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Abstract

In many fields of today’s scientific research the amount of knowledge is far smaller
than the amount of accessible data and often too limited to make meaningful analyses
and draw reasonable conclusions. Hence, statistical knowledge inference becomes
more and more popular in multivariate data analysis and machine learning tools
from artificial intelligence are applied. However, there are issues when dealing with
increased sparsity, high-dimensionality and a lack of training samples which pose new
requirements on data analysis tools. Particularly the experimental determination
of protein function is challenging and cumbersome. Theoretical predictions are
challenging due to the variety and complexity of macromolecules. However, recent
massive knowledge integration approaches in systems biology resulted in curated
semantic knowledge-based systems that could make relevant problems more and
more feasible.
One of these problems is the identification of specific DNA-binding RNA polymerase
II transcription factors (DbTFs). In this work semantic knowledge-based systems
are exploited for DbTF prediction and the feasibility of the approach is explored.
This master’s project involves the design, implementation, rigorous testing and opti-
misation of a specific methodology to classify putative DbTFs by an artificial neural
network approach. From 2655 candidate proteins of the TFcheckpoint database [5] a
selection of 54 proteins is classified as DbTFs with a relative classification error of
less than 10%.
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Abbreviations

ANN Artificial neural network
DbTF Specific DNA binding RNA poly-

merase II transcription factor
GexKB Gene Expression Knowledge Base
GO Gene Ontology
GOC Gene Ontology Consortium
MCC Matthews correlation coefficient
PCA Principal component analysis
PLS, PLSR Partial least squares, regression
ROC Receiver operating characteristic
SVD Singular value decomposition

A selection of the most frequently used abbreviations and concepts.
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Chapter 1

Introduction

Background

In today’s information age machine learning has become a versatile tool in multivariate
data analysis and classification. The idea is to determine a set of instances that
is represented by descriptive data sequences and dependable key features. These
training instances are subsequently used in an iterative learning process, that analyses
patterns of similarity in order to find a mapping from the descriptive data on the
key features. The trained models can subsequently be applied to statistically infer
knowledge about other data sets of the same data structure. In addition, the
approach realises variable relevance estimation and offers better understanding of
the underlying patterns that explain the key features.

A crucial step in multivariate data analysis is the choice of methodology that suits
the structure of the data, provides well interpretable results and allows accuracy
estimation. However, there are distinct limitations. The problem arises if the data
needs automated treatment but no meaningful statistics can be applied due to the
following aspects:
High-dimensional space poses a challenge to machine learning, especially if the
algorithm scales badly with the number of variables and if there are many variables
(several thousands) compared to a low number of samples (several hundreds). This
problem received the catchy name ’curse of dimensionality’.
Sometimes this challenge occurs together with sparse data. In this case noise is
difficult to distinguish from relevant patterns. Machine learning becomes prone to
over-training, a phenomenon that relates to the loss of ability to generalise and is
bound to a significant decrease in prediction accuracy. Training instance selection
and dimensional reduction become delicate steps because they might change the
outcome completely.
For many classification problems in natural science there exists only a small number
of pre-known training samples. In binary classification there is a particular issue
if the number of available true positive and true negative instances is unbalanced.
Preferably a one-to-one ratio is used for machine learning. If one performs instance
selection there will be the risk that the subset does not represent the domain of
classification.

One very important part of this project is to address these challenges in respect of
the use case that is presented in the following section.
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Specialisation and problem description

The use case aims at the classification of specific DNA binding RNA polymerase
II transcription factors (DbTFs) exploiting the feature space provided by semantic
knowledge-based systems. Semantic knowledge-based systems combine the organ-
isation of complex structured data with an inference engine. These offsprings of
information technology realise a vast feature space that might make the use case
problem more and more feasible.
The project involves the development, implementation, rigorous testing and optimi-
sation of a specific approach to regress, classify and analyse sparse, high-dimensional
data sets by an artificial neural network (ANN) approach. A set of candidate proteins,
that is extracted from the TFcheckpoint database [5], is ranked according to the
classification results.
A DbTF is a protein that is crucial for regulation of gene expression in eukaryotic
cells. Cells adapt dynamically to changes in their surrounding in order to survive
or to provide differentiated function in a multicellular organism. Matching the new
requirements may involve a biochemical change of metabolic pathway activity -
triggered by highly interactive and complicated protein regulation processes. Protein
regulation can be achieved by inhibition or activation of subunits by allosteric
or cooperative binding to other proteins or chemical ligands, as well as covalent
modifications. However, it can also depend on the control of protein concentration,
which is a lower level regulation and more resource efficient.
Protein synthesis in eukaryotic cells is achieved in a multi-step process including
transcription, translation and further modification. During transcription a pre-
initiation complex binds to a specific promoter region on DNA. DbTFs bind non-
covalently to very specific DNA sequences that are part of the core promoter region
of protein-coding genes and might also interact selectively with other proteins or
complexes. They modulate the level of activity of the RNA polymerase II complex
and thereby affect gene expression. RNA polymerase II uses the DNA as a template
and creates an inverted copy of the four base sequence. A single RNA strand is
obtained and further modified. Subsequently, the RNA strand is transferred from
the nucleus to the cytosol. At the rough endoplasmic reticulum the ribosome, a
multiprotein-RNA complex, synthesises a polypeptide chain utilising the RNA strand
as a template. Subsequently the nascent protein is folded and possibly covalently
modified in order to obtain its final 3D conformation and biological functionality.
The rate of protein synthesis can therefore be directed by transcription control during
the formation of the pre-initiation complex.
A very detailed introduction to fundamental molecular cell biology can be found in
the book [25].
Comprehending the process of gene expression regulation is important for a diverse
range of research, including cell function, drug research and cancer treatment. The
growing knowledge about molecular, cellular processes together with the data analysis
tool, that is developed in this thesis, might enable further improvement in exploiting
limited data and will hopefully make the use of semantic knowledge bases generally
more popular in current research.
The scientific work focuses on the following questions:
Semantic knowledge based systems How much useful information does gene
ontology data contain for specific DNA binding transcription factor classification? To
what extend do semantic knowledge-based systems suit protein property prediction?
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Dimensional reduction in sparse data How well perform different dimensional
reduction tools like principal component analysis (PCA), partial least squares (PLS)
and a variant LPLS in sparse multivariate space? Can a transparent and well scalable
variable relevance estimator be found? For studying the last question a method
called separability analysis is proposed, tested and compared to other approaches.
Specific DNA binding transcription factors (DbTFs) What biological con-
clusions can be drawn related to DbTFs?

The approach

The resulting work flow is illustrated in figure 1.1. The flowchart is structured
into four subtasks, including data retrieval, preprocessing, machine learning and
postprocessing. For preprocessing there are several methods proposed. These
methods are tested and discussed in chapter 4 and a particular methodology will be
chosen that suits the data. This decision process is illustrated in the flowchart as
blue diamonds.
In the following the procedure is stepwise introduced.

Data retrieval

During data retrieval a selection of DbTFs and non DbTFs is made and patterns are
defined that are next to be analysed. The choice of data determines the scope of
epistemic insight because it depends on underlying assumptions and provides the
basis for prediction model creation.
Protein function prediction can be based on different kinds of data. For example,
amino acid sequences provide the building blocks of proteins. Amino acid sequence
similarity measures can be computed to infer protein function [21]. Jensen et
al. [21] predicted protein function with features computed from amino acid sequences
such as post-translational modifications and localization properties. Later, Jensen,
Gupta, Staerfeldt and Brunak [22] used protein sequences to predict gene ontology
annotations. However, efforts for high scale integration of distributed resources have
been undertaken.
At the beginning of the project there was the vision to exploit a vast feature space
obtained from an extensive data Knitting Tool that should combine multiple sources
including biological semantic databases, inferred knowledge as well as biophysical and
biochemical data in a Semantic Knowledge Base (SKB). This comprehensive SKB
was planned by NTNU’s Semantic Systems Biology research group, and aimed at
integration of protein motive data, physical characteristics, protein-protein binding
knowledge, network proximity information, multi-level interaction between proteins
in pathways, ect... However, the SKB did not develop to an accessible data source.
This unexpected development made it necessary to find a new, adequate source of
data.
The Gene Expression Knowledge Base (GexKB) was considered to be an alternative.
GexKB integrates knowledge about proteins like Gene Ontology (GO) data, Molecular
Interaction (MI) Ontology, as well as the weighted gene regulatory network Biorel
and forms a seed ontology out of these [43]. Subsequently, more data sources are
exploited including protein modification data or the association of proteins with
specific diseases, ect. In a screening phase of this project prior data sets were tried
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with varying success. Most of the different data types did not show promising
results due to limited data or low correlation to the key feature. Combinations
of different data types were not tested, because the variable space would explode.
The gene ontology annotation data turned out to be the most useful information,
because preliminary classification results were better than for any other information
type. The combination of the sub-ontologies GO Molecular Function, GO Cellular
Component and a selected part of GO Biological Process was able to distinguish
many DbTFs from non DbTFs. GexKB includes these ontologies but was created
with transcription factors and other proteins and complexes that these bind to and
no negatives. In order to get unbiased, comprehensive protein data for both DbTFs
and non DbTFs, the Gene Ontology Consortium [2] was selected as data source.

Preprocessing

The descriptive data contains about 11000 dimensions. Preprocessing provides
necessary dimensional reduction and enables variable relevance estimation. The
reduction includes a variable selection procedure and the construction of new features
that summarise relevant variables in a linear combination.

Machine learning

The idea is to create a prediction model that maps the reduced data on the dependable
key feature, i.e. being a DbTF. Artificial neural networks (ANNs) represent versatile
tools for prediction and are intensively used by companies like Google or Facebook
for this purpose. A very good introduction to neural networks is given in the
books [11,35].
Neural nets are composed of modular data processors, called neurons. The networks
are inspired by the design of the cerebral nervous system. An ANN has an input and
output interface that is linked by a network of neurons modelling a sub-symbolic
function. The number of inputs and outputs correspond to the dimensionality of
the input data and the key features, thereby enabling multivariate information
processing. Neural networks are known for their ability to learn complex input /
output relationships and to identify characteristic pattern signatures in the data
using their generalization abilities. This makes them particularly suited for pattern
recognition.
Because of the complexity of the approach no other predictors like decision trees
or support vector machines are applied in the scope of this project. Possibly the
transparent and well interpretable preprocessing and postprocessing combined with
the somewhat opaque but very adaptive machine learning approach will lead to both,
understanding and good prediction performance.

Postprocessing

Postprocessing is crucial for validation and the detection of over-training. An over-
trained model has lost its ability to accurately predict unknown instances because
it has learned noise instead of the underlying relationships. The accuracy of the
classification is analysed with validation instances that are not used for training. The
techniques cross-validation and receiver operating characteristic (ROC) are applied.
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As artificial neural networks lack a symbolic model it is difficult to learn about
the relevant underlying patterns in the data. In addition, a sensitivity analysis is
conducted and the influence of each variable on the classification result is measured.
Ideally a subset of variables can be found that incorporates less noise and leads to
better training and classification results. The resulting variable ranking should give
further indication for the variable importance estimation from preprocessing.

Finally the candidate proteins are classified and a ranked list of candidates is created.
The results should provide additional evidence to the research community, for instance
a priority measure to desing further experiments.

Earlier realisations

Machine learning and artificial neural networks are increasingly applied in natural
science. The project goal seems to be feasible as similar approaches have been carried
out for other kinds of data - with great success.

De La Calleja and Fuentes [6] automated galaxy morphology classification based
on pattern recognition of galaxy image data. They employed principal component
analysis for dimensional reduction to overcome the dimensionality problem. Their
prediction model was able to classify new galaxies fast and efficiently. Another
example is evaluation of the large amounts of data produced in high energy physics.
Massive amounts of sensor data from particle collisions is collected, but there might
be irrelevant events. The work of Shimon and Daniel Whiteson [44] deals with
application of machine learning for event selection.
More examples can be found in bioinformatics. Round blue cell tumors were classified
based on gene expression signatures by Khan et al. [23] with the help or artificial
neural networks. Their inspiring work influenced the structure of the approach of
this project. Hapudeniya [16] provides an extensive overview on ANN applications
in bioinformatics. Xu et al. [46] applied a neural network based system called
Gene Recognition and Analysis Internet Link (GRAIL) for finding the location and
significance of genes in a genome based on uncharacterised DNA sequences. Another
field of ANN application is quantitative structure-activity relationship (QSAR)
modelling. The idea is to capture biological activity of chemicals based on their
chemical and physical properties. QSAR modelling with ANNs becomes more and
more popular in recent research and spans from enzyme reactivity assessment [40]
to prediction of function of structurally diverse ligands [30]. Seguritan et al. [38]
utilised ANNs to classify viral and phage structural proteins according to amino
acid composition. Cell cycle related genes were found and assessed by Lichtenberg,
Jensen, Jensen and Brunak [7]. They employed an ANN ensemble that was trained
with quite generic protein features, for example, phosphorylation, glycosylation,
sub-cellular location and instability / degradation.

Report structure

In chapter 2 a literature review is performed in order to make a well informed
proposal for the methodology. The set of methods is developed with a focus on the
particular use case problem, but the procedure should remain a basis for a broad
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range of applications. This chapter includes also an introduction to artificial neural
networks.
In chapter 3 the training data is selected. Relevant steps are discussed and argued
including instance and feature space selection. Four subsets with different instances
are constructed in order to enable a stability check.
The novel approach is implemented, optimised and discussed in chapter 4. Different
dimensional reduction techniques are tested for suitability. Based on a discussion
of preliminary classification results one particular methodology is chosen for final
application. Subsequently candidate DbTFs are classified and the results are carefully
discussed in chapter 5.
The gained experience is used to additionally formulate a proposal of how to predict
drug synergy by machine learning. This future prospect is related to the AstraZeneca-
Sanger DREAM Challenge and is covered in chapter 7.
The report completes with an outlook that gives recommendations for similar imple-
mentations and suggestions for future work.
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respective four options are implemented and tested for the gene ontology annotation
data. A summary of the process is given in the sections 1 and 2.4.
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Chapter 2

Methodology

In this chapter the methodology for protein classification is developed. The approach
focuses on the particular context of binary gene ontology annotation data that is
expected to be characterised by sparsity, redundancy and about 10000 dimensions. A
literature review is performed, state-of-the-art techniques are introduced and critically
discussed in terms of their suitability. Subsequently, an intermediate methodology
is proposed in section 2.4. An overview of the resulting work flow is illustrated in
figure 1.1. The proposal is subsequently tested and assessed with the protein data in
chapter 4.

Terminology In this project report the term ’prediction’ is the umbrella term for
’classification’ and ’regression’. The term ’classification’ is used if the key feature (or
features) is discrete. ’Regression’ refers to one or several continuous key features.
The specific use case of this project is a binary classification problem. The key
feature is being a DbTF or a non DbTF.
The terms ’instances’ and ’samples’ are used synonymously in this report. In the use
case the instances are always proteins or their data representation.
In the following discussion, the term ’variable’ will be used for a descriptor in the
original, unreduced data. ’Features’ on the other hand correspond to the selected
variables and computed components that will be used as machine learning input. In
this report a component is a linear combination of variables.
There are two other terms that are explained to avoid confusion. The term ’variable
selection’ is used for finding a subset of variables and pruning irrelevant ones. ’Feature
extraction’ means to construct components from the variables and include these in
the training data.

2.1 Preprocessing

The proteins are represented as high-dimensional binary vectors that encode the
existence of gene ontology term annotations. The combination of these vertices form
a matrix X that is about to be analysed in a pattern recognition process. Separately,
a binary matrix Y is obtained incorporating the dependable information. As there is
only one key feature, Y reduces to a one dimensional array encoding whether the
protein is a specific DNA binding transcription factor (DbTF) or not.
Preprocessing is related to dimensional reduction in order to remove redundancy
and noise from the descriptive data matrix X. Many approaches belong to one
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of the following two concepts: One approach is to select a subset containing the
most promising variables and prune the irrelevant ones. These variable selection
techniques differ by the definition of variable relevance. The other strategy is to find
combinations of variables to create advanced features that summarise the original
variables - a process that is sometimes referred to as feature extraction.
In the following section a subset of techniques is introduced and discussed in terms
of suitability for the particular use case problem.

2.1.1 Variable Selection

Different mechanisms for variable selection are proposed, applied and compared in the
literature [14, 20,40]. Usually a variable ranking is performed that can subsequently
be used for subset creation in a forward or backward selection approach. Forward
selection processes start with an empty set that is iteratively enriched with the most
promising variables. Backward selection starts with the full domain of variables
and prunes the least promising ones. As backward elimination assesses variable
relevance in the interplay of all remaining variables, it is supposed to better take
interdependencies between variables into account [14] at the cost of computational
effort.

Supervised and unsupervised

Unsupervised filtering aims for ranking variables focusing on the inherent structure
of the descriptive data. The number of possible criteria is tremendous, however
usually a subset of maximal entropy is desired. Unsupervised methods only focus on
the intrinsic and inherent structure of the descriptive data and do not necessarily
capture the relationship to the key feature. By nature this class provides flexibility
because it is not influenced by any kind of prediction model.
Supervised methods consider the dependency between variables and key feature.
These approaches take the dependent key feature into account and hence judge
variables or data patterns from a goal orientated perspective. Sometimes, machine
learning is applied as a black box mechanism. A measure of performance is computed
and iteratively maximised by selecting variables in an optimisation step. If the
machine learning models are independent from the final prediction approach, the
selection technique is called a supervised filter. If the variable selection process is
performed with the help of the final machine learning approach, it is often called
wrapper [14].
Unsupervised and supervised approaches are controversially discussed in the literature.
Varshavsky, Gottlieb, Linial and Horn [41] recommended to stick to unsupervised
methods in order to keep the data unbiased and have a lower risk of over-training.
Feature selection should base on the descriptive data only and should not be influenced
by a modelling function like supervised methods would do.
Boulesteix [3] argued that supervised methods are usually better suited for prediction,
because they are goal driven and work with a large variety of data sets. Though
supervised filters and wrappers are relatively easy to apply they might have some
limitations: blackbox predictors are prone to over-training, an issue that is in detail
described in chapter 2.2. In order to detect and avoid over-training, the data is split
into training and validation sets and cross-validation is performed. One could argue,
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that the variable selection process is only based on smaller bootstraps and not on the
entire data at once [14]. Also, the approach is only feasible if dimensional reduction
is not necessary for the predictor to work.

