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6.3.1 Important functions of GeNIe 

Some of the most important functions used in GenNIe are explained in this chapter.  

Data sheet 

At any time you can have as many data sheets, imported from for example from Microsoft 

Excel open. The datasheets are usually used as a quantitative basis for creating a BBN, by 

identification of dependencies in the data set.  

Learn new network 

The learn network function, enables GeNIe to learn the network structure solely based on the 

data sheet. The analyst may force arcs between nodes, or deny GeNIe to make certain 

connections. 

Change node view: 

The nodes in the network can be seen as both icons, and bars as shown in Figure 22. The icons 

are used mainly for visual understanding of dependencies. The bars also includes the 

parameters (probabilities) of the node. The bar view is used for setting evidence and observing 

changes in probability. 

 

Figure 22 Icon and bar view of nodes GeNIe 

Learning parameter function 

The learning function demands a predefined (drawn) BBN. The nodes of the drawn BBN must 

have the exact same names as the colons in the data sheet. In Figure 23 a screenshot of the 

learning functions show the association between columns and values from excel with nodes in 

GeNIe. The drawn arcs and nodes are not changed through the learning process, however the 
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nodes are given numerical values as a result of their place in the network and dependencies in 

the data.  

 

 

Figure 23 Learning function GeNIe 

 

Set evidence: 

By right clicking on each node, and choosing the “set evidence” function, the probabilities of 

failure for each node may be changed, and the effect of the change may be visually observed 

through the whole network. This function is applied for the evaluation of BBN in chapter 7. 

 

  



53 

 

6.4 Comparison of methods for creating BBN 

A qualitative BBN is created based on knowledge of system structure and the causal pathway 

of the modelled events, in this report referred to as “expert knowledge”. A quantitative model 

will be solely based on available data, where the analyst usually through the use of computer 

software will identify dependencies in a data set.  A comparison of strengths and weaknesses 

in the different creation methods of a BBN is showed in Table 4. 

Table 4 BBN creation methods, strengths/weaknesses 

BBN creation method Strengths weaknesses 

Based on qualitative 

knowledge 

 Utilizes prior knowledge of 

causal system structure 

 Most subjective method, 

prone to misjudgment from 

analyst 

 Will not identify possible 

data dependencies 

unknown to the analyst 

 Time consuming 

 Demands “expert 

knowledge” 

Based on quantitative 

analysis of data 

 Able to identify possible 

“unknown” dependencies 

in the data set 

 Fast, easy 

 Little prior system 

knowledge required 

 May identify “false” 

dependencies due to data 

variation 

 Data demanding 

 Totally dependent on 

strength of utilized software  

Combination of 

qualitative/quantitative 

methods (Used in this 

report) 

 May utilize the quantitative 

method to identify patterns 

in data, then adjust the 

result based on physical 

properties and system 

structure known to the 

analyst 

 May experience 

contradictions,which 

identifies weaknesses in 

data/model 

 Most time consuming 

method 
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6.5  Stepwise summarized method for creating Bayesian Belief Networks 

In this chapter I will stepwise summarize the method chosen in this report for creating the final 

BBN. This method consists of 7 steps. 

System knowledge, chapter 2 and 3 

The first step of creating a BBN that represents a physical system is to gain knowledge of the 

modelled system, in this case the DP system. To gain an overview of the physical properties 

of the system is strictly necessary in order to be able to sort data into failure modes, and fully 

understand the description of an incident. Especially when an incident is presented with limited 

information, the analyst have to utilize his system knowledge to decide “what information is 

missing”, if any. The system knowledge should as a minimum consist of the main components 

and structure of the modelled system.  

Data sorting, chapter 4 

All incidents are sorted in MS Excel as shown in chapter 4.4, when a failure mode is present 

in the incident, this is indicated through the value “1” while all other cells has the value “0”. If 

a group of failure modes covers too much deviating information this is typically a sign of the 

failure group being to large/general. As a result the analyst may have to split this group into 

several more specific failure groups with fewer failure modes present in each group. In 

opposite, if the failure group is almost non-existing it may be necessary to combine this group 

with another group of similar failures. Such decisions require extensive system knowledge and 

is the hardest and most important part of sorting data. 

