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Abstract— This paper presents an analysis of planar un-
derwater snake robot locomotion in the presence of ocean
currents. The robot is assumed to be neutrally buoyant and
move fully submerged with a planar sinusoidal gait and limited
link angles. As a basis for the analysis, an existing, control-
oriented model is further simplified and extended to general
sinusoidal gaits. Averaging theory is then employed to derive the
averaged velocity dynamics of the underwater snake robot from
that model. It is proven that the averaged velocity converges
exponentially to an equilibrium, and an analytical expression
for calculating the forward velocity of the robot in steady state
is derived. A simulation study that validates both the proposed
modelling approach and the theoretical results is presented.

I. INTRODUCTION

The development of novel methods in autonomous un-

derwater operations, such as underwater exploration, moni-

toring, surveillance and inspection, is a research field that

is currently receiving a lot of attention. Amphibious and

underwater snake robots (USRs) are considered promising

to improve the autonomy and efficiency of next generation

underwater vehicles for such operations [1,2]. Research on

such robots has therefore been increasing recently.

A basis for the development of USRs is provided in the

studies of the locomotion mechanisms of both fish [3] and

snakes [4]. The first snake prototype for ground applications

was presented in [5]. More recently, also prototypes of USRs

have been developed [1,6,7] and mathematical models have

been presented [1,2,8]. Due to the complexity of the dynam-

ics of a snake robot, all these models have in common that

they are highly non-linear. Furthermore, it was shown in [9]

that a control law that stabilises snake robot locomotion has

to be time-varying. For these reasons, an analysis of snake

robot locomotion, as well as motion planning and control

design, are very challenging. This problem was approached

in [10,11], where a control-oriented model for USRs was

developed in order to approach these tasks. Because of

the sinusoidal nature of snake locomotion, averaging is

an appealing method for its analysis. It has been applied

several times in the literature, for example for ground robots

[9,12], for fish robots [13], and for USRs [14,15]. In [14],

the authors show properties of eel-like motion for a three-

linked and a five-linked robot. In [15], the stability of USR
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locomotion under the influence of both resistive and reactive

fluid forces is analysed. However, the fluid is assumed to

be steady in all these cases. One important contribution of

this paper compared to previous work is the analysis of

USR locomotion with an arbitrary number of links under

the disturbance of ocean currents.

This paper has several contributions. An existing, control-

oriented model [11] is improved by the following simpli-

fications and generalisations: It is argued that the model

of forward propulsion can be simplified depending on the

fluid drag parameters. In addition, it is shown that a further

simplification of the model can be achieved by disregarding

added mass effects while still maintaining the same model

behaviour. Furthermore, restrictive assumptions that were

made on the gait of the USR are relaxed. In particular,

the robot is no longer assumed to laterally undulate with

a fixed amplitude, but can now move according to a general

sinusoidal gait, including eel-like motion. The improved

control-oriented model is the basis for the analysis of USR

locomotion based on averaging theory. The averaged velocity

of the USR is shown to converge exponentially to a steady

state velocity, and an analytical expression for the relative

forward velocity is presented as a function of the gait param-

eters. Whereas only few simulation results were presented

in [11], this paper presents an extensive simulation study

comparing the proposed control-oriented model to a first-

principle model as well as validating the theoretical results

of the averaging analysis.

The paper is organised as follows. In Sec. II, a control-

oriented model of USRs that was derived in [11], based

on a first-principle model of USRs from [2], is presented.

This model is then further simplified and extended to general

sinusoidal gaits. Sec. III presents the control system, which

propels the USR. In Sec. IV, the velocity dynamics of

the closed-loop system is analysed using averaging theory.

Simulation results that validate the theoretical findings are

given in Sec. V and conclusions are presented in Sec. VI.

II. A CONTROL-ORIENTED MODEL OF A USR

This section first summarises a control-oriented model of

a USR, that was presented in [11]. In the second part of

the section, this model is further simplified by discussing

how to approximate the drag force and showing that added

mass effects can be disregarded for the studied scenarios. The

model is then generalised by relaxing a restrictive assumption

on the gait.
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Fig. 1. Modelling of the revolute joints as prismatic joints [16]
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Fig. 2. The control-oriented model [16]

A. Modelling approach

We consider a fully submerged, neutrally buoyant under-

water snake robot that conducts a planar, undulating gait

with limited link angles and is exposed to an irrotational,

constant ocean current. The control-oriented model that will

be summarised in the following, was derived in [11]. It was

derived from a complex first-principle model in [2], in order

to make model-based analysis and control design feasible by

the simpler structure. It is based on a simplified kinematic

approach, that was first suggested for ground robots in [16]

and later for USRs in a resting fluid in [10]: the revolute

joints of the snake robot are modelled as prismatic joints,

which have a degree of freedom normal to the direction of

motion of the robot, as shown in Fig. 1. This approximation

is based on the assumption that the single link angles θi, and

thus also the joint coordinates φi, are small.