Collinearity

Some standard filters are easy to apply but some lack some essential common sense
as they ignore the interactions between variables [40]. If the interplay of two variables
can be modelled with a linear relationship with reasonably good accuracy, there is
redundancy.
There are controversial discussions in the literature about the criteria for removing
correlated variables. According to the review of Guyon and Elisseeff [14] one might
consider to remove variables with very high correlation. Szaleniec [40] recommends
to remove all variables that have a pairwise correlation coefficient larger than 0.9.
Simultaneously, one should acknowledge that synergistic effects could make correlated
variables particularly valuable, so the threshold could be problem dependent. A
lack of verifiable criteria complicate threshold selection. Guyon and Elisseeff [14]
recognise that even on the first glance irrelevant variables can surprise in the presence
of others. Probably redundancy is not a big problem, if the collinearity follows the
same structure in all data sets. This situation is sometimes referred to as pattern
consistency.
Some state-of-the-art and complex variable filters exist, that take collinearity into
account. SVD-entropy is proposed in the work of Varshavsky, Gottlieb, Linial and
Horn [41] and has been proved to be successful in biological contexts. Entropy is
computed with and without a variable in a leave-one-out scheme. The change of
entropy is computed and interpreted as a relevance score. However, the unsupervised
nature of SVD-entropy could lead to a loss of relevant information. Furthermore,
multivariate space with about 10000 dimensions excludes backward elimination
techniques because of computational reasons.

Model restrictions

Supervised applications often make use of a prediction model that is bound to model
characteristic limitations. Variable selection may be less transparent due to model
complexity. This poses a risk when no justifiable criteria for threshold selection can
be found. There is the risk of over-training. Also, a bias might be introduced to the
data by overlooking or overemphasising specific structures. For example, a linear
model might neglect variables that have nonlinear characteristics.
Surprisingly, a flexible supervised method that minimises model restrictions could
not be found in the literature. This is why a very simple, rather model free ranking
procedure is proposed. Variable relevance can be assessed for single variables in a
virtual one-variable-classifier. In addition, interaction terms can be added similarly
to a Taylor expansion. The so-called separability score quantises the ability to resolve
the key feature by density histogram computation. It can be applied on binary
classification problems and it might be possible to modify it for regression tasks,
however this lies beyond the scope of this project.
Separability analysis is explained in figure 2.1 with the help of artificial data that
simulates different variable distributions. Two groups of instances, A and B, have
each a density distribution within a variable x0. The variable x1 is only shown to
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improve readability. For each group a histogram with n bins is computed separately.
As depicted in the diagram in figure 2.1, both histograms are subtracted from each
other and the absolute is taken to obtain a third histogram, which has a green color.
The sum of the bins in this difference-histogram is called separability score and is
interpreted as a relevance measure. The separability score s is computed by

s = 1
cNA +NB

n∑
i=1
|c · Ai −Bi| (2.1)

where n is the number of bins of the histograms, NA is the total number of instances
in group A and NB is the total number of instances in group B. Ai and Bi are the
counts of instances in the bins of the histograms for groups A and B. In the formula
the histogram of group A is scaled by a factor c. If the fraction of total instances
c = NA/NB 6= 1, one group has an excess of instances. One histogram can be scaled
accordingly to give equal contribution of both groups to the separability score.
In the next iteration pairs of variables are assessed in order to consider first order
interaction terms. The procedure is similar to the variable subset selection process
from de Lichtenberg, Jensen, Jensen and Brunak [7]. In an iterative process combi-
nations of variables are ranked according to their combined prediction performance
as a two-variable-classifier. This involves two dimensional histogram computation,
subtraction and integration like for the one-dimensional case. The best pairs are
used to build new combinations. One logical operation is chosen to create a new
term that is added to the data. Five different operations are considered: x0 AND
x1, x0 OR x1, x0 AND ¬x1, ¬x0 AND x1, x0 XOR x1. One-dimensional separability
analysis is applied on the new terms and the best logical operation is chosen. For
continuous variables, other operations like multiplication might be considered.
The approach gives an opportunity to detect difficult checker board arrangements
like the XOR challenge - a setting that is shown in figure 2.2. Continuous data is
used to improve readability. No one of the two variables shown can resolve the key
feature. However, two-dimensional separability analysis is able to detect a nonlinear
relationship by histogram computation.
The model’s only free parameter is the number of bins for density computation. The
standard deviation of the separability scores with n, n-1 and n+1 bins offers an
accuracy estimate and the average represents a more robust result. The number of
bins should not be chosen too high as this would correspond to over-training. There
are two reasons for this: First, the assumption should hold that the bins still contain
enough instances to enable statistical analysis. Second, the resolution that the bins
imply should be able to resolve the relevant structures in the data. There should be
a very low risk of over-training if the number of bins is significantly (like one percent)
lower than the number of instances. For binary data however there is no need to
choose the number of bins.
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Figure 2.1: Separability score computation is illustrated with artificial data in a binary
classification problem. Different density distributions in variable x0 are presented
for demonstration. The axis x1 is not relevant, but is useful for visualisation. The
blue and red histograms show instance counts. The green histogram is the absolute
difference of the blue and red ones. The normalised sum over the green bins is
interpreted as relevance score for the variable x0.

(a) The two groups are defined by an
XOR function that separability analysis
can detect.

(b) The multiplication of the two vari-
ables creates a new feature that can be
further treated by linear techniques.

Figure 2.2: The challenge to detect checker board problems is addressed by separa-
bility analysis. This example shows an XOR relationship.
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Proposal for variable selection

A set of four approaches is chosen to be tested for suitability. Supervised, unsuper-
vised, linear and nonlinear methods are contained in order to enable flexible hybrid
applications. Because of the size of the descriptors space, forward selection processes
are chosen at the cost of overlooking variable interactions. This means that variable
selection has to be conducted very carefully to retain nonlinear information.
The proposal includes a) variance analysis (unsupervised ranking), b) separability
analysis (nonlinear supervised ranking), c) correlation to the key feature (linear
supervised ranking) and d) absolute PLSR regression coefficients (linear supervised
filter). The options are illustrated in figure 1.1.
a) A basic unsupervised filtering approach is to rank variables according to standard

deviation. A problem specific threshold is chosen in order to exclude rather
constant variables. This seems to be fast, simple and reasonable strategy for
the gene ontology data as the majority of terms has less than 1% non zero
entries.

b) Separability analysis is a rather model free supervised method, that is not
mentioned in the literature that was reviewed. It is applied to estimate
nonlinear relevance of both single variables and variable pairs. In addition it is
applied to enrich the descriptive data with first order interaction terms.

c) A very greedy approach is to rank variables based on their correlation to the key
feature. For each variable the 2× 2 correlation matrix is computed and one
of the non-diagonal entries are chosen as signed relevance score. It might be
interesting to compare the results to the other methods because the method
offers intuitive interpretation.

d) In supervised filters computationally efficient models can be employed that cope
with many dimensions. A time and memory efficient linear model is chosen.
Later, a nonlinear predictor can be used for final classification. Partial Least
Squares Regression PLSR can be used for both data reduction and variable
importance estimation [27, 45]. It is introduced in the next section about
feature extraction. One option is to interpret the linear regression coefficients
as relevance scores.

As dimensional reduction is necessary to enable machine learning, a wrapper technique
is not applied in preprocessing. Because of limited time and for computational reasons,
some prominent techniques like SVD-entropy or advanced embedded systems that
combine training and variable selection are not considered.

2.1.2 Feature extraction

Feature extraction aims at finding combinations of variables that form a compact, less
redundant and less sparse representation of the data. The entire data contributes to
the new representation so that synergistic effects can be preserved. In the following,
the feature extraction techniques PCA, PLS and LPLS are presented.
As variables might have different units and ranges of values, they might not be
directly comparable to each other. The following approaches depend on the scaling of
the data and antecedent normalisation is necessary. Sometimes the standard scores
are computed (e.g. [1, 20,36,37]):

z = x− x̄
σ
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with the standard deviation σ. In any case variables are mean centred.

PCA Principle component analysis (PCA) is an unsupervised approach to capture
axes of highest variance and to reveal the intrinsic structure of data. Originally
it was formulated by Karl Pearson in 1901 [33], but it is argued if Hotellings [17]
was the actual inventor in 1933. Once proposed for multivariate data analysis in
social science, PCA diffused into a wide range of science and industry. A very good
introduction can be found in the papers [20,47].
The basic idea of PCA is to find an orthogonal set of bases in variable space where
the new axes, called principal components, are orthogonal and not correlated to each
other. Hence, the procedure involves singular value decomposition of the covariance
(or correlation) matrix. The linear independence of the principal components solves
the multicollinearity problem. Ideally, a small choice of principal components can
be extracted, explaining the major variance of the whole data. The technique is
illustrated with some artificial data in figure 2.3.
The covariance between two variables a and b that have N samples is defined by:

cov(a, b) = 1
n− 1

N∑
i=1

(ai − ā)(bi − b̄) (2.2)

The bar over ā denotes the mean of a variable. Let X be the centred (N × P ) data
matrix that is about to be analysed with N instances and P variables. The matrix
product XTX is a scaled covariance matrix as one can see in 2.2. After decomposition
XTX = S V DT , D contains the right handed eigenvectors called loadings. SV̇
contains the scores which represent the new coordinates of the instances. The new
bases are called principal components and are already sorted with respect to the
variance they explain [20]. Components can be selected to reduce the dimensionality
of the data. Instead of singular value decomposition an iterative algorithm called
NIPALS [18] can be applied in order to quickly extract only some of the first principal
components.
PCA is successfully applied in the work of Khan et al. [23] on biological data and
in the papers [18, 39] on spectral data before classification. It is recommended as
effective tool for multivariate data analysis because the principal components can
usually be associated to an interpretable effect or cause [40]. In addition, PCA has
clustering potential. In the work of Yeung and Ruzzo [47] the principal components
are used to capture cluster structure with great success.
Effectiveness of PCA when dealing with discrete data is critically analysed in the paper
of Kolenikov, Angeles et al. [24]. It is pointed out that results worsen when dealing
with ordinal variables that incorporate many categories. In this case correspondence
analysis should be preferred. This is not a problem for the use case because binary
data has only two categories.
The effect of PCA on prediction is controversially disputed in the literature. Janecek
and Gansterer [20] point out that data with significantly more attributes than
instances might be challenging. Another disadvantage of PCA lies in its unsupervised
nature: It may condense the intrinsic structure of the data and give well interpretable
principal components, but it ignores the relation to the dependable key features
and therefore might neglect important information. The first principal components,
which include the majority of variance, are probably not the components that are
relevant for prediction [1]. The percentage of variance that the choice of principal
components contains does not relate to clustering quality [20,47]. Chang [4] discusses
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an example with artificial data where the most relevant information is found in the
few first and last principal components. According to Yeung and Ruzzo [47] the first
few PCA components are as good for classification as a random choice. This is shown
by treatment of biologial gene expression data and artificial data. The method may
produce many components that preserve too many unnecessary details within the
data including systematic noise [41].
There is the idea to use a search algorithm in order to find the most useful PC’s and
prune the others [23, 47]. Another option is to apply the methodology of variable
selection on the PCA components. The last strategy is implemented and tested in
chapter 4.2.

Figure 2.3: The functionality of PCA is visualised. The principal components are
illustrated as lines. One observes that the components are sorted according to their
variance contribution.

PLS Unlike PCA, which focusses on the variance within the variable space, su-
pervised partial least squares regression (PLSR) takes the dependency between the
descriptors and key features into account. The approach is well described in the
papers [1, 3] and is applied in this project because of its growing popularity. PLS
finds a set of linear combinations that perform a simultaneous decomposition of the
descriptive X data with N instances and P variables and the key feature matrix
Y with N instances and K key features. The decomposition is obtained with the
restriction that the linear components - also called latent vectors - maximise the
covariance between X and Y. A variant of the NIPALS algorithm can be applied for
latent vector extraction in reasonable time. In this project the NIPALS algorithm
described in [1] is implemented. The PLS scores are used as a reduced, compact
representation of the descriptive data.
The computation of the scores can be optionally followed by a linear regression step.
The regression coefficients can be used to estimate variable relevance. In this project
the idea is to use a nonlinear classifier for the final prediction and apply PLS only
for dimensional reduction, neglecting its regression results.
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According to Boulesteix [3] PLS is the only known feature extraction technique that
can cope with very high-dimensional data that has more variables than instances. In
the paper of Nguyen and Rocke [32] PCA and PLS are compared to each other with
micro array gene expression data in the context of tumour detection. In most cases
PLS clearly outperformed PCA.
The number of extracted components determines the amount of useful information
and irrelevant noise in the reduced data. Apparently there is no widely preferred
procedure to choose the number of latent vectors. In some cases a supervised filter
is applied and the PLSR regression results are optimised in respect to the number of
components to include [1]. Validation techniques like cross-validation are applied
to detect over-training. However one could argue that the linear regression model
overlooks nonlinear relationships. As a nonlinear predictor is applied in this project,
the loss of nonlinear patterns should be minimised. Instead of PLS regression, the
final machine learning technique is used in a wrapper approach to choose the optimal
number of latent vectors.

LPLS Sometimes in difficult problems there it the necessity to exploit additional
information as effectively as possible. A supervised approach, that is conceptually
similar to PLS, includes an additional data block in the component construction
process. Let X be the descriptive data matrix with N instances and P variables,
Y the key feature matrix with N instances and K key features and let Z be the
additional matrix of the shape P × L. The data blocks are arranged in an L-shape
with X in the center (hence the name LPLS). Exo-LPLS aims to maximize covariance
between the data blocks X, Y and Z with Y and Z containing the dependable data.
The components are automatically sorted in their level of covariance explanation [37].
As the shape of Z already implies ,the additional information matrix Z should
depict the variable space. One option is a distance matrix that explains relationships
between variables, but in principle every data describing the variables can be chosen.
A variation of the NIPALS algorithm that is applied to extract a number of the first
components [36]. Before its application the data blocks are centred [37]:

Y 0 = Y − 1N Ȳ
T (2.3)

Z0 = Z − Z̄1T
N (2.4)

X00 = X − X̄1T
N − 1NX̄

T + 1N
¯̄XT 1K (2.5)

LPLS NIPALS contains a free parameter α. The parameter weights the influence
of the Y and Z matrices on component construction. α = 1 would assign maximal
contribution to the supplementary information Z while α = 0 would minimize the
contribution [36].

Nonlinear techniques The two supervised feature extraction methods, that were
introduced, are restricted to linear models. A number of nonlinear dimensional
reduction techniques exist. A self organizing network is a prominent example and a
good introduction can be found in the book [9]. Variants are proposed and tested in
the paper of Roweis and Saul [34] and in the work of Demartines and Hérault [8],
where a self organizing network is applied to map a sub-manifold on an output space
for dimensional reduction. However, some methods are not likely to work in very high
dimensional space and there is an additional challenge when the type of nonlinearity
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is not known beforehand. Hence, nonlinear techniques are not focused on in feature
extraction but might be promising for future applications.

Proposal Four options are considered for feature extraction. These include a)
PCA, b) PLS, c) LPLS and d) no feature extraction. The different proposals are
visualised in the flowchart 1.1 and tested in chapter 4 for suitability. The procedures
are summarised below.
a) Though PCA does not seem to suit some prediction problems, this soft-modelling

approach can give valuable insight into the data and help to understand its
inherent structure. Including PCA in the proposal will enable subsequent
comparison between an unsupervised method and the supervised methods.
The procedure is divided into a two step process. First, PCA is applied and
all principal components are obtained. This does not lead to dimensional
reduction yet, as the total variance is conserved. In the second step relevant
principal components are identified by one of the variable relevance estimators
that are covered in variable selection in chapter 2.1.1.

b) PLS summarizes covariance and hence could suit the classification task at hand.
All in all PLS seems to be discussed far less controversially than PCA in the
literature. The idea is to use the PLS scores as a compact representation of
the descriptive data and use them to train a nonlinear classifier.

c) AS not much neutral or critical comparisons between LPLS and the other methods
were found in the literature, it seems to be interesting to include it in the
proposal. In section 4.2.3 additional data is selected to guide the dimensional
reduction process.

d) Feature extraction is skipped in order to observe the influence of feature extraction
on prediction. The effect of collinearity on prediction can be studied.

Nonlinearity is not considered in feature extraction. The idea is to enrich the data
with interaction terms found by separability analysis. The enriched data can be
subsequently judged in a linear fashion by feature extraction methods.