Causal flowcharts, chapter 5 

After the data is sorted, the causal flowcharts are created. These flowcharts are based on the 

system knowledge obtained in chapter 2, in combination with the accumulated knowledge 

obtained through the data sorting and creation of failure groups. 
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BBN based on quantitative analysis of data by computer  

The excel file is saved as a text file and opened in GeNIe (see chapter 6.3). On the basis of this 

text file, GeNIe can create a BBN solely based on trends in the data material. As shown in 

chapter 6.3, the analyst has some tools to help GeNIe understand the system, but this creation 

method has several limitations as discussed and presented in Table 4. Clear data dependencies 

are shown here, and observed by the analyst. 

Comparison of causal flowcharts with quantitative BBN:  

The analyst now compares the results from the quantitative analysis of data with the created 

flowcharts. When the results coincides no further change is required. However in some cases 

the data trends may deviate from the qualitative assumptions. When this is the case further 

study is necessary in order to determine the most corect dependencies. (Direction and 

placement of arcs in the BBN). 

Drawing of BBN:  

When all potential deviations of results are evaluated and “solved”, the final BBN will be 

drawn as the resulting combination of expert judgment and data dependencies.  

Parameter learning:  

The drawn BBN can now be combined with the sorted data to identify the final parameter 

values of the BBN. In this report the parameter learning is achieved by utilizing the learning 

function, (see chapter 6.3.1), in GeNIe.  
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6.6 Final BBN 

The final BBN is the result of the 7 steps described in chapter 6.5. The network represents a 

mixture of the qualitative system understanding that lead to the causal flowcharts, and the 

quantitative data analysis.  

The final BBN is presented in Figure 24. The nodes in the BBN has been sorted by color for a 

more intuitive understanding, an explanation of node colors is given in Table 5. 

 

 

Table 5 Explanation of BBN node colors 

Node Color 

Terminal events  

Failures leading directly to terminal events  

References equipment failures  

Reference equipment failure causes  

Power/propulsion  

Human factors  

DP control   

Environment/external  
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Figure 24 Final BBN from GeNIe graph view 

The final BBN presented in Figure 24, is shown as icons, (see chapter 6.3.1), in an effort 

to highlight dependencies, as the BNN contains more arcs then what is optimal for intuitive 

understanding. The figure gives a visual presentation of the final network, in which the 

main lines from the causal flowcharts can still be seen. The human factors, (green nodes), 

have now been given arcs to equipment failures, based on data dependencies discovered 

through the quantitative analysis method in GeNIe. Slips/lapses lead to generator failures, 

(typically through maintenance mistakes). Rule based errors affects DP-software, often 

seen as breach in procedures related to software updates and testing before an operation. 

Knowledge based errors are connected to thrust failures, both thrust error and multiple 

thrust failures. These connections represents the incidents with insufficient control actions 

by the operator in critical situations resulting in loss of thrusters or thrust control.
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7 Discussion- Evaluation of BBN  

There are many ways to evaluate the parameters of a Bayesian Belief Network. As mentioned 

in chapter 6.2, the NPT of each node may be accessed through the GeNIe software, and show 

probability distributions of nodes. However it is tedious to present each particular NPT for 

every node in the network, and the information obtained from the NPT’s has its own limitations 

as well. A NPT only show the probability of an event, (state of the targeted node), given the 

state of its parents. The conditional probabilities are however not the full answer to which 

parents that are most “important”. The probability of failure for each parent should be 

considered as well, which forces us to combine information from several nodes. Additionally 

a parent node “A” may indirectly affect the target node “C” trough a second parent “B” as 

shown in Figure 25. This indirect effect cannot be evaluated through the NPT’s. 

Chapter 7.1 describes a method that measures which parent that has the highest effect on our 

target node, in combination with the probability of that particular system failure the parent 

represents. The described method is developed by the author in cooperation with fellow M.Sc 

Student Anders Bidne, and we believe the method represents the best way to determine the 

most critical parents of a node in the BBN. Figure 25 has been created to illustrate the method. 

Table 6 presents the mathematical terms defined for the illustration of the chosen method. 
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Figure 25 Evaluation of parent criticality in a BBN. 

 

Table 6 Mathematical terms of BBN evaluation 

P(A)1 Original probability (of failure) of node A 

P(C)1 Probability of node C given original 

probability of node A and node B 

P(C|A) Probability of node C after probability of 

node A is set to 100% 

 

7.1 Evaluation method of BBN 
 

The evaluation method begins with setting the probability of failure for the node in question to 

100 %, achieved by utilizing the “set evidence function in GeNIe” described in chapter 6.3.1.  

