
Chapter 1
Hybrid integral action in PID
control: Application to dynamic
positioning of marine vessels

1.1 Introduction

1.1.1 Motivation
The motivation behind the hybrid integral action proposed in the following chapter is a
Dynamically Positioned (DP) marine vessel experiencing large unknown disturbances.
DP vessels normally experience wave loads, wind loads, and current. The loads that
the integral action part of the controller normally compensate for are slowly varying
forces, almost constant for given periods of time. Because of this, the integral action is
normally tuned very low, such that it does not induce unnecessary oscillation.

However, if the vessel experiences sudden load changes such as ice loads, or a
mooring line that snaps, the integral action spends a long time (about 20 minutes)
reaching the new steady state value. This chapter proposes a method that improves the
convergence for the integral action when it is subject to large sudden disturbances that
are constant some time after impact. The proposed method augments the standard PID
controller with a hybrid integral action law.

1.1.2 Literature review
In ?, hybrid resetting of integral action for a PID controller is discussed. Based on
the sign of the position state and the integral state, the integral action value is reset if
they are of opposite sign, thereby reducing transient behaviour of the closed loop plant.
For ? a hybrid high-gain observer is constructed to reduce the peaking behaviour of
the observer on a second order planar nonlinear system. Trajectories with peaking are
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projected into areas without peaking behaviour.
A framework with several continuous controller and observer-pairs are proposed

for hybrid control of DP vessels in ?. The operational window of a DP vessel is ex-
tended by switching to different observer-controller pairs depending on the sea state.
This approach could have been used to augment the plant with a controller with a high
gain for the continuous integral action, and then switching back to a controller with
lower integral action gains when the integral error is small.

The method of ? is similar to that of the following chapter in that it uses the sign of
the integral value and the states to determine when jumps can occur. However, the goal
of the following chapter is to use information about the states to update the integral
value, not only reset the integral value when the signs changes. This will be especially
useful when large constant disturbances should quickly be compensated for by integral
action.

1.1.3 Scope
The objective of the chapter is to improve performance of the PID controller when a
system is subject to large disturbance changes that remain constant for some time (step
disturbance). A PID-controller is augmented with a hybrid (?) integral action law that
changes the integral action value at discrete instances (jumps). When the absolute value
of the error in states are small, jumps are no longer allowed. This discrete change in
integral action value allows higher convergene of the integral action, with no, or small
overshoot. This will be developed for both a first order linear system, and a DP system.

Section (Section 1.2) consideres the mathematical modelling. Section 1.2.1 the
preliminaries for hybrid control theory and the Lyapunov stability theory needed is
summarized. The stability conditions is then derived for both the first order system
(Section 1.2.3), and the DP system (Section 1.2.4). In these sections a theorem con-
cludes the stability conditions for the hybrid system. In Section 1.3 there are case
studies for both a linear system (Section 1.3.1), and a DP system (Section 1.3.2).

1.2 Mathematical modelling

1.2.1 Preliminaries
The theory for hybrid control theory is based on ?. The benefit of the theory is that
continuous and discrete dynamics can be combined, and stability can be proven. The
aspects relevant for the approach of the chapter is mentioned below, but for a more
in-depth analysis of hybrid control theory, it is referred to ?.

Continous dynamics, here called flow, given generally by a differential inclusion
F (x) is allowed on the flow set C. The discrete dynamics, here called jumps, given by
the difference inclusion G(x) is allowed on the jump set D. In the following only a
differential equation f(x), and difference equation g(x) will be used instead of F (x),
and G(x) respectively.

In order to prove stability of the systems in this paper, Theorem 3.18 of ?, using
a Lyapunov function is applied. This theorem proves global uniform (pre-)asymptotic



stability of the system, and requires the Lyapunov function to decrease in value for
both flow and for a jump. Since the jump augmentation of the PID controller intends to
improve performance, it makes sense to demand that V (x) also decreases in jumps. To
prove stability for a set A Theorem 3.18 in its most basic form is applied, and restated
below for convenience.