2.2 Machine learning

Introduction to artificial neural networks (ANNs)

Artificial neural network predictors are still state-of-the-art and very popular in
the literature. They combine adaptivity and good performance with an aesthetic
concept. An Artificial Neural Network (ANN) is a computer algorithm with a
modular structure, which is inspired by the human nervous system. A neural network
consists of building blocks, the neurons, which function like two-state threshold
elements [13]. Their ability to implement highly nonlinear functions was discovered
by the pioneers McCulloch and Pitts [26].
The structure of a neural network is defined by the number of neurons and their
linkage. The neurons are interconnected by weighted links that correspond to
synapses in the human brain. A signal propagates through the network either
repressing or stimulating other neurons depending on the link weights. A neuron
functionally consists of dendrites, cell body and axon - or in computational science -
input, activation function and output. The so-called activation function maps the
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summed input potential on the output value. In the implementation used in this
project the artificial neurons do not have any kind of internal state. The input value
of a neuron n is hence computed by

Un =
N∑

i=1
wnixi + Θ (2.6)

and the output value is Z(Un) for the n-th neuron with N predecessors, weights wni,
a bias term Θ and the activation function Z. The quantity Un corresponds to the
potential that is accumulated in the axon until the neuron fires. The number of
neurons, the types of activation functions and the link weights fully determine the
behaviour of the system.
The activation function can be chosen freely, as long as it does not diverge. Logistic
or sigmoid functions are frequently chosen because they offer a lower and upper
threshold. This property is useful for discrimination of an active and inactive state.
For this project sigmoid functions are implemented.

Training of neural networks

The ANN is trained to map the reduced data on the key features in a supervised,
iterative optimization approach. First the ANN is randomly initialized. The weights
of the neural links are modified in order to minimize the summed square error of the
prediction. This task is delicate because the error hyper surface is characterised by
local minima and sharp structures. Feed-forward ANNs are rather difficult to train
but in the last years powerful backpropagation methods have been developed. In
backward propagation the output error is propagated backwards through the network
and the weighted links are corrected to minimise the prediction error. The choice of
the training algorithm affects training time and the quality of the classification.
A modified training algorithm, called Rprop [19], is applied in this project. The fann
package is employed (http://fann.sourceforge.net/fann.html) because it offers
a flexible and fast neural network implementation in C.

Input encoding

Discrete data should be encoded in binary format because other ordinal variables
would imply a numeric relationship between categories that does not exist. In general,
the input should be normalised to be in the output range of the activation functions
used, like [−1, 1] for the sigmoid functions implemented in this project.
Another issue is an unequal amount of true positive and true negative instances in
the training data. Usually the training process assumes, that the numbers of true
positives and true negatives are the same. If one class is overbalanced, the network
might generally prefer this class. The learning rate could be adjusted to remove the
bias, but in the literature this solution was not fount to be thoroughly tested. A
different solution is considered. Equally sized bootstraps are taken from the domains
of true positive and true negative instances. Multiple predictors are trained and
embedded in a neural network ensemble. Thus, the entire information is used.
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Network structure

There are many options to link neurons together and construct network structures
that show different characteristics, abilities and limitations. The structure of an
ANN is determined before machine learning if no advanced nested method is used.
ANN structure has an important impact on prediction performance, learning speed
and how prone the network is to over-learning.
In a feed-forward network the neurons are arranged in layers. One layer of neurons
is fully linked to the previous and next layer, but inside one layer there is no
interconnection as this would introduce some kind of unwanted memory effect. One
can distinguish between the input layer, an arbitrary number and size of hidden
layers and an output layer.
In figure 2.4 an example of a neural network is given and activation patterns are
illustrated with colors. The example is useful to understand how information is
propagated through an ANN. The information flow is always in the direction from
the input layer (left) to the output layer (right). The hidden nodes - if any - further
process the information internally and forward it to the output nodes. One can see
that the activated input nodes (blue big circles on the left) activate one of the hidden
neurons due to promoting red links. This particular hidden neuron activates the
lower output neuron. A bias node, which is always firing independently from the
input, activates the upper output neuron.

Figure 2.4: Activation pattern in a fully interlinked neural network with seven input
nodes (right), one bias neuron (upper node), two interlinked hidden neurons (middle,
brown) and two output nodes (right). The radii of the circles are proportional to the
neuron output. Blue links are repressing links, red and brown links are activating
links.
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Over-training

The peculiarity when dealing with machine learning is to downgrade ones excitement
about 100% accuracy predictions. A predictor of very low training error might
be completely wrong for new data sets because it might have lost its essential
generalisation ability. Loosing this ability is often referred to as "over-training".
Irrelevant signatures like noise in the data have been learned that are not relevant
for prediction. During the iterative training process, the ANN learns the rough data
structure first. With each iteration the error surface is explored in more detail. First
the error is reduced by taking into account characteristics of the two groups - later
the training instances are incorporated as individuals. In this stage the fine structure
including all the noise is learned.
An impressive example for over-training is shown in figure 2.5b where the training
errors goes down significantly but the classification errors of separate validation
instances do not at all. The example illustrates the need to stop training before
both error types separate. Figure 2.5a shows the error development of a successful
training process. If the errors of the training and validation sets are roughly in the
same range, over-fitting has not occurred yet and the network still preserves its
generalization ability. When the error of the training sets are significantly lower it is
already too late.
A precondition for over-training is a complex network structure that has the ability
to incorporate complex fine structure. A high number of free model parameters
promotes over-fitting. This means that a simple ANN structure that is capable to
map the input to the output should be preferred to a more complex one. This gives
rise to the question, how the optimal network complexity, i.e. the number of hidden
nodes should be determined.
Though some formulas exist that recommend the total number of hidden nodes, the
choice is highly data specific and no rule of thumb can make the decision for the
researcher. The dimensionality of the input data determines the input data complexity.
Likewise the number of hidden neurons directly affects the networks potential to
have more complex input output mappings. Hence, both parameters have to be
chosen dependently. Thus it seems to be reasonable to conduct a two dimensional
parameter scan and measure prediction performance for different combinations of
input and network complexity. This performance surface will hopefully enable better
understanding about hidden noise and nonlinearity in the data.

Cross-validation

Cross-validation enables to indicate over-training. Cross validation is a powerful tool
because it is compatible with all predictors and can compare them as long they use
the same data [15]. The set of available instances is partitioned into a training and
a validation subset. The validation set serves as a control group for the learning
process and is not used for training. During the training process the mean square
errors are monitored for both subsets separately.
Cross validation is justified if the subsets are large enough so that they can represent
the whole data [40]. However the precondition is not always guaranteed. This is
why the training process is repeated with different partitions of the original data
to enable a statistical error analysis and to be independent from randomly biased
subsets.
The ratio that is used to split the instance space into training and validation subspace
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can be chosen freely. The ratio used here was also successfully tried by Khan et
al. [23]. The training set contains 2/3 of all data sets and the validation set 1/3
because this is expected to give reliable validation results while still providing a
representative training set.

Output decoding and accuracy estimation

The individually trained neural network predictors have different input-output map-
pings. There are various ways to reach a consensus scheme. One option is to make
a pre-selection so that only the best neural networks ANNs contribute to the final
vote [7,38]. However this rather greedy approach might promote over-training be-
cause not all data contributes to an equal amount [15]. Generalization abilities of a
broad ensemble tend to be higher than that of few, very good performing ANNs.
In a consensus scheme the individual votes are combined to a democratic vote. This
strategy was proved to be successful e.g. in Khan et al.’s paper [23] where 3750
ANNs were trained and used as an ensemble predictor. Hansen and Salamon [15]
studied the behaviour of an ANN voting committee. The residual error decreases if
each ANN has a correct prediction in more of half the cases.

The continuous output O ∈ [1,−1] needs to be converted to a binary value in order
to become a classification result. However, the continuous output indicates the
certainty of the prediction. Accuracy can be described by the level of agreement of
the single predictors. The standard deviation of the single ANN outputs seems to
be a reasonable indicator of accuracy. Nevertheless, one should keep in mind that
prediction errors cannot be lower than the validation errors measured during cross
validation.
Although the accuracy proposed seems to be a reasonable quantity, this strategy
is interestingly not considered in the literature above. In the literature usually
confidence intervals are chosen for a single predictor’s output that marks a prediction
as certain or uncertain [23, 38]. However, the non digitalised mean regression output
and the regression standard deviation are expected to offer more detailed, instance
specific information.

2.3 Postprocessing

2.3.1 Receiver operating characteristic (ROC)

Since machine learning is prone to over-fitting, reliable monitoring and validation
tools are necessary to critically assess prediction accuracy. Receiver operating
characteristics (ROC) is introduced as validation technique. It provides a definition
of accuracy. Metz [28] proposed to compute the following quantities:
TP = No. of true positives correctly classified
TN = No. of true negatives correctly classified
FP = No. of false positive classifications
FN = No. of false nagative classifications
P = No. of positive instances
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N = No. of negative instances
Sensitivity = TP / (P + N)
Specificity = TN / (P + N)
False Positive fraction = FP / N
False Negative fraction = FN / P
Accuracy = Sensitivity · N / (P + N) + Specificity · P / (P + N)
Another helpful measure of accuracy is given by Matthews correlation coefficient.

MCC = TP · TN− FP · FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(2.7)

The MC coefficient is a value in the range [-1, 1] and encodes the transition of perfect
disagreement (-1) via random classification (0) to perfect match (1).
The quantities depend on the threshold that is used for discretion of the originally
continuous regression result. The robustness of the classifier is studied by scanning
the threshold and plotting sensitivity against specificity. The performances of the
individual ANNs and of the ensemble can be compared in these "ROC curves" [7].
The individual predictors are validated with their validation instances only to avoid
bias. During validation the prediction result of the ensemble is defined by the mean
output of all single predictors that do not have the particular instance in their
training set.
Furthermore, the integral over the MC coefficients is interpreted as a performance
score. The MCC integral is normalised so that a perfect predictor achieves an integral
of 1. This is achieved by dividing the integral by the range of the thresholds.
An example for a good and a bad training result is shown in figure 2.5a. A bad
predictor is characterised by a linear relationship between specificity and sensitivity.
There exists no discrimination threshold that has both, good specificity and sensitivity.
A good predictor has maximal curvature and ideally reaches a sensitivity and
specificity of one for the same threshold.
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(a) Successful training process for a num-
ber of neural networks. The blue points
show the errors of the training data and
the red ones relate to the validation sets.

(b) Example of over-training. The errors
of the training set go down while the
errors of the validation set go up or stay
constant.

(c) ROC analysis for a reasonably good
predictor. Discrimination thresholds are
shown on the abscissa. Sensitivity (red)
and specificity (blue) are shown on the
ordinates. The MC coefficients (green)
are high for many thresholds.

(d) ROC analysis with shuffled input data.
Straight lines of sensitivity (red) and
specificity(blue) indicate a random clas-
sification behaviour. The MCC curve
(green) has weak fluctuation around zero.

(e) ROC analysis for a reasonably good
predictor in another representation. Sen-
sitivity and specificity are plotted against
each other. There are thresholds with
both, high sensitivity and specificity.

(f) ROC analysis with shuffled input data.
Straight lines indicate that there is no
discrimination threshold with good sensi-
tivity and specificity at the same time.

Figure 2.5: Examples for good (left) and bad (right) training results.
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2.3.2 Sensitivity analysis

In order to provide more evidence for variable relevance estimation, a sensitivity
analysis is performed. By this input feature relevance assessment, the descriptive
data can be further reduced and possibly prediction performance improves. Both
strategies belong to the groups of backward selection processes because they interpret
feature relevance in the context of all other features. Two different approaches are
selected from the literature: The first one tests the response of prediction performance
when an input feature is removed from the descriptive data in a leave-one-out scheme.
The other option consists of a finite difference approach. The change in prediction
output is computed for the variation of one input feature.
The resulting sensitivity score should not be confused with the sensitivity that is
computed in ROC.

Performance sensitivity Szaleniec [40] suggests to remove one of the features
from the data and redo the training process. This corresponds to a leave-one-out
formula and is actually a wrapper technique for variable selection. The relevance of a
variable is then defined by the decrease of classification accuracy when it is left out.

Finite difference approach In the paper of Khan et al. [23] the sensitivity of
input variable k is assessed by the finite gradient:

Sk = 1
Ns

Ns∑
s=1

∂oi

∂xk

with the number of instances Ns, output variation oi and variable variation xk. This
simple sensitivity measurement reveals to what extend the network relies on each
input. The sign of the quantity tells about a suppressive or promoting dependence
between the variable and the key feature.

2.4 Summary, Proposal

The dimensionality is reduced during preprocessing in a two step procedure including
variable selection and feature extraction. For each step four options have been
proposed (see figure 1.1 on page 7). The eight methods are tested and compared to
each other in chapter 4. The final preprocessing procedure is subsequently decided on
the basis of this analysis. A collection of criteria structures the discussion, including:
a) explanation and interpretation power, b) suitability for dimensional reduction and
preliminary training results if available, c) preservation of nonlinear information, d)
arguable choice of parameters and e) computational feasibility.
In addition, the data is enriched with nonlinear interaction terms by separability
analysis.
An artificial neural network approach is a promising, robust and adaptive tool for
machine learning. Training parameters are optimised including the number of input
features and the number of hidden neurons used in the network. This is achieved
by scanning the two parameters and monitoring prediction accuracy. The number
of training epochs is chosen by monitoring training and validation errors. Cross-
validation and receiver operating characteristic (ROC) are applied to detect and
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minimise over-training. The integral of the Matthews correlation coefficients (MCCs)
serves as a measure of predictor performance.
All individual predictors that are obtained from cross-validation vote in an ensemble.
There is no oligarchy as no neural networks are pruned. The individual votes are
averaged. Both the continuous regression vote and the standard deviation convey the
certainty of the prediction and can be used as instance specific accuracy estimate.
Two variations of sensitivity analysis are implemented in order to provide more
evidence for variable relevance estimation. Possibly the results can be used to further
reduce the dimensionality of the problem and further improve prediction accuracy.
Finally, the biological results are discussed and candidate instances are classified in
chapter 5.
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Chapter 3

Data Retrieval

Data retrieval is a pattern creation process that determines the epistemic limitations
of the subsequent analysis. In this chapter protein and descriptor space selection is
thoroughly argued and documented. The resulting data will be subsequently reduced
in dimensionality and used for machine learning to predict specific DNA-binding
RNA polymerase II transcription factors (DbTFs).

Gene Ontology (GO)

In information technology various knowledge representations have been invented to
store and organise complex forms of data. The word ontology has its origin in the
Greek word ’onto’ which translates to ’being’, bravely implying that the ontology
aims at a description of the world. In an ontology information is compartmentalised
into classes. These classes, or terms, are ordered in a hierarchical tree structure and
connected by semantic relationships. These relationships encode for example ’is a’ or
’is part of’ dependencies. In the particular use case the terms are gene ontology terms
(GO terms) that represent diverse protein properties, for instance, the involvement
in biological processes, having a molecular functionality or being located in a cellular
compartment or a complex. Proteins are either annotated to terms or not and can
thus be represented as binary vectors.
One advantage of the ontology approach is the variety of complex information it
can handle. Inference and logical reasoning algorithms can be applied because the
computer ’understands’ the data thanks to the hierarchical tree structure and the
semantic connections. For example, members of subclasses inherit the memberships
of all upper classes. However, inheritance is expected to increase collinearity and
redundancy in the data.

The gene ontology consortium (GOC) [2] is well curated and has public availability.
It encodes specific DNA-binding RNA polymerase II transcription factors with the
GO term ’GO:0000981’ in the branch ’regulation of gene expression’. On 09.02.2016
the consortium provided 109104 inferred or experimentally validated DbTFs in total,
about 38 million gene products and about 40 thousand terms.
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Domain of classification

The domain of classification includes 2325 human, 2119 mouse and 1601 rat gene
candidates from the TFcheckpoint database [5].These candidates are assumed to have
transcription factor activity or at least interaction with them, however experimental
evidence is still missing. Based on the assumption that transcription factors of the
human and the two other species mouse and rat function in a biologically comparable
way, the orthologs can be combined in order to enlarge the training set. 2655 unique
candidate proteins are found to have annotations in GOC. Only 144 of these are
inferred DbTFs according to GOC. The project focuses on classifying the domain of
2655 candidate proteins.

Choice of true positives

The list of true positives contains proteins that are known to be DbTFs a priori.
The TFcheckpoint database provides a literature-based collection of 818 human, 796
mouse and 679 rat transcription factor genes. These DbTFs have been manually
checked for experimental evidence [5]. The intersection of the experimentally verified
DbTFs from human, mouse and rat from TFcheckpoint and the DbTFs from GOC
constitutes a set of 952 DbTFs.