Assumption 1: The link angles satisfy |θi| < 20◦.

The USR is assumed to undulate in a virtual plane. Since

the robot is assumed to be neutrally buoyant, this plane can

be any plane in R
3, as pointed out in [17]. The USR consists

of N links of length L = 2l and mass m, that are connected

by N−1 joints, which are modelled to have one translational

degree of freedom each. The robot thus has N + 2 degrees

of freedom, two corresponding to the position in the plane,

N − 1 corresponding to the joint coordinates φi, and one

to the orientation θ. The joint coordinates φi are prismatic

and controlled by the input u∈ R
N−1. For the mathematical

modelling, two coordinate frames are introduced: the global

x-y-frame, and the body-aligned t-n-frame that rotates with

the robot. The coordinate frames are depicted in Fig. 2.
For describing the system, the state vector x is defined as

x = [φT θ px py v
T
φ vθ vt vn]

T∈ R
2N+4. (1)

The complete control-oriented model is then given by

φ̇ = vφ, (2a)

θ̇ = vθ, (2b)

ṗx = vt cos θ − vn sin θ, (2c)

ṗy = vt sin θ + vn cos θ, (2d)

M(φ)v̇φ = −D(φ)vφ −K(φ,v)φ+DD
T
u, (2e)

v̇θ = −λ1vθ +
λ2

N−1vt,relē
Tφ, (2f)

v̇t = h1(φ)
[
h2(φ)vn,rel + h3(φ)vt,rel

−cpNm̃φT
AD̄vφ − µpNm̃φT

AD̄v̇φ

]
,

(2g)

v̇n = h1(φ)
[
h4(φ)vn,rel + h5(φ)vt,rel

−2cpµpē
TφφT

AD̄vφ − 2µ2
pē

TφφT
AD̄v̇φ

]
,

(2h)

where the matrices M(φ),D(φ),K(φ,v) are

M(φ) = m̃IN−1 +Nm̃µ2
ph1(φ)AD

TφφT
AD̄,

D(φ) = cnIN−1 +Nm̃cpµph1(φ)AD
TφφT

AD̄, (3)

K(φ,v) = AD
T
[
2Nµph1(φ)ē

Tφ
(
cnµp − m̃cp

)
vn,rel

+Nm̃h1(φ)
(
Nµpct + ĉnµpe

T (ATφ)2 −Nmcp
)
vt,rel

]
.

The operator (·)2 applied to a vector means that each of the

vector’s elements is squared. The functions hi(φ) are

h1(φ) =
[
N2mm̃− 4µ2

p(ē
Tφ)2

]−1
,

h2(φ) = 2N ē
Tφ(cpm̃− cnµp), (4)

h3(φ) =
(
4cpµp(ē

Tφ)2 −N2m̃ct −Nm̃ĉne
T (ATφ)2

)
,

h4(φ) =
(
4cpµp(ē

Tφ)2 −N2mcn
)
,

h5(φ) = 2ēTφ
(
Ncpm−Nctµp − ĉnµpe

T (ATφ)2
)
.

In the equations above, vt,rel and vn,rel are the relative

velocities in the body-aligned frame. They are obtained by
[
vt,rel
vn,rel

]
=

[
vt
vn

]
−
[
Vt

Vn

]
, (5)

where Vt and Vn denote the ocean current velocities in

the body-aligned frame. Furthermore, the following matrices

and vectors are defined: The unity matrix IN∈ R
N×N ,

A =



1 1

. . .
. . .

1 1


 , D =



1 −1

. . .
. . .

1 −1


,

with A,D∈ R
(N−1)×N . In addition, the summation vectors

e=
[
1 . . . 1

]T
∈ R

N , ē=
[
1 . . . 1

]T
∈ R

N−1, and the

pseudo-inverse D̄ = D
T
(
DD

T
)−1

∈ R
N×(N−1) are used.

