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Summary

Modern approaches to process monitoring, optimization and control promise en-
hanced robustness and performance through the merger of process knowledge en-
coded in mathematical models with real-time measurements from the process. Such
design techniques, often referred to as model-based estimation and control, require
a mathematical model with the right balance between complexity and fidelity: i.e.
the complexity must be limited to facilitate the use of established mathematical
analysis and design techniques, while the qualitative response of the process is
retained.
Finding such models amenable for estimation and control of two-phase flow in

drilling is particularly challenging due to the relative complexity of both the math-
ematical models and the dynamics to be represented. In particular the timescale
separation between dominating dynamic effects, distributed nature of important
transport phenomena and the nonlinear coupling between them entails very rich
dynamics with modes over a broad frequency range and bifurcations between po-
tential operating points.
This thesis uses the classical transient drift flux model as a starting point for

heuristically distinguishing between three qualitatively different dynamic effects,
each of which dominates the transient response in a given frequency range: ∼ 10
seconds, the distributed pressure dynamics, ∼ 1−10 minutes, a slow compressional
pressure mode, and finally ∼ 10 minutes to hours, the advection of a two-phase
void wave.
Since the distributed pressure waves operate in a high-frequency range, it is

of little impact for operations concerned with slower phenomena. This insight
is employed to develop simplified model descriptions of the slow pressure mode,
and void wave advection, which are amenable for certain model-based control and
estimation applications. In particular the description is used to develop an RLS
estimator of reservoir pressure during a gas influx.
The heuristic for characterizing the dominating effect after frequency range (or

timescale) is also used to develop a robust pressure controller using an automatically
controlled back-pressure choke. The approach retains the dominating dynamic
effect in the frequency range of interest (the slow pressure mode) while ensuring
robustness to the discarded high-frequency pressure waves.
The thesis gives examples from the industry to problems and processes which

can be dealt with through use of model-based estimation and control techniques
and provides a framework for designing such algorithms.
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Chapter 1

Introduction

The process of oil well drilling, schematically depicted on Figure 1.1, consists in
boring a hole several kilometers deep into the ground, until a reservoir is reached.
The hole is created by rotating a bit to which a downward force is applied (Bour-
goyne et al., 1986). The force, and in most cases the rotation, is applied by a
rotary drilling rig to sections of heavy thick-walled pipe, called the drill-string,
which transfers it to the bit. The drilling rig can be located on onshore or on an
offshore platform, then either as a rig anchored on the sea bed or as floating a
drilling ship or semi-submersible.

Drilling �uid

Oil & Gas 
in�ux 3-10 km

Figure 1.1.: Schematic of a well being drilled.

During the drilling operation, drilling fluid, also known as mud is pumped
through the drill-string, exits through the drill bit nozzles, cools and lubricates
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Chapter 1. Introduction

the bit and the drill-string, and carries drilled cuttings to the surface. An essen-
tial function of the drilling mud is to provide the hydrostatic pressure, added to
the frictional pressure drop in the annular space between the drill-string and well-
bore/casing, required to balance the reservoir formation pressure. Consequently,
the point where wellbore pressure equals the reservoir pore pressure is referred to
as the balance point, and when the pressure in the wellbore exceeds and is less
than the reservoir pressure, the well is said to be overbalanced and underbalanced,
respectively.
The drill-string typically consists of 9 meter long pipe sections which are added

as drilling progresses. This procedure, referred to as a connection, involves halting
the drilling process, including the injection of mud, so as to enable connecting a
new pipe section.
As drilling progresses, casing is set at preplanned intervals to isolate the wellbore

from the surrounding formation. The casing is a steel cylinder which is hammered
into the open hole and cemented in place. The section of the well that has been
drilled since the last casing was set, is susceptible to pressure changes in the wellbore
and is called the exposed zone. Controlling pressure in the exposed zone is a major
challenge in drilling.

1.1. Pressure Control

1.1.1. Conventional drilling

In conventional drilling, it is desired to keep the well overbalanced so as to prevent
any influx of formation fluids (oil, gas or water) to the wellbore. However, if
wellbore pressure is too high, it can exceed the fracture initiation pressure, resulting
in rock breakdown and loss of drilling fluid to the formation. This can be costly
due to potential damage to the reservoir, high price of the lost fluid, and may in
some cases prevent drilling from proceeding altogether. Therefore, in overbalanced
drilling, wellbore pressure should be managed to stay above the formation pore and
collapse pressures and below the fracture pressure in the exposed zone, see Fig. 1.2.
That is, we can write the pressure P (x), at position x in the well, as

P (x) = Patm + Fric(x, t) + Grav(x), (1.1)

where the wellhead pressure is atmospheric WHP = Patm. Hence, changing the
pressure in the well must be achieved by circulating a new mud with different
density, so as to affect the Grav(x) term. This distributed pressure is then to
be kept within lower and upper pressure margins, which in this case are the pore
pressure and fracture pressure, respectively:

Ppore(x) < P (x, t) < Pfrac(x), for x in the exposed zone. (1.2)

For convenience, the distributed pressure in the exposed zone is often lumped to a
single point and referred to as the bottom-hole (circulating) pressure (BHP/BHCP).

2



1.1. Pressure Control

Figure 1.2.: Distributed pressure margins for overbalanced drilling including MPD.

1.1.2. Managed pressure drilling

In narrow margin wells such as deep-water offshore wells, formation and fracture
pressures are very close. Managing the annular pressure is challenging and plays
a vital role in successful drilling of these wells. Managed Pressure Drilling (MPD)
techniques have been introduced in recent years to more precisely control the an-
nular pressure profile throughout the wellbore of narrow margin wells in particular
(Malloy et al., 2009). MPD differs from conventional drilling in that a rotating
control device (RCD), see Fig. 1.3, is used to create a seal around the drill-string
at the wellhead, which, together with a back-pressure choke, enables manipulating
the WHP. This is sometimes also coupled with a dedicated back-pressure pump to
enable control even when the main pump is shut off.
A key advantage of MPD is that it enables the drilling of wells where pressure

margins are too narrow for conventional drilling. However, it is also often used to
handle uncertainty of the reservoir and well plan in that it enables the driller to
better and more quickly adapt to the scenario that is actually encountered (Saponja
et al., 2006). This is primarily due to the improved well control capabilities offered
by MPD (Smith and Patel, 2013; Gabaldon et al., 2014; Kinik et al., 2015)
For MPD we have

P (x) = WHP(t) + Fric(x, t) + Grav(x), (1.3)

where WHP can be effectively controlled by manipulating the opening of the back-

3



Chapter 1. Introduction

pressure choke.

Figure 1.3.: Topside part of a the closed circulation MPD system which enables the application
of back-pressure, (Hauge, 2013).

1.1.3. Underbalanced drilling

Drilling with a BHCP intentionally lowered to below the reservoir pressure, such
that the well is producing fluid from the reservoir while drilling, see Fig. 1.4,
is called underbalanced drilling (UBD) (Saponja, 1998). The pressure differential
between the reservoir and open-hole wellbore is called drawdown and is defined as
positive when underbalanced. Key drivers for employing UBD include

• Reduced formation damage: Overbalanced drilling operations cause in-
vasion of filtrate into near-wellbore regions resulting in reduced producion
index (PI). (Suryanarayana et al., 2007b; Al-Saadi et al., 2006).

• Increased rate of penetration: Lower pressure in the wellbore invaribly
increases penetration rates, resulting in improved bit life and reduced drilling
time (Bourgoyne, Jr., 1997; Bennion et al., 1996).

• Reservoir characterization: Estimating reservoir pressure and productiv-
ity while drilling offers unique insights as the reservoir can be characterized
in zones as it is drilled. (Culen and Killip, 2005; Suryanarayana et al., 2007a;
Wu and Suryanarayana, 2011)

• Enabling technology: in dealing with reservoirs with small or vanishing
pressure margins (Pickles et al., 2004).

4



1.1. Pressure Control

Figure 1.4.: Distributed pressure margins for underbalanced drilling.

UBD requires additional equipment and procedures to handle the produced fluids
while the well is being drilled. The produced fluids may include gas which makes
the wellbore flow two-phase and affect the hydrostatic pressure when entering the
vertical section of the annulus. Since the influx from the reservoir depends on
the pressure in the exposed zone, the well-reservoir interaction effectively creates
a feedback system which can give rise to complex, non-linear, dynamics such as
multiple equilibria, non-minimum phase response and bifurcations.
UBD also requires the use of a RCD and a back-pressure choke, hence

P (x) = WHP(t) + Fric(x, t) + Grav(x, t), (1.4)

where the significant difference is that the Grav(x, t) term now varies in time with
the amount of gas in the well. When applying UBD the pressure control goal
will depend on the well in question as well as the reasons for choosing UBD. Key
factors deciding the optimal drawdown during UBD is that (Guo and Ghalambor,
2006): the BHCP should be high enough to avoid risk of collapse (Bennion et al.,
1996) and limit the influx to a level that can be handled by separators and storage
facilities. The BHCP should be low enough to avoid mud damaging the reservoir
(i.e. lower than pore pressure) and cause sufficient influx to obtain stable operating
conditions (Saponja, 1998) and hole cleaning (Doan et al., 2003). In addition,
constant pressure during drilling is desirable to enhance reservoir characterization.