Theorem 1 (? Theorem 3.18). (Sufficient Lyapunov conditions)
Let H = (C,F,D,G) be a hybrid system and let A ⊂ Rn be closed. If V is a
Lyapunov function candidate for H and there exists α1, α2 ∈ K∞, and a continuous
positive definite function ρ such that

α1(|x|A) ≤ V (x) ≤ α2(|x|A) ∀x ∈ C ∪D ∪G(D) (1.1)
〈V (x), f〉 ≤ −ρ(|x|A) ∀x ∈ C, f ∈ F (x) (1.2)
V (g)− V (x) ≤ −ρ(|x|A) ∀x ∈ D, g ∈ G(D) (1.3)

then A is uniformly globally pre-asymptotically stable for H .

In the above theorem |x|A is the distance to the set A. In this paper the V̇ notation
will be used instead of 〈V (x), f〉, and for Eq. (??) V (g) and V (x) represents the value
of V (x) after and before a jump respectively. All stability proofs later in the chapter
will use this theorem to prove stability.

About the approach

The key for the proposed hybrid integral action in Section 1.2.3, and 1.2.4 is the lo-
cation of the jump set. It will be shown that when within the jump set, the proposed
jump rule will guarantee decrease of the Lyapunov function. The clue is therefore to
restrict the jump set to a set that will depend on the sign and size of the error in the in-
tegral value, and the sign and error in other states. By construction of the problem, the
integral error (the difference between the unknown disturbance and the integral value)
is unknown. Therefore, the dynamic equations will be used to find an expression for
the integral error, and a new jump set will be formulated based on known states, and
an estimate of a state derivative (that will be found by sampling). Flow can occur in
the entire state space. The jump rule proposed is a linear jump rule, and jumps are
proportional to the error in other state variables.

1.2.2 drawing of the jump set and jumping
Tror du dette hadde hjulpet? =)

1.2.3 First order linear systems
In this approach a general first order system subject to an unknown constant disturbance
is presented. A control law with proportional control, and integral action is proposed,
and the closed loop system dynamics is derived. Then the flow set, flow map, and the
jump map are defined, before Theorem 2 defines a jump set such that the jumps always



decrease the Lyapunov function. The theorem also gives conditions for stability in
flow, such that the combined system is stable.

Consider the first order system with an unknown constant disturbance d as input to
the system. The system is written as

ż = −az + d+ u (1.4)

ḋ = 0, (1.5)

where a > 0. Let zd be the desired z-value, and by selecting the control input u as

u = żd + azd − kp(z − zd)− d̂, (1.6)

with kp > 0, the closed loop error dynamics becomes

˙̃z = −(a+ kp)z̃ + d̃ = −a′z̃ + d̃ (1.7)
˙̃
d = ḋ− ˙̂

d = − ˙̂
d = −kiz, (1.8)

where d̃ = d− d̂, a′ = a+ kp > 0.
Below the flow set, flow map, and the jump map are defined. The jump set is

defined in Theorem 2. The states are defined as

x =

[
z̃

d̃

]
=

[
x1
x2

]
. (1.9)

.

Flow set

The flow set is the entire state space, so C is given as

C =
{
x ∈ R2

}
. (1.10)

Flow map

From (1.9), (1.7), and (1.8) the time derivative of the state ẋ, or the flow map f(x) is
given as

ẋ =

[
˙̃z
˙̃
d

]
=

[
−a′x1 + x2
−kix1

]
=

[
−a′ 1
−ki 0

] [
x1
x2

]
= Ax = f(x). (1.11)

Jump map

In the proposed jump map x1 remain the same, and x2 is updated based on the x1-value,
such that

x+ =

[
x+1
x+2

]
=

[
x1

x2 − λx1

]
=

[
1 0
−λ 1

] [
x1
x2

]
= Ωx = g(x) (1.12)



Theorem 2. Given a linear system with x ∈ R2 of (1.9), the flow setC given by (1.10),
and the closed loop flow map f(x) given by (1.11), and jump map g(x) given by (1.12),
where the constants a′, ki, λ > 0, let α1, α2 ∈ K∞, and a Lyapunov function be given
as

α1(|x|A) ≤ V (x) = x>Px ≤ α2(|x|A), (1.13)

where

P =

[
p1 p2
p2 p3

]
= P> > 0, (1.14)

is set such that the Lyapunov function decreases in flow. That is,

V̇ (x) ≤ −ρ(|x|A) ∀x ∈ C. (1.15)

Let

β := 2λp3 > 0, (1.16)

γ := λ2p3 − 2λp2 > 0, (1.17)
ε > 0, (1.18)
σ > 0, (1.19)

where ε and σ are constants. For the jump set given by

D =

{
x ∈ R2 : |x1| ≥ ε, x1x2 ≥

(γ + σ)x21 + σx22)

β

}
, (1.20)

then

V (g(x))− V (x) ≤ −σ|x|2, (1.21)

and by Theorem 1 the set A = {0, 0} is uniformly globally pre-asymptotically stable
forH = (C, f,D, g).

