>C(τ)φ(t, τ)dτ ≥ αI

then ẋ = F (t)x is exponentially stable.



From equations (27) and (28), F (t) = −WC(t)>C(t) and P = W−1 gives

PF (t) + F (t)>P = −2C(t)>C(t)

= −N(t)>N(t), (30)

where

N(t) =
√

2C(t), (31)

The discussion above is summarized in Theorem 2 below.
Theorem 2. The observer design of (26) is exponentially stable given that the observabil-
ity condition of Proposition 1 holds, according to Lemma 1.

0.1.2 GNSS adaptive observer design

Another way to solve the lever arm estimation problem is an adaptive solution. This set
up will remove P0 as a variable to be estimated, and thus have full state measurements
available. The value of P0 can then be found once the lever arms have converged, from
Eq. (2) as

P0 = PGNSSi(t)−R(Θ)li. (32)

By taking the time derivative of (2), using (6) andR(Θ) = R(t), S(ω) = S(t), the lever
arm problem can be formulated as

ṖGNSS1(t) = R(t)ν(t) +R(t)S(t)l1

ṖGNSS2(t) = R(t)ν(t) +R(t)S(t)l2 (33)
...

ṖGNSSn(t) = R(t)ν(t) +R(t)S(t)l1n,

x(t) =
[
PGNSS1 PGNSS2 · · · PGNSSn

]>
, (34)

y(t) = I3n×3nx. (35)

Written in state space form

ẋ = B(t)ν(t) + Ω(t)ϕ, (36)
y = Cx, (37)



where

B(t) =


R(t)
R(t)

...
R(t)

 ∈ R3n×3, (38)

C = I3n×3n, (39)

ϕ =


l1
l2
· · ·
ln

 ∈ R3n, (40)

Ω(t) =


R(t)S(t) 03×3 · · · 03×3

03×3 R(t)S(t)
. . .

...
...

. . . 03×3
03×3 · · · 03×3 R(t)S(t)

 ∈ R3n×3n. (41)

Adaptive observer design and stability analysis

Let a state observer be given as

˙̂x = B(t)ν(t) + Ω(t)ϕ̂+Ly −LCx̂
= B(t)ν(t) + Ω(t)ϕ̂+LCx̃, (42)

where L ∈ R3n×3n and x̃ = x− x̂. Let ϕ̃ = ϕ− ϕ̂, and

˙̃x = ẋ− ˙̂x = −LCx̃+ Ωϕ̃, (43)
˙̃ϕ = ϕ̇− ˙̂ϕ = − ˙̂ϕ. (44)

Define the following Control Lyapunov Function (CLF) (?)

V =
1

2
x̃>x̃+

1

2
ϕ̃>Γ−1ϕ̃, (45)

where the constant matrix Γ = Γ> > 0. This gives

V̇ = x̃>[−LCx̃+ Ωϕ̃] + ϕ̃>Γ−1(− ˙̂ϕ) (46)

= −x̃>LCx̃+ x̃>Ωϕ̃− ϕ̃>Γ−1 ˙̂ϕ. (47)

For the following update law for ϕ̂

˙̂ϕ := ΓΩ>x̃, (48)



V̇ becomes

V̇ = −x̃>LCx̃ ≤ 0. (49)

LetLC > 0, then V̇ is negative semidefinite. Barbalat’s lemma (?) is applied, and restated
here for convenience.
Lemma 2. (Barbalat’s lemma) If the differentiable function f(t) has a finite limit as
t→∞, and if ḟ is uniformly continuous, then f(t)→ 0 as t→∞.

To assess uniform continuity, ? states that a sufficient condition for a differentiable func-
tion is that its derivative is bounded. For the above CLF, this implies that V̈ should be
bounded, and V̈ is given as

V̈ = −2x̃>LC ˙̃x (50)

From Eq. (49) it is shown that V̇ ≤ 0, and therefore V is bounded, and from (45) it can
be concluded that both x̃ and ϕ̃ are bounded. From (43), since both x̃ and ϕ̃ are bounded,
˙̃x is bounded, and hence is V̈ bounded. So V̇ is uniformly continuous, and by Barbalat’s
lemma V̇ → 0 as t → ∞, and hence x̃ → 0 as t → ∞. This implies that ˙̃x → 0 as
t→∞, and from (43) it follows that Ωϕ̃→ 0 as t→∞.