5



Chapter 1. Introduction

As a minimum, the following limitations on pressure are enforced during UBD:

Pcollapse(x) < P (x, t) < Ppore(x), for x in the exposed zone. (1.5)

1.2. Two-phase flow in MPD: well control

As mentioned before, when wellbore pressure opposite a permeable zone is below the
formation pore pressure, formation fluids and/or gas may flow into the wellbore.
This phenomenon is commonly referred to as a gas or liquid ”kick”. Gas kicks
tend to be more severe and hazardous than liquid kicks due to gas expansion in
the annulus and higher magnitudes and variations in annular pressure (Karimi
Vajargah, 2013). If the kick migrates to the surface in an uncontrolled manner, a
blow-out scenario can occur. Blow-outs pose severe threats to rig crew safety, the
surrounding environment, company and industry reputation, project economics,
etc. Detection and handling of gas kicks in a timely manner is referred to as well
control and is a major concern in any drilling operation.
The traditional procedure for the handling of a confirmed kick is to perform shut-

in operations and apply a well control method to remove it. Shutting in entails
halting the drilling operation, stopping the rig pumps and closing the blow-out pre-
venters (BOPs), a set of valves capable of sealing the annulus at the wellhead (see
Fig. 1.1), thus letting the pressure in the well increase until the bottom-hole pres-
sure (i.e. the combination of the muds hydrostatic head and the shut-in pressure
at surface) reaches the reservoir pressure so that the influx stops. This increase in
pressure is referred to as killing the well. Kick detection and shut-in operations are
cumbersome and stressful for the crew, cause significant downtime and entail signif-
icant pressure transients that may damage the well and/or the reservoir (Gravdal
et al., 2013).
However, the added actuation introduced by MPD equipment enables circulat-

ing influxes of small and medium size out of the well without needing to perform
a shut-in operation (Bacon et al., 2015). Increasing the surface backpressure to at-
tenuate the kick can be used as a viable alternative to shutting in the well (Karimi
Vajargah et al., 2014). Back-pressure is applied by means of the dedicated MPD
choke, the operation of which can be automated. The gas influx is circulated out
through the MPD choke manifold, similarly to the first circulation phase of the
Drillers Method (Smith and Patel, 2013). Once gas exits the choke, it is vented
through the mud gas separator. This dynamic well control can only be used for
influxes up to a certain volumetric size, the limit being as low as 10 barrels in some
deepwater operations (Karimi Vajargah et al., 2014). An influx larger than this size
may cause the annular pressure to exceed the integrity limits of weak formations
exposed in the open-hole section (i.e. the part of the well that is not protected by
casing and cement) or those of the MPD surface equipment. In that case, conven-
tional shut-in and well control methods need to be used. Nevertheless, in situations
where dynamic kick handling is feasible, it is essential to keep bottom-hole pressure

6



1.3. Underbalanced drilling

constant at a value sufficient to prevent further influx from the formation on the
one hand and prevent fracture initiation on the other. To maintain the correct
constant bottom-hole pressure during influx removal, proper and robust estimation
of formation pressure and influx rate and volume is vital. Handling the changing
well dynamics when taking and circulating out gas, while staying within pressure
constraints, is also considered a challenge (Reitsma and Couturier, 2012).

1.3. Underbalanced drilling

This section contains suggestions for how applied control theory can make an impact
in UBD.

1.3.1. Reservoir Characterization

Reservoir characterization is often a major driver for performing a drilling operation
underbalanced. State of the art reservoir characterization while drilling uses a
combination of dedicated flow and pressure buildup tests and analysis of changes
in production rates while drilling (Shayegi et al., 2012).

Flow tests

Flow and pressure buildup test have to be performed for sufficient time to elicit
the transient response of the reservoir that is used to characterize it (Hasan and
Kabir, 1983; Wu and Suryanarayana, 2011). As such, performing these tests during
a UBD operation causes significant flat time, see Fig 1.5, and consequently these
tests are typically mainly performed for wells which are drilled UBD for the sake
of reservoir characterization. These tests mimic the ones performed in reservoir
engineering, although at shorter time-scales.

Figure 1.5.: Flow tests take up significant time of UBD operations done for the purpose of reservoir
characterization, resulting in so-called flat time. Figure by Shayegi et al. (2012).
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Chapter 1. Introduction

Rate transient analysis

Production rates while drilling are typically analyzed using a rate-integral produc-
tion index (RIPI) in a process referred to as rate transient reservoir characterization
(RTRC). RIPI is an averaged quantity used to interpret flow data (Gauthier et al.,
2007). Specifically, it is desirable to estimate the Production Index of water, gas
and oil, and how it changes while the well is drilled (Culen and Killip, 2005). Due
to transient events and measurement noise, discerning the production index, k, in
the relation

q(t) = k(t)∆P (t) (1.6)

where ∆P is the drawdown and q is the produced quantity, can be challenging.
The RIPI was defined by Suryanarayana et al. (2007a) as

RIPI(t) =
1

t∆P (t)

t∫
0

q(τ)dτ, (1.7)

which is intended to smoothen out the effect of noise, defined as wellbore transients.

Potential for improvements

Estimating production rates is often complicated by wellbore transients. Specifi-
cally, it is desired to correlate estimates of the production rates as the flow enters
the wellbore from the reservoir (at the sandface) to the current BHCP. The actual
production measurements are, however, at the wellhead.
This problem can be mitigated by reducing transient effects, i.e. by using auto-

matic control. Steady operating conditions significantly improve the quality of the
analysis. Using model based estimation schemes which take the transient effects
into account can further improve the results.
Finally, combining a transient wellbore model with a near-reservoir model, so that

both reservoir and wellbore transients are represented (Nævdal et al., 2002), could
improve reservoir characterization capabilities and reduce the need for dedicated
tests.

1.3.2. Connection transients

One of the major inhibitors of steady drilling conditions in UBD is the drill-string
connection procedure. As the connection requires the halting of liquid injection,
the result is a large temporary change in the downhole void fraction, which then
propagates through the wellbore causing variations in pressure and production rates
if not controlled properly (Perez-Tellez, 2003).
During this transient process, the operator will dynamically control the backpres-

sure choke opening, attempting to keep the BHP constant, see Fig. 1.6. Given the
appropriate model, an automatic controller can be designed which would improve

8



1.3. Underbalanced drilling

this procedure, i.e. which keeps BHP within some predefined constraint for the
duration of the connection (Nygaard et al., 2004).
A particularly challenging case is shown in Fig. 1.7. For wells close to conditions

with severe slugging, either due to casing heading or to gas production (as in
this case), the connection induced transients are particularly problematic. As is
illustrated in the figure, the well is in an almost perpetual transient condition due
to the connections.

1.3.3. Severe slugging in UBD

Severe slugging in production has been extensively studied in the literature but
very little research exists on this topic related to underbalanced drilling. The two
phenomena are, however, closely related. The possible causes for severe slugging in
drilling include

• Casing heading: Well known from production, see e.g. Torre et al. (1987);
Eikrem et al. (2008), is also known to occur in drilling (Mykytiw et al., 2003)
when gas is injected from a separate conduit, see Fig. 1.8. Casing heading
is caused by an interaction between the dynamic pressure and outflow of the
casing and two-phase flow in the wellbore (Sinegre et al., 2006).

• Density wave: This instability occurs for a simple vertical conduit with
a constant gas rate and a pressure dependent liquid rate, see Sinegre et al.
(2005); Di Meglio (2011), and is thus known from oil production with gas
lifts, where the liquid production rate is dependent on drawdown.

• The final type of instability is for conduits with a constant liquid rate and
pressure dependent gas rate (Aarsnes et al., 2016c). This configuration is
encountered in UBD in gas dominated wells, see Fig. 1.8 by (Graham and
Culen, 2004), but has not previously been described in the literature due
to not being encountered in production. As such the mechanism is not well
understood, but seems to rely on a large increase in WHP caused by produced
gas exiting through the back-pressure choke.

1.3.4. Extending the Operating Envelope to the Unstable Regime

When drilling underbalanced in gas dominated wells, the well behavior changes de-
pending on operating conditions. This is due to the interaction between the wellbore
BHP and the reservoir influx. Heuristically, at low drawdowns and gas rates, tran-
sients are long and the well difficult to control (Perez-Tellez, 2003; Saponja, 1998).
In fact, as will be shown in this thesis (Aarsnes et al., 2016c), at low draw-downs
there can be regions which are inoperable due to instabilities caused by severe
slugging or a so-called static instablity (Hu, 2004).
These points are illustrated by Fig. 1.9, where a steady-state 2-phase model of

flow in a wellbore has been used to plot BHCP against WHP in a gas dominated

9



Chapter 1. Introduction

Figure 1.6.: Wellbore transients induced by connections.

Figure 1.7.: Connection induced transients are especially problematic when the well is close to
conditions with severe slugging. Connections are indicated by downward spikes in
the gas rate. Figure by Graham and Culen (2004).
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1.3. Underbalanced drilling

Figure 1.8.: Severe slugging caused by casing heading when attempting to get a well
underbalanced.

well. The unstable and non-intuitive labels denote regions at low drawdown which
are currently not considered for operations due to the difficult conditions. Using
automatic control, these regions can be stabilized, thereby extending the operating
envelope, potentially enabling more cost effective and environmentally friendly op-
erations due to reduced flaring of unused produced gas, and enabling UBD in wells
with narrow pressure margins.

1.3.5. Problem formulations

As a rule, steady operation of the drilling system translates into a better perfor-
mance and improved safety. However, as has been discussed, the process is subject
to various perturbations, uncertainties and instabilities. Automated estimation and
control algorithms have the potential to improve operations with regards to many
of these challenges, as is suggested in Table 1.1.

Table 1.1.: Examples of industrial challenges that can be reformulated as estimation and control
problems.

Industrial challenge Control problem reformulation
Characterize operating conditions Linear stability analysis
Respect pressure constraints Stabilization & trajectory planning
Estimate gas quantity and pressure Distributed state estimation
Identify reservoir characteristics Parameter identification

11



Chapter 1. Introduction

Figure 1.9.: UBD operating envelope showing regions that are challenging due to transient well
dynamics. The significant drawdown required for intuitive operating conditions can
be a challenge in reservoirs with small pressure margins.