Choice of true negatives

An important aspect of true negative selection is to balance dissimilarity to the true
positives and similarity to the candidates. The negatives should be no DbTFs to
a high degree of certainty and they also should be involved in biological processes
that are related to the candidates. The challenge can be described with an example:
Proteins, that are not located inside the nucleus and that are not annotated in the
gene expression regulation branch, have a high probability to be no DbTFs. However,
most of the candidate proteins are located inside the nucleus and they are usually
annotated in the gene regulation expression branch. Most of the candidates will be
classified as DbTFs. This criterion for negative instance selection is not optimal,
because the data is biased. One will not learn new aspects about the candidate
proteins, because they are already quite similar to DbTFs.
The choice of true negatives is conducted in two steps. In a discrimination step
a criterion is designed to identify non DbTFs. In the second step the domain of
negatives is further reduced. A criterion needs to be found that defines similarity to
the candidate proteins.
In the first step, the 952 true positives are analysed to find a criterion to identify
the negatives. Some GO terms are particularly more often annotated to the true
positives than to 952 random human proteins extracted from GOC. The GO term
list was ranked by correlation to the key feature, i.e. being a DbTF. The list was
studied manually and a selection of DbTF related terms was made. The list includes
the complete branches that start with the GO terms "GO:0000981" describing
DbTFs, "transcription factor activity", "RNA polymerase II transcription factor
binding", "sequence-specific DNA binding" and "sequence-specific double-stranded
DNA binding". Proteins, that are not annotated to any term in these branches, are
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treated as negatives. As the true positive and candidate instances are from human,
mouse and rat, the negatives are also restricted to this domain. Negatives, that are
also candidates, are removed.
About 20000 proteins remain. The second selection step includes a similarity assess-
ment between the negatives and the domain of classification. The similarity analysis
is based on information independent from the actual training data, in order to keep
the training data unbiased. Hence, a variable subspace V is defined that will later
be excluded from the training data.
V combines the GO term branches beginning with the nodes "regulation of gene
expression", "nucleic acid binding", "core DNA-dependent RNA polymerase binding
promoter specificity activity", "transcription factor activity", "core RNA polymerase I
binding" and "transcription, DNA-templated". These branches were chosen manually
because they are assumed to be indirectly related to DbTFs and should not be used
as a basis for candidate prediction. V contains about 900 GO terms.
The true negatives are ranked according to their similarity to the candidates in the
subspace V . A similarity measure is proposed. Let Di be a vector containing the
euclidean distances between the true negative i and all candidate proteins. Let d
be the effective distance. d = D̄i

10 denotes the mean euclidean distance to the ten
closest candidate instances. This definition considers the local environment of the
candidate proteins in V . The effective distances of the about 20000 negatives are
computed and shown in figure 3.1. About 10000 of the negative instances are able
to represent at least ten candidates. The combination of these negatives and the
positives constitutes the instance selection for the training data.
Although the final set of true negatives is chosen with great care, it cannot be proven
that it does not contain any DbTFs. In order to give potential DbTFs that are
overlooked a minimal impact, a large number of about 10000 potential negatives
is chosen. This strategy works well if the assumption holds that the number of
unknown DbTFs is not much higher than the number of known DbTFs. Based
on this assumption the percentage of false non DbTFs will be low. The excess of
negative instances is expected to support the validation process. Machine learning
needs an equal number of true positive and true negative instances, so the individual
classifiers are trained with random bootstraps from the large pool of negatives and
the smaller pool of true positives. In addition, there are more validation instances
than training instances and over-training is easier to detect. As all data is used, the
ensemble is expected to have better generalisation abilities.

Obtaining the training data

The training data was obtained from the GOC database on 09.02.2016. For each
protein a binary vector is extracted that encodes the existence or non existence of an
annotation. Both, experimentally verified and computationally inferred annotations
are included. The variable subspace V is excluded from the training data. The
dimensionality of the resulting data spans 11023 GO terms.
The data is checked for a potential bias between true positives and true negatives. In
figure 3.4 the standard deviation of each variable is shown. The standard deviations
are computed separately for the DbTFs and for the non DbTFs. The true positive
data tends to have a higher variation. The difference is consistent, but very small.
It could not be clarified, if this is a justified difference between DbTFs and non
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Figure 3.1: The effective distances between the true negative instances (abscissa)
and the candidates are computed in the variable subspace V . About half of the
negatives represent the candidates well in V .

DbTFs or if sparsity is lower for DbTFs, only because there has been more research
conducted about them.
Later in the project, there was some concern over the ’biological process’ sub-ontology.
Due to the way this sub-ontology is constructed, it might be indirectly influenced by
knowledge about transcription factors, though the subspace V is excluded from the
training data. In addition, the terms do not describe ’objective’ physical or chemical
properties. Instead, they describe involvement in abstract biological processes and
incorporate a high level of interpretation. There was the idea to focus on terms related
to molecular function and cellular component information. However, removing the
biological process sub-ontology lowered dimensionality from about 11000 to about
2500 and lead to considerably worse training results. The classification performance is
assessed on page 51. The decision was in favour of the biological process sub-ontology,
less sparsity, higher prediction accuracy and potential synergistic effects between the
different sub-ontologies.

Create three subsets for cross checking

Having an excessive supply of true negative instances enables selection of multiple
subsets for stability analysis. The subsets are presented in table 3.1 and are motivated
in the following. The original data set is referred to as Xorig.
The subset Xrand contains all 952 true positives and a random selection of 952 true
negatives. It is chosen as a control group that probably represents the characteristics
of the original data set Xorig. In figure 3.3 the number of annotations are shown
for each protein. Xrand is by far the most sparse subset. In figure 3.2 the number
of annotations with experimental evidence code is shown for each instance. One
observes, that the data set usually contains computationally inferred annotations.
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Data set No. of true
positives

No. of true
negatives

Criterion for true negative selec-
tion

Xorig

952 9123 representativeness of candidate
proteins in the extended gene reg-
ulation branch

Xrand 952 952 random selection
Xevid 952 952 prefer proteins with many experi-

mentally validated annotations
Xanno 952 952 prefer proteins with many exper-

imental or computationally in-
ferred annotations

Table 3.1: The three smaller data sets are subsets of Xorig that are chosen by certain
criteria.

Another data set Xanno is chosen to have minimal sparsity. All true positives are
included, as well as 952 true negatives with the highest number of experimental or
inferred annotations. This choice bases on the assumption that a less sparse data set
could lead to better prediction performance. The low sparsity is visible in figure 3.3.
In order to have a subset with reliable annotations, Xevid is constructed. It contains
all true positives and 952 true negatives with predominantly experimentally validated
annotations. This can be confirmed in figure 3.2, where the numbers of annotations
with experimental evidence code are illustrated. Figure 3.3 implies that Xevid contains
more information than Xrand.
Details on Xevid An important concept in the assessment of GO term annotations
is the ‘evidence code’. A detailed description of the evidence codes can be found on
the gene ontology website www.geneontology.org. All protein’s annotations have an
evidence qualifier attached. The qualifiers can be divided into experimental evidence
and computationally inferred evidence. In general, the experimental evidence codes
represent the strongest form of evidence. Based on this assumption an evidence
review is performed. The experimental annotations include:
Inferred from Experiment (EXP);
Inferred from Direct Assay (IDA);
Inferred from Physical Interaction (IPI);
Inferred from Mutant Phenotype (IMP);
Inferred from Genetic Interaction (IGI) and
Inferred from Expression Pattern (IEP).
In figure 3.2 the occurrences of experimental evidence are shown. The majority of
proteins has no experimental evidence at all, so only an extract from the whole
diagram is shown.
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Figure 3.2: The diagram shows the number of associations with experimental evidence
for true positive and true negative samples. The instances are sorted for each subset
respectively. Most instances have no experimental validated annotations at all, but
computationally inferred ones.

Figure 3.3: The number of annotations are counted for the true positives and the
true negatives. The instances are sorted for each subset respectively. Xrand is the
least sparse subset.
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Figure 3.4: The standard deviation is computed for each variable for the set of
true positives and negatives separately. The variables are sorted for each subset
respectively. The true positive data is slightly less sparse than the true negative
data.
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Chapter 4

Results and Discussion,
Methodology Development

In the chapter 2 a methodology is proposed for the classification of specific DNA
binding transcription factors (DbTFs). Figure 1.1 on page 7 illustrates the proposal.
Corresponding multivariate data is extracted in chapter 3 and four subsets are built
in order to enable stability checks. These subsets are summarised in table 3.1 on
page 31.
The methods proposed in chapter 2 are applied on the data sets. Parameters are
optimised and the results are discussed. Based on the discussion a problem specific
choice of methods is obtained and summarised on page 56. The results of variable
selection, feature extraction and postprocessing are discussed separately to enhance
readability.

4.1 Development of variable selection

The literature review in the methodology chapter 2 resulted in a choice of four different
variable selection methods including variance, separability analysis, correlation
coefficients and PLSR coefficients. A list of criteria structures the discussion. The
criteria for the assessment are a) explanation and interpretation power, b) suitability
for dimensional reduction, c) preservation of nonlinear information, d) arguable
choice of parameters and e) computational feasibility.

4.1.1 Standard deviation

For each variable and for each subset the standard deviation is computed and shown
in figure 4.1. Variables are sorted according to the standard deviation of the original
data set Xorig. In the following the criteria a) - e) are discussed based on this diagram.
a) The subsets are compared to each other and their information content is estimated.

All distributions have a long tail consisting of rather constant variables that add
only few information. The true negative instance selection has a strong influence
on the variance in the data, because the subsets have different variation. The
two data sets Xevid and Xanno tend to have higher variation. The standard
deviations are able to show that the data sets Xevid and Xanno are biased.
The subset Xrand represents the original set Xorig better than the other subsets,
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Figure 4.1: The standard deviation of each variable is shown. The variables are
sorted according to the standard deviation of the set Xorig. Subset selection has a
strong influence on the variance in the data.

because it does not have a significant offset. This finding is in line with the
original idea, since the true negatives are drawn randomly from Xorig. However
there is strong fluctuation in Xrand. There are two possible conclusions to
draw: On one hand the fluctuation could mean, that the true negatives are
very diverse and that there is a high probability, that some true negatives are
able to represent the candidates. However, there is also the negative way to
interpret the fluctuations: the sparsity of the data might prevent reasonable
statistics.

b) Standard deviation neglects variable interaction and is a completely unsupervised
approach. Hence it does not offer a reasonable variable relevance estimate.
Nevertheless, standard deviation can be used for detecting the least informative
variables and removing them.

c) If variance analysis is used to remove rather constant variables only, the risk of
loosing nonlinear content will be low.

d) As no potentially relevant information should be removed from the data, a
low threshold of 0.1 is chosen. Variables with standard deviation 0.1 have
only approximately 0.25 percent non-zero (or non-one) elements. Nevertheless
dimensionality is about halved, which is a big improvement.

e) There is no particular computational challenge to mention.

4.1.2 Separability analysis and data enrichment with inter-
action terms

Separability analysis is in detail explained in chapter 2.1.1 on page 11. The separa-
bility scores are computed for each variable separately and shown in figure 4.2.
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Figure 4.2: Separability analysis is performed and interaction terms are neglected.
Variables are sorted according to the separability scores using the data set Xorig. The
separability scores are invariant under random instance selection and balance the
excess of true negatives in Xorig

a) The algorithm balances the different numbers of true negatives and true positives
in the data set Xorig. Indeed, Xorig and Xrand overlap. The similarity of the
curves is a hint that random instance selection does not bias the data. This
is an essential observation because it means that reasonable statistics can be
done in spite of the sparsity.
For a binary variable separability score is found to be proportional to the
absolute covariance between the variable and the key feature. This is not
necessarily the case for continuous variables. We will see, that there is no
overlap in the case of correlation coefficients and for covariance, which are
directly affected by an excess of true negatives.
The other two data sets show a different behaviour. Some variables with low
separability score in Xorig and Xrand have much higher values in Xevid or Xanno.
This means that these two subsets could achieve lower training errors during
machine learning.

b) The ability to detect nonlinear interaction terms is a clear advantage for prediction.
Separability analysis seems to be a helpful, model free instrument for variable
relevance assessment. However, collinearity is not considered. A variable
subset created with separability analysis might contain redundancy. Probably,
the tool is better suited for PCA or PLS component selection, because these
components are statistically independent from each other.

c) Separability analysis detects nonlinear point distributions in one variable. For
binary data this is obviously irrelevant. However, the method can be expanded
and relevant nonlinear variable-variable interaction terms can be identified.
The procedure is in detail described in chapter 2.1.1 on page 11.
Not all pairwise combinations can be checked for interaction because of compu-
tational limitations. A pre-selection of promising variable pairs is made. The
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search is conducted with the 500 variables of highest standard deviation in
order to remove the long tail of rather constant variables.
Subsequently, the set of variable pairs is further reduced. Variable pairs with a
high correlation coefficient are expected to have a linear relationship and might
not show interesting interaction. Based on this assumption, the variables are
clustered with the help of a correlation distance matrix. The idea is to select
one variable in each cluster and obtain a set of non redundant variables.
The distance matrix is defined by one minus the correlation matrix. A hi-
erarchical clustering algorithm is applied. The complete metric is used that
defines the distance between two groups u and v as d(u, v) = max(d(u[i], v[j]))
with the euclidean metric d. The metric is supposed to make the groups as
uncorrelated as possible. A threshold determines the maximal distance between
two groups u and v, that can be merged together. The number of clusters and
their sizes depend on the choice of this parameter. The threshold is scanned and
the clustering results are shown in figure 4.3. The number of groups and the
variance of their sizes are shown. One would like to have a balance between the
number of groups and the variation of group size. A too low threshold results
in many groups that are too correlated to each other. A too high threshold
leads to few clusters, which incorporate the majority of variables and much
information is lost. A threshold of 0.6 seems to be a good choice, because it is
the highest threshold before group size variance increases and super-clusters
form. For each group a leader is selected that maximises standard deviation in
the group. Only these leaders are considered in the interaction assessment.

After the computation of the separability scores, variable pairs with a separa-
bility score higher than 0.5 are kept and eight interaction terms remain. For
these variable pairs the optimal logical operations are identified. The logical
modes are: x0 AND x1, x0 OR x1, x0 AND ¬x1, ¬x0 AND x1, x0 XOR x1.
Each logical operation is applied on each pair and the one-dimensional separa-
bility scores are computed. The logical operation with highest one-dimensional
separability score is chosen and the eight interaction terms are determined.
The new terms are presented in figure 4.4. In the diagram the separability
scores of the interaction terms are shown in red and the original variables have
a blue color. The eight interaction terms have a higher ranking than many
other original variables. These interaction terms will be used for the final
training data.

d) There is no free parameter to choose for binary data. Otherwise, the grid size for
histogram computation has to be determined. In the methodology section it is
argued to choose the grid size according to the scale of the structures that one
would like to capture in the data. One should avoid high ratios of bins and
instances (like more than one percent) in order to assure, that there are enough
instances in each bin to enable reasonable statistics. If six bins are chosen for
about 1900 instances, the ratio is about 0.003. Thus, separability analysis can
be applied, for instance, to select statistically independent components from
PCA or PLS.

e) The computation is efficient if variable interaction is neglected. If variable
combinations are considered, the combinatorial space explodes. In step c)
variables with high standard deviation and pairs with low covariance are
checked for interaction. These seem to be reasonable criteria because only
informative variables are tried and no time is wasted on linear relationships.
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Figure 4.3: Hierarchical clustering is applied on the correlation distance matrix of
Xorig in order to select a subset of non-redundant variables. The threshold for cluster
creation is scanned. The number of groups and the variance of their sizes are shown.

4.1.3 Correlation to the key feature

The correlation coefficients between the variables and the key feature are presented
in figure 4.5. Correlation is covariance divided by the standard deviation.

cor(a, b) = 1
n− 1

1
σaσb

N∑
i=1

(ai − ā)(bi − b̄) (4.1)

a) The correlation diagram shows much fluctuation that seems to be stronger for
the subsets Xevid and Xanno. The observation that the fluctuations dominate
for negative correlation is a sign for the biased selection of true negatives in
these sets. If the correlation coefficient is positive, a true negative must have a
predominantly negative value for this variable. As Xevid is less sparse for the
true negatives, the positive correlation coefficients have a lower scale than the
negative coefficients.

b) There are some arguments against using correlation coefficients for variable
selection.
First, correlation between the descriptive variables is ignored.
Moreover, it is found that the correlation coefficients between the variables
and the key feature are affected by random instance selection. The correlation
coefficients of the data sets Xorig and Xrand do not overlap, although Xrand
contains the same true positives and a random selection of true negatives. The
correlation coefficients seem to be noisy and the coefficients of Xrand have a
larger scale. This phenomenon also occurs for covariance. The reason for this
behaviour is the excess of true negative instances in Xorig. For this data set the
terms relating to the true negatives contribute less in formula (4.1). The reason
is that the key feature value -1 is closer to the mean of the key feature. The
higher impact of the true positives cannot counterbalance this effect. Hence,
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Figure 4.4: Enrichment of Xorig with first order interaction terms. The separabil-
ity scores are computed for both, the original variables and the most important
interaction terms, that were found.

the total correlation coefficient decreases. Thus, even random instance selection
affects the method.
Another argument is found during comparison of the correlation coefficients
with the separability scores. In figure 4.7 the separability score, which is in this
case proportional to the covariance, is compared to the correlation coefficients.
The about fifty most relevant variables are ranked very similarly by both
methods. However for the other variables there is disagreement. Ranking with
correlation coefficients promotes sparse variables, because of the division by
their low standard deviation in formula (4.1). This type of relevance assessment
does not take into account the amount of information that a variable conveys.
The separability scores and covariance include this aspect and are therefore
better suited for dimensional reduction.

c) Correlation coefficients do not consider nonlinear interactions.
d) There is no parameter in this model to choose.
e) Computation of the correlation coefficients is very feasible.

4.1.4 PLSR regression coefficients

PLSR is applied on the mean-centred normal scores of the data. The PLS regression
coefficients are interpreted as relevance estimate. Later, the PLS components will
be used for dimensional reduction. In this particular section the PLS regression
model is used for variable ranking only and the model is not used for classification.
The detection of over-training effects, cross-validation and ROC is performed in
chapter 4.4 for the final training data.
a), b) Some interesting observations are made. In the case that only one feature

vector is extracted, the linear regression coefficients are proportional to the
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Figure 4.5: Correlation coefficients between the variables and the key feature are
computed. The variables are sorted according to the data set Xorig. The correlation
coefficients are heavily affected by instance selection.

correlation coefficients between the variables and the key feature. If no normal
scores are used for normalisation, the linear regression coefficients are propor-
tional to the covariances. Hence, the criteria a) and b) for the correlation
coefficients are also valid for PLS.

c) PLS components are linearly independent from each other, but if variables are
selected based on regression coefficients, the data will still contain redundancy.
In this particular approach the collinearity problem is not solved.

d) The PLS model depends on the number of feature vectors that is extracted. This
number has a strong impact on the regression coefficients. For one feature
vector the coefficients are proportional to the correlation coefficients. The
correlation coefficients are shown in figure 4.5. This figure can be compared
to the case that two latent vectors are extracted. The results are shown in
figure 4.6. The subsets cannot be distinguished because of strong fluctuations.
Apparently, the second feature vector introduces much subset specific noise.
The behaviour does not improve with more components, so only the first latent
vector is extracted.

e) PLSR is computationally feasible.