In the example case described by Figure 25, the failure probability of parent node A is set to 

100 %. As a result of the new evidence in the network, the BBN is updated, which gives us the 

new probabilities (of failure) for every node affected, directly, or indirectly. In the example 

case the affected nodes would be both B and C. The effect on the terminal event C, due to the 

increase of A is easily measured as the difference in failure probability of node C. The resulting 
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effect of B on C will already be included in our evaluation, as the whole network is immediately 

updated when we change the properties of any of its nodes.  

 

𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑖𝑛 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐶 𝑑𝑢𝑒 𝑡𝑜 𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑜𝑓 𝐴 = P(C|A) −  P(C)1  

 

The increased probability of node C is an absolute value, a percentage. We want the effect to 

be measured relative to the original value of the node. This is a more intuitive measure that 

includes the original state of C in the evaluation. For example a value of “2” means that the 

definite presence of a failure in node A, led to a 200 % increase in probability of failure for 

node C. The formula for measuring relative effects is shown below: 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓𝐴 𝑜𝑛 𝐶 =
P(C|A) −  P(C)1

𝑃(𝐶)1
  

However, to only measure the relative effect of node A on C, does not consider the original 

probability of failure of parent A. To only measure the direct effect of a failure is insufficient, 

if the probability of the event is not considered.  

The wanted adjustment in the formula is easily achieved by multiplying the relative effect of 

A on C with the original probability of A.  

If the relative effect of A on C was “2”, and the original failure probability of node A is equal 

to 0.05, the total evaluation of A on C will give us a value of 2x0.05=0.1. This value takes both 

the effect, and the probability of failure of node A into account. One may argue that this value 

if a vague form of “risk”, as risk is often referred to as a negative effect, multiplied with the 

probability of that effect occurring. The most important parent node will be the one with the 

highest product of effect, and probability of occurring. The final formula is shown below: 

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓𝐴 𝑜𝑛 𝐶 =
P(C|A) −  P(C)1

𝑃(𝐶)1
 𝑥 𝑃(𝐴)1 
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A Bayesian Belief Network is a useful tool as the effect of changing the probability of one 

event can be seen through the whole network. By going through the BBN and individually 

setting every node to 100% one may measure their resulting effect on all other nodes in the 

network.  

In chapter 7.3-7.6, the results of the evaluation method described in this chapter will be 

presented, as the most important parents of each of the four terminal events are calculated. The 

same method could have been applied to determine the most important parents for any node in 

the network, but in this report it has been limited to the four terminal events. 

The values are calculated in MS excel and presented in appendix D. 
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7.2 Evaluation of BBN- comparison of terminal event frequencies 

A comparison of data frequencies of terminal events, to BBN values is presented in Figure 26. 

The blue bar graph represent the data frequencies, which indicates probability of terminal 

events according to the frequentist approach. The BBN values are however a combined result 

of data frequencies and network structure (beliefs of context), and are represented by the blue 

bars in the red squares, (node bar view).  

If the structure of the BN had been causally wrong, this would have led to high deviations in 

probabilities of terminal events, compared to the data frequencies. “Time loss” and “Operation 

abort” have the highest deviations, which indicates that some of the context of these terminal 

events, may not have been properly modelled in the network.  

 

 

 

Figure 26 Comparison of data frequencies to BBN parameters 
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7.3 Evaluation of BBN - Drift-off 

All the nodes in the network except, the other terminal events, have been evaluated in respect 

to drift off. With an original failure probability of 0.15 and a relative effect on drift off equal 

to 1.59, (see appendix D), multiple thrust failures has been evaluated as the most critical parent. 

Thrust error, blackouts, busbar failures, DP software failures and generally failures of power 

supply equipment have strong influences as well. 

 

Figure 27 Evaluation of BBN - Drift-off 
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7.4 Evaluation of BBN, drive-off causal factors 

In comparison to drift-off, drive-off has a wider “spread” of influencing parents across the 

BBN. While drift-offs were dominated by parents within propulsion and power supply, drive-

off has the most critical parent in thrust-error, followed by a great variety of position reference 

and DP control equipment. The result is in accordance with the dependencies shown in the 

causal flowchart of propulsion (chapter 5.1), where thrust errors were connected with failures 

in the DP control equipment.  