1.4. Use of Fit-for-purpose models

Using a mathematical model as the basis for design of a control or estimation
algorithm, so-called model-based design is a staple of modern approaches within
the field, (Åström and Murray, 2010; Anderson and Moore, 1990) and classical
references also typically use first principle models as basis for analysis and design
(Maxwell, 1867). Many applications are enabled by the use of models (see e.g.
Willersrud (2015) for recent relevant examples), and others can be significantly
improved (Eykhoff, 1994).
Modeling for estimation and control poses distinct requirements on model de-

velopment: model complexity must be limited to facilitate the use of established
mathematical analysis and design techniques, while the qualitative response, that
is to be controlled or estimated, is retained: effectively echoing the popular adage
that everything sould be made as simple as possible, but not simpler. Different ap-
plications, then, will necessarily pose different requirements on the model, and as
such one can often find, in the literature, multiple mathematical models of a single
phenomena, each amenable for a different application. These models are variably
be referred to as control oriented, simplified or fit-for-purpose models, where the
last term is primarily adopted in the present work.
This thesis will propose a novel version of the no-pressure-wave drift flux model,

12



1.5. Two-phase modeling and timescales

Figure 1.10.: Proposed model compared to existing models.

sometimes referred to as the reduced drift flux model, which aims to be amenable as
a fit-for-purpose model of two-phase flow in drilling. The complexity of this model is
schematically illustrated in Fig. 1.10. We will later argue that the models above the
proposed model lack the capability to sufficiently represent the two-phase dynamics
of certain scenarios, while the models below are too complicated, or computationally
expensive, for many applications. Identifying which model is amenable for which
scenario is an important part of successful algorithm development.

1.5. Two-phase modeling and timescales

Having introduced these industry problems, related to two-phase flow in drilling, it
is pertinent to note that most of them will not be dealt with directly in this thesis.
What will be attempted in this thesis is to propose a framework for developing
model-driven control and estimation solutions to problems related to two-phase
flow. The key to this approach is to understand what specific property is required
by the model for a given application, and which models offer these properties.
Answering these queries will necessarily rely on heuristics, however, heuristics are
a staple of petroleum engineering and can be effective in developing engineering
solutions.
The central heuristic developed and employed by this work is the following: ig-

noring the energy dynamics, the flow-pressure behavior of two-phase flow in a long
(0.5–10 km), slim, conduit can be divided into three time-scales as summarized in
Table 1.2.

13



Chapter 1. Introduction

Table 1.2.: Time-scale heuristic.

Time-scale Dominating dynamics
∼ 10 seconds Distributed pressure dynamics

∼ 1−10 minutes Slow compression pressure mode
∼ 10 minutes to hours Void wave advection

The classical drift flux model equations

We can argue for this heuristic by some basic considerations on the DFM, using the
classical formulation of Gavrilyuk and Fabre (1996) (with incompressible liquid):

∂α`ρ`
∂t

+
∂α`ρ`v`
∂x

= 0 (1.8)

∂αgρg
∂t

+
∂αgρgvg
∂x

= 0 (1.9)

∂α`ρ`v` + αgρgvg
∂t

+
∂P + α`ρ`v

2
` + αgρgv

2
g

∂x
= S, (1.10)

where αi, vi, ρi denote the volume fraction, velocity and density, respectively, of
phase i = g, ` (gas or liquid), P is pressure and S is a momentum source term. We
also have the closure relations:

αg + α` = 1, P = ρgc
2
g, (1.11)

and the slip law

vg =
αgvg + α`v`

1− α∗
`

+ v∞ (1.12)

where α∗
` ∈ [0, 1) and v∞ ≥ 0 are constant parameters.

Without going into too much detail, we can employ the transformation due to
Gavrilyuk and Fabre (1996)

u = (χ`, ρ, vg) =

(
(α` − α∗

`)ρ`
ρM − α∗

`ρ`
, ρM − α∗

`ρ`, vg

)
, (1.13)

and discard the second-order terms in (1.10) (as was justified by Masella et al.
(1998)) to approximate (1.8)–(1.12) as:

∂

∂t

χ`

ρ
vg

+

 vg 0 0
0 vg ρ

ᾱ0(u)c2M (u)

ρ

c2M (u)

ρ
vg

 ∂

∂x

χ`

ρ
vg

 =

00
S̃

 , (1.14)

where ᾱ0(u), cM(u), S̃ are rather complicated and implicitly given by (1.13). We
see from (1.14) that the pseudo mass concentration χ` is a Riemann invariant
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convecting to the right with velocity vg. This is a representation of the slow void
wave dynamics which dominate a low frequencies.
For high frequencies the mass rate influx can be assumed constant and the re-

maining pressure dynamics can be approximated with the one-dimensional wave
equation with a mixture sound velocity, as is shown in the following. Assuming
that the liquid and gas mass-rates on the left boundary are constant we have[

α`ρ`v`
]
x=0

=
[
χ`ρvg − ρ`(1− α∗

`)v∞
]
x=0

= const. (1.15)[
αgρgvg

]
x=0

=
[
(1− χ`)ρvg

]
x=0

= const. (1.16)

Note that this implies that the quantity
[
χ`ρvg

]
x=0

is also constant. Thus, from

(1.15)-(1.16):
[
ρvg
]
x=0

= const. meaning that χ`(x, t) = const. for all x, t.
The remaining dynamics, after having enforced constant mass-rates, can now be

expressed as a second-order PDE retaining only the lower right 2 × 2 part of the
transport matrix in (1.14), i.e.:

∂us
∂t

+ As(us)
∂us
∂x

= Ss(us), (1.17)

As =

[
vg ρ

c2M (u)

ρ
vg

]
, us =

[
ρ
vg

]
. (1.18)

We recognize (1.17)–(1.18) as the system matrix from the 1-D shallow water equa-
tions, also known as the Saint Venant equation (Andréa-Novel et al., 2009). This
2× 2 system has the eigenvectors and eigenvalues[

ls1
ls2

]
=

[
cM (u)

ρ
1

− cM (u)
ρ

1

]
,

[
λs1
λs2

]
=

[
vg + cM(u)
vg − cM(u)

]
, (1.19)

where cM(u) is an approximate mixture sound velocity. We typically have: cM(u) �
vg, and using this approximation the subsystem (1.17)–(1.18) results in the classical
one-dimensional wave equations used to describe the distributed pressure dynamics
in one-phase wells and transmission lines (Stecki and Davis, 1986; Aarsnes et al.,
2012; Landet et al., 2013).
Finally we note how using a flow rate as a boundary condition at x = L introduces

an additional slow compressional pressure mode. E.g. specifying flow out using
a choke equation results in dynamics as shown in Fig. 1.11. If one intends to
discard the fast pressure dynamics, this pressure mode can be kept by lumping the
distributed pressure.
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Chapter 1. Introduction

Figure 1.11.: Comparison between the DFM and the NPW DFM (referring to the DFM with
discarded pressure dynamics) showing the slow pressure mode introduced by the
choke equation, here in the response of choke and bottom-hole pressure (pc, pbh)
with a step change in choke opening.

1.5.1. Time-scale heuristic summary

∼ 10 seconds: Distributed pressure dynamics. Behaves approximately as
the wave equation used for one-phase flow, i.e.:

∂P

∂t
+ β

∂v

∂x
= 0 (1.20)

ρ
∂v

∂t
+
∂P

∂x
= F (v) +G (1.21)

with pressure, P , and velocity, v. The density ρ and bulk modulus β, and
source terms F,G can change significantly at two-phase flow, however.

1−10 minutes: Slow compression pressure mode introduced by using flow
as boundary conditions on both sides of (1.20)–(1.21). This mode can be
modeled by lumping the distributed pressure into a single control volume
with volume V :

∂P (x=L)

∂t
=
β

V

(
q(x=0)− q(x=L) + TEG

)
, (1.22)

where TEG
accounts for in-domain gas expansion in the case of two-phase

flow. The total bulk modulus β will change with the void fraction profile.

16



1.6. Outline and contribution

10 minutes to hours: Void wave advection

∂χ`

∂t
+ vg

∂χ`

∂x
= 0, (1.23)

where the pseudo mass concentration χ` propagates with the gas velocity,
thus determining hydrostatic pressure.

Understanding and recognizing this distinction enables us to retain and deal
with only the dynamics in the frequency range of interest. Consider the following
illustrative examples:

• When controlling downhole pressure in the heave problem, see Aarsnes et al.
(2014c), the fast distributed pressure dynamics, (1.20)–(1.21), must be re-
tained and used in controller design (Aamo, 2013; Landet et al., 2013).

• When controlling gas kicks, see Aarsnes et al. (2016a), we retain only the
slow pressure mode (1.22) as it is the dominating dynamic around the de-
sired cross-over frequency. Due to the difficulty in modeling the fast pressure
waves in a (continuously changing) two-phase mixture (Fl̊atten and Lund,
2011) pushing the closed-loop control to a higher frequency range is not to be
recommended. The controller still has to be made robust to these uncertain
high-frequency dynamics.

• In production monitoring and optimization, time-scales are large and model
based procedures are typically based on steady-state models. However, in
some cases it is desirable to perform optimization on the time-scale of hours
(Willersrud et al., 2015b) where dynamics have to be represented, in which
case it should be sufficient to employ a dynamics model of only the void
wave advection (1.23). This equation could then be coupled to the existing
steady-state models to obtain pressure gradients.

1.6. Outline and contribution

The following five chapters of the thesis describe the development and application
of fit-for-purpose models of gas-liquid dynamics in a well. The chapters are reprints
of published and submitted papers with minor changes to improve the readability
of the thesis.

• Chapter 2 reviews the existing literature on one-dimensional two-phase mod-
els, and motivates the development of an appropriate fit-for-purpose model.
It is showed how relaxation techniques are used to derive simplified models
by imposing instantaneous steady-state between phases, or by lumping dis-
tributed dynamics. Depending on the phenomenon to be represented, these
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relaxation techniques can be employed to obtain a simplified model by dis-
carding dynamics not needed. The reduced DFM is found to qualitatively
recreate the dynamics for many important scenarios.

