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Summary

Suction caisson foundations are becoming an increasingly used foundation solution for
offshore structures, both as single anchor piles for floating structures and directly attached
to a substructure for bottom-fixed offshore structures. For a structure founded on multiple
caissons the foundation is statically indeterminate and the response to a load will depend
on the stiffness of the suction caissons and the soil in which they are embedded, as well as
the stiffness of the substructure and the topside. This soil-structure interaction dictates
the use of an integrated approach for the design of the suction caissons.

The common practice for this integrated design is to model the caissons by means of a
set of fixed-end linear springs connected to the substructure, as sketched in Figure 1.
This way a design load can be applied on the substructure and the resulting reaction
forces on and displacements of the suction caissons can be determined from the spring
forces and deflections. This method does however not account for the non-linear load-
displacement behaviour of soils, which can lead to incorrect load distributions for ultimate
load conditions.

This thesis aims to develop a method that includes a more realistic foundation behaviour
and can thus provide more accurate results for ultimate load conditions. In order to do
this three different methods to model the foundation stiffness have been studied. First
the currently used method with linear springs is studied. Next two methods taking non-
linear soil behaviour into account have been developed, the first one using non-linear
springs, the other using several load steps to solve the system. The methods have been
applied for both a single suction caisson and a model of a jacket substructure resting on
four suction caissons and compared with FEM calculations in the geotechnical software
Plaxis. The FEM calculations come with their own inaccuracies and will not provide the
exact behaviour of the system, however they have been used as a benchmark since model
or full scale model tests are not feasible.

Linear spring method

In the linear-elastic method the caissons are assumed to act as a rigid body, which results
in a system with 6 degrees of freedom that can be described by a 6x6 stiffness matrix.
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vi Summary

The stiffness terms in this matrix can either be determined from analytical or empirical
formulae based on the soil parameters and caisson dimensions or they can be computed
using a FEM analysis. Three sets of analytical stiffness formulations have been compared
with FEM calculations in Plaxis. The results showed that the analytical expressions give
useful results that can be within a 10% range from the FEM results, provided that the
soil is linear-elastic and uniform. This assumption is far from realistic and for other soil
profiles the results can vary significantly.

Next the spring foundations have been applied in a structural model of a jacket founded
on four suction caissons. The spring stiffnesses in this model have been based on the FEM
results for a single caisson to allow for a fair comparison with FEM calculations of the
full model. The models have been compared for shear moduli of 5, 20, 60 and 240 MPa.
Additional springs between the caissons have been added in the structural model to
account for the interaction between the caissons through the soil. The spring stiffnesses
for these additional springs have been determined from a 24x24 flexibility matrix that
has been determined in the full FE model of the four caissons. The resulting loads on
the caissons correspond with an average difference of approximately 5% while the average
caisson displacements match within an average range of 5 to 15%. These results show
that the design method that is currently used provides accurate results for analytical soil
profiles that are uniform and behave linear-elastic. The question is however whether this
model can also be used for realistic soil profiles.

Non-linear spring method

There are various soil models that can be used to describe the non-linear behaviour of
soils in a FE model. Two of these models, the Mohr-Coulomb model and the Hardening
Soil model, have been compared and the Hardening Soil model has been selected for
further use in the calculations since it gives a better correspondence with model tests
and includes more aspects of realistic soil behaviour. The first approach to include the
non-linear behaviour of the soil in the structural model that has been considered is the
replacement of the linear springs by non-linear ones defined by load-displacement curves.
Two models, each with a different configuration of non-linear springs, have been developed
and the curves for the springs have been determined using FEM calculations for a single
caisson. Since it is not possible to use a stiffness matrix, which allows for coupling between
the degrees of freedom, in the non-linear spring models the springs have to be attached
at the rotation centres of the caissons. In the first model all springs are connected to the
centre rotation for an overturning moment. In the second model the lateral and rotational
springs are combined into two springs, one of which is applied at mudline and the other
at the rotation centre for a lateral load. The models therefore assume that these rotation
centres have a fixed position. This assumption has been checked and is only valid for a
limited load range, as the rotation centres vary with the applied load. Another assumption
that the models rely on is that the load-displacement curves are a function of a single
load component and not influenced by any other load components. A series of FEM
calculations has been carried out to test this assumption and it can be concluded that
the assumption is not valid. The loading in other directions can lead to a change of the
stiffness for a degree of freedom by as much as a factor two. An additional vertical load
will lead to an increased lateral and rotational stiffness whereas an overturning moment
reduces the lateral stiffness and vice versa.
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Figure 1: Sideview of a jacket with suction caisson foundations modelled as springs

The two caisson models have been implemented in the structural model including the
substructure and compared with FEM calculations in Plaxis, again for four different soil
stiffnesses that correspond to the same shear moduli as used for the linear-elastic model.
The comparison has shown that the non-linear models provide better results than a model
using linearized springs. For the loads on the caissons the average difference varies from
about 5% for the stiffest soil to approximately 30% for the loosest soil. This is because
the foundation behaviour is more sensitive for the exact soil stiffness as the soil stiffness
decreases. The average difference in the caisson displacements is in the order of 20 to
30%. The results for the loads on the caissons seem accurate enough to be used for most
soil profiles but the results for the displacements contain a significant inaccuracy. The
determination of the exact soil stiffness for the correct load conditions is needed to limit
the inaccuracy. It has also been attempted to improve the accuracy of the results by
applying additional springs between the caissons to account for the interaction effects
between the caissons, however the load-displacement curves for these springs could not
be obtained with sufficient accuracy to provide useful results.
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Stepwise solving method

A different method for the evaluation of non-linear soil-structure interaction that has been
investigated is the evaluation of the foundation behaviour in several steps, using stiffness
matrices that are updated after each load step. A fraction of the load is applied in the
structural model and the loads on the four caissons are determined. These loads are
then applied on a FE model of a single caisson in Plaxis and subsequently the updated
stiffness matrices for the caissons are determined. These can then be implemented in the
structural model and a new load step can be applied to find the updated loads on the
caissons. The advantage of this method is that the updated caisson stiffness automatically
take the correct load condition into account, as well as the actual position of the centre
of rotation. The correct deformations of the jacket substructure are however not included
in the model, as the load steps are applied starting from an undeformed initial condition.
The jacket deformations could be included by adjusting the caisson springs such that
they give the correct deformations in an unloaded condition, however this would make
the method far more complex to use and has therefore not been equipped.

The method has been compared with FEM calculations using various numbers of load
steps. For the used combination of load case, caisson and jacket geometry and soil stiffness
the results showed that five load steps were sufficient to get convergence in the results.
The resulting reaction forces on the caissons show good correspondence with the FEM
calculations with an average difference of 7%. The caisson displacements vary by 40% on
average however, which makes these results unreliable. The results have been obtained
for a soil stiffness corresponding to a shear modulus of 60 MPa for an effective stress of
100 kPa. The method using non-linear springs provides results for the caisson displace-
ments that are in a significantly better agreement with the results from the FEM analysis
for the same soil stiffness and is therefore considered to be more suited for the evalua-
tion of non-linear foundation stiffness behaviour. The inaccurate results of the stepwise
method are most likely caused by not taking the substructure deformations into account,
as a comparison for a single caisson without attached substructure gave results from the
stepwise method and FEM calculations that varied less than 5%. The stepwise method
is thus able to produce quite accurate results, in fact more accurate than when using the
non-linear springs, due to the consideration of the actual load combination. The inac-
curacies introduced by not accounting for the substructure deformations outweigh this
effect however and make the method less suited for applications with multiple caissons.

Conclusions

Of all three methods evaluated the method using non-linear springs is considered the
most promising for the design of suction caisson foundations for multi-footed structures.
It is able to describe the changing load distribution over the foundations for ultimate load
conditions as a result of non-linear soil-structure interaction and provides reliable results
for a wide range of soil stiffnesses. The method can and should be improved further
however by determining the spring stiffnesses for the correct load conditions, which will
lead to more accurate results especially for soil profiles with a small stiffness.
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Chapter 1

Introduction

Suction caissons are a type of offshore foundation that allow for fast and noise-free instal-
lation and decommissioning of offshore structures. They have been used for more than
30 years in the oil and gas industry and are also becoming more common in the offshore
wind sector as a promising way to cost reduction, potential for re-use and simple decom-
missioning. SPT is a leading contractor for the installation of both single suction anchor
piles and foundations on multiple suction caissons. The suction caissons are installed by
applying a differential pressure between the inner and outer sides of the caissons, which
pushes the caissons into the soil.

Problem Definition

When a platform is founded on multiple suction caissons, the way the wind and wave loads
are transferred through the structure and various caissons into the soil will depend on the
stiffness of both the platform and the caissons. The design of the substructure and suction
caissons should thus be combined to include the effects of soil-structure interaction. This
is currently done by modelling the suction caisson foundations as a set of linear-elastic
springs attached to the substructure. However the accuracy of the currently used linear
springs is limited for load cases with extreme loading. Linear springs cannot include
the effect of load redistribution in the substructure caused by the nonlinear soil stiffness
behaviour. Therefore the design loads for the suction caissons for ultimate load conditions
that are found are inaccurate, resulting in an inefficient foundation design.

There are some ways of including non-linear soil behaviour, for instance the p-y curves
method. However these methods are originally developed for slender foundation piles, so
it is questionable whether they can be applied for rigid foundations like suction caissons.

Objective

The goal of this thesis is to develop a method to model the non-linear behaviour of
soils in a structural model for suction caisson foundations that is more accurate than
the currently used models. This method should then be implemented in the structural
programme SACS to be used for design purposes.

1



2 Introduction

Reading Guide

Three different methods for the modelling of suction caisson foundations are evaluated in
this thesis, each of which is discussed in a separate chapter.

Chapter 2: Linear Method
First the use of linear springs, currently common practice, is considered. For linear-
elastic uniform soils several analytical expressions for the foundation stiffness of embedded
foundations are available. These expressions are compared with each other as well as
FEM calculations for linear-elastic and other soils. The springs are then applied for a
configuration of a jacket substructure resting on 4 suction caissons and compared with
results from FEM calculations in Plaxis to see if the spring model can provide decent
results.

Chapter 3: Non-linear Spring Method
Secondly more realistic non-linear soil profiles are considered. First the soil model used
in the FEM calculations is selected. Next two configurations of non-linear spring foun-
dations are introduced and the limitations of the models are discussed. The foundation
configurations are then implemented in the model of the substructure and foundations and
compared with FEM calculations in Plaxis to determine the accuracy of the developed
models.

Chapter 4: Stepwise Method
In the fourth chapter a different method for the modelling non-linear soil behaviour is
discussed, in which the foundation responses are determined in several load steps. The
advantages and disadvantages of this method are evaluated and again a comparison with
FEM calculations for a complete foundation model is made to determine whether this
method can be used for design purposes.

Conclusions
Finally the usability of various methods can be evaluated in the conclusions. Furthermore
some recommendations for additional studies are given.



Chapter 2

Linear-Elastic Stiffness Method

2.1 Linear-Elastic Spring Stiffnesses

2.1.1 Introduction

The loads on an offshore structure are transferred through the substructure and the foun-
dation to the soil. The soil will absorb the load and deform as a result of this. These
deformations result in displacements of and possibly additional loads on the structure
and therefore need to be estimated during the design of the structure. Since soil is an
heterogeneous material the properties of the soil vary with the exact location. Further-
more the response of the soil is anisotropic and non-linear. To some extent however the
behaviour of the soil can be approximated as linear and uniform, which enables a more
simple estimate of the deformations. In this case the relation between the applied load
and the resulting deformations is given by

~F = K · ~u (2.1)

where ~F is the load vector, K is the stiffness matrix and ~u is the vector containing the
resulting displacements of the structure. This equation is equal to the equation for a
spring. For a spring with one degree of freedom for instance ~F would be the applied
force on the spring, K would be the spring constant and ~u would be the elongation or
shortening of the spring. This means that when the response of the soil is assumed to
be linear the foundation of an offshore structure can be replaced by a spring with the
same characteristics. These characteristics are contained in the stiffness matrix K and
the consequent problem is how to determine the entries of the stiffness matrix based on
the properties of the foundation that is to be modelled.

2.1.2 The Stiffness Matrix

A rigid foundation for an offshore structure has 6 degrees of freedom; 3 displacements
and 3 rotations. Similarly there are 6 load components: 2 horizontal shear forces, 1
vertical force, 2 overturning moments and one torsional moment. The stiffness matrix
will therefore be a 6× 6 matrix.

3
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If the cylindrical foundation is orientated vertically, that is symmetrically with respect
to the normal of the soil surface, most of the degrees of freedom will be uncoupled. This
means that there is no interaction between the degrees of freedom, for instance a vertical
force will not result in a horizontal displacement. The only exception is the coupling
between horizontal displacement and rotation that occurs when the point of loading is
different from the centre of rotation. It follows intuitively that these two degrees of
freedom are coupled: when a shear force is applied on the structure the load will be
countered by a horizontal load on the foundation in the opposite direction. Since these
two loads are not acting at the same level this gives an overturning moment and hence a
rotation of the foundation. It is assumed that the matrix is symmetrical, meaning that the
stiffness term coupling a horizontal load with a rotation is identical to the stiffness term
coupling an overturning moment with a horizontal translation. A finite element studies
on suction caissons shows that this is a reasonable assumption, as the two coupling terms
will generally vary less than 10 % (Liingaard et al., 2007). The full spring equation for a
6 degrees of freedom system with the resulting stiffness matrix is given in Equation 2.2.



Fx
Fy
Fz
Mx

My

Mz

 =



Kh 0 0 0 −Khr 0
0 Kh 0 Khr 0 0
0 0 Kv 0 0 0
0 Khr 0 Kr 0 0
−Khr 0 0 0 Kr 0

0 0 0 0 0 Kt

 ·


ux
uy
uz
θx
θy
θz

 (2.2)

The axes used for the notation are defined such that the z-axis is orientated vertically and
the positive direction pointing upwards and the x-and y-axis are the principal horizontal
directions. The origin is located at mudline at the centerline of the caisson. The definition
of the axes is shown in Figure 2.1.

Figure 2.1: The used right-handed cartesian
coordinate system ©Tarquin

The centre of rotation of the caisson will be
located below the mudline. This means that
a force in positive x-direction will also give
a positive moment about the centre of ro-
tation and hence a positive rotation about
the y-axis. The positive rotation will in-
crease the horizontal displacement at mud-
line. When only the lateral stiffness is taken
into account this displacement would require
a larger horizontal load than is actually the
case. Therefore the coupling stiffness should
be negative in order to find the correct hori-
zontal load for a given translation and rota-
tion. On the other hand a positive force in the
y-direction results in a negative overturning
moment about the centre of rotation. There-
fore the stiffness for the Fx-My coupling will
be negative while for the Fy-Mx coupling it
will be positive, as shown in Equation 2.2.

θx

θy

θz
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2.1.3 Results from Literature

The various stiffness terms for a cylindrical disc resting on a linear-elastic halfspace with
uniform soil properties were initially found by Boussinesq, Mindlin, Borowicka and Reiss-
ner (Pais and Kausel, 1988). For a cylindrical foundation that is embedded in the soil
the stiffness will increase compared to a surface foundation with the same dimensions and
soil properties. There are no theoretical expressions available for embedded foundations,
however several approximations have been developed that show good correspondence
with more advanced methods such as the boundary integral equation technique (Wolf
and Deeks, 2004, chap. 5).

For foundations with an embedment ratio larger than unity a set of stiffness expressions
for the lateral and rotational stiffness is given by Carter and Kulhawy (1992). These
expressions are currently used in SPT Offshore, together with the expressions by Randolph
given below. They give a flexibility matrix instead of a stiffness matrix, which is given in
Equation 2.3. The flexibility matrix is derived assuming a rigid foundation.

[
ux
θy

]
=

 0.4
GeqD

(
2L
D

)−1/3 0.3
GeqD2

(
2L
D

)−7/8

0.3
GeqD2

(
2L
D

)−7/8 0.8
GeqD3

(
2L
D

)−5/3

 · [Fx
My

]
(2.3)

where L is the embedment depth, D is the diameter of the foundation and Geq is given
by

Geq = G

(
1 +

3ν

4

)
(2.4)

with G the shear modulus of the soil and ν the Poisson’s ratio. Inverting the flexibility
matrix gives

Kh = GeqD

(
0.8
(
2L
D

)−5/3

0.32
(
2L
D

)−2 − 0.09
(
2L
D

)−1.75

)
(2.5a)

Kr = GeqD
3

(
0.4
(
2L
D

)−1/3

0.32
(
2L
D

)−2 − 0.09
(
2L
D

)−1.75

)
(2.5b)

Khr = GeqLD

(
0.6
(
2L
D

)−15/8

0.32
(
2L
D

)−2 − 0.09
(
2L
D

)−1.75

)
(2.5c)

These expressions can be supplemented by vertical and torsional stiffness terms developed
by Randolph and Wroth (1978) and Randolph (1981) respectively. These stiffness terms
are based on analytical expressions and are validated by FEM calculations for large em-
bedment ratio’s ( LD ≥ 10). As some assumptions are also based on slender foundations the
accuracy of the expressions for small embedment ratio’s may be limited. The expressions
for the vertical and torsional stiffness are given in Equations 2.6 and 2.8 respectively.
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Kv =
1

η
· 2GD

1− ν

(
1 + η (1− ν)

π

ζ

L

D

)
(2.6)

where ζ = ln

(
5ρ (1− ν)

L

D

)
(2.7)

Kt = GD3

(
2

3
+ π

L

D

)
(2.8)

In Equation 2.6 η is a depth factor that accounts for the increase in stiffness of the
foundation base due to the soil layer that is present between the foundation base and the
surface. For small loads the soil layer above the foundation base will deform as a result
of the shaft friction and thus cannot prevent the deeper soil layer from settling; hence the
stiffness will not vary much from that of the base only and η is approximately equal to 1.
For larger loads the shaft friction will be fully mobilized and the load increment will be
carried by the foundation base only. In this case the soil above the foundation depth will
limit the settling of the soil below the foundation depth and η will be approximately 0.85
(Randolph and Wroth, 1978). This gives a load-displacement behaviour that is bilinear.

The term ρ in Equation 2.7 is a factor that includes the effect of a shear modulus that
increases with depth. It is defined as the ratio between the shear modulus at half the
foundation depth and at the foundation base. For a uniform soil ρ will be equal to unity,
for a shear modulus that is proportional to the depth ρ will be equal to 1/2.

It can be seen in Equation 2.7 that ζ will be zero when the expression in parentheses on
the right hand side is equal to unity. Since ζ appears in the denominator in Equation 2.6
the vertical stiffness will be undefined for an embedment ratio of 1

5ρ(1−ν) . A common value
of ν for soils is 0.3; for a uniform soil this gives an embedment ratio of approximately 0.3.
This means that Equation 2.6 is not suited for shallow foundations.

For shallow foundation two sets of stiffness expressions have been developed by Wolf and
Deeks (2004, chap. 5) and Gazetas (1991). The expressions given by Wolf are derived
using the cone model, while Gazetas’ expressions are based on FEM calculations. Just as
for the expressions given by Carter and Randolph their expressions have a limited range
of applicability, as they are calibrated to calculation results. The expressions given by
Wolf can be used up to an embedment ratio L/D of 1. Gazetas does not give any explicit
range of applicability for his expressions but uses embedment ratios up to 1.5 in charts.

The stiffness terms given by Wolf and Gazetas are defined for a point on the centerline of
the caisson at foundation depth, not at the mudline. Since a rigid foundation is assumed
the displacements at the foundation depth and at mudline for a pure vertical or lateral
translation will be equal, as will be the rotations for a torsional or overturning moment.
However the distance from the centre of rotation will be different for the two points, and
therefore the coupling term will vary as well.

The distance to the centre of rotation can be found by dividing the coupling term by the
lateral stiffness term, which gives the moment arm. For the expressions given by Wolf and
Gazetas a moment arm of L/3 is found, which means that the centre of rotation is located
at a distance of L/3 above the foundation depth. The centre of rotation is thus located at
2/3 of the depth of the pile. This is the depth at which the resultant of the lateral earth
pressure acts, assuming that the lateral pressure increases linearly with depth.
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In order to change the stiffness matrix such that it is valid for a point at mudline the
coupling term should be changed to give a moment arm of −2/3L. The coupling terms
given by Wolf and Gazetas thus need to be multiplied by -2 to be applicable for a point
at mudline and to be able to compare them with the expression given by Carter. Also the
rotational stiffness has to be modified as described in Appendix A. This has already been
done in the expressions given in Table 2.1. As mentioned before Carters expressions are
already given for a point at mudline. The moment arm that follows from Carters coupling

and lateral stiffness is equal to 0.65
(
L
D

)−5/24
L, which for embedment ratios close to unity

also gives a centre of rotation located at approximately 2/3 of the foundation depth.

2.1.4 Comparison of the Suggested Expressions

The various expressions for the stiffness of embedded foundations given have been com-
pared for embedment ratio’s varying between 0 and 2, with ν = 0.3, η = 1 and ρ = 1.
The results are given in Figure 2.2. The stiffnesses are divided by the stiffnesses for a
surface foundation given by Wolf, as these are the exact theoretical expressions (Pais and
Kausel, 1988). The coupling term Khr has been omitted as the behaviour is the same as
for the lateral stiffness.
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Figure 2.2: Comparison of the stiffness terms given by Wolf and Deeks, Gazetas, Carter and
Kulhawy, Randolph and Wroth
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Table 2.1: Comparison of the stiffness terms given by Wolf and Deeks, Gazetas, Carter and
Kulhawy, Randolph and Wroth
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It can be seen that the three sets of expressions roughly follow the same trends, but sig-
nificant differences occur. For the lateral stiffness the expression given by Gazetas gives
approximately 50% higher results than the expression from Carter, with the expression
from Wolf being closer to Carter’s expression for small embedment ratio’s and closer to
Gazetas’ for larger embedment ratio’s. For the vertical stiffness the expressions from
Wolf and Gazetas give similar results up to an embedment ratio of 0.5, after which the
expression given by Wolf gives a significantly higher stiffness. The expression by Ran-
dolph clearly cannot be used for embedment ratio’s smaller than 1 due to the asymptotic
behaviour; for embedment ratio’s larger than one it approaches the value given by Wolf.
The stiffness terms for the rotational stiffness are all three virtually identical up to an
embedment ratio of 1, after which Wolf’s expression starts to give a larger stiffness than
Carter’s and for larger embedment ratio’s also Gazetas’ expression, with the difference in-
creasing up to 50% for an embedment ratio of 2. The stiffness given by Carter is slightly
larger than the stiffness given by Wolf. For the torsional stiffness the expression from
Gazetas gives a stiffness that is up to twice as high for small embedment ratio’s as the
one given by Wolf, while for embedment ratio’s larger than unity the expression by Wolf
gives a higher stiffness. The expression given by Randolph gives results similar to the
expression from Wolf.

The differences between the expressions might be caused by the fact that Gazetas’ expres-
sions are valid for any shape of the foundation, while Wolf’s expressions are optimized for
shallow cylindrical foundations and the expressions from Carter and Randolph for slender
cylindrical foundations.

2.1.5 Application for Suction Caisson Foundations

The load-displacement relations from Wolf and Gazetas are given for the centerpoint at
the bottom of the foundation, for which it is assumed that the foundation is rigid at the
embedment depth. Suction caissons are open at the bottom however, and only consist
of skirts and a top plate. This means that the soil inside the caisson is in theory free to
have displacements different from the displacements of the caisson itself.

To what extent the soil inside the caisson acts as a part of the foundation depends on
whether the valve in the top of the caisson is sealed after installation or not. The difference
is shown in Figure 2.3. Usually there is a small layer of water between the top plate of the
caisson and the soil. This layer is the result of the fact that there is some safety included
in the length of the caisson, to make sure that the required penetration depth is reached
despite the soil heave that occurs inside the caisson during installation. The soil heave is
the combination of the soil volume displaced by the caisson, which is transported to the
interior and exterior of the caisson (DNV, 2005), and the effects of dilatation or contraction
of the soil as a result of the changed stress state (Tran et al., 2005). Consequently it is
difficult to estimate the exact soil heave that will occur and some margin is needed.

When the top of the caisson is sealed the volume of the water layer will initially remain
unchanged during loading due to the incompressibility of the pore water. In the long term
the water might dissipate as a result of consolidation. Most waves however will have a
wave period that is sufficiently small compared to the consolidation time for the soil to
behave undrained, even in sand, meaning that the soil and water inside the caisson will
be trapped and the foundation will behave like a rigid foundation.



10 Linear-Elastic Stiffness Method

Figure 2.3: Sketch of the foundation. From left to right: Assumed foundation, suction caisson
with closed top plate and suction caisson with open top plate

If the caisson remains partially opened at the top the water can dissipate upwards when
the pressure is increased by additional loading. This will allow the caisson skirts to move
relative to the soil inside the caisson and may lead to a significant decrease of the vertical
stiffness. The effect on the other stiffness terms will probably be much smaller as other
types of loading will not lead to a change of pressure of the water inside the caisson.

As the modelling of a partially opened suction caisson will be quite complex and require a
time-dependent analysis the decrease of the stiffness for this case will not be investigated
further and it is assumed that the foundation can be modelled as being rigid.

2.2 Dynamic Stiffness

2.2.1 The Dynamic Load-Displacement Relation

When the load applied on the foundation is not constant but varying in time dynamic
effects can occur. The dynamic response of the foundation can either be damped or am-
plified compared to the static load case, depending on the damping of the soil and the
excitation frequency. There are two types of soil damping: hysteretic damping, which is
the result of energy dissipation by plastic deformation of the soil, and radiation damp-
ing, which is the result of waves created by the The damping of the foundation can be
included in the model by placing a dashpot parallel to the foundation spring. The load-
displacement relation, which is given for a static system in Equation 2.1, thus becomes

~F (ω, t) = S(ω) · ~u(ω, t) (2.9)

S(ω) = K(ω) + iωC(ω) (2.10)

Both the stiffness and the damping matrix are functions of the applied excitation fre-
quency ω. This means that the response of the foundation for a dynamic load will not
only be altered by dynamic amplification but also by a change in the stiffness and damping
of the system itself.

Whether the influence of the dynamic effects is significant or negligible thus depends on
the excitation frequency, or more specific on the excitation frequency relative to the char-
acteristic frequency of the system. The relative frequency can for instance be expressed
as the frequency factor a0 (Gazetas, 1991):
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a0 =
ωD

2Vs
(2.11)

where Vs is the shear wave velocity defined by

Vs =

√
G

ρ
(2.12)

Alternatively the characteristic frequency ω0, which is not necessarily equal to the eigen-
frequency of the system as it is independent of the mass of the structure, can be defined
as (Verruijt, 2010, chap. 15):

ω2
0 =

16G

ρD2
(2.13)

ω

ω0
=
ωD

4Vs
= 1/2 · a0 (2.14)

2.2.2 Assessment of the Dynamic Response for Ultimate Design Loads

In this section the dynamic effects for a design load case will be assessed. Since the goal
of this thesis is to look at non-linear soil behaviour and most soils behave more non-linear
for increasing loads and deformations, an ultimate load case should be considered. For
offshore structures this will usually be a design wave. The maximum wave height that can
occur without breaking increases with the wave period of the wave, so the design wave
will have a relatively large wave period, in the order of 10 to 20 seconds. The design wave
will be highly non-linear so there will be higher frequencies present as well however. For
the assessment a wave period of 6 seconds is assumed.

For the soil a sand layer with a shear modulus of 60 MPa and density of 2000 kg/m3 is
assumed. This gives a shear wave velocity of 173 m/s, which is the same order as the
150 m/s given by Verruijt (2010, chap. 3). With a caisson diameter of 7 m this gives
a0 = 0.02 or ω/ω0 = 0.01. Gazetas (1991) shows that for this value of a0 all of the entries
in the dynamic stiffness K(ω) will decrease less than 0.1% and similarly Verruijt (2010,
chap. 15) shows that for a uniform surface load the dynamic amplification factor for the
given ratio of ω/ω0 is practically equal to unity. This means that only a negligible error
is introduced when the system is assumed to behave statically. Therefore the dynamic
effects of the load on the foundation will be ignored in further calculations.

A case in which the dynamic effects cannot be ignored is when the structure is loaded by
slamming loads from breaking waves. Wave slamming can be an ultimate load condition
and can cause ringing of the structure, which is a highly dynamic effect (Sheikh and Swan,
2005). Wave breaking mainly occurs in shallow water near the coast however, whereas
multifooted platforms are usually designed for intermediate water depths where wave
breaking is less of a problem. Jacket structures for offshore wind turbines are also used in
more shallow waters with a water depth of 30 to 40 meters and might therefore be affected
by breaking waves. Turbulent wind loads can also be an ultimate design condition in this
case, so for offshore wind turbines the dynamic effects of the ultimate load state should
be taken into account.
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2.3 Validation With FEM Calculations

In order to find out which of the proposed expressions for the various stiffnesses gives the
most accurate results for reasonable suction caisson applications a series of FEM calcula-
tions in the software Plaxis 3D (Plaxis, 2013) has been carried out. In these calculations
the modeled foundation is loaded by forces and moments in different directions and the re-
sulting displacements are computed. The stiffnesses can then be found from the resulting
load-displacement curves.

The modeled caisson has a diameter of 7 m. The embedment ratio is varied from 0 to 2
in steps of 0.5, so the penetration depth varies from 0 to 14 m in steps of 3.5 m.

The calculations have been performed for three different soil types. The first type is a
uniform linear-elastic soil with a shear modulus G of 60 MPa and Poisson’s ratio ν of
0.3. This type of soil is assumed in the derivations of the analytical expressions for the
stiffness matrix elements and the FEM calculations are thus expected to give results that
are similar to the analytical expressions. Since the foundation is also assumed to be rigid
the caisson has also been modeled by a rigid linear-elastic cylinder. The shear modulus
of this material is 1000 times larger than that of the surrounding soil to make sure that
the deformations of the caisson itself are negligible.

The second soil is equal to the first linear-elastic soil, only the stiffness of the soil is now
increasing linearly with depth. The Young’s Modulus E starts at 0 MPa at mudline and
increases with 20 MPa/m with depth. This means the shear modulus, which is related by

G =
E

2 (1 + ν)
(2.15)

increases with 7.7 MPa/m depth.

The third soil is a Mohr-Coulomb material with drained behaviour and no cohesion.
The Mohr-Coulomb model has been chosen because it can be used with the same set
of parameters as the linear-elastic model while including the basic effects of actual soil
behaviour. The shear modulus and Poisson’s ratio are the same as for the linear-elastic
soil. The friction angle φ is 35◦ and the dilation angle ψ is 5◦. For this soil the caisson has
been modeled by the actual geometry of the steel structure filled with soil. The caisson
walls have a plate thickness of 0.05 m and the top plate has a thickness of 3 m. The
walls and especially the top plate have been given a larger thickness than actual caissons
to account for stiffeners. Since the Mohr-Coulomb model is linear-elastic up to yield the
initial stiffness is expected to be similar to that of the linear-elastic soil.

The stiffness matrix has been determined by finding the terms of the flexibility matrix
one by one and inverting the flexibility matrix to get the stiffness matrix. The flexibility
terms have been determined by applying a unidirectional force or moment on the caisson
and determining the displacements and rotations. The flexibility terms are then found
by plotting the displacements against the applied load and determining the inclination
of the curves. For the linear-elastic soil models the curves will be straight lines, meaning
that the flexibility is constant and independent of the applied load, while for the Mohr-
Coulomb type soil the flexibility will generally increase (meaning a decreasing stiffness)
with increasing load. In this case the flexibility for small loads has been used.
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The loads are applied and the displacements measured at mudline. Since Plaxis does not
provide any result for rotations they have been determined by looking at the difference
in displacement of two opposite points on the edge of the top plate and dividing the
difference by the diameter of the caisson. The rotation as a result of an overturning
moment is found by looking at the difference in vertical displacement while for a torsion
moment the difference in horizontal displacement is used.

The resulting stiffnesses have been divided by the stiffness of a surface foundation with
the same diameter, shear modulus and Poisson’s ratio given by Wolf to be able to compare
them with the previously found analytical expressions. The coupling stiffness for a surface
foundation is 0 according to Wolf, so the found values for the coupling stiffness are scaled
by 2

3 ·
4GD2

2−ν (the stiffness for a surface foundation divided by the embedment ratio L/D)
instead. For the soil with a non-uniform stiffness the average shear modulus, that is the
shear modulus at half the foundation depth, is used to compare the results.

2.3.1 Mesh Convergence Study
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Figure 2.4: Lateral and axial load-displacement curves for various mesh and model sizes
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The results found in a FEM analysis will depend on the chosen mesh density (the size of
the elements) and the chosen boundaries of the model, both in terms of the location of
the boundaries and the boundary conditions. This is unphysical, as there will be a single
outcome in reality. Therefore the mesh and model size should be chosen such that the
results have converged, meaning that any further change in the mesh or model will not lead
to a significant change of the output. The boundary conditions should also be chosen such
that they correspond with the boundaries of the physical model. The analytical stiffness
expressions have been developed for an infinite halfspace, so the boundaries in the FEM
model should be located at a distance where they do not influence the results.

Initially a model size of 40 by 30 m (5.7 D by 4.3 L) has been chosen. The mesh size
in Plaxis has been chosen as medium (element size is 0.05 times the local volume size),
with a local mesh refinement up to 1.5 D and 1.5 L. The width of the FEM model has
been varied by 10 m (5 m on either side of the caisson) and the height by 5 m and the
results for these models have been compared with the original model. The mesh density
is also varied from a mesh defined as fine in Plaxis (element size is 0.035 times the local
volume size) to a mesh defined as course (0.075). The resulting load-displacement curves
for applied lateral and vertical loads are given in Figure 2.4.

It can be seen that changing the mesh size gives a negligible change in the calculated
displacements. Changing the dimensions of the model does lead to a noticeable difference
in the results. Since a lateral load will mainly lead to deformations in the soil next to the
caisson the lateral displacements are mainly dependent on the mesh width. For a vertical
load the soil below the caisson will deform the most and the results are the most sensitive
for the height of the FEM model. The change of the model dimensions will give at most
a change of 5% in the calculated deformations. This is deemed small enough to consider
the results to be converged. Therefore it can be concluded that the chosen combination
of mesh and model size gives reliable results.

2.3.2 Results For a Uniform Linear-Elastic Soil

The results from the FEM calculations for a linear-elastic soil model with uniform stiffness
are plotted together with the analytical expressions in Figure 2.5 and 2.6.

It can be seen that the FEM calculations give stiffness terms of the same order of mag-
nitude as the analytical expressions. This indicates that the expressions give reasonable
results.

The lateral stiffness found in the FEM calculations matches pretty well with the expression
given by Gazetas for embedment ratios up to approximately 1.5, with a difference of
approximately 10 %. This clearly is the range for which the Gazetas expression has been
fitted. For larger embedment ratios the stiffness found in the FEM calculations starts to
deviate from the expression given by Gazetas and the results suggest that for embedment
ratios above 2 the FEM results will tend to the expression given by Carter, which is
indeed calibrated for large embedment ratios.

For the vertical stiffness the FEM calculations show less agreement with the analytical
expressions. The expression by Wolf shows the same trend as the FEM results, but the
two differ by a constant offset of approximately 0.4 times the vertical stiffness for a surface
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Figure 2.5: FEM and analytical results for the lateral stiffness for a linear-elastic uniform soil

foundation ratio for any embedment ratio. For embedment ratio’s larger than unity the
expression given by Randolph actually matches the FEM results the best, but it shows a
different trend and it clearly is unusable for shallow foundations because of the unphysical
asymptotic behaviour.

The FEM results for the rotational stiffness correspond very well with the analytical
expressions up to an embedment ratios around unity, the difference with the expression
from Wolf being approximately 10 %. For embedment ratios larger than one the rotational
stiffness found in the FEM results increases significantly less with increasing depth than
the analytical expressions suggest. For this range Carters expression matches the FEM
results the nearest but still gives a rotational stiffness that is 20 % larger than the FEM
results for an embedment ratio of 1.5 and 50 % for an embedment ratio of 2.

For the torsional stiffness the FEM results show a much better correspondence with the
analytical expressions than is the case for the vertical and rotational stiffnesses. The
FEM results follow the expression from Randolph quite close and match within a 10 %
range. The expression given by Wolf gives a good match with the FEM results for small
embedment ratio’s but starts to deviate from the FEM results for embedment ratio’s
larger than unity. Gazetas’ expression differs significantly from both the FEM results
and the expressions given by Randolph and Wolf and seems to overestimate the torsional
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Figure 2.6: FEM and analytical results for the vertical, rotational, torsional and coupling
stiffness

stiffness for embedment ratio’s less than 0.5 and overestimate it for larger embedment
ratio’s.

For the coupling stiffness the correspondence between the FEM calculations and the
analytical expressions gives the same trend as for the lateral stiffness, with the FEM
results showing a good match with Gazetas expression for smaller embedment ratios
and with Carters expression for larger embedment ratios. The most striking difference
between the FEM results and the analytical expressions is that the latter all give give
a zero stiffness for a surface foundation, meaning no coupling. This is because only the
resistance against rotation from the lateral earth pressure on the caisson skirts is taken
into account in the analytical models, while the resistance from the vertical earth pressure
on the caisson base is neglected. As mentioned before this results in a centre of rotation
that is independent of the embedment ratio in the expressions given by Wolf and Gazetas.
Carter does include the effect of the shifting centre of rotation, as can be seen in Figure 2.7,
but still gives a zero coupled stiffness for a surface foundation as his expression is fitted for
larger embedment ratios. The neglection of the rotation resistance from the caisson base
is acceptable for slender piles but Figure 2.7 shows this assumption cannot be made for
shallow foundations: the FEM calculations give a centre of rotation that moves closer to
the foundation base as the embedment ratio becomes smaller, as for shallow foundations
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the base actually gives the largest contribution to the moment resistance. For embedment
ratio’s close to zero the centre of rotation will actually be located below the foundation.
This means that there will still be a misalignment between the point of load application
at mudline and the centre of rotation for a surface foundation. Therefore the coupling
stiffness will also be non-zero in this case.
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Figure 2.7: The variation of the centre of rotation with the embedment ratio

2.3.3 Effects of a Stiffness Increasing With Depth

It is usually assumed that soils have a stress-dependent stiffness, for instance in the
hardening soil model (Schanz et al., 1999). In a normally consolidated soil the effective
stress increases with depth as a result of gravity. Therefore the stiffness of the soil will also
increase with depth. For a simple model the stiffness is often assumed to be proportional
to the depth. For the linear-elastic soil with non-uniform stiffness used in the FEM
calculations this linearly increasing stiffness is also used. As described in the previous
section the Youngs modulus that is used increases with 20 MPa per meter depth, meaning
that the shear modulus increases with 7.7 MPa per meter depth. At the mudline the used
soil has a stiffness of 1 kPa rather than 0 in order to avoid infinite deformations.

The FEM results for the soil material with non-uniform stiffness are given in Figure 2.8.
It can be seen that the stiffnesses for a soil with non-uniform Young’s modulus differ quite
a lot from the results for the uniform soil, which means that the assumed soil profile has
a significant influence on the resulting foundation stiffness.
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Figure 2.8: Comparison of stiffnesses and centre of rotation for uniform and non-uniform
linear-elastic stiffness and mohr-coulomb model

For horizontal displacements the non-uniform soil behaves stiffer for small embedment
ratio’s and less stiff for higher embedment ratio’s. For small embedment ratios the foun-
dation behaves stiffer since the base friction has a significant influence on the lateral
stiffness and the shear modulus at the pile base is larger for the soil with depth-increasing
stiffness than for the uniform soil.
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For larger embedment ratios this effect diminishes and the non-uniform soil will actually
behave less stiff. The cause for this is that the centre of rotation is located at greater
depth than for a uniform soil, as can be seen in the lower right figure in Figure 2.8. This
means that a horizontal load at mudline results in a larger overturning moment about
the centre of rotation and hence a larger rotation. This in turn gives a larger horizontal
displacement at mudline, meaning that the lateral stiffness decreases.

For the vertical stiffness the non-uniform soil profile also gives a higher stiffness for small
embedment ratio’s. The vertical stiffness is mainly provided by the soil below the caisson.
For the non-uniform soil the stiffness below the caisson will be higher than the stiffness
at half the foundation depth, which is the stiffness used in the comparison. Therefore
the vertical stiffness of the non-uniform soil is relatively high. This effect is especially
strong for small embedment ratio’s and decreases for smaller embedment ratio’s, as can
be seen in Figure 2.8. The stiffness expression given by Randolph actually describes this
behaviour quite well, although the increasing stiffness for small embedment ratio’s in this
expression has a completely different background.

The rotational stiffness for a non-uniform soil profile shows the same behaviour as the
lateral stiffness. For small embedment ratios the stiffness is slightly larger than for the
uniform soil because of the higher base stiffness, while for larger embedment ratios the
rotational stiffness will be smailler than that for the uniform soil. This is caused by the
downward shift of the centre of rotation. The centre of rotation moves down because for
the non-uniform soil the soil is less stiff near mudline and stiffer near the base. Since this
means that the stiffest soil is located close to the centre of rotation the resistance against
rotation will be small and the rotational stiffness will decrease compared to the uniform
soil. The decreased rotational and lateral stiffness also result in a decrease of the coupling
stiffness compared to the uniform soil profile, as can be seen in the lower left figure in
Figure 2.8.

The torsional stiffness for a non-uniform soil is also lower for all embedment ratio’s. The
torsional rotation in the FEM calculations is measured at mudline, which is also where
the torsional moment is applied. Since the Young’s modulus of the non-uniform soil
is smaller at mudline than that of the uniform soil the resistance against local torsion
of the foundation is smaller and hence there will be some local torsion. Therefore the
torsional rotation at mudline is larger than the rotation of the entire foundation and a
lower torsional stiffness is found. The local torsion is in contradiction with the assumption
of a perfectly rigid foundation. However in reality some local torsion can also be expected,
resulting in a lower torsional stiffness.

2.3.4 Effects of Using a More Realistic Foundation Model

The results for the Mohr-Coulomb soil with the non-rigid caisson model are also given in
Figure 2.8. It can be seen that the stiffnesses are not necessarily similar to the stiffnesses
for a linear-elastic soil with rigid foundation, meaning that these assumptions are not
always realistic.

The lateral stiffness for the Mohr-Coulomb soil increases less with increasing embedment
ratio as the stiffness for a linear-elastic soil. The reason for this is that the linear-elastic
model does not distinguish between tension and compression in the soil. For the used
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soil properties without cohesion the Mohr-Coulomb material can handle compression only
and will fail when loaded in tension. This means that the active wedge of the soil, which
for the linear-elastic soil resists a lateral displacement of the caisson by means of a tensile
stress, will not give any tensile load on the caisson for the Mohr-Coulomb material. This
means that the total resistance against deformation will be less and hence that the lateral
stiffness is smaller.

For the vertical stiffness the resistance comes from compressive and shear stresses only
and the difference between the two material types is much smaller. The stiffness for the
Mohr-Coulomb soil is slightly lower since there is some local failure of the soil along the
shaft near the mudline. The shear strength of the soil is not sufficient at this location
to bear the shaft friction. Especially for larger embedment ratio’s the influence of this
effect is rather small however, so it seems that the assumption of a linear-elastic soil for
a vertical load is applicable, at least for small loads.