 

 

Figure 28 Evaluation of BBN - Drive-off 
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7.5 Evaluation of BBN, operation abort causal factors 

Single thrust failure, typically caused by single point mechanical/wiring failures, (see 

propulsion flowchart), is the most critical parent of operation aborts. Position reference is the 

second most critical system, and then especially the HPR system. 

 

Figure 29 Evaluation of BBN - Operation abort 
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7.6 Evaluation of BBN, time loss causal factors 

Time loss is the least severe terminal event in the created BBN and “suffers” from this in the 

model structure.  The other terminal events, especially drift-off and drive-off but also operation 

abort requires a certain degree of system degradation to occur. However time-loss could be the 

result of practically every system failure, and is harder to model due to this.  

Many of the severe system failures actually will decrease the probability of time loss. (Since 

they are much more likely to cause operation abort or LOP). Unfortunately, many of the less 

severe failures are too “far removed” from the terminal event to cause a visible effect on time-

loss. Certain limitations has to be made when drawing the network structure, one of mine was 

to limit which nodes that directly could lead to a terminal event. This limitation was made in 

an effort to visibly create and show a clear causal structure, which may have led to loss of some 

dependencies in the model.  

Time loss is dominated by DP hardware, followed by thrust error. DP hardware could be a 

believable cause of time loss. If for example an operator screen goes black, one will “always” 

have redundancy in such important DP control equipment, and may decide to continue the 

operation while correcting the problem, thereby avoiding aborting the operation and/or  LOP. 

 

Figure 30 Evaluation of BBN - Time loss 
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7.7 Weaknesses in the created BBN 
 

As revealed in the evaluation of time-loss in chapter 7.6, the created BBN has some limitations. 

To avoid a so-called “complete graph” where no assumptions are made, all nodes cannot be 

connected. To connect all nodes would completely remove the system understanding a visual 

tool such as a BBN may provide. Additionally the results would be much harder to evaluate 

and less precise.  

Those events that suffers from these limitations are those with a high number of parents, in 

several “tiers” of the BBN. These will be harder to model with a limited number of arcs. In the 

evaluation of the BNN, time-loss suffered most from these limitations, as it is the least severe 

of terminal events, and naturally have a higher number of parents as it “demands” least system 

degradation to occur. This could have been solved by adding more arcs, also in “weaker” 

dependencies. Since the presented BBN, already is somewhat complicated, and not as intuitive 

as it maybe should have been, no more arcs were added. 
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8 Conclusions 

Two main objects were introduced for this report. Firstly through data and system study to 

identify and perform a frequency analysis of causal factors leading to loss of position incidents. 

Secondly investigate the possibility of using Bayesian Belief Network to model the identified 

factors, and evaluate the result of this approach. 

One of the greatest challenges was to model the DP system in a concise understandable way. 

Due to complicity of such a large system, limitations had to be made to a great extent, to match 

the level of detail in the available incident data. In spite of the limitations in the system 

modelling, the simple graphic models created for this analysis shows the most important 

equipment, which is reflected by their presence in the analyzed incidents.   

The study of the DP system led to the creation of a sorting system, where three main categories 

of factors were identified leading to LOP; propulsion failures, reference failures and human 

factors. At least one of these factors were present in above 90 percent of all incidents analyzed. 

Limitations were made in the network to which nodes that were allowed to lead to a terminal 

event accordingly.  

The BBN was shown to be a very useful tool for changing the system status, (the context of 

probabilities), quickly and determine the effect of the changes through the whole network as 

shown in chapter 7.3-7.4. However, the limitations in number of arcs in the network, led to 

loss of information when looking at the incidents with less severe terminal events, such as time 

loss. A single fault “anywhere” in the DP system could potentially lead to this terminal event, 

which makes its dependencies harder to model sufficiently. However the causal factors related 

to terminal events that included LOP, (drift-off and drive-off), were identified by the BBN to 

a high extent. 

The overall conclusion regarding the use of BBN for modelling of causal factors in LOP 

incidents, is a positive one. The method showed flexibility and allowed for a combination of 

both expert knowledge and available data in a systematic manner. The most useful aspect of 

this method is its flexibility. Sensitivity analysis regarding data is easily performed by a mouse 

click, and enable us to see the effect of changes visually and immediately. 
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The original IMCA sorting system is found to give less information of the causal factors behind 

a LOP incident, compared to the BBN analysis, and therefore in many ways have less value 

for interested parties when seeking to avoid these unwanted events. However for a neutral and 

unbiased presentation of failures, a BBN may not be the best way to present incidents, as an 

analysis based on Bayesian probability theory always will be dependent on the assumptions of 

the analyst to a greater extent than a classical frequency study.  