4.1.5 Conclusion

Based on the discussion it seems to be reasonable to prune variables with a standard
deviation of less than 0.1. Separability analysis, correlation coefficients and PLS
regression coefficients are not recommended for variable selection. Variable ranking
based on separability analysis suits PCA and PLS components, which have no
correlation.
The standard deviation filter is applied on the data sets:
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Figure 4.6: PLS is performed and two latent vectors are extracted. The PLS
regression coefficients are shown and interpreted as relevance estimate. They are
sorted according to the data set Xorig. The second component introduces so much
noise that the data sets cannot be resolved.

Xorig with 10075 proteins and 3047 GO terms, interaction terms not included,

Xevid with 1904 proteins and 4972 GO terms,

Xrand with 1904 proteins and 4080 GO terms and

Xanno with 1904 proteins and 5694 GO terms.

Summary stability check

The observations from variable selection can be used for a stability assessment.
As the two data sets Xevid and Xasso are both created with criteria related to the
number of annotations, their sparsity is lower than for Xorig and Xrand. The true
positives and the true negatives have a biased representation in Xevid and Xasso. The
training errors could be lower for Xevid and Xasso, but there is the risk that the
candidate proteins could be classified on a non biological basis.
The sparsity of Xrand raises concern over its potential to resolve the true negatives
and the true positives. Its low information content could promote over-training
effects.
It seems to be a good idea to train many classifiers with bootstraps of the full data
set Xorig. The classifiers vote in an ensemble. In this approach all information
contributes and over-training can be easier detected due to a larger number of
validation instances.
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Figure 4.7: One latent vector is extracted and the PLSR model is computed. Separa-
bility scores (here proportional to covariance) and absolute PLS regression coefficients
are compared to each other for each variable. The regression coefficients promote
variables with very low standard deviation.

4.2 Development of feature extraction

The discussion about the four options PCA, PLS, LPLS and only variable selection
is structured by the following criteria: a) explanatory and interpretation power, b)
preliminary training results, c) preservation of nonlinear information, robustness in
regard to collinearity, d) arguable choice of parameters, e) computational efficiency.
Preliminary classification results are computed and the usefulness of the different
approaches is assessed.
As there are many combinations of feature extraction techniques and data subsets,
not all training results are discussed in detail. The feature extraction methods are
compared to each other using the subset Xrand, because it is the most unbiased
subset and its small size makes the application of LPLS more feasible. The nonlinear
interaction terms found by separability analysis are not added in order to keep the
known characteristics of the subset.
Subsequently, a hybrid approach is conducted that combines positive aspects of
different techniques and the nonlinear interaction terms. The hybrid approach is
summarised on page 56 and results in a compact representation of the data which is
used for candidate classification.

Normalisation Prior to feature extraction the data is mean-centred. No Z-
transformation is applied as a preprocessing step. Three reasons are considered:
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First, the binary variables are already well comparable to each other. Second, it was
observed during variable selection, that dividing by standard deviation promotes
variables of very low variation. Third, the premise of a normal distribution of points
among a variable might be questionable. Nevertheless, experimenting with normal
scores resulted in no significant changes in classification performance.
Prior to training each score vector is normalised to be in the range of [-1,1].

Training and validation procedure Criterion b) involves a training and a
validation step. The procedure is summarised here, in order to avoid text duplication.
The components with highest separability scores constitute a training set XN . N is
the number of components included. Cross-validation is performed and 15 neural
networks are trained with random bootstraps. The ensemble is validated by ROC
and the integral of the MC coefficients is interpreted as a measure of performance.
The number of hidden neurons and the number of components N is scanned. For
different combinations of parameters performance scores are obtained. These are
plotted in figure 4.11 on page 53.

4.2.1 PCA

Figure 4.8: The separability score of each principal component is shown. The sorted
separability scores of the original variables are also included in the diagram to enable
comparison. PCA distributes relevant information over many components.

a) PCA offers statistically independent components which might convey an inter-
pretation. The meanings of the first principal components are analysed and
their ability to resolve the key feature is studied.
The variables are sorted according to their absolute loadings in order to find
a subset that contributes much to the first component. However, in the first
component almost all variables contribute with loadings of similar magnitude.
2800 variables from Xrand are selected because they have approx. equally high
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Figure 4.9: Overview of the PCA model showing the first four principal components
for the subset Xorig. Left column: The score of each protein is plotted on the y-axis
for the particular principal component. Right column: The loading of each variable
is shown on the y-axis for the particular principal component.

contribution to the first principal component. A particular meaning could
no be found. The many highly expressed variables seem to be rather closely
related to each other in the biological process branch. The distance matrix
that is also used as additional information in the LPLS approach, describes
the distances between single GO terms in the ontology tree structure. The
mean of the distances of these 2800 variables is taken. The average distance is
7.6. The maximal distance between two variables is much higher (17). The
other principal components have only about 100 strong contributors and the
mean distance between these GO terms is always higher than 16. Apparently
the first component focuses on many neighbouring variables in the biological
process branch.
In the second principal component the first 100 dominating variables could not
be assigned to any particular ontology branch or meaning.
In the third component the 14 topmost variables are related to negative
regulation of various biological processes. These terms are part of the biological
process ontology.
The fourth component clearly focuses on terms from the Cellular Component
ontology because the 20 terms with highest loadings are all related to cell
compartments.
The fifth component contains many variables of different subontologies and no
precise meaning could be found.
The fact that some of the components mix sub-ontologies is a hint that there are
linear dependencies between them. Thus, there are expected to be synergistic
effects between the sub-ontologies, which could improve classification.
The "biological process" sub-ontology seems to contribute much to the inherent
structure of the data, because it dominates the first few components. In the
chapter about data retrieval 3 there was the idea to remove the biological
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process branch. According to PCA this branch seems to be very important for
the data and much variance would be lost if it was excluded from the analysis.
In figure 4.9 the scores and loadings of the first few principal components are
shown for the full data set Xorig. On the left hand side the scores are shown
for each instance. On the right hand side one can see the loadings for each
variable. The first, third and fourth principal components seem to capture
some characteristics of the key feature because there is a transition in the score
plots between the true positives (first 952 instances) and the true negatives (the
following proteins). The second component does not seem to have the ability
to resolve the key feature. These observations are compared to separability
analysis in figure 4.10. The separability scores of the first components are
encoded as green circles for Xorig. The scores of the first, third and fourth
components are about double the separability score of the second component.
The component relevance estimation from looking at the PCA scores and from
separability analysis support each other.

b) Separability analysis is applied on the PCA scores in order to get an impression
of the number of relevant components. A grid with six bins is chosen in order
to have a low risk of over-training. In figure 4.10 the results are presented. The
diagram encodes the PCA components as green symbols. The shapes of the
symbols correspond to the different data subsets.
Many principal components can resolve the true positives and true negatives a
bit, but no component is able to separate more than 70% of true positive and
true negative instances. The remaining components are only able to separate
about 0 - 30%.
In a global scale the separability scores of the components are rather equally
distributed. In figure 4.8 the separability scores of the PCA components (red)
and the separability scores of the original variables (blue) are compared to each
other. Since the PCA components are continuous, the separability algorithm
is able to compute an error estimate, which is also shown in the diagram.
This is not possible for the binary original variables because of the way how
separability analysis works. For the data set Xrand there is no PCA component
that has a higher separability score than the top original variables. PCA does
not condense relevant information into few components at all, which makes
PCA not be suited for dimensional reduction in this case.
Another observation is there is much fluctuation among the different subsets in
figure 4.10. This means that instance selection influenced the major patterns
in the data. PCA, which is a completely unsupervised method, is also affected
by instance selection and therefore not very robust.
Nevertheless, machine learning is tested. The scores of the principal components
are used as training data. The components with highest separability scores are
chosen. The training and validation procedure is described on page 44. For
different numbers of components and numbers of hidden neurons performance
scores are obtained. These performances are presented in figure 4.11a as a
three-dimensional plot.
The MC integrals are usually about 0.6 which is about 0.3 lower than for
other feature extraction techniques. Adding more components leads to a small
improvement of accuracy which supports the idea that the relevant information
is distributed over many components. The increase in the number of hidden
neurons is bound to a drop in performance due to over-learning. Confronted
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with many noisy components, the neural network tends to incorporate irrelevant
statistical fluctuations.
The training is redone forXanno andXevid. For some combinations of parameters
the integral of the MC coefficients is higher than 0.8. Apparently PCA copes
better with less spare data sets. This observation is supported by the results
of separability analysis in figure 4.10. The data sets Xanno and Xevid (green
crosses and triangles) are usually able to separate 0 - 20% more true positives
from the true negatives than in Xevid (green squares). However, the two better
performing subsets are biased because of instance selection. Thus, PCA is not
recommended in this context for dimensional reduction.

c) The hidden layer in the neural network classifier can learn nonlinear relationships
between the input features. However it is found in b) that employing hidden
neurons in the neural network classifier does not improve the prediction results.
Instead, the networks show signs for over-training. Apparently the neural
networks are not able to make use of nonlinear interactions between components.
There are at least two possible explanations for this observation. Either the
components that show nonlinear interaction are not contained in the selection
of components, or the creation of linear combinations destroyed any nonlinear
patterns.

d) The choice of principal components for training is similarly difficult as in variable
selection. The findings in b) that the relevant information is distributed over
many components further complicates the selection process. As the components
are linearly not dependent, it is reasonable to perform component selection
with separability analysis.

e) Principal component analysis works even in high-dimensional space with up to
10000 variables and samples.

Figure 4.10: Comparison of the dimensional reduction techniques PCA, PLS and
LPLS. The separability scores are shown for the first 20 components for different
subsets.
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4.2.2 PLS

a) The meaning for some principal components of PCA could be unscrambled in
the previous section. This is not found to be easy for PLS. Similarly to PCA
there are about 2800 GO terms in the first latent vector of Xrand that have
equally high contribution. For the other components there are usually between
50 and 200 variables that are dominant in the loadings. No particular meaning
or sub-ontology could be associated with the first few latent vectors.

b) Separability analysis is applied in order to measure the ability of the individual
latent vectors to separate the non DbTFs from the DbTFs. As the latent vectors
are sorted from the beginning according to their covariance contribution, it is
helpful to identify the first component that has a higher separability score than
the precursor. The separability scores are shown in figure 4.10. For the sixth
latent vector the separability rises for all data sets. The first two components
separate about 60 - 80% of all true positive and true negative instances. After
the fifth component the separability scores seem to fluctuate randomly in the
range between 0 and 30% just like for PCA.
PLS shows a rather greedy behaviour, because the relevant information content
is condensed into about five components. The remaining components have low
ability to resolve the key feature.
Training is conducted with the PLS scores as training data. The nonlinear
neural network classifiers are used and the PLS regression step is not performed.
The learning and validation procedure described on page 44 is applied. The
number of hidden neurons and the number of PLS components are scanned.
The performances are shown in figure 4.11b. The prediction performance
reaches MCC integrals of about 0.92. This is a very good result in comparison
to the other feature extraction techniques. The inclusion of more latent vectors
leads to an increase of performance if not more than about 25 hidden neurons
are employed. In criterion c) the increase of performance is further discussed.
PLS is also tried on Xanno and Xevid. The classification performances are quite
similar. This means that PLS performance is less sensitive to instance selection
than PCA, which does not take the presence of the key feature into account.
Outlier proteins that cannot be well classified are not removed, because there
are only few proteins - especially DbTFs - available and all proteins are kept in
the data.

c) First, PLS was not expected to conserve much nonlinear information because
it is a linear approach. There was concern that variables with a nonlinear
relationship could end up in a single latent vector, or the dynamics of these
variables could disappear in the concert of other variables that contribute to the
components. In both cases it is impossible to resolve the interaction between
the variables.
However, the training results in b) indicate that nonlinearity is processed by
the neural networks: Using some hidden neurons in the networks increase
the prediction performance a bit. In addition to that prediction improves if
more latent vectors are added. In criterion a) it was found that the additional
components do not separate DbTFs and non DbTFs well on their own. Together
they surprise during prediction in a positive way. This is another hint for the
exploitation of nonlinear information.
In order to be sure that the components really contribute information the
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parameter scan was redone, this time with five of the most relevant components
and 95 randomly shuffled additional components. In this case the classification
did not improve when the random variables were included, but reached a
plateau after the first few components. The higher order latent vectors add
indeed some useful nonlinear information.

d) The number of components to include in the training process can be optimised
by the parameter scan conducted in step b). The MCC integral is about 0.92
for 100 components and ten hidden neurons. In contrast to PCA, where the
relevant components are scattered across the whole domain of components, the
latent vectors of PLS are already sorted according to their covariance to the
key feature. This simplifies component selection.

e) PLS computation is very fast thanks to the NIPALS algorithm. In contrast to
PCA, only the first few latent vectors are computed because they contain most
of the covariance in regard of the dependable.

4.2.3 LPLS

LPLS enables a sophisticated dimensional reduction approach by considering addi-
tional information about the variables. One promising idea is to create a distance
matrix that describes the interrelationships between the GO terms. Usually this
information would already be contained in descriptive data. However, due to the
distinct sparsity adding prior knowledge about variable relationships could assist the
feature extraction process.
The distance between two GO terms is defined by the shortest path length in the
ontology tree. Terms that are not linked to each other receive a default distance.
This default distance is the maximal distance 16 plus one. The distance matrix is
normalised by Z-transformation because the variation has to be downscaled to match
the other matrices. All data blocks are centred like described in the methodology
chapter 2.1.2.
The inversion of some matrices in the LPLS NIPALS algorithm poses limitations. A
procedure to simplify the data is described in step e).
a) Similarly to the component analysis of PLS no distinct meaning or sub-ontology

could be identified for the first few LPLS components. There is the assumption
that the components relate to neighbouring GO terms or GO term branches.
In the future the LPLS model creation could be computationally optimised
in order to include the entire data set. Then one could check if the variables
that are dominant in a particular LPLS component have a short mean distance
within the gene ontology tree structure.

b) The relevance of the components is assessed by separability analysis. Separability
analysis is applied on the component scores in a similar way to PCA and
PLS. The separability scores in figure 4.10 imply that the LPLS components
have a strong ability to separate the key feature. However, it is not clear
whether the error bars would enlarge if all instances and variables would be
used for the LPLS model. The subset Xevid shows very good results and its first
two components are able to resolve about 80% of the true positive and true
negative instances. In contrast to the other data sets and feature extraction
techniques, even higher components still contribute valuable information. The
reason for this behaviour remains unclear, however there is an assumption:
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The true negative instances in Xevid were chosen in order to maximise the
number of annotations with experimental evidence. Some properties of proteins
might be easier or more popular to be studied experimentally. Probably the
choice and arrangement of terms in the ontology tree structure was historically
influenced by experimental research. The annotation patterns of the true
negatives correlate with the GO terms in the gene ontology tree that are
usually studied in experimental research. The true positive instances have
less experimentally validated annotations and follow different patterns. Hence,
the LPLS components, which incorporate aspects from the ontology structure,
might distinguish the true positives and true negatives.
Machine learning is performed and classification performance is computed.
Neural networks are trained with the LPLS X-scores. The training and val-
idation procedure described on page 44 is applied. Classification results are
illustrated in figure 4.11c.
Higher LPLS components seem to add useful information because the predic-
tion results improve if they are included. Due to the limited number of total
components computed, it is not possible to say whether a performance plateau
is reached or whether higher components will further improve prediction. All
in all prediction results are comparable to PLS and MCC integrals of about
0.9 are obtained.
An increase of the inner complexity of the neural network does not lead to
a performance drop. One possible explanation is that the LPLS components
are not linearly independent from each other. This adds a small amount of
redundancy to the reduced data. This small amount of redundancy seems to
stabilises the neural network. This effect is also observed with the hybrid data
that is constructed at the end of this chapter.

c) It is not entirely clear whether LPLS preserves nonlinear information. Using some
hidden neurons during training improves the MCC integral by only 0.01. Thus,
the neural networks do not seem to process any useful nonlinear information.

d) The LPLS algorithm requires a parameter α ∈ [0, 1] that determines the influence
of the additional data block Z on the model. The optimal value for α is highly
problem specific and is found by optimisation using Xrand.
Originally the idea was to find the free parameter by the following approach:
Machine learning is conducted with the linear LPLS internal model. Cross-
validation is applied. The linear regression results are analysed by ROC and a
performance score (MCC integral) is obtained. α is optimised to maximise the
prediction performance.
However, it was found that α did not affect prediction results significantly. In
addition separability analysis was performed on the LPLS scores for different
values of α ∈ [0, 1]. The results can be seen in figure 4.12. In the diagram the
separability scores for the first four components are illustrated for different
values of α. The change of α has an ambiguous effect on component separability
and there does not seem to be an optimal α. α = 0.8 is chosen.

e) Due to matrix inversions of the sizes NxN and V xV with the number of instances
N and of variables V LPLS is bound to computational limitations. A subset is
created. 500 true positives and 500 true negatives are chosen randomly from
the data set Xrand. The 1000 variables with highest separability scores are
selected. A stability analysis with bootstrapping was not done because of the
same computational limitations, but should definitely be considered if LPLS
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scores are used for candidate prediction.