The rotational stiffness for the Mohr-Coulomb soil is significantly smaller than for the
linear-elastic soil, especially for larger embedment ratios. This is because a rotation of the
caisson will lead to tensional stresses in the linear-elastic soil, which the Mohr-Coulomb
type of soil cannot provide, meaning there will be less resistance against the rotation. For
large embedment ratios the displacements near mudline will be larger for a given rotation
than for smaller embedment ratios, meaning that a larger area will be in tension and the
rotational stiffness will decrease more.

The torsional stiffness shows again a significant difference with the linear-elastic model.
This is not so much caused by the Mohr-Coulomb type of soil but by the modeling of
the caisson itself. The steel structure used in combination with the Mohr-Coulomb model
does not behave perfectly rigid and hence part of the torsional moment is absorbed by
local torsion instead of a rotation of the caisson as a whole. The stiffness for local torsion
is lower than that for a rigid torsional rotation and will decrease with increasing skirt
length, hence the difference with the torsional stiffness for a rigid foundation increases
with increasing embedment ratio.

The most important difference between the linear-elastic model and the Mohr-Coulomb
model however is the range of applicability of the found stiffness matrices. While the
linear-elastic model will show the same behaviour indepent of the amplitude of the load,
the load-displacement curve for the Mohr-Coulomb soil will be non-linear. The stiffnesses
given in Figure 2.8 are only valid for small loads while for larger loads the stiffness will
decrease to almost zero at failure. As an example the load-displacement curve for a vertical
load on the caisson with an embedment ratio of 1 calculated in Plaxis is shown in Figure
2.9. The capacity found in Plaxis is an overestimate of the actual capacity as a rather
course mesh is used in the calculation to save computing time. The vertical capacity of
this caisson is estimated at 296 MN using Terzaghi’s formulation for the bearing capacity,
modified for axisymmetrical foundations (Dekker, 2013).

Due to the applied safety factors and the gap between the top plate and the mudline only
a fraction of the found capacity can actually be utilized, however the load will probably
still be outside the linear-elastic range. As the left figure in Figure 2.9 shows the soil
can be assumed to behave linear-elastic up to a vertical load of approximately 3 MN, for
larger loads the stiffness will decrease significantly. For a load of 20 MN the incremental
stiffness is only 0.9 GN/m, three times smaller than the initial stiffness. This shows that
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Figure 2.9: Load-displacement curve for a vertical displacement for the bucket with l/D = 1:
Detail (left) and complete curve (right)

the linear-elastic stiffness is not suited for ultimate load cases as it will overestimate the
foundation stiffness and therefore give incorrect foundation loads.

2.4 Implementation of a Linear Stiffness Foundation

2.4.1 Comparison of Foundation Types in SACS

In order to see how the foundation stiffness influences the loads on the foundation a series
of calculations has been made using the software SACS (Bentley, 2012). The model used
in SACS consists of a 4-legged jacket and 4 foundations, 1 for each leg. The jacket is
based on a jacket designed for the North Sea in 20 m water depth and has a footprint of
20 by 20 m. 6 different foundation types have been used in the calculations: a clamped
foundation, with all degrees of freedom restrained at the mudline, a pinned foundation,
with all displacements fixed but no restraints for rotations, and four foundations that are
based on a stiffness matrix. The first of these uses a stiffness matrix that is determined
using the dimensions of the caisson and the soil parameters that are specified below. The
next two foundations use the same stiffness matrix multiplied or divided by a factor

√
2

to account for the uncertainty in the assumed soil parameters. The last foundation uses
a stiffness matrix that is a combination of the previous two, as will be discussed later in
more detail.

The suction caissons all have a diameter and penetration depth of 7 m, so the dimensions
are identical to the caisson with embedment ratio 1 used in the Plaxis calculations in
Section 2.3. Therefore, and since the results from the analytical expressions do not cor-
respond too well with the FEM results, the used stiffness matrix is based on the Plaxis
calculations for the linear-elastic soil. In these calculations a shear modulus of 60 MPa and
Poisson’s ratio of 0.3 have been used. The resulting stiffness matrix is given in Equation
2.16. The stiffnesses are given in GN or GNm per m or per radian.
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3.66 0 0 0 −15.04 0
0 3.66 0 15.04 0 0
0 0 2.96 0 0 0
0 15.04 0 134.42 0 0

−15.04 0 0 0 134.42 0
0 0 0 0 0 79.76

 (2.16)

The jacket is loaded by its own weight, a vertical load representing the topside deadweight
and environmental load data representing a storm in the North Sea with a return period of
100 years. The environmental load data are given in Appendix C. The two load directions
that give the most severe conditions are the loads coming from the west and south-west.
The weather conditions coming from the south-west are more severe than those coming
from the west, especially the 100-year current speed is significantly larger. On the other
hand the jacket is orientated such that a load coming from the west gives a load in the
diagonal direction of the jacket, which may result in a larger load on the most loaded
foundation caisson. Therefore both load cases are evaluated, as well as the combination
of wind and waves coming from the south-west with a current coming from the west. Since
the 100-year wave and current are unlikely to occur simultaneously the current speeds
have been halved for the calculation of the total environmental loads, on top of the applied
current blockage factor (0.85 for the diagonal direction and 0.8 for other directions).

The weight of the jacket has been determined in SACS as 4200 kN, the submerged weight
being 2750 kN. The topside weight is assumed to be 10,000 kN. This load is applied as 4
point loads of 2500 kN, one on top of each leg. The weight of the caissons is not taken
into account. The combined weight of jacket and topside has been combined with the
three environmental load conditions to get three different oad cases. The loads on each
caisson have been determined for each of the load cases. The largest load on any of the
caissons for any of the load cases is given for the different foundation types in Table 2.2.

Table 2.2: Comparison of the foundation loads and displacements for different foundation types

Clamped Pinned Normal Low High Mixed

FH (kN) 1335 1059 1157 1113 1197 1071

FV (kN) 3989 4194 4003 4007 3999 3991

M (kNm) 3187 - 2698 2568 2810 2508

T (kNm) 624 - 629 630 629 635

uh (m) - - 7.37·10−4 9.98 ·10−4 5.39 ·10−4 9.63 ·10−4

uz (m) - - 1.35·10−3 1.92 ·10−3 0.96 ·10−3 1.91 ·10−3

θh (rad) - 19.6 ·10−4 1.02 ·10−4 1.38 ·10−4 0.75 ·10−4 1.34 ·10−4

θz (rad) - 130 ·10−5 0.79 ·10−5 1.12 ·10−5 0.56 ·10−5 1.13 ·10−5

It can be seen that the pinned and clamped condition are the upper and lower boundary
for the maximum foundation loads. In the case of a pinned foundation there will be no
overturning moment on the foundation, which results in a slightly larger vertical load
than for the clamped condition. The clamped condition does give a moment load on the
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foundation and the maximum horizontal load is larger than for the pinned condition as the
horizontal load is spread less equally over the four caissons. For the used sets of stiffnesses
the caissons behave similar to a fully clamped foundation; the vertical and torsional load
for all four stiffness matrices are almost equal to those for the clamped foundation. The
moment load is also approximately 80 % of the moment load for a clamped foundation
and the lateral load is in between the loads for clamped and pinned foundations.

The results also show that within a certain range, varying the stiffness of all four caissons
simultaneously has only little effect on the maximum foundation loads that occur. The
vertical and torsional load slow only a negligible difference between the low and the high
stiffness matrix, where all the stiffness terms vary by a factor 2. The horizontal and
moment load also vary by less than 10%. The results suggest that changing the stiffness
of all the foundations does not change the way the load is distributed, the only difference
is that the loads result in different displacements of the foundations.

In the case of a non-linear foundation stiffness the four foundations will not all have the
same stiffness however, as the stiffness will vary with the load on the caisson. To see how
this would influence the load distribution a mixed set of stiffness matrices has been used
in the calculations as well. For each stiffness term the two caissons that were loaded most
heavily in that load direction for the normal stiffness matrix are given the stiffness term
from the low stiffness matrix, simulating a reduced stiffness due to the large load, and the
other two caissons are given the stiffness term from the high stiffness matrix. This will
lead to a more equally spread load distribution and hence smaller loads on the caisson
that is loaded most heavily, as the last column in Table 2.2 confirms. Compared with the
results for the normal stiffness matrix the largest horizontal load decreases by 7.5% and
the largest overturning moment by 7.0%. This shows that the load distribution can have
a significant influence on the caisson design.

2.4.2 Comparison With Plaxis Simulation

Comparison for a Single Caisson

In order to see how well the SACS model with stiffness matrix corresponds with the Plaxis
model it is based on, a single caisson is modelled in both and loaded by a series of load
combinations. The load cases and resulting displacements are given in Table 2.3.

It can be seen that the results match pretty well. The difference between the displacements
found in SACS and Plaxis is less than 10% for most cases and in many cases less than 5%.
Especially the vertical displacements show a very good agreement with a difference of 2%.
The fact that the vertical displacement found in Plaxis is the same for the various load
cases, independent of the applied lateral load, shows that the model behaves perfectly
linear-elastic. This will besides not be the case for a real soil.

Since the choice of the load combination thus does not influence the stiffness of the
caisson, the larger difference between the SACS and Plaxis results has to be caused by
the inaccuracy in the determination of the combination of lateral, rotational and coupling
stiffness. The accuracy of these terms can be increased by determining the values based
on multiple load cases, instead of the two Plaxis calculations that are used now.
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Table 2.3: Comparison Between SACS and Plaxis Results for a Single Caisson

Load Displacements
LC Fx (kN) Fz (kN) My (kNm) ux (m) uz (m) θy (rad)

SACS 5.06·10−4 - 5.66·10−5

1 1000 - - Plaxis 5.51·10−4 - 5.46·10−5

Difference 8.89% - -3.60%

SACS - -3.40·10−4 -

2 - -1000 - Plaxis - -3.46·10−4

Difference - 2.37% -

SACS 2.26·10−4 - 5.51·10−5

3 - - 4000 Plaxis 2.20·10−4 - 4.89·10−5

Difference 0.97% - -11.32%

SACS 7.89·10−4 - 1.25·10−4

4 1000 - 5000 Plaxis 8.27·10−4 - 1.14·10−4

Difference 4.89% - -9.39%

SACS -1.10·10−4 -3.40·10−4 -2.75·10−5

5 - -1000 -2000 Plaxis -1.03·10−4 -3.46·10−4 -2.30·10−5

Difference -8.80% 2.38% -16.41%

SACS 5.06·10−4 -3.40·10−4 5.66·10−5

6 1000 -1000 - Plaxis 5.51·10−4 -3.46·10−4 5.36·10−5

Difference 8.88% 2.35% -5.38%

SACS 7.89·10−4 -3.40·10−4 1.25·10−4

7 1000 -1000 5000 Plaxis 8.27·10−4 -3.46·10−4 1.13·10−4

Difference 4.88% 2.33% -10.20%

SACS 1.07·10−3 - 1.94·10−4

8 1000 - 10000 Plaxis 1.10·10−4 - 1.73·10−4

Difference 3.00% - -11.13%

Comparison for a Four-Legged Jacket

In order to check whether the found stiffness matrix can actually be used for a structure
with multiple caissons the complete jacket with four caissons has also been modelled in
Plaxis and compared to SACS calculations. The Plaxis model is shown in Figure 2.10. It
has been converted from the SACS model given in Appendix F.2 using the MatLab script
codewriter.m given in Appendix F.1.

Since Plaxis has no option to use a seastate as load input a single pointload of 2000 kN in
the positive x-direction has been applied on the jacket. In SACS the caissons are modelled
by the stiffness matrix found for a single caisson in Plaxis as described in Section 2.3.2,
which is given in Equation 2.16. In Plaxis the caissons are modelled by means of the same
linear-elastic material as used in the stiffness matrix calculations, with a shear modulus of
60 GPa and Poisson’s ratio of 0.3, a 1000 times stiffer than the surrounding soil material.
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Leg 1

Leg 3

Leg 2

Leg 4

Figure 2.10: Screenshot of the model of the jacket in Plaxis

On top of the caissons a rigid top plate is also modelled in order to transfer the rotations
of the jacket into the soil. The resulting foundation loads and displacements found in the
SACS and Plaxis calculations are compared in Table 2.4 and 2.5.

Table 2.4: Comparison of foundation loads found in the SACS and Plaxis calculations

Leg Results Fx (kN) Fy Fz Mx (kNm) My Mz

1 SACS 354.8 -143.8 938.0 415.6 940.6 52.5

Plaxis 328.6 -140.2 909.0 425.7 905.5 -

Difference -7.4% -2.5% -3.1% 2.4% -3.7% -

2 SACS 356.1 -182.6 1352.7 622.0 1431.1 -40.4

Plaxis 407.4 -173.5 1378.3 575.4 1627.9 -

Difference 14.1% -5.0% 1.9% -7.5% 13.8% -

3 SACS 193.3 326.5 -940.0 -744.1 619.5 94.6

Plaxis 206.7 311.0 -910.4 -703.7 637.6 -

Difference 7.0% -4.8% -3.2% -5.4% 2.9% -

4 SACS 1095.1 -0.1 -1350.7 -246.0 2734.9 -23.0

Plaxis 1057.1 2.7 -1376.9 -265.2 2624.4 -

Difference -3.5% 2203.5% 1.9% 7.8% -4.0% -

Table 2.4 shows that the foundation loads found in SACS and in Plaxis correspond very
well, with the difference being less than 5% in most cases. As Table 2.2 shows the loads
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Table 2.5: Comparison of foundation displacements found in the SACS and Plaxis calculations

Leg Results ux (m) uy (m) uz (m) θx (rad) θy (rad) θz (rad)

1 SACS 2.3·10−4 -9.6·10−5 3.2·10−4 1.4·10−5 3.3·10−5 7.0·10−7

Plaxis 3.0·10−4 -1.1·10−4 3.5·10−4 5.6·10−6 3.8·10−5 8.8·10−6

Difference 29.1% 9.4% 10.5% -59.8% 13.9% 1156.2%

2 SACS 2.6·10−4 -1.3·10−4 4.6·10−4 1.9·10−5 4.0·10−5 -5.0·10−7

Plaxis 4.3·10−4 -1.4·10−4 5.1·10−4 1.5·10−5 5.2·10−5 -4.8·10−7

Difference 62.8% 12.3% 12.1% -18.9% 29.3% -4.0%

3 SACS 1.3·10−4 2.1·10−4 -3.2·10−4 -2.9·10−5 2.0·10−5 1.2·10−6

Plaxis 2.1·10−4 2.2·10−4 -3.4·10−4 -2.7·10−5 2.6·10−5 2.8·10−6

Difference 56.2% 6.0% 6.8% -6.5% 33.2% 130.9%

4 SACS 7.1·10−4 1.4·10−5 -4.6·10−4 -3.4·10−6 1.0·10−4 -3.0·10−7

Plaxis 8.0·10−4 3.8·10−5 -4.1·10−4 -2.9·10−6 8.2·10−5 -2.6·10−7

Difference 12.8% 172.7% -9.2% -14.4% -17.5% -13.2%

on the caissons are not influenced that much by the stiffness of the caissons, so this result
does not necessarily imply that the caissons have the same stiffness in the two models.
For the displacements of the caissons the differences are significantly larger, as Table
2.5 shows. Apart from the rotations about the x-axis the displacements found in Plaxis
are larger than those found in SACS. This is especially the case for the translation in
x-direction and the rotation about the y-axis. For these directions all the caissons have
a displacement with the same sign (so in the same direction), as the structure has to
withstand the load in x-direction. The result of this is that the soil between the caissons
is also displaced the same order of magnitude as the individual caissons. This means
that this part of the soil cannot provide as much resistance or stiffness for the caissons
as it would for an individual caisson; the caissons are interfering with each other and
so-called group effects have to be taken into account when determining the stiffness of the
foundation. While many studies have been performed on how the capacity is influenced
by pile group effects, for instance Kim et al. (2014), this is not the case for the influence
on the soil stiffness. Therefore the effect will be studied by FE analysis.

Comparison Including Pile Group Effects

The effects of the interaction between the caissons through the soil can be included by
determining the stiffness matrix in a model that includes all four caissons instead of only
one. For this the Plaxis model shown in Figure 2.10 without the actual jacket structure is
used. Unidirectional loads are applied on one caisson and the resulting displacements of all
four caissons are determined. Because of the symmetry of the foundation and of the linear-
elastic soil with regard to the load direction (compression/tension) it can be assumed
that the load-displacement relations found for the loads on one caisson will be sufficient
to determine the load-displacement relations for loads on each of the four caissons. This
way a 24x24 flexibility matrix for the complete foundation can be determined and inverted
to find the stiffness matrix. The resulting flexibility matrix is shown in Appendix D.
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Not all degrees of freedom are affected by the interaction to the same extent. To study
this the interaction terms for each degree of freedom have been included one by one
to see how much their inclusion influenced the resulting stiffness matrix and hence the
behaviour of the foundation. It turns out that only the lateral translation degrees of
freedom are influenced by the interaction. This makes sense, as the soil between the
caissons can translate as a whole during loading in lateral direction instead of more
complex deformations in the case of rotations, which result in a higher stiffness. Therefore
only the bold terms in the flexibility matrix are used to determine the stiffness matrix.

Table 2.6: Comparison of foundation loads found in the SACS and Plaxis calculations

Leg Results Fx (kN) Fy Fz Mx (kNm) My Mz

1 SACS 355.7 -144.3 939.7 417.0 945.8 53.4

Plaxis 328.6 -140.2 909.0 425.7 905.5 -

Difference -7.6% -2.9% -3.3% 2.1% -4.3% -

2 SACS 357.3 -183.3 1350.3 623.9 1436.0 -39.8

Plaxis 407.4 -173.5 1378.3 575.4 1627.9 -

Difference 14.0% -5.4% 2.1% -7.8% 13.4% -

3 SACS 193.6 327.1 -941.8 -745.3 623.9 95.5

Plaxis 206.7 311.0 -910.4 -703.7 637.6 -

Difference 6.8% -4.9% -3.5% -5.6% 2.2% -

4 SACS 1093.4 0.5 -1348.2 -247.8 2735.7 -22.6

Plaxis 1057.1 2.7 -1376.9 -265.2 2624.4 -

Difference -3.3% 411.7% 2.1% 7.0% -4.1% -

Table 2.7: Comparison of foundation displacements found in the SACS and Plaxis calculations

Leg Results ux (m) uy (m) uz (m) θx (rad) θy (rad) θz (rad)

1 SACS 2.9·10−4 -1.1·10−4 3.4·10−4 1.4·10−5 3.3·10−5 7.0·10−7

Plaxis 3.0·10−4 -1.1·10−4 3.5·10−4 5.6·10−6 3.8·10−5 8.8·10−6

Difference 5.0% -4.7% 0.6% -59.2% 15.0% 1156.2%

2 SACS 3.5·10−4 -1.4·10−4 4.8·10−4 1.9·10−5 3.9·10−5 -5.0·10−7

Plaxis 4.3·10−4 -1.4·10−4 5.1·10−4 1.5·10−5 5.2·10−5 -4.8·10−7

Difference 20.3% 0.0% 1.1% -17.1% 33.6% -4.0%

3 SACS 1.9·10−4 2.2·10−4 -3.4·10−4 -2.9·10−5 1.9·10−5 1.3·10−6

Plaxis 2.1·10−4 2.2·10−4 -3.4·10−4 -2.7·10−5 2.6·10−5 2.8·10−6

Difference 11.1% -1.2% -1.5% -6.2% 35.9% 113.1%

4 SACS 8.0·10−4 2.8·10−5 -4.8·10−4 -3.0·10−6 9.9·10−5 -3.0·10−7

Plaxis 8.0·10−4 3.8·10−5 -4.1·10−4 -2.9·10−6 8.2·10−5 -2.6·10−7

Difference -0.3% 32.7% -6.4% -3.0% -16.6% -13.2%
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The stiffness matrix is then entered in SACS as 4 6x6 pile-ground stiffness matrices for
the individual caissons plus 6 6x6 pile-pile stiffness matrices for the interaction between
two caissons. The results from the SACS calculations are shown in Table 2.6 and 2.7,
where they are compared to the results from the Plaxis calculations previously given in
Table 2.4 and 2.5.

Comparing Table 2.5 and 2.7 shows that the difference between the displacements found in
SACS and in Plaxis is decreased significantly when the interaction between the caissons
is included in the SACS model. Especially the translations in x-direction, which are
influenced most by the interaction effects since the applied load is also in the x-direction,
show a much better correspondence between the SACS and Plaxis calculations. Apart
from a few exceptions most differences are below 15% for the model including interaction
effects, which is the same order of magnitude as found in Table 2.3 for a single pile. The
foundation loads do not change significantly and remain within the 5-10 % difference
range from the Plaxis range. This shows that the applied method to include interaction
in SACS gives accurate results.

Variation of the Soil Stiffness

So far the comparison between the SACS and Plaxis models has only been made for a
shear modulus G of 60 MPa. Before the model can be used for an arbitrary soil profile it
should be checked that the behaviour is consistent for different soil types. This has been
done by repeating the calculations with a shear modulus of 5, 20 and 240 MPa. With
a Poisson’s ratio of 0.3 this corresponds with Young’s moduli of 13, 52 and 624 MPa,
respectively. Offshore soil profiles found in practice will generally not vary over such a
large range of soil stiffnesses; especially the Young’s modulus of 624 MPa is unrealistic
for a soil profile and is more representative for a rock layer in which suction installation
is not possible. The large variation has still been chosen as it will not only cover the full
range of realistic soil stiffnesses but also help to clarify any trends in the results by using
large steps between the used soil stiffnesses.

The soil stiffness has been changed in the Plaxis model and the calculations for the
complete jacket loaded by a horizontal load have been repeated. Since the stiffness matrix
is proportional to the shear modulus G the stiffness matrices used in the SACS model have
not been determined again but the stiffness matrices determined for the shear modulus of
60 MPa have simply been multiplied by a stiffness factor of 1/12, 1/3 and 4 respectively. The
resulting loads on and displacements of the caissons found in the Plaxis and SACS models
are given and compared in Table 2.9 to 2.14. The average differences are summarized in
Table 2.8. For the displacements the difference in rotation about the z-axis (torsion) has
not been included in the average, as there are large differences for this degree of freedom
for each of the used shear moduli that blur the comparison.

Table 2.8: Comparison between the SACS and Plaxis models for various shear moduli

Shear modulus G (MPa) 5 20 60 240

Average difference in loads 5.6% 3.8% 5.4% 6.9%

Average difference in displacements 6.9% 7.2% 10.8% 17.5%
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The comparison shows that there are no large differences in the average difference for the
various shear moduli. The average difference between the SACS and Plaxis models for
the caisson displacements increases with increasing soil stiffness, from approximately 5%
for a shear modulus of 5 MPa to approximately 15% for a shear modulus of 240 MPa.
This can most likely be attributed to the smaller displacements for high soil stiffnesses:
the displacements for a shear modulus of 240 MPa are some 50 times smaller than the
displacements for a shear modulus of 5 MPa, meaning that the same absolute difference
will lead to a significantly higher relative difference.

Table 2.9: Comparison of foundation loads for a shear modulus of 5 MPa

Leg Results Fx (kN) Fy Fz Mx (kNm) My Mz

Plaxis 309.3 -192.0 1066.6 292.3 885.4 -

1 SACS 332.7 -185.8 1074.6 287.6 969.7 133.4

Difference 7.6% -3.2% 0.7% -1.6% 9.5% -

Plaxis 604.6 -195.2 1257.3 294.8 1665.4 -

2 SACS 585.7 -198.1 1234.8 395.9 1716.0 50.5

Difference -3.1% 1.5% -1.8% 34.3% 3.0% -

Plaxis 294.8 257.0 -1064.9 -299.5 868.4 -

3 SACS 288.8 249.3 -1077.2 -272.9 955.9 206.9

Difference -2.0% -3.0% 1.2% -8.9% 10.1% -

Plaxis 791.3 130.3 -1259.0 -327.2 1553.4 -

4 SACS 792.8 134.6 -1232.2 -350.0 1660.5 100.0

Difference 0.2% 3.3% -2.1% 7.0% 6.9% -

Table 2.10: Comparison of foundation displacements for a shear modulus of 5 MPa

Leg Results ux (m) uy (m) uz (m) θx (rad) θy (rad) θz (rad)

Plaxis 3.5·10−3 -1.6·10−3 4.9·10−3 1.8·10−4 4.4·10−4 2.8·10−5

1 SACS 3.4·10−3 -1.5·10−3 4.6·10−3 1.8·10−4 3.8·10−4 2.2·10−5

Difference -4.3% -7.3% -4.7% -0.4% -13.1% -22.1%

Plaxis 6.4·10−3 -1.8·10−3 5.6·10−3 2.3·10−4 7.7·10−4 2.7·10−7

2 SACS 5.8·10−3 -1.7·10−3 5.3·10−3 2.0·10−4 6.7·10−4 8.2·10−6

Difference -9.0% -5.6% -4.7% -12.6% -13.1% 2992.8%

Plaxis 3.2·10−3 2.0·10−3 -4.8·10−3 -2.1·10−4 3.9·10−4 3.0·10−5

3 SACS 3.1·10−3 1.9·10−3 -4.6·10−3 -2.2·10−4 3.5·10−4 3.4·10−5

Difference -4.4% -7.4% -4.1% 3.7% -12.4% 13.5%

Plaxis 7.4·10−3 1.4·10−3 -5.5·10−3 -1.5·10−4 8.8·10−4 2.1·10−6

4 SACS 7.0·10−3 1.3·10−3 -5.3·10−3 -1.5·10−4 8.1·10−4 1.6·10−5

Difference -5.9% -9.1% -4.4% -3.5% -7.9% 690.2%
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No clear trend can be observed for difference in the resulting caisson loads; the difference
is approximately 5% for each of the evaluated shear moduli. The results are accurate
independent of the used soil stiffness. This confirms the previous conclusion that the
representation of a suction caisson foundation by a stiffness matrix provides accurate
results, given that the soil can be characterized as being uniform and linear-elastic.

Table 2.11: Comparison of foundation loads for a shear modulus of 20 MPa

Leg Results Fx (kN) Fy Fz Mx (kNm) My Mz

Plaxis 317.9 -164.0 969.5 433.5 882.7 -

1 SACS 341.5 -163.2 992.5 418.4 930.8 69.3

Difference 7.4% -0.5% 2.4% -3.5% 5.4% -

Plaxis 513.3 -183.6 1325.8 527.9 1799.2 -

2 SACS 478.3 -192.0 1300.1 589.0 1692.4 -27.4

Difference -6.8% 4.6% -1.9% 11.6% -5.9% -

Plaxis 247.4 286.0 -969.5 -595.9 731.4 -

3 SACS 238.4 290.4 -994.3 -594.3 761.1 124.8

Difference -3.6% 1.5% 2.6% -0.3% 4.1% -

Plaxis 921.4 61.6 -1325.9 -367.2 2205.4 -

4 SACS 941.7 64.8 -1298.3 -370.7 2298.4 6.3

Difference 2.2% 5.2% -2.1% 0.9% 4.2% -

Table 2.12: Comparison of foundation displacements for a shear modulus of 20 MPa

Leg Results ux (m) uy (m) uz (m) θx (rad) θy (rad) θz (rad)

Plaxis 8.8·10−4 -3.9·10−4 1.1·10−3 4.4·10−5 1.1·10−4 6.7·10−6

1 SACS 8.4·10−4 -3.6·10−4 1.1·10−3 4.4·10−5 9.5·10−5 2.8·10−6

Difference -5.1% -5.6% -4.2% 1.2% -13.7% -58.4%

Plaxis 1.5·10−3 -4.6·10−4 1.5·10−3 6.4·10−5 1.8·10−4 -2.7·10−7

2 SACS 1.3·10−3 -4.4·10−4 1.4·10−3 5.6·10−5 1.5·10−4 -1.1·10−6

Difference -12.8% -5.0% -5.1% -13.0% -18.9% 301.9%

Plaxis 7.0·10−4 6.0·10−4 -1.1·10−3 -7.1·10−5 8.4·10−5 7.9·10−6

3 SACS 6.6·10−4 5.9·10−4 -1.1·10−3 -7.4·10−5 7.0·10−5 5.1·10−6

Difference -6.4% -2.7% -3.3% 4.3% -15.9% -35.0%

Plaxis 2.2·10−3 2.3·10−4 -1.4·10−3 -2.5·10−5 2.7·10−4 7.0·10−7

4 SACS 2.1·10−3 2.1·10−4 -1.4·10−3 -2.5·10−5 2.5·10−4 3.0·10−7

Difference -4.7% -10.7% -3.6% -1.2% -7.3% -57.0%
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Table 2.13: Comparison of foundation loads for a shear modulus of 240 MPa

Leg Results Fx (kN) Fy Fz Mx (kNm) My Mz

Plaxis 338.7 -127.2 873.0 412.2 917.9 -

1 SACS 369.6 -132.3 906.0 403.1 969.4 48.1

Difference 9.1% 4.1% 3.8% -2.2% 5.6% -

Plaxis 311.0 -166.6 1414.3 586.9 1412.9 -

2 SACS 252.2 -175.7 1384.1 627.5 1179.3 -38.9

Difference -18.9% 5.5% -2.1% 6.9% -16.5% -

Plaxis 174.1 335.0 -874.7 -801.5 531.8 -

3 SACS 159.4 355.4 -908.5 -838.9 524.2 80.4

Difference -8.5% 6.1% 3.9% 4.7% -1.4% -

Plaxis 1176.2 -41.2 -1412.6 -157.6 2940.1 -

4 SACS 1218.9 -47.4 -1381.6 -135.2 3065.1 -36.1

Difference 3.6% 14.9% -2.2% -14.2% 4.3% -

Table 2.14: Comparison of foundation displacements for a shear modulus of 240 MPa

Leg Results ux (m) uy (m) uz (m) θx (rad) θy (rad) θz (rad)

Plaxis 7.7·10−5 -2.7·10−5 8.5·10−5 3.0·10−6 9.7·10−6 5.1·10−7

1 SACS 7.3·10−5 -2.6·10−5 8.1·10−5 3.2·10−6 8.5·10−6 2.0·10−7

Difference -4.4% -3.9% -4.6% 5.6% -12.7% -60.9%

Plaxis 9.1·10−5 -3.7·10−5 1.3·10−4 5.3·10−6 1.1·10−5 -7.3·10−8

2 SACS 7.2·10−5 -3.5·10−5 1.2·10−4 4.5·10−6 7.3·10−6 -1.0·10−7

Difference -21.1% -6.4% -6.7% -15.0% -32.8% 37.4%

Plaxis 4.5·10−5 6.0·10−5 -8.4·10−5 -7.6·10−6 5.2·10−6 7.3·10−7

3 SACS 4.1·10−5 6.0·10−5 -8.1·10−5 -7.9·10−6 4.0·10−6 3.0·10−7

Difference -10.0% 1.0% -3.2% 3.9% -23.6% -58.9%

Plaxis 2.3·10−4 1.5·10−6 -1.3·10−4 4.2·10−7 3.0·10−5 7.6·10−8

4 SACS 2.2·10−4 -7.9·10−7 -1.2·10−4 3.0·10−7 2.8·10−5 -1.0·10−7

Difference -4.1% -152.1% -3.1% -28.0% -8.4% -232.0%
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2.5 Conclusion

Various analytical expressions to determine the stiffness matrix for a suction caisson have
been discussed and compared. They are either developed for shallow foundations or
for slender piles. Suction caissons usually have an embedment ratio in between a shallow
foundation and a slender pile so some caution is required when the expressions are applied.

A comparison with FEM calculations shows that the analytical results match within 10%
with the FEM results for a linear-elastic uniform soil, so it seems that the expressions
can be applied for suction caissons. The FEM results for a non-uniform or elastoplastic
soil show that the foundation stiffness is very dependent on the assumed soil conditions
however, so the analytical expressions will not always give reliable results for realistic soil
profiles. Especially the decrease in stiffness with increasing load cannot be captured by a
linear model.

The stiffness matrix found from the FEM calculations for the linear-elastic soil has been
applied to model a jacket structure with 4 caisson foundations in SACS. The results
show that the loads on the caissons are close to the loads that are found for clamped
foundations. Varying the stiffness of all the caissons simultaneously does not influence
the load distribution of the caisson significantly. When some caissons are made stiffer
than others the load on the most heavily loaded caisson will change however.

The jacket and the 4 caissons have also been modelled in Plaxis in order to confirm the
results found in SACS. The caisson loads found in the two programs correspend very
well, with less than 5% difference in most cases. The displacements found in Plaxis are
significantly larger however, most likely because of pile group effects. When additional
springs between the caissons are added in SACS to include these effects the displacements
show a significantly better agreement. The load distribution is not changed significantly
by this method.

A sensitivity study performed by varying the shear modulus of the soil confirmed the
accuracy of the use of stiffness matrices for a wide range of soil stiffnesses with the shear
modulus varying from 5 to 240 MPa. The difference in the resulting caisson loads is not
sensitive for the chosen shear modulus and is approximately 5% for each of the evaluated
shear moduli. The difference for the caisson displacements increases with increasing soil
stiffness, however this can most likely be attributed to the smaller displacements for large
soil stiffnesses which lead to larger relative differences. All in all it can be concluded that
modelling a suction caisson foundation by a stiffness matrix gives accurate results for any
uniform linear-elastic soil with realistic soil stiffness.



Chapter 3

Non-Linear Stiffness Method

3.1 Choice of the Soil Model

There are several alternatives for the modelling of non-linear soil behaviour in Plaxis. The
two models most suited for sandy soils are the Mohr-Coulomb model and the Hardening
Soil model (Schanz et al., 1999). These two models will be discussed in the following
paragraphs.

3.1.1 The Mohr-Coulomb Model

The Mohr-Coulomb model is a bilinear model; the model behaves linear-elastic up to the
failure criterion while for stress states outsidee the failure criterion there is no remaining
stiffness, allowing for unlimited plastic deformations. This type of model is called linear-
elastic perfectly plastic.

Strain Definition

The strains can be split in an elastic strain εe and a plastic strain εp:

ε = εe + εp (3.1)

The Mohr-Coulomb model uses a constant, stress-independent Young’s Modulus E. This
means that the elastic stress-strain relationship will be linear-elastic as follows from
Hooke’s law, as given for a one and three dimensional stress-state in Equation 3.2 and
3.3.
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εe =
σ
′

E
(3.2)εe1εe2

εe3

 =
1

E

 1 −ν −ν
−ν 1 −ν
−ν −ν 1

σ′1σ′2
σ
′
3

 (3.3)

The plastic strain εp in the Mohr-Coulomb model will be zero until a certain treshold
stress state is reached, and larger than zero beyond this stress state. In principle unlim-
ited plastic strains can develop after failure, but the strains will usually be limited by
surrounding particles that are still within the linear-elastic regime and will thus resist
large deformations.

The plastic strain can be defined as (Hill, 1998, Chap. 2)

εp = λ
∂g

∂σ
′ (3.4)

where εp is the plastic strain vector, σ is the stress vector and g is the yield function, which
is a function of the stress state and the dilatancy angle ψ. The plasticity in the Mohr-
Coulomb model is non-assosiciated, meaning that the yield function g will be different
from the failure function f . The general forms of f and g used in the Mohr-Coulomb
model are

f = τ − σ′ · sin φ− c · cos φ (3.5)

g = τ − σ′ · sin ψ (3.6)

where τ is the in-plane shear stress, σ is the average in-plane normal stress (positive in
compression), c is the cohesion of the soil, φ is the friction angle and ψ is the dilation
angle. For a three-dimensional stress state there are three perpendicular planes, with for
each normal stress an upper and lower limit for the shear stress, resulting in six failure
functions f and six corresponding yield functions g.

Equation 3.4 describes that the plastic strain vector will be perpendicular to the yield
function with a magnitude determined by the scalar λ. λ is defined by

λ =

{
0 if f < 0

> 0 if f = 0
(3.7)

The resulting stress-strain relationship for a soil element is sketched in Figure 3.1. Since
not all soil elements in a soil volume will have the same stress state and fail at the
same time, the resulting load-displacement curve for a certain failure mechanism is not
necessarily linear-elastic perfectly plastic and will usually show a gradual development of
plastic deformations.
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Figure 3.1: Stress-strain relationship for the Mohr-Coulomb and Hardening Soil model

3.1.2 The Hardening Soil Model

In contrast to the Mohr-Coulomb model, the Hardening Soil model has no clear distinction
between an elastic and plastic region. The plastic deformations develop gradually instead.
The Hardening Soil model contains two features that describe the non-linear stress-strain
relation: a stress-dependent stiffness and a hyperbolic stress-strain curve.

Stress-dependent Stiffness

The Hardening Soil model uses three different stiffness parameters: Eref50 which determines

the stiffness for shear loading, Erefoed which determines the stiffness for uniform hydrostatic

compression and Erefur which determines the stiffness during unloading and reloading
(Schanz et al., 1999). The first two stiffnesses determine the behaviour of the soil when it
is loaded to a higher stress state then it has experienced before, during which there will
be both elastic and plastic deformations. The unloading-reloading stiffness determines
the behaviour for stress states below the highest stress state during previous louding. In
this case the deformations will be purely elastic, although not necessarily linear-elastic.
During unloading and reloading the soil is roughly three times as stiff as during primary
loading, for which the two stiffness parameters are approximately the same.
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Other than for the Mohr-Coulomb model, the stiffness parameters are not used directly
but instead are used as input to calculate the stiffness for the given stress-state. The
relation between stress and stiffness is given by

E = Eref

(
c · cos φ− σ′3
c · cos φ+ pref

)m
(3.8)

where σ3 is the principal stress with the smallest magnitude, pref is a reference pressure
usually chosen as 100 kPa and m is a coefficient determining the shape of the stress-
stiffness curve. For clays m is approximately equal to 1 while for sands m will be around
0.5. When m is chosen equal to zero the stiffness will be constant and independent of the
stress state, resulting in a linear-elastic soil.

Hyperbolic Stress-strain Curve

The Hardening Soil model uses a hyperbolic stress-strain curve based on the hyperbolic
model developed by Duncan and Chang (1970). This curve is given by

ε1 =
1

E0

q

1− q/qa
(3.9)

with

E0 =
2 · E50

2−Rf
(3.10)

q = |σ′1 − σ
′
3| (3.11)

qa =
qf
Rf

(3.12)

qf =
(
c · cot φ− σ′3

) 2 · sin φ

1− sin φ
(3.13)

and Rf is a parameter determining the ratio between the failure shear stress qf and the
assymptotic shear stress qa. Figure 3.1 shows the hyperbolic stress-strain curve with Rf
equal to 0.9 and E0 equal to the value of E used in the Mohr-Coulomb curve.

3.1.3 Comparison of the Models

In order to find out which of the two models is able to give the most realistic results the
models have to be compared to experimental test results. The results of several experi-
mental load tests on suction caissons can be found in literature (Byrne, 2000; Villalobos,
2006; Zhang et al., 2007; Larsen, 2008). These tests are all performed on a small scale
in laboratories, with caisson diameters ranging from 50 (Villalobos) to 300 mm (Larsen).
A comparison between experiments on laboratory and prototype scale shows that these
results scale without significant errors however (Kelly et al., 2006).
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The load-displacement curves that are found in the aforementioned tests all closely re-
semble a hyperbolic curve, as well for vertical as for lateral and moment loading. This is
in agreement with the load-displacement curves found in Plaxis using the Mohr-Coulomb
and Hardening Soil model, which are shown in Figure 3.2 to 3.4. The curves are found
by applying unidirectional loads at the topplate of the 7x7 caisson embedded in a soil
modelled with one of the two models. The value of Eref50 for a reference pressure of 100
kPa used in the Hardening Soil model is equal to the Young’s Modulus used in the Mohr-
Coulomb model, which is 156 MPa. m Is chosen as 0.5 in the Hardening Soil model. The
soil is unsaturated with an effective weight of 16 kN/m3, Poisson’s ratio of 0.3, φ equal to
25◦, ψ equal to 5◦ and no cohesion.

It can be seen that the curves for a lateral load and overturning moment are nearly
identical. The Mohr-Coulomb model is clearly also able to produce a realistic load curve
for the caisson, even if the stress-strain curve for individual elements is bilinear. The
tangent stiffnesses of the two curves are also almost the same, as a result of the similar
stress states. The vertical effective stress, which will be the minor stress direction for
lateral loads, is equal to 7·16 = 112 kPa at the foundation base level, which is close to
the reference pressure of 100 kPa. Therefore the stiffness of the soil in the Hardening Soil
model will be close to Eref50 and to the soil stiffness for the Mohr-Coulomb model.

The vertical load-displacement curve shows a clear difference between the models how-
ever. The displacements in the Mohr-Coulomb model are up to 50% larger than the
displacements in the Hardening soil model. This will most likely be the result of the fact
that the applied vertical load increases the effective stresses in the soil, which leads to an
increasing soil stiffness in the Hardening Soil model but not in the Mohr-Coulomb model.

Furthermore the shape of the curves is also different. The Hardening Soil model gives
a fluent curve, whereas the curve for the Mohr-Coulomb model shows three separate
linear sections with small transition zones in between. This suggests that the zones with
elements that violate the Mohr-Coulomb criterion do not increase gradually but instead
remain constant in size until a certain treshold load is applied, after which there is a
sudden increase of the plastic zones.

Figure 3.2 also shows how well the load-displacement curves found in Plaxis match with
the hyperbolic curve fits given in Equation 3.14. Byrne (2000) shows that this curve
gives a good correspondence with his experiments. Since the values of the coefficients
are dependent on the soil parameters as well as the dimensions of the caisson, it is not
possible to directly compare the experimental results with the numerical calculations.
Instead curve fits of the hyperbolic curve to the Plaxis results for the two models have
been determined in order to see how well these curves match the Plaxis calculations.

uz = uez + upz (3.14)

uez =
Fz
kel

(3.15)

upz =
Fz · (cult − (2− s) · Fz)

kpl · (cult − Fz)
(3.16)
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The values of the coefficients found for the curve fits are given in Table 3.1. It can be seen
in Figure 3.2 that the load-displacement curve found in Plaxis matches very well with the
hyperbolic curve suggested by Byrne. This makes sense since the individual soil elements
are also based on a hyperbolic load-displacement curve in the Hardening Soil model.

Table 3.1: Coefficients found for the curve fits to the Mohr-Coulomb and Hardening Soil model

Coefficient Value for MC model Value for HS model

kel 2.0·104 kN/m 3.4 ·104 kN/m

cult 1.5·104 kN 1.6 ·104 kN

s 2.1 2.0

kpl 5.2·105 kN/m 2.6 ·105 kN/m

R2 97.1% 99.6 %

The results for the Mohr-Coulomb model on the other hand show significant deviations
from the hyperbolic curve. As mentioned before the curve found in Plaxis is clearly not
a smooth hyperbola. This is confirmed by the values of R2 for the two fits, which are
also given in Table 3.1. For the Hardening Soil model a value of 99.6 % is found, while
the value for the Mohr-Coulomb model is only 97.1 %. Based on these results it can be
concluded that the Hardening Soil model gives results that show a better agreement with
the actual behaviour of suction caissons than the Mohr-Coulomb model. Therefore the
Hardening Soil model will be used for the development of the non-linear springs.
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Figure 3.2: Comparison of the load-displacement curves for a vertical load
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Figure 3.3: Comparison of the load-displacement curves for a lateral load

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0

500

1000

1500

2000

2500

3000

3500

θ
y
 (rad)

M
y
 (
k
N
m
)

 

 

Mohr-Coulomb model

Hardening Soil model

Figure 3.4: Comparison of the load-displacement curves for an overturning moment
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3.2 Determination of the Load-Displacement Curves in Plaxis

For the determination of the load-displacement curves, the same soil based on the hard-
ening soil model has been used as discussed in the previous section. Since all loads other
than the dead weight of the structure will last for only a few seconds the soil will most
likely behave undrained, even if it is sandy. Therefore the soil has been modelled as
undrained. The same caisson of 7 meter diameter and 7 meter length is also used.