 

8.1 Further work 

Suggestions for further work within Bayesian Belief Networks and analysis of loss of position 

incidents are presented in this chapter. 

8.1.1 Build BBN “bottom up” 

The potential for a Bayesian Belief Network extends beyond the analysis of data. With 

extensive knowledge regarding equipment failure frequencies, there is possible to create a 

BBN that determines loss of position frequency, or any other system failure directly based on 

root causes. 

To do this an expert group could work together and determine the failure frequency per time 

unit for all involved equipment and other external root causes. Then by knowing which 

equipment that have common cause failures and dependencies, estimate the frequency of 

terminal events solely based on root causes, without needing incident data at all. Of course 

such an estimation would be dependent on the system structure of each particular vessel, and 

of course type of operation. However, when first established, the BBN could relatively easily 

be modified to fit each particular scenario. 

8.1.2 Determine LOP frequency per time unit 

This analysis have been limited to relative frequencies. Not actual frequency for loss of 

position per time unit has been established. After working with this topic for a longer period 

of time, it was determined to remove this work from this analysis, as the results were uncertain 

at best. Three main questions presented themselves in order to establish such a frequency: 

- Estimate the degree of underreporting in the analyzed data 



70 

 

- Determine the percentage of each vessel type in the fleet reporting incidents 

- Estimate operation time on DP for each vessel type in the fleet  

The available data material found by the author could not give sufficient answers to these 

three central questions.  
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APPENDICES 

 

A. HFACS- latent failures 

This appendix goes through the complete HFACS classification system of latent failures 

contributing to unsafe acts. 

Preconditions for unsafe acts 

Preconditions for unsafe acts, represents underlying failures on the operator level that may lead 

to unsafe acts.  The preconditions for unsafe acts arise from the operator decision process. 

Two major subdivisions are described: substandard conditions of operators and the substandard 

practices they commit. The subdivisions are presented in Figure 31. The categories and sub-

categories presented in this appendix are (when not referred to others), derived from 

Wiegmann and Shappel. (Wiegmann and Shappell 2001). I have included examples relevant 

for a DP operation in every category. 

 

Figure 31 Preconditions for unsafe acts(Wiegmann and Shappell 2001) 
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Substandard Conditions of Operators 

Adverse Mental States:  

To be prepared mentally is critical in nearly every activity. With this in mind, adverse mental 

states, was created as one of three subcategories of operator condition to account for those 

mental conditions that greatly affect performance.  

Examples: 

- Visual illusions (for example due to weather blindness, fog or haze) 

- Illness (seasickness or other) 

- Intoxication 

- Impaired hearing or lack of control due to noise or vibration 

- Confusion (for example due to miscommunication, or unclear clarification of roles) 

 

Adverse Physiological States: 

This category covers different states that preclude the safe conduct of operating a vessel.  

Examples of this are states that makes the operator fail to rely on his instruments. 

Examples:  

- Lack of information from visual stimulus and displays 

- Lack of skill to process visual stimulus and displays 

- Lack of time to safely process information form visual stimulus and displays 

 

Physical and/or Mental Limitations:  

The third category of substandard condition includes those instances when necessary 

information is ether unavailable, or if available, individuals simply do not have the aptitude 

skill or time to safely deal with it. This is of particular interest in DP operations, where in 

certain situations, the operator is required to act very fast and correct in order to avoid an 

emergency. 

Examples: 
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- Short reaction time during loss of position 

 

Substandard Practices of the Operator 

Crew Resource Mismanagement 

Often times, the substandard practices of operators or crew will lead to unsafe acts. For 

instance, the failure to ensure that all members of the crew are acting in a coordinated manner 

can lead to confusion (adverse mental state) and poor decisions. This category also includes 

those instances when crewmembers do not work as a team, and failure of coordination of 

activities before, during and after an operation.  

Examples: 

- Failure of communication internal at bridge and/or external 

- Lack of teamwork, or unclear clarification of roles at bridge 

- Potential misunderstanding in clarification of roles due to two operators at bridge  

 

Personal Readiness 

This category covers individual failures in preparation for an operation. This category also 

includes behavior that not necessarily is covered by any formal rule or regulation, such as good 

dietary practices. 