Proof. Consider the Lyapunov function given by (1.13). The time derivative of the
Lyapunov function gives

V̇ (x) =
(
x>P ẋ+ ẋ>Px

)
(1.22)

=
[
x>(PA+A>P )x

]
, (1.23)

so for

PA+A>P < 0, (1.24)

V̇ (x) < 0 ∀x ∈ C, (1.25)

so if the matrix P is set such that PA +A>P < 0, the Lyapunov function decrease
in flow.



The value of the Lyapunov function after a jump, V (g) is

V (g) = x>Ω>PΩx, (1.26)

such that

V (g)− V (x) = x>[Ω>PΩ− P ]x,

= x>
[
λ2p3 − 2λp2 −λp3
−λp3 0

]
x. (1.27)

Expanding (1.27) gives

V (g)− V (x) = (λ2p3 − 2λp2)x21 − 2λp3x1x2,

= γx21 − βx1x2, (1.28)

and by inserting for (1.20) the inequality of (1.28) becomes

V (g)− V (x) ≤ −σ|x|2 ∀x ∈ D, (1.29)

so by Theorem (1.3), uniform global pre-asymptotic stability is guaranteed.

For Theorem 2 knowledge of the integral error is used to find the jump set. The inte-
gral error is not known, since the integral action is used to compensate for an unknown
disturbance. Therefore, the results of Theorem (2) is not applicable for a practical im-
plementation. In Remark 1, knowledge of the system dynamics is used to estimate the
integral error, and to find a jump set based on x1 and ẋ1.

Remark 1 (Practical implementation). For a practical implementation of Theorem 2,
the jump set D can not depend on x2. From the flow map of (1.11) x1x2 can be written
as

x1x2 = a′x21 + x1ẋ1, (1.30)

such that the jump set of (1.20) can be rewritten as

D =

{
x ∈ R2 : |x1| ≥ ε, x1ẋ1 ≥

(γ + σ − a′β)x21 + σx22)

β

}
. (1.31)

The value of σ can be set arbitrarily small, such that Eq. (1.31) does in practice not
depend on the value of x2.

1.2.4 DP system
Similar to the first order system, a closed loop system with integral action in the con-
troller will be derived. Then the flow set, flow map, and jump map are defined. There-
after Theorem 3 will define stability of the system by specifying a jump set that depends
on the states of the system.



Consider the linearized DP system of Section ??, that has kinematics and kinetics
given as

η̇ = R(ψ)ν, (1.32)

Mυ̇ = −Dν +R(ψ)>b+ τ , (1.33)

ḃ = 0, (1.34)

where b is considered a constant disturbance or bias force (from Eq. (1.34 )), and
the linear damping matrix satisfies D > 0, and the mass matrix has the following
properties M = M> > 0, and Ṁ = 0. The system now contain a rotation matrix,
making it nonlinear. However, the jump map used will be linear, and similar to the
approach used in Section 1.2.3.

By using a backstepping approach with integral action (?), the x-variables can be
defined as

x =

 R>η̃
ν − µ(η, t)

b̃

 =

x1

x2

x3

 , (1.35)

where µ(η, t) is a virtual control law to be defined later. An integral state b̂ is aug-
mented to the plant, and its dynamics are given as

˙̂b = −KiR(ψ)x2, (1.36)

with Ki = K>i > 0. The other variables are defined as η̃ = η − ηd, b̃ = b − b̂,
where ηd is the desired position, and the desired velocity is zero (νd = 0). By setting
the virtual control law µ(η, t) as

µ(η, t) = −Kpx1 +R(ψ)>η̇d, (1.37)

withKp = K>p > 0, and the actual control input τ as

τ = −x1 −Kdx2 −R(ψ)>b̂+Dν +Mµ̇, (1.38)

whereKd = K>d > 0. This results in the closed loop continuous dynamics

ẋ1 = −rSx1 −Kpx1 + x2 (1.39)

Mẋ2 = −x1 −Kdx2 +R(ψ)>x3 (1.40)
ẋ3 = −KiR(ψ)x2, (1.41)

and this is shown in Appendix A.
From the states defined in (1.35), and the continuous closed loop dynamics of (1.39

- 1.41), the flow set, the flow map, and the jump map are defined below. The jump map
is defined similarly to that of Section 1.2.3, and the jump set is defined in Theorem 3.