Since it is not possible to use a stiffness matrix for non-linear soil behaviour, the cou-
pling between lateral load and overturning moments cannot be included in the model.
Therefore the springs have to be applied at the centre of rotation, meaning that the load-
displacement curves have to be determined at the centre of rotation as well. This requires
the centre of rotation to be a fixed point however, which is in contrast to a linear-elastic
material not necessarily the case for a non-linear soil material. The centre of rotation
might shift up or down when the magnitude of the applied load increases. In order to
check whether the location of the centre of rotation changes significantly when a larger
load is applied the centre of rotation has been determined as a function of the applied
load. The result is plotted against the applied overturning moment and the occuring
roation in Figure 3.5. The average depth of the centre of rotation determined for the
second curve is also plotted.
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Figure 3.5: Variation of the depth of the Centre of Rotation with the applied moment and
rotation angle

The location of the centre of rotation has been determined by applying a couple of two
opposed vertical loads on two opposite points on the edge of the top plate and determining
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the horizontal and vertical displacements for these two points as a result of the load. The
difference between the vertical displacements of the two points divided by the diameter of
the caisson gives the rotation of the caisson. The horizontal displacement, which is nearly
identical at the two points, can then be divided by the rotation to find the position of the
centre of rotation.

As can be seen in Figure 3.5, the centre of rotation is initially located at a depth of 4.3
m below mudline and then drops to a depth of 5.3 m for loads close to the capacity.
The average depth integrated over the rotation is 4.95 m or 0.71 L. This means that at
failure the difference between the actual centre of rotation and the average one is 0.4 m,
or 6% of the embedment L.. Since the caisson will not be loaded to full capacity because
of the applied safety factors the error will most likely be smaller for realistic load cases.
Therefore the fluctuation of the centre of rotation around the average value is considered
small enough to model the centre of rotation as a fixed point. Whether this will give
accurate results can only be evaluated by comparison to FEM calculations however.

The load-displacement curves have thus been determined at a depth of 4.95 meter below
mudline. A lateral load, vertical load, overturning moment have been applied at 4 points
along the caisson wall and the displacements have been determined. The results are given
in Figure 3.6.
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Figure 3.6: Load-displacement curves for unidirectional loading

Based on the load-displacement curves the failure loads have also been determined. The
curves do not show a clear failure load that is approached asymptotically, but instead
the stiffness decreases to a constant positive value, since the dilatancy of the soil leads
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to decreasing pore pressures and hence increasing effective stresses and capacity for large
shear strains (Gennaro et al., 2004). Therefore the point of failure has been defined as
the load for which the inclination of the load-displacement curve becomes constant, as
suggested by Meyerhof and Sastry (1985).

Figure 3.6 gives the load-displacement curves in the case of unidirectional loading. The
load-displacement curve for one degree of freedom will however be dependent on the
loads applied in other load directions since the level of plasticity will depend on the
three-dimensional stress state, see for instance Equation 3.4 and 3.9. Therefore the true
behaviour of the foundation can only be found when the load-displacement curves are
determined for the actual loading conditions. This can be done by defining a model
with a three-dimensional yield surface and hardening rule, as developed for instance for
spudcan footings by Martin and Houlsby (2001). They define a yield surface given by

f (V,M,H) =

[(
M

M0

)2

+

(
H

H0

)2

− 2ē

(
M

M0

)(
H

H0

)]1/2β2

− β̄1/β2

(
V

V0

)β1/β2 (
1− V

V0

) (3.17)

together with an associated flow rule. Plastic deformations in the vertical direction then
lead to an increase of V0 which extends the yield surface. The stiffness for loading in one
direction now depends on whether the load condition is located on the yield surface and
if so, at which location. Thereby it depends on the total stress-state and the influence of
combined loading can be included.

The yield surface given by Martin and Houlsby results in ellipsoid which is confined by
the origin and the vertical capacity V0. There is no uplift capacity. As such it is similar to
a yield surface for suction caissons in drained cohesionless soil. For undrained conditions
the vertical capacity will be roughly identical in tension and compression (Watson and
Randolph, 1997), resulting in a yield surface as suggested by for instance Bransby and
Randolph (1998):

(
V

V0

)2

+

√(
M

M0

)2.5

+

(
H

H0

)5

− 1 = 0 (3.18)

It is however not possible to include a method like this in the current installment of
SACS. Therefore it should be investigated to what extent the stiffness is influenced by
the loading in other directions. If the influence is small, the error that is introduced
by using only a single curve might be acceptable. To find out if this is indeed the case
the load-displacement curves have been determined again, but now for cases where the
caisson has already been loaded with various loading levels in other directions. For each
load direction the caisson has been preloaded with 25, 50 and 75% of the capacities in
other load directions, which have been determined in Figure 3.6. The resulting load-
displacement curves are given together with the initial curves without any preloading in
Figure 3.7.



3.2 Determination of the Load-Displacement Curves in Plaxis 43

0 0.005 0.01 0.015 0.02 0.025
0

2000

4000

6000

8000

u
x
 (m)

F
x
 (
k
N
)

 

 

Initial

V 25%

V 50%

V 75%

M 25%

M 50%

M 75%

T 25%

T 50%

T 75%

0 0.005 0.01 0.015 0.02 0.025
0

5000

10000

15000

u
z
 (m)

F
z
 (
k
N
)

 

 

Initial

H 25%

H 50%

H 75%

M 25%

M 50%

M 75%

T 25%

T 50%

T 75%

0 0.2 0.4 0.6 0.8 1 1.2

x 10
-3

0

2000

4000

6000

8000

10000

12000

θ
y
 (rad)

M
y
 (
k
N
m
)

 

 

Initial

H 25%

H 50%

H 75%

V 25%

V 50%

V 75%

T 25%

T 50%

T 75%

0 1 2 3 4 5 6

x 10
-4

0

1000

2000

3000

4000

5000

6000

7000

θ
z
 (rad)

M
z
 (
k
N
m
)

 

 

Initial

H 25%

H 50%

H 75%

V 25%

V 50%

V 75%

M 25%

M 50%

M 75%

Figure 3.7: Load-displacement curves for combined loading

It can be seen that the influence of loading in other directions is significant: the resulting
displacements and initial stiffnesses vary up to a factor 2. For the load-displacement
curves for lateral loading preloading with a vertical load increases the stiffness, while
preloading with an overturning moment leads to a decreasing stiffness. The influence
of torsional loading is negligible. This is because a vertical load leads to an increase
of the effective stresses, which in the Hardening Soil model leads to an increase of the
Youngs modulus as given in Equation 3.8. Preloading with an overturning moment on
the other hand leads to lateral displacements, which means the load-displacement curve
is already in the plastic regime when the lateral loading starts and the stiffness decreases
consequently. Since for realistic load cases both the vertical load and the overturning
moment are large compared to the applied lateral load, see for instance Table 2.2, the
stiffening effect of the vertical load and the slackening effect of the overturning moment
could cancel out each other, in which case the initial load-displacement curve could be
used without introducing significant inaccuracies in the results.

The vertical stiffness is influenced less by loading in other directions than the lateral
stiffness. Applying a torsional or overturning moment load has little influence on the
load-displacement curve, although it does lead to a slight increase of the vertical stiffness.
In the case of the overturning moment this is because the caisson will be rotated slightly
from the upright position, which means that the shaft is no longer positioned parallel
to the displacement direction and will this give a larger resistance against deformations,
which leads to a stiffer overall behaviour of the caisson. When a torsional moment is
applied this leads to shear stresses along the caisson shaft, which in turn lead to an
increase of the lateral stresses along the shaft and thus to an increase of the Youngs
modulus. This results in a stiffer behaviour of the shaft when the vertical load is applied.
The only loading that has a significant influence on the vertical stiffness is a lateral load.
When a lateral load with a magnitude of 75% of the lateral capacity is applied this leads
to a loosening of the soil in the active wedge and a strengthening of the soil at the passive
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side of the caisson. This asymmetric soil state leads to a rotation of the caisson when a
vertical load is applied: the caisson will settle more on the active than on the passive side.
Similar to preloading with an overturning moment, this rotation leads to an increase of
the vertical stiffness that can reduce the vertical settlement by 30%, but also results an
increase of the horizontal displacements.

The rotational stiffnesses for an overturning moment and torsional load show the same
behaviour for combined loading. Similarly to the lateral stiffness, preloading with a
vertical load leads to a stiffer behaviour of the caisson because of the increased effective
stresses, especially for large loads. Applying a moment in another direction leads to a
decrease of the stiffness of 30 to 40% around half the capacity, while the stiffness for
smaller and larger loads is not influenced significantly. Preloading with a lateral load
also results in a less stiff load-displacement relation for most of the load range, while for
loads near the capacity the foundation behaves just as stiff or slightly stiffer than without
preloading. It is unclear what causes this behaviour.

All in all the influence of combined loading on the individual load-displacement curves
is significant. Since loading on other directions can lead to both stiffer and less stiff
behaviour the overall effect for a real load case might be limited. The exception is the
vertical stiffness, which only increases as a result of other loading. Apart from for large
lateral loads the vertical stiffness is not influenced significantly however.

Another issue that one would expect to see in the results is a change of the capacity. As
Equation 3.17 and 3.7 show the capacity for loading in one direction will reduce when loads
in other directions are applied simultaneously. This is mainly the case in 2D (Bransby and
Randolph, 1998), which is why the torsional load is excluded from the curves. Especially
lateral and overturning moment loading reduce each others capacity. This effect cannot
be clearly observed in the curves in Figure 3.7 however, apart from the lateral capacity
that is reduced by up to 30% when an overturning moment is applied. Why this effect is
not seen in the relations between vertical and lateral or moment loading is not clear.

Finally it is interesting to compare the capacities and curves of Figure 3.6 and 3.7 to
the loads for a realistic load case, for instance the loads found for a design state given in
Table 2.2. This comparison is not entirely equitable since the caisson used to determine
the load-displacement curves together with the soil parameters used in the Hardening Soil
model was not specifically designed for the given load case. However the ratio between the
capacities and the maximum loads is approximately 3 for the vertical load and overturning
moment, which is a reasonable factor of safety given that a value of 2 is commonly used for
deepwater suction anchors (Clukey et al., 2000), and the loading for the various degrees
of freedom can at least be compared proportionally.

It can be seen that for the given loads the vertical load-displacement curve is showing
significant plastic deformations: for a vertical load of 4000 kN the vertical displacement
is rougly twice as large as would be expected based on the initial stiffness. The lateral
load and overturning moment curves do not deviate significantly from the initial stiffness
for 1100 kN and 2500 kNm respectively, and the torsional stiffness is still in the linear-
elastic range for a torsional moment of 600 kNm. Therefore the torsional stiffness can be
modelled by a linear spring without introducing any inaccuracy. For the other degrees of
freedom non-linear springs will be used, but no large deviations from the results for linear
springs are expected.
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3.3 Application of the Non-Linear Springs in SACS

3.3.1 Model for a Single Caisson

Non-linear springs can be modelled in SACS by means of force-deflection gap elements.
These are elements for which an axial load-elongation curve can be defined (Bentley,
2012). The curve is defined by a set of points, in between which linear interpolation is
used. For all load directions other than the axial one the deformations are calculated using
the standard linear Timoshenko beam theory. Since the springs are only 1-dimensional
multiple springs are needed to model the six degrees of freedom of the foundation. It is
also not possible to create coupling springs between the various degrees of freedom, which
means that the springs have to be applied at the centre of rotation.

connection to mudline
and rest of structure

centre of rotation

Figure 3.8: Diagram for a suction caisson
with non-linear translational springs

A simple model for a suction caisson that
only uses non-linear springs for the trans-
lational degrees of freedom and a stiffness
matrix for the rotational degrees of free-
dom is shown in Figure 3.8. The model
consists of three non-linear springs, one for
each translational degree of freedom, and
three linear rotational springs combined
into one stiffness matrix. The non-linear
springs are attached to each other at one
end and to a fixed point at the other end.
The supports of the springs are limited-
movement bearings that restrain the fixed
end of the spring for axial and rotational
deformations but allow the spring to move
freely in the lateral directions. This way
the springs do not restrain any elongation
or shortening of the other two translational
springs. The point where the three springs
meet is connected to the centre of rotation
by a short rigid stub that has a hinged con-
nection at one end to make sure that the
non-linear springs will not carry any mo-
ment loads.

The rotational springs are connected di-
rectly to the centre of rotation on one end
and fixed on the other end. The applied stiffness matrix does not provide any resis-
tance against translations, which is represented by the telescopic connection and limited-
movement bearing in Figure 3.8. This way a separation of the loads is created: all forces
acting on the centre of rotation will be carried by the non-linear springs while all moments
will be carried by the linear rotational springs.

This model can be extended further to also include non-linear moment-rotation behaviour.
The rotational springs can be modelled by a couple of two axial non-linear springs placed
at a certain distance and connected by a rigid beam. This is shown in Figure 3.9, where
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the two springs for the overturning moments are also non-linear. The beam connecting
the rotational springs is connected to the centre of rotation by a stub that can only
transfer bending moments and no translation or torsion. The torsional spring, not shown
in Figure 3.9, is still linear and modelled by a stiffness matrix that is attached to the
centre of rotation in the same manner as in Figure 3.8. It can also be modelled by a
non-linear spring in the same manner as the rotational springs for overturning moments,
but as discussed in Section 3.2 a non-linear spring is not needed for the torsional degree
of freedom since the applied loads will still be in the linear-elastic range.

connection to mudline
and rest of structure

centre of rotation

Figure 3.9: Diagram for a suction caisson with non-linear translational and rotational springs

Limitations of the Model

As mentioned before the position of the centre of rotation is assumed to be fixed in the
model, which is not the case for non-linear soil behaviour as Figure 3.5 shows. This will
lead to inaccuracies in the results. The interaction between loads in different directions
is also not included in the model, which might lead to inaccuracies in the results.

Another issue is that while the applied springs are non-linear, they are still elastic and
as such do not account for permanent deformations of the soil due to plasticity. The
model is developed mainly for the evaluation of ultimate load conditions, which will most
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likely result in loads that are higher than any of the loads applied before the ultimate
load event and thus result in primary loading, which is uneffected by any previous plastic
deformations. Still initial deformations might influence the final load distribution, which
is something that needs to be investigated in more detail.

The change in stiffness as a result of cyclic loading is also not incorporated in the
model. Various methods have been developed that can include the effects of cyclic load-
ing (Dekker, 2013), however it is not possible to apply these models in SACS. Since the
ultimate load cases will generally result in only a few load cycles during the life time of
the offshore structure the effects of cyclic degradation will most likely be small, however
further research on this topic is also required before any conclusions can be drawn.

3.3.2 Alternative Model

The model can be simplified by combining the lateral and rotational stiffness into one set
of springs. The principle of this model is shown in Figure 3.10. For each lateral direction

K1

K2

l 1

l 2

Centre of 
rotation

Figure 3.10: Diagram for a foundation
modelled with two translational springs

two springs are used, one at mudline and one at
the depth around which the caisson will rotate
when only a lateral load at mudline is applied.
These two springs are connected by an infinitely
stiff member. The model can be extended to in-
clude all 6 degrees of freedom by applying a verti-
cal spring below the lower springs and a torsional
spring at mudline.

When the caisson is now loaded by a lateral load
applied at mudline the load will be carried by the
upper spring, which will deform accordingly, while
the lower spring is not loaded. Therefore the cais-
son will rotate around the lower end. The load-
displacement curve for a lateral load applied at
mudline can be used directly as input for the non-
linear spring stiffness of the upper spring.

When an overturning moment is applied at mud-
line this will result in equal and opposite lateral
loads on the two springs. When the stiffness of the
lower lateral spring is related to the upper lateral
spring by a factor of l1/l2 this will lead to a rota-
tion around the centre of rotation. The model is
thus able to give the correct behaviour for both
lateral loads and overturning moments acting on
the caisson. The rotational stiffness is also mod-
elled correctly in the model, at least in the case of
linear springs, as is proven in Appendix B. This is
the case because the stiffnesses of the two springs
are a combination of both translation and rotation
and thus implicitly include the rotational stiffness
as well.
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Discussion of the Alternative Model

The disadvantage of this model is that the rotation point for a lateral load is assumed to
be constant, which is not the case when the non-linearity of the soil is taken into account.
This is the same problem as for the position of the centre of rotation in the other model.
The centre of rotation for an overturning moment is also assumed to be constant in this
model, although the position could be shifted depending on the load level by adjusting
the stiffness curve of the lower spring.
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Figure 3.11: Shifting of the rotation points for a lateral load and overturning moment

Figure 3.11 shows how the rotation centres for overturning moment and lateral load
shift with varying load levels and displacements for the 7 by 7 meter caisson with soil
parameters as described for the Hardening Soil model in Section 3.1.3. It can be seen that
both rotation centres shift approximately 1 meter or 14% of the caisson height over the
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range of applied load levels. They shift in the opposite direction however: the moment
centre of rotation shifts down with increasing load, will the centre of rotation for a lateral
load moves upwards. This indicates that for large loads most of the soil resistance is
provided by the deeper soil layers.

The fixed depths of the rotation centres chosen for the application of the model in SACS
are indicated by dashed lines. The values have been chosen such that they correspond
with load levels that are expected for a design load case. Based on Table 2.6 a lateral
load of 1000 kN and an overturning moment of 3000 kNm are used as reference loads,
leading to a centre of rotation for the overturning moment located at 4.0 meter depth or
0.57 L and a rotation point for a lateral load at a depth of 7.3 m or 1.04 L. Since the
springs in this model are defined at mudline rather than at the centre of rotation the
resulting overturning moment for a design load case will be smaller than for the other
model, resulting in a different choice for the depth of the centre of rotation.

Since the rotation of the caisson as a result of an applied lateral load in this model is
proportional to the inverse of the chosen distance from mudline to the rotation point
for a lateral load, the relative error for the rotation due to a lateral load introduced by
assuming a fixed rotation point can be determined in a straightforward way. For small
lateral loads the rotation point will be located at a depth of 8.23 rather than 7.3 meter.
This means that the rotation of the caisson will be overestimated by 13%. For high lateral
loads however the rotation point for the lateral load shifts to a depth of 7.18 meter, which
means the rotation will be underestimated by 2%. Since a higher stiffness will result in
less redistribution of the load between the caissons and thus in a larger design load, this
means that the model is incautious for small loads while cautious for large loads.

In case an overturning moment is applied it is less straightforward to determine whether
the chosen locations of the rotation points lead to an over- or underestimate of the re-
sulting rotations, since both the distance between the springs and the ratio between the
stiffnesses of the two springs will vary in this case. In order to see how the stiffness is
influenced by the choice of the two fixed rotations points a number of overturning mo-
ments has been chosen and the resulting rotation has been determined for the shifting
rotation points corresponding to various load levels. First the load-displacement curve for
the upper spring K1, determined by applying a lateral load at the topplate of the caisson,
has been discretized to a multilinear line consisting of 12 segments. Four loads from this
curve have been picked and multiplied by the distance to the rotation point for a lateral
load (l1 + l2) to find the corresponding overturning moment. For each node on the curve
the lateral load in the springs has been determined by dividing these moments by the
distance to the rotation point for lateral loads corresponding to the node. The rotation
is then found by dividing the deflection of the upper spring corresponding the the load
by the distance to the centre of rotation for the node. The rotation for the fixed rotation
points can also be found by dividing the deflection corresponding to the chosen load by
the fixed distance to the centre of rotation. The resulting rotations are shown in Figure
3.12.

It can be seen that the chosen fixed rotation points lead to rotations that are consistently
larger than the actual rotations. This is the case since the rotation points for lateral load
and moment loading have been chosen for the loads that are expected on the caisson and
do not correspond to the same load level. This leads to a combination that gives too large
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rotations and hence a too low stiffness. Therefore the calculated rotations for the fixed
roation points have also been reduced by 5.5%. The reduction can be achieved in the
model by reducing all displacements in the load-displacement curves by 5.5%. This gives
a a better match with the actual rotations, as the graphs show. In this case the difference
between the actual and assumed rotations is less than 2% apart from for the unrealistic
combination of high loads and rotation points corresponding to small loads. Reducing
the displacements in the load-displacement curves will also lead to an increased stiffness
for lateral loads however, so the curves should be adjusted such that both the behaviour
for lateral loads and overturning moments is modelled accurately.
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Figure 3.12: Rotations as a result of various overturning moments for various depths of the
rotation points

Another issue of the model is the fact that the shapes of the load-displacement curves
for lateral loads and overturning moments do not have exactly the same shape. Figure
3.6 shows that the ratio between initial stiffness and stiffness at maximum capacity is
significantly smaller for the lateral stiffness than it is for the rotational stiffness. Since
the applied springs are a combination of the two, this means that the rotational stiffness
for large overturning moments will be overestimated.

On the other hand the model does include the effects of combined loading, in the sense
that when the caisson is already loaded by an overturning moment, the springs will have
deformed into the non-linear regime, meaning that the incremental stiffness of the springs
decreases. When a lateral load is applied the lateral stiffness will thus be smaller than
it would be if the caisson were unloaded. Whether the combined loading behaviour is
modelled correctly this way will follow from the comparison to the Plaxis calculations.

Another advantage of the model is the very straightforward way of determining the spring
stiffnesses. An additional FEM calculation is required to determine the position of the
centre of rotation but otherwise it is sufficient to run a single calculation to determine
the load-displacement curve for a lateral load.
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3.3.3 Angle-Dependent Load-Displacement Behaviour

A problem with non-linear load-displacement relations is that when the forces and dis-
placements are decomposed, for instance in components parallel to the x- and y-axes, the
resulting load-displacement relationship will change. This is indicated in Figure 3.13.

θ

Fy

Fx

, Fx

u, ux

F

F

Figure 3.13: Change of the load-displacement curve for a decomposed load

For soil behaviour the load-displacement curve will generally become less stiff with in-
creasing load. Thus, when the load-displacement curve for the total load would be used
to find the displacements for the decomposed forces, which are smaller, the resulting dis-
placements would be too small and the stiffness of the system would be overestimated.
For a load parallel to one of the axes however there would be no decomposition and the
used curve would give the correct deformations. This means the behaviour of the system
would depend on the chosen orientation of the coordinate system, which is clearly incor-
rect. Therefore the decomposed load-displacement curves should be function of the angle
θ between the applied load and the chosen x-axis:

Fx (u, θ) = F (u) · cos θ = F
( ux

cos θ

)
· cos θ (3.19)

Fy (u, θ) = F (u) · sin θ = F
( uy

sin θ

)
· sin θ (3.20)

Only for a linear spring it holds that F
(
ux

cos θ

)
· cos θ = F (ux), in all other cases ignoring

the dependency on the load angle will lead to inaccuracies. Assuming for instance a load
displacement curve defined by F (u) = K ·

√
u, which is a realistic shape for a non-linear

load displacement curve, decomposing the load first and then using the uncorrected load-
displacement curve to find the deformations overestimates the stiffness of the system by
up to 19% for a load that makes a 45◦ angle with the x- and y- axes.

It is however not possible to make the load-displacement curve dependent on the load
direction in SACS. Since the magnitude of the error is not too large, an alternative would
be to reduce it to an acceptable range. This could be done by using multiple distributed
springs along the circumference of the caisson axis. Instead of 2 springs with a spacing
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of 90◦, for instance 4 springs with a spacing of 45◦ could be used. A load parallel to
the x-axis is now taken up by 3 springs instead of 1 and a load with an angle of 22.5◦

with the x-axis is taken up by 4 instead of 2 springs. This leads to a more constant
load-displacement behaviour with respect to the load angle and thus smaller errors.

The downside of this method is however that which part of the load is carried by each of
the springs will depend on the stiffness of the springs. Initially most of the load will be
carried by the springs that are orientated the most parallel to the applied load, however
when these springs reach the more non-linear part of their curve and behave less stiff the
other springs, which are still in the more stiff regime, will take up a larger portion of the
load. This makes it more difficult to choose the right spring stiffnesses for the desired
load-displacement behaviour and also results in a too stiff behaviour of the foundation for
large loads. Overall the inaccuracies depending on the load direction may reduce when
multiple lateral springs are applied, but the method is dubious.

Therefore the multiple springs will not be used and instead the springs for the foundations
will be orientated such that one set is parallel to the direction of the applied load. This
way the error due to the angle of the structural response with the axes will be small as
well. Since a jacket structure is usually positioned such that the governing load directions
correspond with the broadside, end-on and diagonal direction of the jacket, the most
suited orientations for the springs will for most cases also conveniently coincide with the
global coordinate system.

3.4 Comparison with Plaxis Calculations

3.4.1 Comparison for a Single Caisson

The two models for a foundation with non-linear soil behaviour have been implemented in
SACS using the code given in Appendix F.2 and compared to calculations in Plaxis to see
how accurate the results from the model are. The springs used for the models are based
on load-displacement curves determined in Plaxis, as shown for the first model in Figure
3.6, which have been discretized into 10 to 20 points such that they accurately describe
the shape of the actual curves. The displacements for the load-displacement curves of the
lower springs with stiffness K2 in the second model are adjusted such compared to the
values for K1 that a rotation centre at a depth of 4.0 meter is established. A linear-elastic
foundation based on the initial stiffness of the curves is also used in the comparison in
order to assess the non-linearity of the system.

The comparison has first been made for a single caisson, so that the results are not
distorted by pile-group effects. The caisson and surrounding soil, with dimensions and
soil properties as described in Section 3.1.3, are modelled in Plaxis and SACS and loaded
at mudline by various combinations of lateral load, vertical load and overturning moment,
as given in Table 3.2. The overturning moments are applied in Plaxis by applying the
lateral loads at different heights above the top plate on a rigid beam that is rigidly
connected to the caisson. The displacements of the caisson as a result of these loads are
given in Table 3.3.
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Table 3.2: Load combinations for the various load cases

Load case Fx (kN) Fx (kN) Fx (kN) My (kN)

1 1000 - - -
2 1000 1000 - -
3 1000 1000 -1000 -
4 1000 1000 -2000 -
5 1000 - - 5000
6 500 - - 5000
7 1000 - -1000 5000
8 500 - -500 5000

It can be seen that the correspondence between the Plaxis and SACS results is highly
varying, ranging from differences of a few percent to a factor 3. The average agreement
is significantly poorer than for the linear-elastic soil behaviour, for which the results are
given in Table 2.3. The average difference between the Plaxis and SACS results is 35%
for the first model and 45% for the second model, compared to 6.5% for the linear-elastic
soil. The non-linear models are not significantly more accurate than the linear-elastic
model applied for the non-linear soil behaviour, which gives an average difference with
the Plaxis results of 45%.

The large differences seem to be mainly the result of the changing stiffness due to combined
loading, which is not included in the SACS models. The resulting lateral translation and
rotation for loadcases 6 and 8 for instance, which vary only with regard to the applied
vertical load, differ by a factor 2 in the Plaxis calculations, while the SACS models predict
the same lateral displacements for both load cases as the lateral load and overturning
moment are identical. This cannot result in good results for both of the load cases. In
this case especially the results for load case 8 show a very poor match with the Plaxis
results and raise the average difference significantly.

Table 3.3: Comparison of the displacements found for the various load cases

Load Case D.o.f. Plaxis Model 1 Model 2 LE Model

1

ux (m) 6.6·10−4 8.2·10−4 1.2·10−3 5.5·10−4

Difference - 23.4% 75.3% -17.0%

uz (m) - - - -
Difference - - - -

θy (rad) 9.1·10−5 1.2·10−4 1.6·10−4 7.6·10−5

Difference - 34.8% 75.3% -16.5%

2

ux (m) 1.1·10−3 1.1·10−3 1.6·10−3 5.5·10−4

Difference - -3.0% 41.7% -51.6%

uz (m) - - - -
Difference - - - -

θy (rad) 1.7·10−4 1.8·10−4 2.2·10−4 7.6·10−5

Difference - 5.2% 32.3% -54.5%
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Table 3.3: (continued)

Load Case D.o.f. Plaxis Model 1 Model 2 LE Model

3

ux (m) 1.2·10−3 1.1·10−3 1.6 ·10−3 5.5·10−4

Difference - -8.4% 33.9% -54.3%

uz (m) -4.0·10−4 -2.8·10−4 -2.8·10−4 -2.7·10−4

Difference - -31.1% -30.8% -31.8%

θy (rad) 1.8·10−4 1.8·10−4 2.2·10−4 7.6·10−5

Difference - -2.1% 23.1% -57.7%

4

ux (m) 1.3·10−3 1.1·10−3 1.6·10−3 5.5·10−4

Difference - -15.3% 23.7% -57.7%

uz (m) -7.6·10−4 -7.6·10−4 -7.7·10−4 -5.5·10−4

Difference - -0.1% 0.2% -28.3%

θy (rad) 2.0·10−4 1.8·10−4 2.2·10−4 7.6·10−4

Difference - -10.8% 12.2% -61.4%

5

ux (m) 2.9·10−3 3.3·10−3 3.0·10−3 9.3·10−4

Difference - 14.4% 3.7% -68.0%

uz (m) - - - -
Difference - - - -

θy (rad) 4.6·10−4 6.3·10−4 4.8·10−4 1.5·10−4

Difference - 35.7% 3.6% -67.1%

6

ux (m) 1.1·10−3 1.5·10−3 1.7·10−3 6.5·10−4

Difference - 41.4% 52.2% -40.0%

uz (m) - - - -
Difference - - - -

θy (rad) 1.8·10−4 2.9·10−4 2.9·10−4 1.1·10−4

Difference - 62.5% 62.3% -36.8%

7

ux (m) 2.9·10−3 3.3·10−3 3.0·10−3 9.3·10−4

Difference - 13.4% 2.8% -68.2%

uz (m) -4.6·10−4 -2.8·10−4 -2.8·10−4 -2.7·10−4

Difference - -39.8% -39.5% -40.4%

θy (rad) 4.7·10−4 6.3·10−4 4.8·10−4 1.5·10−4

Difference - 33.2% 1.6% -67.7%

8

ux (m) 5.7·10−4 1,5·10−3 1.7·10−3 6.5·10−4

Difference - 168.2% 188.6% 13.9%

uz (m) -1.6·10−4 -1.4·10−4 -1.4·10−4 -1.4·10−4

Difference - -14.9% -14.5% -15.7%

θy (rad) 9.4·10−5 2.9·10−4 2.9·10−4 1.1·10−4

Difference - 214.5% 214.3% 22.4%
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3.4.2 Comparison for a Jacket Foundation

Although the displacements for a single caisson are clearly not estimated correctly by
the two SACS models, they might be able to give better results with regard to the load
distribution, as Table 2.4 and 2.5 show. Therefore the difference between Plaxis and SACS
calculations will also be evaluated for the complete jacket substructure and foundation.

The same springs have been used in the SACS models as for the calculations on the single
caisson. The same jacket substructure and load, a single lateral load of 2000 kN applied
on leg 2 at the top frame, are used as for the linear-elastic soil. The jacket and the load
are shown in Figure 2.10. The resulting loads on and displacements of each of the four
caissons found in the Plaxis and SACS models are determined and compared in Table 3.4
and 3.5.

Table 3.4: Comparison of foundation loads found in the SACS and Plaxis calculations

Leg D.o.f. Plaxis Model 1 Model 2 LE Model

1

Fx (kN) 384.9 363.0 363.2 382.7
Difference - 6.0% 6.0% 0.6%

Fy (kN) -172.4 -154.9 -166.5 -173.2
Difference - 11.3% 3.5% -0.5%

Fz (kN) 969.8 981.9 997.9 1016.5
Difference - -1.2% -2.8% -4.6%

Mx (kNm) 496.7 453.6 471.1 499.4
Difference - 9.5% 5.4% -0.5%

My (kNm) 997.9 939.3 930.4 998.3
Difference - 6.2% 7.3% 0.0%

Mz (rad) - 61.4 61.9 70.8

2

Fx (kN) 561.3 516.5 523.9 645.5
Difference - 8.7% 7.1% -13.0%

Fy (kN) -184.1 -206.2 -202.0 -216.0
Difference - -10.7% -8.8% -14.7%

Fz (kN) 1331.3 1321.5 1308.0 1291.5
Difference - 0.7% 1.8% 3.1%

Mx (kNm) 612.0 689.9 666.6 704.2
Difference - -11.3% -8.2% -13.1%

My (kNm) 1896.1 1730.9 1732.6 2005.9
Difference - 9.5% 9.4% -5.5%

Mz (rad) - -34.7 -32.0 -31.7
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Table 3.4: (continued)

Leg D.o.f. Plaxis Model 1 Model 2 LE Model

3

Fx (kN) 188.9 221.2 228.5 230.6
Difference - -14.6% -17.3% -18.1%

Fy (kN) 329.3 330.2 332.4 349.8
Difference - -0.3% -0.9% -5.9%

Fz (kN) -972.9 -984.3 -999.9 -1018.0
Difference - -1.2% -2.7% -4.4%

Mx (kNm) -737.9 -760.4 -751.9 -814.3
Difference - -3.0% -1.9% -9.4%

My (kNm) 563.1 667.1 674.3 696.7
Difference - -15.6% -16.5% -19.2%

Mz (rad) - 105.5 108.3 114.4

4

Fx (kN) 864.9 899.3 884.4 741.2
Difference - -3.8% -2.2% 16.7%

Fy (kN) 27.2 30.9 36.1 39.4
Difference - -12.1% -24.7% -31.0%

Fz (kN) -1328.2 -1319.1 -1306.0 -1290.1
Difference - 0.7% 1.7% 3.0%

Mx (kNm) -298.8 -328.7 -339.8 -355.9
Difference - -9.1% -12.1% -16.1%

My (kNm) 2031.3 2133.4 2042.6 1630.7
Difference - -4.8% -0.6% 24.6%

Mz (rad) - 5.0 9.1 26.2

Table 3.5: Comparison of foundation displacements found in the SACS and Plaxis calculations

Leg D.o.f. Plaxis Model 1 Model 2 LE Model

1

ux (m) 2.3·10−4 3.2·10−4 3.5·10−4 2.6·10−4

Difference - 37.4% 51.9% 12.6%

uy (m) -1.2·10−4 -1.3·10−4 -1.3·10−4 -1.1·10−4

Difference - 7.5% 13.5% -4.8%

uz (m) 1.4·10−4 2.7·10−4 2.8·10−4 2.6·10−4

Difference - 96.1% 99.2% 84.9%

θx (rad) 1.7·10−5 2.0·10−5 2.2·10−5 1.7·10−5

Difference - 15.8% 29.7% 0.6%

θy (rad) 3.7·10−5 5.2·10−5 5.7·10−5 4.1·10−5

Difference - 39.0% 52.4% 8.6%

θz (rad) 4.7·10−7 1.2·10−6 1.3·10−6 1.1·10−6

Difference - 156.3% 177.6% 134.9%
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Table 3.5: (continued)

Leg D.o.f. Plaxis Model 1 Model 2 LE Model

2

ux (m) 5.5·10−4 5.3·10−4 7.0·10−4 3.1·10−4

Difference - -2.3% 28.1% -42.4%

uy (m) -1.9·10−4 -1.7·10−4 -1.8·10−4 -1.5·10−4

Difference - -8.3% -1.2% -22.2%

uz (m) 2.2·10−4 4.2·10−4 4.2·10−4 3.7·10−4

Difference - 95.8% 93.9% 72.9%

θx (rad) 2.9·10−5 2.8·10−5 3.1·10−5 2.3·10−5

Difference - -4.0% 8.8% -19.9%

θy (rad) 8.7·10−5 9.1·10−5 1.1·10−4 5.1·10−5

Difference - 3.9% 28.1% -42.3%

θz (rad) -1.6·10−7 -7.0·10−7 -6.0·10−7 -8.0·10−7

Difference - 332.1% 270.4% 393.9%

3

ux (m) 1.7·10−4 1.8·10−4 2.0·10−4 1.5·10−4

Difference - 7.4% 17.9% -10.0%

uy (m) 3.2·10−4 2.7·10−4 3.0·10−4 2.3·10−4

Difference - -13.3% -4.8% -27.2%

uz (m) -2.7·10−4 -2.7·10−4 -2.8·10−4 -2.6·10−4

Difference - 2.6% 4.2% -3.3%

θx (rad) -4.9·10−5 -4.4·10−5 -4.8·10−5 -3.5·10−5

Difference - -11.5% -2.7% -28.7%

θy (rad) 3.2·10−5 3.0·10−5 3.4·10−5 2.4·10−5

Difference - -7.8% 5.2% -24.6%

θz (rad) 7.0·10−7 2.1·10−6 2.2·10−6 1.9·10−6

Difference - 198.2% 212.4% 169.8%

4

ux (m) 1.3·10−3 1.3·10−3 1.6·10−3 8.0·10−4

Difference - -1.3% 20.7% -40.9%

uy (m) 8.4·10−5 3.7·10−5 4.4·10−5 2.3·10−5

Difference - -55.7% -46.9% -72.5%

uz (m) -5.9·10−4 -4.2·10−4 -4.2·10−4 -3.7·10−4

Difference - -28.1% -28.8% -36.5%

θx (rad) -1.5·10−5 -6.7·10−6 -9.0·10−6 -4.4·10−6

Difference - -55.4% -40.0% -70.7%

θy (rad) 2.2·10−4 2.3·10−4 2.4·10−4 1.2·10−4

Difference - 4.0% 9.9% -44.4%

θz (rad) -2.5·10−8 1.0·10−7 2.0·10−7 -4.0·10−7

Difference - 299.5% 698.9% 1497.8%
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Table 3.4 shows that the loads on the caissons found in Plaxis and in SACS show a
reasonable correspondence. The average difference is 7.1% for the first SACS model and
7.5% for the second SACS model. This is the same order of magnitude as is reached for
the linear-elastic soil (see Table 2.6). The linear-elastic model gives significantly poorer
results, with an average deviation from the Plaxis results of 14%. The decreasing soil
stiffness for large loads leads to a more equal distribution of the lateral force along the x-
axis and overturning moment about the y-axis among legs 2 and 4, which is not captured
by the linear-elastic model. This clearly shows the necessity of applying a non-linear
model in order to get reliable results. The linear-elastic model results in a lateral load
and overturning moment on the most heavily loaded caisson that are 25 to 30% larger than
the loads found in Plaxis, so the choice of the correct model can have major implications
for the foundation design.

The relative difference between the displacements found in the Plaxis and SACS calcu-
lations is on average significantly larger than it is for the loads. The largest difference
occurs for the rotations about the z-axis, which are the result of torsional moments act-
ing on the caissons. Since the torsional moments cannot be obtained in Plaxis it is not
possible to determine whether the loads are different in Plaxis or the torsional stiffness
applied in SACS differs from the torsional stiffness in Plaxis. It should however be noted
that the torsional rotations of the caissons are 2 orders of magnitude smaller than the
other two rotations, so numerical errors could be the cause of the large differences as well.
The small torsional moments and rotations also indicate that the torsional behaviour is
not defining the overall behaviour of the foundation, which makes the large errors for this
degree of freedom acceptable.

Another degree of freedom for which the differences between the Plaxis and SACS results
are significantly is the vertical displacement of the caissons. The lateral load on the jacket
results in a so-called push-pull mechanism of the foundation, with two caissons loaded
in axial tension and two in axial compression. The SACS calculations show reasonable
agreement with the Plaxis results for the caissons loaded in compression, while the uplift of
the two caissons loaded in tension is found to be roughly twice as high in the SACS models
as in Plaxis. This is because the load-displacement curves for the vertical springs used in
SACS have been determined for a compressional load but have been applied both for the
tension and compression quadrants. The actual soil behaviour is however not symmetrical
for the vertical direction, even for undrained behaviour (Gennaro et al., 2004), which
leads to errors in the SACS models for tensional loads. Unlike a linear-elastic spring it
is possible to define an asymmetrical behaviour for the non-linear springs in SACS, so
this issue can be remedied by determining both the tensional and compressional load-
displacement curves in Plaxis and combining the two into one spring for use in SACS.
This is another advantage of the non-linear models over the linear-elastic model. In reality
the load cases for the structure will often contain a significant dead weight load as well
however, which means the foundations will rarely be loaded in tension and this issue is
thus often not relevant.

When the results for the torsional rotations and uplift vertical displacements are ignored
the average difference between the SACS and Plaxis results is 17% for the first model
and 22% for the second model. Compared with 11% for the linear-elastic soil this shows
that allthough the results for a non-linear soil become less accurate, the SACS models
still produce workable results.
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The results for the vertical uplift displacements have been improved by adding a different
uplift branch to the vertical load-displacement curves. This leads to a significantly smaller
difference with the Plaxis results, as Table 3.6 shows. The loads and the displacements for
the other degrees of freedom do not change noteworthy and have therefore been omitted
from the table.

Table 3.6: Resulting displacements in the positive z-direction with and without a
load-displacement curve determined for uplift

Leg Model 1 Model 2

Plaxis 1.4 ·10−4 m 1.4·10−4 m

Without 2.7 ·10−4 m 2.8 ·10−4 m
1 Difference 96.1% 99.2%

With 1.7 ·10−4 m 1.7 ·10−4 m
Difference 19.3% 20.8%

Plaxis 2.2 ·10−4 m 2.2·10−4 m

Without 4.2 ·10−4 m 4.2 ·10−4 m
2 Difference 95.8% 93.9%

With 2.4 ·10−4 m 2.4 ·10−4 m
Difference 10.3% 9.8%

The results show that the uplift of the caissons becomes smaller when the new curves are
implemented, meaning that the caissons behave stiffer in uplift than in compression. This
seems remarkable at first, since an uplift load would lead to a decrease of the effective
stresses and hence a decrease of the soil stiffness in the Hardening Soil model. The soil
is modelled as undrained however, which means that a change of the load will lead to
the development of excess pore pressures, while the effective stresses will remain almost
unchanged. This means that the load-displacement behaviour will depend on how much
deformations are required in order to mobilize the excess pore pressure. Gennaro et al.
(2004) have showed that an excess pore pressure in undrained extension will lead to
smaller axial strains than an excess pore pressure of the same magnitude in undrained
compression, which explains why the caissons behave stiffer in uplift than in compression.