4.2.4 Variable selection only

In order to test the benefit of feature extraction, machine learning is redone with a
subset of variables. One might design a complex procedure to select variables that
are not linearly dependent on each other. However, in order to study the effect of
collinearity and redundancy, the variables with highest separability score are selected.
a) The criterion explanatory and interpretation power does not apply here.
b) The original variables are used for machine learning. The training and validation

procedure is described on page 44. The number of variables included and
the number of hidden neurons are scanned. In figure 4.11d the prediction
performances are shown for different numbers of hidden neurons and numbers
of input features.
Overall prediction results are good but not as good as for PLS and LPLS. After
adding about 50 variables a performance plateau is reached at a MCC integral
of about 0.75. This performance score is about 0.15 lower than for PLS or
LPLS. Adding more variables than 100 did not result in an improvement.
The original data has an advantage in respect to PCA and PLS. Neural
network complexity does not worsen over-training. The correlation matrix
of the 100 chosen variables reveals collinearity and redundancy in the data.
It seems that adding redundant information to the training data does not
decrease classifiaction accuracy. Instead, decent amounts of redundancy seem
to stabilise the neural networks.

c) Adding more hidden neurons to the neural network does not improve the prediction.
If only 100 variables are selected for the training data there is low probability
that the variables that show interesting nonlinear interactions are located
together in the training data. Using 1000 variables does not lead to higher
classification accuracy either. Probably the learning algorithm does not detect
nonlinear information because the error surface of such big networks is too
complex.

d) There are no parameters to choose.
e) The training of neural networks with few thousand input neurons is computa-

tionally possible.

4.2.5 Machine learning results if the "biological process"
sub-ontology is removed

In chapter 3 on page 27 it was argued to do the training without the "biological
process" sub-ontology. In order to test the feasibility of this suggestion, the data
set Xrand is modified and the biological process terms are removed. The machine
learning process is described on page 44. The variables with highest separability
scores are selected for the training data. The number of inputs and the number of
hidden neurons are scanned. The MCC integrals are presented in figure 4.11f. The
highest performance scores are only about 0.58. This result is compared with the
respective classification performances from the data with the process branch included
in figure 4.11d. The best performance with the biological process terms included
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is about 0.75. The high difference in prediction accuracy of about 0.17 is a strong
argument to keep the biological process sub-ontology in the final training data.
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(a) PCA, Xrand (b) PLS, Xrand

(c) LPLS, Xrand (d) No feature extraction, Xrand

(e) Hybrid training that bases on Xorig. (f) No feature extraction, the biological
process sub-ontology is removed, Xrand.
The prediction results are much worse
than in the respective diagram 4.11d.

Figure 4.11: The diagrams show the ensemble performances for different parameters.
The number of input features and the number of hidden neurons in the ANNs is
scanned. The resulting three-dimensional performance surfaces can be used to find
reasonable parameters. The detailed procedure of how the diagrams are generated is
described on page 44

.
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Figure 4.12: Separability analysis is performed on the first LPLS components for
different values of the free parameter α ∈ [0, 1]. α has no distinct effect on the ability
of a component to separate DbTFs from non DbTFs. α = 0.8 is chosen.
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4.2.6 Conclusion, Final approach of preprocessing

Data set selection
During data retrieval in chapter 3 four data sets were obtained. The previous
discussions show that the data sets Xevid and Xanno are biased because of their
selection of true negative instances. No specific bias is found for the data set Xorig
and the subset Xrand. Dimensional reduction with a standard deviation filter and PLS
or LPLS yielded the best classification performances. results for classification. Xorig
is chosen as basis for the final training data, because it contains 952 true positive
instances, as well as all the 9123 true negative instances. During cross-validation
random bootstraps are taken so that the number of true positive and true negative
training instances are equalised before machine learning. The additional true negative
instances are supposed to add more information for training and increase the size of
the validation sets for ROC validation.

Hybrid approach
The experience gained during variable selection and feature extraction leads to a
hybrid approach that is proposed and implemented. It combines positive aspects of
different dimensional reduction techniques. The idea is to train the neural networks
with PLS scores and a collection of some non redundant original variables. This
strategy is chosen to add more granularity to PLS components and to add a small
amount of redundancy that possibly stabilises the training process.

Selection of original variables
The selection of original variables is determined in two steps. First, variables are
pruned in order to minimise redundancy. Then, the remaining variables are selected
according to separability scores.
A subset of rather linearly independent variables is obtained by hierarchically cluster-
ing using the correlation distance matrix (1 - correlation matrix). The procedure is
similar to the variable pre-selection from finding the nonlinear interaction terms on
page 4.1.2. During clustering the complete metric is used that defines the distance
between two groups u and v as d(u, v) = max(d(u[i], v[j])) with the euclidean metric
d. In figure 4.13 the number of clusters and the variation of their sizes are shown
for different thresholds. One can see that a low threshold leads to a high number
of clusters that are still quite linear dependent on each other. For a correlation
threshold higher than 0.6 large clusters condense. The variation of the group sizes
increases, because there are few super-groups and some very small groups. This is
not desired due to a loss of information. The threshold 0.6 is applied because is it
the highest threshold with similarly sized clusters. For each group one representative
is chosen with the criteria of highest separability score.
Second, separability analysis is performed and the remaining variables are ranked
according to their ability to resolve the key feature. A threshold of 0.2 is applied in
order to select the most relevant ones. This means that the variables can separate
20% of DbTFs from non DbTFs. 15 representatives are obtained.

Selection of PLS components and network structure
The number of PLS components to include into the training data and the number of
hidden neurons are determined by scanning both parameters and computing the MCC
integrals as a measure of performance. The PLS components with highest separability
scores are included. 3-fold cross validation is performed and 15 neural networks
are obtained for each parameter setting. The MCC integrals are averaged for each
setting. The results are presented in figure 4.11e. The classification performance has
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a plateau for about 115 input features. The MCC integral reaches about 0.92 which
is comparable to the results of pure PLS. In order to make the diagram comparable
to the other data sets and dimensional reduction techniques the number of true
positive and true negative indies are equalised. Otherwise there would be an excess
of true negative instances. For more details, see chapter 4.4.1 on page 58.
Increasing network complexity does not lead to a decrease in performance. The
neural networks that were trained with the hybrid data are less prone to over-training
than the neural networks that were trained with the pure PLS scores. This is another
hint that a small amount of redundancy has a stabilising effect on ANN training. In
addition there might be positive synergistic effects between the variables and the
PLS components.

Number of training epochs
The optimal number of training epochs is chosen based on the training errors shown
in figure 4.14. After about 13 training epochs the training and validation errors do
not overlap any more, which is the first sign of over-training. 10 training epochs
seem to be sufficient for the task and over-training is kept to a minimum.

4.3 Summary, stepwise instructions for the final
prediction approach

1. Variable selection: Gene ontology terms with a standard deviation smaller than
0.1 are removed.

2. Enrichment with interaction terms: The interaction terms are obtained in a
two step approach. In the first step a pre-selection of variable pairs is assessed
for nonlinear interaction. In the second step for each promising variable pair a
nonlinear operation is chosen and applied that results in a new variable. First,
the 500 variables with highest standard deviation are assessed. The correlation
distance matrix (1 - correlation matrix) is computed and hierarchical clustering
is performed. The complete metric is used that defines the distance between
two groups u and v as d(u, v) = max(d(u[i], v[j])) with the euclidean metric
d. The clustering threshold 0.6 is chosen to construct the groups. For each
group the representative with highest standard deviation is chosen. Variable
pairs that exceed the separability score 0.5 are kept. In the second step the
interaction terms are created. Different logical operations are tried: x0 AND
x1, x0 OR x1, x0 AND ¬x1, ¬x0 AND x1, x0 XOR x1. The one-dimensional
separability scores are recomputed for each interaction term separately. For
each variable pair the mode with highest separability score is chosen. Eight
interaction terms are identified and included in the data.

3. Normalisation: Mean centring is applied on the data.

4. Feature extraction: The first 100 PLS latent vectors are computed. The PLS
scores represent the reduced data.

5. Hybrid data construction: A selection of original variables is merged with the
PLS scores. This selection is obtained by the same clustering technique as in
the second step. The threshold 0.6 is chosen for cluster construction. 15 group
leaders are chosen based on highest separability score and included into the
hybrid data.
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6. Normalisation: The input data is normalised to fit the range [-1,1] which is the
output range of the neurons in the neural network.

7. Training: 3-fold cross-validation is performed and 1500 neural networks are
trained with random bootstraps. During the process the number of true positive
instances and true negative instances are equalised. 115 input neurons, ten
hidden neurons in one hidden layer and one output neuron constitutes the
feed-forward ANN structure. The training consists of ten epochs with the
Rprop algorithm.

Figure 4.13: For the hybrid approach a variable subset is chosen that has low
collinearity and redundancy. Variables are hierarchically clustered using the correla-
tion distance matrix. The correlation distance threshold for group construction is
scanned. The number of groups and the variance of the group sizes are shown in the
diagram.
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Figure 4.14: The training errors are shown for the final training data and for a
random subset of ANNs. Red markers show the validation errors and the blue points
represent the training errors. Ten epochs seem to be optimal for training.

4.4 Postprocessing

4.4.1 ROC validation

An ensemble consisting of 1500 single neural network predictors is trained with
bootstraps from the final training set via 3-fold cross-validation. The ensemble is
validated by ROC. Only the validation instances are used for validation respectively
for each single network. Validation of the ensemble performance is done with great
care so that no training data is involved in validation: The prediction output of the
ensemble is defined by the mean output of all single predictors that do not have the
particular instance in their training set.
In the figure 4.15 sensitivity, specificity and MC coefficients are presented for different
discrimination thresholds. Figure 4.16 plots sensitivity against specificity. The dashed
lines represent the performances of a random subset of single predictors. The striped,
solid lines relate to the ensemble. There exists a broad region where both sensitivity
and specificity is high. At the threshold 0 both sensitivity and specificity of the
ensemble are about 0.98 and the MCC coefficient is about 0.93. About 98% of all
validation samples are accurately classified. The integral over the MCC coefficients
is 0.870.
In the ROC diagrams one can see that specificity tends to be worse than sensitivity.
In figure 4.16 the specificity is about 0.03 lower than sensitivity. One explanation is
that the validation sets have about 30 times more true negative instances than true
positive instances. If the pool of true negatives is reduced to equalise the number of
true positive and negative instances before cross-validation (similarly to the data set
Xrand) the number of validation instances is equalised. In this case the asymmetry
vanishes. The MCC integral of the ensemble increases from 0.870 to 0.921. Hence,
the excess of non DbTFs in the set Xorig explains the asymmetry. The over-training
effect reveals itself only for large validation sets. As the number of DbTFs is very
limited it is not possible to exclude a similar over-training effect for sensitivity.
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In addition to that the MCC integral is computed for each neural network separately.
The mean and standard deviation is taken for the integrals and the performance
0.766± 0.055 is obtained. The higher prediction performance of the ensemble (0.870)
is in accordance with the findings from the papers [23] and [15]. The ensemble has
much better generalisation abilities than the single predictors.

Figure 4.15: ROC curves showing the prediction quality for different discrimination
thresholds. The final training data is used. The solid lines represents the ensemble
performance. The MCC integral is computed to 0.868 for the ensemble.

4.4.2 Results and discussion, Sensitivity analysis

Relevance assessment of gene ontology terms is an important aspect of dimensional
reduction. During variable selection in chapter 4.1 various ways to rank variables are
discussed including standard deviation, separability analysis, correlation coefficients
and PLS regression coefficients. The trained neural network ensemble can be studied
in order to get additional evidence for variable relevance estimation. Variable selection
can be optimised by pruning noisy variables and components. Subsequently training
is redone and ideally better prediction results are obtained.
In the methodology chapter 2.3 two approaches are proposed. These include perfor-
mance sensitivity and a finite difference approach.

Performance sensitivity

While experimenting with this method a problem was encountered. Retraining of
neural networks usually changes them slightly due to the non deterministic training
algorithm and different bootstraps during cross-validation. These fluctuations were
in the same range as the change in prediction performance that is induced by leaving
out a variable. One computationally expensive solution is to train hundreds of
predictors to enable better statistics, however this turned out to be not feasible.
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Figure 4.16: ROC curves showing the relation of sensitivity and specificity. The
final training data is used. The solid blue line represents the ensemble performance.
There exist thresholds with both, high specificity and specificity. For some ANNs
specificity is about 0.03 lower than sensitivity.

In order to remove the random fluctuations and significantly improve computational
performance the approach is modified. Each input feature is assessed separately.
First, all samples in the data set are classified by the trained ensemble and ROC is
performed. The MCC integral p0 of the ensemble is computed. Subsequently the i-th
input feature is randomly shuffled and the patterns for this feature are destroyed.
Prediction is redone and a different MCC integral pi is obtained. For the i-th feature
this procedure is repeated ten times in order to decrease a potential bias that is
created by shuffling. The mean of the differences

s = 1
N

N∑
i=1
|p0 − pi| (4.2)

is interpreted as the influence of variable i with sensitivity score s. Standard deviation
of the differences is chosen as an accuracy estimate.
The sensitivity results are computed and shown in figure 4.17. In the diagram the
separability scores are also shown for comparison. One observes a strong level of
agreement for the four highest ranked input features. However, sensitivity and sepa-
rability place different emphasis on the other input features. The overall correlation
coefficient 0.53 shows a medium level of dependency.
Although the single predictors were trained with different bootstraps, the sensitiv-
ities are very similar because the error bars are quite small. This implies a low
level of over-training. One might argue why the error bars do not explain these
deviations. However, sensitivity and separability measure variable relevance via
two fundamentally different ways and it is not expected that both quantities match
numerically.
Pruning input features that have a low relevance estimate and repeating the training
could improve the prediction accuracy. However, there was no improvement no
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matter what combination was tried. If the four highest ranked features are removed
the MCC integral drops from 0.870 to 0.822. This is a hint that these features are
indeed relevant for prediction. No subset of features could be found that actually
improves prediction.

Finite difference approach

In the finite difference approach the input features are assessed for their influence
on the predictor. The response ∆y of the ensemble is computed for the variation
∆xi = 2 of input feature i. The input i is set to +1 and -1 respectively. The
sensitivity ∆y/2 is averaged along all instances in the training set in order to have a
data consistent statistical analysis. Let y+

i and y−
i be the outputs of the ensemble

for the high and low input. The sensitivity s is computed by

si = 1
2y

+
i − y−

i

δsi = 1
2

√
δy+2

i +
√
δy−2

i

where δyi are the regression accuracies for each instance and the overbar denotes to
the average.
The sensitivity scores are compared to the separability scores. ,The feature relevance
estimates show almost no sign of correlation. The correlation coefficient between the
separability scores and the absolute sensitivity scores is only 0.03.
The finite difference approach is compared to the scores from performance sensitivity.
In figure 4.18 both sensitivity measures are plotted against each other. The correlation
is stronger with a correlation coefficient of 0.53. The highest ranked features agree,
but there is much difference in the relevance assessment of the other features.
No subset was found that improves classification results. Pruning input features that
have a low score for both approaches did not result in better prediction results either.
Apparently the information flows in the artificial neural networks are too complex
to be studied by simple input-output measurements. The idea to use sensitivity
analysis as an intelligent way to further prune input features and obtain a more
powerful training set does not seem to be feasible. In addition to that it seems that
the training process of neural networks are very robust in regard to small amounts
of noise or redundancy.
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Figure 4.17: Sensitivity analysis is performed with performance sensitivity (blue).
The resulting relevance assessment is compared to separability analysis (red).

Figure 4.18: Sensitivity analysis is performed with the finite difference approach
(blue). The resulting relevance assessment is compared to the sensitivity results from
performance sensitivity (red).
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Chapter 5

Results and Discussion, Candidate
Classification

In chapter 4.3 on page 56 the composition of the training data and the machine
learning process is summarised. The stepwise procedure is implemented and ROC
validation is performed in chapter 4.4.1 on page 58. Subsequently the candidates are
classified whether they are specific DNA binding RNA polymerase II transcription
factors (DbTFs) based on gene ontology annotation data.
The candidate proteins that are extracted from the database TFcheckpoint in chap-
ter 3 are classified with an ensemble of 1500 single predictors.
The gene ontology data is brought into the same shape as the training data. The
same mappings and transformations are applied, the same interaction terms are
computed and the same PLS model is used. The same normalisation is performed
in order to map the feature vectors on the [-1,1] interval, which is a necessary step
when working with neural networks. Some values are outside the interval. This is
a natural effect from using new data and no issue. These outliers are set to the
interval boundaries in order to make the input compatible to the neurons in the
neural networks.

Prediction results

The regression results are computed for the single neural network predictors. The
regression scores are averaged for each candidate and the standard deviation is
interpreted as accuracy estimate. From 2655 candidates 398 are classified as DbTFs
and for 228 of these the error is lower than the regression result. 2257 proteins are
classified as non DbTFs and for 1990 of these the error is lower than the regression
result.
The relative error is computed in order to make a subset selection of the candidates.
Let yi be the regression result of candidate i and δyi the accuracy computed. yi = 1
means positive classification, yi = 0 means no agreement of the neural networks and
yi = −1 means negative classification. The relative error is δrel,i = δyi/yi.
Finally a ranked list of predicted DbTFs is created. A subset is chosen that constitutes
the most certain DbTFs. In a selection of 54 potential DbTFs each protein has a
relative error of less than 10% to be a DbTF. The ranked list of the 54 candidates,
their regression results and accuracies is presented in the appendix 9. From these
selected candidates each is classified by 1500 neural networks with a regression result
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of higher than 0.95. The standard deviation of the single ANN votes is always lower
than 0.095 for each selected candidate, which is a high level of agreement.