Flow set

Flow should be allowed in the entire state space, and the flow map C is given as

C =
{
x ∈ R9

}
. (1.42)



Flow map

Rewriting the equations (1.39 - 1.41), the flow map f(x) is given as

ẋ1 = −rSx1 −Kpx1 + x2 (1.43)

Mẋ2 = −x1 −Kdx2 +R(ψ)>x3 (1.44)
ẋ3 = −KiR(ψ)x2. (1.45)

Jump map

For the jump map chosen the jump in integral action is proportional to x2. That is, the
same state variable used in the continuous integral action.

For a constant λ > 0,

Λ = diag{λ, λ, λ} > 0, (1.46)

the jump map is given as

x+ =

x+
1

x+
2

x+
3

 =

 x1

x2

x3 − Λx2

 =

I 0 0
0 I 0
0 −Λ I

x1

x2

x3

 = Ωe = g(x) (1.47)

Theorem 3. Given the closed loop DP system with x ∈ R9 of (1.35), the flow set given
by (1.42), and the closed loop flow map given by (1.43 - 1.45 ), and jump map given by
(1.47), let M = M>, Ṁ = 0, Ki = K>i , α1, α2 ∈ K∞, and a Lyapunov function
be given as

α1(|x|A) ≤ V (x) =
1

2
x>1 x1 +

1

2
x>2Mx2 +

1

2
x>3K

−1
i x3 ≤ α2(|x|A), (1.48)

such that V̇ (x) < 0, ∀x ∈ C can be shown.
Let

β := 2ΛP3 > 0, (1.49)

Γ := Λ2P3 − 2ΛP2 > 0, (1.50)
ε1 > 0, (1.51)
ε2 > 0, (1.52)
σ > 0, (1.53)

where ε1, ε2, and σ are constants. For the jump set given by

D =
{
x ∈ R9 : |x1| ≥ ε1, |x2| ≥ ε2, (1.54)

x>2K
−1
i x3 ≥

λ

2
x>2K

−1
i x2 +

σ

2λ
[x>1 x1 + x>2 x2 + x>3 x3]

}
, (1.55)

then

V (g(x))− V (x) ≤ −σ|x|2, (1.56)

and the set A = {0,0,0} is uniformly globally pre-asymptotically stable for H =
(C, f,D, g).



Proof. Stability in flow:
The time derivative of the Lyapunov function given by (1.48) gives

V̇ (x) = x>1 ẋ1 + x>2Mẋ2 + x>3K
−1
i ẋ3

= x>1 [−rSx1 −Kpx1 + x2] + x>2 [−x1 −Kdx2 +R(ψ)>x3]

+ x>3K
−1
i [−KiR(ψ)x2]

= −x>1Kpx1 − x>2Kdx2 ≤ 0, (1.57)

and the continuous dynamics is uniformly globally stable (UGS) referenceKHALIL,
and to proove UGAS Barbalats Lemma (REFpreviouschapter) needs to be ap-
plied, since the system is time varying. The double time derivative of V (x), V̈ (x)
is

V̈ (x) = −2x>1Kpẋ1 − 2x>2Kdẋ2. (1.58)

From Eq. (1.48) it is known that x1, x2, and x3 are bounded. From Eq. (1.43) is can
be seen that ẋ1 is bounded, and from Eq. (1.44) ẋ2 is bounded, and hence, V̈ (x) is
bounded, and

lim
t→∞

V̇ = lim
t→∞

(−x>1Kpx1 − x>2Kdx2) = 0

Since x2 goes to zero as time goes to infinity, then

lim
t→∞

ẋ2 = 0,

and by Eq. (1.44)

lim
t→∞

x3 = 0,

and UGAS can be concluded for flow ∀x ∈ C.
Stability in jumps:

The value of the Lyapunov function after a jump V (g) is given as

V (g) =
1

2
x>1 x1 +

1

2
x>2Mx2 +

1

2
(x3 −Λx2)>K−1i (x3 −Λx2)