Pile Group Effects in the Non-linear Model

Another way to improve the results from the non-linear spring model is the implemen-
tation of springs between the caissons that model the pile group effects. Since for the
non-linear model the spring stiffnesses are determined individually instead of from a flex-
ibility matrix, the properties of the springs between the caissons cannot be determined
in the same manner as for the linear-elastic soil model. Therefore another approach is
pursued. The results for the linear-elastic model given in Appendix D show that mainly
the lateral translations are effected by the interaction between the caissons through the
soil and that the interaction in the diagonal direction, where the spacing between the
caissons is roughly 1.5 times larger, is significantly smaller. It thus seems reasonable to
model the pile-group effects for the non-linear model by adding 4 axial non-linear springs
between the caissons along the outline of the jacket.
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The spring stiffnesses have been determined as shown in Figure 3.14. In the Plaxis model
of the four caissons, one caisson is loaded by a force in lateral x-direction applied at the
centre of rotation such that the caisson will displace in full translation without rotation.
The resulting displacement in x-direction of the caisson and the caisson next to it are
determined. The load-displacement curve for the spring between the two caissons can then
be formulated with the applied force as load and the difference between the displacements
of the two caissons as elongation of the spring. Since for the non-linear soil model the
behaviour might be different for the caissons moving towards and away from each other,
the compression and extension parts of the curves have been determined separately. It
turned out that the resulting curve does not show a clear asymmetry however.

F

u1 u2

F

u=u1−u2

Figure 3.14: Principle for the determination of the non-linear load-displacement curves for the
springs between the caissons

The four additional springs have been implemented in the two models, but this resulted
in loads and displacements for the caissons that were clearly incorrect. Especially the
overturning moments about the y-axis were inaccurate and off by up to 1000 kNm, which
is the same order of magnitude as the actual load on the caissons. The application of the
springs does thus not lead to useful results, let alone an improvement of the results without
the additional springs. The cause of this is most likely the inaccuracy in the determination
of the springs. The displacement of the caisson that is loaded is 1 to 2 orders of magnitudes
larger than the displacements of the other caissons, which as Appendix D shows is also
the case for the linear-elastic model. Since the non-linear springs are determined from
the difference in displacement between the loaded and unloaded caisson, a small error in
the displacement of the loaded caisson in Plaxis can thus have a larger influence on the
resulting spring stiffness than the displacement of the unloaded spring, which the spring
is supposed to model correctly. The fact that the results for the model using the springs
between the caissons deviate that much indicates that the model is very sensitive for the
correct stiffness of the springs between the caissons. It seems that the required accuracy
of the springs cannot be obtained when the difference between the displacements of two
caissons is used for the determination of the spring stiffness.

It is thus not possible to implement non-linear springs for the modelling of the pile group
effects based on the calculations in Plaxis. Instead the stiffness matrices determined in
the linear-elastic model can be used as coupling between the caissons. The linear-elastic
coupling has been implemented and provides results that are not noticeably different
from the results without coupling for either of the two models; most differences with the
results from Table 3.4 and 3.5 are less than a per cent and the average differences with the
Plaxis results remain the same. The reason for this is probably that the displacements in
the non-linear models are significantly larger than the displacements in the linear-elastic
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model, which means that the change in displacements as a result of the coupling between
the caissons is small compared to the total displacements of the caissons and does not
have a significant influence. The addition of the linear-elastic springs does thus not seem
meaningful and the best option for the non-linear model will be not to add any springs
for the modelling of pile group effects.

3.4.3 Variation of the Soil Stiffness

Just as for the linear-elastic model the non-linear models will have to be validated by
comparing them with results from the Plaxis model for various soil stiffnesses. The soil
parameters for the Hardening Soil model used in Plaxis have been changed for various soil
stiffnesses. For the Eref50 and Erefoed the same values are used as for the Young’s modulus E
in the linear-elastic model: 13, 52 and 624 MPa in addition to the previous calculation for
156 MPa. The corresponding value of Erefur has been chosen approximately 3 times higher
(500 MPa for the initial calculations and scaled accordingly for the other soil stiffnesses),
but is not used in the calculations as the soil is initially in an unloaded condition without
overconsolidation. Just as for the linear-elastic model the load-displacement curves for
the SACS models have not determined again but the displacements are simply factored
to get the correct spring stiffness. The results for the various spring stiffnesses can be
found in Appendix E and are compared in Table 3.7. The torsional rotations have been
omitted from the comparison, as well as any differences larger than 500%, in order to get
meaningful average differences that are not distorted by large values.

Table 3.7: Comparison between the SACS and Plaxis models for various shear moduli

Shear modulus G (MPa) 5 20 60 240

Average difference in loads
Model 1 33.2% 10.3% 7.1% 3.4%

Model 2 27.0% 12.4% 6.7% 5.7%

Average difference in displacements
Model 1 22.8% 29.6% 16.8% 23.4%

Model 2 28.6% 42.3% 21.3% 37.8%

It can be seen that for both of the models the loads on the caissons show a better
correspondence between the SACS and Plaxis models as the soil stiffness increases. For
the loosest soil the average differences are in the order of 30% and it seems the SACS
calculations cannot be used as reliable results, while for the stiffest soil the differences
between the SACS and Plaxis calculations are in the order of 5%. The cause of this trend
is that the behaviour of the foundation becomes less sensitive for variations in the soil
stiffness as the stiffness increases. In the extreme case that the soil is infinitely more
stiff than the substructure the caissons will effectively clamp the substructure and the
load distribution over the foundations will be determined solely by the geometry of the
jacket. When the soil stiffness is much smaller than the stiffness of the substructure on the
other hand the outcome of the calculations will mainly be determined by the foundation
stiffnesses. This means that the determination of the correct spring stiffnesses is very
important in order to get accurate results for loose soils. The load-displacement curves
used in the current models do not seem to provide the required accuracy.
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This can also be seen in the results for the caisson deformations, where the resulting
displacements differ on average some 20-25% for the first model and 30% for the second
model between the Plaxis and SACS calculations. The results for the first model clearly
correspond better with the deformations found in Plaxis over the full range of evaluated
soil stiffnesses. Both models give mainly larger deformations than the Plaxis results,
especially for the translation parallel to the x-axis and rotation about the y-axis. As
Section 3.2 shows the foundation stiffnesses for these degrees of freedom will increase
when the caisson is also loaded by a vertical load. This effect is not included in either
of the model, which explains why the found deformations are larger than in the Plaxis
models. The accuracy of the models can be improved when the load-displacement curves
are determined for the load combination that is to expected to act on the caisson. This is
something that should be taken into account especially for loose soils, since the influence
of the soil stiffness is the largest in this case.

3.5 Conclusion

Two models for the represention of suction caisson foundations by non-linear springs have
been created. The non-linear springs have been determined in a Plaxis FE model using
the Hardening Soil model. This soil model gives a more realistic soil behaviour than the
Mohr-Coulomb model. The first model uses separate springs located at the centre of
rotation for each of the 6 degrees of freedom. In the second model the springs for lateral
translation and rotation are combined into two springs, one of which is located at mudline
and the other at the rotation point for a lateral load.

Both models are based on the assumption that the position of the centre of rotation is fixed
and independent of the applied load. Furthermore the spring stiffnesses are assumed not
to be influenced by loading in other directions than the one concerned for a given spring,
as the springs have been determined starting from an unloaded initial state. Another
aspect that is not included in the models is the direction of the loading relative to the
used coordinate system. The latter issue can be resolved by orientating the springs in the
same direction as the applied load.

A comparison between the two models and results from Plaxis FEM calculations of the
complete foundation and substructure for various soil stiffnesses has shown that the re-
sults from the models give an acceptable correspondence with the Plaxis results. The
difference in the found loads on the caissons increases as the soil stiffness decreases, since
the sensitivity of the models for the use of the correct spring stiffnesses becomes larger
in this case. For a soil with Young’s modulus of 13 MPa the average difference between
the loads found in SACS and Plaxis is in the order of 30%, while for a Young’s modulus
of 624 MPa the average difference has decreased to approximately 5%. The difference
for the caisson displacements is in the order of 20 to 30% independent of the soil stiff-
ness, where the first model gives a better agreement with the Plaxis calculations than
the second model. All in all it can be concluded that the models give acceptable results,
however the results can be improved by determining the spring stiffnesses for the correct
load conditions. This is necessary in order to get reliable results for soils with a low
soil stiffness. Even with the slightly incorrect spring stiffnesses used the comparison has
shown that the non-linear models still give a load distribution over the foundations that
matches the Plaxis results considerably better than a model with linear-elastic springs.



Chapter 4

Stepwise Method for Solving of the
Non-Linear System

The results from the previous chapter show that the properties of the foundation will
vary with the load conditions. The centre of rotation will shift depending on the load
level and the stiffness for one degree of freedom does not only depend on the load in that
load direction, but also on the loading for the other degrees of freedom. Instead of fixing
the properties to one condition around which the real behaviour fluctuates, as has been
done in the previous chapter, the system could also be solved in steps with an update of
the properties after each step. This method will be investigated in this chapter. First the
procedure of the method will be outlined and the advantages and disadvantages will be
discussed. Thhe method will then be applied for the jacket structure loaded by a lateral
load and the results are evaluated.

4.1 Principles of the Stepwise Method

4.1.1 Numerical Method

As with any numerical problem that is solved in steps, there is a trade-off between the
complexity of a stepsize and the maximum stepsize that is allowed for results with a
certain accuracy. Higher order methods such as the Runge Kutta 4 scheme and various
implicit methods require several iterations for a single step,but in return can be used with
a relatively large step size. On the other hand first order methods such as the forward
Euler method need only one calculation for a single step but require a smaller step size
than a higher order method in order to reach the same accuracy.

Since for the problem of solving the foundation behaviour both Plaxis and SACS need to
be used and there is no interface for an efficient cooperation between the programs, using
iterations is not a suited option for this problem. Instead an explicit method without
iterations will be used. The used iteration procedure is similar to the forward Euler
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method in the sense that the tangent to the system behaviour (in this case the foundation
stiffnesses) is determined at the starting point and is used directly to determine the next
point.

4.1.2 Iteration Procedure

The general idea of the applied method is that the stiffness of the caisson is determined
in Plaxis, after which it is applied in SACS to determine the new load on each of the
caissons. This load can then be applied in Plaxis again, after which the new stiffness can
be determined. This procedure will be continued until the full load is applied.

The first step is determining the initial stiffness of the caissons in Plaxis. The Plaxis
model is a single caisson with a mesh size as discussed in Section 2.3.1. Unless the initial
(dead weight) load is not distributed evenly over the caissons the initial stiffness will be
identical for all four caissons. The flexibility matrix for the caisson can be determined
by loading the caisson in each of the degrees of freedom individually and determining the
resulting displacements, which can be divided by the applied load to find the flexibility
terms. The flexibility matrix can then be inverted to find the stiffness matrix for the
caisson.

The resulting stiffness matrices can then be applied in SACS in a model of the complete
jacket supported by four caissons. This model will then be loaded by a percentage of the
total load case. The SACS model will be loaded by the differential load for each step,
in other words the applied load in SACS will not have to be changed if the step size is
chosen constant. The resulting loads and displacements found in the SACS model are
thus also differential loads and displacements that need to be added to the previous loads
and displacements to find the total loads and displacements up to that point.

The total loads on each of the caisson can then be applied in Plaxis one by one to find
the new soil states. Then the updated flexibility and stiffness matrices can be determined
and applied in SACS, after which the new loads on the caissons can be determined again.
This procedure can be repeated until all load steps are completed.

4.1.3 Discussion of the Method

The stepwise method has the advantage over the model with the non-linear springs that
the effects of a shifting centre of rotation and a changing stiffness due to loading in other
degrees of freedom are incorporated in the method by means of updating the system.
This might make the model more accurate than the model with non-linear springs.

The downside of applying the method is that is quite time-consuming. The individual
Plaxis calculations are calculated relatively quick since only a single caisson is included
instead of the complete foundation, and the caisson is loaded by small loads and not up to
failure as is the case for the determination of the load-displacement curves for the model
with non-linear springs. However, since multiple load steps are required and the stiffness
matrices need to be determined individually for each caisson the total calculation time for
the stepwise method will be significantly larger. The method can only be used efficiently
when a large database with stiffness matrices for different load conditions is present a
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priori so no new Plaxis calculations are required. Since both the soil conditions and the
caisson geometry will vary from project to project having a database for this does not
seem feasible however.

Since a certain part of the load case that is to be evaluated will generally not represent
any real sea state it is not straightforward to apply the load steps as a realistic distributed
load on the structure. Instead the load will have to be applied as a lumped load on one
point on the structure. This issue will arise as well when a sea state would have to be
applied on the full model in Plaxis. Allthough this lumped load will represent the same
global load, the local behaviour of the structure will vary depending on how the load is
applied, leading to a different distribution of the load over the caissons. Therefore the
load should be applied in a point as close to the actual area where the load is acting
on as possible. When the lumped load is applied on the middle frame of the jacket, the
load distribution for a realistic sea state can be mimicked with an error of 5 to 10% as
a comparison has shown. The size of the error will depend on the stiffness of the jacket,
since for an infinitely stiff jacket the substructure will behave as a rigid body and the
point of load application will not effect the behaviour.

Another approximation made using the stepwise method is that the geometry of the
structure and the caissons is not updated in the SACS model. After each load step new
deformations are calculated but the next load step is still calculated based on the unde-
formed structure. This could be solved by using non-linear springs instead of a stiffness
matrix and shifting the load-displacement curves such that the unloaded condition corre-
sponds to the displacements found in the previous steps. Using non-linear springs would
mean that a shift in the centre of rotation would have to be modelled by updating the
geometry of the caisson in the SACS model, which makes the calculations more laborious.
Since the deformations of the structure are expected to be small the non-linear springs
will therefore not be used and the deformations will be ignored.

4.2 Application of the Stepwise Method

4.2.1 Model Description

For the foundation the same dimensions and soil parameters as described in Section 3.1.3
are used. The jacket structure is loaded by a lateral load of 2000 kN applied at the top
frame as shown in Figure 2.10. The number of steps is varied from 2 to 10, resulting in
load steps of 200 to 1000 kN.

For the determination of the flexibility matrix the model of the caisson in Plaxis is loaded
by loads of 200 kN in x-,y- and z-direction, overturning moments of 700 kNm about
the x- and y-axis and a torsional moment of 350 kNm about the z-axis additional to the
initial load respectively when 10 or 5 steps are used. When 2 steps are used these loads are
multiplied by a factor 2.5 to make sure the load range over which the stiffness is determined
corresponds with the differential loads found in the SACS model. The flexibility terms
and resulting stiffness matrices are determined from the load-displacement data using the
MatLab script processing.m given in Appendix F.1. The resulting differential and total
loads on each of the caissons are then calculated and used as input for the new Plaxis
stiffness calculations using the MatLab script plaxiscode.m given in Appendix F.1.
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4.2.2 Results

The resulting loads on and displacements of the caissons for the various numbers of steps
used are given in Table 4.1 and 4.2 and compared with the results from the full FE model
in Plaxis. The loads in x-direction on the caissons connected to leg 1 and 4 are also plotted
in Figure 4.1. The figure shows that while the results for 5 and 10 steps are similar, the
load on leg 4 that is found using 2 steps varies significantly from the resulting loads using
more steps and from the results from the full FE model. In this case the chosen stepsize
is clearly too large to give accurate results. The initial stiffness matrices result in a load
in x-direction on caisson 4 that is too large and consequently loads on the other caissons
that are too small. When the updated stiffness matrices are determined this leads to a
stiffness matrix for caisson 4 that behaves too soft and stiffness matrices for the other
caissons that behave too stiff, which in turn results in a too small load on caisson 4 and
larger loads on caissons 1 to 3. As Figure 4.1 shows this effect introduces an instability in
the results. For the chosen load it can therefore be concluded that at least 5 steps should
be used in order to obtain accurate results. This can also be seen in Table 4.1, where the
average difference between the Plaxis results and the models with 5 and 10 steps is on
average 7.0%, whereas the difference between Plaxis results and the model with 2 steps
is on average 10%. The required stepsize will not only depend on the applied load but
also on how much the foundation stiffness will change with changing load.
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Figure 4.1: Loads in x-direction on two caissons for various stepsizes

While the stepwise model gives accurate results for the loads on the caissons, the corre-
spondence of the found displacements with the full FE model seems rather poor. The
difference is on average 48% for the results using 10 steps, 40% for 5 steps and 43% for 2
steps. The largest differences occur for the translations in y-direction and rotations about
the x- and z-axes, which are the degrees of freedom that are less relevant for the applied
load and have small displacements. The large relative differences thus do not necessarily
implicate large absolute differences in the found displacements. Still, the displacements
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found using the stepwise method seem to be less accurate than the displacements found
using the non-linear springs, which resulted in a significantly better correspondence with
the FE model results from Plaxis.

Table 4.1: Comparison of foundation loads found in the SACS and Plaxis calculations

Leg D.o.f. Plaxis 10 Steps 5 Steps 2 Steps

1

Fx (kN) 384.9 363.0 363.2 382.7
Difference - 6.0% 6.0% 0.6%

Fy (kN) -172.4 -154.9 -166.5 -173.2
Difference - 11.3% 3.5% -0.5%

Fz (kN) 969.8 981.9 997.9 1016.5
Difference - -1.2% -2.8% -4.6%

Mx (kNm) 496.7 453.6 471.1 499.4
Difference - 9.5% 5.4% -0.5%

My (kNm) 997.9 939.3 930.4 998.3
Difference - 6.2% 7.3% 0.0%

Mz (rad) - 61.4 61.9 70.8

2

Fx (kN) 561.3 516.5 523.9 645.5
Difference - 8.7% 7.1% -13.0%

Fy (kN) -184.1 -206.2 -202.0 -216.0
Difference - -10.7% -8.8% -14.7%

Fz (kN) 1331.3 1321.5 1308.0 1291.5
Difference - 0.7% 1.8% 3.1%

Mx (kNm) 612.0 689.9 666.6 704.2
Difference - -11.3% -8.2% -13.1%

My (kNm) 1896.1 1730.9 1732.6 2005.9
Difference - 9.5% 9.4% -5.5%

Mz (rad) - -34.7 -32.0 -31.7

3

Fx (kN) 188.9 221.2 228.5 230.6
Difference - -14.6% -17.3% -18.1%

Fy (kN) 329.3 330.2 332.4 349.8
Difference - -0.3% -0.9% -5.9%

Fz (kN) -972.9 -984.3 -999.9 -1018.0
Difference - -1.2% -2.7% -4.4%

Mx (kNm) -737.9 -760.4 -751.9 -814.3
Difference - -3.0% -1.9% -9.4%

My (kNm) 563.1 667.1 674.3 696.7
Difference - -15.6% -16.5% -19.2%

Mz (rad) - 105.5 108.3 114.4
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Table 4.1: (continued)

Leg D.o.f. Plaxis 10 Steps 5 Steps 2 Steps

4

Fx (kN) 864.9 899.3 884.4 741.2
Difference - -3.8% -2.2% 16.7%

Fy (kN) 27.2 30.9 36.1 39.4
Difference - -12.1% -24.7% -31.0%

Fz (kN) -1328.2 -1319.1 -1306.0 -1290.1
Difference - 0.7% 1.7% 3.0%

Mx (kNm) -298.8 -328.7 -339.8 -355.9
Difference - -9.1% -12.1% -16.1%

My (kNm) 2031.3 2133.4 2042.6 1630.7
Difference - -4.8% -0.6% 24.6%

Mz (rad) - 5.0 9.1 26.2

Table 4.2: Comparison of foundation displacements found in the SACS and Plaxis calculations

Leg D.o.f. Plaxis 10 Steps 5 Steps 2 Steps

1

ux (m) 2.3·10−4 3.9·10−4 4.7·10−4 4.3·10−4

Difference - -39.8% -50.0% -46.0%

uy (m) -1.2·10−4 -1.2·10−4 -1.6·10−4 -1.7·10−4

Difference - -2.1% -26.3% -32.1%

uz (m) 1.4·10−4 2.0·10−4 2.2·10−4 2.0·10−4

Difference - -30.6% -36.8% -32.0%

θx (rad) 1.7·10−5 1.5·10−5 2.1·10−5 2.1·10−5

Difference - 18.5% -17.0% -18.1%

θy (rad) 3.7·10−5 1.5·10−5 6.7·10−5 5.7·10−5

Difference - 157.9% -43.8% -34.2%

θz (rad) 4.7·10−7 9.0·10−7 1.2·10−6 1.3·10−6

Difference - -48.0% -61.0% -64.0%

2

ux (m) 5.5·10−4 6.0·10−4 7.9·10−4 9.6·10−4

Difference - -8.5% -30.4% -42.8%

uy (m) -1.9·10−4 -1.5·10−4 -2.3·10−4 -2.4·10−4

Difference - 22.3% -20.1% -22.4%

uz (m) 2.2·10−4 2.7·10−4 3.8·10−4 2.6·10−4

Difference - -19.8% -44.0% -17.2%

θx (rad) 2.9·10−5 1.7·10−5 2.7·10−5 3.3·10−5

Difference - 66.8% 7.2% -12.0%

θy (rad) 8.7·10−5 9.1·10−5 1.2·10−4 1.3·10−4

Difference - -3.9% -26.4% -33.2%

θz (rad) -1.6·10−7 -9.0·10−7 -6.0·10−7 -8.0·10−7

Difference - -82.0% -73.0% -79.8%
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Table 4.2: (continued)

Leg D.o.f. Plaxis 10 Steps 5 Steps 2 Steps

3

ux (m) 1.7·10−4 2.4·10−4 3.0·10−4 2.7·10−4

Difference - -28.5% -43.4% -37.5%

uy (m) 3.2·10−4 3.0·10−4 3.4·10−4 3.6·10−4

Difference - 5.5% -6.4% -12.2%

uz (m) -2.7·10−4 -3.7·10−4 -3.1·10−4 -3.4·10−4

Difference - -27.4% -13.3% -21.1%

θx (rad) -4.9·10−5 -2.8·10−5 -3.9·10−5 -3.0·10−5

Difference - 79.5% 27.9% 66.7%

θy (rad) 3.2·10−5 3.7·10−5 4.5·10−5 3.8·10−5

Difference - -12.7% -28.1% -15.7%

θz (rad) 7.0·10−7 1.9·10−6 2.2·10−6 2.3·10−6

Difference - -62.9% -68.0% -69.4%

4

ux (m) 1.3·10−3 1.5·10−3 1.7·10−3 2.2·10−3

Difference - -7.6% -21.5% -39.7%

uy (m) 8.4·10−5 3.6·10−5 5.3·10−5 6.2·10−5

Difference - 134.3% 56.6% 34.8%

uz (m) -5.9·10−4 -5.0·10−4 -4.7·10−4 -4.3·10−4

Difference - 16.8% 23.2% 36.0%

θx (rad) -1.5·10−5 -5.1·10−6 -6.4·10−6 -6.6·10−6

Difference - 194.3% 134.5% 127.4%

θy (rad) 2.2·10−4 2.2·10−4 2.6·10−4 3.2·10−4

Difference - 2.4% -14.0% -30.6%

θz (rad) -2.5·10−8 1.0·10−7 3.0·10−7 8.0·10−7

Difference - -75.0% -91.7% -96.9%

There could be various causes for inaccurate results for the displacements found using
the stepwise method. Since the results for 5 and 10 steps used are quite similar it seems
that linearization of the foundation behaviour, if the interval of the linearization is chosen
sufficiently small, is possible with accurate results. In fact, the load-displacement curves
for the non-linear springs in SACS are also used for linear interpolation and still provide
reasonable results. The linearization is therefore not the cause of the inaccuracy.

Another cause could be the different behaviour of the jacket substructure due to the
fact that the deformations of the jacket are not updated. In order to see how much this
affects the results the stepwise method has also been applied for a single caisson. The
soil parameters and caisson dimensions are kept unchanged and the caisson is loaded by a
lateral load of 1000 kN, vertical load of -1000 kN and overturning moment of 3500 kNm.
The resulting displacements are given in Table 4.3 and visualized in Figure 4.2. It can
be seen that for a single pile the stepwise method provides results that match the results
from the FE model in Plaxis very close. For this case the stepwise method also seems to
give more accurate results than the method with non-linear springs (see Table 3.3).
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Table 4.3: Resulting displacements for a single caisson loaded by a Fx of 1000 kN, Fz of -1000
kN and My of 3500 kNm

ux (mm) uz (mm) θy (10−4 rad)

Plaxis (FE) 4.15 0.83 6.55
SACS (5 Steps) 4.11 0.83 6.29
Difference -0.79% -0.66% -3.97%
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Figure 4.2: Resulting displacements for a single caisson loaded by a Fx of 1000 kN, Fz of -1000
kN and My of 3500 kNm

This indicates that the large differences found for the displacements of a multi-footed
foundation are the results of effects of interaction in the full model that are not included
in the model for the stepwise method. Part of this might be the interaction between the
caissons through the soil, however since the difference is significantly larger than for the
models with linear-elastic and non-linear springs this cannot be the sole cause. It seems
that the behaviour of the jacket substructure is also modelled incorrectly due to the fact
that the deformations of the jacket are not included in the model. Whether this is actually
the cause of the large differences in the results has to be confirmed by further calculations.
If this is the case, the incorrect behaviour of the jacket does not result in a significantly
different distribution of the loads. As concluded before the load distribution over the
caissons is less sensitive to the model conditions than the caisson displacements. This is
magnified by the non-linear loosening behaviour of the soil, which makes that a certain
relative difference of the load will lead to a larger relative difference of the displacement.

Influence of the Centre of Rotation

The updated stiffness matrices can also be used to assess to what extent the assumptions
of a fixed depth of the centre of rotation and a load-displacement behaviour that is
independent of loading in other degrees of freedom, that are made in the model with
non-linear springs, are acceptable.

The depth of the centre of rotation will shift when the load level changes, as for instance
Figure 3.5 shows. This depth is encapsulated in the stiffness matrix as the ratio between
the coupling and lateral stiffness, as derived in Appendix A. Thus, assuming that the
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centre of rotation is fixed means fixing the ratio between the coupling and lateral stiffness
terms. The effect of this on the resulting load distribution can be evaluated by modifying
the coupling terms of the stiffness matrices found using 10 load steps, such that the ratio
between coupling and lateral stiffness is the same as for the initial stiffness matrix. This
has been done and the resulting load on leg 4, the most heavily loaded caisson, with and
without fixing the centre of rotation is compared in Figure 4.3.
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Figure 4.3: Load on leg 4 using the stepwise method with and without a fixed centre of rotation

Initially the stiffness matrices do not have to be altered significantly and as a result it can
be seen that the difference between the resulting lateral loads on leg 4 is negligible for
the first 1000 kN that is applied. When the load is increased further the curves start to
deviate. The curve for the varying centre of rotation shows the clear non-linear behaviour
of the load distribution over the caissons with increasing load, whereas the curve for a
fixed centre of rotation is almost linear. The latter result is interesting, since the lateral
stiffness terms do decrease by a factor of 1.4 when the load is increased and the ratio
of the lateral stiffness for the individual caissons increases up to 1.2. Still this seems to
have little effect on the distribution of the load over the caissons; the load distribution
seems to be influenced only by the varying centres of rotation. The centre of rotation
does in fact also influence the stiffness of the caisson, since a deeper centre of rotation
leads to larger displacements of the caisson top plate for the same rotation. The centre of
rotation of the most heavily loaded caisson, connected to leg 4, changes the most during
load application, as Figure 4.4 shows. This means that the lateral stiffness of this caisson
is increased the most by fixing the depth of the centre of rotation, which results in a
smaller redistribution of the load with increasing loads.
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Figure 4.4: Variation of the centres of rotation for the 4 caissons with increasing load

Although it has been shown that the fixation of the centre of the rotation can have a
significant influence on the resulting load distribution, the question is whether this is also
the case for practical applications. For a large range of loads the fixed rotation centre
does not change the resulting load distribution noticeably as Figure 4.3 shows, only for
loads far from the initial conditions the difference increases to 15%. This difference will
be smaller when the fixed centre of rotation is chosen at a location corresponding to the
applied load instead of at the initial unloaded position. In this case the error made by
fixing the centre of rotation can most likely be deemed acceptable, especially since the
fixed centre of rotation leads to larger loads on the most heavily loaded caisson and is
thus conservative.

4.3 Conclusion

The non-linear behaviour of suction caissons can be modelled with linear-elastic stiffness
matrices if the load is applied in several steps and the stiffness matrices are updated after
each step. This method seems however not very efficient since it requires many small but
nevertheless time-consuming FE calculations. For a model of the complete substructure
and foundation the method gives acceptable results for the load distribution over the
caissons, but the resulting displacements of the caissons show poor correspondence with
results from the complete FE model. This is likely the result of not including the jacket
deformations in the model.

For a single pile the displacements show a much better agreement with FE calculations
and actually differ significantly less from the FE calculations than the model with non-
linear springs discussed in the previous chapter. This shows once again that the full three-
dimensional stress state of the soil, that is taken into account for the stepwise method but
not for the non-linear springs, has a major influence on the load-displacement behaviour
of the caisson. It should therefore also be considered when determining the non-linear
springs by determining them for the correct load conditions.



Chapter 5

Conclusion and Recommendations

Three methods to model a suction caisson foundation for a multi-footed offshore structure
in the structural software SACS by means of a multidimensional spring system have been
investigated. The three methods are:

1. The use of linear springs
2. The use of non-linear springs
3. The use of linear springs that are updated in several steps.

The methods have been compared to results from an integrated FE model in Plaxis, both
for the behaviour of a single caisson and for a jacket substructure resting on four suction
caissons. The methods and the obtained results are discussed below.

Linear spring method
Assuming that a suction caisson foundation behaves as a rigid body there are 6 degrees
of freedom, resulting in 5 different spring constants. These constants can be combined
into a 6x6 stiffness matrix. A comparison of three different sets of analytical expressions
for the spring constants with a FEM analysis in Plaxis has shown that although the
expressions are not intentionally developed for suction caissons, they give accurate results
for the range of aspect ratio’s around unity, which is typical for suction caissons. This
is only the case if the soil is linear-elastic and uniform, which characteristic soil profiles
encountered in practice are not. For the FEM analysis it has been assumed that the
caisson and included soil volume act as a rigid body, however in reliality the behaviour
may be different due to a void between the soil and the top plate and/or an opening in
the top plate through which water may dissipate. Another aspect that is not included in
the FEM model is the dynamic behaviour of the caisson. For typical design loads it can
be shown that dynamic effects are negligible however.

When the stiffness terms determined in the FEM analysis are implemented in a model
of multiple foundations the behaviour of an offshore foundation together with the sub-
structure above can be investigated. The behaviour of the suction caisson foundations
is in between a clamped and a pinned foundation, becoming more similar to a clamped
foundation as the soil stiffness increases. A comparison with a FE model of the com-
plete foundation has shown that a model with linear springs provides reliable results for a
linear-elastic soil. The results can be improved when the interaction between the caissons
is included by adding additional springs. The model is consistent over a wide range of soil
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stiffnesses with the shear modulus varying from 5 to 240 MPa. The agreement between
the FE model and the spring model is very good, with an average difference between the
models of 5% for the reaction forces acting on the individual caissons and 5 to 15% for the
caisson displacements. For a linear-elastic soil it can therefore be concluded that suction
caissons can be modelled efficiently and accurately by use of linear springs represented
by stiffness matrices.

Non-linear spring method
For a soil that has a non-linear stiffness the model with linear springs does not provide
accurate results however. A comparison has shown that the model is not able to describe
the changing load distribution due to changing incremental soil stiffnesses, whereas models
that include non-linear springs are. For the considered load case the overturning moment
on the governing caisson reduced by more than 20% due to this effect, so the modelling
of the foundation stiffness has a considerable impact on the structural design.

Two models that make use of non-linear springs with stiffnesses determined in a FE
model have been developed. The difference between the models is that in the first model
the response for each degree of freedom is determined by a separate spring while in the
second model the lateral and rotational springs are combined. Both models assume that
the centre of rotation of the caisson is independent of the applied load and that the
spring stiffnesses are not influenced by loading in other directions. Especially the latter
assumption is incorrect and leads to inaccuracies in the results. The average difference
between the results from the spring and FE models turned out to be larger than for the
linear-elastic soil. For the loads on the caissons the difference varied from on average 30%
for a soil with an E50 of 13 MPa to 5% for an E50 of 624 MPa. The inaccuracy of the
models increases as the soil stiffness decreases since the behaviour of the system becomes
more sensitive to the exact soil stiffness in this case. The displacements showed an average
difference in the order of 20 to 30%. This order of magnitude means the results are still
usable but not very accurate.

The results of the first model showed a better agreement with the FE results than the
second model, especially for the caisson displacements. For the accuracy in the reaction
forces on the caissons, which are generally more important for the design than the dis-
placements, the models perform tantamount to each other. Since the determination of
the spring stiffnesses is less laborious for the second model it can be concluded that both
models have their advantages and neither of the models can be singled out as being clearly
preferable above the other.

Just as for the linear-elastic soil the interaction between the caissons has also been tried
to model in the non-linear models. Unfortunately the characteristics of the coupling
springs could not be determined with the accuracy required for reliable results. The
implementation of the linear coupling springs determined for the linear-elastic model did
not improve the results noticeably as the resulting change in displacements due to the
coupling springs is small compared to the displacements of caissons in the non-linear soil.
Therefore there is no real benefit of including the additional springs. For the non-linear
models the effects of interaction between the caissons can thus not be included.

Stepwise solving method
As an alternative for the models with non-linear springs a model with linear springs
that are updated in steps is also investigated. This model can deal with the changes in
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the centre of rotation and the load-displacement curves that are neglected in the other
models. This model is however not very efficient as it requires many time-consuming FE
calculations. Furthermore the displacements found in the model are inaccurate as the
deformations of the jacket substructure are not updated between the steps. For a single
pile this is not an issue and in this case the model provides results that are in better
agreement with the FE results than the models with non-linear springs. This shows that
the influence on the spring stiffnesses of loading in other directions, that is included in
this model but not in the models with non-linear springs, is significant. Other than that
it can be concluded that this model is not very suited for the use of foundation design.

Conclusions
After comparing the various models it can be concluded that the use of non-linear springs
for the modelling of suction caisson foundations is a promising method that is able to
provide reliable results. Not all effects of realistic soil behaviour are captured in the
springs, which makes the method less accurate for a soil with non-linear behaviour than
for a linear-elastic soil, however in all but a few cases the results are accurate enough to
be used. Only for very loose soils the accuracy of the used springs needs to be improved.
The loss of accuracy is compensated by the possibility to run the models in combination
with many realistic load cases, which makes the method more versatile and efficient than
the use of FEM calculations and thus very suited for design purposes for suction caisson
foundations for multi-footed structures.

5.1 Recommendations for Further Research

In order to improve the accuracy of the non-linear spring method and expand the range
of applications several topics need to be explored in more detail than the scope of this
thesis allowed. Four of the topics for further research, most of which have been mentioned
before, are discussed in more detail in the following paragraphs.

Detailed behaviour of the soil inside the caisson
First of all it has been assumed in this thesis that the suction caisson and the soil that is
included inside the caisson act together in a such a way that they can be considered as a
single rigid body. Some detailed FEM calculations or model tests are needed to determine
for which suction caisson configurations this is actually the case. Configurations that
should be considered are a top plate that lays directly on top of the soil surface, a void
between the top plate and the soil filled with water and a grouted void between the soil
and the top plate. The vertical stiffness of the foundation will mainly be affected by these
variations, but whether the other degrees of freedom are also influenced and to what
extent needs to be clarified by further studies.

Furthermore the effect of an opening in the top plate should also be considered. This
will not only affect the stiffness of the foundation but also the level of drainage that will
occur for a given load. The drainage can have a significant effect on the behaviour of
the foundation under cyclic loading, something that is not included in this study but
needs to be considered for an offshore foundation design. Although it has been shown
that the response of the foundation to ultimate load cases can be considered to be static
the combination of drainage with cyclic loading can still lead to a frequency-dependent
response to loads, which can influence the design. The influence of the drainage can be
investigated using an FEM analysis in the time domain including water flow, but since
this will result in a very complex model scale tests might be more suited for this research.



76 Conclusion and Recommendations

Improvement of the load-displacement curves
Another aspect that needs to be improved is the determination of the non-linear load-
displacement curves for the correct load conditions. This can lead to an improved accuracy
of the model. One approach to do this is to determine the vertical, lateral and rotational
stiffness of the model all from the same calculation by applying the load components for
these degrees of freedom simultaneously. A lateral load applied on the substructure will
lead to a lateral load on the caissons as well as a vertical load to counteract the resulting
moment by a push-pull mechanism. If the ratio between the resulting load components
is assumed to be independent of the magnitude of the applied load the loads could be
applied in this ratio for the determination of the load-displacement curves. This would
result in two different sets of lateral and rotational springs, one for the caissons in uplift
and one for the caissons in compression. In case of a diagonal load direction a third set
without a vertical load component can also be included. The most important issue with
this method is the determination of the correct ratio between the load components. This
can be determined based on an initial calculation with pinned or clamped foundations,
but perhaps some iterations are required for accurate results.

The soil stiffness could be modelled in more detail by defining the displacements in the
load-displacement curves not as a function of a single load component but of all six load
components. This way the influence of the full three-dimensional stress state on the
soil stiffness can be included in the model. In order to get the correct input for this
model many FEM calculations for various load conditions would be required, which is not
efficient. This could be resolved however by defining a few load curves and using interpo-
lation in between or adjusting the curves analytically based on plasticity theory. There
is curently no possibility to implement either of these solutions in SACS so additional
modules would have to be developed or another software package would have to be used.

Pile-pile interaction
The effects of interaction between the caissons through the soil is also a topic that deserves
further research. For the non-linear spring models a method to include the interaction
effects should be pursued, as it could lead to an improvement of the results. The in-
fluence of the interaction can also be studied in more detail for the linear-elastic model
by performing a parameter study for different caisson diameters and foundation layouts.
The soil stiffness should also be varied, as a low soil stiffness will lead to larger relative
displacements between the caissons which might cause stronger interaction effects.

Load history
Finally the load history of the foundation will also have an effect on the foundation
response and should therefore be studied in more detail. The load history will not only
be of importance because of cyclic loading, which has already been mentioned, but also
through residual displacements of the caissons as a result of plastic strains in the soil.
Since the plastic strains can be presumed to be the largest near the most heavily loaded
caissons, this effect might lead to smaller loads on the these caissons and thus reduce
the design loads. On the other hand the residual deformations will also mean that the
response of the caissons will be determined by a stiff reloading behaviour, which might
cancel out the positive effects and even lead to increased fatigue damage for small loads.
The actual behaviour could be studied by determining the response of the system for
various initial displacements of the caisson. The correct stresses in the substructure due
to the residual displacements should also be taken into account in this study.
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Appendix A

Transformation of the Stiffness
Matrix

As described in Section 2.3 the stiffness matrix for a certain location on a rigid body can
be found by applying a load at that point, measuring the displacements of that point and
thus finding the flexibility matrix and consequently the stiffness matrix for that point.
Since for a rigid body the displacements in one point directly give the displacements in
any other point of the rigid body, a stiffness matrix for a given point can also be utilized
to find the stiffness matrix for any other point. This property can be used to transform a
stiffness matrix given at mudline to a stiffness matrix in the centre of rotation, which is
a uncoupled diagonal matrix, or to transform a stiffness matrix given for the foundation
base to one given at mudline, as will be shown later. For both these cases the stiffness
matrices are given for a point at the axis of symmetry, which means that there is only
coupling between a lateral load and overturning moment. This results in a flexibility and
stiffness matrix of the following general form at mudline:

f =



fh 0 0 0 fhr 0
0 fh 0 −fhr 0 0
0 0 fv 0 0 0
0 −fhr 0 fr 0 0
fhr 0 0 0 fr 0
0 0 0 0 0 ft

 , K =



Kh 0 0 0 −Khr 0
0 Kh 0 Khr 0 0
0 0 Kv 0 0 0
0 Khr 0 Kr 0 0
−Khr 0 0 0 Kr 0

0 0 0 0 0 Kt



Transformation from a Coupled to an Uncoupled Stiffness
Matrix

First the transformation from a coupled stiffness matrix given at mudline to an uncoupled
stiffness matrix given at the centre of rotation will be derived.
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80 Transformation of the Stiffness Matrix

Relation between the Lateral and Coupling Stiffness

It can be derived that the ratio between the coupling stiffness Khr and the lateral stiffness
Kh gives the distance from the point for which the stiffness matrix is given to the centre
of rotation. Figure A.1 shows the rotation and translation at mudline as a result of an
overturning moment applied on the caisson. From the geometry it easily follows that for
small rotations φ the displacement at mudline u is related to the rotation by

u = l · φ (A.1)

where l is the distance between the centre of rotation and mudline. The rotation and
translation are related to the applied moment by the flexibility terms fr and fhr respec-
tively:

Figure A.1: Rotation and translation as a
result of an overturning moment

φ = fr ·M (A.2)

u = fhr ·M (A.3)

Combined with Equation A.1 this results in

fhr = l · fr (A.4)

Since the complete 6 dof flexibility matrix is
largely uncoupled, it can be split into several
smaller flexibility matrices, including one for
the translation in x-direction and the rotation
about the y-axis in which the two flexibility
terms fr and fhr are present:

[
ux
φy

]
=

[
fh fhr
fhr fr

]
·
[
Fx
My

]
(A.5)

Inverting this flexibility matrix gives the stiffness matrix for the 2 dof system. Since the
flexibility matrix is a 2x2 matrix the inverse can be determined directly as

K =

[
Kh −Khr

−Khr Kr

]
= f−1 =

1

fhfr − f2hr

[
fr fhr
fhr fh

]
(A.6)

From this it follows that

Khr

Kh
=
fhr
fr

= l (A.7)

Since the lateral stiffness term is independent of the distance to the centre of rotation, as
will be shown later, this means that the coupling stiffness term will be proportional to
the distance to the centre of rotation and hence zero for a stiffness matrix defined at the
centre of rotation, which is thus fully uncoupled.
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Relation between the Lateral Stiffness for the Centre of Rotation and at
Mudline

Figure A.2: Translation at mudline as a
result of a lateral load

Figure A.2 shows the translation u∗ at mud-
line as a result of a lateral load F . This trans-
lation can be split into a translation u and
rotation φ at the centre of rotation:

u∗ = u+ φ · l (A.8)

The load F at mudline is equivalent to an
equal lateral load F and overturning moment
M = F · l acting at the centre of rotation.
Since the stiffness matrix is fully uncoupled
at the centre of rotation these loads can be
related directly to the displacements at the
centre of rotation by means of the lateral and
rotational stiffness:

F = Kh · u (A.9)

M = Kr · φ (A.10)

At mudline the stiffness matrix is coupled and the load F is given by

F = K∗
h · u∗ −K∗

hr · φ (A.11)

Substituting Equation A.8 in Equation A.11 gives

F = K∗
h · u∗ −K∗

hr · φ
= K∗

h · (u+ φ · l)−K∗
hr · φ

= K∗
h · u+ (K∗

h · l −K∗
hr) · φ

(A.12)

When the result from Equation A.7 is substitued it follows that the term in parentheses
on the right hand side of Equation A.12 is equal to zero, so that Equation A.12 can be
reduced to

f = K∗
h · u+(((((((

(K∗
h · l −K∗

hr) · φ = K∗
h · u (A.13)

Comparing Equation A.9 with Equation A.13 shows that K∗
h must be equal to Kh, in

other words the lateral stiffness term at mudline or any other point on the centre line
of the caisson is equal to the lateral stiffness at the centre of rotation. This term does
therefore not have to be altered when the stiffness matrix is moved to a different location.
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Relation between the Rotational Stiffness for the Centre of Rotation and
at Mudline

An overturning moment applied at mudline will result in the same rotation of the caisson
as a moment applied at the centre of rotation. Therefore the rotational flexibilities will
be the same. Starting with the same 2x2 stiffness matrix for a point at mudline as given
in Equation A.6, the rotational flexibility is found to be

f = K−1 =
1

K∗
hK

∗
r −

(
K∗
hr

)2 [K∗
r K∗

hr

K∗
hr K∗

h

]
, fr =

K∗
h

K∗
hK

∗
r −

(
K∗
hr

)2 (A.14)

Since the flexibility matrix for the centre of rotation is uncoupled, the rotational stiffness
can be found by directly inverting the rotational flexibility. This gives

Kr = f−1
r =

K∗
hK

∗
r − (K∗

hr)
2

K∗
h

= K∗
r −K∗

hr

K∗
hr

K∗
h

= K∗
r −K∗

hr · l (A.15)

The rotational stiffness at the centre of rotation is thus found by reducing the rotational
stiffness at mudline by the coupling stiffness at mudline multiplied by the distance between
mudline and centre of rotation. This means that the rotational stiffness term at mudline
will be smaller than it is at mudline for the same resulting stiffness.