 

Examples: 

- rest beforehand 

- breach of alcohol restrictions  

- may also include behavior that not necessarily violate existing rules, for example over 

eating before the shift or exercising heavily before shift. 
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Additional preconditions for unsafe acts arising from DP system design 

Due to the design of the DP system I have added this particular section of preconditions arising 

from the design of the automated DP system. My suggestions are presented below: 

- Increased mental strain/lower mental limitation due to opaque system  

- Potential overconfidence in system ability to solve situation  

- Mental fatigue/misplaced motivation due to inactivity and confidence in system  

 

 Unsafe supervision 

“Clearly, aircrews are responsible for their actions and, as such, must be held accountable. 

However, in many instances, they are unwitting inheritors of latent failures attributable to those 

who supervise them”(Reason 1990). 

This statement from Reason is clearly directed towards the crew on an airplane, but could be 

just as true for a supply ship or other vessel on the sea. To account for these supervision 

failures, the overarching category of unsafe supervision was created. 

Unsafe supervision thus represents failures on the middle management level. This is also 

referred to as Bridge resource management when regarding vessels. This category is further 

divided into subcategories as shown in Figure 32. 

 

 
Figure 32 Unsafe Supervision(Wiegmann and Shappell 2001) 
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Inadequate Supervision 

This category refers to failures within the supervisory chain of command, which was a direct 

result of some supervisory action or inaction.  That is at a minimum, supervisors must provide 

the opportunity for individuals to succeed. It is expected therefore that individuals will receive 

adequate training, professional guidance, oversight, and operational leadership. 

Adequate training also includes correct training based on reliable information. 

Planned Inappropriate operations 

If the operational tempo and/or schedule are planned such that individuals are put unacceptable 

at risk, and ultimately performance is adversely affected, this falls under the category, planned 

inappropriate operations. This category was created to account for all aspects of improper or 

inappropriate crew schedule and operational planning. 

Tempo related risks could be very relevant for a DP-operation near an installation. In the oil/gas 

business delays often equal big financial losses, which could put pressure on the operation 

schedule. On the other hand there is a high focus on safety in this business, and an acceptance 

of safety related expenses.  I have not pursued this angle further as I have to limit my work. 

Failure to Correct Problem 

The failure to correct known problems refers to those instances when deficiencies among 

individuals, equipment, training or other related safety areas are “known” to the supervisor, 

yet are allowed to continue uncorrected. Contradictory regulations may force a “practical 

solution” where breach of rules are known and accepted. 

Supervisory Violations 

This category covers those situations where existing rules or regulations are disregarded in 

purpose by supervisors. 
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Organizational influences affecting the DP-operator 

This category represents the top level management of the company owning or controlling the 

DP operated vessel. The top level management may influence policies and especially how the 

middle management performs their duties (See Unsafe supervision, chapter 3.2.2). 

Unfortunately organizational influences often go unnoticed or unreported by accident 

investigators. Erroneous decisions of upper level management may affect supervisory practices 

in a direct way, as well as the conditions and actions of operators. Usually latent organizational 

failures revolves around three issues, or categories presented in Figure 33. 

 

 

Figure 33 Organizational influences (Wiegmann and Shappell 2001) 

 

Resource Management 

Resource management refers to the management of organizational resources. This includes 

human resource management (selection, training, staffing). Also monetary safety budgets and 

equipment design is included in this category. Errors in resource management will often be 

seen when organizations experiences financial difficulties. 

 

Organizational Climate 

Organizational Climate refers to a broad class of organizational variables that influence worker 

performance. One sign of organizational climate it is structure, and is reflected in the chain- 
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of-command, delegation of authority and responsibility, communication channels, and formal 

accountability for actions. 

Operational Process 

This subcategory refers to formal processes, procedures and oversight within the organization. 

Poor upper-level management and decisions concerning each of these organizational factors 

can have a negative effect on operator performance (Wiegmann and Shappell 2001). 
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B. IMCA sorting - cause matrix 

The 361 incidents given secondary causes, have sorted after their main causes, in an effort to 

insight into cause dependencies.  
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C. Explanation of causal factors 

Table 7 LOP causes 

Group of causal factor Description 

Failure of wiring/earth/fuse/ 

 

A short circuit in the power network should 

trip switchboard fuses/breakers. A short 

circuit situation will always result in a 

momentary voltage drop. If the complete 

power network is connected together the 

voltage drop will affect the entire network. 