Finally, cn and ct are the drag parameters in normal and

tangential direction, cp is a propulsion coefficient, λi are

empirical constants determining the rotational dynamics, µp

is an added mass parameter, and m̃ is a generalized mass.

The coefficient ĉn will be discussed in the next section.

Remark 1: Note that (2) is in closed form. The derivatives

in the r.h.s. of (2g, 2h) can easily be eliminated with (2e).

B. Improvements to the model

In the following, at first some further simplifications of the

control-oriented model (2) will be presented. Then, the gait

of the model will be generalised. The obtained model will

serve as the basis for analysing USR locomotion in Sec. IV.

1) Computation of ĉn: In [11], the coefficient ĉn was

introduced in order to compensate for model inaccuracies

that occurred when there was a large ratio between the drag

parameter in normal and tangential direction: cn
ct

> 10. This

was based on considerations in [9], where the authors had

warned that a large cn
ct

ratio would lead to inaccuracies, and



TABLE I

RELATIVE VELOCITY WITH AND WITHOUT ADDED MASS EFFECTS

N g(i) α ω δ rel. error

7 N−i
N+1

2.94 cm 120◦/s 40◦ 0.19 %

10 N−i
N+1

5.79 cm 120◦/s 40◦ 0.09 %

10 1 5.79 cm 80◦/s 40◦ 4.8e-05 %

19 1 5.33 cm 120◦/s 60◦ 1.8e-05 %

on the assumption that the cn
ct

ratio would typically be much

larger for USRs than for ground snake robots. See [11] for

details. However, recent experimental studies suggest that

the cn
ct

ratio is not as large as assumed in [11]. On the

contrary, the parameter identification that was presented in

[18] showed that the cn
ct

ratio of the physical robot Mamba

[7] is cn
ct

≈ 4, which is close to the ratio of a ground robot
cn
ct

= 3 [9], where ĉn was not considered: ĉn = 0. In the

remainder of this paper, we will therefore also choose ĉn =
0, which simplifies the model. We will present simulation

results in Sec. V, that show a good accordance between that

simplified model and the complex model presented in [2],

using the parameters that were identified in [18].

The question of when to include ĉn in the modelling re-

mains a trade-off between simplicity and accuracy. It should

be kept in mind that setting ĉn to zero has the significant

advantage of capturing the behaviour of the USR while

providing a very simple model. On the other hand, including

ĉn compensates for an overestimation of the forward velocity,

that will occur for a large cn
ct

ratio.
2) Added mass effects: A common assumption for slow

motion of underwater vehicles is to disregard added mass

effects. This assumption has often been made for models

of USRs and fish-like robots [13,14,19]. Following these

examples, we conjecture that added mass effects can be

disregarded in this paper. The control-oriented model without

added mass effects is obtained from (2) by setting µp = 0.

The generalised mass then reduces to m̃ = m.

In order to verify that the control-oriented model is an

adequate representation of a USR, we present an extensive

simulation study in Sec.V, where the control-oriented model

is compared to a first-principle model. To verify the particular

assumption that added mass effects can be disregarded,

simulation results are compared with and without taking the

added mass terms into account. Some preliminary results

are listed in Tab. I, which shows the relative error of the

relative forward velocity vt,rel for different gaits. It was

obtained from the simulation results by taking the mean of

the forward velocity of both cases, subtracting the velocity

without added mass from the velocity with added mass. The

result was normalised by dividing by the velocity with added

mass. It can be concluded from the table that, as far as

forward velocity goes, disregarding added mass effects is a

reasonable assumption. In Sec. V, more extensive simulation

results will be presented, also taking into account normal

velocity, orientation, and turning motion.

With the additional simplifications presented in the previ-

ous paragraphs, the simplified control-oriented model is

φ̇ = vφ, (6a)

θ̇ = vθ, (6b)

ṗx = vt cos θ − vn sin θ, (6c)

ṗy = vt sin θ + vn cos θ, (6d)

Mv̇φ = −Dvφ −K(v)φ+DD
T
u, (6e)

v̇θ = −λ1vθ +
λ2

N−1vt,relē
Tφ, (6f)

v̇t = − ct
m
vt,rel +

2cp
Nm

ē
Tφvn,rel − cp

Nm
φT

AD̄vφ, (6g)

v̇n =
2cp
Nm

ē
Tφvt,rel − cn

m
vn,rel, (6h)

where the matrices M(φ),D(φ),K(φ,v) reduce to M =
mIN−1, D = cnIN−1, and K(v) = −cpvt,relAD

T.