The chapter is based on Aarsnes et al. (2016d).

• Chapter 3 concerns describing the dynamics encountered in a gas-dominant
UBD well. Four distinct operating regimes are identified and located in terms
of drawdown, and the behavior in each of them is described. Understanding
the qualitative changes in dynamics between these regimes can improve opera-
tions and well design. A major contribution of this chapter is that a particular
kind of severe slugging is investigated that have previously not received signif-
icant interest in the literature. Furthermore, a potential novel application of
automated choke control by feedback is pointed out which can enable drilling
at low drawdown by stabilizing the nominally unstable regime.

The chapter is based on Aarsnes et al. (2016c)

• Chapter 4 concerns the development of a simplified two-phase flow model
by building on previous results on simplifying the drift flux model by using
a quasi-steady momentum balance (i.e. a reduced DFM). This simplification
results in a hyperbolic-parabolic PDE system with a single finite eigenvalue.
In somewhat simplified terms, one can say that the single hyperbolic PDE
represents the void wave advection, with the two parabolic relations giving
the pressure and velocity profiles. Finding appropriate approximations for
the pressure and velocity, explicit in the state (void fraction) and exogenous
variables, a novel formulation for a fast and robust fit-for-purpose model is
obtained.

The chapter is based on Aarsnes et al. (2016b).

• Chapter 5 includes testing of this model against full scale experimental
data. To illustrate the use of the model, a RLS estimator that can be used
to estimate reservoir pressure and track the gas propagation is developed
and tested against OLGA and field data from a dynamically controlled kick
incident.

The chapter is based on Ambrus et al. (2015); Aarsnes et al. (2015); Ambrus
et al. (2016).

• Chapter 6 describes the development of a robust pressure controller using
an automatic back-pressure choke. The approach uses the previously devel-
oped understanding of the time-scale heuristic to show that the dynamics in
the frequency range of interest is dominated by a single slow pressure mode.
This pressure mode represents the lumped compression of the fluid mixture,
and as such is dependent on the void fraction distribution. By measuring or
estimating the characteristic time associated with this mode and encoding the
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information into an automatic controller, performance can be significantly im-
proved. Robustness towards the discarded high-frequency pressure dynamics
is ensured using an LMI formulation. The presented approach, of explicitly
capturing the effect of the gas influx and incorporate this in a model-based
controller design, is a first for this problem.

The chapter is based on Aarsnes et al. (2016a).

1.6.1. Publications

First-Author papers

The contributions of the candidate have been published in the following journal
papers and conference papers with peer review:

Journal papers

• U. J. F. Aarsnes, M. S. Gleditsch, O. M. Aamo, and A. Pavlov, “Modeling
and Avoidance of Heave-Induced Resonances in Offshore Drilling,” SPE Drill.
Complet., vol. 29, no. 04, pp. 454-464, Dec. 2014.

• U. J. F. Aarsnes, F. Di Meglio, R. Graham, and O. M. Aamo, “A method-
ology for classifying operating regimes in underbalanced drilling operations,”
SPE J., SPE Journal, 21(02), pp. 243433, Apr. 2016.

• U. J. F. Aarsnes and O. M. Aamo, “Linear stability analysis of self-excited
vibrations in drilling using an infinite dimensional model,” J. Sound Vib., vol.
360, pp. 239259, Jan. 2016.

• U. J. F. Aarsnes, T. Fl̊atten, and O. M. Aamo, “Models of gas-liquid two-
phase flow in drilling for control and estimation applications,” In review.

• U. J. F. Aarsnes, A. Ambrus, F. Di Meglio, A. K. Vajargah, O. M. Aamo,
and E. Van Oort, “A Simplified Two-Phase Flow Model Using a Quasi-
Equilibrium Momentum Balance,” Int. J. Multiph. flow, 83(July), pp. 77-85,
Jul. 2016.

• U. J. F. Aarsnes, B. Açıkmeşe, A. Ambrus and O. M. Aamo, “Robust Con-
troller Design for Automated Kick Handling in Managed Pressure Drilling,”
In review.

Conference papers

• U. J. F. Aarsnes, O. M. Aamo, and A. Pavlov, “Quantifying Error Introduced
by Finite Order Discretization of a Hydraulic Well Model,” in Australian
Control Conference, 2012, pp. 54–59.
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• U. J. F. Aarsnes, O. M. Aamo, E. Hauge, and A. Pavlov, “Limits of Controller
Performance in the Heave Disturbance Attenuation Problem,” in European
Control Conference (ECC), 2013, pp. 1070–1076.

• U. J. F. Aarsnes, F. Di Meglio, S. Evje, and O. M. Aamo, “Control-Oriented
Drift-Flux Modeling of Single and Two-Phase Flow for Drilling,” in ASME
Dynamic Systems and Control Conference, 2014.

Co-Author papers

In addition, the candidate has contributed as co-author to the following jour-
nal papers and conference papers with peer review.

Journal papers

• A. Nikoofard, U. J. F. Aarsnes, T. A. Johansen, and G.O. Kaasa, “State and
Parameter Estimation of a Drift-Flux Model for Under Balanced Drilling
Operations”. In review.

• A. Ambrus, U. J. F. Aarsnes, A. Karimi, B. Akbari, E. van Oort and O. M.
Aamo, “Real-Time Estimation of Reservoir Influx Rate and Pore Pressure
Using a Simplified Transient Two-Phase Flow Model,” J. Nat. Gas Sci. Eng.,
to appear.

Conference papers

• F. Di Meglio and U. J. F. Aarsnes, “A distributed parameter systems view of
control problems in drilling,” in 2nd IFAC Workshop on Automatic Control
in Offshore Oil and Gas Production, 2015.

• F. Di Meglio, D. Bresch-Pietri, and U. J. F. Aarsnes, “An Adaptive Observer
for Hyperbolic Systems with Application to UnderBalanced Drilling,” in IFAC
World Congress 2014, South Africa, 2014, pp. 11391–11397.

• A. Nikoofard, U. J. F. Aarsnes, T. A. Johansen, and G.-O. Kaasa, “Estima-
tion of States and Parameters of a Drift-Flux Model with Unscented Kalman
Filter,” in 2nd IFAC Workshop on Automatic Control in Offshore Oil and
Gas Production, 2015.

Publications without peer review

The following papers have been published without peer review:
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• U. J. F. Aarsnes, F. Di Meglio, O. M. Aamo, and G.-O. Kaasa, “Fit-for-
Purpose Modeling for Automation of Underbalanced Drilling Operations,” in
SPE/IADC Managed Pressure Drilling & Underbalanced Operations Confer-
ence & Exhibition, 2014.

• U. J. F. Aarsnes, H. Mahdianfar, O. M. Aamo and A. Pavlov. “ Rejection
of Heave-Induced Pressure Oscillations in Managed Pressure Drilling,” pre-
sented at the Colloquium on Nonlinear Dynamics and Control of Deep Drilling
Systems, Minneapolis, Minnesota, May 2014. (Invited Paper).

• U. J. F. Aarsnes, A. Ambrus, A. Karimi Vajargah, O. M. Aamo, and E. van
Oort, “A simplified gas-liquid flow model for kick mitigation and control dur-
ing drilling operations,” in Proceedings of the ASME 2015 Dynamic Systems
and Control Conference, 2015.

• A. Ambrus, U. J. F. Aarsnes, A. Karimi Vajargah, B. Akbari and E. van
Oort, “A Simplified Transient Multi-Phase Model for Automated Well Con-
trol Applications,” in 9th International Petroleum Conf. (IPTC), 2015.
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Chapter 2

Models of gas-liquid two-phase flow in drilling for
control and estimation applications

This chapter is based on the work presented in Aarsnes et al. (2016d).

Summary

Most model-based control and estimation techniques put limitations
on the structure and complexity of the models to which they are applied.
This has motivated the development of simplified models of gas-liquid
two-phase flow in drilling for control and estimation applications. This
paper reviews the literature for such models. The models are categorized
in terms of complexity and the physical interpretation of the simplifi-
cations employed. A simulation study is used to evaluate their ability
to qualitatively represent dynamics of 3 different gas-liquid scenarios
encountered in drilling, based on which conclusions are drawn.

2.1. Introduction

Drilling for hydrocarbons is the process of creating a wellbore, sometimes extending
several thousand meters into the ground, until it reaches an oil or gas reservoir (Fig.
2.1). There is a multitude of risks and challenges associated with this process,
particularly in regards to controlling the distributed pressure in the well within the
constraints imposed by the operation.
Dealing with these challenges has entailed an increasing drive for automation in

many aspects of drilling (Thorogood et al., 2010; Godhavn, 2011). Simultaneously,
a goal of improved drilling efficiency is pursued through reducing Non-Productive
Time, optimizing operations, and detecting and avoiding incidents before adverse
consequences occur (Cayeux et al., 2013). The trend for drilling deeper and more
complex wells (Lukawski et al., 2014) is also a driver for automation as an enabling
technology, allowing for continued exploration of difficult and mature reservoirs.
Following the demand of the drilling industry, high fidelity simulators of the

drilling process have been developed. Applications of these include training of
drilling personnel and real time decision support (Petersen et al., 2008; Rommetveit
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Notation

c Sound speed
m = α`ρ` Liquid mass
n = αgρg Gas mass
q Volumetric flow-rate
t Time, independent variable
v Velocity
v∞ Slip relation drift velocity
w Mass flow-rate
x Position, independent variable
C0 Slip relation profile parameter
F Frictional pressure loss
G Gravitational pressure loss
P Pressure
T Temperature
V Volume
α Volume fraction
β Bulk modulus
γ Adiabatic index
ρ Density
µ Chemical potential
J ,K,M,H Relaxation coefficients