If the voltage cannot be maintained by the 

power management system the voltage drop 

may lead to consumers tripping. 

(Dynamic Positioning Conference October 

2007) 

 

 

Switchboard failure  This failure modes covers such situations as 

when a short circuit in the network or any 

single equipment failure, leads to loss of all 

online thrusters/generators due to overload 

or voltage drop. Any single point failure in 

the power supply system should with a 

functioning switchboard lead to a 

finite/limited numbers of power 

consumption failures.  
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Power management system failure  

 

If the PMS delegate wrong amount of 

power leading to consumers tripping, or 

situations where he PMS unnecessarily 

shuts down equipment. 

Generator failure  

 

Failure of one or more generators. 

Mechanical failure  

 

Mechanical errors, independent of power 

failures. 

Unexplained reference failure  

 

This group was created for when a reference 

system fails without further information 

regarding root causes. The majority of 

incidents in this groups has just system 

failure as label, while other specified the 

type of system failure but not the cause. 

This could be all from wrong 

position/heading output to erratic signals or 

loss of reference system to DP.  

 

Reference electrical component failure 

 

Internal electrical components, such as 

electrical cards.  

 

“Antenna” failure 

 

Generally position reference hardware, 

physical equipment such as antennas may 

fail for example due to lack of maintenance.   
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Reference signal blocked  

 

Signal loss due to shadowing, interference 

from other sources, false reflection.  

Excludes reference signals blocked by 

environmental phenomenon and is therefore 

independent of “environmental”. 

 

Environmental  

 

When environmental forces are the cause of 

the equipment failure. For example if a 

storm destroys sensors, solar flares disrupt 

the satellite signals, or extreme/sudden 

changes in current/wind “knocks out” the 

power supply. 

UPS failure  

 

The UPS provides the DP control system 

and the reference system with power. A 

failure in the UPS could lead to loss of 

position references. 

 

External 

 

When external forces results in equipment 

failure. External forces could be another 

vessel. Excludes environmental forces. 

 

DP control software failure  

 

Examples are missed updates, virus in the 

software or missing IP addresses. Usually 

related to human factors. 
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DP control hardware failure 

 

Typical examples of this failure type 

includes monitors going black, computer 

card failures, or loss of entire operator 

station. Generally failures of physical 

control equipment.  

 

 

Counts and percentages of causal factors: 

Factor counts percentage 

fullbo 8 3.6% 

partialbo 17 7.7% 

multipletrust 36 16.2% 

singlethrust 36 16.2% 

thrusterror 40 18.0% 

wiring 23 10.4% 

relay 4 1.8% 

busbar 18 8.1% 

generator 32 14.4% 

DPSW 30 13.5% 

DPHW 29 13.1% 

PMS 14 6.3% 

mech 9 4.1% 

DPOP 23 10.4% 

engineer 18 8.1% 

Organization 6 2.7% 

h.e 47 21.2% 

slip 12 5.4% 

rulebased 26 11.7% 

knowledge  8 3.6% 

crewresource 10 4.5% 

physicalmentallimitations 9 4.1% 

adversementalstates 8 3.6% 

inadequatesupervision 7 3.2% 

organizationalinfluences 7 3.2% 

DGPSDGNSS 43 19.4% 

laserradar 6 2.7% 

artemis 15 6.8% 

HPR 18 8.1% 

gyro 6 2.7% 
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tautwire 5 2.3% 

windsensors 9 4.1% 

draugth 2 0.9% 

positionrefsystem 75 33.8% 

sensorsandheading  18 8.1% 

signalblocked 16 7.2% 

electricalcomponent  6 2.7% 

antenna 2 0.9% 

unknownref 22 9.9% 

UPS 7 3.2% 

external 2 0.9% 

enviroment 17 7.7% 

driftoff 38 17.1% 

driveoff 25 11.3% 

operationabort 54 24.3% 

timeloss 33 14.9% 

unknown 72 32.4% 
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D. BBN evaluation data 