=
1

2
x>1 x1 +

1

2
x>2Mx2

+
1

2
[x>3K

−1
i x3 − x>3K−1i Λx2 − x>2 Λ>K−1i x3 + x>2 Λ>K−1i Λx2],

(1.59)

such that

V (g)− V (x) = −x>3K−1i Λx2 − x>2 Λ>K−1i x3 + x>2 Λ>K−1i Λx2, (1.60)



and since Λ = λI ,

V (g)− V (x) = −2λx>2K
−1
i x3 + λ2x>2K

−1
i x2. (1.61)

For

x>2K
−1
i x3 ≥

λ

2
x>2K

−1
i x2 +

σ

2λ
[x>1 x1 + x>2 x2 + x>3 x3], (1.62)

V (g)− V (x) ≤ −σ|x|2 < 0. (1.63)

As with the approach of the first order system, σ can be arbitrary small, so it does not
matter that x3 is unknown.

Since UGAS can be proved for both flow and jumps, UGAS (UGpAS) for the
hybrid system is concluded.

Remark 2 (Practical implementation). For a practical implementation of Theorem 3,
the jump setD can not depend on x3. From the flow map equation of (1.44) x>2K

−1
i x3

can be written as

x>2K
−1
i x3 = x>2K

−1
i R(ψ)[Mẋ2 + x1 +Kdx2] (1.64)

such that the jump set of (1.55) can be rewritten as

D =
{
x ∈ R9 : |x1| ≥ ε1, |x2| ≥ ε2, (1.65)

x>2K
−1
i R(ψ)M ẋ2 ≥

λ

2
x>2KIx2 +

σ

2λ
[x>1 x1 + x>2 x2 + x>3 x3] (1.66)

−x>2K−1i R(ψ)[x1 +Kdx2]
}

(1.67)

As in Remark 1, the value of σ can be set arbitrarily small, such that Eq. (1.67) does
in practice not depend on the value of the integral state error x3.

1.3 Case studies

1.3.1 First order linear system
For this example both the cases when knowledge of x2 is assumed known, and when
x2 is estimated from sampling of ẋ1 are simulated. Consider the first order system

ż = −z + d+ u (1.68)

ḋ = 0, (1.69)

and control input u as

u = żd + zd − 9(z − zd)− d̂, (1.70)



so that the closed loop continuous dynamics becomes

˙̃z = −10z̃ + d̃ (1.71)
˙̃
d = −kix1. (1.72)

Let the state vector be given as

x =

[
z̃

d̃

]
=

[
x1
x2

]
. (1.73)

Typically the integral action would have a low tuning, so set ki = 1, and a′ is given as
10 by (1.71), so ẋ is written as

ẋ =

[
−10 1
−1 0

] [
x1
x2

]
= Ax, (1.74)

and for

P =

[
1 −0.1
−0.1 1

]
(1.75)

the condition given by (1.24) is satisfied, and the Lyapunov function decrease in flow.
For this example, the values chosen for λ, and ε are

λ = 3, (1.76)
ε = 0.3, (1.77)

such that Eq. (1.16), and (1.17) gives β = 6, and γ = 9.6, and the jump set given by
(1.20) becomes

D =

{
x ∈ R2 : |x1| ≥ 0.3, x1x2 ≥ 1.6x21 +

α3

β
(x21 + x22)

}
. (1.78)

Note that α3 can be arbitrary small, so it is not considered in the simulation.
The jump set for when x2 is not assumed known, given by (1.31) becomes

D =

{
x ∈ R2 : |x1| ≥ 0.3, x1ẋ1 ≥ −8.4x21 +

α3

β
(x21 + x22)

}
. (1.79)

For both simulations a step of magnitude 100 at time t = 5s, and a step of −50 at time
t = 30 is applied.

Even though it is not necessary in terms of stability, a dwell-time (?) (minimum
amount of time between jumps) of T = 0.1s is demanded between each jump in the
simulations. For the simulation run with x2 assumed known, it would work fine without
a dwell time, but if ε is set small, then all jumps necessary would be performed with
a magnitude λε2, which could require a lot of jumps. A method without dwell-time
could be computationally unfeasible. Also, a method without a dwell-time constraint
could be less robust, since it allows for an infinite number of jumps in no time, which



means that is could respond too quickly to noise. However, if the dwell-time is slower
than the noise, this would work as a noise filter. For the sampled version a dwell-time
is needed in order to sample values of x1.