Subscripts

a Lumped annulus parameter
c At or exiting through the choke
d Lumped drill string parameter
i Interface
M Mixture
` Liquid phase
g Gas phase
bit Entering the annulus from the drill string
inj Injected into the drill string
res Entering the annulus from the reservoir
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2.1. Introduction

Figure 2.1.: Schematic of the system under consideration.

et al., 2004). At the same time, automated control systems for controlling various
aspects of the drilling process have been developed and are gradually being accepted
by the industry (Santos et al., 2007).
Modern approaches to process monitoring, optimization and control promise to

enhance robustness and performance of such automation through the merger of
process knowledge encoded in mathematical models with real-time measurements
from the process. By intelligently combining predictions from the mathematical
model with information from multiple sensors one can estimate unmeasured quan-
tities, optimize automatic control procedures, predict future behavior, and plan
countermeasures for unwanted incidents. Such design techniques, often referred
to as model based estimation and control (Åström and Murray, 2010; Anderson
and Moore, 1990), require a mathematical model with the right balance between
complexity and fidelity: i.e. the complexity must be limited to facilitate the use
of established mathematical analysis and design techniques, while the qualitative
response of the process is retained.
Models that strike the right balance between complexity and fidelity are some-

times referred to as fit-for-purpose models, and have been employed in control
(Stamnes et al., 2011a) and monitoring (Willersrud, 2015) of drilling processes in
one-phase flow regimes. Obtaining such simplified models becomes significantly
more difficult for gas-liquid two-phase dynamics due to the significant complex-
ity and distributed nature of multiphase pipe flow (Aarsnes et al., 2014b, 2016c).
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Table 2.1.: The three components of a complete simulation model

Mathematical
Structure

Closure Relations Numerical Scheme

PDE or ODE Slip law Numerical accuracy
Hyperbolic or Parabolic Equation of State Numerical robustness
Number of equations Frictional pressure loss Complexity
Stiffness Other source terms Solution speed

This makes the reduction to fit-for-purpose models for scenarios such as gas kick
incidents, and underbalanced operations, challenging.
Consequently, several different approaches have been suggested in the litera-

ture, ranging from using complicated high-order numerical schemes with advanced
multiphase-flow models to simplified low-order or black-box step response repre-
sentations. The present paper presents a review of these models used for designing
control and estimation/monitoring algorithms of gas-liquid two-phase dynamics en-
countered in drilling. The survey will focus on the models used and not the methods
in themselves.

2.1.1. Components of a simulation model

To structure the following discussion, it is useful to identify the distinct compo-
nents which make up a complete simulation model. The three components are
Mathematical structure, Closure Relations and the Numerical Scheme and they are
summarized in Table 2.1.
The complexity of a model is mainly determined by its mathematical structure.

This is the type and number of dynamical equations needed to describe the model.
Determining the mathematical structure of the model also determines, cially in our
case, the mathematical tools and the model based estimation and control algorithms
which can be employed with it.
The closure relations that are used will necessarily depend on the mathematical

structure of the model. When a model is simplified, the closure relations will
often also have to be modified to accommodate for the simplification, typically
in such a way as to retain the steady state profile. Closure relations can also be
chosen and tuned based on experiments or measurements, and consequently, given
a mathematical structure, the accuracy of the model will mostly be determined by
the value and form of the closure relations chosen.
The final component to a simulation model is the numerical scheme. This is the

way the mathematical equations are approximated in order for them to be solved
numerically. The solution procedures that can be utilized have varying degrees of
accuracy and solution speeds. Crucially for our purposes are the numerical stability,
robustness and implementation complexity of the numerical scheme chosen.
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2.1.2. A coarse classification and outline

To structure the paper we split the models found in the literature into the three
broad categories according to their overarching mathematical structure.

High fidelity models:

This category encompasses models which are designed to be highly accurate and
have a high degree of predictive power over a wide range of application scenarios.
They are often used for training, analysis and planning of operations and are not
created for the application to a specific scenario or use with mathematical algo-
rithms. They are thus not fit-for-purpose models.

Drift Flux Models (DFM):

We use this category to denote a set of distributed (i.e. PDE) models which are very
popular in the literature due to their reasonable accuracy and relative simplicity
compared to the high fidelity models. They are essentially simplifications of these
models in that they require significantly fewer equations and they can be rigorously
derived from the high fidelity models through the process of relaxation of dynamics
explained in Section 2.2.1. The DFMs have reduced predictive power compared to
high fidelity models, but high accuracy can be retained through selection of closure
relations adapted to the considered scenario. Estimation and control results do
exist for these models, although their distributed nature often makes these results
non-standard and limited to specialists.

Simplified ODE models:

This category refers to models which can be represented with low-order ODEs.
This means that the models are unable to represent the full richness of dynamics
inherent in distributed models, and consequently they are highly specialized with a
limited range of operation. Their simplicity, however, makes them very well suited
for the design of algorithms, often allowing for the use of highly effective and well
established design procedures.

Outline

This paper will consider each of these categories, review their basic mathematical
structure and their uses in control and estimation applications. Then, in section
2.5 a brief review of numerical schemes is presented. Finally, in Section 2.6, a
simulation study is performed to evaluate the ability of the models to qualitatively
capture the dynamics of drilling scenarios involving gas-liquid flow.
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2.1.3. Note on the equations

The equations given in this paper to represent the models are not exhaustive,
but are meant to give a general idea of the model properties and structure. The
reader is referred to the specific original literature for the full, rigorous, model
representations.

2.2. High fidelity models

In one space dimension, the PDE formulation of dynamic distributed models may
be written in a highly general form

∂U

∂t
+A(U, x, t)

∂U

∂x
= D(U, x, t)

∂2U

∂x2
+Q(U, x, t). (2.1)

Herein, each term affects the mathematical structure of the model in its own unique
way. In particular:

• U(x, t) represents the vector of unknowns, i.e. the independent variables
needed to represent the physical state at each point in space and time. The
dimension of the vector U depends on the level of detail and complexity we
want represented in the model. As the dynamical equations represent trans-
port of conserved quantities in physical space, the components of U would
typically represent density, momentum and energy. Through variable trans-
formations, the equations could also be expressed in terms of more directly
observable physical quantities such as temperature or pressure (Fjelde and
Karlsen, 2002).

• A encodes information that propagates with a finite speed across the com-
putational domain, and represents transport effects such as convection or
momentum transfer through pressure. The fundamental underlying physical
structure of the model is encoded here. Furthermore, this term has a dominat-
ing effect on the the velocity of the high-frequency waves in the system (Solem
et al., 2015).

• D represents irreversible diffusive effects in the flow direction, such as vis-
cosity, or heat or mass diffusion. Loss of information due to upscaling may
be one mechanism behind terms in this form. If the symmetric part of D is
positive definite, then D will have a stabilizing effect on the system, acting
more strongly on higher frequencies.

For the discretized equations used in practical simulations, this term is of-
ten small compared to the artificial numerical diffusion (Bruce Stewart and
Wendroff, 1984).
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Figure 2.2.: The 4-dimensional hypercube representing the model hierarchy of two-fluid relaxation
models. Each vertex represents a unique model in the hierarchy where the leftmost
one is the seminal formulation of Baer and Nunziato (1986). The edges correspond
to relaxation processes in the variables p (pressure), T (temperature), µ (chemical
potential) and v (velocity). Models with a v relaxation are typically referred to as
Drift Flux Models. Adapted from (Linga, 2015).

• Q represents source terms, i.e. exchanges between the state and the envi-
ronment, or exchanges between separate state variables at each point. Inter-
actions with the environment may include friction terms, gravity terms and
heat transfer. Exchanges between state variables may include heat, volume,
mass and momentum transfer.

In the limit that Q acts infinitely fast, we obtain a reduced model where the
information represented by Q is incorporated into the matrix A (Fl̊atten
and Lund, 2011; Lund, 2012). This model reduction, termed relaxation, is
illustrated in Figure 2.2 where the Baer-Nunziato model (Baer and Nunziato,
1986) is the starting point.

This term has a dominating effect on the velocity of the longest wavelengths
in the system (Solem et al., 2015).

2.2.1. The Baer-Nunziato model

The physical structure of a flow model is mainly determined from the description
of how the physical variables are transported, and the process to approach full
thermodynamic equilibrium.
Following the classical approach of Baer and Nunziato (1986), we may then write

the foundation for one-dimensional two-phase flow modeling as a set of hyperbolic
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partial differential equations in the following form (Linga, 2015):

• Volume advection:
∂αg

∂t
+ vp

∂αg

∂x
= J (Pg − P`), (2.2)

• Mass conservation:

∂

∂t
(ρgαg) +

∂

∂x
(ρgαgvg) = K(µ` − µg), (2.3)

∂

∂t
(ρ`α`) +

∂

∂x
(ρ`α`v`) = K(µg − µ`), (2.4)

• Momentum balance:

∂

∂t
(ρgαgvg) +

∂

∂x

(
ρgαgv

2
g + αgPg

)
− pi

∂αg

∂x
= viK(µ` − µg) +M(v` − vg), (2.5)

∂

∂t
(ρ`α`v`) +

∂

∂x

(
ρ`α`v

2
` + α`P`

)
+ pi

∂αg

∂x
= viK(µg − µ`) +M(vg − v`), (2.6)

• Energy balance:

∂Eg

∂t
+

∂

∂x
(Egvg + αgPgvg)− pivp

∂αg

∂x
= −piJ (P` − Pg)

+

(
µi +

1

2
v2i

)
K(µ` − µg) + vpM(v` − vg) +H(T` − Tg), (2.7)

∂E`

∂t
+

∂

∂x
(E`v` + α`P`v`) + pivp

∂αg

∂x
= −piJ (Pg − P`)

+

(
µi +

1

2
v2i

)
K(µg − µ`) + vpM(vg − v`) +H(Tg − T`). (2.8)

Herein, the terms representing interactions with the environment and diffusive
terms are not included. In the context of (2.1), the left-hand sides of (2.2)–(2.8)
contribute to the ∂tU +A∂xU terms and the right-hand sides contribute to the Q
term.
Furthermore, αk, ρk, vk, Pk, µk and Tk represent, respectively, the volume frac-

tion, density, velocity, pressure, chemical potential and temperature of each phase
and the interface k ∈ {g, `, i}, and vp the volume advection velocity. However,
the model is equally valid regardless of whether g and ` represent gases, liquids or
solids.
The relaxation coefficients J ,K,M and H are all non-negative so as to induce
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2.2. High fidelity models

1. volume transfer towards the phase with the highest pressure,

2. mass transfer towards the phase with the lowest chemical potential,

3. momentum transfer towards the phase with the lowest velocity and

4. heat transfer towards the phase with the lowest temperature.