Relative effect of parents on terminal events 

 

original 

value 

Drift- 

off 

Drive- 

off 

Operation 

abort 

Time 

loss 

original value  17% 11% 22% 16% 

fullbo 3% 1.59 0.00 0.05 0.00 

partialbo 8% 1.06 0.00 0.05 0.00 

multiple thrust  15% 1.65 0.00 0.05 0.00 

single thrust 15% 0.06 0.00 0.55 0.00 

thrust error 19% 0.65 0.82 0.00 0.13 

wiring 10% 0.24 0.00 0.14 0.00 

relay 2% 0.00 0.00 0.32 0.00 

busbar 8% 0.88 0.00 0.09 0.00 

generator 15% 0.12 0.00 0.05 0.00 

DPSW 14% 0.18 0.27 0.05 0.00 

DPHW 13% 0.12 0.18 0.05 1.25 

PMS 6% 0.35 0.00 0.05 0.00 

mech 4% 0.00 0.00 0.32 0.00 

slip 5% 0.00 0.00 0.00 0.00 

rulebased 12% 0.06 0.09 0.05 0.00 

knowledge  3% 0.29 0.27 0.00 0.00 

crewresource 5% 0.06 0.09 0.05 0.00 

physicalmentallimitations 4% 0.06 0.09 0.00 0.00 

adversementalstates 4% 0.00 0.00 0.00 0.00 

inadequatesupervision 3% 0.06 0.00 0.00 0.00 

organizationalinfluences 3% 0.06 0.09 0.05 0.00 

DGPSDGNSS 2% 0.00 0.36 0.14 -0.19 

laserradar 3% 0.00 0.27 0.14 -0.25 

artemis 7% 0.00 0.27 0.09 -0.25 

HPR 10% 0.06 0.27 0.14 -0.31 

gyro 3% 0.00 1.00 0.00 0.00 

tautwire 2% 0.00 -0.09 0.00 0.00 

windsensors 4% 0.00 1.00 0.00 0.00 

draugth 1% 0.00 1.00 0.00 0.00 

positionref 29% 0.00 0.36 0.14 -0.31 

sensors 9% 0.00 1.00 0.00 0.00 

signalblocked 7% 0.00 0.18 0.09 -0.25 

electricalcomponent  3% 0.00 0.18 0.09 0.00 

antenna 1% 0.00 0.27 0.14 -0.31 

unknownref 10% 0.00 0.18 0.09 -0.19 

UPS 5% 0.29 0.00 0.05 0.00 

external 1% 0.47 0.00 0.00 0.00 

enviroment 8% 0.00 0.09 0.05 -0.06 
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Evaluation of parents on terminal events 

 

Drift-  

off 

Drive- 

off 

Operation 

abort 

Time 

loss 

fullbo 0.047647 0 0.001364 0 

partialbo 0.084706 0 0.003636 0 

multiple thrust  0.247059 0 0.006818 0 

single thrust 0.008824 0 0.081818 0 

thrust error 0.122941 0.155455 0 0.02375 

wiring 0.023529 0 0.013636 0 

relay 0 0 0.006364 0 

busbar 0.070588 0 0.007273 0 

generator 0.017647 0 0.006818 0 

DPSW 0.024706 0.038182 0.006364 0 

DPHW 0.015294 0.023636 0.005909 0.1625 

PMS 0.021176 0 0.002727 0 

mech 0 0 0.012727 0 

slip 0 0 0 0 

rulebased 0.007059 0.010909 0.005455 0 

knowledge  0.008824 0.008182 0 0 

crewresource 0.002941 0.004545 0.002273 0 

physicalmentallimitations 0.002353 0.003636 0 0 

adversementalstates 0 0 0 0 

inadequatesupervision 0.001765 0 0 0 

organizationalinfluences 0.001765 0.002727 0.001364 0 

DGPSDGNSS 0 0.006545 0.002455 

-

0.00338 

laserradar 0 0.008182 0.004091 -0.0075 

artemis 0 0.019091 0.006364 -0.0175 

HPR 0.005882 0.027273 0.013636 

-

0.03125 

gyro 0 0.03 0 0 

tautwire 0 -0.00182 0 0 

windsensors 0 0.04 0 0 

draugth 0 0.01 0 0 

positionref 0 0.105455 0.039545 

-

0.09063 

sensors 0 0.09 0 0 

signalblocked 0 0.012727 0.006364 -0.0175 

electricalcomponent  0 0.005455 0.002727 0 

antenna 0 0.002727 0.001364 

-

0.00313 

unknownref 0 0.018182 0.009091 

-

0.01875 

UPS 0.014706 0 0.002273 0 

external 0.004706 0 0 0 

enviroment 0 0.007273 0.003636 -0.005 
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