Resulting Stiffness Matrix at the Centre of Rotation

Combining all previous results, it follows that a stiffness matrix given at mudline can be
transformed to a stiffness matrix given at the centre of rotation by removing all coupling
terms and deducting the coupling stiffness multiplied by the distance from mudline to the
centre of rotation from the rotational stiffness. The lateral, vertical and torsional stiffness
terms will remain the same.

Transformation from a Coupled to a Different Coupled Stiff-
ness Matrix

The results found in the previous section can also be used to transform a stiffness matrix
defined at the foundation base to one defined at mudline. Given the rotational and
coupling stiffness K∗∗

r and K∗∗
hr and distance to the centre of rotation l∗∗ at the foundation

base and K∗
r , K∗

hr and l∗ at mudline, it follows that the rotational stiffness at the centre
of rotation can be expressed as

Kr = K∗∗
r −K∗∗

hr · l∗∗ = K∗
r −K∗

hr · l∗ (A.16)

In the expressions given by Wolf and Deeks (2004) and Gazetas (1991) the centre of
rotation is assumed to be at 2/3 of the embedment depth, so that l∗∗ = −1/3L, l∗ = 2/3L
and K∗

hr = −2 ·K∗∗
hr . Combining this with Equation A.16 gives the relation between the

rotational stiffness terms. With this the new stiffness matrix can be formulated.

K∗
r = K∗∗

r − 1/3L ·K∗∗
hr − 2/3L · −2 ·K∗∗

hr = K∗∗
r + L ·K∗∗

hr (A.17)



Appendix B

Rotational Stiffness of a Model with
Translational Springs

In this Appendix it will be proven that it is possible to model both the lateral and the
rotational stiffness and rotation points correctly with a combination of two lateral springs,
one applied at mudline and one applied at the point around which the foundation will
rotate when a lateral load is applied at mudline. This point will be located below the
foundation itself. A diagram of the model with the two springs is given in Figure B.1.

K1

K2

l 1

l 2

Centre of 
rotation

Figure B.1: Diagram for a
foundation modelled with
two translational springs

When only a lateral load F1 is applied at mudline the load
will be transfered directly to the upper spring, which will
thus get a deformation

u1 =
F1

K1
(B.1)

Since there will be no load on the lower spring it will not
deform and the foundation will rotate around this point. The
location of this point should thus be chosen such that the
model gives the correct displacements and rotations when a
load is applied at mudline. The translation and rotation at
mudline as a result of a lateral load applied at mudline are
given by

u1 = fh · F1 (B.2)

θ1 = fhr · F1 (B.3)

Dividing the displacement by the rotation gives the distance
to the rotation centre for a lateral load:

l1 + l2 =
fh
fhr

=
Kr

Khr
(B.4)
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84 Rotational Stiffness of a Model with Translational Springs

The latter follows from Equation A.6. The stiffnessK1 relates the displacement at mudline
to a lateral load applied at mudline and is hence the inverse of the lateral flexibility fh.
Similar to Equation A.15 this defines K1 as

K1 = f−1
h =

KhKr −K2
hr

Kr
= Kh −

Khr

l1 + l2
= Kh ·

(
1− l1

l1 + l2

)
= Kh

l2
l1 + l2

(B.5)

When an overturning moment is applied at mudline the foundation should rotate around
the centre of rotation. This means that the displacement u1 should be l1/l2 times as large
as and in the opposite direction of the displacement u2. Equilibrium of forces requires
that for only an overturning moment, the loads on the two springs are equal and opposite
to each other: F1 = −F2. Therefore the stiffness K2 has to be related to K1 as

K2 =
l1
l2
K1 =

l1
l1 + l2

Kh (B.6)

The rotational stiffness for this model can now be found by

Kθθ =
M

θ

=
F1 · (l1 + l2)

u1−u2
l1+l2

=
F1 · (l1 + l2)

2

F1
K1
− F2

K2

=
F1 · (l1 + l2)

2

F1
K1

+ F1
K2

=
K1 ·K2 · (l1 + l2)

2

K1 +K2

=
K1 · l1l2 ·K1 · (l1 + l2)

2

K1 + l1
l2
·K1

= l1 ·K1 · (l1 + l2)

= l1 ·
(
Kh −

Khr

l1 + l2

)
· (l1 + l2)

= l1 · (Kh · (l1 + l2)−Khr)

=
Khr

Kh

(
Kh ·

Kr

Khr
−Khr

)
= Kr −

K2
hr

Kh

= Kr −Khr · l1

(B.7)

This is indeed the rotational stiffness for the centre of rotation, as it is also given in
Equation A.15. The models thus has both the correct lateral and rotational stiffness.



Appendix C

Environmental Load Conditions

100 Year Return Period, Coming from the South-West

Wind

Table C.1: Design wind speed with a 100 year return period, coming from the south-west

1 Hour average wind speed at +10 m MSL

24.4 m/s

Wave

Table C.2: Design wave with a 100 year return period, coming from the south-west

Maximum waveheight Wave period

11.7 m 10.2 s

Current

Table C.3: Design current with a 100 year return period, coming from the south-west

Distance from mudline Current Speed

1 % 0.63 m/s
5 % 0.81 m/s

10 % 0.90 m/s
30 % 1.06 m/s
50 % 1.14 m/s

100 % 1.27 m/s
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86 Environmental Load Conditions

100 Year Return Period, Coming from the West

Wind

Table C.4: Design wind speed with a 100 year return period, coming from the west

1 Hour average wind speed at +10 m MSL

26.1 m/s

Wave

Table C.5: Design wave with a 100 year return period, coming from the west

Maximum waveheight Wave period

11.5 m 10.1 s

Current

Table C.6: Design current with a 100 year return period, coming from the west

Distance from mudline Current Speed

1 % 0.13 m/s
5 % 0.17 m/s

10 % 0.18 m/s
30 % 0.22 m/s
50 % 0.23 m/s

100 % 0.26 m/s



Appendix D

Flexibility Matrix Including Caisson
Interaction


u11−6

u21−6

u31−6

u41−6

 =


f11 f12 f13 f14
f21 f22 f23 f24
f31 f32 f33 f34
f41 f42 f43 f44

 ·

F 1
1−6

F 2
1−6

F 3
1−6

F 4
1−6



Figure D.1: Numbering of the Caissons for the Flexibility Matrix
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88 Flexibility Matrix Including Caisson Interaction

Table D.1: The Flexibility Matrix found in Plaxis
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Appendix E

Results of the Sensitivity Study for
the Non-Linear Models

Model 1

Table E.1: Comparison of foundation loads for a shear modulus of 5 MPa

Leg Results Fx (kN) Fy Fz Mx (kNm) My Mz

Plaxis 394.3 -237.3 1204.8 142.6 671.7 -

1 SACS 341.5 -201.6 1185.7 50.3 531.7 176.9

Difference -13.4% -15.0% -1.6% -64.7% -20.9% -

Plaxis 685.9 -197.5 1256.6 94.9 809.7 -

2 SACS 604.4 -206.6 1276.0 126.9 592.8 191.2

Difference -11.9% 4.6% 1.5% 33.7% -26.8% -

Plaxis 255.6 263.8 -1221.2 145.3 324.4 -

3 SACS 319.6 246.7 -1190.8 70.5 538.5 248.9

Difference 25.0% -6.5% -2.5% -51.5% 66.0% -

Plaxis 664.2 171.1 -1240.3 -2.4 52.0 -

4 SACS 734.5 161.5 -1270.9 -129.0 190.3 246.4

Difference 10.6% -5.6% 2.5% 5181.4% 265.8% -

Table E.2: Comparison of foundation displacements for a shear modulus of 5 MPa

Leg Results ux (m) uy (m) uz (m) θx (rad) θy (rad) θz (rad)

Plaxis 4.4·10−3 -2.7·10−3 3.3·10−3 3.5·10−4 6.9·10−4 1.5·10−5

1 SACS 6.1·10−3 -2.8·10−3 5.0·10−3 4.0·10−4 9.5·10−4 8.5·10−5

Difference 37.9% 6.2% 53.7% 14.3% 37.7% 481.4%
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90 Results of the Sensitivity Study for the Non-Linear Models

Table E.2: (continued)

Leg Results ux (m) uy (m) uz (m) θx (rad) θy (rad) θz (rad)

Plaxis 1.0·10−2 -2.9·10−3 3.6·10−3 4.1·10−4 1.5·10−3 -3.6·10−6

2 SACS 1.1·10−2 -3.1·10−3 5.4·10−3 4.4·10−4 1.8·10−3 9.2·10−5

Difference 10.6% 4.1% 49.7% 7.4% 21.5% -2643.1%

Plaxis 4.1·10−3 3.9·10−3 -6.3·10−3 -4.9·10−4 6.9·10−4 1.8·10−5

3 SACS 5.7·10−3 3.2·10−3 -8.6·10−3 -4.4·10−4 8.9·10−4 1.2·10−4

Difference 40.7% -16.3% 36.4% -10.3% 28.4% 576.1%

Plaxis 1.2·10−2 3.0·10−3 -7.7·10−3 -4.1·10−4 1.7·10−3 3.4·10−6

4 SACS 1.3·10−2 2.4·10−3 -9.5·10−3 -3.6·10−4 1.9·10−3 1.2·10−4

Difference 12.6% -18.4% 22.7% -14.1% 12.8% 3321.6%

Table E.3: Comparison of foundation loads for a shear modulus of 20 MPa

Leg Results Fx (kN) Fy Fz Mx (kNm) My Mz

Plaxis 379.2 -217.0 1078.3 482.9 893.0 -

1 SACS 346.3 -192.3 1085.7 395.8 788.7 103.4

Difference -8.7% -11.4% -64.7% -18.0% -11.7% -

Plaxis 646.8 -192.4 1268.2 481.1 1698.5 -

2 SACS 583.3 -211.0 1272.0 526.5 1433.4 49.0

Difference -9.8% 9.6% 33.7% 9.4% -15.6% -

Plaxis 246.1 303.8 -1083.8 -486.2 608.6 -

3 SACS 290.8 277.3 -1089.5 -412.1 733.7 166.9

Difference 18.2% -8.7% -51.5% -15.2% 20.6% -

Plaxis 728.0 105.6 -1262.8 -350.8 1260.2 -

4 SACS 779.7 125.9 -1268.2 -421.3 1252.0 96.0

Difference 7.1% 19.2% 5181.4% 20.1% -0.7% -

Table E.4: Comparison of foundation displacements for a shear modulus of 20 MPa

Leg Results ux (m) uy (m) uz (m) θx (rad) θy (rad) θz (rad)

Plaxis 1.1·10−3 -7.2·10−4 7.5·10−4 1.0·10−4 1.8·10−4 3.4·10−6

1 SACS 1.7·10−3 -8.5·10−4 1.1·10−3 1.3·10−4 2.8·10−4 1.2·10−5

Difference 50.4% 18.3% 53.2% 30.2% 56.1% 267.2%

Plaxis 2.9·10−3 -8.9·10−4 9.8·10−4 1.4·10−4 4.3·10−4 -1.3·10−6

2 SACS 3.5·10−3 -9.8·10−4 1.4·10−3 1.5·10−4 5.9·10−4 5.9·10−6

Difference 20.5% 10.7% 38.4% 13.4% 35.5% -548.9%
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Table E.4: (continued)

Leg Results ux (m) uy (m) uz (m) θx (rad) θy (rad) θz (rad)

Plaxis 9.4·10−4 1.2·10−3 -1.1·10−3 -1.7·10−4 1.6·10−4 4.7·10−6

3 SACS 1.4·10−3 1.2·10−3 -1.9·10−3 -1.8·10−4 2.3·10−4 2.0·10−5

Difference 53.2% -0.7% 73.5% 6.4% 46.6% 321.4%

Plaxis 4.0·10−3 7.0·10−4 -1.8·10−3 -1.0·10−4 6.2·10−4 2.3·10−7

4 SACS 4.7·10−3 6.3·10−4 -2.4·10−3 -1.0·10−4 7.7·10−4 1.2·10−5

Difference 18.2% -10.0% 31.7% 0.8% 23.9% 4917.2%

Table E.5: Comparison of foundation loads for a shear modulus of 240 MPa

Leg Results Fx (kN) Fy Fz Mx (kNm) My Mz

Plaxis 367.5 -149.8 925.7 451.2 962.6 -

1 SACS 368.6 -144.9 946.8 433.0 961.0 54.0

Difference 0.3% -3.2% 2.3% -4.0% -0.2% -

Plaxis 454.1 -178.8 1367.8 619.1 1702.8 -

2 SACS 426.5 -192.5 1350.0 661.9 1573.0 -42.2

Difference -6.1% 7.6% -1.3% 6.9% -7.6% -

Plaxis 179.2 341.0 -927.6 -806.8 548.7 -

3 SACS 190.6 349.8 -949.4 -808.8 599.6 93.3

Difference 6.4% 2.6% 2.4% 0.3% 9.3% -

Plaxis 999.3 -12.4 -1365.8 -217.7 2448.5 -

4 SACS 1014.3 -12.4 -1347.4 -224.4 2452.9 -11.8

Difference 1.5% 0.4% -1.4% 3.1% 0.2% -

Table E.6: Comparison of foundation displacements for a shear modulus of 240 MPa

Leg Results ux (m) uy (m) uz (m) θx (rad) θy (rad) θz (rad)

Plaxis 1.2·10−4 -5.5·10−5 7.3·10−5 8.3·10−6 1.9·10−5 2.4·10−7

1 SACS 1.6·10−4 -5.9·10−5 8.5·10−5 9.4·10−6 2.7·10−5 5.0·10−7

Difference 38.1% 6.9% 16.3% 13.0% 43.4% 104.8%

Plaxis 2.1·10−4 -8.1·10−5 1.2·10−4 1.3·10−5 3.4·10−5 -1.1·10−7

2 SACS 2.3·10−4 -8.3·10−5 1.2·10−4 1.4·10−5 3.9·10−5 -4.0·10−7

Difference 10.4% 2.3% 2.3% 0.8% 15.5% 257.8%

Plaxis 6.9·10−5 1.4·10−4 -1.0·10−4 9.2·10−8 -3.1·10−6 -1.9·10−5

3 SACS 8.0·10−5 1.5·10−4 -1.3·10−4 -2.4·10−5 1.3·10−5 9.0·10−7

Difference 14.9% 6.6% 30.9% -25939.9% -510.9% -104.6%
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Table E.6: (continued)

Leg Results ux (m) uy (m) uz (m) θx (rad) θy (rad) θz (rad)

Plaxis 7.2·10−4 1.2·10−5 -2.7·10−4 -6.4·10−7 1.2·10−4 -1.5·10−7

4 SACS 8.4·10−4 5.2·10−6 -2.2·10−4 -1.3·10−6 1.5·10−4 -1.0·10−7

Difference 16.2% -56.0% -17.9% 103.1% 25.6% -32.4%

Model 2

Table E.7: Comparison of foundation loads for a shear modulus of 5 MPa

Leg Results Fx (kN) Fy Fz Mx (kNm) My Mz

Plaxis 394.3 -237.3 1204.8 142.6 671.7 -

1 SACS 350.8 -211.1 1209.0 49.7 481.7 196.4

Difference -11.0% -11.0% 0.3% -65.2% -28.3% -

Plaxis 685.9 -197.5 1256.6 94.9 809.7 -

2 SACS 604.9 -215.4 1274.6 118.2 420.4 225.5

Difference -11.8% 9.1% 1.4% 24.6% -48.1% -

Plaxis 255.6 263.8 -1221.2 145.3 324.4 -

3 SACS 332.3 253.0 -1213.6 68.1 483.1 262.4

Difference 30.0% -4.1% -0.6% -53.2% 48.9% -

Plaxis 664.2 171.1 -1240.3 -2.4 52.0 -

4 SACS 712.1 173.5 -1270.1 -129.0 -28.8 273.4

Difference 7.2% 1.4% 2.4% 5180.2% -155.3% -

Table E.8: Comparison of foundation displacements for a shear modulus of 5 MPa

Leg Results ux (m) uy (m) uz (m) θx (rad) θy (rad) θz (rad)

Plaxis 4.4·10−3 -2.7·10−3 3.3·10−3 3.5·10−4 6.9·10−4 1.5·10−5

1 SACS 6.7·10−3 -3.1·10−3 5.1·10−3 4.3·10−4 1.0·10−3 9.4·10−5

Difference 52.0% 14.6% 56.9% 22.1% 49.4% 545.2%

Plaxis 1.0·10−2 -2.9·10−3 3.6·10−3 4.1·10−4 1.5·10−3 -3.6·10−6

2 SACS 1.3·10−2 -3.3·10−3 5.4·10−3 4.8·10−4 1.9·10−3 1.1·10−4

Difference 29.4% 12.1% 49.6% 15.6% 30.4% -3101.7%

Plaxis 4.1·10−3 3.9·10−3 -6.3·10−3 -4.9·10−4 6.9·10−4 1.8·10−5

3 SACS 6.3·10−3 3.5·10−3 -8.9·10−3 -4.7·10−4 9.7·10−4 1.3·10−4

Difference 55.1% -9.2% 40.3% -5.9% 40.1% 613.6%
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Table E.8: (continued)

Leg Results ux (m) uy (m) uz (m) θx (rad) θy (rad) θz (rad)

Plaxis 1.2·10−2 3.0·10−3 -7.7·10−3 -4.1·10−4 1.7·10−3 3.4·10−6

4 SACS 1.5·10−2 2.6·10−3 -9.5·10−3 -3.9·10−4 2.0·10−3 1.3·10−4

Difference 30.3% -11.6% 22.6% -6.0% 19.4% 3698.9%

Table E.9: Comparison of foundation loads for a shear modulus of 20 MPa

Leg Results Fx (kN) Fy Fz Mx (kNm) My Mz

Plaxis 379.2 -217.0 1078.3 482.9 893.0 -

1 SACS 353.7 -201.8 1110.9 402.3 781.4 116.6

Difference -6.7% -7.0% -65.2% -16.7% -12.5% -

Plaxis 646.8 -192.4 1268.2 481.1 1698.5 -

2 SACS 591.3 -220.4 1259.1 527.8 1334.6 72.5

Difference -8.6% 14.5% 24.6% 9.7% -21.4% -

Plaxis 246.1 303.8 -1083.8 -486.2 608.6 -

3 SACS 304.6 281.8 -1114.5 -405.7 734.8 177.7

Difference 23.8% -7.2% -53.2% -16.6% 20.7% -

Plaxis 728.0 105.6 -1262.8 -350.8 1260.2 -

4 SACS 750.4 140.4 -1255.5 -441.0 1079.5 114.1

Difference 3.1% 32.9% 5180.2% 25.7% -14.3% -

Table E.10: Comparison of foundation displacements for a shear modulus of 20 MPa

Leg Results ux (m) uy (m) uz (m) θx (rad) θy (rad) θz (rad)

Plaxis 1.1·10−3 -7.2·10−4 7.5·10−4 1.0·10−4 1.8·10−4 3.4·10−6

1 SACS 1.9·10−3 -9.3·10−4 1.2·10−3 1.5·10−4 3.1·10−4 1.4·10−5

Difference 68.5% 30.1% 57.1% 49.0% 74.0% 314.5%

Plaxis 2.9·10−3 -8.9·10−4 9.8·10−4 1.4·10−4 4.3·10−4 -1.3·10−6

2 SACS 4.4·10−3 -1.1·10−3 1.3·10−3 1.8·10−4 6.7·10−4 8.7·10−6

Difference 50.3% 22.0% 36.9% 30.0% 55.2% -762.0%

Plaxis 9.4·10−4 1.2·10−3 -1.1·10−3 -1.7·10−4 1.6·10−4 4.7·10−6

3 SACS 1.6·10−3 1.3·10−3 -2.0·10−3 -2.0·10−4 2.6·10−4 2.1·10−5

Difference 71.9% 8.6% 79.8% 17.5% 66.5% 348.8%

Plaxis 4.0·10−3 7.0·10−4 -1.8·10−3 -1.0·10−4 6.2·10−4 2.3·10−7

4 SACS 5.7·10−3 6.9·10−4 -2.3·10−3 -1.2·10−4 8.4·10−4 1.4·10−5

Difference 42.7% -0.8% 29.9% 19.0% 35.2% 5877.0%
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Table E.11: Comparison of foundation loads for a shear modulus of 240 MPa

Leg Results Fx (kN) Fy Fz Mx (kNm) My Mz

Plaxis 367.5 -149.8 925.7 451.2 962.6 -

1 SACS 369.3 -147.6 953.9 439.8 962.5 55.4

Difference 0.5% -1.5% 3.1% -2.5% 0.0% -

Plaxis 454.1 -178.8 1367.8 619.1 1702.8 -

2 SACS 451.4 -195.3 1343.1 667.7 1623.0 -41.5

Difference -0.6% 9.2% -1.8% 7.9% -4.7% -

Plaxis 179.2 341.0 -927.6 -806.8 548.7 -

3 SACS 195.5 350.2 -956.6 -808.2 610.8 95.4

Difference 9.1% 2.7% 3.1% 0.2% 11.3% -

Plaxis 999.3 -12.4 -1365.8 -217.7 2448.5 -

4 SACS 983.9 -7.4 -1340.4 -236.8 2385.1 -9.4

Difference -1.5% -40.2% -1.9% 8.8% -2.6% -

Table E.12: Comparison of foundation displacements for a shear modulus of 240 MPa

Leg Results ux (m) uy (m) uz (m) θx (rad) θy (rad) θz (rad)

Plaxis 1.2·10−4 -5.5·10−5 7.3·10−5 8.3·10−6 1.9·10−5 2.4·10−7

1 SACS 1.8·10−4 -6.0·10−5 8.6·10−5 1.0·10−5 2.9·10−5 6.0·10−7

Difference 51.3% 9.7% 18.2% 23.9% 55.1% 145.7%

Plaxis 2.1·10−4 -8.1·10−5 1.2·10−4 1.3·10−5 3.4·10−5 -1.1·10−7

2 SACS 2.9·10−4 -8.8·10−5 1.2·10−4 1.5·10−5 4.7·10−5 -4.0·10−7

Difference 37.3% 8.5% 2.5% 12.8% 37.7% 257.8%

Plaxis 6.9·10−5 1.4·10−4 -1.0·10−4 9.2·10−8 -3.1·10−6 -1.9·10−5

3 SACS 8.6·10−5 1.6·10−4 -1.3·10−4 -2.6·10−5 1.5·10−5 1.0·10−6

Difference 23.3% 16.9% 32.5% -28229.5% -565.4% -105.1%

Plaxis 7.2·10−4 1.2·10−5 -2.7·10−4 -6.4·10−7 1.2·10−4 -1.5·10−7

4 SACS 1.0·10−3 7.2·10−6 -2.2·10−4 -2.1·10−6 1.5·10−4 -1.0·10−7

Difference 38.8% -38.8% -18.1% 228.1% 26.8% -32.4%



Appendix F

MatLab and SACS code

F.1 Matlab code

codewriter.m

1 clear a l l
2 close a l l
3 clc
4

5 %% Input
6 % Densi ty
7 gamma = 0 ; % kN/mˆ3
8 % Youngs Modulus
9 E = 210*10ˆ6; % kN/mˆ2

10 % Poison ’ s r a t i o
11 nu = 0 . 3 ;
12 % Output f i l e name
13 outputname = ’ plaxiscodewodeadweight . txt ’ ;
14 %% Read data
15 % read j o i n t s
16 f i d = fopen ( ’ j o i n t s . txt ’ ) ;
17 j o i n t s c o o r = fscanf ( f i d , ’%*s %*s %f %f %f ’ , [ 3 , i n f ] ) ;
18 fc lose ( f i d ) ;
19

20 j o i n t s c o o r = j o i n t s c o o r ’ ;
21

22 f i d = fopen ( ’ j o i n t s . txt ’ ) ;
23 i = 1 ;
24 while 1
25 t l i n e = fget l ( f i d ) ;
26 i f ˜ i s c h a r ( t l i n e ) , break , end %w h i l e loop ends when f g e t l re turn

−1 ( which i s not a c h a r a c t e r ) a f t e r l a s t l i n e
27 cleanup = sscanf ( t l i n e , ’%*6c %4c %*22c ’ ) ; % removes a l l t e x t but

j o i n t name

95
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28 cleanup ( cleanup == ’− ’ ) = [ ] ; % removes minus s i g n s
29 cleanup = sscanf ( cleanup , ’%s ’ ) ; % removes space c h a r a c t e r s
30 jo intsname { i , 1} = cleanup ;
31 i = i + 1 ;
32 end
33

34 fc lose ( f i d ) ;
35

36 % read members
37 f i d = fopen ( ’ members . txt ’ ) ;
38 i = 1 ;
39 while 1
40 t l i n e = fget l ( f i d ) ;
41 i f ˜ i s c h a r ( t l i n e ) , break , end
42 cleanup = sscanf ( t l i n e , ’%*7c %12c ’ ) ; % removes f i r s t chars
43 j o i n t 1 = sscanf ( cleanup , ’%4c %*8c ’ ) ; % f i r s t j o i n t name
44 j o i n t 1 = sscanf ( j o in t1 , ’%s ’ ) ; % removes space c h a r a c t e r s
45 j o i n t 2 = sscanf ( cleanup , ’%*4c %4c %*4c ’ ) ; % second j o i n t name
46 j o i n t 2 = sscanf ( j o in t2 , ’%s ’ ) ; % removes space c h a r a c t e r s
47 groupname = sscanf ( cleanup , ’%*9c %3c ’ ) ; % group name
48

49 members{ i , 1} = j o i n t 1 ;
50 members{ i , 2} = j o i n t 2 ;
51 members{ i , 3} = groupname ;
52 i = i + 1 ;
53 end
54 fc lose ( f i d ) ;
55

56 % read groups
57 f i d = fopen ( ’ groups . txt ’ ) ;
58 i = 1 ;
59 while 1
60 t l i n e = fget l ( f i d ) ;
61 i f ˜ i s c h a r ( t l i n e ) , break , end
62 cleanup = sscanf ( t l i n e , ’%*5c %11c %*64c ’ ) ; % removes f i r s t chars
63 groupname = sscanf ( cleanup , ’%3c %*8c ’ ) ; % group name
64 sect ionname = sscanf ( cleanup , ’%*4c %7c ’ ) ; % s e c t i o n name
65

66

67 groups { i , 1} = groupname ;
68 groups { i , 2} = sectionname ;
69 i = i + 1 ;
70 end
71 fc lose ( f i d ) ;
72

73

74 % read s e c t i o n s
75 f i d = fopen ( ’ s e c t i o n s . txt ’ ) ;
76 i = 1 ;
77 while 1
78 t l i n e = fget l ( f i d ) ;
79 i f ˜ i s c h a r ( t l i n e ) , break , end
80 cleanup = sscanf ( t l i n e , ’%*5c %55c ’ ) ; % removes f i r s t chars
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81 sect ionname = sscanf ( cleanup , ’%7c %*48c ’ ) ; % s e c t i o n name
82 diameter = sscanf ( cleanup , ’%*44c %6c %*5c ’ ) ; % diameter (cm)
83 diameter = sscanf ( diameter , ’%f ’ ) ;
84 t h i c k n e s s = sscanf ( cleanup , ’%*50c %f ’ ) ; % w a l l t h i c k n e s s (cm)
85

86

87 s e c t i o n s { i , 1} = sectionname ;
88 s e c t i o n s { i , 2} = diameter ;
89 s e c t i o n s { i , 3} = t h i c k n e s s ;
90 i = i + 1 ;
91 end
92 fc lose ( f i d ) ;
93

94 %% Datamining
95 membercoor = zeros ( s ize ( members , 1 ) , 6 ) ; % j o i n t c o o r d i n a t e s f o r a l l

members
96 for i = 1 : s ize ( membercoor , 1 )
97 comp1 = strcmpi ( members{ i , 1} , jo intsname ) ; % l o o k s f o r match in

name o f j o i n t 1
98 [ ˜ , l o c1 ] = max( comp1) ; % determines l o c a t i o n o f

match
99 membercoor ( i , 1 : 3 ) = j o i n t s c o o r ( loc1 , : ) ; % w r i t e s j o i n t

c o o r d i n a t e s to matrix
100

101 comp2 = strcmpi ( members{ i , 2} , jo intsname ) ;
102 [ ˜ , l o c2 ] = max( comp2) ;
103 membercoor ( i , 4 : 6 ) = j o i n t s c o o r ( loc2 , : ) ;
104 end
105

106 membercrosssect ion = zeros ( s ize ( members , 1 ) , 2 ) ; % diameter and w a l l
t h i c k n e s s f o r a l l members

107 for i = 1 : s ize ( membercoor , 1 )
108 comp1 = strcmpi ( members{ i , 3} , groups ( : , 1 ) ) ; % l o o k s f o r match in

name o f group
109 [ ˜ , l o c1 ] = max( comp1) ; % determines l o c a t i o n o f

match
110

111 comp2 = strcmpi ( groups{ loc1 , 2} , s e c t i o n s ( : , 1 ) ) ; % l o o k s f o r match
in name o f s e c t i o n

112 [ ˜ , l o c2 ] = max( comp2) ;
113 membercrosssect ion ( i , 1 ) = s e c t i o n s { loc2 , 2 } ; % w r i t e s diameter
114 membercrosssect ion ( i , 2 ) = s e c t i o n s { loc2 , 3 } ; % w r i t e s w a l l

t h i c k n e s s
115 end
116

117 memberprops = zeros ( s ize ( membercrosssect ion , 1 ) , 4 ) ;
118 memberprops ( : , 1 ) = 1 : s ize ( membercrosssect ion , 1 ) ;
119 innerd iameter = membercrosssect ion ( : , 1 )−2*membercrosssect ion ( : , 2 ) ;
120 memberprops ( : , 2 ) = pi /4* ( ( membercrosssect ion ( : , 1 ) ) .ˆ2−( innerd iameter )

. ˆ 2 ) *10ˆ−4; %area
121 memberprops ( : , 3 ) = pi /4*0 .5ˆ4* ( ( membercrosssect ion ( : , 1 ) ) .ˆ4−(

innerd iameter ) . ˆ 4 ) *10ˆ−8; %area moment o f i n e r t i a 1
122 memberprops ( : , 4 ) = memberprops ( : , 3 ) ;
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123

124 %% Print P l a x i s input code
125 f i d = fopen ( outputname , ’w ’ ) ;
126 fpr intf ( f i d , ’ beam (% f %f %f ) (% f %f %f ) \n ’ , membercoor ’ ) ; %w r i t e s code

f o r c r e a t i n g beams
127 fpr intf ( f i d , ’ \n ’ ) ; % whi te l i n e
128 mater ia lp rops = sprintf ( ’ ”w” %5.3 f ”E” %10.1 f ’ , [gamma E] ) ;
129 mater ia lprops2 = sprintf ( ’ ”nu” %3.2 f ’ , nu ) ;
130 fpr intf ( f i d , [ ’ beammat ”Comments” ”” ”MaterialName” ” BeamCrosssection%

i ” ” Colour ” 16721123 ”MaterialNumber” 0 ”LoadCaseRef0” ”” ”
LoadCaseRef1” ”” ”LoadCaseRef2” ”” ”LoadCaseRef3” ”” ”LoadCaseRef4”

”” ”LoadCaseRef5” ”” ”LoadCaseRef6” ”” ”LoadCaseRef7” ”” ”
LoadCaseRef8” ”” ”LoadCaseRef9” ”” ” I s L i ne a r ” True ”NormalX” 0 ”
NormalY” 1 ”NormalZ” 0 ”XYListNEpsilon” ”[−0.01 , 0 , 0 , 0 , 0 . 01 , 0 ] ”

”XYListMYYKappa” ”[−0.01 , 0 , 0 , 0 , 0 . 01 , 0 ] ” ”XYListMZZKappa”
”[−0.01 , 0 , 0 , 0 , 0 . 01 , 0 ] ” ”A” %f ’ , mater ia lprops , ’ ” Iyy ” %f ” I z z ”
%f ” Iyz ” 0 ’ , mater ia lprops2 , ’ ” RayleighAlpha ” 0 ” RayleighBeta ” 0\n
’ ] , memberprops ’ ) ; %w r i t e s code f o r beam c r o s s s e c t i o n s

131 fpr intf ( f i d , ’ \n ’ ) ; % whi te l i n e
132 fpr intf ( f i d , ’ s e t Beam %i . Mater ia l BeamCrosssection%i \n ’ , [ memberprops

( : , 1 ) memberprops ( : , 1 ) ] ’ ) ; % code f o r a s s i g n i n g m a t e r i a l s to beams
133 fc lose ( f i d ) ;

processing.m

1 clear a l l
2 close a l l
3 clc
4

5 %% input
6 % b uck e t dimensions
7 D = 7 ;
8

9 % l o a d s
10 Fh = 200 ;
11 Fv = 200 ;
12 M = 700 ;
13 T = 350 ;
14

15 % Load−d i sp lacement data
16 data = x l s r e a d ( ’Step9ML . x l sx ’ ) ; % u−F: ux W−E, uy W−E, uz W−E, uy N−S ,

uz N−S
17

18 %% p r o c e s s i n g
19 lddata = c e l l ( 28 , 1 ) ; % c e l l array c o n t a i n i n g the l−d data f o r each

load phase
20 % 4 l e g s : Fx , Fy , Fz ( u p l i f t f o r A1 and A2, comp f o r B1 and B2) , Mx,

My, T
21

22 s p l i t s = ones ( s ize ( lddata ) ) ;
23 i = 2 ;
24

25 % determine where load phases are l o c a t e d
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26 for j = 2 : s ize ( data , 1 )−1
27 i f data ( j , 2 ) == 1 && data ( j +1 ,2) ˜= 1
28 s p l i t s ( i ) = j ; % s t o r e row at which new load phase s t a r t s
29 i = i +1;
30

31 data ( j , 2 ) = 0 ; % s e t m stage to 0 at s t a r t o f new load
phase

32 data ( j , 4 ) = 0 ; % t h i s i s a l r e a d y c o r r e c t f o r f i r s t load
phase

33 data ( j , 6 ) = 0 ;
34 data ( j , 8 ) = 0 ;
35 data ( j , 1 0 ) = 0 ;
36 data ( j , 1 2 ) = 0 ;
37 data ( j , 1 4 ) = 0 ;
38 data ( j , 1 6 ) = 0 ;
39 data ( j , 1 8 ) = 0 ;
40 data ( j , 2 0 ) = 0 ;
41 end
42 end
43

44 % s t o r e each load phase in d i f f e r e n t c e l l
45 for i = 1 : s ize ( lddata , 1 )
46 i f i ˜= s ize ( lddata , 1 )
47 lddata { i } = data ( s p l i t s ( i ) : s p l i t s ( i +1)−1 ,:) ;
48 else
49 lddata { i } = data ( s p l i t s ( i ) : end , : ) ;
50 end
51 end
52

53 f v a l s = zeros (10 ,4 ) ; % f x ; f r x ; f y ; f r y ; f z ; f y r ; f r r x ; f x r ; f r r y ; f t ;
54 Rsq = zeros ( s ize ( f v a l s ) ) ; % R squared v a l u e s
55

56 % determine compliance matrix terms
57 for i = 1 : s ize ( lddata , 1 )
58 j = f ix ( ( i −1)/7) +1; % l e g number ( c o l s in f v a l s )
59 k = rem( i −1 ,7) ; % load phase
60

61 i f k == 1
62 ux = 0 . 5* ( lddata { i } ( : , 1 )+lddata { i } ( : , 3 ) ) ;
63 thy = ( lddata { i } ( : , 9 )−lddata { i } ( : , 1 1 ) ) /D;
64 F = lddata { i } ( : , 2 ) *Fh ;
65

66 f v a l s (1 , j ) = sum( ux ) /sum(F) ; % g i v e s a curve f i t through o r i g i n
67 f v a l s (2 , j ) = sum( thy ) /sum(F) ;
68

69 s1ux = sum( ( ux − F* f v a l s (1 , j ) ) . ˆ 2 ) ;
70 s2ux = sum( ( ux − mean( ux ) ) . ˆ 2 ) ;
71 Rsq (1 , j ) = 1 − s1ux/s2ux ;
72

73 s1th = sum( ( thy − F* f v a l s (2 , j ) ) . ˆ 2 ) ;
74 s2th = sum( ( thy − mean( thy ) ) . ˆ 2 ) ;
75 Rsq (2 , j ) = 1 − s1th / s2th ;
76
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77 % i f Rsq s m a l l e r than 0.95 c r e a t e p l o t wi th p o s i t i o n in Rsq in
78 % t i t l e
79

80 i f Rsq (1 , j ) < 0 .95
81 f igure
82 plot (ux , F , ux , ux/ f v a l s (1 , j ) )
83 t i t l e ( sprintf ( ’ row 1 , c o l %i ’ , j ) )
84 end
85

86 i f Rsq (2 , j ) < 0 .95
87 f igure
88 plot ( thy , F , thy , thy/ f v a l s (2 , j ) )
89 t i t l e ( sprintf ( ’ row 2 , c o l %i ’ , j ) )
90 end
91

92 e l s e i f k == 2
93 uy = abs ( 0 . 5* ( lddata { i } ( : , 1 3 )+lddata { i } ( : , 1 5 ) ) ) ;
94 thx = abs ( ( lddata { i } ( : , 1 7 )−lddata { i } ( : , 1 9 ) ) /D) ;
95 F = lddata { i } ( : , 2 ) *Fh ;
96

97 f v a l s (3 , j ) = sum( uy ) /sum(F) ;
98 f v a l s (4 , j ) = sum( thx ) /sum(F) ;
99

100 s1uy = sum( ( uy − F* f v a l s (3 , j ) ) . ˆ 2 ) ;
101 s2uy = sum( ( uy − mean( uy ) ) . ˆ 2 ) ;
102 Rsq (3 , j ) = 1 − s1uy/s2uy ;
103

104 s1th = sum( ( thx − F* f v a l s (4 , j ) ) . ˆ 2 ) ;
105 s2th = sum( ( thx − mean( thx ) ) . ˆ 2 ) ;
106 Rsq (4 , j ) = 1 − s1th / s2th ;
107

108 % i f Rsq s m a l l e r than 0.95 c r e a t e p l o t wi th p o s i t i o n in Rsq in
109 % t i t l e
110

111 i f Rsq (3 , j ) < 0 .95
112 f igure
113 plot (uy , F , uy , uy/ f v a l s (3 , j ) )
114 t i t l e ( sprintf ( ’ row 3 , c o l %i ’ , j ) )
115 end
116

117 i f Rsq (4 , j ) < 0 .95
118 f igure
119 plot ( thx , F , thx , thx/ f v a l s (4 , j ) )
120 t i t l e ( sprintf ( ’ row 4 , c o l %i ’ , j ) )
121 end
122

123 e l s e i f k == 3
124 uz = abs ( 0 . 5* ( lddata { i } ( : , 9 )+lddata { i } ( : , 1 1 ) ) ) ;
125 F = lddata { i } ( : , 2 ) *Fv ;
126

127 f v a l s (5 , j ) = sum( uz ) /sum(F) ;
128

129 s1uz = sum( ( uz − F* f v a l s (5 , j ) ) . ˆ 2 ) ;
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130 s2uz = sum( ( uz − mean( uz ) ) . ˆ 2 ) ;
131 Rsq (5 , j ) = 1 − s1uz / s2uz ;
132

133 i f Rsq (5 , j ) < 0 .95
134 f igure
135 plot ( uz , F , uz , uz/ f v a l s (5 , j ) )
136 t i t l e ( sprintf ( ’ row 5 , c o l %i ’ , j ) )
137 end
138

139 e l s e i f k == 4
140 uy = abs ( 0 . 5* ( lddata { i } ( : , 1 3 )+lddata { i } ( : , 1 5 ) ) ) ;
141 thx = abs ( ( lddata { i } ( : , 1 7 )−lddata { i } ( : , 1 9 ) ) /D) ;
142 F = lddata { i } ( : , 2 ) *M;
143

144 f v a l s (6 , j ) = sum( uy ) /sum(F) ;
145 f v a l s (7 , j ) = sum( thx ) /sum(F) ;
146

147 s1uy = sum( ( uy − F* f v a l s (6 , j ) ) . ˆ 2 ) ;
148 s2uy = sum( ( uy − mean( uy ) ) . ˆ 2 ) ;
149 Rsq (6 , j ) = 1 − s1uy/s2uy ;
150

151 s1th = sum( ( thx − F* f v a l s (7 , j ) ) . ˆ 2 ) ;
152 s2th = sum( ( thx − mean( thx ) ) . ˆ 2 ) ;
153 Rsq (7 , j ) = 1 − s1th / s2th ;
154

155

156 i f Rsq (6 , j ) < 0 .95
157 f igure
158 plot (uy , F , uy , uy/ f v a l s (6 , j ) )
159 t i t l e ( sprintf ( ’ row 6 , c o l %i ’ , j ) )
160 end
161

162 i f Rsq (7 , j ) < 0 .95
163 f igure
164 plot ( thx , F , thx , thx/ f v a l s (7 , j ) )
165 t i t l e ( sprintf ( ’ row 7 , c o l %i ’ , j ) )
166 end
167

168 e l s e i f k == 5
169

170 ux = 0 . 5* ( lddata { i } ( : , 1 )+lddata { i } ( : , 3 ) ) ;
171 thy = ( lddata { i } ( : , 9 )−lddata { i } ( : , 1 1 ) ) /D;
172 F = lddata { i } ( : , 2 ) *M;
173

174 f v a l s (8 , j ) = sum( ux ) /sum(F) ;
175 f v a l s (9 , j ) = sum( thy ) /sum(F) ;
176

177 s1ux = sum( ( ux − F* f v a l s (8 , j ) ) . ˆ 2 ) ;
178 s2ux = sum( ( ux − mean( ux ) ) . ˆ 2 ) ;
179 Rsq (8 , j ) = 1 − s1ux/s2ux ;
180