Note that this model has the same structure as the one

for ground robots in [9,16]. The friction coefficients of the

ground model play the same role as the drag parameters of

the USR, and the control-oriented model in [9] thus is a

special case of this model. The new feature of the model

presented here with respect to one in [9,16] is its ability to

take into account disturbances from ocean currents.

3) A generalised gait: In order to achieve forward propul-

sion, the joints of the robot are controlled such that they track

a sinusoidal wave propagating through the body from head

to tail. For the derivation of the control-oriented model in

[11], the amplitude of that wave was assumed to be constant,

resulting in a gait called lateral undulation. In this paper, the

model is extended to hold for a general sinusoidal gait from

[15], yielding the following reference signal for the joints:

φi,ref(t) = αg(i) sin (ωt+ (i− 1)δ) + φ0. (7)

Here, α is the maximum amplitude of the joint oscillation, ω

is the frequency, δ is the phase shift between the single links

that defines the wave length, and φ0 is a constant offset that

induces turning motion. The function g : R 7→ [0, 1] scales

the amplitude of the single joints φi, and can therefore be

used to vary the wave amplitude along the body. In particular,

the gait lateral undulation, which is mainly observed for

ground snakes [9], can be described by choosing g(i) = 1,

and eel-like motion can be achieved by the choice g(i) =
N−i
N+1 [2]. In fact, eels have been observed to undulate with

an increasing amplitude in water, while mimicking lateral

undulation on land [20].

When applying the reference signal (7) to the simplified

model with translational joints, the joints have to be con-

trolled to oscillate with an amplitude α that is given in a

unit of length. For a physical robot on the other hand, the

joints are revolute and controlled to move with an amplitude

α, which is an angle. In order to allow a comparison between

both cases, a mapping of these amplitudes has to be found. In

[11], the control-oriented model was restricted to move with

the gait lateral undulation and the phase shift δ was assumed

to be chosen in a way such that the wave length of the gait

equals the body length δ = 2π
N−1 . These assumptions are

restrictive, but they allowed to derive an analytical relation

between the translational and the revolute amplitude by

interpreting the translational link motion as a projection of

the revolute link motion onto the subspace orthogonal to

the orientation θ̄ of the robot. Details can be found in [11].



For eel-like motion on the other hand, an analogue relation

cannot be found due to the lack of nose-tail symmetry in the

gait. However, in [10] it was shown that eel-like motion of a

complex model can be approximated by the control-oriented

model by simply mapping the amplitudes by trial and error.

We therefore conjecture that the control-oriented model is

able to approximate the behaviour of the complex model for

eel-like motion also by using the analytical mapping for the

joint amplitudes from [11]. An extensive simulation study,

where both models are compared, will be presented in Sec.V.

III. CONTROLLER DESIGN

The feedback linearising control law

u = (DD
T )−1

[
Mū+Dφ̇+K(v)φ

]
(8)

is applied to the USR. It transforms the joint dynamics (6e) to

v̇φ= ū such that the new input ū=[ū1 · · · ūN−1]
T∈ R

N−1

directly controls the joint coordinates [11].

As proposed in [15], the control input ū is chosen as

ū = φ̈ref + kd(φ̇ref − φ̇) + kp(φref − φ), (9)

where kd and kp are positive control gains, and the deriva-

tives of φi,ref(t) are given by

φ̇i,ref(t) = αg(i)ω cos (ωt+ (i− 1)δ) ,

φ̈i,ref(t) = −αg(i)ω2 sin (ωt+ (i − 1)δ) ,
(10)

under the assumption that φ0 is constant. With the control

law (9), the dynamics of the joint errors φ̃ = φ− φref are

¨̃
φ+ kd

˙̃
φ+ kpφ̃ = 0, (11)

which is uniformly globally exponentially stable (UGES).

Remark 2: Note that disregarding added mass effects and

setting ĉn to zero is not a condition for UGES. The same

stability property holds when the presented controller is

applied to the model in (2).

IV. THE VELOCITY DYNAMICS

In this section, the velocity dynamics of the simplified

model (6) whose joints follow the reference signal (7) will

be analysed using averaging theory. At first, the model will

be reduced to include only the relevant dynamics, and then

be transformed to an averaged model. Using the new model

of the averaged velocities, the steady state behaviour of the

robot will be analysed and relationships between the gait

parameters and the relative forward velocity will be derived.

