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Abstract––For decades, electromyography (EMG) has 
been used for diagnostics, upper-limb prosthesis control, 
and recently even for more general human-machine 
interfaces. Current commercial upper limb prostheses 
usually have only two electrode sites due to cost and 
space limitations, while researchers often experiment 
with multiple sites. 

Micro-machined inertial sensors are gaining 
popularity in many commercial and research 
applications where knowledge of the postures and 
movements of the body is desired. In the present study, 
we have investigated whether accelerometers, which are 
relatively cheap, small, robust to noise, and easily 
integrated in a prosthetic socket; can reduce the need 
for adding more electrode sites to the prosthesis control 
system. This was done by adding accelerometers to a 
multifunction system and also to a simplified system 
more similar to current commercially available 
prosthesis controllers, and assessing the resulting 
changes in classification accuracy. 

The accelerometer does not provide information on 
muscle force like EMG electrodes, but the results show 
that it provides useful supplementary information. 
Specifically, if one wants to improve a two-site EMG 
system, one should add an accelerometer affixed to the 
forearm rather than a third electrode. 
 
Index terms––Accelerometer, prosthetics, prosthetic 
hands, electromyography. 

I. INTRODUCTION 

LECTROMYOGRAPHY (EMG) has been used as a 
control input for powered upper limb prostheses for 

decades [1], [2]. Alternative biosensors, like myokinemetric 
sensors [3], [4], mechanomyographic sensors [5] and 
accelerometers [6] have been used for upper limb pattern 
recognition in more general terms but have not produced 
accuracies acceptable for prosthetic use. 

The desire to use a larger number of myoelectrode sites 
to facilitate control of multiple degrees of freedom has been 
counteracted by the added complexity, cost, space, and 
weight associated with additional sites. Thus, commercial 
upper limb prostheses today usually have only two electrode 
sites, while researchers continue to experiment with 
multiple sites [7]. An alternative to the uni-modal EMG 
approach for increasing the degrees of freedom is a multi-
modal approach. Instead of adding additional EMG 
channels, it is possible to combine EMG and other sensor 
modalities (e.g., force sensors [8] or accelerometers [9]) in 
order to improve pattern recognition performance. Other 
examples of multi-modal solutions exist [10], [11]. 

In our previous work [12] it was shown that variations in 
limb position associated with normal use can have a 
substantial impact on the robustness of myoelectric pattern 
recognition. We proposed to solve this problem by training 
the classifier in multiple positions and by measuring the 
limb position with accelerometers. Applying these methods 
to data from normally limbed subjects, the classification 
errors were reduced substantially. 

In the present study, we have investigated accelero-
meters as a supplementary modality for EMG. 
Accelerometers are relatively cheap, small, robust to noise 
and easy to integrate in a prosthetic socket. This work 
examines the efficacy of accelerometers in comparison to 
adding expensive and space-consuming electrode sites.  
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II. METHODS 

All experiments were approved by the University of 
New Brunswick’s Research Ethics Board. 

A. Population and Data Acquisition 

EMG data corresponding to eight classes of motion were 
collected from 17 healthy normally limbed subjects (10 
male, 7 female) within the age range 18 to 34 years. 

Subjects were fitted with a cuff made of thermo 
formable gel (taken from a 6mm Alpha liner by Ohio 
Willow Wood) that was embedded with eight equally 
spaced pairs of stainless steel dome electrodes (EL12 by 
Liberating Technologies, Inc.). The cuff was placed around 
the dominant forearm (13 right, 4 left), proximal to the 
elbow, at the position with largest muscle bulk. A reference 
electrode (RedDot by 3M) was placed over the back of the 
hand. Two analog 3-axis accelerometers (Freescale 
MMA7260QT MEMS) were used to estimate limb position. 
The first accelerometer was affixed adjacent to the cuff on 
the forearm, over the brachioradialis muscle. The second 
was placed over the biceps brachii, aligned with the forearm 
accelerometer when the subject was reaching forward (see 
position 2 in Fig. 2). Both accelerometers were configured 
to have a sensitivity of 800 mV/g at a range of ±1.5 g, 
where g represents acceleration due to gravity. 