181 s1th = sum( ( thy − F* f v a l s (9 , j ) ) . ˆ 2 ) ;
182 s2th = sum( ( thy − mean( thy ) ) . ˆ 2 ) ;
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183 Rsq (9 , j ) = 1 − s1th / s2th ;
184

185 i f Rsq (8 , j ) < 0 .95
186 f igure
187 plot (ux , F , ux , ux/ f v a l s (8 , j ) )
188 t i t l e ( sprintf ( ’ row 8 , c o l %i ’ , j ) )
189 end
190

191 i f Rsq (9 , j ) < 0 .95
192 f igure
193 plot ( thy , F , thy , thy/ f v a l s (9 , j ) )
194 t i t l e ( sprintf ( ’ row 9 , c o l %i ’ , j ) )
195 end
196

197 e l s e i f k == 6
198 thz = abs ( ( lddata { i } ( : , 5 )−lddata { i } ( : , 7 ) ) /D) ;
199 F = lddata { i } ( : , 2 ) *T;
200

201 f v a l s (10 , j ) = sum( thz ) /sum(F) ;
202

203 s1th = sum( ( thz − F* f v a l s (10 , j ) ) . ˆ 2 ) ;
204 s2th = sum( ( thz − mean( thz ) ) . ˆ 2 ) ;
205 Rsq (10 , j ) = 1 − s1th / s2th ;
206

207 i f Rsq (10 , j ) < 0 .95
208 f igure
209 plot ( thz , F , thz , thz / f v a l s (10 , j ) )
210 t i t l e ( sprintf ( ’ row 10 , c o l %i ’ , j ) )
211 end
212 end
213 end
214

215 % compose and i n v e r t matr ices
216 k = 1 ;
217 fA1 = [ f v a l s (1 , k ) 0 0 0 f v a l s (8 , k ) 0 ; 0 f v a l s (3 , k ) 0 − f v a l s (6 , k ) 0 0 ;

0 0 f v a l s (5 , k ) 0 0 0 ; 0 − f v a l s (4 , k ) 0 f v a l s (7 , k ) 0 0 ; f v a l s (2 , k ) 0
0 0 f v a l s (9 , k ) 0 ; 0 0 0 0 0 f v a l s (10 , k ) ] ;

218

219 k = 2 ;
220 fA2 = [ f v a l s (1 , k ) 0 0 0 f v a l s (8 , k ) 0 ; 0 f v a l s (3 , k ) 0 − f v a l s (6 , k ) 0 0 ;

0 0 f v a l s (5 , k ) 0 0 0 ; 0 − f v a l s (4 , k ) 0 f v a l s (7 , k ) 0 0 ; f v a l s (2 , k ) 0
0 0 f v a l s (9 , k ) 0 ; 0 0 0 0 0 f v a l s (10 , k ) ] ;

221

222 k = 3 ;
223 fB1 = [ f v a l s (1 , k ) 0 0 0 f v a l s (8 , k ) 0 ; 0 f v a l s (3 , k ) 0 − f v a l s (6 , k ) 0 0 ;

0 0 f v a l s (5 , k ) 0 0 0 ; 0 − f v a l s (4 , k ) 0 f v a l s (7 , k ) 0 0 ; f v a l s (2 , k ) 0
0 0 f v a l s (9 , k ) 0 ; 0 0 0 0 0 f v a l s (10 , k ) ] ;

224

225 k = 4 ;
226 fB2 = [ f v a l s (1 , k ) 0 0 0 f v a l s (8 , k ) 0 ; 0 f v a l s (3 , k ) 0 − f v a l s (6 , k ) 0 0 ;

0 0 f v a l s (5 , k ) 0 0 0 ; 0 − f v a l s (4 , k ) 0 f v a l s (7 , k ) 0 0 ; f v a l s (2 , k ) 0
0 0 f v a l s (9 , k ) 0 ; 0 0 0 0 0 f v a l s (10 , k ) ] ;

227
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228 KA1 = fA1ˆ−1;
229 KA2 = fA2ˆ−1;
230 KB1 = B1ˆ−1;
231 KB2 = fB2ˆ−1;
232 %% output
233 KA1
234 KA2
235 KB1
236 KB2

plaxiscode.m

1 clear a l l
2 close a l l
3 clc
4

5 %% Input
6

7 stepNr = ’ Step 9 ’ ;
8 s tar tPhase = 246 ; % f o r s t i f f n e s s de terminat ion s t e p s ! F i r s t i n i t i a l

s t e p = star tPhase−4
9 diameter = 7 ;

10

11 % Mstages
12 Fx = 200 ;
13 Fy = 200 ;
14 Fz = 200 ;
15 Mx = 700 ;
16 My = 700 ;
17 T = 350 ;
18

19 %% Load data
20 xlname = [ ’ loaddata ’ , stepNr , ’ . x l s x ’ ] ;
21 data = x l s r e a d ( xlname ) ;
22

23 PlaxisMoments = data ( : , 4 : 6 ) / diameter ;
24 PlaxisMoments ( : , 3 ) = PlaxisMoments ( : , 3 ) /2 ;
25

26 Outputname = [ ’ P lax i s code ’ , stepNr , ’ . tx t ’ ] ;
27

28 %% Create I n i t i a l s t e p s
29 f i d = fopen ( Outputname , ’w ’ ) ;
30 for i = 1 :4
31 fpr intf ( f i d , ’ s e t cu r r en tphas e Phase 8\n phase Phase 8\n ’ ) ; %

c r e a t e s phase s t a r t i n g from phase 8
32 fpr intf ( f i d , ’ s e t cu r r en tphas e Phase %i \n sps Phase %i ”

PreviousPhase ” Phase 8\n ’ , ( startPhase−5+i ) * ones (2 , 1 ) ) ;
33 % load
34 fpr intf ( f i d , ’ a c t i v a t e PointLoad 1 Phase %i \n ’ , s tartPhase−5+i ) ;
35 fpr intf ( f i d , ’ a c t i v a t e PointLoad 6 Phase %i \n ’ , s tartPhase−5+i ) ;
36 fpr intf ( f i d , ’ a c t i v a t e PointLoad 7 Phase %i \n ’ , s tartPhase−5+i ) ;
37 fpr intf ( f i d , ’ a c t i v a t e PointLoad 8 Phase %i \n ’ , s tartPhase−5+i ) ;
38 fpr intf ( f i d , ’ a c t i v a t e PointLoad 9 Phase %i \n ’ , s tartPhase−5+i ) ;
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39 fpr intf ( f i d , ’ s e t PointLoad 1 1 . Fx Phase %i %5.3 f \n ’ , [
s tartPhase−5+i ; −data ( i , 1 ) ] ) ;

40 fpr intf ( f i d , ’ s e t PointLoad 1 1 . Fy Phase %i %5.3 f \n ’ , [
s tartPhase−5+i ; −data ( i , 2 ) ] ) ;

41 fpr intf ( f i d , ’ s e t PointLoad 1 1 . Fz Phase %i %5.3 f \n ’ , [
s tartPhase−5+i ; −data ( i , 3 ) ] ) ;

42 fpr intf ( f i d , ’ s e t PointLoad 6 1 . Fz Phase %i %5.3 f \n ’ , [
s tartPhase−5+i ; −PlaxisMoments ( i , 2 ) ] ) ; %My

43 fpr intf ( f i d , ’ s e t PointLoad 8 1 . Fz Phase %i %5.3 f \n ’ , [
s tartPhase−5+i ; PlaxisMoments ( i , 2 ) ] ) ;

44 fpr intf ( f i d , ’ s e t PointLoad 7 1 . Fz Phase %i %5.3 f \n ’ , [
s tartPhase−5+i ; −PlaxisMoments ( i , 1 ) ] ) ; %Mx

45 fpr intf ( f i d , ’ s e t PointLoad 9 1 . Fz Phase %i %5.3 f \n ’ , [
s tartPhase−5+i ; PlaxisMoments ( i , 1 ) ] ) ;

46 fpr intf ( f i d , ’ s e t PointLoad 6 1 . Fy Phase %i %5.3 f \n ’ , [
s tartPhase−5+i ; PlaxisMoments ( i , 3 ) ] ) ; %T

47 fpr intf ( f i d , ’ s e t PointLoad 7 1 . Fx Phase %i %5.3 f \n ’ , [
s tartPhase−5+i ; PlaxisMoments ( i , 3 ) ] ) ;

48 fpr intf ( f i d , ’ s e t PointLoad 8 1 . Fy Phase %i %5.3 f \n ’ , [
s tartPhase−5+i ; −PlaxisMoments ( i , 3 ) ] ) ; %T

49 fpr intf ( f i d , ’ s e t PointLoad 9 1 . Fx Phase %i %5.3 f \n ’ , [
s tartPhase−5+i ; −PlaxisMoments ( i , 3 ) ] ) ; %T

50

51 %phase s e t t i n g s
52 fpr intf ( f i d , ’ s e t Deform %i . UseCavitat ionCutOff True\n ’ , s tartPhase−5+i

) ;
53

54 % renaming
55 i f i == 1
56 phaseName = [ ’ sps Phase %i ” I d e n t i f i c a t i o n ” ” ’ , stepNr , ’ A1”\n ’

] ;
57 fpr intf ( f i d , phaseName , startPhase−5+i ) ;
58 e l s e i f i ==2
59 phaseName = [ ’ sps Phase %i ” I d e n t i f i c a t i o n ” ” ’ , stepNr , ’ A2”\n ’

] ;
60 fpr intf ( f i d , phaseName , startPhase−5+i ) ;
61 e l s e i f i ==3
62 phaseName = [ ’ sps Phase %i ” I d e n t i f i c a t i o n ” ” ’ , stepNr , ’ B1”\n ’

] ;
63 fpr intf ( f i d , phaseName , startPhase−5+i ) ;
64 else
65 phaseName = [ ’ sps Phase %i ” I d e n t i f i c a t i o n ” ” ’ , stepNr , ’ B2”\n ’

] ;
66 fpr intf ( f i d , phaseName , startPhase−5+i ) ;
67 end
68

69 end
70

71 %% Create s t i f f n e s s de terminat ion s t e p s
72 % l o a d s
73 for i = 1 :24
74 k = f ix ( ( i −1)/6) +1;
75 j = rem( i , 6 ) ;
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76 fpr intf ( f i d , ’ s e t cu r r en tphas e Phase %i \n phase Phase %i \n ’ , ( startPhase
−5+k ) * ones (2 , 1 ) ) ; % c r e a t e s phase s t a r t i n g from phase 8

77 fpr intf ( f i d , ’ s e t cu r r en tphas e Phase %i \n sps Phase %i ” PreviousPhase ”
Phase %i \n ’ , [ ( startPhase−1+i ) ( startPhase−1+i ) ( startPhase−5+k ) ] ) ;

78 fpr intf ( f i d , ’ a c t i v a t e PointLoad 1 Phase %i \n ’ , s tartPhase−1+i ) ;
79 fpr intf ( f i d , ’ a c t i v a t e PointLoad 6 Phase %i \n ’ , s tartPhase−1+i ) ;
80 fpr intf ( f i d , ’ a c t i v a t e PointLoad 7 Phase %i \n ’ , s tartPhase−1+i ) ;
81 fpr intf ( f i d , ’ a c t i v a t e PointLoad 8 Phase %i \n ’ , s tartPhase−1+i ) ;
82 fpr intf ( f i d , ’ a c t i v a t e PointLoad 9 Phase %i \n ’ , s tartPhase−1+i ) ;
83

84 i f j ˜= 1
85 fpr intf ( f i d , ’ s e t PointLoad 1 1 . Fx Phase %i %5.3 f \n ’ , [

s tartPhase−1+i ; −data (k , 1 ) ] ) ;
86 else
87 fpr intf ( f i d , ’ s e t PointLoad 1 1 . Fx Phase %i %5.3 f \n ’ , [

s tartPhase−1+i ; −data (k , 1 )+Fx ] ) ;
88 end
89

90 i f j ˜= 2
91 fpr intf ( f i d , ’ s e t PointLoad 1 1 . Fy Phase %i %5.3 f \n ’ , [

s tartPhase−1+i ; −data (k , 2 ) ] ) ;
92 else
93 i f −data (k , 2 ) > 0
94 fpr intf ( f i d , ’ s e t PointLoad 1 1 . Fy Phase %i %5.3 f \n ’ , [

s tartPhase−1+i ; −data (k , 2 )+Fy ] ) ;
95 else
96 fpr intf ( f i d , ’ s e t PointLoad 1 1 . Fy Phase %i %5.3 f \n ’ , [

s tartPhase−1+i ; −data (k , 2 )−Fy ] ) ;
97 end
98 end
99

100 i f j ˜= 3
101 fpr intf ( f i d , ’ s e t PointLoad 1 1 . Fz Phase %i %5.3 f \n ’ , [

s tartPhase−1+i ; −data (k , 3 ) ] ) ;
102 else
103 i f −data (k , 3 ) > 0
104 fpr intf ( f i d , ’ s e t PointLoad 1 1 . Fz Phase %i %5.3 f \n ’ , [

s tartPhase−1+i ; −data (k , 3 )+Fz ] ) ;
105 else
106 fpr intf ( f i d , ’ s e t PointLoad 1 1 . Fz Phase %i %5.3 f \n ’ , [

s tartPhase−1+i ; −data (k , 3 )−Fz ] ) ;
107 end
108 end
109

110 i f j ˜= 4
111 fpr intf ( f i d , ’ s e t PointLoad 7 1 . Fz Phase %i %5.3 f \n ’ , [

s tartPhase−1+i ; −PlaxisMoments (k , 1 ) ] ) ; %Mx
112 fpr intf ( f i d , ’ s e t PointLoad 9 1 . Fz Phase %i %5.3 f \n ’ , [

s tartPhase−1+i ; PlaxisMoments (k , 1 ) ] ) ;
113 else
114 i f −PlaxisMoments (k , 1 ) > 0
115 fpr intf ( f i d , ’ s e t PointLoad 7 1 . Fz Phase %i %5.3 f \n ’ , [

s tartPhase−1+i ; −PlaxisMoments (k , 1 )+Mx/ diameter ] ) ;
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116 fpr intf ( f i d , ’ s e t PointLoad 9 1 . Fz Phase %i %5.3 f \n ’ , [
s tartPhase−1+i ; PlaxisMoments (k , 1 )−Mx/ diameter ] ) ;

117 else
118 fpr intf ( f i d , ’ s e t PointLoad 7 1 . Fz Phase %i %5.3 f \n ’ , [

s tartPhase−1+i ; −PlaxisMoments (k , 1 )−Mx/ diameter ] ) ;
%Mx

119 fpr intf ( f i d , ’ s e t PointLoad 9 1 . Fz Phase %i %5.3 f \n ’ , [
s tartPhase−1+i ; PlaxisMoments (k , 1 )+Mx/ diameter ] ) ;

120 end
121 end
122

123 i f j ˜= 5
124 fpr intf ( f i d , ’ s e t PointLoad 6 1 . Fz Phase %i %5.3 f \n ’ , [

s tartPhase−1+i ; −PlaxisMoments (k , 2 ) ] ) ; %My
125 fpr intf ( f i d , ’ s e t PointLoad 8 1 . Fz Phase %i %5.3 f \n ’ , [

s tartPhase−1+i ; PlaxisMoments (k , 2 ) ] ) ;
126 else
127 fpr intf ( f i d , ’ s e t PointLoad 6 1 . Fz Phase %i %5.3 f \n ’ , [

s tartPhase−1+i ; −PlaxisMoments (k , 2 ) + My/ diameter ] ) ;
128 fpr intf ( f i d , ’ s e t PointLoad 8 1 . Fz Phase %i %5.3 f \n ’ , [

s tartPhase−1+i ; PlaxisMoments (k , 2 ) − My/ diameter ] ) ;
129 end
130

131 i f j ˜= 0
132 fpr intf ( f i d , ’ s e t PointLoad 6 1 . Fy Phase %i %5.3 f \n ’ , [

s tartPhase−1+i ; PlaxisMoments (k , 3 ) ] ) ; %T
133 fpr intf ( f i d , ’ s e t PointLoad 7 1 . Fx Phase %i %5.3 f \n ’ , [

s tartPhase−1+i ; PlaxisMoments (k , 3 ) ] ) ;
134 fpr intf ( f i d , ’ s e t PointLoad 8 1 . Fy Phase %i %5.3 f \n ’ , [

s tartPhase−1+i ; −PlaxisMoments (k , 3 ) ] ) ; %T
135 fpr intf ( f i d , ’ s e t PointLoad 9 1 . Fx Phase %i %5.3 f \n ’ , [

s tartPhase−1+i ; −PlaxisMoments (k , 3 ) ] ) ; %T
136 else
137 i f −PlaxisMoments (k , 3 ) > 0
138 fpr intf ( f i d , ’ s e t PointLoad 6 1 . Fy Phase %i %5.3 f \n ’ , [

s tartPhase−1+i ; PlaxisMoments (k , 3 )−T/(2* diameter ) ] )
;

139 fpr intf ( f i d , ’ s e t PointLoad 7 1 . Fx Phase %i %5.3 f \n ’ , [
s tartPhase−1+i ; PlaxisMoments (k , 3 )−T/(2* diameter ) ] ) ;

140 fpr intf ( f i d , ’ s e t PointLoad 8 1 . Fy Phase %i %5.3 f \n ’ , [
s tartPhase−1+i ; −PlaxisMoments (k , 3 )+T/(2* diameter ) ] ) ; %T

141 fpr intf ( f i d , ’ s e t PointLoad 9 1 . Fx Phase %i %5.3 f \n ’ , [
s tartPhase−1+i ; −PlaxisMoments (k , 3 )+T/(2* diameter ) ] ) ; %T

142 else
143 fpr intf ( f i d , ’ s e t PointLoad 6 1 . Fy Phase %i %5.3 f \n ’ , [

s tartPhase−1+i ; PlaxisMoments (k , 3 )+T/(2* diameter ) ] )
; %T

144 fpr intf ( f i d , ’ s e t PointLoad 7 1 . Fx Phase %i %5.3 f \n ’ , [
s tartPhase−1+i ; PlaxisMoments (k , 3 )+T/(2* diameter ) ] ) ;

145 fpr intf ( f i d , ’ s e t PointLoad 8 1 . Fy Phase %i %5.3 f \n ’ , [
s tartPhase−1+i ; −PlaxisMoments (k , 3 )−T/(2* diameter ) ] ) ; %T

146 fpr intf ( f i d , ’ s e t PointLoad 9 1 . Fx Phase %i %5.3 f \n ’ , [
s tartPhase−1+i ; −PlaxisMoments (k , 3 )−T/(2* diameter ) ] ) ; %T
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147 end
148 end
149

150 end
151

152 % phase s e t t i n g s
153 A = zeros (24 ,6 ) ;
154

155 for i = 1 : s ize (A, 1 )
156 A( i , : ) = ones (1 , s ize (A, 2 ) ) *( i+startPhase −1) ;
157 end
158

159 fpr intf ( f i d , ’ s e t Deform %i . ResetDisplacementsToZero True\n s e t
Deform %i . UseCavitat ionCutOff True\n s e t Deform %i .
UseDefau l t I terat ionParams Fal se \n s e t Deform %i . UseLineSearch True
\n s e t Deform %i . To leratedError 0 .001\n s e t Deform %i .
MaxLoadFractionPerStep 0 .1\n ’ ,A’ ) ;

160

161 %% Save
162 q = ’ ” ’ ;
163 s t r i n g = [ ’ save ’ , q , ’P:\\ Plax i s 3Ds t i f f n e s sCheck \\ Stepwise l oad ing \\

HSSingleBucket .P3D ’ , q ] ;
164 fpr intf ( f i d , s t r i n g ) ;
165 fc lose ( f i d ) ;

F.2 SACS code

Linear-Elastic Model

Model Input file

1 LDOPT SFINOP +Z1 .0251827 .849047 −19.8 GLOBMN
NPNP K

2 OPTIONS I MN UC 2 2 DC C PTPTPT PTPT
3 UCPART 0 .7000 . 7001 . 0001 . 000
4

5 SECT
6 SECT M406127 TUB 40 .6401 .270
7 SECT M406191 TUB 40 .6401 .910
8 SECT M508127 TUB 50 .8001 .270
9 SECT M508191 TUB 50 .8001 .910

10 SECT M508254 TUB 50 .8002 .540
11 SECT M609191 TUB 60 .9601 .910
12 SECT M609254 TUB 60 .9602 .540
13 SECT M609318 TUB 60 .9603 .180
14 SECT M762191 TUB 76 .2001 .910
15 SECT M914254 TUB 91 .4002 .540
16 SECT M914318 TUB 91 .4403 .180
17 SECT N137125 TUB 137 .162 .540
18 SECT N137138 TUB 137 .163 .810
19 SECT N137150 TUB 137 .165 .080
20 SECT N137160 TUB 137 .166 .000
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21

22 GRUP
23 GRUP 111 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
24 GRUP 112 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
25 GRUP 112 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .85001 .60
26 GRUP 121 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
27 GRUP 122 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
28 GRUP 122 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .85001 .60
29 GRUP 131 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
30 GRUP 132 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
31 GRUP 132 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .85001 .60
32 GRUP 211 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
33 GRUP 212 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .85001 .60
34 GRUP 212 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
35 GRUP 221 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
36 GRUP 222 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .85001 .60
37 GRUP 222 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
38 GRUP 231 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
39 GRUP 232 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
40 GRUP 232 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .85006 .00
41 GRUP A11 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .85001 .60
42 GRUP A11 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
43 GRUP A12 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
44 GRUP A13 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
45 GRUP A13 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500 .500
46 GRUP A14 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
47 GRUP A21 M609318 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .85001 .60
48 GRUP A21 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
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7 .8500
49 GRUP A22 M609318 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
50 GRUP A23 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
51 GRUP A23 M609318 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .85001 .60
52 GRUP A31 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .85001 .60
53 GRUP A31 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
54 GRUP A32 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
55 GRUP A33 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
56 GRUP A33 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .85001 .60
57 GRUP B11 M609191 21 . 007 . 72235 . 50 1 1 . 001 . 00

7 .8500
58 GRUP B21 M609191 21 . 007 . 72235 . 50 1 1 . 001 . 00

7 .8500
59 GRUP B31 M609191 21 . 007 . 72235 . 50 1 1 . 001 . 00

7 .8500
60 GRUP C01 M406191 21 . 007 . 72235 . 50 1 1 . 001 . 00

7 .8500
61 GRUP C02 M508191 21 . 007 . 72235 . 50 1 1 . 001 . 00

7 .8500
62 GRUP D11 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
63 GRUP D11 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500 .500
64 GRUP D12 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
65 GRUP D13 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500 .500
66 GRUP D13 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
67 GRUP D21 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
68 GRUP D21 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500 .500
69 GRUP D22 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
70 GRUP D23 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500 .500
71 GRUP D23 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
72 GRUP D31 M508191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
73 GRUP D31 M508254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500 .500
74 GRUP D32 M508254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
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75 GRUP D33 M508254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .8500 .500

76 GRUP D33 M508191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .8500

77 GRUP F11 M406127 21 . 007 . 72235 . 50 1 1 . 00 1 . 0 0
7 .8500

78 GRUP F21 M508127 21 . 007 . 72235 . 50 1 1 . 00 1 . 0 0
7 .8500

79 GRUP F22 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 0 0
7 .8500

80 GRUP F31 M406127 21 . 007 . 72235 . 50 1 1 . 00 1 . 0 0
7 .8500

81 GRUP F32 M508127 21 . 007 . 72235 . 50 1 1 . 00 1 . 0 0
7 .8500

82 GRUP L01 N137160 21 . 007 . 72235 . 50 1 1 . 001 . 00
F7 .8500

83 GRUP L04 N137150 21 . 007 . 72235 . 50 1 1 . 001 . 00
F7 .8500

84 GRUP L05 N137138 21 . 007 . 72235 . 50 1 1 . 001 . 00
F7 .8500

85 GRUP L11 N137150 21 . 007 . 72235 . 50 1 1 . 001 . 00
F7 .8500

86 GRUP LA2 N137150 21 . 007 . 72235 . 50 1 1 . 001 . 00
F7 .85001 . 80

87 GRUP LA2 N137125 21 . 007 . 72235 . 50 1 1 . 001 . 00
F7 .8500

88 GRUP LA2 N137150 21 . 007 . 72235 . 50 1 1 . 001 . 00
F7 .85001 . 80

89 GRUP LA3 N137150 21 . 007 . 72235 . 50 1 1 . 001 . 00
F7 .85002 . 00

90 GRUP LA3 N137160 21 . 007 . 72235 . 50 1 1 . 001 . 00
F7 .8500

91 GRUP LA3 N137150 21 . 007 . 72235 . 50 1 1 . 001 . 00
F7 .85004 . 10

92 GRUP LB2 N137150 21 . 007 . 72235 . 50 1 1 . 0 01 . 0 0
F7 .85001 . 80

93 GRUP LB2 N137138 21 . 007 . 72235 . 50 1 1 . 0 01 . 0 0
F7 .8500

94 GRUP LB2 N137150 21 . 007 . 72235 . 50 1 1 . 0 01 . 0 0
F7 .85001 . 80

95 GRUP LB3 N137150 21 . 007 . 72235 . 50 1 1 . 0 01 . 0 0
F7 .8500

96 GRUP X2A M914254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .8500

97 GRUP XAB M914254 21 . 007 . 72235 . 50 1 1 . 001 . 00
7 .8500

98 GRUP XB2 M914254 21 . 007 . 72235 . 50 1 1 . 001 . 00
7 .8500

99 GRUP XBA M914254 21 . 007 . 72235 . 50 1 1 . 001 . 00
7 .85009 .20

100 GRUP XBA M914318 21 . 007 . 72235 . 50 1 1 . 001 . 00
7 .85005 .20

101 GRUP XBA M914254 21 . 007 . 72235 . 50 1 1 . 001 . 00
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7 .8500
102 GRUP XX1 M762191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
103

104 MEMBER
105 MEMBER 012001A1 111
106 MEMBER 01B10120 112
107 MEMBER 022002A1 121
108 MEMBER 02B10220 122
109 MEMBER 032003A1 131
110 MEMBER 03B10320 132
111 MEMBER 01A20110 211
112 MEMBER 011001B2 212
113 MEMBER 02A20210 221
114 MEMBER 021002B2 222
115 MEMBER 03A20310 231
116 MEMBER 031003B2 232
117 MEMBER 100101A2 A11
118 MEMBER 10051001 A12
119 MEMBER 10021005 A13
120 MEMBER 01A11002 A14
121 MEMBER 200102A2 A21
122 MEMBER 20022001 A22
123 MEMBER 02A12002 A23
124 MEMBER 300103A2 A31
125 MEMBER 30023001 A32
126 MEMBER 03A13002 A33
127 MEMBER 01B201B1 B11
128 MEMBER 02B22005 B21
129 MEMBER 200502B1 B21
130 MEMBER 03B23005 B31
131 MEMBER 300503B1 B31
132 MEMBER 20032001 C01
133 MEMBER 20042002 C01
134 MEMBER 30033001 C01
135 MEMBER 30043002 C01
136 MEMBER 10031001 C02
137 MEMBER 10061005 C02
138 MEMBER 01101003 D11
139 MEMBER 10031006 D12
140 MEMBER 10061004 D12
141 MEMBER 10040120 D13
142 MEMBER 02102003 D21
143 MEMBER 20032004 D22
144 MEMBER 20040220 D23
145 MEMBER 03103003 D31
146 MEMBER 30033004 D32
147 MEMBER 30040320 D33
148 MEMBER 01101001 F11
149 MEMBER 01201002 F11
150 MEMBER 10041002 F11
151 MEMBER 02102001 F21
152 MEMBER 02202002 F21
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153 MEMBER 02102005 F22
154 MEMBER 02202005 F22
155 MEMBER 03103001 F31
156 MEMBER 03203002 F31
157 MEMBER 03103005 F32
158 MEMBER 03203005 F32
159 MEMBER 0A1 00A1 L01
160 MEMBER 0A2 00A2 L01
161 MEMBER 0B1 00B1 L01
162 MEMBER 0B2 00B2 L01
163 MEMBER 03A104A1 L04
164 MEMBER 03A204A2 L04
165 MEMBER 03B104B1 L04
166 MEMBER 03B204B2 L04
167 MEMBER 04A105A1 L05
168 MEMBER 04A205A2 L05
169 MEMBER 04B105B1 L05
170 MEMBER 04B205B2 L05
171 MEMBER 00A101A1 L11
172 MEMBER 00A201A2 L11
173 MEMBER 00B101B1 L11
174 MEMBER 00B201B2 L11
175 MEMBER 01A102A1 LA2
176 MEMBER 01A202A2 LA2
177 MEMBER 02A103A1 LA3
178 MEMBER 02A203A2 LA3
179 MEMBER 01B102B1 LB2
180 MEMBER 01B202B2 LB2
181 MEMBER 02B103B1 LB3
182 MEMBER 02B203B2 LB3
183 MEMBER 03A202A1 X2A
184 MEMBER 03A102B1 XAB
185 MEMBER 03B102B2 XB2
186 MEMBER 03B202A2 XBA
187 MEMBER 02A101A2 XX1
188 MEMBER 02A201B2 XX1
189 MEMBER 02B101A1 XX1
190 MEMBER 02B201B1 XX1
191

192 JOINT
193 JOINT 0A1 −11.323 11.645−19.800
194 JOINT 0A2 −11.323−11.645−19.800
195 JOINT 0B1 11.323 11.645−19.800
196 JOINT 0B2 11.323−11.645−19.800
197 JOINT 00A1 −11.323 11.645−18.000
198 JOINT 00A2 −11.323−11.645−18.000
199 JOINT 00B1 11.323 11.645−18.000
200 JOINT 00B2 11.323−11.645−18.000
201 JOINT 0110 −4.623−11.578−17.300
202 JOINT 0120 −4.623 11.578−17.300
203 JOINT 01A1 −11.323 11.576−17.300
204 JOINT 01A2 −11.323−11.576−17.300
205 JOINT 01B1 11.259 11.581−17.300
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206 JOINT 01B2 11.259−11.581−17.300
207 JOINT 0210 −4.623−10.495 −6.000
208 JOINT 0220 −4.623 10 .495 −6.000
209 JOINT 02A1 −11.323 10 .469 −6.000
210 JOINT 02A2 −11.323−10.469 −6.000
211 JOINT 02B1 10.228 10 .551 −6.000
212 JOINT 02B2 10.228−10.551 −6.000
213 JOINT 0310 −4.623 −9.061 9 .000
214 JOINT 0320 −4.623 9 .061 9 .000
215 JOINT 03A1 −11.323 9 .000 9 .000
216 JOINT 03A2 −11.323 −9.000 9 .000
217 JOINT 03B1 8.859 9 .182 9 .000
218 JOINT 03B2 8.859 −9.182 9 .000
219 JOINT 04A1 −11.323 9 .000 11 .000
220 JOINT 04A2 −11.323 −9.000 11 .000
221 JOINT 04B1 8.677 9 .000 11 .000
222 JOINT 04B2 8.677 −9.000 11 .000
223 JOINT 05A1 −11.323 9 .000 15 .500
224 JOINT 05A2 −11.323 −9.000 15 .500
225 JOINT 05B1 8.677 9 .000 15 .500
226 JOINT 05B2 8.677 −9.000 15 .500
227 JOINT 1001 −11.323 −4.000−17.300
228 JOINT 1002 −11.323 2.100−17.300
229 JOINT 1003 −4.623 −4.061−17.300
230 JOINT 1004 −4.623 2.039−17.300
231 JOINT 1005 −11.323 −1.800−17.300
232 JOINT 1006 −4.623 −1.861−17.300
233 JOINT 2001 −11.323 −4.000 −6.000
234 JOINT 2002 −11.323 2 .100 −6.000
235 JOINT 2003 −4.623 −4.061 −6.000
236 JOINT 2004 −4.623 2 .039 −6.000
237 JOINT 2005 10.228 0 .000 −6.000
238 JOINT 3001 −11.323 −4.000 9 .000
239 JOINT 3002 −11.323 2 .100 9 .000
240 JOINT 3003 −4.623 −4.061 9 .000
241 JOINT 3004 −4.623 2 .039 9 .000
242 JOINT 3005 8 .859 0 .000 9 .000
243

244 LOAD
245 LOADCNPNTL
246 LOAD 03A2 2000 . GLOB JOIN

1
247 END

Superelement Input file

1 SUBOPT INP MN
2 * I n d i v i d u a l p i l e matr i ce s
3 STFHEAD 0A1 0A1 +1.
4 STFR FX 4.29 e6 −21.98 e6
5 STFR FY 4.29 e6 21 .98 e6
6 STFR FZ 2.79 e6
7 STFR MX 21.98 e6 197 .26 e6
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8 STFR MY −21.98 e6 197 .26 e6
9 STFR MZ 74.07 e6

10 STFHEAD 0B1 0B1 +1.
11 STFR FX 4.29 e6 −21.98 e6
12 STFR FY 4.29 e6 21 .98 e6
13 STFR FZ 2.79 e6
14 STFR MX 21.98 e6 197 .26 e6
15 STFR MY −21.98 e6 197 .26 e6
16 STFR MZ 74.07 e6
17 STFHEAD 0A2 0A2 +1.
18 STFR FX 4.29 e6 −21.98 e6
19 STFR FY 4.29 e6 21 .98 e6
20 STFR FZ 2.79 e6
21 STFR MX 21.98 e6 197 .26 e6
22 STFR MY −21.98 e6 197 .26 e6
23 STFR MZ 74.07 e6
24 STFHEAD 0B2 0B2 +1.
25 STFR FX 4.29 e6 −21.98 e6
26 STFR FY 4.29 e6 21 .98 e6
27 STFR FZ 2.79 e6
28 STFR MX 21.98 e6 197 .26 e6
29 STFR MY −21.98 e6 197 .26 e6
30 STFR MZ 74.07 e6
31 * p i l e i n t e r a c t i o n matr i ce s
32 STFHEAD 0A2 0B2 +1.
33 STFR FX −9.36 e5 4 .79 e6
34 STFR FY −1.88 e5 −9.62 e5
35 STFR FZ
36 STFR MX −9.62 e5 −4.93 e6
37 STFR MY 4.79 e6 −24.51 e6
38 STFR MZ
39 STFHEAD 0A1 0B1 1 .
40 STFR FX −9.36 e5 4 .79 e6
41 STFR FY −1.88 e5 −9.62 e5
42 STFR FZ
43 STFR MX −9.62 e5 −4.93 e6
44 STFR MY 4.79 e6 −24.51 e6
45 STFR MZ
46 STFHEAD 0A2 0A1 +1.
47 STFR FX −1.88 e5 9 .62 e5
48 STFR FY −9.36 e5 −4.79 e6
49 STFR FZ
50 STFR MX −4.79 e6 −24.51 e6
51 STFR MY 9.62 e5 −4.93 e6
52 STFR MZ
53 STFHEAD 0B2 0B1 +1.
54 STFR FX −1.88 e5 9 .62 e5
55 STFR FY −9.36 e5 −4.79 e6
56 STFR FZ
57 STFR MX −4.79 e6 −24.51 e6
58 STFR MY 9.62 e5 −4.93 e6
59 STFR MZ
60 STFHEAD 0A2 0B1 +1.
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61 STFR FX −1.31 e5 6 .68 e5
62 STFR FY −1.31 e5 −6.68 e5
63 STFR FZ
64 STFR MX −6.68 e5 −3.42 e6
65 STFR MY 6.68 e5 −3.42 e6
66 STFR MZ
67 STFHEAD 0B2 0A1 +1.
68 STFR FX −1.31 e5 6 .68 e5
69 STFR FY −1.31 e5 −6.68 e5
70 STFR FZ
71 STFR MX −6.68 e5 −3.42 e6
72 STFR MY 6.68 e5 −3.42 e6
73 STFR MZ
74 END

Seastate file

1 LDOPT SFINOP +Z1 .0251827.849047−19.799919.79999GLOBMN
NPNP K

2

3 FILE B
4

5 CDM
6 CDM 1 . 0 .65 1 .6 1 .05 1 .2
7 CDM 1000 .0 .6501 1 .601 1 .0501 1 .201
8 *Constant Cd and Cm as s p e c i f i e d in BoD
9

10 MGROV
11 MGROV 0.001 20 .925 5 . 2.5400−4 1 .3
12 *Marine Growth
13

14 LOAD
15

16 LOADCN DW 1 .
17 DEAD −Z M
18

19 LOADCN W
20

21 WIND
22 WIND D M 26.1 10 . 44 .2
23 WAVE
24 WAVE 1.0STRE 11 .5 10 .1 44 .2 D 5 . 72

MM10 1 0
25 CURR
26 CURR 1 . 0 .13 44 .2 0 .425 US WDP
27 CURR 5 . 0 .17 44 .2 0 .425 US WDP
28 CURR 10 . 0 .18 44 .2 0 .425 US WDP
29 CURR 30 . 0 .22 44 .2 0 .425 US WDP
30 CURR 50 . 0 .23 44 .2 0 .425 US WDP
31 CURR 100 . 0 .26 44 .2 0 .425 US WDP
32 DEAD −Z M
33 *x−axis : SE
34 *y−axis :NE
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35 *100y env loads coming from west . Currentblockage i s 0 . 5*0 . 85 s i n c e
u n l i k e l y to

36

37 LOADCN SW
38 WIND
39 WIND D M 24.4 10 . 90 .
40 WAVE
41 WAVE 1.0STRE 11 .7 10 .2 90 . D 5 . 72

MM10 1 0
42 CURR
43 CURR 1 . 0 .63 90 . 0 . 4 US WDP
44 CURR 5 . 0 .81 90 . 0 . 4 US WDP
45 CURR 10 . 0 .90 90 . 0 . 4 US WDP
46 CURR 30 . 1 .06 90 . 0 . 4 US WDP
47 CURR 50 . 1 .14 90 . 0 . 4 US WDP
48 CURR 100 . 1 .27 90 . 0 . 4 US WDP
49 DEAD −Z M
50 *100 y loads coming from southwest . Currentblockage = 0 . 5*0 . 8 ( non−

d iagona l )
51

52 LOADCN WSW
53 WIND
54 WIND D M 26.1 10 . 44 .2
55 WAVE
56 WAVE 1.0STRE 11 .5 10 .1 44 .2 D 5 . 72

MM10 1 0
57 CURR
58 CURR 1 . 0 .63 90 . 0 . 4 US WDP
59 CURR 5 . 0 .81 90 . 0 . 4 US WDP
60 CURR 10 . 0 .90 90 . 0 . 4 US WDP
61 CURR 30 . 1 .06 90 . 0 . 4 US WDP
62 CURR 50 . 1 .14 90 . 0 . 4 US WDP
63 CURR 100 . 1 .27 90 . 0 . 4 US WDP
64 DEAD −Z M
65 *100 y wind and wave from west + current from southwest
66

67 END

Non-Linear Model 1

Model Input file

1 LDOPT SFINOP +Z1 .0251827 .849047 −19.8 19 .8GLOBMN
NPNP K

2 OPTIONS I MN UC 2 2 DC C PTPTPT PTPT
3 UCPART 0 .7000 . 7001 . 0001 . 000
4 SECT
5 *DUMMY1 − connect ion o f the cente r o f r o t a t i o n with the top p l a t e −

i n f i n i t e s t i
6 SECT M406127 TUB 40 .6401 .270
7 SECT M406191 TUB 40 .6401 .910
8 SECT M508127 TUB 50 .8001 .270
9 SECT M508191 TUB 50 .8001 .910
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10 SECT M508254 TUB 50 .8002 .540
11 SECT M609191 TUB 60 .9601 .910
12 SECT M609254 TUB 60 .9602 .540
13 SECT M609318 TUB 60 .9603 .180
14 SECT M762191 TUB 76 .2001 .910
15 SECT M914254 TUB 91 .4002 .540
16 SECT M914318 TUB 91 .4403 .180
17 SECT N137125 TUB 137 .162 .540
18 SECT N137138 TUB 137 .163 .810
19 SECT N137150 TUB 137 .165 .080
20 SECT N137160 TUB 137 .166 .000
21 GRUP
22 GRUP 111 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
23 GRUP 112 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
24 GRUP 112 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .85001 .60
25 GRUP 121 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
26 GRUP 122 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
27 GRUP 122 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .85001 .60
28 GRUP 131 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
29 GRUP 132 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
30 GRUP 132 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .85001 .60
31 GRUP 211 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
32 GRUP 212 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .85001 .60
33 GRUP 212 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
34 GRUP 221 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
35 GRUP 222 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .85001 .60
36 GRUP 222 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
37 GRUP 231 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
38 GRUP 232 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
39 GRUP 232 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .85006 .00
40 GRUP A11 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .85001 .60
41 GRUP A11 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
42 GRUP A12 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
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7 .8500
43 GRUP A13 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
44 GRUP A13 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500 .500
45 GRUP A14 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
46 GRUP A21 M609318 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .85001 .60
47 GRUP A21 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
48 GRUP A22 M609318 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
49 GRUP A23 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
50 GRUP A23 M609318 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .85001 .60
51 GRUP A31 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .85001 .60
52 GRUP A31 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
53 GRUP A32 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
54 GRUP A33 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
55 GRUP A33 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .85001 .60
56 GRUP B11 M609191 21 . 007 . 72235 . 50 1 1 . 001 . 00

7 .8500
57 GRUP B21 M609191 21 . 007 . 72235 . 50 1 1 . 001 . 00

7 .8500
58 GRUP B31 M609191 21 . 007 . 72235 . 50 1 1 . 001 . 00

7 .8500
59 GRUP C01 M406191 21 . 007 . 72235 . 50 1 1 . 001 . 00

7 .8500
60 GRUP C02 M508191 21 . 007 . 72235 . 50 1 1 . 001 . 00

7 .8500
61 GRUP D11 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
62 GRUP D11 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500 .500
63 GRUP D12 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
64 GRUP D13 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500 .500
65 GRUP D13 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
66 GRUP D21 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
67 GRUP D21 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500 .500
68 GRUP D22 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
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69 GRUP D23 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .8500 .500