The model has been extended to three phases, herein care must be taken to ensure
compliance with the second law of thermodynamics (Hérard, 2007).
This highly general model is unnecessarily complex for the drilling applications

considered in this paper. Significant model reduction is desirable, and one main
path of achieving this model reduction is the process of relaxation, where the dy-
namical equations representing non-equilibrium processes are replaced by static
equilibrium assumptions. For the Baer-Nunziato model, such model reductions
have been studied extensively in for instance (Fl̊atten and Lund, 2011; Linga, 2015;
Lund, 2012).
In this respect, a important and relevant concept is the subcharacteristic con-

dition (Chen et al., 1994; Solem et al., 2015). Simply put, it states that every
reduction of the model through relaxation will reduce the velocity of information
propagation in the system, sometimes to a very large degree (Fl̊atten and Lund,
2011; Lund, 2012). This effect must be considered when evaluating the validity of
simplified models for control applications. Another main theme is the discarding
of the energy equations, motivated by the assumption that temperature transients
have no significant effect on the macroscopic flow dynamics on the time scale of
interest. This fundamental simplification will be described in more detail below.

2.2.2. Discarding the energy equation

Fundamental thermodynamics dictates that density is a state function ρ(P, T ).
In the context of the Baer-Nunziato model, the pressure dynamics is normally
dominated by the mass equations and the temperature dynamics by the energy
equations. In the limit H → ∞ of the Baer-Nunziato model, the energy equations
may be replaced by one single energy equation describing the evolution of the
common temperature T = Tg = T`.
Further, there are many situation of interest where a temperature distribution

T (x, t) = T (x) is known (to sufficient approximation) a priori. This can occur for
instance when

1. The flow may be assumed to be always in thermal equilibrium with the envi-
ronment.

2. The temperature boundary conditions do not change significantly over time,
and the heat exchange with the environment is not sensitive to the flow tran-
sients.
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3. The temperature is measured and can be treated as an exogenous variable.

If phase transitions are important for our application, the dynamics may easily be
very sensitive to T (x, t), Otherwise, in situations where any of 1.–3. are valid we
may replace the energy PDE with the given approximate temperature distribution
T (x), and the density may now be obtained as

ρ(P, T ) = ρ(P, T (x)) = ρ(P, x). (2.9)

Herein, we remark that this simplification can at best be fully valid only for slow
dynamics. The sound speed (giving the propagation velocity of pressure waves) is
generally given as

c2 =

(
∂P

∂ρ

)
x

. (2.10)

However, from (2.9) we see that the corresponding value c̄ in models with no energy
equations will be more akin to

c̄2 =

(
∂P

∂ρ

)
T

, (2.11)

and hence from fundamental thermodynamic stability

c̄ ≤ c. (2.12)

Hence, we may expect that reducing the model through discarding the energy
equation will tend to under-predict the velocity of pressure propagation.

2.2.3. Examples from literature

High fidelity models used for flow assurance and production design include the
OLGA (Bendiksen et al., 1991) and LedaFlow (Danielson et al., 2011) commer-
cial simulators. These are both 3-phase flow 1D models, imposing instantaneous
pressure equilibrium in all phases. LedaFlow has the option of solving separate
energy equations for each phase, and for both simulators the energy equations can
be discarded as described in the previous section.
LedaFlow also incorporates additional mass equations to allow for the possibility

of the phases being dispersed in each other.
Although not focusing on drilling applications, the commercial real-time multi-

phase flow simulator FlowManagerTM Dynamic (Holmås and Løvli, 2011) is worthy
of mention. This is a tool used for on-line surveillance and optimization of subsea
oil and gas production. The underlying model consists of three mass conservation
equations (oil, gas and water), one total momentum conservation equation and one
total energy equation.
Other high-fidelity multiphase flow simulators for drilling include WeMod, devel-

oped by the International Research Institute of Stavanger (IRIS) based on a R&D
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2.3. Drift-Flux Models (DFM)

program started in the early 2000’s in collaboration with Petrobras (Rommetveit
and Lage, 2001), and a simulator due to Sintef Petroleum Research (Bjorkevoll
et al., 2010; Petersen et al., 2008).
Due to their complexity, the application of high-fidelity models to model based

control and estimator design is limited to the use with general, high order, numerical
schemes. A promising application is the flow metering and estimation of states and
parameters in production based on indirect measurements. This application is
sometimes referred to as soft sensing, see e.g. (Gryzlov, 2011; de Kruif et al., 2008;
Lorentzen et al., 2010). Herein, a popular approach is using so-called particle filters,
where an ensemble of simulations are performed in parallel with the uncertain
states and parameters perturbed. This ensemble is used to develop statistics of the
uncertainties which can then be combined with measurements to produce estimates.
This approach is still being refined with more sophisticated particle filters being
applied to more complicated multiphase models (Luo et al., 2014; Lorentzen et al.,
2014, 2015).

2.3. Drift-Flux Models (DFM)

Probably the most widely used model in the literature on two-phase flow in drilling
is the 3-PDE drift-flux model

∂

∂t
(αgρg) +

∂

∂x
(αgρgvg) = Γ (2.13)

∂

∂t
(α`ρ`) +

∂

∂x
(α`ρ`v`) = −Γ (2.14)

∂

∂t
(α`ρ`v` + αgρgvg) +

∂

∂x

(
α`ρ`v

2
` + αgρgv

2
g + P

)
= −F −G, (2.15)

where the source terms are: the mass transfer term Γ = K (µ` − µg) often assumed
zero, viscous pressure loss F and gravitational pressure loss G = ρMg sin θ.
This model is equivalent to the four eqn. vpT node in Fig. 2.2 with, additionally,

the energy equation discarded. The two different fields for mass transport (2.13)
and (2.14) are required since typically the two phases are represented by two or more
different components1. This model may be obtained from the Baer-Nunziato system
by discarding the energy equations and imposing velocity and pressure equilibrium.
Herein, velocity equilibrium does not necessarily imply vg = v`: Due to averaging
and external interactions, it is stated in a more general form known as the slip
relation:

vg − v` = Φ(U), (2.16)

i.e. the relative velocity between the phases is determined by the local full flow
configuration.
The slip relation is one of three closure relations needed to complete the model.

1e.g. nitrogen and water are different components (Crowe et al., 2011).
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2.3.1. Closure relations

When choosing closure relations for the DFM, two different approaches are taken
in the literature. The more complicated approach, sometimes referred to as mech-
anistic models, predicts local flow regimes and then uses different correlations de-
pending on the regime predicted, see e.g. Fjelde et al. (2003); Perez-Tellez et al.
(2003). This typically entails solving implicit relations using an iterative numerical
procedure.
The alternative approach is to use flow-pattern independent closure relations

which allow for simpler solution procedure.

Slip relation

For the case of two-phase flow in inclined pipes, several flow pattern independent
correlations have been suggested. Recent comparisons of such correlations can be
found in (Bhagwat and Ghajar, 2014; Choi et al., 2012).
A simple correlation is the Zuber-Findlay slip law (Zuber and Findlay, 1965),

which determines the relative velocity between the phases. Writing the mixture
velocity as vM = αgvg + α`v` the classical formulation is:

vg = C0vM + v∞, (2.17)

where C0 is called the profile parameter and v∞ the drift velocity (Zuber and
Findlay, 1965; Bhagwat and Ghajar, 2014). This is most naturally interpreted in
the context of bubbly flows.
A mechanistic approach for finding correlations, which considers the annular

geometry and upward flow encountered in drilling, was developed by Lage and
Time (2000); Lage et al. (2000); Lage and Time (2002), which uses five different
flow patterns: bubble, slug, churn, annular and dispersed bubble. This approach
was further studied by Perez-Tellez (2003); Perez-Tellez et al. (2003) and employed
on Iranian field data by Ashena and Moghadasi (2010).
Closure relations for counter-current flow were considered by Taitel and Barnea

(1983); Hasan et al. (1994).

Viscous pressure loss

A frequently used structure for the relation of viscous pressure loss is

F = fρMvM |vM |, (2.18)

with f sometimes set as a constant friction coefficient dependent on viscosity and
flow geometry, and other times given by the multiphase Reynolds number.
In mechanistic models (2.18) is used for bubble flow while other, modified, rela-

tions are used for other flow regimes (Lage and Time, 2002).
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2.3. Drift-Flux Models (DFM)

Figure 2.3.: Flow pattern map of upward air/water flow in an annulus, by Lage and Time (2002).

Equation of state

When the energy equation has been discarded, the equation of state is reduced to a
relation between the principal variables and the pressure. Assuming the conserved
quantities n = ρgαg andm = α`ρ` to be our principal variables, the simplest relation
available is obtained by using the ideal gas law and assuming incompressible liquid

P =
nc2g

1− m
ρ`

, (2.19)

where cg, c` are the sound speed of the gas and liquid phase respectively. With a
compressible liquid, but still using the ideal gas law, the relation becomes more
involved. From (Evje and Fjelde, 2002; Aarsnes et al., 2014b):

αg =
1

2
−

c2g
c2`
n+m+

√
∆

2ρ`,0
, (2.20a)

∆ =
(
ρ`,0 −

c2g
c2`
n+m

)2
+ 4

c2g
c2`
ρ`,0, (2.20b)

P =


(

m
1−αg

− ρ`,0

)
c2` , if 1− αg > ε

n
αg
c2g, otherwise.