The eight channels of EMG were differentially 
amplified using remote AC electrode-amplifiers (BE328 by 
Liberating Technologies, Inc.), and low pass filtered at 
500Hz with a 5th order Butterworth filter. Finally, the six 
accelerometer channels and eight EMG channels were 
acquired using a 16-bit analog-to-digital converter 
(USB1616FS by Measurement Computing) sampling at 
1 kHz. 

Subjects were prompted to elicit contractions 
corresponding to the eight classes of motion shown in Fig. 
1. Performance was evaluated using all eight classes, as well 
as a reduced set of five classes. The five class system only 
included classes C3, C4, C5, C6, and C8, which are 
representative of contemporary powered prostheses. The 
five class system is referred to as the contemporary system 
and the eight class system as the advanced system.  

C1. Wrist flexion C2. Wrist extension

C5. Open hand C6. Power grip C7. Pinch grip C8. Hand at rest   
Fig. 1.  Motion classes. 

 
Each contraction was sustained for three seconds and a 

three second rest was given between subsequent 
contractions. Ten trials were recorded in each of the 
following limb positions (P1–P5; as illustrated in Fig. 2), 

resulting in a total data set of [n subjects × 10 trials × 5 
positions × 8 classes × 3 seconds], where n is explained in 
Section C. 

 

P1 P2 P3 P4 P5
 

Fig. 2.  Limb positions (illustration inspired by A. Loomis’ drawings [13]). 

 
Subjects were instructed to perform contractions at a 

moderate and repeatable force level and given rest periods 
between trials to avoid fatigue. The average duration of the 
experiment (with 50 trials lasting 48 seconds each) was 
approximately 80 minutes per subject. Some patients noted 
minor shoulder (deltoid) fatigue. 

B. Data processing 

As this work represents an introductory examination of 
multi-modal pattern recognition, it was appropriate to test 
the effects using a known control scheme. Englehart and 
Hudgins [14] showed that simple time-domain (TD) feature 
extraction combined with a linear discriminant analysis 
(LDA) classifier can be used as an effective real-time 
control scheme for myoelectric control. Because of its 
relative ease of implementation and high performance, this 
system has been widely accepted and was therefore adopted 
in the present study. EMG data were digitally notch filtered 
at 60 Hz using a 3rd order Butterworth filter in order to 
attenuate any power line interference. Data were segmented 
for feature extraction using 250 ms windows, with 
processing increments of 50 ms. The TD features (mean 
absolute value, zero crossings, number of turns and 
waveform length) were extracted from the EMG data. 
Please refer to [14] for details of the feature extraction and 
the classification. 

For each processing window, the average value of the 
accelerometer data was calculated. Where applicable, this 
feature (hereafter called ACCEL) was input to the LDA 
classifier separately or as an extension of the original 
feature set. 

C. Data exclusion 

Some of the subjects were not able to perform 
consistently throughout the data set. Similar phenomena 
occur in real-life situations where some individuals have 
great difficulty producing distinct EMG signals [15]. To 
ensure consistent data, subjects whose intra-position 
classification error exceeded 10% (five of the 17 subjects) 
were excluded from the study. This does not detract from 
the focus of this work; to ascertain the effects of position on 
performance. It simply eliminates possible confounding 

P1. Straight arm hanging at side.  
P2. Straight arm reaching forward (horizontal).  
P3. Straight arm reaching up (45° from vertical).  
P4. Humerus hanging at side, forearm horizontal.  
P5. Humerus hanging at side, forearm 45° above 

horizontal.



 

factors that may have been present with those subjects that 
did not perform well. 

In two of the remaining 12 subjects, hardware problems 
caused erroneous accelerometer readings. Thus, 10 subjects 
were used in this study. 

D. Classification 

The following classifier training schemes were explored: 

1) Training in a single limb position 
TD features recorded from a single limb position 
were used to train the classifier. The classifiers were 
trained using data from the first five trials and tested 
using data from the last five trials. 

 
2) Training in multiple limb positions 

TD features recorded in multiple limb positions 
were concatenated and used to train the classifier. 
The classifiers were trained using a data set of 
reduced size per position (a smaller subset of the ten 
trials), so that the total training set size was the 
same as in 1), in order to make the results 
comparable. 