Percistence of excitation

Consider Ωϕ̃ = 0. In order to have ϕ̃ = 0 as the only solution Ω need to be persistently
excited. For a update law of the form (48), then persistence of excitation (PE) can be
formulated as (?)
Theorem 3. (Persistence of excitation) The matrix Ω is persistently excited if there exists
α, T > 0 such that ∀t ∫ t+T

t

Ω(τ)>Ω(τ )dτ > αI (51)

Seeing that Ω(t) is diagonal, condition (51) will only depend on R(t)S(t), and PE cri-
terion can be evaluated based on R(t)S(t) as the integrand (with I := I3×3 in (51)).
Looking at the integrand

(R(t)S(t))>R(t)S(t) = S(t)>R(t)>R(t)S(t) (52)

= S(t)>S(t). (53)

This result is valid due to R>R = I , which is a fundamental property of the rotation
matrix (?). The expression for S(t)>S(t) is given as

S(t)>S(t) =

r(t)2 + q(t)2 −p(t)q(t) −p(t)r(t)
−p(t)q(t) r(t)2 + p(t)2 −q(t)r(t)
−p(t)r(t) −q(t)r(t) p(t)2 + q(t)2

 , (54)



and the PE criteria can be written as∫ t+T

t

S(τ)>S(τ)dτ =
∫ t+T

t
[q(τ)2 + r(τ)2]dτ −

∫ t+T

t
p(τ)q(τ)dτ −

∫ t+T

t
p(τ)r(τ)dτ

−
∫ t+T

t
p(τ)q(τ)dτ

∫ t+T

t
[p(τ)2 + r(τ)2]dτ −

∫ t+T

t
q(τ)r(τ)dτ

−
∫ t+T

t
p(τ)r(τ)dτ −

∫ t+T

t
q(τ)r(τ)dτ

∫ t+T

t
[p(τ)2 + q(τ)2]dτ


> αI3×3,

(55)

A matrix is positive definite if the leading principal minors are positive (?). This gives the
following three conditions for Eq. (55) to be satisfied

1. ∫ t+T

t

[q(τ)2 + r(τ)2]dτ > 0 (56)

2. ∫ t+T

t

[q(τ)2 + r(τ)2]dτ

∫ t+T

t

[p(τ)2 + r(τ)2]dτ

−

[∫ t+T

t

p(τ)q(τ)dτ

]2
> 0 (57)

3. ∫ t+T

t

[q(τ)2 + r(τ)2]dτ

{∫ t+T

t

[p(τ)2 + r(τ)2]dτ

∫ t+T

t

[p(τ)2 + q(τ)2]dτ−

[∫ t+T

t

q(τ)r(τ)dτ

]2−∫ t+T

t

p(τ)q(τ)dτ

{∫ t+T

t

p(τ)q(τ)dτ

∫ t+T

t

[p(τ)2 + q(τ)2]dτ+

∫ t+T

t

q(τ)r(τ)dτ

∫ t+T

t

p(τ)r(τ)dτ

}
−

∫ t+T

t

p(τ)r(τ)dτ

{∫ t+T

t

p(τ)q(τ)dτ

∫ t+T

t

q(τ)r(τ)dτ+

∫ t+T

t

p(τ)r(τ)dτ

∫ t+T

t

[p(τ)2 + r(τ)2]dτ

}
> 0 (58)

Proposition 2 (PE of adaptive observer). The adaptive observer of Eq. (43) and (48) is
persistently excited if the conditions of (56) - (58) are satisfied.



Remark 1. If p = 0 ∀ t̄ ∈ [t, t+T ], the minimum requirement is that r 6= 0 for some time
t̄ in [t, t+ T ], and that

∫ t+T

t

r(τ)2dτ

∫ t+T

t

q(τ)2dτ >

[∫ t+T

t

q(τ)r(τ)dτ

]2
, (59)

is satisfied. If q = 0 ∀ t̄ ∈ [t, t+ T ], the minimum requirement is that r 6= 0 for some time
t̄ in [t, t+ T ], and that

∫ t+T

t

r(τ)2dτ >

[∫ t+T

t

p(τ)r(τ)dτ

]2
, (60)

is satisfied.
Example 2. For a constant yaw rate (steady turn) r, that is nonzero for a time T , assume
pitch motion is zero, and roll motion oscillates with a zero mean value. Let

p(t) = sin(t), (61)
q(t) = 0, (62)
r(t) = cr 6= 0 ∀t ∈ [t, t+ T ], (63)

where cr is a constant. The left side of Eq. (60) from Remark 1 gives∫ t+T

t

c2rdτ = c2rT,

and the right side gives[∫ t+T

t

cr sin(τ)dτ

]2
= c2r(cos(t)− cos(t+ T ))2

≤ 4c2r,

such that for T > 4,

c2rT >

[∫ t+T

t

cr sin(τ)dτ

]2
= c2r(cos(t)− cos(t+ T ))2, (64)

and PE is satisfied.

The discussion above in concluded in Theorem 4 below.
Theorem 4. The adaptive observer design of (42) and (48) is globally asymptotically
stable if Proposition 2 is satisfied.
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