Discussion

The accuracy estimate must not be interpreted as an absolute measure of certainty
because of the epistemic and methodological limitations that arise from the data
and the prediction techniques. Inside the context of the retrieved data at least 2% of
all instances are classified in a wrong way according to ROC. The methodology for
dimensional reduction and prediction seems to be suited for the problem at hand.
The chance of a biased prediction result is minimal for the 54 candidates, because
the single predictors were trained with different bootstraps from the data and large
validation set were used (about 630 true positive and 600 true negative training
instances per ANN, as well as about 320 true positive and about 8418 true negative
validation instances).
In a more general context it is difficult to assess accuracy because there exists only a
very limited number of positive training instances. During training it was assumed
that there might be undetected over-training effects. The reason for this assumption
is the observation that the inclusion of the excess of true negatives in the cross
validation process leads to slightly asymmetric ROC curves. Sensitivity decreases by
about 3%. The MCC integral of the ensemble decreases from 0.921 to 0.870. Hence,
the additional true negative instances enable the detection over-training. Possibly
this is also the case for the true positives.

In addition to this it is not clear to what extend the data from biological databases
are influenced by the knowledge that a protein is a DbTF. Possibly there is specific
research conducted on known DbTFs, thereby adding to the patterns in the GO
annotation data. Obviously these characteristic patterns do not exist for unknown
DbTFs. Consequently, the preferences of researchers influenced data structure in the
past. This could imply a low sensitivity for the application of the trained ensemble
on unknown DbTFs.
One criterion to test this assumption is to redo the training and prediction with
training data that has a low probability to be influenced by research on DbTFs.
One option is to exclude the biological process sub-ontology, like mentioned in
chapter 3. This option was tested, the training results turned out to be inferior
and no satisfactory prediction results were obtained. The MC coefficient integrals
were about 0.15 lower than with the sub-ontology. This means that no reasonable
prediction can be performed without the process ontology. In order to check to what
extend earlier preferences of researchers biased the gene ontology data, one could
select a different data source and compare the classification results. This suggestion
is specified in the outlook chapter on page 67.

Another aspect of accuracy debating is the selection of true negative instances.
In chapter 3 it is argued that the true negatives should have a balanced level of
dissimilarity to the true positives and similarity to the candidates. A major difficulty
is to assure that chosen negative instances are not unknown DbTFs. This problem is
addressed in the current approach by a GO term based selection of potential non
DbTFs. In addition an excess of negatives is included in the validation process and
the individual classifiers are trained with random bootstraps from the large pool
of negatives. If, for example, about 90 unknown DbTFs were among the 9312 non
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DbTFs there would only be a percentage of 1% wrong instances. This strategy works
well if the assumption holds that the number of unknown DbTFs is not much higher
than the number of known DbTFs.
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Chapter 6

Outlook

As a consequence of the results and discussions from methodology development
in chapter 4 and the discussion of the candidate classification, improvements and
validation concepts are suggested for further work.
In order to collect additional evidence for the candidate prediction it might be
necessary to change the data source into one, that is less influenced by research
preferences and former interpretation. Physical, structural or chemical properties
offer a different perspective on the candidates. There is a broad range of promising
information that was not covered in this project including amino acid sequence
similarity, motif and structural protein data.
Another idea to surpass the limitations of the data is to extend it with other orthologs.
Including more species will increase the amount of available data and enable more
careful validation. Possibly the current gene ontology data is already influenced
by other orthologs because of the internal structure of the knowledge base and
computationally inferred annotations.
Although the chosen methodology obtains good prediction results and the validation
implies an accuracy of 98% correct classifications, it might be interesting to study
more aspects of machine learning with sparse data. In the project different kinds of
dimensional reduction techniques such as separability analysis, PCA, PLS and LPLS
were implemented and compared to each other and the focus was on a neural network
approach. As a next step it would be interesting to computationally optimise LPLS
and further test its abilities to include additional information in the dimensional
reduction process.
Possibly the not optimal results of PCA can be further improved. A different normal-
isation of the data can be performed to obtain the same results as correspondence
analysis.
An additional question relates to the characteristic input patterns that lead to
distinct classification results. Gallego, Gago and Landín [12] propose a procedure
that employs a genetic algorithm to find input combinations that maximise the
classification result. Thus artificial representations of fictive proteins are obtained by
a meta-modelling approach. The exemplary proteins can be statistically analysed,
e.g. by PCA or correspondence analysis in order to find characteristic patterns for
DbTFs and learn about the proteins. The first step was implemented during the
work on the project. A genetic algorithm was prepared and applied to create some
artificial proteins that had very high regression results of about 0.99. The subsequent
analysis is expected to take some time in the future.
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Chapter 7

Future Prospects: Drug Synergy
Prediction

7.1 Introduction

Drug synergy is the "unexpected" effect of two drugs used simultaneously, beyond the
expected effect based on separate treatment with the single drugs. This synergistic
effect is essentially the deviation from the addition of the individual effects. Based on
the experience gained in the main part of the thesis, a proposal is prepared for drug
synergy prediction based on machine learning. The implementation of the proposal
is expected to take some time in the future. Some ideas in this chapter might be
inspiring for future machine learning approaches related to drug synergy prediction.
Recently the AstraZeneca-Sanger company exclaimed the Drug Combination Pre-
diction DREAM Challenge (www.synapse.org/#!Synapse:syn4231880/wiki/). It
was hoped that the research community would find strategies to integrate various
types of provided experimental data and pre-knowledge in a crowd competition
situation in order to reach one step closer to personalised cancer treatment.
Synergy can be caused by many biochemical mechanisms. Here one starts from the
premise that it is reasonable to assume that synergy may occur prevalently when
protein targets of different drugs act in different or parallel pathways. From this
assumption follows that prediction of drug synergy needs a study of the functional
interdependencies of proteins in life-sustaining cellular processes. Knowledge about
these processes, about the proteins that are members of these pathways and about
the putative drug targets among them exists, however it is still difficult to integrate
these different pieces to obtain a similarity assessment for two drugs in the context
of the actual cell line and individual patent. In the following it is described how this
assessment could be performed, how the results are used to construct a training set
for machine learning and how the training could be conducted.
Drug targets may play a role in relevant pathways that rely on complex protein-
protein interactions and biochemical signal transduction events. The complexity
originates from the fact that almost all proteins perform their function together
with other proteins in protein complexes. These complexes are formed based on
a protein’s ability to specifically interact with their molecular environment due to
their unique shape and electrostatic landscape. A protein can be required for proper
functioning of another protein, or needs partners in a protein complex in order to
properly function. There are several ways to assess how proteins are associated
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with each other, meaning that data can be generated that supports their functional
relatedness. These include:
a) Proteins that are members of the same complex may have high interdependency
b) Proteins working closely together in the same pathway(s) have interdependent

functionalities
c) Closeness of proteins within the Reactome global signal transduction network

may be converted into "relatedness"
d) Genes that are coordinately expressed in mRNA data in the same cell line in

different environments might indicate dependencies
e) Proximity of proteins measured by an adequate metric (e.g. number of terms

and relationships along the path connecting the terms that annotate the pro-
teins) inside the biological process branch of the Gene Ontology might detect
relationships

f) Joint presence in the same regulatory cascade that connects to (anti-) survival
node in the logical model of Flobak et al. [10]

g) others. . .
It is beneficial to take several of these aspects into account which may indicate
the relation of protein function, since different perspectives on the problem might
increase granularity of the drug data and make a similarity assessment of two drugs
more specific. A small survey of the literature has therefore been performed.
In the first approaches a) and b) sets of interdependent proteins are considered that
are likely to cooperate in protein complexes or pathways. These sets constitute models
or networks that are affected if a single protein member is targeted. The Molecular
Signature Database (MSigDB) from Gene Set Enrichment Analysis (GSEA) might
help to find relevant protein sets. The sets are checked for the combined presence
of two drug targets. The number of hits might be an indicator whether two drug
targets have the potential for synergetic effects. However, this procedure alone does
not take into account interdependencies of different pathways and lacks quantitative
information. The pathways themselves are part of a network of cellular processes
and might affect each other.
Another approach c) to obtain the ‘relatedness’ between drug targets is offered by
the Reactome pathway database (www.reactome.org). Reactome can be used to
find the minimal distance between any two genes in its global signal transduction
network. One way to obtain a dataset may be to download the Reactome data
and use NetPathMiner [29] to calculate all shortest paths and then select the drug
target pairs. Alternatively, the PathwayAnalyzer tool in Cytoscape may be used,
but probably the Reactome file sizes will be prohibitive. The list of shortest paths
will provide the data for a relatedness matrix.
Whereas the drug target relatedness may provide a general framework for predicting
drug synergy, the likelihood that this may result in significant correlation with
synergy seems low. To increase the correlation some insight in the black box that the
cells represent is needed. Cell lines will pose a specific context for treating general
knowledge about target relatedness, and customise its use in that particular cell.
Information about the black box might be found in the additional data provided by
the DREAM challenge: mutations that alter sequences in the protein’s peptide chain
leading to new conformations and (mal-)function, methylation affecting DNA con-
densation and hence transcriptional gene control, deletions or duplications affecting
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the number of copies of target genes, or even experimental accuracy. If not taken
into account, these cell-specific contexts introduce noise or systematic errors and will
likely dominate the data. Hence, the effects of proteins perturbing or influencing
each other need to be estimated for each cell line. This could be achieved with the
mutation data, methylation data or the copy number variation data provided by
DREAM.

7.2 Proposal

The challenge to predict drug synergy is the combination of a data integration
problem and a machine learning problem. The former addresses the need to make
best use of background knowledge and is solved by identification of quantities that
are more meaningful and condensed for machine learning than the vast accumulation
of raw data. The latter lies in the choice of a suitable predictor and validation
technique.

In the literature attempts have been made to combine different types of omics
data. Nagaraj and Reverter [31] integrate a variety of gene properties like kinases,
secreted proteins, transcription factors, post-translational modifications of proteins,
DNA methylation and tissue specificity. They analysed cancer-associated genes and
constructed a probabilistic truth table to find more candidate genes. In the work of
Vaske et al. [42] altered activities in cancer related pathways were identified. Factor
graphs incorporated different kinds of gene related data (DNA copies, mRNA and
protein levels, and activity of the protein) and were applied to model genes and their
interplay within pathways.

So far, no method is known that combines data on the cell line level (gene expression,
methylation, copy number variation, mutation) and on the drug level (protein targets,
generic drug properties) into one framework for machine learning purpose. We design
an ‘Omics Data Integration Network’ (ODIN) that serves as a framework to flexibly
incorporate different data. The network structure is derived from prior knowledge
found in the Reactome database and the Molecular Signatures Database from GSEA.
Reactome curated GSEA sets are considered as pathway related modules. These
modules define nodes in the ODIN framework. Network construction is divided into
three steps: module creation, module enrichment and module linkage.

First, empty nodes are created and associated to a particular GSEA set like seen
in figure 7.1. Second, in the actual data integration process, drug and cell related
information is propagated through the pathway models resulting in model specific
quantities. This step is visualised in figure 7.2. The quantities are attached to each
node respectively, forming vertices that characterize the pathway associated to the
module in a drug and cell line specific context. Third, the modules in the nascent
network are linked together by machine learning and an artificial neural network
(ANN) approach. The synergy measurements provided by DREAM and the vertices
constructed in step two represent training sets for this purpose. During an iterative
training process, the ANN is taught how to link the modules and their attached
information in order to predict synergy. The figures 7.4 and 7.5 illustrate the last
step.
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Module creation

The Molecular Signatures Database (software.broadinstitute.org/gsea/index.jsp)
provides curated gene sets in different biochemical contexts. The Reactome curated
set contains 674 pathway related gene sets. Each gene set is associated to one node
in the data integration network in a one to one relationship.

Figure 7.1: Reactome curated gene sets are extracted from the GSEA Molecular
Signatures Database.

Module enrichment

The originally empty nodes are annotated with quantities that characterize the GSEA
set under consideration of the two drugs or the cell line. How this is achieved in
detail is data type dependent.
In respect to the drug related data, knowledge about the target protein(s) of the
drugs are considered. One can estimate the significance of a protein target in a
GSEA set by a membership check. For each module a binary value is computed that
simply states whether the protein target is contained in the GSEA set or not. The
value is attached to the corresponding node in the data integration network.
Treatment of the cell line specific data is similar like done by Nagaraj and Reverter [31].
Integration of gene expression data is performed by overexpression analysis. The
expression levels of each cell line are compared to a reference. The reference level
might not be found in any database due to the presence of mutations in the cell lines.
Mutated or cancerous cells might have developed some differentiated expression
profile. It might be easier and more accurate to choose the average expression
based on the present data as a reference. For each cell line for each gene a discrete
number -1, 0, 1 is computed that is interpreted as underexpressed, normal expressed
or overexpressed. The overexpression analysis is used to enrich the GSEA set
annotation by two quantities: the fraction of overexpressed and underexpressed genes
in a set.
The mutation data is transformed into a binary event matrix as proposed in the
DREAM challenge description. The entries in the matrix describe whether a gene is
mutated in a particular cell line or not. This insight is projected onto the pathway
level with the help of the GSEA sets. For each module a binary quantity is computed
that encodes if at least one gene in the module is mutated or not. Methylation and
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copy number variation data might be integrated similarly to the mutation data in
order to receive a binary classification.

Figure 7.2: The gene set modules are enriched with drug and cell line specific
quantities. As a drug pair consists of two drugs, there will be two contributions.

Module linkage

In the former steps we set up the modules of the nascent ODIN network and added
drug and cell line specific information to the nodes. In order to predict synergy,
the quantities attached to the nodes have to be linked together to simulate module
interactions. An artificial neural network is applied and trained to learn the causal
links between the modules. The synergy measurements offered by DREAM and
the GSEA module vertices obtained from the steps before are used to construct
training sets. The design of the network structure can be seen in figure 7.5. The
artificial neural network is trained in order to find a highly nonlinear mapping from
the vertices that are attached to each module to a synergy output. Hyperbolic
tangent functions are chosen as activation functions. The hidden nodes are connected
to a bias node. An iterative backpropagation learning method is applied. Cross
validation monitors the learning process to detect over-training. ROC analysis can
be conducted to measure prediction accuracy.
One possible downside is the complexity of the task and the limited number of training
sets. Also it might be an excessive demand to confront the learning algorithm with
all module annotations at the same time. An unmodified approach does not appear
to be feasible, because the predictor has to consider both cell line and drug specific
information - the ANN would have to learn all the biomolecular interactions in many
types of cells and the characteristics of all drugs at once. This situation is illustrated
in figure 7.3.
The complexity that a predictor has to deal with has to be reduced. It is more
feasible to train several artificial neural networks that are referred to as ‘experts’ in
a cell line specific context. This means that for each cell line a predictor is trained.
These predictors are confronted with drug specific information only, as the cell line’s
specific information is constant. If, after training, an unknown drug combination
should be examined for synergistic effects, the correspondent cell line expert will
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be able to vote. The other way round, predictors with drug specific differentiation
are trained. A predictor is created for each drug combination in the training set.
As the model annotations related to drugs are constant, only the cell line’s specific
data has to be considered. Hence, you obtain one predictor for each cell line (83
in total) plus one for each drug pair. The synergy prediction of unknown drug-cell
combinations will involve a check, which expert suits the task. However, this more
feasible strategy has its limitations: if both, drug combination and cell line are not
present in the training set, a synergy prediction is impossible.
The artificial neural network design can be assisted by prior knowledge about pathway
interaction. The annotations associated to the GSEA models represent the training
data of the present machine learning problem. The vertices are interpreted as input
for the artificial neural network. The ANN is composed of the input layer, the first
hidden layer that is referred to as the hidden module layer, the second layer that
is called the hidden interaction layer and the output layer that contains the sole
synergy node. The hidden module layer consists of nodes that are connected to the
vertex of one particular GSEA model, so there is a one to one relationship between
modules and nodes.
The design of the hidden interaction layer is supported by the use of pathway
interaction data. The network design is shown in figure 7.5. The idea is that during
the training procedure the links between the GSEA models will converge to a sort
of pathway interaction network. In order to guide this process, prior knowledge
about pathway interactions can be utilised. Pathway interactions are assumed to
be sufficiently independent from the drug pairs and the cell lines that make the
training sets. However some mutations and cancer differentiation might even affect
dependencies between pathways and there is the risk of introducing some noise.
Though, based on this assumption, an interaction analysis can optimize the structure
of the artificial neural network predictor and assist the learning algorithm. GSEA
sets are clustered into superbins, which do not have to be necessarily disjoint. The
clusters contain gene sets that are supposed to work closely together or show high
interdependency.
The network structure consists of four layers: the input layer (top layer), the hidden
module layer, the hidden interaction layer and the output layer (the sole bottom
node). There are two types of hidden nodes regarding the linkage structure: those
forming the hidden module layer and those forming the hidden interaction layer.
The nodes in the hidden module layer are associated with one particular GSEA
module and assesses the information of the modules vertex only. The linkage of the
nodes in the hidden interaction layer is guided by prior knowledge about pathway
interactions. Reactome curated gene sets that show strong relation to each other
are linked together. Hidden interaction nodes are only linked to their corresponding
GSEA hidden module nodes. GSEA sets that have their own cluster and show no
strong correlation are directly connected to the output node. The advantage of this
approach is that linkage of unrelated or even isolated modules can be minimized and
the search space of the training process is reduced significantly.
The maximal size of the artificial network is determined by the number of modules
and the dimensionality of their vertices. A reasonable network of the proposed
structure might have about 3000 input nodes, 600 hidden nodes and one output
node if all modules are taken into account. However, it is expected that the majority
of these modules do not vary significantly in the training data. Hence, many nodes
might be irrelevant and can be neglected. Feasibility has to be checked in practice
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and possibly dimensionality reduction techniques have to be applied.

Figure 7.3: An ideal predictor would integrate the different vertices all at once. In
order to make the approach feasible, there is a need to modify the approach and
make the predictor use only one type of vertex.