(2.20c)
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2.3.2. Model range of operation

Some models have limited ranges of operation due to unboundedness introduced by
simplifying assumptions: A model assuming incompressible liquid becomes invalid
when gas disappears as the distributed pressure becomes undefined, see (2.19).
The slip relation can also limit the applicability of the model. By inspecting

(2.17) we see that

C0 <
1

αg

(2.21)

must be enforced. Representing the slip in annular flow regimes has proven to be
challenging (Lage and Time, 2002), and it is often recommended to use a two-fluid
model (i.e. a model without a relaxed momentum transfer) in such a case (Masella
et al., 1998).

2.3.3. Application to estimation and control

Despite its relative complexity, the DFM has seen some use in state and parameter
estimation.
The mechanistic model of Lage et al. (2000); Lorentzen et al. (2001) was used with

an ensemble Kalman filter to tune coefficients in the slip law and frictional pressure
loss by Lorentzen et al. (2003, 2001), and for estimating reservoir parameters by
Vefring et al. (2003). Vefring et al. (2002) used a similar approach, but with a least
squares fitting procedure in place of the ensemble Kalman filter.
A similar approach to reservoir characterization was implemented by Nygaard

et al. (2007a), using an Unscented Kalman Filter (UKF). This was combined with
a Nonlinear Model Predictive Control (NMPC) scheme to automatically control
BHP during UBD connections.
Results on the simpler Drift Flux Model, without flow regime predictions, include

using an Unscented Kalman Filter by (Nikoofard et al., 2015), and an extended
Kalman filter by Bloemen et al. (2006) and Aarsnes et al. (2014a).
Finally, emerging results from the field of control and estimation of hyperbolic

systems are starting to reach a degree of sophistication that enables working with
(linearized versions of) the DFM directly (Di Meglio and Aarsnes, 2015). Di Meglio
et al. (2014) designed an adaptive observer that could estimate the states and a
boundary reflection coefficient of a so-called n + 1 hyperbolic system (n charac-
teristics moving right and 1 moving left), of which the DFM, (2.13)–(2.15), is an
instance (Di Meglio, 2011). The result was consequently applied to estimating the
reservoir pressure in UBD. Di Meglio et al. (2013) derived a controller for the n+1
system, which was generalized to disturbance attenuation by Hasan (2014) and to
n+m systems by Hu et al. (2015). Ongoing work will introduce further extensions
such as estimating multiple boundary parameters simultaneously and only using
topside measurements (Anfinsen et al., 2016a,b).

36



2.3. Drift-Flux Models (DFM)

2.3.4. Reduced Drift Flux model

In attempting to reduce the complexity of the two-phase flow models, a particular
approach has been proposed where the distributed pressure dynamics are relaxed,
thus neglecting the fast pressure waves (Di Meglio, 2011), while keeping the dy-
namics of the slow gas propagation.
This approach was used by Taitel et al. (1989) where the resulting model was

described by a single transient PDE of the liquid continuity, obtained by assuming
incompressible liquid, and a set of steady state relations. The closure relations are
flow regime dependent, making the model mechanistic. The approach was expanded
upon by Taitel and Barnea (1997), where the assumption of incompressible liquid
was dropped, yielding two transient equations. A similar model was investigated
by Masella et al. (1998), here called the No Pressure-Wave (NPW) model. In this
particular incarnation, the resulting equations are (2.13)–(2.14) but in place of
(2.15) the static relation

∂P

∂x
= −F −G, (2.22)

is used to relate the steady-state pressure drop to frictional and gravitational source
terms.
Further, the DynaFloDrill (Rommetveit et al., 2005) simulator is based on this

approach, solving for seven mass equations (for oil, water, gas, mud and cuttings
plus dispersion fields) coupled to a static momentum balance.
A similar model is used by Choi et al. (2013), except that here the steady-state

pressure drop is found from a fitted correlation given as

2

ρ`(α`v`)2
∂P

∂x
= − 2G

ρ`(α`v`)2
+ A

(
α`ρ`v`
αgρgvg

√
ρg
ρ`

)B

, (2.23)

where A and B are tuning coefficients.
A 1-equation PDE, coupled with an ODE, based on the Lagrangian formulation

of (Gavrilyuk and Fabre, 1996) is used in (Aarsnes et al., 2015) to estimate reservoir
parameters during a kick incident. An alternate version of this model is derived in
(Ambrus et al., 2015), where the idea of (Taitel et al., 1989) is expanded upon to
derive a PDE-ODE model on the form

ṗa =
βa
Va

(
qinj − qc + qres + A

∫ L

0

Egdx
)
, (2.24)

Eg =
αg(1− C0αg)α`

γ

1

P

(
∂P

∂t
+ vg

∂P

∂x

)
. (2.25)

∂αg

∂t
+ vg

∂αg

∂x
= Eg, (2.26)

The ODE, (2.24), represents the slow pressure mode of the annulus with the last
term of (2.24), given by (2.25), accounting for the total gas expansion in the well.
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In (2.25) γ is the adiabatic index. The gas propagation dynamics is given by (2.26).
The pressure profile must then be given by a closure relation, and approaches such
as (2.22) or (2.23) can be used.

2.4. Simplified ODE models

In this section we consider ODE-models which do not attempt to capture the dis-
tributed nature of the system through high order spatial discretizations, but lump
the dynamics into one, or a few, control volumes.

2.4.1. One-phase model

A popular, simple, liquid only model of the drilling hydraulics from the literature
is due to (Kaasa et al., 2012), and is given by

ṗa =
βa
Va

(
qbit + qres − qc

)
, (2.27)

ṗd =
βd
Vd

(
qinj − qbit

)
, (2.28)

q̇bit =
1

M

(
pbd − pad

)
, (2.29)

pbd ≡ pd +Gd − Fd(qbit), (2.30)

pad ≡ pa +Ga + Fa(qbit). (2.31)

Here M represents the fluid inertance and gives the relaxation time of the pressure
between the control volumes representing the annulus a and drill string d. For
many applications, however, the volume of the drill-string can be assumed small
which allows for the further approximation

ṗa =
βa
Va

(
qp + qres − qc

)
. (2.32)

This is equivalent to the pressure dynamics in the reduced DFM (2.24), i.e. when
the gas dynamics have been discarded.
This formulation and variations thereof have, due to their simplicity, seen a wide

range of applications as a dynamic model for both estimation (Stamnes et al.,
2011a,b; Kaasa et al., 2011), fault detection (Willersrud et al., 2013, 2015b, 2014)
and control (Godhavn, 2011; Asgharzadeh Shishavan et al., 2015). As mentioned,
the model does not capture two-phase flow, but has still been applied to kick
detection applications (Willersrud et al., 2015a; Zhou et al., 2011).
The effect of ignoring the spatially distributed dynamics for this model was stud-

ied in (Aarsnes et al., 2012), where it is noted that models of the same type (i.e.
lumped models) with a higher order spatial discretizations can be obtained, as
suggested in (Landet et al., 2012, 2013). The deciding factor for whether the dis-
tributed pressure dynamics are required is the frequency range for which the model
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Figure 2.4.: Comparison of the transfer function of a distributed PDE model (i.e. the DFM
(2.13)–(2.15) with liquid only) vs the first order approximation (2.32), with input
qc and pbh (normalized amplitude). The effect would be similar when discarding
the distributed pressure dynamics in the 2-phase case, i.e. comparing the DFM
(2.13)–(2.15) with the reduced DFM (2.24)–(2.26).

is required to be valid. This can be observed in Fig. 2.4, which compares the trans-
fer functions of a PDE representation of the pressure dynamics vs the 1st order
ODE of (2.32). This comparison is also broadly valid for 2-phase flow, i.e. in the
comparison between the full and the reduced DFM.

2.4.2. Lagrangian two-phase model

An interesting approach to representing the effect of gas-liquid flow of a single
bubble in the annulus, while still retaining the simplicity of an ODE model, is
the Lagrangian formulation proposed by Hauge et al. (2013b); Hauge (2013) (cf.
Gavrilyuk and Fabre (1996); Aarsnes et al. (2015)). Here the dynamics are given
through the states L1, VG representing the bubble position and size:

L̇1 =− 2(qc − qbit)

Apαdist

+ vg (2.33)

V̇G =qc − qbit. (2.34)

where the first term in (2.33) accounts for the gas expansion with αdist being a
distribution parameter set to 0.21, and vG found from a slip law. Equation (2.34)
is obtained by assuming the liquid incompressible.
This model was shown to be adept at tracking a bubble’s position and expansion

in a kick scenario, and was used to estimate these values in the paper. However,
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due to the Lagrangian formulation tracking a single bubble, it is unable to handle
the continuous influx encountered in underbalanced operations.

2.4.3. Low order lumped two-phase models

A range of low order lumped models have seen success in modeling for control of
severe slugging in two-phase production risers, such as Di Meglio et al. (2009);
Eikrem et al. (2008); Esmaeil and Skogestad (2011); Storkaas et al. (2003).
Such models have been applied to UBD in the literature, in particular the model

suggested by Nygaard and Nævdal (2005), which shares several features with the
“slugging models”. Using as states n,m representing total gas and liquid mass in
the drill-string and annulus denoted by the subscripts a, d respectively, the model
is given as:

ṅd =wg,inj − wg,bit (2.35)

ṁd =w`,inj − w`,bit (2.36)

ṅa =wg,bit + wg,res − wg,c (2.37)

ṁa =w`,bit + w`,res − w`,c (2.38)

where the mass rates wg,bit, w`,bit are found through considering a pressure balance
over the bit. The model lumps the spatial dynamics into a drill string (2.35)–(2.36)
and an annular (2.37)–(2.38) control volume, but is unable to represent the gas
distribution profile within the control volumes.
In (Nygaard and Nævdal, 2005) this model was used to tune a PI controller for

use in a connection scenario during UBD, and a similar model with the drill string
dynamics discarded (thus retaining only (2.37)–(2.38)) was applied to estimation
in (Nikoofard et al., 2014a,b) and control in (Nikoofard et al., 2013).