70 GRUP D23 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .8500

71 GRUP D31 M508191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .8500

72 GRUP D31 M508254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .8500 .500

73 GRUP D32 M508254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .8500

74 GRUP D33 M508254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .8500 .500

75 GRUP D33 M508191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .8500

76 GRUP F11 M406127 21 . 007 . 72235 . 50 1 1 . 00 1 . 0 0
7 .8500

77 GRUP F21 M508127 21 . 007 . 72235 . 50 1 1 . 00 1 . 0 0
7 .8500

78 GRUP F22 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 0 0
7 .8500

79 GRUP F31 M406127 21 . 007 . 72235 . 50 1 1 . 00 1 . 0 0
7 .8500

80 GRUP F32 M508127 21 . 007 . 72235 . 50 1 1 . 00 1 . 0 0
7 .8500

81 GRUP L01 N137160 21 . 007 . 72235 . 50 1 1 . 001 . 00
F7 .8500

82 GRUP L04 N137150 21 . 007 . 72235 . 50 1 1 . 001 . 00
F7 .8500

83 GRUP L05 N137138 21 . 007 . 72235 . 50 1 1 . 001 . 00
F7 .8500

84 GRUP L11 N137150 21 . 007 . 72235 . 50 1 1 . 001 . 00
F7 .8500

85 GRUP LA2 N137150 21 . 007 . 72235 . 50 1 1 . 001 . 00
F7 .85001 . 80

86 GRUP LA2 N137125 21 . 007 . 72235 . 50 1 1 . 001 . 00
F7 .8500

87 GRUP LA2 N137150 21 . 007 . 72235 . 50 1 1 . 001 . 00
F7 .85001 . 80

88 GRUP LA3 N137150 21 . 007 . 72235 . 50 1 1 . 001 . 00
F7 .85002 . 00

89 GRUP LA3 N137160 21 . 007 . 72235 . 50 1 1 . 001 . 00
F7 .8500

90 GRUP LA3 N137150 21 . 007 . 72235 . 50 1 1 . 001 . 00
F7 .85004 . 10

91 GRUP LB2 N137150 21 . 007 . 72235 . 50 1 1 . 0 01 . 0 0
F7 .85001 . 80

92 GRUP LB2 N137138 21 . 007 . 72235 . 50 1 1 . 0 01 . 0 0
F7 .8500

93 GRUP LB2 N137150 21 . 007 . 72235 . 50 1 1 . 0 01 . 0 0
F7 .85001 . 80

94 GRUP LB3 N137150 21 . 007 . 72235 . 50 1 1 . 0 01 . 0 0
F7 .8500

95 GRUP X2A M914254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
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7 .8500
96 GRUP XAB M914254 21 . 007 . 72235 . 50 1 1 . 001 . 00

7 .8500
97 GRUP XB2 M914254 21 . 007 . 72235 . 50 1 1 . 001 . 00

7 .8500
98 GRUP XBA M914254 21 . 007 . 72235 . 50 1 1 . 001 . 00

7 .85009 .20
99 GRUP XBA M914318 21 . 007 . 72235 . 50 1 1 . 001 . 00

7 .85005 .20
100 GRUP XBA M914254 21 . 007 . 72235 . 50 1 1 . 001 . 00

7 .8500
101 GRUP XX1 M762191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
102 GRUP GAP X 1+5 3 . 2000 . 0 .77 35 .5 1 N

1−5
103 GRUP DMY X 1+5 3 . 0 . 2 2.+0 35 .5 1 N

1−5
104 GRUP DM2 X 1+5 3 . 2.+2 2.+2 35 .5 1 N

1−5
105

106 MEMBER
107 MEMBER 012001A1 111
108 MEMBER 01B10120 112
109 MEMBER 022002A1 121
110 MEMBER 02B10220 122
111 MEMBER 032003A1 131
112 MEMBER 03B10320 132
113 MEMBER 01A20110 211
114 MEMBER 011001B2 212
115 MEMBER 02A20210 221
116 MEMBER 021002B2 222
117 MEMBER 03A20310 231
118 MEMBER 031003B2 232
119 MEMBER 100101A2 A11
120 MEMBER 10051001 A12
121 MEMBER 10021005 A13
122 MEMBER 01A11002 A14
123 MEMBER 200102A2 A21
124 MEMBER 20022001 A22
125 MEMBER 02A12002 A23
126 MEMBER 300103A2 A31
127 MEMBER 30023001 A32
128 MEMBER 03A13002 A33
129 MEMBER 01B201B1 B11
130 MEMBER 02B22005 B21
131 MEMBER 200502B1 B21
132 MEMBER 03B23005 B31
133 MEMBER 300503B1 B31
134 MEMBER 20032001 C01
135 MEMBER 20042002 C01
136 MEMBER 30033001 C01
137 MEMBER 30043002 C01
138 MEMBER 10031001 C02
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139 MEMBER 10061005 C02
140 MEMBER 01101003 D11
141 MEMBER 10031006 D12
142 MEMBER 10061004 D12
143 MEMBER 10040120 D13
144 MEMBER 02102003 D21
145 MEMBER 20032004 D22
146 MEMBER 20040220 D23
147 MEMBER 03103003 D31
148 MEMBER 30033004 D32
149 MEMBER 30040320 D33
150 MEMBER 01101001 F11
151 MEMBER 01201002 F11
152 MEMBER 10041002 F11
153 MEMBER 02102001 F21
154 MEMBER 02202002 F21
155 MEMBER 02102005 F22
156 MEMBER 02202005 F22
157 MEMBER 03103001 F31
158 MEMBER 03203002 F31
159 MEMBER 03103005 F32
160 MEMBER 03203005 F32
161 MEMBER 0A1 00A1 L01
162 MEMBER 0A2 00A2 L01
163 MEMBER 0B1 00B1 L01
164 MEMBER 0B2 00B2 L01
165 MEMBER 03A104A1 L04
166 MEMBER 03A204A2 L04
167 MEMBER 03B104B1 L04
168 MEMBER 03B204B2 L04
169 MEMBER 04A105A1 L05
170 MEMBER 04A205A2 L05
171 MEMBER 04B105B1 L05
172 MEMBER 04B205B2 L05
173 MEMBER 00A101A1 L11
174 MEMBER 00A201A2 L11
175 MEMBER 00B101B1 L11
176 MEMBER 00B201B2 L11
177 MEMBER 01A102A1 LA2
178 MEMBER 01A202A2 LA2
179 MEMBER 02A103A1 LA3
180 MEMBER 02A203A2 LA3
181 MEMBER 01B102B1 LB2
182 MEMBER 01B202B2 LB2
183 MEMBER 02B103B1 LB3
184 MEMBER 02B203B2 LB3
185 MEMBER 03A202A1 X2A
186 MEMBER 03A102B1 XAB
187 MEMBER 03B102B2 XB2
188 MEMBER 03B202A2 XBA
189 MEMBER 02A101A2 XX1
190 MEMBER 02A201B2 XX1
191 MEMBER 02B101A1 XX1
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192 MEMBER 02B201B1 XX1
193 *Leg A1
194 MEMBER A101A102 GAP
195 MEMBER A101A103 GAP
196 MEMBER A101A104 GAP
197 MEMBER A101A105 DMYSK 000000000111
198 MEMBER A105 0A1 DM2SK
199 MEMBER A107A105 DMYSK 000000111001
200 MEMBER A107A108 DM2SK 000000000111
201 MEMBER A107A109 DM2SK 000000000111
202 MEMBER A108A110 GAP
203 MEMBER A108A112 GAP
204 MEMBER A109A111 GAP
205 MEMBER A109A113 GAP
206 *Leg A2
207 MEMBER A201A202 GAP
208 MEMBER A201A203 GAP
209 MEMBER A201A204 GAP
210 MEMBER A201A205 DMYSK 000000000111
211 MEMBER A205 0A2 DM2SK
212 MEMBER A207A205 DMYSK 000000111001
213 MEMBER A207A208 DM2SK 000000000111
214 MEMBER A207A209 DM2SK 000000000111
215 MEMBER A208A210 GAP
216 MEMBER A208A212 GAP
217 MEMBER A209A211 GAP
218 MEMBER A209A213 GAP
219 *Leg B1
220 MEMBER B101B102 GAP
221 MEMBER B101B103 GAP
222 MEMBER B101B104 GAP
223 MEMBER B101B105 DMYSK 000000000111
224 MEMBER B105 0B1 DM2SK
225 MEMBER B107B105 DMYSK 000000111001
226 MEMBER B107B108 DM2SK 000000000111
227 MEMBER B107B109 DM2SK 000000000111
228 MEMBER B108B110 GAP
229 MEMBER B108B112 GAP
230 MEMBER B109B111 GAP
231 MEMBER B109B113 GAP
232 *Leg B2
233 MEMBER B201B202 GAP
234 MEMBER B201B203 GAP
235 MEMBER B201B204 GAP
236 MEMBER B201B205 DMYSK 000000000111
237 MEMBER B205 0B2 DM2
238 MEMBER B207B205 DMYSK 000000111001
239 MEMBER B207B208 DM2SK 000000000111
240 MEMBER B207B209 DM2SK 000000000111
241 MEMBER B208B210 GAP
242 MEMBER B208B212 GAP
243 MEMBER B209B211 GAP
244 MEMBER B209B213 GAP
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245

246 JOINT
247 JOINT 0A1 −11.323 11.645−19.800
248 JOINT 0A2 −11.323−11.645−19.800
249 JOINT 0B1 11.323 11.645−19.800
250 JOINT 0B2 11.323−11.645−19.800
251 JOINT 00A1 −11.323 11.645−18.000
252 JOINT 00A2 −11.323−11.645−18.000
253 JOINT 00B1 11.323 11.645−18.000
254 JOINT 00B2 11.323−11.645−18.000
255 JOINT 0110 −4.623−11.578−17.300
256 JOINT 0120 −4.623 11.578−17.300
257 JOINT 01A1 −11.323 11.576−17.300
258 JOINT 01A2 −11.323−11.576−17.300
259 JOINT 01B1 11.259 11.581−17.300
260 JOINT 01B2 11.259−11.581−17.300
261 JOINT 0210 −4.623−10.495 −6.000
262 JOINT 0220 −4.623 10 .495 −6.000
263 JOINT 02A1 −11.323 10 .469 −6.000
264 JOINT 02A2 −11.323−10.469 −6.000
265 JOINT 02B1 10.228 10 .551 −6.000
266 JOINT 02B2 10.228−10.551 −6.000
267 JOINT 0310 −4.623 −9.061 9 .000
268 JOINT 0320 −4.623 9 .061 9 .000
269 JOINT 03A1 −11.323 9 .000 9 .000
270 JOINT 03A2 −11.323 −9.000 9 .000
271 JOINT 03B1 8.859 9 .182 9 .000
272 JOINT 03B2 8.859 −9.182 9 .000
273 JOINT 04A1 −11.323 9 .000 11 .000
274 JOINT 04A2 −11.323 −9.000 11 .000
275 JOINT 04B1 8.677 9 .000 11 .000
276 JOINT 04B2 8.677 −9.000 11 .000
277 JOINT 05A1 −11.323 9 .000 15 .500
278 JOINT 05A2 −11.323 −9.000 15 .500
279 JOINT 05B1 8.677 9 .000 15 .500
280 JOINT 05B2 8.677 −9.000 15 .500
281 JOINT 1001 −11.323 −4.000−17.300
282 JOINT 1002 −11.323 2.100−17.300
283 JOINT 1003 −4.623 −4.061−17.300
284 JOINT 1004 −4.623 2.039−17.300
285 JOINT 1005 −11.323 −1.800−17.300
286 JOINT 1006 −4.623 −1.861−17.300
287 JOINT 2001 −11.323 −4.000 −6.000
288 JOINT 2002 −11.323 2 .100 −6.000
289 JOINT 2003 −4.623 −4.061 −6.000
290 JOINT 2004 −4.623 2 .039 −6.000
291 JOINT 2005 10.228 0 .000 −6.000
292 JOINT 3001 −11.323 −4.000 9 .000
293 JOINT 3002 −11.323 2 .100 9 .000
294 JOINT 3003 −4.623 −4.061 9 .000
295 JOINT 3004 −4.623 2 .039 9 .000
296 JOINT 3005 8 .859 0 .000 9 .000
297 * l e g A1
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298 JOINT A101 −11.323 11.645−24.751
299 JOINT A102 −11.323 11.645−34.000 001111
300 JOINT A103 −21.323 11.645−24.751 100111
301 JOINT A104 −11.323 1.645−24.751 010111
302 JOINT A105 −11.323 11.645−24.750
303 JOINT A107 −11.322 11.645−24.750
304 JOINT A108 −11.322 11.645−24.650
305 JOINT A109 −11.322 11.645−24.850
306 JOINT A110 −1.322 11.645−24.650 100111
307 JOINT A111 −1.322 11.645−24.850 100111
308 JOINT A112 −11.322 21.645−24.650 010111
309 JOINT A113 −11.322 21.645−24.850 010111
310 *Leg A2
311 JOINT A201 −11.323−11.645−24.751
312 JOINT A202 −11.323−11.645−34.000 001111
313 JOINT A203 −21.323−11.645−24.751 100111
314 JOINT A204 −11.323−21.645−24.751 010111
315 JOINT A205 −11.323−11.645−24.750
316 JOINT A207 −11.322−11.645−24.750
317 JOINT A208 −11.322−11.645−24.650
318 JOINT A209 −11.322−11.645−24.850
319 JOINT A210 −1.322−11.645−24.650 100111
320 JOINT A211 −1.322−11.645−24.850 100111
321 JOINT A212 −11.322 −1.645−24.650 010111
322 JOINT A213 −11.322 −1.645−24.850 010111
323 *Leg B1
324 JOINT B101 11.323 11.645−24.751
325 JOINT B102 11.323 11.645−34.000 001111
326 JOINT B103 1 .323 11.645−24.751 100111
327 JOINT B104 11.323 1.645−24.751 010111
328 JOINT B105 11.323 11.645−24.750
329 JOINT B107 11.324 11.645−24.750
330 JOINT B108 11.324 11.645−24.650
331 JOINT B109 11.324 11.645−24.850
332 JOINT B110 21.324 11.645−24.650 100111
333 JOINT B111 21.324 11.645−24.850 100111
334 JOINT B112 11.324 21.645−24.650 010111
335 JOINT B113 11.324 21.645−24.850 010111
336 *Leg B2
337 JOINT B201 11.323−11.645−24.751
338 JOINT B202 11.323−11.645−34.000 001111
339 JOINT B203 1.323−11.645−24.751 100111
340 JOINT B204 11.323−21.645−24.751 010111
341 JOINT B205 11.323−11.645−24.750
342 JOINT B207 11.324−11.645−24.750
343 JOINT B208 11.324−11.645−24.650
344 JOINT B209 11.324−11.645−24.850
345 JOINT B210 21.324−11.645−24.650 100111
346 JOINT B211 21.324−11.645−24.850 100111
347 JOINT B212 11.324 −1.645−24.650 010111
348 JOINT B213 11.324 −1.645−24.850 010111
349

350 LOAD
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351 LOADCNTOPS
352 LOAD 05A1 −2500. GLOB JOIN

1
353 LOAD 05B1 −2500. GLOB JOIN

1
354 LOAD 05A2 −2500. GLOB JOIN

1
355 LOAD 05B2 −2500. GLOB JOIN

1
356 * Topside weight o f 10000 kN ( assumed )
357

358 *Leg A1
359 LOADCNA1D3
360 LOAD X A101A103 0.0−90000. MEMB CONC

DUMMY
361 LOAD X A103A101 0 .0 90000 . MEMB CONC

DUMMY
362 LOADCNA1D2
363 LOAD X A101A102 0.0−90000. MEMB CONC

DUMMY
364 LOAD X A102A101 0 .0 90000 . MEMB CONC

DUMMY
365 LOADCNA1D4
366 LOAD X A101A104 0.0−90000. MEMB CONC

DUMMY
367 LOAD X A104A101 0 .0 90000 . MEMB CONC

DUMMY
368 LOADCNA1D6
369 LOAD X A108A110 0.0−90000. MEMB CONC

DUMMY
370 LOAD X A110A108 0 .0 90000 . MEMB CONC

DUMMY
371 LOADCNA1D7
372 LOAD X A109A111 0.0−90000. MEMB CONC

DUMMY
373 LOAD X A111A109 0 .0 90000 . MEMB CONC

DUMMY
374 LOADCNA1D8
375 LOAD X A108A112 0.0−90000. MEMB CONC

DUMMY
376 LOAD X A112A108 0 .0 90000 . MEMB CONC

DUMMY
377 LOADCNA1D9
378 LOAD X A109A113 0.0−90000. MEMB CONC

DUMMY
379 LOAD X A113A109 0 .0 90000 . MEMB CONC

DUMMY
380 *Leg A2
381 LOADCNA2D3
382 LOAD X A201A203 0.0−90000. MEMB CONC

DUMMY
383 LOAD X A203A201 0 .0 90000 . MEMB CONC

DUMMY
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384 LOADCNA2D2
385 LOAD X A201A202 0.0−90000. MEMB CONC

DUMMY
386 LOAD X A202A201 0 .0 90000 . MEMB CONC

DUMMY
387 LOADCNA2D4
388 LOAD X A201A204 0.0−90000. MEMB CONC

DUMMY
389 LOAD X A204A201 0 .0 90000 . MEMB CONC

DUMMY
390 LOADCNA2D6
391 LOAD X A208A210 0.0−90000. MEMB CONC

DUMMY
392 LOAD X A210A208 0 .0 90000 . MEMB CONC

DUMMY
393 LOADCNA2D7
394 LOAD X A209A211 0.0−90000. MEMB CONC

DUMMY
395 LOAD X A211A209 0 .0 90000 . MEMB CONC

DUMMY
396 LOADCNA2D8
397 LOAD X A208A212 0.0−90000. MEMB CONC

DUMMY
398 LOAD X A212A208 0 .0 90000 . MEMB CONC

DUMMY
399 LOADCNA2D9
400 LOAD X A209A213 0.0−90000. MEMB CONC

DUMMY
401 LOAD X A213A209 0 .0 90000 . MEMB CONC

DUMMY
402 *Leg B1
403 LOADCNB1D3
404 LOAD X B101B103 0.0−90000. MEMB CONC

DUMMY
405 LOAD X B103B101 0 .0 90000 . MEMB CONC

DUMMY
406 LOADCNB1D2
407 LOAD X B101B102 0.0−90000. MEMB CONC

DUMMY
408 LOAD X B102B101 0 .0 90000 . MEMB CONC

DUMMY
409 LOADCNB1D4
410 LOAD X B101B104 0.0−90000. MEMB CONC

DUMMY
411 LOAD X B104B101 0 .0 90000 . MEMB CONC

DUMMY
412 LOADCNB1D6
413 LOAD X B108B110 0.0−90000. MEMB CONC

DUMMY
414 LOAD X B110B108 0 .0 90000 . MEMB CONC

DUMMY
415 LOADCNB1D7
416 LOAD X B109B111 0.0−90000. MEMB CONC
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DUMMY
417 LOAD X B111B109 0 .0 90000 . MEMB CONC

DUMMY
418 LOADCNB1D8
419 LOAD X B108B112 0.0−90000. MEMB CONC

DUMMY
420 LOAD X B112B108 0 .0 90000 . MEMB CONC

DUMMY
421 LOADCNB1D9
422 LOAD X B109B113 0.0−90000. MEMB CONC

DUMMY
423 LOAD X B113B109 0 .0 90000 . MEMB CONC

DUMMY
424 *Leg B2
425 LOADCNB2D3
426 LOAD X B201B203 0.0−90000. MEMB CONC

DUMMY
427 LOAD X B203B201 0 .0 90000 . MEMB CONC

DUMMY
428 LOADCNB2D2
429 LOAD X B201B202 0.0−90000. MEMB CONC

DUMMY
430 LOAD X B202B201 0 .0 90000 . MEMB CONC

DUMMY
431 LOADCNB2D4
432 LOAD X B201B204 0.0−90000. MEMB CONC

DUMMY
433 LOAD X B204B201 0 .0 90000 . MEMB CONC

DUMMY
434 LOADCNB2D6
435 LOAD X B208B210 0.0−90000. MEMB CONC

DUMMY
436 LOAD X B210B208 0 .0 90000 . MEMB CONC

DUMMY
437 LOADCNB2D7
438 LOAD X B209B211 0.0−90000. MEMB CONC

DUMMY
439 LOAD X B211B209 0 .0 90000 . MEMB CONC

DUMMY
440 LOADCNB2D8
441 LOAD X B208B212 0.0−90000. MEMB CONC

DUMMY
442 LOAD X B212B208 0 .0 90000 . MEMB CONC

DUMMY
443 LOADCNB2D9
444 LOAD X B209B213 0.0−90000. MEMB CONC

DUMMY
445 LOAD X B213B209 0 .0 90000 . MEMB CONC

DUMMY
446 LOADCN FH
447 LOAD 03A2 2000 . GLOB JOIN

1
448 END



128 MatLab and SACS code

Gap Element file

1 GAPOPT 5 4 1 MN 600 PFG
2 LCSEL FH TOPS W SW WSW
3 LCOMB LC1 FH 1 .
4 LCOMB LC2 W 1 .TOPS 1 .
5 LCOMB LC3 SW 1 .TOPS 1 .
6 LCOMB LC4 WSW 1 .TOPS 1 .
7 *Leg A1
8 * v e r t i c a l sp r ing
9 GAPELM A101 A102 A1D2 FD

10 F−DEL −20000. −3.29 −14000. −1.95 −11500. −1.42
−9000. −0.96

11 F−DEL −7000. −0.62 −6000. −0.47 −5200. −0.37
−4700. −0.31

12 F−DEL −4100. −0.245 −3600. −0.19 −3000. −0.14
−2700. −0.12

13 F−DEL −2200. −0.0866 −1600. −0.0543 −1000. −0.0274
0 . 0 .

14 F−DEL 794 .3 0 .0135 1511 . 0 .0270 2136 . 0 .0405
2671 . 0 .054

15 F−DEL 3124 . 0 .0677 3218 . 0 .071 3307 . 0 .0745
3350 . 0 .076

16 F−DEL 3383 . 0 .0775
17 * h o r i z o n t a l x
18 GAPELM A101 A103 A1D3 FD
19 F−DEL −10000. −2.23 −8000. −1.56 −6600. −1.11

−5700. −0.83
20 F−DEL −5000. −0.64 −4300. −0.44 −3800. −0.32

−3400. −0.24
21 F−DEL −3000. −0.17 −2500. −0.11 −2100. −0.076

−1700. −0.0475
22 F−DEL −1400. −0.0325 −1100. −0.024 −600. −0.0105

0 . 0 .
23 F−DEL 600 . 0 .0105 1100 . 0 .024 1400 . 0 .0325

1700 . 0 .0475
24 F−DEL 2100 . 0 .076 2500 . 0 .11 3000 . 0 .17

3400 . 0 .24
25 F−DEL 3800 . 0 .32 4300 . 0 .44 5000 . 0 .64

5700 . 0 .83
26 F−DEL 6600 . 1 .11 8000 . 1 .56 10000 . 2 .23
27 * h o r i z o n t a l y
28 GAPELM A101 A104 A1D4 FD
29 F−DEL −10000. −2.23 −8000. −1.56 −6600. −1.11

−5700. −0.83
30 F−DEL −5000. −0.64 −4300. −0.44 −3800. −0.32

−3400. −0.24
31 F−DEL −3000. −0.17 −2500. −0.11 −2100. −0.076

−1700. −0.0475
32 F−DEL −1400. −0.0325 −1100. −0.024 −600. −0.0105

0 . 0 .
33 F−DEL 600 . 0 .0105 1100 . 0 .024 1400 . 0 .0325

1700 . 0 .0475



F.2 SACS code 129

34 F−DEL 2100 . 0 .076 2500 . 0 .11 3000 . 0 .17
3400 . 0 .24

35 F−DEL 3800 . 0 .32 4300 . 0 .44 5000 . 0 .64
5700 . 0 .83

36 F−DEL 6600 . 1 .11 8000 . 1 .56 10000 . 2 .23
37 * moment y ( r o t a t i o n a l s t i f f n e s s for CoR = 134.42−4.11*15.04 = 72 .6

GNm/rad
38 * With moment arm o f 0 . 2 m t h i s g i v e s Kh = Kr*2/0.2ˆ2= 3630 GN/m
39 GAPELM A108 A110 A1D6 FD
40 F−DEL −60000. −0.00989 −55000. −0.00797 −44500. −0.00455

−40000. −0.00343
41 F−DEL −35000. −0.00247 −31000. −0.00184 −29000. −0.00162

−27500. −0.00143
42 F−DEL −23500. −0.00112 −20000.−0.000854 −16000.−0.000635

−13000. −0.00048
43 F−DEL −10000.−0.000343 −7500.−0.000243 −2500.−0.000077

0 . 0 .
44 F−DEL 2500 .0 .0000767 7500 .0 .0002425 10000 . 0 .000343

13000 . 0 .00048
45 F−DEL 16000 .0 .0006345 20000 . 0 .000854 23500 . 0 .00112

27500 . 0 .00143
46 F−DEL 29000 . 0 .00162 31000 . 0 .00184 35000 . 0 .00247

40000 . 0 .00343
47 F−DEL 44500 . 0 .00455 55000 . 0 .00797 60000 . 0 .00989
48 * moment y
49 GAPELM A109 A111 A1D7 FD
50 F−DEL −60000. −0.00989 −55000. −0.00797 −44500. −0.00455

−40000. −0.00343
51 F−DEL −35000. −0.00247 −31000. −0.00184 −29000. −0.00162

−27500. −0.00143
52 F−DEL −23500. −0.00112 −20000.−0.000854 −16000.−0.000635

−13000. −0.00048
53 F−DEL −10000.−0.000343 −7500.−0.000243 −2500.−0.000077

0 . 0 .
54 F−DEL 2500 .0 .0000767 7500 .0 .0002425 10000 . 0 .000343

13000 . 0 .00048
55 F−DEL 16000 .0 .0006345 20000 . 0 .000854 23500 . 0 .00112

27500 . 0 .00143
56 F−DEL 29000 . 0 .00162 31000 . 0 .00184 35000 . 0 .00247

40000 . 0 .00343
57 F−DEL 44500 . 0 .00455 55000 . 0 .00797 60000 . 0 .00989
58 * moment x
59 GAPELM A108 A112 A1D8 FD
60 F−DEL −60000. −0.00989 −55000. −0.00797 −44500. −0.00455

−40000. −0.00343
61 F−DEL −35000. −0.00247 −31000. −0.00184 −29000. −0.00162

−27500. −0.00143
62 F−DEL −23500. −0.00112 −20000.−0.000854 −16000.−0.000635

−13000. −0.00048
63 F−DEL −10000.−0.000343 −7500.−0.000243 −2500.−0.000077

0 . 0 .
64 F−DEL 2500 .0 .0000767 7500 .0 .0002425 10000 . 0 .000343

13000 . 0 .00048
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65 F−DEL 16000 .0 .0006345 20000 . 0 .000854 23500 . 0 .00112
27500 . 0 .00143

66 F−DEL 29000 . 0 .00162 31000 . 0 .00184 35000 . 0 .00247
40000 . 0 .00343

67 F−DEL 44500 . 0 .00455 55000 . 0 .00797 60000 . 0 .00989
68 * moment x
69 GAPELM A109 A113 A1D9 FD
70 F−DEL −60000. −0.00989 −55000. −0.00797 −44500. −0.00455

−40000. −0.00343
71 F−DEL −35000. −0.00247 −31000. −0.00184 −29000. −0.00162

−27500. −0.00143
72 F−DEL −23500. −0.00112 −20000.−0.000854 −16000.−0.000635

−13000. −0.00048
73 F−DEL −10000.−0.000343 −7500.−0.000243 −2500.−0.000077

0 . 0 .
74 F−DEL 2500 .0 .0000767 7500 .0 .0002425 10000 . 0 .000343

13000 . 0 .00048
75 F−DEL 16000 .0 .0006345 20000 . 0 .000854 23500 . 0 .00112

27500 . 0 .00143
76 F−DEL 29000 . 0 .00162 31000 . 0 .00184 35000 . 0 .00247

40000 . 0 .00343
77 F−DEL 44500 . 0 .00455 55000 . 0 .00797 60000 . 0 .00989
78 *Leg A2
79 * v e r t i c a l sp r ing
80 GAPELM A201 A202 A2D2 FD
81 F−DEL −20000. −3.29 −14000. −1.95 −11500. −1.42

−9000. −0.96
82 F−DEL −7000. −0.62 −6000. −0.47 −5200. −0.37

−4700. −0.31
83 F−DEL −4100. −0.245 −3600. −0.19 −3000. −0.14

−2700. −0.12
84 F−DEL −2200. −0.0866 −1600. −0.0543 −1000. −0.0274

0 . 0 .
85 F−DEL 794 .3 0 .0135 1511 . 0 .0270 2136 . 0 .0405

2671 . 0 .054
86 F−DEL 3124 . 0 .0677 3218 . 0 .071 3307 . 0 .0745

3350 . 0 .076
87 F−DEL 3383 . 0 .0775
88 * h o r i z o n t a l x
89 GAPELM A201 A203 A2D3 FD
90 F−DEL −10000. −2.23 −8000. −1.56 −6600. −1.11

−5700. −0.83
91 F−DEL −5000. −0.64 −4300. −0.44 −3800. −0.32

−3400. −0.24
92 F−DEL −3000. −0.17 −2500. −0.11 −2100. −0.076

−1700. −0.0475
93 F−DEL −1400. −0.0325 −1100. −0.024 −600. −0.0105

0 . 0 .
94 F−DEL 600 . 0 .0105 1100 . 0 .024 1400 . 0 .0325

1700 . 0 .0475
95 F−DEL 2100 . 0 .076 2500 . 0 .11 3000 . 0 .17

3400 . 0 .24
96 F−DEL 3800 . 0 .32 4300 . 0 .44 5000 . 0 .64
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5700 . 0 .83
97 F−DEL 6600 . 1 .11 8000 . 1 .56 10000 . 2 .23
98 * h o r i z o n t a l y
99 GAPELM A201 A204 A2D4 FD

100 F−DEL −10000. −2.23 −8000. −1.56 −6600. −1.11
−5700. −0.83

101 F−DEL −5000. −0.64 −4300. −0.44 −3800. −0.32
−3400. −0.24

102 F−DEL −3000. −0.17 −2500. −0.11 −2100. −0.076
−1700. −0.0475

103 F−DEL −1400. −0.0325 −1100. −0.024 −600. −0.0105
0 . 0 .

104 F−DEL 600 . 0 .0105 1100 . 0 .024 1400 . 0 .0325
1700 . 0 .0475

105 F−DEL 2100 . 0 .076 2500 . 0 .11 3000 . 0 .17
3400 . 0 .24

106 F−DEL 3800 . 0 .32 4300 . 0 .44 5000 . 0 .64
5700 . 0 .83

107 F−DEL 6600 . 1 .11 8000 . 1 .56 10000 . 2 .23
108 * moment y ( r o t a t i o n a l s t i f f n e s s for CoR = 134.42−4.11*15.04 = 72 .6

GNm/rad
109 * With moment arm of 0 . 2 m t h i s g i v e s Kh = Kr*2/0.2ˆ2= 3630 GN/m
110 GAPELM A208 A210 A2D6 FD
111 F−DEL −60000. −0.00989 −55000. −0.00797 −44500. −0.00455

−40000. −0.00343
112 F−DEL −35000. −0.00247 −31000. −0.00184 −29000. −0.00162

−27500. −0.00143
113 F−DEL −23500. −0.00112 −20000.−0.000854 −16000.−0.000635

−13000. −0.00048
114 F−DEL −10000.−0.000343 −7500.−0.000243 −2500.−0.000077

0 . 0 .
115 F−DEL 2500 .0 .0000767 7500 .0 .0002425 10000 . 0 .000343

13000 . 0 .00048
116 F−DEL 16000 .0 .0006345 20000 . 0 .000854 23500 . 0 .00112

27500 . 0 .00143
117 F−DEL 29000 . 0 .00162 31000 . 0 .00184 35000 . 0 .00247

40000 . 0 .00343
118 F−DEL 44500 . 0 .00455 55000 . 0 .00797 60000 . 0 .00989
119 * moment y
120 GAPELM A209 A211 A2D7 FD
121 F−DEL −60000. −0.00989 −55000. −0.00797 −44500. −0.00455

−40000. −0.00343
122 F−DEL −35000. −0.00247 −31000. −0.00184 −29000. −0.00162

−27500. −0.00143
123 F−DEL −23500. −0.00112 −20000.−0.000854 −16000.−0.000635

−13000. −0.00048
124 F−DEL −10000.−0.000343 −7500.−0.000243 −2500.−0.000077

0 . 0 .
125 F−DEL 2500 .0 .0000767 7500 .0 .0002425 10000 . 0 .000343

13000 . 0 .00048
126 F−DEL 16000 .0 .0006345 20000 . 0 .000854 23500 . 0 .00112

27500 . 0 .00143
127 F−DEL 29000 . 0 .00162 31000 . 0 .00184 35000 . 0 .00247
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40000 . 0 .00343
128 F−DEL 44500 . 0 .00455 55000 . 0 .00797 60000 . 0 .00989
129 * moment x
130 GAPELM A208 A212 A2D8 FD
131 F−DEL −60000. −0.00989 −55000. −0.00797 −44500. −0.00455

−40000. −0.00343
132 F−DEL −35000. −0.00247 −31000. −0.00184 −29000. −0.00162

−27500. −0.00143
133 F−DEL −23500. −0.00112 −20000.−0.000854 −16000.−0.000635

−13000. −0.00048
134 F−DEL −10000.−0.000343 −7500.−0.000243 −2500.−0.000077

0 . 0 .
135 F−DEL 2500 .0 .0000767 7500 .0 .0002425 10000 . 0 .000343

13000 . 0 .00048
136 F−DEL 16000 .0 .0006345 20000 . 0 .000854 23500 . 0 .00112

27500 . 0 .00143
137 F−DEL 29000 . 0 .00162 31000 . 0 .00184 35000 . 0 .00247

40000 . 0 .00343
138 F−DEL 44500 . 0 .00455 55000 . 0 .00797 60000 . 0 .00989
139 * moment x
140 GAPELM A209 A213 A2D9 FD
141 F−DEL −60000. −0.00989 −55000. −0.00797 −44500. −0.00455

−40000. −0.00343
142 F−DEL −35000. −0.00247 −31000. −0.00184 −29000. −0.00162

−27500. −0.00143
143 F−DEL −23500. −0.00112 −20000.−0.000854 −16000.−0.000635

−13000. −0.00048
144 F−DEL −10000.−0.000343 −7500.−0.000243 −2500.−0.000077

0 . 0 .
145 F−DEL 2500 .0 .0000767 7500 .0 .0002425 10000 . 0 .000343

13000 . 0 .00048
146 F−DEL 16000 .0 .0006345 20000 . 0 .000854 23500 . 0 .00112

27500 . 0 .00143
147 F−DEL 29000 . 0 .00162 31000 . 0 .00184 35000 . 0 .00247

40000 . 0 .00343
148 F−DEL 44500 . 0 .00455 55000 . 0 .00797 60000 . 0 .00989
149 *Leg B1
150 * v e r t i c a l sp r ing
151 GAPELM B101 B102 B1D2 FD
152 F−DEL −20000. −3.29 −14000. −1.95 −11500. −1.42

−9000. −0.96
153 F−DEL −7000. −0.62 −6000. −0.47 −5200. −0.37

−4700. −0.31
154 F−DEL −4100. −0.245 −3600. −0.19 −3000. −0.14

−2700. −0.12
155 F−DEL −2200. −0.0866 −1600. −0.0543 −1000. −0.0274

0 . 0 .
156 F−DEL 794 .3 0 .0135 1511 . 0 .0270 2136 . 0 .0405

2671 . 0 .054
157 F−DEL 3124 . 0 .0677 3218 . 0 .071 3307 . 0 .0745

3350 . 0 .076
158 F−DEL 3383 . 0 .0775
159 * h o r i z o n t a l x
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160 GAPELM B101 B103 B1D3 FD
161 F−DEL −10000. −2.23 −8000. −1.56 −6600. −1.11

−5700. −0.83
162 F−DEL −5000. −0.64 −4300. −0.44 −3800. −0.32

−3400. −0.24
163 F−DEL −3000. −0.17 −2500. −0.11 −2100. −0.076

−1700. −0.0475
164 F−DEL −1400. −0.0325 −1100. −0.024 −600. −0.0105

0 . 0 .
165 F−DEL 600 . 0 .0105 1100 . 0 .024 1400 . 0 .0325

1700 . 0 .0475
166 F−DEL 2100 . 0 .076 2500 . 0 .11 3000 . 0 .17

3400 . 0 .24
167 F−DEL 3800 . 0 .32 4300 . 0 .44 5000 . 0 .64

5700 . 0 .83
168 F−DEL 6600 . 1 .11 8000 . 1 .56 10000 . 2 .23
169 * h o r i z o n t a l y
170 GAPELM B101 B104 B1D4 FD
171 F−DEL −10000. −2.23 −8000. −1.56 −6600. −1.11

−5700. −0.83
172 F−DEL −5000. −0.64 −4300. −0.44 −3800. −0.32

−3400. −0.24
173 F−DEL −3000. −0.17 −2500. −0.11 −2100. −0.076

−1700. −0.0475
174 F−DEL −1400. −0.0325 −1100. −0.024 −600. −0.0105

0 . 0 .
175 F−DEL 600 . 0 .0105 1100 . 0 .024 1400 . 0 .0325

1700 . 0 .0475
176 F−DEL 2100 . 0 .076 2500 . 0 .11 3000 . 0 .17

3400 . 0 .24
177 F−DEL 3800 . 0 .32 4300 . 0 .44 5000 . 0 .64

5700 . 0 .83
178 F−DEL 6600 . 1 .11 8000 . 1 .56 10000 . 2 .23
179 * moment y ( r o t a t i o n a l s t i f f n e s s for CoR = 134.42−4.11*15.04 = 72 .6

GNm/rad
180 * With moment arm of 0 . 2 m t h i s g i v e s Kh = Kr*2/0.2ˆ2= 3630 GN/m
181 GAPELM B108 B110 B1D6 FD
182 F−DEL −60000. −0.00989 −55000. −0.00797 −44500. −0.00455

−40000. −0.00343
183 F−DEL −35000. −0.00247 −31000. −0.00184 −29000. −0.00162

−27500. −0.00143
184 F−DEL −23500. −0.00112 −20000.−0.000854 −16000.−0.000635

−13000. −0.00048
185 F−DEL −10000.−0.000343 −7500.−0.000243 −2500.−0.000077

0 . 0 .
186 F−DEL 2500 .0 .0000767 7500 .0 .0002425 10000 . 0 .000343

13000 . 0 .00048
187 F−DEL 16000 .0 .0006345 20000 . 0 .000854 23500 . 0 .00112

27500 . 0 .00143
188 F−DEL 29000 . 0 .00162 31000 . 0 .00184 35000 . 0 .00247

40000 . 0 .00343
189 F−DEL 44500 . 0 .00455 55000 . 0 .00797 60000 . 0 .00989
190 * moment y
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191 GAPELM B109 B111 B1D7 FD
192 F−DEL −60000. −0.00989 −55000. −0.00797 −44500. −0.00455

−40000. −0.00343
193 F−DEL −35000. −0.00247 −31000. −0.00184 −29000. −0.00162

−27500. −0.00143
194 F−DEL −23500. −0.00112 −20000.−0.000854 −16000.−0.000635

−13000. −0.00048
195 F−DEL −10000.−0.000343 −7500.−0.000243 −2500.−0.000077

0 . 0 .
196 F−DEL 2500 .0 .0000767 7500 .0 .0002425 10000 . 0 .000343

13000 . 0 .00048
197 F−DEL 16000 .0 .0006345 20000 . 0 .000854 23500 . 0 .00112

27500 . 0 .00143
198 F−DEL 29000 . 0 .00162 31000 . 0 .00184 35000 . 0 .00247

40000 . 0 .00343
199 F−DEL 44500 . 0 .00455 55000 . 0 .00797 60000 . 0 .00989
200 * moment x
201 GAPELM B108 B112 B1D8 FD
202 F−DEL −60000. −0.00989 −55000. −0.00797 −44500. −0.00455

−40000. −0.00343
203 F−DEL −35000. −0.00247 −31000. −0.00184 −29000. −0.00162

−27500. −0.00143
204 F−DEL −23500. −0.00112 −20000.−0.000854 −16000.−0.000635

−13000. −0.00048
205 F−DEL −10000.−0.000343 −7500.−0.000243 −2500.−0.000077

0 . 0 .
206 F−DEL 2500 .0 .0000767 7500 .0 .0002425 10000 . 0 .000343

13000 . 0 .00048
207 F−DEL 16000 .0 .0006345 20000 . 0 .000854 23500 . 0 .00112

27500 . 0 .00143
208 F−DEL 29000 . 0 .00162 31000 . 0 .00184 35000 . 0 .00247

40000 . 0 .00343
209 F−DEL 44500 . 0 .00455 55000 . 0 .00797 60000 . 0 .00989
210 * moment x
211 GAPELM B109 B113 B1D9 FD
212 F−DEL −60000. −0.00989 −55000. −0.00797 −44500. −0.00455

−40000. −0.00343
213 F−DEL −35000. −0.00247 −31000. −0.00184 −29000. −0.00162

−27500. −0.00143
214 F−DEL −23500. −0.00112 −20000.−0.000854 −16000.−0.000635

−13000. −0.00048
215 F−DEL −10000.−0.000343 −7500.−0.000243 −2500.−0.000077

0 . 0 .
216 F−DEL 2500 .0 .0000767 7500 .0 .0002425 10000 . 0 .000343

13000 . 0 .00048
217 F−DEL 16000 .0 .0006345 20000 . 0 .000854 23500 . 0 .00112

27500 . 0 .00143
218 F−DEL 29000 . 0 .00162 31000 . 0 .00184 35000 . 0 .00247

40000 . 0 .00343
219 F−DEL 44500 . 0 .00455 55000 . 0 .00797 60000 . 0 .00989
220 *Leg B2
221 * v e r t i c a l sp r ing
222 GAPELM B201 B202 B2D2 FD
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223 F−DEL −20000. −3.29 −14000. −1.95 −11500. −1.42
−9000. −0.96

224 F−DEL −7000. −0.62 −6000. −0.47 −5200. −0.37
−4700. −0.31

225 F−DEL −4100. −0.245 −3600. −0.19 −3000. −0.14
−2700. −0.12

226 F−DEL −2200. −0.0866 −1600. −0.0543 −1000. −0.0274
0 . 0 .

227 F−DEL 794 .3 0 .0135 1511 . 0 .0270 2136 . 0 .0405
2671 . 0 .054

228 F−DEL 3124 . 0 .0677 3218 . 0 .071 3307 . 0 .0745
3350 . 0 .076

229 F−DEL 3383 . 0 .0775
230 * h o r i z o n t a l x
231 GAPELM B201 B203 B2D3 FD
232 F−DEL −10000. −2.23 −8000. −1.56 −6600. −1.11

−5700. −0.83
233 F−DEL −5000. −0.64 −4300. −0.44 −3800. −0.32

−3400. −0.24
234 F−DEL −3000. −0.17 −2500. −0.11 −2100. −0.076

−1700. −0.0475
235 F−DEL −1400. −0.0325 −1100. −0.024 −600. −0.0105

0 . 0 .
236 F−DEL 600 . 0 .0105 1100 . 0 .024 1400 . 0 .0325

1700 . 0 .0475
237 F−DEL 2100 . 0 .076 2500 . 0 .11 3000 . 0 .17

3400 . 0 .24
238 F−DEL 3800 . 0 .32 4300 . 0 .44 5000 . 0 .64

5700 . 0 .83
239 F−DEL 6600 . 1 .11 8000 . 1 .56 10000 . 2 .23
240 * h o r i z o n t a l y
241 GAPELM B201 B204 B2D4 FD
242 F−DEL −10000. −2.23 −8000. −1.56 −6600. −1.11

−5700. −0.83
243 F−DEL −5000. −0.64 −4300. −0.44 −3800. −0.32

−3400. −0.24
244 F−DEL −3000. −0.17 −2500. −0.11 −2100. −0.076

−1700. −0.0475
245 F−DEL −1400. −0.0325 −1100. −0.024 −600. −0.0105

0 . 0 .
246 F−DEL 600 . 0 .0105 1100 . 0 .024 1400 . 0 .0325

1700 . 0 .0475
247 F−DEL 2100 . 0 .076 2500 . 0 .11 3000 . 0 .17

3400 . 0 .24
248 F−DEL 3800 . 0 .32 4300 . 0 .44 5000 . 0 .64

5700 . 0 .83
249 F−DEL 6600 . 1 .11 8000 . 1 .56 10000 . 2 .23
250 * moment y ( r o t a t i o n a l s t i f f n e s s for CoR = 134.42−4.11*15.04 = 72 .6

GNm/rad
251 * With moment arm of 0 . 2 m t h i s g i v e s Kh = Kr*2/0.2ˆ2= 3630 GN/m
252 GAPELM B208 B210 B2D6 FD
253 F−DEL −60000. −0.00989 −55000. −0.00797 −44500. −0.00455

−40000. −0.00343
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254 F−DEL −35000. −0.00247 −31000. −0.00184 −29000. −0.00162
−27500. −0.00143

255 F−DEL −23500. −0.00112 −20000.−0.000854 −16000.−0.000635
−13000. −0.00048

256 F−DEL −10000.−0.000343 −7500.−0.000243 −2500.−0.000077
0 . 0 .

257 F−DEL 2500 .0 .0000767 7500 .0 .0002425 10000 . 0 .000343
13000 . 0 .00048

258 F−DEL 16000 .0 .0006345 20000 . 0 .000854 23500 . 0 .00112
27500 . 0 .00143

259 F−DEL 29000 . 0 .00162 31000 . 0 .00184 35000 . 0 .00247
40000 . 0 .00343

260 F−DEL 44500 . 0 .00455 55000 . 0 .00797 60000 . 0 .00989
261 * moment y
262 GAPELM B209 B211 B2D7 FD
263 F−DEL −60000. −0.00989 −55000. −0.00797 −44500. −0.00455

−40000. −0.00343
264 F−DEL −35000. −0.00247 −31000. −0.00184 −29000. −0.00162

−27500. −0.00143
265 F−DEL −23500. −0.00112 −20000.−0.000854 −16000.−0.000635

−13000. −0.00048
266 F−DEL −10000.−0.000343 −7500.−0.000243 −2500.−0.000077

0 . 0 .
267 F−DEL 2500 .0 .0000767 7500 .0 .0002425 10000 . 0 .000343

13000 . 0 .00048
268 F−DEL 16000 .0 .0006345 20000 . 0 .000854 23500 . 0 .00112

27500 . 0 .00143
269 F−DEL 29000 . 0 .00162 31000 . 0 .00184 35000 . 0 .00247

40000 . 0 .00343
270 F−DEL 44500 . 0 .00455 55000 . 0 .00797 60000 . 0 .00989
271 * moment x
272 GAPELM B208 B212 B2D8 FD
273 F−DEL −60000. −0.00989 −55000. −0.00797 −44500. −0.00455

−40000. −0.00343
274 F−DEL −35000. −0.00247 −31000. −0.00184 −29000. −0.00162

−27500. −0.00143
275 F−DEL −23500. −0.00112 −20000.−0.000854 −16000.−0.000635

−13000. −0.00048
276 F−DEL −10000.−0.000343 −7500.−0.000243 −2500.−0.000077

0 . 0 .
277 F−DEL 2500 .0 .0000767 7500 .0 .0002425 10000 . 0 .000343

13000 . 0 .00048
278 F−DEL 16000 .0 .0006345 20000 . 0 .000854 23500 . 0 .00112

27500 . 0 .00143
279 F−DEL 29000 . 0 .00162 31000 . 0 .00184 35000 . 0 .00247

40000 . 0 .00343
280 F−DEL 44500 . 0 .00455 55000 . 0 .00797 60000 . 0 .00989
281 * moment x
282 GAPELM B209 B213 B2D9 FD
283 F−DEL −60000. −0.00989 −55000. −0.00797 −44500. −0.00455

−40000. −0.00343
284 F−DEL −35000. −0.00247 −31000. −0.00184 −29000. −0.00162

−27500. −0.00143
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285 F−DEL −23500. −0.00112 −20000.−0.000854 −16000.−0.000635
−13000. −0.00048

286 F−DEL −10000.−0.000343 −7500.−0.000243 −2500.−0.000077
0 . 0 .

287 F−DEL 2500 .0 .0000767 7500 .0 .0002425 10000 . 0 .000343
13000 . 0 .00048

288 F−DEL 16000 .0 .0006345 20000 . 0 .000854 23500 . 0 .00112
27500 . 0 .00143

289 F−DEL 29000 . 0 .00162 31000 . 0 .00184 35000 . 0 .00247
40000 . 0 .00343

290 F−DEL 44500 . 0 .00455 55000 . 0 .00797 60000 . 0 .00989
291 END

Superelement Input file

1 SUBOPT INP MN
2 STFHEAD A105A105 +1.
3 STFR FX
4 STFR FY
5 STFR FZ
6 STFR MX
7 STFR MY
8 STFR MZ 50.12 e6
9 STFHEAD A205A205 +1.