Figure 7.4: In this proposal, several differentiated predictors are trained which
are experts in their specific cell or drug pair context. Expert predictors are only
confronted with either drug or cell related data.
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Figure 7.5: The structure of the artificial neural network is presented. The hidden
nodes are connected to a bias node which is not shown in the illustration.
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Chapter 8

Conclusion

Statistical knowledge inference suffers from limitations when dealing with big data,
sparsity, high-dimensionality and lack of foreknown samples posing new requirements
on data analysis tools. The aim of this project is to develop a computational method
based on machine learning to classify proteins from the Gene Ontology Consortium
(GOC) in order to find specific DNA binding RNA polymerase II transcription factors
(DbTFs). A number of dimensional reduction techniques like PCA, PLS and LPLS
are assessed for suitability. A simple but effective method for variable selection called
separability analysis is proposed and tested. 2655 candidate proteins of the species
human, mouse and Norway rat are classified with a voting committee of 1500 trained
artificial neural networks. Out of these candidate proteins 54 proteins are identified
as DbTFs with a relative classification error of less than 10%.
The multivariate data analysis is validated by cross-validation and ROC. During
training 98% of all validation instances could be correctly classified though there
are seven times more validation instances than training instances. Over-training
was tried to be minimised for the particular data. Nevertheless the scope of this
validation is limited to the available data and it cannot be excluded that some level
of over-training stayed undetected due to the limited amount of known DbTFs. In
addition the way how the knowledge bases of the Gene Ontology Consortium have
been constructed might introduce a bias to the data that complicates prediction of
unknown DbTFs. This makes the gene ontology data less useful for DbTF prediction.
The ontology information includes large amounts of inferred knowledge that already
contains a high level of interpretation. This weakens conclusions about the physical
/ chemical mechanisms behind DbTFs. Finally, it is difficult to suggest a distinct
validation of the classification results outside the epistemic limitations of the available
data.
The domain of 2655 candidates from the TFcheckpoint database is challenging and
cumbersome to be studied experimentally. However, the computational inference
performed in this project indicates a high probability for 54 proteins to have DbTF
activity. For each of the candidates in this selection the relative classification error
is less than 10%. These candidates need experimental confirmation by biological
specialists for their possible DbTF-status in the next step. The outcome of this
project can be used for instance as a priority measure to design further experiments.

77



78



Bibliography

[1] Hervé Abdi. Partial least square regression (pls regression). Encyclopedia for
research methods for the social sciences, pages 792–795, 2003.

[2] Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein, Heather
Butler, J Michael Cherry, Allan P Davis, Kara Dolinski, Selina S Dwight,
Janan T Eppig, et al. Gene ontology: tool for the unification of biology. Nature
genetics, 25(1):25–29, 2000.

[3] Anne-Laure Boulesteix. Pls dimension reduction for classification with microar-
ray data. Statistical applications in genetics and molecular biology, 3(1):1–30,
2004.

[4] Wei-Chien Chang. On using principal components before separating a mixture
of two multivariate normal distributions. Applied Statistics, pages 267–275,
1983.

[5] Konika Chawla, Sushil Tripathi, Liv Thommesen, Astrid Lægreid, and Martin
Kuiper. Tfcheckpoint: a curated compendium of specific dna-binding rna
polymerase ii transcription factors. Bioinformatics, 29(19):2519–2520, 2013.

[6] Jorge De La Calleja and Olac Fuentes. Machine learning and image analysis for
morphological galaxy classification. Monthly Notices of the Royal Astronomical
Society, 349(1):87–93, 2004.

[7] Ulrik de Lichtenberg, Thomas S Jensen, Lars J Jensen, and Søren Brunak.
Protein feature based identification of cell cycle regulated proteins in yeast.
Journal of molecular biology, 329(4):663–674, 2003.

[8] Pierre Demartines and Jeanny Hérault. Curvilinear component analysis: A self-
organizing neural network for nonlinear mapping of data sets. Neural Networks,
IEEE Transactions on, 8(1):148–154, 1997.

[9] Edgar Erwin, Klaus Obermayer, and Klaus Schulten. Self-organizing maps:
ordering, convergence properties and energy functions. Biological cybernetics,
67(1):47–55, 1992.

[10] Åsmund Flobak, Anaïs Baudot, Elisabeth Remy, Liv Thommesen, Denis Thieffry,
Martin Kuiper, and Astrid Lægreid. Discovery of drug synergies in gastric cancer
cells predicted by logical modeling. PLoS Comput Biol, 11(8):e1004426, 2015.

[11] John A Flores. Focus on artificial neural networks. Nova Science Publishers,
2011.

[12] Pedro P Gallego, Jorge Gago, and Mariana Landín. Artificial neural networks
technology to model and predict plant biology process. INTECH Open Access
Publisher, 2011.

79



[13] Hanoch Gutfreund and Gerard Toulouse. The physics of neural networks. Spin
Glasses and Biology (ed. by DL Stein), World Scientific, Singapore, pages 7–60,
1992.

[14] Isabelle Guyon and André Elisseeff. An introduction to variable and feature
selection. The Journal of Machine Learning Research, 3:1157–1182, 2003.

[15] Lars Kai Hansen and Peter Salamon. Neural network ensembles. IEEE Trans-
actions on Pattern Analysis & Machine Intelligence, (10):993–1001, 1990.

[16] Muditha M Hapudeniya. Artificial neural networks in bioinformatics. Sri Lanka
Journal of Bio-Medical Informatics, 1(2):104–111, 2010.

[17] Harold Hotelling. Analysis of a complex of statistical variables into principal
components. Journal of educational psychology, 24(6):417, 1933.

[18] Tom Howley, Michael G Madden, Marie-Louise O’Connell, and Alan G Ryder.
The effect of principal component analysis on machine learning accuracy with
high-dimensional spectral data. Knowledge-Based Systems, 19(5):363–370, 2006.

[19] Christian Igel and Michael Hüsken. Improving the rprop learning algorithm. In
Proceedings of the second international ICSC symposium on neural computation
(NC 2000), volume 2000, pages 115–121. Citeseer, 2000.

[20] Andreas GK Janecek and Wilfried N Gansterer. A comparison of classiffica-
tion accuracy achieved with wrappers, filters and pca’. In Workshop on New
Challenges for Feature Selection in Data Mining and Knowledge Discovery, 2008.

[21] L Juhl Jensen, Ramneek Gupta, Nikolaj Blom, D Devos, J Tamames, Can
Kesmir, Henrik Nielsen, Hans Henrik Stærfeldt, Krzysztof Rapacki, Christopher
Workman, et al. Prediction of human protein function from post-translational
modifications and localization features. Journal of molecular biology, 319(5):1257–
1265, 2002.

[22] Lars Juhl Jensen, Ramneek Gupta, H-H Staerfeldt, and Søren Brunak. Prediction
of human protein function according to gene ontology categories. Bioinformatics,
19(5):635–642, 2003.

[23] Javed Khan, Jun S Wei, Markus Ringner, Lao H Saal, Marc Ladanyi, Frank
Westermann, Frank Berthold, Manfred Schwab, Cristina R Antonescu, Carsten
Peterson, et al. Classification and diagnostic prediction of cancers using gene
expression profiling and artificial neural networks. Nature medicine, 7(6):673–679,
2001.

[24] Stanislav Kolenikov, Gustavo Angeles, et al. The use of discrete data in pca:
theory, simulations, and applications to socioeconomic indices. Chapel Hill:
Carolina Population Center, University of North Carolina, pages 1–59, 2004.

[25] Harvey Lodish, Arnold Berk, S Lawrence Zipursky, Paul Matsudaira, David
Baltimore, James Darnell, et al. Molecular cell biology, volume 4. WH Freeman
New York, 2000.

[26] Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent
in nervous activity. The bulletin of mathematical biophysics, 5(4):115–133, 1943.

[27] Tahir Mehmood, Kristian Hovde Liland, Lars Snipen, and Solve Sæbø. A review
of variable selection methods in partial least squares regression. Chemometrics
and Intelligent Laboratory Systems, 118:62–69, 2012.

[28] Charles E Metz. Basic principles of roc analysis. In Seminars in nuclear medicine,
volume 8, pages 283–298. Elsevier, 1978.

80



[29] Nguyen CH Mohamed A, Hancock T and Mamitsuka H. Netpathminer:
R/bioconductor package for network path mining through gene expression.
Bioinformatics, 30:3139–3141, 2014.

[30] Kyaw-Zeyar Myint, Lirong Wang, Qin Tong, and Xiang-Qun Xie. Molecular
fingerprint-based artificial neural networks qsar for ligand biological activity
predictions. Molecular pharmaceutics, 9(10):2912–2923, 2012.

[31] Shivashankar H Nagaraj and Antonio Reverter. A boolean-based systems biology
approach to predict novel genes associated with cancer: Application to colorectal
cancer. BMC systems biology, 5(1):1, 2011.

[32] Danh V Nguyen and David M Rocke. Tumor classification by partial least
squares using microarray gene expression data. Bioinformatics, 18(1):39–50,
2002.

[33] Karl Pearson. Liii. on lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal
of Science, 2(11):559–572, 1901.

[34] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by
locally linear embedding. Science, 290(5500):2323–2326, 2000.

[35] Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach.
1995.

[36] Solve Sæbø, Trygve Almøy, Arnar Flatberg, Are H Aastveit, and Harald Martens.
Lpls-regression: a method for prediction and classification under the influence
of background information on predictor variables. Chemometrics and Intelligent
Laboratory Systems, 91(2):121–132, 2008.

[37] Solve Sæbø, Magni Martens, and Harald Martens. Three-block data modeling
by endo-and exo-lpls regression. In Handbook of Partial Least Squares, pages
359–379. Springer, 2010.

[38] Victor Seguritan, Nelson Alves Jr, Michael Arnoult, Amy Raymond, Don
Lorimer, Alex B Burgin Jr, Peter Salamon, and Anca M Segall. Artificial neural
networks trained to detect viral and phage structural proteins. 2012.

[39] Sigurdur Sigurdsson, Peter Alshede Philipsen, Lars Kai Hansen, Jan Larsen,
Monika Gniadecka, and Hans Christian Wulf. Detection of skin cancer by
classification of raman spectra. Biomedical Engineering, IEEE Transactions on,
51(10):1784–1793, 2004.

[40] Maciej Szaleniec. Prediction of enzyme activity with neural network models
based on electronic and geometrical features of substrates. Pharmacological
Reports, 64(4):761–781, 2012.

[41] Roy Varshavsky, Assaf Gottlieb, Michal Linial, and David Horn. Novel unsu-
pervised feature filtering of biological data. Bioinformatics, 22(14):e507–e513,
2006.

[42] Charles J Vaske, Stephen C Benz, J Zachary Sanborn, Dent Earl, Christopher
Szeto, Jingchun Zhu, David Haussler, and Joshua M Stuart. Inference of patient-
specific pathway activities from multi-dimensional cancer genomics data using
paradigm. Bioinformatics, 26(12):i237–i245, 2010.

[43] Aravind Venkatesan, Sushil Tripathi, Alejandro Sanz de Galdeano, Ward Blondé,
Astrid Lægreid, Vladimir Mironov, and Martin Kuiper. Finding gene regu-
latory network candidates using the gene expression knowledge base. BMC
bioinformatics, 15(1):386, 2014.

81



[44] Shimon Whiteson and Daniel Whiteson. Machine learning for event selection
in high energy physics. Engineering Applications of Artificial Intelligence,
22(8):1203–1217, 2009.

[45] Svante Wold, Michael Sjöström, and Lennart Eriksson. Pls-regression: a ba-
sic tool of chemometrics. Chemometrics and intelligent laboratory systems,
58(2):109–130, 2001.

[46] Ying Xu, Richard J Mural, J Ralph Einstein, Manesh B Shah, and Edward C
Uberbacher. Grail: a multi-agent neural network system for gene identification.
Proceedings of the IEEE, 84(10):1544–1552, 1996.

[47] Ka Yee Yeung and Walter L. Ruzzo. Principal component analysis for clustering
gene expression data. Bioinformatics, 17(9):763–774, 2001.

82



Chapter 9

Appendix: Candidate classification
results

Table 9.1: The classification results are presented for predicted DbTFs that have a
smaller relative error than 10%. A regression value of +1 corresponds to a positive
classification, -1 to a negative one.

protein
symbol

Dbxref
key

protein name regression
result

accuracy
estimate

relative
error [%]

RAD21 O60216 Double-strand-break repair protein
rad21 homolog

0.9994 0.0039 0.39

ZNF498 B3KPY4 Zinc finger protein 498, isoform
CRA_a

0.9992 0.0045 0.45

EIF5B O60841 Eukaryotic translation initiation factor
5B

0.9990 0.0055 0.55

POLR2K P53803 DNA-directed RNA polymerases I, II,
and III subunit RPABC4

0.9990 0.0055 0.55

Arid4b Q9JKB5 AT-rich interactive domain-containing
protein 4B

0.9986 0.0072 0.72

Rgs14 O08773 Regulator of G-protein signaling 14 0.9986 0.0072 0.72
Gatad2b Q4V8E1 GATA zinc finger domain containing

2B
0.9980 0.0085 0.85

Sin3b B0BNJ0 Protein Sin3b 0.9979 0.0087 0.87
ZNF479 Q96JC4 Zinc finger protein 479 0.9976 0.0089 0.89
ZSCAN31 Q96LW9 Zinc finger and SCAN domain-

containing protein 31
0.9977 0.0089 0.89

ZNF471 Q9BX82 Zinc finger protein 471 0.997 0.010 1.00
ZNF512 Q96ME7 Zinc finger protein 512 0.997 0.011 1.10
ASH2L Q9UBL3 Set1/Ash2 histone methyltransferase

complex subunit ASH2
0.997 0.011 1.10

CBX4 O00257 E3 SUMO-protein ligase CBX4 0.997 0.012 1.20
Smarcd3 Q5U3Y2 Protein Smarcd3 0.996 0.013 1.31
HEL-S-1 V9HWD6 Epididymis secretory protein Li 1 0.996 0.014 1.41
TRIM28 Q13263 Transcription intermediary factor 1-

beta
0.996 0.014 1.41

AATF Q9NY61 Protein AATF 0.997 0.015 1.50
CTDP1 Q9Y5B0 RNA polymerase II subunit A C-

terminal domain phosphatase
0.993 0.017 1.71

Ldb1 D3ZT89 LIM domain binding 1 (Predicted) 0.994 0.019 1.91
PA2G4 Q9UQ80 Proliferation-associated protein 2G4 0.997 0.019 1.91
Sebox Q9ERS8 Homeobox protein SEBOX 0.992 0.020 2.02
GATAD2A Q86YP4 Transcriptional repressor p66-alpha 0.992 0.020 2.02
Tfpt Q9JMG6 TCF3 fusion partner homolog 0.994 0.021 2.11
POLR2H P52434 DNA-directed RNA polymerases I, II,

and III subunit RPABC3
0.992 0.023 2.32

Snapc5 D3ZTK9 Protein Snapc5 0.997 0.023 2.31
CRK P46108 Adapter molecule crk 0.992 0.023 2.32
NOTCH1 P46531 Neurogenic locus notch homolog pro-

tein 1
0.991 0.025 2.52

ZNF524 Q96C55 Zinc finger protein 524 0.989 0.026 2.63
Mbtps2 D3ZDS6 Protein Mbtps2 0.987 0.027 2.74
RFX6 Q8HWS3 DNA-binding protein RFX6 0.992 0.027 2.72

Table continues on the next page
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Table 9.1: The classification results are presented for predicted DbTFs that have a
smaller relative error than 10%. A regression value of +1 corresponds to a positive
classification, -1 to a negative one.

protein
symbol

Dbxref
key

protein name regression
result

accuracy
estimate

relative
error [%]

RUVBL2 Q9Y230 RuvB-like 2 0.990 0.027 2.73
DBX1 A6NMT0 Homeobox protein DBX1 0.989 0.030 3.03
ZNF682 O95780 Zinc finger protein 682 0.986 0.032 3.25
ZNF643 D3DPV3 Zinc finger protein 643, isoform

CRA_b
0.986 0.038 3.85

ZNF814 B7Z6K7 Putative uncharacterized zinc finger
protein 814

0.986 0.038 3.85

Id1 P41135 DNA-binding protein inhibitor ID-1 0.984 0.038 3.86
OSR1 Q8TAX0 Protein odd-skipped-related 1 0.987 0.042 4.26
Etv3l F7FJQ8 Protein Etv3l 0.985 0.042 4.26
SART3 Q15020 Squamous cell carcinoma antigen rec-

ognized by T-cells 3
0.991 0.048 4.84

Tsg101 Q6IRE4 Tumor susceptibility gene 101 protein 0.984 0.049 4.98
CITED2 D9ZGF1 Cbp/p300-interacting transactivator,

(. . . )
0.979 0.050 5.11

Zfp157 D3ZFZ1 Protein Zfp157 0.973 0.058 5.96
Smarcal1 B4F769 SWI/SNF-related matrix-associated

actin-dependent (. . . )
0.987 0.062 6.28

Hdac8 B1WC68 Histone deacetylase 8 0.975 0.063 6.46
Mllt11 Q5M971 Protein AF1q 0.980 0.065 6.63
CHD9 Q3L8U1 Chromodomain-helicase-DNA-binding

protein 9
0.969 0.065 6.71

Cdk5 Q03114 Cyclin-dependent-like kinase 5 0.964 0.072 7.47
TRIP4 Q15650 Activating signal cointegrator 1 0.984 0.074 7.52
Hoxd12 D3ZSN2 Protein Hoxd12 0.965 0.088 9.12
Dmrtb1 D4A494 Protein Dmrtb1 0.962 0.092 9.56
RPS6KA4 O75676 Ribosomal protein S6 kinase alpha-4 0.964 0.093 9.65
SNIP1 Q8TAD8 Smad nuclear-interacting protein 1 0.969 0.094 9.70
GTF2E2 P29084 Transcription initiation factor IIE sub-

unit beta
0.959 0.094 9.80
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