A. A model of the velocity dynamics

Similar to the analyses in [9,15], the state vector for the

velocity dynamics is defined as

v = [vt vn vθ]
T∈ R

3. (12)

From Eqs. (6f–6h) the velocity dynamics is

v̇ =



− ct

m
vt,rel +

2cp
Nm

vn,relf1(ωt)− cp
Nm

f2(ωt)

− cn
m
vn,rel +

2cp
Nm

vt,relf1(ωt)

−λ1vθ +
λ2

N−1vt,relf1(ωt)


 = f(t,v)

(13)

with

f1(ωt) = (N − 1)φ0 +

N−1∑

i=1

αg(i) sin(ωt+ (i− 1)δ), (14a)

f2(ωt) =

N−1∑

i=1

N−1∑

j=1

aij
[
φ0αg(j)ω cos(ωt+ (j − 1)δ) (14b)

+α2g(i)g(j)ω sin(ωt+ (i− 1)δ) cos(ωt+ (j − 1)δ)
]
,

and aij denoting element (i, j) of the matrix AD̄.

B. A model of the averaged velocity dynamics

In order to apply averaging to the model of the velocity

dynamics, (13) needs to be transformed to the standard form
dv
dτ = ǫf(τ,v) (cf. Chap. 10.4, [21]). This is achieved by the

choice τ = ωt, yielding d
dt = ω d

dτ and ǫ = 1
ω

. The resulting

model is 2π-periodic in τ and the averaged system is

dvav

dτ = ǫ 1
2π

∫ 2π

0

f(τ,v)dτ. (15)

By solving the integrals of f1(τ) and f2(τ),
∫ 2π

0

f1(τ)dτ = 2π(N − 1)φ0, (16a)

∫ 2π

0

f2(τ)dτ = −π α2ω︸︷︷︸
kαω

N−1∑

i=1

N−1∑

j=1

aijg(i)g(j) sin((j − i)δ)

︸ ︷︷ ︸
kδ

,

(16b)
the averaged model is obtained:

dvav

dτ = ǫ



− ct

m
vt,rel +

2cp(N−1)
Nm

φ0vn,rel +
cp

2Nm
kαωkδ

− cn
m
vn,rel +

2cp(N−1)
Nm

φ0vt,rel
−λ1vθ + λ2φ0vt,rel




= ǫ
(
Av +B

)
, (17)

with A(φ0) =




− ct
m

2cp(N−1)
Nm

φ0 0
2cp(N−1)

Nm
φ0 − cn

m
0

λ2φ0 0 −λ1


,

B(φ0) =




cp
2Nm

kαωkδ
0
0


−A(φ0)



Vt

Vn

0


. (18)

The final version of the averaged model of the velocity

dynamics is obtained by changing the time-scale back to t:

v̇av = dvav

dt = 1
ǫ
dvav

dτ = Av +B. (19)

The averaged model is a linear system that is characterised

by the gait parameters and the velocity of the ocean current.

Remark 3: Due to the similar structure of the systems, the

dynamic matrix of the averaged model (19) has the same

structure as the one of a ground robot in [9]. The constant

offset B, however, now includes the velocity of the current.

C. The averaged velocity dynamics in steady state

Similar to the procedure in [9,12] and [15], the offset B

is removed by the transformation z = vav +A
−1

B in order

to analyse the stability of the averaged model:

ż = v̇av = A(z−A
−1

B) +B = Az. (20)



In order to determine the stability properties of this linear

system, the eigenvalues of A are computed as

eig(A) =




−λ1

− cn+ct
2m −

√
(cnN−ctN)2+(4(N−1)cpφ0)2

2Nm

− cn+ct
2m +

√
(cnN−ctN)2+(4(N−1)cpφ0)2

2Nm


. (21)

Note that, even though the snake robot is now exposed to

ocean currents, the eigenvalues are the same as for ground

robots (cf. Eq. (7.24) in [9]). It can easily be verified that all

eigenvalues in (21) are negative if

|φ0| < N
2(N−1)

√
cnct
cp

, (22)

a condition which implies that the equilibrium z = 0 is

globally exponentially stable. The constraint (22) on the

offset φ0 indicates that modelling the joints as translational

rather than revolute is restricted to a limited displacement.