10 STFR FX
11 STFR FY
12 STFR FZ
13 STFR MX
14 STFR MY
15 STFR MZ 50.12 e6
16 STFHEAD B105B105 +1.
17 STFR FX
18 STFR FY
19 STFR FZ
20 STFR MX
21 STFR MY
22 STFR MZ 50.12 e6
23 STFHEAD B205B205 +1.
24 STFR FX
25 STFR FY
26 STFR FZ
27 STFR MX
28 STFR MY
29 STFR MZ 50.12 e6
30 END
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Non-Linear Model 2

Model Input file

1 LDOPT SFINOP +Z1 .0251827 .849047 −19.79 19 .79GLOBMN
NPNP K

2 OPTIONS I MN UC 2 2 DC C PTPTPT PTPT
3 UCPART 0 .7000 . 7001 . 0001 . 000
4 SECT
5 SECT DUMMY1 TUB 100 .005 .000
6 SECT M406127 TUB 40 .6401 .270
7 SECT M406191 TUB 40 .6401 .910
8 SECT M508127 TUB 50 .8001 .270
9 SECT M508191 TUB 50 .8001 .910

10 SECT M508254 TUB 50 .8002 .540
11 SECT M609191 TUB 60 .9601 .910
12 SECT M609254 TUB 60 .9602 .540
13 SECT M609318 TUB 60 .9603 .180
14 SECT M762191 TUB 76 .2001 .910
15 SECT M914254 TUB 91 .4002 .540
16 SECT M914318 TUB 91 .4403 .180
17 SECT N137125 TUB 137 .162 .540
18 SECT N137138 TUB 137 .163 .810
19 SECT N137150 TUB 137 .165 .080
20 SECT N137160 TUB 137 .166 .000
21

22 GRUP
23 GRUP 111 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
24 GRUP 112 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
25 GRUP 112 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .85001 .60
26 GRUP 121 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
27 GRUP 122 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
28 GRUP 122 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .85001 .60
29 GRUP 131 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
30 GRUP 132 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
31 GRUP 132 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .85001 .60
32 GRUP 211 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
33 GRUP 212 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .85001 .60
34 GRUP 212 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
35 GRUP 221 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
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36 GRUP 222 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .85001 .60

37 GRUP 222 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .8500

38 GRUP 231 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .8500

39 GRUP 232 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .8500

40 GRUP 232 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .85006 .00

41 GRUP A11 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .85001 .60

42 GRUP A11 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .8500

43 GRUP A12 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .8500

44 GRUP A13 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .8500

45 GRUP A13 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .8500 .500

46 GRUP A14 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .8500

47 GRUP A21 M609318 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .85001 .60

48 GRUP A21 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .8500

49 GRUP A22 M609318 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .8500

50 GRUP A23 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .8500

51 GRUP A23 M609318 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .85001 .60

52 GRUP A31 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .85001 .60

53 GRUP A31 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .8500

54 GRUP A32 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .8500

55 GRUP A33 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .8500

56 GRUP A33 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .85001 .60

57 GRUP B11 M609191 21 . 007 . 72235 . 50 1 1 . 001 . 00
7 .8500

58 GRUP B21 M609191 21 . 007 . 72235 . 50 1 1 . 001 . 00
7 .8500

59 GRUP B31 M609191 21 . 007 . 72235 . 50 1 1 . 001 . 00
7 .8500

60 GRUP C01 M406191 21 . 007 . 72235 . 50 1 1 . 001 . 00
7 .8500

61 GRUP C02 M508191 21 . 007 . 72235 . 50 1 1 . 001 . 00
7 .8500

62 GRUP D11 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00



140 MatLab and SACS code

7 .8500
63 GRUP D11 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500 .500
64 GRUP D12 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
65 GRUP D13 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500 .500
66 GRUP D13 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
67 GRUP D21 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
68 GRUP D21 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500 .500
69 GRUP D22 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
70 GRUP D23 M609254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500 .500
71 GRUP D23 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
72 GRUP D31 M508191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
73 GRUP D31 M508254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500 .500
74 GRUP D32 M508254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
75 GRUP D33 M508254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500 .500
76 GRUP D33 M508191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00

7 .8500
77 GRUP F11 M406127 21 . 007 . 72235 . 50 1 1 . 00 1 . 0 0

7 .8500
78 GRUP F21 M508127 21 . 007 . 72235 . 50 1 1 . 00 1 . 0 0

7 .8500
79 GRUP F22 M609191 21 . 007 . 72235 . 50 1 1 . 00 1 . 0 0

7 .8500
80 GRUP F31 M406127 21 . 007 . 72235 . 50 1 1 . 00 1 . 0 0

7 .8500
81 GRUP F32 M508127 21 . 007 . 72235 . 50 1 1 . 00 1 . 0 0

7 .8500
82 GRUP L01 N137160 21 . 007 . 72235 . 50 1 1 . 001 . 00

F7 .8500
83 GRUP L04 N137150 21 . 007 . 72235 . 50 1 1 . 001 . 00

F7 .8500
84 GRUP L05 N137138 21 . 007 . 72235 . 50 1 1 . 001 . 00

F7 .8500
85 GRUP L11 N137150 21 . 007 . 72235 . 50 1 1 . 001 . 00

F7 .8500
86 GRUP LA2 N137150 21 . 007 . 72235 . 50 1 1 . 001 . 00

F7 .85001 . 80
87 GRUP LA2 N137125 21 . 007 . 72235 . 50 1 1 . 001 . 00

F7 .8500
88 GRUP LA2 N137150 21 . 007 . 72235 . 50 1 1 . 001 . 00

F7 .85001 . 80
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89 GRUP LA3 N137150 21 . 007 . 72235 . 50 1 1 . 001 . 00
F7 .85002 . 00

90 GRUP LA3 N137160 21 . 007 . 72235 . 50 1 1 . 001 . 00
F7 .8500

91 GRUP LA3 N137150 21 . 007 . 72235 . 50 1 1 . 001 . 00
F7 .85004 . 10

92 GRUP LB2 N137150 21 . 007 . 72235 . 50 1 1 . 0 01 . 0 0
F7 .85001 . 80

93 GRUP LB2 N137138 21 . 007 . 72235 . 50 1 1 . 0 01 . 0 0
F7 .8500

94 GRUP LB2 N137150 21 . 007 . 72235 . 50 1 1 . 0 01 . 0 0
F7 .85001 . 80

95 GRUP LB3 N137150 21 . 007 . 72235 . 50 1 1 . 0 01 . 0 0
F7 .8500

96 GRUP X2A M914254 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .8500

97 GRUP XAB M914254 21 . 007 . 72235 . 50 1 1 . 001 . 00
7 .8500

98 GRUP XB2 M914254 21 . 007 . 72235 . 50 1 1 . 001 . 00
7 .8500

99 GRUP XBA M914254 21 . 007 . 72235 . 50 1 1 . 001 . 00
7 .85009 .20

100 GRUP XBA M914318 21 . 007 . 72235 . 50 1 1 . 001 . 00
7 .85005 .20

101 GRUP XBA M914254 21 . 007 . 72235 . 50 1 1 . 001 . 00
7 .8500

102 GRUP XX1 M762191 21 . 007 . 72235 . 50 1 1 . 00 1 . 00
7 .8500

103 GRUP GAP X 1+5 3 . 2000 . 0 .77 35 .5 1 N
1−5

104 GRUP DMY X 1+5 3 . 0 . 2 2.+0 35 .5 1 N
1−5

105 GRUP DM2 X 1+5 3 . 2.+2 2.+2 35 .5 1 N
1−5

106

107 MEMBER
108 MEMBER 012001A1 111
109 MEMBER 01B10120 112
110 MEMBER 022002A1 121
111 MEMBER 02B10220 122
112 MEMBER 032003A1 131
113 MEMBER 03B10320 132
114 MEMBER 01A20110 211
115 MEMBER 011001B2 212
116 MEMBER 02A20210 221
117 MEMBER 021002B2 222
118 MEMBER 03A20310 231
119 MEMBER 031003B2 232
120 MEMBER 100101A2 A11
121 MEMBER 10051001 A12
122 MEMBER 10021005 A13
123 MEMBER 01A11002 A14
124 MEMBER 200102A2 A21
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125 MEMBER 20022001 A22
126 MEMBER 02A12002 A23
127 MEMBER 300103A2 A31
128 MEMBER 30023001 A32
129 MEMBER 03A13002 A33
130 MEMBER 01B201B1 B11
131 MEMBER 02B22005 B21
132 MEMBER 200502B1 B21
133 MEMBER 03B23005 B31
134 MEMBER 300503B1 B31
135 MEMBER 20032001 C01
136 MEMBER 20042002 C01
137 MEMBER 30033001 C01
138 MEMBER 30043002 C01
139 MEMBER 10031001 C02
140 MEMBER 10061005 C02
141 MEMBER 01101003 D11
142 MEMBER 10031006 D12
143 MEMBER 10061004 D12
144 MEMBER 10040120 D13
145 MEMBER 02102003 D21
146 MEMBER 20032004 D22
147 MEMBER 20040220 D23
148 MEMBER 03103003 D31
149 MEMBER 30033004 D32
150 MEMBER 30040320 D33
151 MEMBER 01101001 F11
152 MEMBER 01201002 F11
153 MEMBER 10041002 F11
154 MEMBER 02102001 F21
155 MEMBER 02202002 F21
156 MEMBER 02102005 F22
157 MEMBER 02202005 F22
158 MEMBER 03103001 F31
159 MEMBER 03203002 F31
160 MEMBER 03103005 F32
161 MEMBER 03203005 F32
162 MEMBER 0A1 00A1 L01
163 MEMBER 0A2 00A2 L01
164 MEMBER 0B1 00B1 L01
165 MEMBER 0B2 00B2 L01
166 MEMBER 03A104A1 L04
167 MEMBER 03A204A2 L04
168 MEMBER 03B104B1 L04
169 MEMBER 03B204B2 L04
170 MEMBER 04A105A1 L05
171 MEMBER 04A205A2 L05
172 MEMBER 04B105B1 L05
173 MEMBER 04B205B2 L05
174 MEMBER 00A101A1 L11
175 MEMBER 00A201A2 L11
176 MEMBER 00B101B1 L11
177 MEMBER 00B201B2 L11
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178 MEMBER 01A102A1 LA2
179 MEMBER 01A202A2 LA2
180 MEMBER 02A103A1 LA3
181 MEMBER 02A203A2 LA3
182 MEMBER 01B102B1 LB2
183 MEMBER 01B202B2 LB2
184 MEMBER 02B103B1 LB3
185 MEMBER 02B203B2 LB3
186 MEMBER 03A202A1 X2A
187 MEMBER 03A102B1 XAB
188 MEMBER 03B102B2 XB2
189 MEMBER 03B202A2 XBA
190 MEMBER 02A101A2 XX1
191 MEMBER 02A201B2 XX1
192 MEMBER 02B101A1 XX1
193 MEMBER 02B201B1 XX1
194 *Leg A1
195 MEMBER A101A102 DM2SK
196 MEMBER A102A103 GAP 000111000000
197 MEMBER A102A104 GAP 000111000000
198 MEMBER A102A105 GAP 000111000000
199 MEMBER A101 0A1 DM2SK 000000000100
200 MEMBER A107 0A1 GAP 000000000111
201 MEMBER A108 0A1 GAP 000000000111
202 *Leg A2
203 MEMBER A201A202 DM2SK
204 MEMBER A202A203 GAP 000111000000
205 MEMBER A202A204 GAP 000111000000
206 MEMBER A202A205 GAP 000111000000
207 MEMBER A201 0A2 DM2SK 000000000100
208 MEMBER A207 0A2 GAP 000000000111
209 MEMBER A208 0A2 GAP 000000000111
210 *Leg B1
211 MEMBER B101B102 DM2SK
212 MEMBER B102B103 GAP 000111000000
213 MEMBER B102B104 GAP 000111000000
214 MEMBER B102B105 GAP 000111000000
215 MEMBER B101 0B1 DM2SK 000000000100
216 MEMBER B107 0B1 GAP 000000000111
217 MEMBER B108 0B1 GAP 000000000111
218 *Leg B2
219 MEMBER B201B202 DM2SK
220 MEMBER B202B203 GAP 000111000000
221 MEMBER B202B204 GAP 000111000000
222 MEMBER B202B205 GAP 000111000000
223 MEMBER B201 0B2 DM2SK 000000000100
224 MEMBER B207 0B2 GAP 000000000111
225 MEMBER B208 0B2 GAP 000000000111
226

227 JOINT
228 JOINT 0A1 −11.323 11.645−19.800
229 JOINT 0A2 −11.323−11.645−19.800
230 JOINT 0B1 11.323 11.645−19.800
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231 JOINT 0B2 11.323−11.645−19.800
232 JOINT 00A1 −11.323 11.645−18.000
233 JOINT 00A2 −11.323−11.645−18.000
234 JOINT 00B1 11.323 11.645−18.000
235 JOINT 00B2 11.323−11.645−18.000
236 JOINT 0110 −4.623−11.578−17.300
237 JOINT 0120 −4.623 11.578−17.300
238 JOINT 01A1 −11.323 11.576−17.300
239 JOINT 01A2 −11.323−11.576−17.300
240 JOINT 01B1 11.259 11.581−17.300
241 JOINT 01B2 11.259−11.581−17.300
242 JOINT 0210 −4.623−10.495 −6.000
243 JOINT 0220 −4.623 10 .495 −6.000
244 JOINT 02A1 −11.323 10 .469 −6.000
245 JOINT 02A2 −11.323−10.469 −6.000
246 JOINT 02B1 10.228 10 .551 −6.000
247 JOINT 02B2 10.228−10.551 −6.000
248 JOINT 0310 −4.623 −9.061 9 .000
249 JOINT 0320 −4.623 9 .061 9 .000
250 JOINT 03A1 −11.323 9 .000 9 .000
251 JOINT 03A2 −11.323 −9.000 9 .000
252 JOINT 03B1 8.859 9 .182 9 .000
253 JOINT 03B2 8.859 −9.182 9 .000
254 JOINT 04A1 −11.323 9 .000 11 .000
255 JOINT 04A2 −11.323 −9.000 11 .000
256 JOINT 04B1 8.677 9 .000 11 .000
257 JOINT 04B2 8.677 −9.000 11 .000
258 JOINT 05A1 −11.323 9 .000 15 .500
259 JOINT 05A2 −11.323 −9.000 15 .500
260 JOINT 05B1 8.677 9 .000 15 .500
261 JOINT 05B2 8.677 −9.000 15 .500
262 JOINT 1001 −11.323 −4.000−17.300
263 JOINT 1002 −11.323 2.100−17.300
264 JOINT 1003 −4.623 −4.061−17.300
265 JOINT 1004 −4.623 2.039−17.300
266 JOINT 1005 −11.323 −1.800−17.300
267 JOINT 1006 −4.623 −1.861−17.300
268 JOINT 2001 −11.323 −4.000 −6.000
269 JOINT 2002 −11.323 2 .100 −6.000
270 JOINT 2003 −4.623 −4.061 −6.000
271 JOINT 2004 −4.623 2 .039 −6.000
272 JOINT 2005 10.228 0 .000 −6.000
273 JOINT 3001 −11.323 −4.000 9 .000
274 JOINT 3002 −11.323 2 .100 9 .000
275 JOINT 3003 −4.623 −4.061 9 .000
276 JOINT 3004 −4.623 2 .039 9 .000
277 JOINT 3005 8 .859 0 .000 9 .000
278 * l e g A1
279 JOINT A101 −11.323 11.645−23.800
280 JOINT A102 −11.323 11.645−27.100
281 JOINT A103 −11.323 11.645−44.000 001111
282 JOINT A104 −11.323 1.645−27.100 010111
283 JOINT A105 −21.323 11.645−27.100 100111
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284 JOINT A107 −11.323 1.645−19.800 010111
285 JOINT A108 −21.323 11.645−19.800 100111
286 * l e g A2
287 JOINT A201 −11.323−11.645−23.800
288 JOINT A202 −11.323−11.645−27.100
289 JOINT A203 −11.323−11.645−44.000 001111
290 JOINT A204 −11.323−21.645−27.100 010111
291 JOINT A205 −21.323−11.645−27.100 100111
292 JOINT A207 −11.323−21.645−19.800 010111
293 JOINT A208 −21.323−11.645−19.800 100111
294 * l e g B1
295 JOINT B101 11.323 11.645−23.800
296 JOINT B102 11.323 11.645−27.100
297 JOINT B103 11.323 11.645−44.000 001111
298 JOINT B104 11.323 1.645−27.100 010111
299 JOINT B105 1 .323 11.645−27.100 100111
300 JOINT B107 11.323 1.645−19.800 010111
301 JOINT B108 1 .323 11.645−19.800 100111
302 *Leg B2
303 JOINT B201 11.323−11.645−23.800
304 JOINT B202 11.323−11.645−27.100
305 JOINT B203 11.323−11.645−44.000 001111
306 JOINT B204 11.323−21.645−27.100 010111
307 JOINT B205 1.323−11.645−27.100 100111
308 JOINT B207 11.323−21.645−19.800 010111
309 JOINT B208 1.323−11.645−19.800 100111
310

311 LOAD
312 LOADCNTOPS
313 LOAD 05A1 −2500. GLOB JOIN

1
314 LOAD 05B1 −2500. GLOB JOIN

1
315 LOAD 05A2 −2500. GLOB JOIN

1
316 LOAD 05B2 −2500. GLOB JOIN

1
317 * Topside weight o f 10000 kN ( assumed )
318

319 *Leg A1
320 LOADCNA1D3
321 LOAD X A102A103 0.0−90000. MEMB CONC

DUMMY
322 LOAD X A103A102 0 .0 90000 . MEMB CONC

DUMMY
323 LOADCNA1D4
324 LOAD X A102A104 0.0−90000. MEMB CONC

DUMMY
325 LOAD X A104A102 0 .0 90000 . MEMB CONC

DUMMY
326 LOADCNA1D5
327 LOAD X A102A105 0.0−90000. MEMB CONC

DUMMY
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328 LOAD X A105A102 0 .0 90000 . MEMB CONC
DUMMY

329 LOADCNA1D7
330 LOAD X 0A1A107 0.0−90000. MEMB CONC

DUMMY
331 LOAD X A107 0A1 0 .0 90000 . MEMB CONC

DUMMY
332 LOADCNA1D8
333 LOAD X 0A1A108 0.0−90000. MEMB CONC

DUMMY
334 LOAD X A108 0A1 0 .0 90000 . MEMB CONC

DUMMY
335 *Leg A2
336 LOADCNA2D3
337 LOAD X A202A203 0.0−90000. MEMB CONC

DUMMY
338 LOAD X A203A202 0 .0 90000 . MEMB CONC

DUMMY
339 LOADCNA2D4
340 LOAD X A202A204 0.0−90000. MEMB CONC

DUMMY
341 LOAD X A204A202 0 .0 90000 . MEMB CONC

DUMMY
342 LOADCNA2D5
343 LOAD X A202A205 0.0−90000. MEMB CONC

DUMMY
344 LOAD X A205A202 0 .0 90000 . MEMB CONC

DUMMY
345 LOADCNA2D7
346 LOAD X 0A2A207 0.0−90000. MEMB CONC

DUMMY
347 LOAD X A207 0A2 0 .0 90000 . MEMB CONC

DUMMY
348 LOADCNA2D8
349 LOAD X 0A2A208 0.0−90000. MEMB CONC

DUMMY
350 LOAD X A208 0A2 0 .0 90000 . MEMB CONC

DUMMY
351 *Leg B1
352 LOADCNB1D3
353 LOAD X B102B103 0.0−90000. MEMB CONC

DUMMY
354 LOAD X B103B102 0 .0 90000 . MEMB CONC

DUMMY
355 LOADCNB1D4
356 LOAD X B102B104 0.0−90000. MEMB CONC

DUMMY
357 LOAD X B104B102 0 .0 90000 . MEMB CONC

DUMMY
358 LOADCNB1D5
359 LOAD X B102B105 0.0−90000. MEMB CONC

DUMMY
360 LOAD X B105B102 0 .0 90000 . MEMB CONC
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DUMMY
361 LOADCNB1D7
362 LOAD X 0B1B107 0.0−90000. MEMB CONC

DUMMY
363 LOAD X B107 0B1 0 .0 90000 . MEMB CONC

DUMMY
364 LOADCNB1D8
365 LOAD X 0B1B108 0.0−90000. MEMB CONC

DUMMY
366 LOAD X B108 0B1 0 .0 90000 . MEMB CONC

DUMMY
367 *Leg B2
368 LOADCNB2D3
369 LOAD X B202B203 0.0−90000. MEMB CONC

DUMMY
370 LOAD X B203B202 0 .0 90000 . MEMB CONC

DUMMY
371 LOADCNB2D4
372 LOAD X B202B204 0.0−90000. MEMB CONC

DUMMY
373 LOAD X B204B202 0 .0 90000 . MEMB CONC

DUMMY
374 LOADCNB2D5
375 LOAD X B202B205 0.0−90000. MEMB CONC

DUMMY
376 LOAD X B205B202 0 .0 90000 . MEMB CONC

DUMMY
377 LOADCNB2D7
378 LOAD X 0B2B207 0.0−90000. MEMB CONC

DUMMY
379 LOAD X B207 0B2 0 .0 90000 . MEMB CONC

DUMMY
380 LOADCNB2D8
381 LOAD X 0B2B208 0.0−90000. MEMB CONC

DUMMY
382 LOAD X B208 0B2 0 .0 90000 . MEMB CONC

DUMMY
383

384 LOADCN FH
385 LOAD 03A2 2000 . GLOB JOIN

1
386 END

Gap Element file

1 GAPOPT 5 4 1 MN1200 PFG
2 LCSEL FH TOPS W SW WSW
3 LCOMB LC1 FH 1 .
4 LCOMB LC2 W 1 .TOPS 1 .
5 LCOMB LC3 SW 1 .TOPS 1 .
6 LCOMB LC4 WSW 1 .TOPS 1 .
7 *Leg A1
8 * v e r t i c a l sp r ing
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9 GAPELM A102 A103 A1D3 FD
10 F−DEL −20000. −3.29 −14000. −1.95 −11500. −1.42

−9000. −0.96
11 F−DEL −7000. −0.62 −6000. −0.47 −5200. −0.37

−4700. −0.31
12 F−DEL −4100. −0.245 −3600. −0.19 −3000. −0.14

−2700. −0.12
13 F−DEL −2200. −0.0866 −1600. −0.0543 −1000. −0.0274

0 . 0 .
14 F−DEL 794 .3 0 .0135 1511 . 0 .0270 2136 . 0 .0405

2671 . 0 .054
15 F−DEL 3124 . 0 .0677 3218 . 0 .071 3307 . 0 .0745

3350 . 0 .076
16 F−DEL 3383 . 0 .0775
17 *K2y
18 GAPELM A102 A104 A1D4 FD
19 F−DEL −10000. −2.10 −1185.16 −0.137 −1100. −0.117

−1025. −0.10065
20 F−DEL −950. −0.0866 −900. −0.0786 −800. −0.0636

−650. −0.04397
21 F−DEL −500. −0.0296 −400. −0.02186 −300. −0.01535

−200. −0.00949
22 F−DEL 0 . 0 . 200 . 0 .00949 300 . 0 .01535

400 . 0 .02186
23 F−DEL 500 . 0 .0296 650 . 0 .04397 800 . 0 .0636

900 . 0 .0786
24 F−DEL 950 . 0 .0866 1025 . 0 .10065 1100 . 0 .117

1185.16 0 .137
25 F−DEL 10000 . 2 .10
26 *K2x
27 GAPELM A102 A105 A1D5 FD
28 F−DEL −10000. −2.10 −1185.16 −0.137 −1100. −0.117

−1025. −0.10065
29 F−DEL −950. −0.0866 −900. −0.0786 −800. −0.0636

−650. −0.04397
30 F−DEL −500. −0.0296 −400. −0.02186 −300. −0.01535

−200. −0.00949
31 F−DEL 0 . 0 . 200 . 0 .00949 300 . 0 .01535

400 . 0 .02186
32 F−DEL 500 . 0 .0296 650 . 0 .04397 800 . 0 .0636

900 . 0 .0786
33 F−DEL 950 . 0 .0866 1025 . 0 .10065 1100 . 0 .117

1185.16 0 .137
34 F−DEL 10000 . 2 .10
35 *K1y
36 GAPELM 0A1 A107 A1D7 FD
37 F−DEL −10000. −2.55 −1185.16 −0.166 −1100. −0.142

−1025. −0.122
38 F−DEL −950. −0.105 −900. −0.0953 −800. −0.0771

−650. −0.0533
39 F−DEL −500. −0.0359 −400. −0.0265 −300. −0.0186

−200. −0.0115
40 F−DEL 0 . 0 . 200 . 0 .0115 300 . 0 .0186
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400 . 0 .0265
41 F−DEL 500 . 0 .0359 650 . 0 .0533 800 . 0 .0771

900 . 0 .0953
42 F−DEL 950 . 0 .105 1025 . 0 .122 1100 . 0 .142

1185.16 0 .166
43 F−DEL 10000 . 2 .55
44 *K1x
45 GAPELM 0A1 A108 A1D8 FD
46 F−DEL −10000. −2.55 −1185.16 −0.166 −1100. −0.142

−1025. −0.122
47 F−DEL −950. −0.105 −900. −0.0953 −800. −0.0771

−650. −0.0533
48 F−DEL −500. −0.0359 −400. −0.0265 −300. −0.0186

−200. −0.0115
49 F−DEL 0 . 0 . 200 . 0 .0115 300 . 0 .0186

400 . 0 .0265
50 F−DEL 500 . 0 .0359 650 . 0 .0533 800 . 0 .0771

900 . 0 .0953
51 F−DEL 950 . 0 .105 1025 . 0 .122 1100 . 0 .142

1185.16 0 .166
52 F−DEL 10000 . 2 .55
53 *Leg A2
54 * v e r t i c a l sp r ing
55 GAPELM A202 A203 A2D3 FD
56 F−DEL −20000. −3.29 −14000. −1.95 −11500. −1.42

−9000. −0.96
57 F−DEL −7000. −0.62 −6000. −0.47 −5200. −0.37

−4700. −0.31
58 F−DEL −4100. −0.245 −3600. −0.19 −3000. −0.14

−2700. −0.12
59 F−DEL −2200. −0.0866 −1600. −0.0543 −1000. −0.0274

0 . 0 .
60 F−DEL 794 .3 0 .0135 1511 . 0 .0270 2136 . 0 .0405

2671 . 0 .054
61 F−DEL 3124 . 0 .0677 3218 . 0 .071 3307 . 0 .0745

3350 . 0 .076
62 F−DEL 3383 . 0 .0775
63 *K2y
64 GAPELM A202 A204 A2D4 FD
65 F−DEL −10000. −2.10 −1185.16 −0.137 −1100. −0.117

−1025. −0.10065
66 F−DEL −950. −0.0866 −900. −0.0786 −800. −0.0636

−650. −0.04397
67 F−DEL −500. −0.0296 −400. −0.02186 −300. −0.01535

−200. −0.00949
68 F−DEL 0 . 0 . 200 . 0 .00949 300 . 0 .01535

400 . 0 .02186
69 F−DEL 500 . 0 .0296 650 . 0 .04397 800 . 0 .0636

900 . 0 .0786
70 F−DEL 950 . 0 .0866 1025 . 0 .10065 1100 . 0 .117

1185.16 0 .137
71 F−DEL 10000 . 2 .10
72 *K2x
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73 GAPELM A202 A205 A2D5 FD
74 F−DEL −10000. −2.10 −1185.16 −0.137 −1100. −0.117

−1025. −0.10065
75 F−DEL −950. −0.0866 −900. −0.0786 −800. −0.0636

−650. −0.04397
76 F−DEL −500. −0.0296 −400. −0.02186 −300. −0.01535

−200. −0.00949
77 F−DEL 0 . 0 . 200 . 0 .00949 300 . 0 .01535

400 . 0 .02186
78 F−DEL 500 . 0 .0296 650 . 0 .04397 800 . 0 .0636

900 . 0 .0786
79 F−DEL 950 . 0 .0866 1025 . 0 .10065 1100 . 0 .117

1185.16 0 .137
80 F−DEL 10000 . 2 .10
81 *K1y
82 GAPELM 0A2 A207 A2D7 FD
83 F−DEL −10000. −2.55 −1185.16 −0.166 −1100. −0.142

−1025. −0.122
84 F−DEL −950. −0.105 −900. −0.0953 −800. −0.0771

−650. −0.0533
85 F−DEL −500. −0.0359 −400. −0.0265 −300. −0.0186

−200. −0.0115
86 F−DEL 0 . 0 . 200 . 0 .0115 300 . 0 .0186

400 . 0 .0265
87 F−DEL 500 . 0 .0359 650 . 0 .0533 800 . 0 .0771

900 . 0 .0953
88 F−DEL 950 . 0 .105 1025 . 0 .122 1100 . 0 .142

1185.16 0 .166
89 F−DEL 10000 . 2 .55
90 *K1x
91 GAPELM 0A2 A208 A2D8 FD
92 F−DEL −10000. −2.55 −1185.16 −0.166 −1100. −0.142

−1025. −0.122
93 F−DEL −950. −0.105 −900. −0.0953 −800. −0.0771

−650. −0.0533
94 F−DEL −500. −0.0359 −400. −0.0265 −300. −0.0186

−200. −0.0115
95 F−DEL 0 . 0 . 200 . 0 .0115 300 . 0 .0186

400 . 0 .0265
96 F−DEL 500 . 0 .0359 650 . 0 .0533 800 . 0 .0771

900 . 0 .0953
97 F−DEL 950 . 0 .105 1025 . 0 .122 1100 . 0 .142

1185.16 0 .166
98 F−DEL 10000 . 2 .55
99 *Leg B1

100 * v e r t i c a l sp r ing
101 GAPELM B102 B103 B1D3 FD
102 F−DEL −20000. −3.29 −14000. −1.95 −11500. −1.42

−9000. −0.96
103 F−DEL −7000. −0.62 −6000. −0.47 −5200. −0.37

−4700. −0.31
104 F−DEL −4100. −0.245 −3600. −0.19 −3000. −0.14

−2700. −0.12
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105 F−DEL −2200. −0.0866 −1600. −0.0543 −1000. −0.0274
0 . 0 .

106 F−DEL 794 .3 0 .0135 1511 . 0 .0270 2136 . 0 .0405
2671 . 0 .054

107 F−DEL 3124 . 0 .0677 3218 . 0 .071 3307 . 0 .0745
3350 . 0 .076

108 F−DEL 3383 . 0 .0775
109 *K2y
110 GAPELM B102 B104 B1D4 FD
111 F−DEL −10000. −2.10 −1185.16 −0.137 −1100. −0.117

−1025. −0.10065
112 F−DEL −950. −0.0866 −900. −0.0786 −800. −0.0636

−650. −0.04397
113 F−DEL −500. −0.0296 −400. −0.02186 −300. −0.01535

−200. −0.00949
114 F−DEL 0 . 0 . 200 . 0 .00949 300 . 0 .01535

400 . 0 .02186
115 F−DEL 500 . 0 .0296 650 . 0 .04397 800 . 0 .0636

900 . 0 .0786
116 F−DEL 950 . 0 .0866 1025 . 0 .10065 1100 . 0 .117

1185.16 0 .137
117 F−DEL 10000 . 2 .10
118 *K2x
119 GAPELM B102 B105 B1D5 FD
120 F−DEL −10000. −2.10 −1185.16 −0.137 −1100. −0.117

−1025. −0.10065
121 F−DEL −950. −0.0866 −900. −0.0786 −800. −0.0636

−650. −0.04397
122 F−DEL −500. −0.0296 −400. −0.02186 −300. −0.01535

−200. −0.00949
123 F−DEL 0 . 0 . 200 . 0 .00949 300 . 0 .01535

400 . 0 .02186
124 F−DEL 500 . 0 .0296 650 . 0 .04397 800 . 0 .0636

900 . 0 .0786
125 F−DEL 950 . 0 .0866 1025 . 0 .10065 1100 . 0 .117

1185.16 0 .137
126 F−DEL 10000 . 2 .10
127 *K1y
128 GAPELM 0B1 B107 B1D7 FD
129 F−DEL −10000. −2.55 −1185.16 −0.166 −1100. −0.142

−1025. −0.122
130 F−DEL −950. −0.105 −900. −0.0953 −800. −0.0771

−650. −0.0533
131 F−DEL −500. −0.0359 −400. −0.0265 −300. −0.0186

−200. −0.0115
132 F−DEL 0 . 0 . 200 . 0 .0115 300 . 0 .0186

400 . 0 .0265
133 F−DEL 500 . 0 .0359 650 . 0 .0533 800 . 0 .0771

900 . 0 .0953
134 F−DEL 950 . 0 .105 1025 . 0 .122 1100 . 0 .142

1185.16 0 .166
135 F−DEL 10000 . 2 .55
136 *K1x
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137 GAPELM 0B1 B108 B1D8 FD
138 F−DEL −10000. −2.55 −1185.16 −0.166 −1100. −0.142

−1025. −0.122
139 F−DEL −950. −0.105 −900. −0.0953 −800. −0.0771

−650. −0.0533
140 F−DEL −500. −0.0359 −400. −0.0265 −300. −0.0186

−200. −0.0115
141 F−DEL 0 . 0 . 200 . 0 .0115 300 . 0 .0186

400 . 0 .0265
142 F−DEL 500 . 0 .0359 650 . 0 .0533 800 . 0 .0771

900 . 0 .0953
143 F−DEL 950 . 0 .105 1025 . 0 .122 1100 . 0 .142

1185.16 0 .166
144 F−DEL 10000 . 2 .55
145 *Leg B2
146 * v e r t i c a l sp r ing
147 GAPELM B202 B203 B2D3 FD
148 F−DEL −20000. −3.29 −14000. −1.95 −11500. −1.42

−9000. −0.96
149 F−DEL −7000. −0.62 −6000. −0.47 −5200. −0.37

−4700. −0.31
150 F−DEL −4100. −0.245 −3600. −0.19 −3000. −0.14

−2700. −0.12
151 F−DEL −2200. −0.0866 −1600. −0.0543 −1000. −0.0274

0 . 0 .
152 F−DEL 794 .3 0 .0135 1511 . 0 .0270 2136 . 0 .0405

2671 . 0 .054
153 F−DEL 3124 . 0 .0677 3218 . 0 .071 3307 . 0 .0745

3350 . 0 .076
154 F−DEL 3383 . 0 .0775
155 *K2y
156 GAPELM B202 B204 B2D4 FD
157 F−DEL −10000. −2.10 −1185.16 −0.137 −1100. −0.117

−1025. −0.10065
158 F−DEL −950. −0.0866 −900. −0.0786 −800. −0.0636

−650. −0.04397
159 F−DEL −500. −0.0296 −400. −0.02186 −300. −0.01535

−200. −0.00949
160 F−DEL 0 . 0 . 200 . 0 .00949 300 . 0 .01535

400 . 0 .02186
161 F−DEL 500 . 0 .0296 650 . 0 .04397 800 . 0 .0636

900 . 0 .0786
162 F−DEL 950 . 0 .0866 1025 . 0 .10065 1100 . 0 .117

1185.16 0 .137
163 F−DEL 10000 . 2 .10
164 *K2x
165 GAPELM B202 B205 B2D5 FD
166 F−DEL −10000. −2.10 −1185.16 −0.137 −1100. −0.117

−1025. −0.10065
167 F−DEL −950. −0.0866 −900. −0.0786 −800. −0.0636

−650. −0.04397
168 F−DEL −500. −0.0296 −400. −0.02186 −300. −0.01535

−200. −0.00949
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169 F−DEL 0 . 0 . 200 . 0 .00949 300 . 0 .01535
400 . 0 .02186

170 F−DEL 500 . 0 .0296 650 . 0 .04397 800 . 0 .0636
900 . 0 .0786

171 F−DEL 950 . 0 .0866 1025 . 0 .10065 1100 . 0 .117
1185.16 0 .137

172 F−DEL 10000 . 2 .10
173 *K1y
174 GAPELM 0B2 B207 B2D7 FD
175 F−DEL −10000. −2.55 −1185.16 −0.166 −1100. −0.142

−1025. −0.122
176 F−DEL −950. −0.105 −900. −0.0953 −800. −0.0771

−650. −0.0533
177 F−DEL −500. −0.0359 −400. −0.0265 −300. −0.0186

−200. −0.0115
178 F−DEL 0 . 0 . 200 . 0 .0115 300 . 0 .0186

400 . 0 .0265
179 F−DEL 500 . 0 .0359 650 . 0 .0533 800 . 0 .0771

900 . 0 .0953
180 F−DEL 950 . 0 .105 1025 . 0 .122 1100 . 0 .142

1185.16 0 .166
181 F−DEL 10000 . 2 .55
182 *K1x
183 GAPELM 0B2 B208 B2D8 FD
184 F−DEL −10000. −2.55 −1185.16 −0.166 −1100. −0.142

−1025. −0.122
185 F−DEL −950. −0.105 −900. −0.0953 −800. −0.0771

−650. −0.0533
186 F−DEL −500. −0.0359 −400. −0.0265 −300. −0.0186

−200. −0.0115
187 F−DEL 0 . 0 . 200 . 0 .0115 300 . 0 .0186

400 . 0 .0265
188 F−DEL 500 . 0 .0359 650 . 0 .0533 800 . 0 .0771

900 . 0 .0953
189 F−DEL 950 . 0 .105 1025 . 0 .122 1100 . 0 .142

1185.16 0 .166
190 F−DEL 10000 . 2 .55
191 END

Superelement Input file

1 SUBOPT INP MN
2 STFHEAD 0A1 0A1 +1.
3 STFR FX
4 STFR FY
5 STFR FZ
6 STFR MX
7 STFR MY
8 STFR MZ 50.12 e6
9 STFHEAD 0A2 0A2 +1.

10 STFR FX
11 STFR FY
12 STFR FZ
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13 STFR MX
14 STFR MY
15 STFR MZ 50.12 e6
16 STFHEAD 0B1 0B1 +1.
17 STFR FX
18 STFR FY
19 STFR FZ
20 STFR MX
21 STFR MY
22 STFR MZ 50.12 e6
23 STFHEAD 0B2 0B2 +1.
24 STFR FX
25 STFR FY
26 STFR FZ
27 STFR MX
28 STFR MY
29 STFR MZ 50.12 e6
30 END
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