 
3) Training with TD and ACCEL features 

TD and ACCEL features recorded in multiple 
positions were concatenated and used for motion 
classification. The data set was reduced in the same 
way as in 2) in order to make the results 
comparable.  

E. Input selection 

A signal feature selection scheme was chosen in order to 
examine which electrode sites and accelerometer signals 
would be most useful for the pattern recognition. Starting 
with just one sensor, the best one was chosen (based on the 
classification error averaged over all subjects and motion 
classes). It was then tested in combination with each of the 
remaining sensors, and the best combination was chosen 
before adding the next sensor. In this manner the sensors 
were added to the system one by one. 

III. RESULTS 

A. Training in multiple positions and using 
accelerometer data 

In Fig. 3, we present a comparison of how training in 
multiple positions and adding position measurements affect 
the classification, for a contemporary and an advanced 
system. The advanced system is improved by training in 
multiple positions (reducing the error from 18.4% to 5.2%), 
but the further improvement by adding accelerometers is 
smaller (to 3.7%). On the other hand, the contemporary 
system exhibits a large improvement in both steps. 

B. Relative importance of position information and 
surface EMG 

The results of the input selection described in Section II-
E, are presented in Fig. 4. It is noteworthy that when adding 
new sensors one by one, the forearm accelerometer provides 
more novel classification information than even a second or 
third EMG electrode.  It is also worth noting that the upper 
arm accelerometer is one of the least useful sensors.  This is 
a desirable result as it would be difficult to justify including 
a sensor external to the forearm socket, and across the 
elbow joint. 

For the contemporary system, the improvement flattens 
out after 4-5 electrodes and one forearm accelerometer 
(reaching an average accuracy of 98-99%). The advanced 
system can exploit 6-7 electrodes and one forearm 
accelerometer (reaching an average accuracy of 95-96%). 

“Contemporary” system;
2 Electrodes and 5 Motion Classes

“Advanced” system;
8 Electrodes and 8 Motion Classes
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Fig. 3.  Classification error for a contemporary system and an advanced 

system, respectively, when training with TD features from a single position 
or from multiple positions, and when combined with ACCEL features. The 

error values are averaged across all subjects and classes. 
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Fig. 4.  Classification accuracy as a function of selected input channels, for 

pattern recognition systems with 5 and 8 motion classes, choosing input 
channels among 8 electrode pairs (e1–e8) and 2 accelerometers (aF–

Forearm, aH–Humerus). 

IV. DISCUSSION 

The accelerometer lends itself to being used in human-
machine interfaces due to its small size, low cost, and 
simple mechanical and electrical interfaces. The absence of 



 

many of the disturbances often encountered in EMG sensors 
and similar devices makes it interesting as a supplementary 
sensor in hand motion classification systems, including 
upper limb prostheses. 

The accelerometer does not provide an estimate of 
muscle force, but we have shown that it provides useful 
information that can supplement EMG signals. If one wants 
to improve a system originally having two EMG electrodes, 
a multi-modal approach can be taken. The results 
demonstrate that it is more advantageous to add an 
accelerometer affixed to the forearm (multi-modal 
approach) rather than increase the number of EMG channels 
(uni-modal approach). 

Even though the limb position effect was discovered and 
observed in users in the clinic [9],[12], and was resolved for 
the normally limbed subjects in our study, it needs to be 
examined specifically for the end users. Gravitational and 
biomechanical effects of limb position will be different for 
prosthetic users compared to the normally limbed subjects 
of this study. As such, we are planning to extend this study 
to include prosthesis users. 

While the accelerometers are able to give information 
about a limb’s orientation, they can also be used to measure 
the dynamical movements of the limb. In the case of 
simultaneous proportional control systems, such as those 
described by Jiang [16] and Fougner [17], they could be 
even more useful. 

This work is part of a larger investigation aimed at 
improving the practical robustness of myoelectric control. 
The present results indicate that facilitating position 
invariant myoelectric control through methods such as 
feature selection, data projection, multi-sensor systems, or 
by other means could be an important part of this larger 
work. 
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