Under the assumption that φ0 is sufficiently small for (22)

to hold, vav will converge to the steady state velocity

v
∗ = −A

−1
B = −A

−1




cp
2Nm

kαωkδ
0
0


+



Vt

Vn

0


,

= kαωkδ




Ncncp
2(cnctN2−4(N−1)2c2pφ

2

0
)

c2pφ0(N−1)

cnctN2−4(N−1)2c2pφ
2

0

Ncncpλ2φ0

2λ1(cnctN2−4(N−1)2c2pφ
2

0
)


+



Vt

Vn

0


.

(23)

From (23) we see that the steady state velocity depends on

the parameters of the gait, the drag parameters, the number

of links, and the current velocity. The expression for the

steady state velocity (23) includes the same parameters as

for ground robots [9], to which the current velocities in

the body frame are added. This was expected, since the

averaged model was seen to have the same structure, with

the additional capability of taking into account currents.

After establishing global exponential stability for the av-

eraged velocity dynamics, the stability of the exact dynam-

ics will be considered. According to Th. 10.4 in [21], it

follows from the stability of the averaged dynamics that,

for sufficiently small ǫ, the average velocity given by (23)

approximates the exact velocity (13) for all time and with

an error that is bounded. This means that, if ω is sufficiently

large, the periodic time-varying velocity will remain close to

the exponentially stable averaged velocity for all time.

Theorem 1: Consider a planar USR described by (6) con-

trolled in accordance with a gait according to (7, 10) and the

offset φ0 satisfying (22). Then there exist k > 0, ω∗ > 0
such that the following holds for all ω > ω∗:

‖v(t)− vav(t)‖ ≤ k
ω

∀t > 0. (24)

In addition, the averaged velocity vav(t) converges exponen-

tially to the steady-state velocity v
∗ in (23).

Remark 4: Note that the presence of constant irrotational

currents does not influence the stability properties of the

snake robot, since the eigenvalues (21) do not depend on

the current. The current only moves the equilibrium of

the velocity dynamics. Moreover, by subtracting the current

velocities from both sides of (23), it can be shown that the

relative velocities converge to the same value as the velocities

of a ground robot [9].

D. Relationship between vt,rel and the gait parameters

With the averaged steady state velocity for a planar USR

moving with a sinusoidal gait that was presented in the

previous section, it becomes possible to analyse a scenario

that is particularly interesting with respect to motion planning

purposes: steady state motion with zero offset φ0 = 0, which

will be shown to be motion in a straight line.
By inserting φ0 = 0 into (23) and subtracting the current

velocities from both sides, the expression


v∗t,rel
v∗n,rel
v∗θ


 =



kαωkδ

cp
2ctN

0
0


 (25)

is obtained. It can easily be seen that the relative velocity

normal to the robot’s orientation is zero, as is the rotational

velocity. This means that the robot moves in a straight line,

with its absolute normal velocity equal to the normal current

velocity. For the forward velocity, the following property can

be derived from (25), keeping in mind that kαω = α2ω:
Corollary 1: Consider a planar USR described by (6)

controlled in accordance with a gait according to (7, 10).

For ω > ω∗ and sufficiently small φ0 for (22) to hold, the

averaged relative forward velocity of the robot will converge

exponentially to v∗t,rel, which is proportional to

• the squared amplitude of the joints, α2

• the frequency of the gait, ω

• a function of the phase shift δ, which is given by

kδ =

N−1∑

i=1

N−1∑

j=1

aijg(i)g(j) sin((j − i)δ). (26)

This result extends the findings of previous studies: In

[14], it was shown that the averaged forward dynamics of a

three- and a five-link eel-like robot are captured by a function

proportional to the squared amplitude, frequency, and a sum

of sinusoidal functions. In [9], the special case of lateral

undulation, yielding both g(i) = g(j) = 1, was investigated.

As pointed out in [9], Cor. 1 provides a powerful tool for

motion planning: an increase/decrease of the relative forward

velocity can be invoked by using α or ω as a control input.

Furthermore, the controller can be optimised by finding the

optimal phase shift δ that maximises kδ for the given number

of links and choice of gait.

V. SIMULATION STUDY

In order to validate the control-oriented model proposed

in Sec. II and the theoretical findings from the averaging

analysis, extensive simulations have been carried out. This

section summarises the results. At first the behaviour of

the improved control-oriented model and a first-principle

model is compared. In the second part, the averaged velocity

dynamics is compared to the exact one, and finally, the

relationship between the gait parameters and the relative

forward velocity is investigated.