For the second simulation run where ẋ1 is found by sampling, a sampling period of
Ts = 0.03s is applied. Let x′2 be the value of x2 at previous sampling instant. Then ẋ2
is found from

ẋ1 =
x1 − x′1
Ts

. (1.80)

White noise of power 0.1 is added to make the sampling process more realistic. It is
not crucial that the value for ẋ1 is correct, but it should be close in magnitude to the
true value, at least when close to the boundary of the jump set. This is because ẋ1 is
just used as a jump condition (defines the jump set), and the value itself is not used in
any feedback.

Results first order system - with knowledge of x2
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Figure 1.1: Position and integral state error first order system, no sampling
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Figure 1.2: Lyapunov function and integral state error zoom at time t = 5s, no sampling

Results first order system - without knowledge of x2
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Figure 1.3: Position and integral state error first order system, with sampling, and white noise.
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Figure 1.4: Lyapunov function and integral state error zoom at time t = 5s, with sampling, and
white noise.

1.3.2 Example - DP
In this example, knowledge of x3 will be assumed known for the first simulation run.
For the second simulation, x2 will be sampled to find an estimate of ẋ2. Some noise
will be added to this simulation, to make the sampling process more realistic.

Consider the closed loop DP system of Eq. (1.43 - 1.45) as

ẋ1 = −rSx1 −Kpx1 + x2 (1.81)

Mẋ2 = −x1 −Kdx2 +R(ψ)>x3 (1.82)
ẋ3 = −KiR(ψ)x2 (1.83)

with

M = diag{450, 450, 100} (1.84)
Kp = diag{100, 100, 50} (1.85)
Ki = diag{10, 10, 5} (1.86)
Kd = diag{500, 500, 200}, (1.87)

and λ, ε1, and ε2 chosen as

λ = 25, (1.88)
ε1 = 0.0001, (1.89)
ε2 = 0.01. (1.90)



For both simulations a step of magnitude

b =

3000
2000
1000

 , (1.91)

is applied at time t = 10s.
By the same reasoning as for the example for the first order system of Section 1.3.1

a dwell-time is added between jumps here as well. The dwell chosen is T = 0.1s.
Similar to the example for the first order system of Section 1.3.1 a dwell-time is

needed in order to sample values of x2. For the second simulation run where ẋ2 is
found by sampling, a sampling period of Ts = 0.03s is applied. Let x′2 be the value of
x2 at previous sampling instant then ẋ2 is found from

ẋ2 =
x2 − x′2
Ts

. (1.92)

In the second simulation noise of power 20 has been added in all DOF.

Results DP - with knowledge of x3

For the results below is says (N), (E), (Heading), on the plots, but this is not entirely
the case. The x1 state is η̃ transformed to body coordinates, and x2 is not equal to ν,
but in the plots x1, and x2 are called ”position” and ”velocity”.
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Figure 1.5: Position error DP, no sampling
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Figure 1.6: Velocity error DP, no sampling
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Figure 1.7: Integral error DP, no sampling
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Figure 1.8: Lyapunov function and zoom on integral error, no sampling

Results DP - without knowledge of x3 - sampling of x2
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Figure 1.9: Position error DP, with sampling
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Figure 1.10: Velocity error DP, with sampling
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Figure 1.11: Integral error DP, with sampling
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Figure 1.12: Lyapunov function and zoom on integral error, with sampling

1.4 Conclusions and further work
For both the first order linear system, and the DP system the hybrid integral action
improves performance for large constant disturbances. The state estimates, and the
integral action error converge much faster than in the case without jumps. After a step
the integral action converge to the new value quickly, and (almost) without overshoot.
When sampling is used to find the jump set, the performance decrease is negligible
compared to the ideal case, and the noise does not induce problems.

For further work the algorithm should be tested on more realistic data, either a com-
prehensive numerical ice simulation, or a model test for a DP vessel subject to large
step changes in disturbances. It would be interesting to see how this approach could im-
prove performance (offset from desired position), thrust, and power consumption. One
other interesting aspect for a model test is how performance is affected by sensor noise.
For the DP system an alternative to sampling the velocity is to use accelerometers to
find the accelerations.



Chapter 2
Summary and conclusions
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