TABLE II

COMBINATIONS OF GAIT PARAMETERS

Case # 1 2 3 4 5 6 7 8 9

θmax 10◦ 20◦ 30◦ 20◦ 20◦ 20◦ 20◦ 20◦ 20◦

αcomp 6.84◦ 13.7◦ 20.5◦ 13.7◦ 13.7◦ 13.7◦ 12.0◦ 16.9◦ 20.0◦

αsimp 2.94 cm 5.79 cm 8.46 cm 5.79 cm 5.79 cm 5.79 cm 5.87 cm 5.58 cm 5.33 cm
ω 120◦/s 120◦/s 120◦/s 60◦/s 80◦/s 100◦/s 120◦/s 120◦/s 120◦/s
δ 40◦ 40◦ 40◦ 40◦ 40◦ 40◦ 35◦ 50◦ 60◦

TABLE III

MODEL PARAMETERS AND CONTROL GAINS

l 0.09 m m 1.56 kg m̃ 4.12 kg µp 7.13 kg

m

cn 17.3 ct 4.45 cp 35.8 ĉn 0
λ1 6 λ2 120 kp 200 kd 50

A. Comparison of different USR models

1) Simulation set-up: As a reference to compare the be-

haviour of the control-oriented model both with and without

added-mass effects, a first-principle model of a USR that

was presented in [2] was used. The model parameters were

chosen in order to resemble the parameters that were found

in an experimental parameter identification of a physical

robot in [18], and are summarised in Tab. III. The gains that

were chosen for the control system can also be found in

Tab. III. The mass of each link was set to m = 1.56 kg, in

order to guarantee neutral buoyancy. The turning coefficients

λ1, λ2 were found by tuning the behaviour of a lateral

undulating 10-linked USR with the gait parameters according

to Case 2 in Tab. II. All models were implemented and

simulated in Matlab R2014b. The dynamics of the models

was calculated by the ode23tb solver with a relative and

absolute error tolerance of 10−4. All initial values were set

to the origin. The simulations were carried out for USRs with

n = 7, 10, 19 links, respectively. Nine different combinations

of gait parameters were considered, they are listed in Tab. II.

The amplitude α was derived from the maximal link angle

θmax by the formulas in [11]. They are presented in Tab. II

as αcomp for the first-principle model and αsimp for the

control-oriented one. Each case was simulated for both

lateral undulation and eel-like motion.

At first, straight motion was investigated. All parameter

cases and models were simulated with φ0 = 0 while the

current velocity was set to zero. With the simulation results,

current velocities for testing the model behaviour in the

presence of currents could be determined: the average x-

velocity ¯̇px of the first-principle model was computed for

each of the simulated scenarios and the current velocity

was then chosen as 0.7¯̇px for each of the scenarios. The

angle of attack was set to 30◦. By this choice, the USR

was experiencing a significant disturbance, but still able to

compensate for it with the forward velocity. All simulations

were then run again with the current.

In a second step, a scenario including turning motion was

simulated. In order to do so, the joint offset φ0 was set to α
6

in the time interval t ∈ [40s, 70s], to −α
6 in t ∈ [130s, 160s],

and to zero elsewhere. This scenario was simulated with and

without current, too.

2) Simulation results: Straight motion: The simulations

showed that the qualitative behaviour of the USR of the

control-oriented model is in good accordance with the first-

principle model. Added mass effects turned out to have very

little effect on the control-oriented model, and the presence

or absence of the current did not affect the similarity between

the models. The quantitative similarity between the models,

however, strongly depends on the assumptions concerning

the link angles, |θi| < 20◦, and the phase shift δ = 2π
N−1 .

For lateral undulation, the control-oriented model tends to

overestimate the velocity for an increasing α. This agrees

with Ass. 1 of small link angles. For eel-like motion, this

effect was not observed, as can be seen in Fig. 3(a), where a

good quantitative similarity between the models is achieved

even for a relatively large α. This can be explained by the

fact that for eel-like motion, only the tail link is oscillating

with the full amplitude, whereas for lateral undulation, every

single link contributes with a higher amplitude than assumed.

The variation of the frequency ω did not have an effect on

the similarity of both models. Changing the offset δ or the

number of links had the biggest influence on the similarity

between the models for both gaits. Fig. 3(b) shows the same

scenario as Fig. 3(a), only that δ was changed from 40◦ to

60◦. For a robot with n = 7 links, the phase shift δ = 50◦

led to the best quantitative approximation for eel-like motion,

as can be seen in Fig. 3(c). Fig. 3 shows that the assumption

δ = 2π
N−1 is important for a good quantitative approximation.

3) Simulation results: Turning motion: Just like in the

straight motion scenario, neither added mass effects, nor the

choice of ω, nor the current had an effect on the similarity

between the models. In addition, the choice of α did not have

an influence on the turning performance, only on the velocity.

In order to achieve a good quantitative approximation, the

choice of δ and n, on the other hand, had a large influence.

Fig. 4(a) presents the results for a 10-linked USR moving in

the presence of a current with lateral undulation according to

Case 2 in Tab.II. In Fig.4(b), the analogous scenario is shown

for eel-like motion. A good quantitative approximation can

be observed for eel-like motion. The velocity is slightly

overestimated by the lateral undulating model, while the

orientation still shows good accordance. The performance

of the lateral undulating 7-linked robot in Fig. 4(c) stands in

contrast to the previous results. Even though there is a very

good quantitative approximation of the velocity for δ = 60◦,

the turning behaviour is only in qualitative accordance. This

suggests that the turning parameters λi, that have been tuned

for Case 2, depend on δ and n.

B. Comparison of the original and the averaged velocity

In order to investigate the performance of the averaged

velocity dynamics, the same scenarios that were described
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ṗ
x

[m
/s

]

px [m]

p
y

[m
]

0 20 40 60

−0.1 0 0.1 0.2 0.3 0.4

−0.01

0

0.01

−0.5

0

0.5

(c) n = 7 links, eel-like motion according to Case 8
First-principle model
Control-oriented model with added mass effects
Control-oriented model without added mass effects

Fig. 3. Comparison of straight motion

in Sec. V-A.1 were simulated with the averaged model (19).

The results showed excellent accordance with the results of

the control-oriented model (6). An example is presented in

Fig. 5, where the velocity dynamics of both the control-

oriented model and the averaged model are plotted for lateral

undulation with 10 links and the gait parameters of Case 2.

C. Relationship between the gait parameters and vt,rel

From all the simulations that were described in Sec.V-A.1,

several cases of the straight motion scenarios with current

were evaluated in order to validate the relationships between

the relative forward velocity and the gait parameters α and

ω, that were derived in Sec. IV-D. The evaluated cases were

Cases 1-3 in Tab. II in order to check the dependency on α,

and Cases 4-6 and 2 for ω.

Fig. 6 shows the relative forward velocities that were

obtained for the different α. In the same manner, the relative

forward velocities for the different choices of ω are plotted
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in Fig. 7, and there is clearly a linear relationship.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, an analysis of planar underwater snake

robot locomotion in the presence of ocean currents was

presented. The USR was assumed to be neutrally buoyant,

fully submerged, and move with a planar sinusoidal gait and

limited link angles. An existing, control-oriented model was

further simplified and extended to general sinusoidal gaits

to serve as a basis for the analysis. The averaged velocity
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dynamics of the underwater snake robot were derived using

averaging theory. It was proven that the averaged velocity

converges exponentially to an equilibrium, and an analytical

expression for calculating the relative forward velocity of

the robot in steady state was presented. In particular, it was

shown that the relative forward velocity is 1) proportional

to the square of the amplitude of the sinusoidal gait, α2,

2) proportional to the frequency of the sinusoidal gait, ω,

and 3) a function of the phase shift δ of the gait. Extensive

simulations were carried out that qualitatively validated the

proposed modelling approach and supported the theoretical

findings of the locomotion analysis.

In future work, the findings of this study will be applied for

controller design, guidance, and motion planning algorithms

for USRs. An extension of the results to hold for arbitrary

motion in three dimensions will be pursued. Experiments in

order to validate the theoretical findings will be conducted.
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[9] P. Liljebäck, K. Y. Pettersen, Ø. Stavdahl, and J. T. Gravdahl, Snake

Robots: Modelling, Mechatronics, and Control, ser. Advances in
Industrial Control. Springer London, 2012.

[10] E. Kelasidi, K. Y. Pettersen, and J. T. Gravdahl, “A control-oriented
model of underwater snake robots,” in Proc. IEEE Int. Conf. Robotics

and Biomimetics, Bali, ID, Dec. 2014.
[11] A. M. Kohl, E. Kelasidi, K. Y. Pettersen, and J. T. Gravdahl,

“A control-oriented model of underwater snake robots exposed to
currents,” in Proc. IEEE Multi-Conf. Systems and Control, Sydney,
Australia, Sep. 2015.
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