ODE-models from identification techniques

Due to the high level of complexity encountered when deriving two-phase models
from first principles, using black box or step response models are an attractive ap-
proach. The downside is that it might be difficult to identify and handle situations
when the two-phase system exhibits changes in qualitative response, see Aarsnes
et al. (2016c).
Model identification techniques were used to obtain 1st-order delay models for

control of UBO using Model Predictive Control (MPC) by Pedersen and Godhavn
(2013), with extensions in Pedersen et al. (2015). This is similar to the technique
used in (Nygaard et al., 2007b) where a NMPC controller was designed based on
identified time constants. Here it was concluded that this approach was significantly
simpler to implement and analyze than the Nonlinear MPC controller of (Nygaard
et al., 2007a), designed using the full DFM, and, furthermore, outperformed this
controller in the scenario considered.
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The approach of identifying time constants of the response was also taken by
Carlsen et al. (2013) where the identification was used to design automatic con-
trollers evaluated in a dynamic kick handling scenario.

2.5. Numerical Schemes

For control and estimation purposes, an essential feature of the simulation is the
numerical procedure to solve the underlying equations. The choice of numerical
scheme may influence the accuracy, stability and computational speed of the ulti-
mate predictions.
Numerical methods in use typically build on established methods for classical

computational fluid dynamics, and may be divided into two main lines:

• Pressure-based methods. These are typically variations of the SIMPLE2

method (Patankar and Spalding, 1972), where the pressure is solved for as
a primary variable. Herein, a staggered grid is typically used, where the
pressure is resolved at the cell centers and velocities are resolved at the cell
interfaces.

• Density-based methods (Roe, 1981). These methods typically guarantee mass
conservation directly, and are commonly formulated on the simpler collocated
grids. However, they are prone to introducing pressure oscillations for low
Mach number flows (Guillard and Viozat, 1999).

Methods may be further classified into explicit (e.g. forward Euler time dis-
cretization) and implicit (e.g. backward Euler time discretization) schemes.
Explicit schemes are simpler to implement than implicit schemes, and their fast

computation time per iteration facilitates using smaller time steps making them well
suited for representing fast dynamics such as pressure waves. Explicit schemes,
however, are typically bound3 by the Courant-Friedrichs-Lewy (CFL) condition
limiting time-steps according to:

|λ|∆t
∆x

≤ 1, (2.39)

where ∆t is the time step, ∆x is the grid cell size and λ is the velocity of the
characteristic being resolved. This restriction is very limiting in the case of multi-
phase flow since ∆t must be designed to allow for the worst-case value of λ which
in most cases is the sound velocity of liquid ∼ 1000 m/s, much greater than the
other transport phenomena of interest (Lorentzen and Fjelde, 2005).
Consequently, when computational efficiency is essential, implicit schemes are

normally superior due to their potential for large time steps. An alternative is

2Semi-Implicit Method for Pressure Linked Equations
3There are exceptions known as explicit large time step schemes.
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the semi-implicit schemes which resolve the slow characteristics, related to mass
propagation, explicitly while the fast pressure characteristics are resolved implicitly.
Both the OLGA (Bendiksen et al., 1991) and LedaFlow (Danielson et al., 2011)

numerical schemes are pressure-based and implicit. The FlowManagerTM scheme
due to Evje and Fl̊atten (2006); Holmås and Løvli (2011) is essentially a density-
based implicit method, incorporating some ideas from the classical pressure-based
schemes. WeMod, developed by IRIS, uses a semi-implicit scheme with a slopelim-
iter technique which can be categorized as a finite element pressure-based method
(Lorentzen and Fjelde, 2005).
Among the explicit schemes, the density-based AUMSV scheme (Evje and Fjelde,

2002) has proved useful for the drift-flux model (Udegbunam et al., 2014), as it pro-
vides an efficient combination of simplicity, accuracy and robustness. Consequently
it is used in the StraumeTM Hydraulic Simulator developed by Kelda Drilling Con-
trols (2015b).

2.6. Simulation Study

In this section we evaluate and compare the ability of the models covered in the
preceding survey to qualitatively recreate the dynamics of three different gas-liquid
flow scenarios encountered in drilling. The parameters are identical over the three
scenarios except for the parameter changes indicated in Table 2.3.

2.6.1. Models used

In the simulations study, a total of 6 models are used for the kick scenario and 5 for
the two UBD scenarios. These are summarized in Table 2.2. Here we use OLGA as
reference to illustrate the dynamics that we would like to recreate with the simpler
models.
At this point we again refer to Table 2.1 and note that we are only investigating

the ability of the different mathematical structures represented to capture the qual-
itative transient behavior of the scenario. That is, we do not evaluate quantitative
performance of the models, as this is mainly determined by which closure relations
are used and these are beyond the scope of this paper.

2.6.2. Scenario 1: Dynamically handled gas kick

In this scenario, see Fig. 2.5 (a), a well is drilled using MPD at BHP = 260 bar
when a high pressure zone of 270 bar is encountered. This causes a gas influx for
the next 10 minutes, at which point the choke opening is decremented, increasing
back-pressure and attenuating the kick. The gas is then circulated out.
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Table 2.2.: Ability of models used in the simulation study to qualitatively represent dynamics in
given scenario.

Scenario Suitability
Model Equations Reference Sce-

nario
1

Sce-
nario
2

Sce-
nario
3

High fidelity models:
OLGA - (Bendiksen et al., 1991) Reference model
Drift flux models:
Full DFM (2.13)–(2.15) (Lage et al., 2000) Good Good Good∗

Red DFM (2.24)–(2.26) (Ambrus et al., 2015) Good† Good Good∗

ODE models:
LOL mod (2.35)–(2.36) (Nygaard and Nævdal,

2005)
Poor Fair∗ Fair∗

1-ph mod (2.32) (Kaasa et al., 2012) Poor Poor Poor
La-
grangian

(2.33)–(2.34) (Hauge et al., 2013b) Good N/A N/A

∗Requires extra modifications to closure relations to fit specific scenario.
†Difficulty with shut-in and liquid back-flow.

Model performance

The drift flux models, Fig. 2.5 (a), are able to give a good qualitative representation
of the kick incident. It is unclear, however, how to enable the reduced DFM to
capture a shut-in incident with liquid back-flow. This can limit the applicability of
this model in some instances.
The LOL model fails due to its inability to account for the gas position as it

percolates through the well, see Fig. 2.5 (b). The Lagrangian model is able to
amend this by using a state to track the position of the gas bubble. This model
works well for single bubble dynamics, i.e. when the duration of the influx is limited,
however, it stops working when the gas reaches the choke.
Finally, the 1-phase model does not include 2-phase dynamics and so only cap-

tures the changes in flow rate and choke opening. We note that this might still
be enough for certain control applications, although one has to handle the large
changes in the effective bulk modulus that occurs when gas enters the well.

2.6.3. Scenario 2: UBD connection

This scenario recreates the dominating dynamics of a connection in an underbal-
anced well by ramping down the liquid injection rate, keeping it at zero flow for
20 minutes, and then ramping it back up again, see Fig. 2.6 (a). This causes the
gas in the well to start replacing the liquid causing lower bottom-hole pressure and
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increased gas influx consequently resulting in an increase in the WHP.

Model performance

Again we conclude that the DFM show satisfactory performance, see Fig. 2.6 (a).
The majority of the discrepancies that can be observed between the high-fidelity
models and the DFMs are due to the large effect of differences in choke models
resulting in varying WHPs.
Due to the inability of the lumped model to capture the gas distribution ac-

curately, the hydrostatic pressure difference over the well had to be significantly
modified, see Fig. 2.6 (b). A reasonable closure relation to deal with this issue
can likely be developed with some effort. Given that this is fixed, however, the
LOL model gives a reasonable representation of the response of the bottom-hole
pressure, and consequently the increased gas influx and its corresponding increase
in WHP.

2.6.4. Scenario 3: UBD operating envelope

This scenario is inspired by the fact that an underbalanced, gas producing, well ex-
hibits very different dynamics when operating at different draw-downs, see (Aarsnes
et al., 2016c). At two hour intervals the choke opening is decremented and the well
allowed to reach steady-state. As the well nears the balance point, the WHP ex-
hibits a characteristic inverse response, and then goes overbalanced toward the very
end of the simulation, see Fig. 2.7 (a).

Model performance

In this scenario the DFMs give a largely correct representation of the behavior, and
they are able to capture the qualitative effects of the different operating regimes
(Aarsnes et al., 2016c), see Fig. 2.7 (a):

1. Intuitive regime

2. Non-intuitive regime

3. Unstable/slugging regimes close to the balance point.

4. Overbalanced regime.

There is a discrepancy, however, in regard to at which points the qualitative re-
sponse of the models change. This is determined in large part by the closure re-
lations, hence these should be tuned/adapted to the observed response or selected
with care.
The lumped model is also able to represent the difference between the intuitive

and non-intuitive response, but again the pressure drop over the well requires tuning
to obtain this, see Fig. 2.7 (b).
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(a)

(b)

Figure 2.5.: Pressure trends for Scenario 1.
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(a)

(b)

Figure 2.6.: Pressure trends for Scenario 2.
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2.6. Simulation Study

(a)

(b)

Figure 2.7.: Pressure trends for Scenario 3.
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Table 2.3.: Simulation scenarios

Scenario 1: MPD gas kick
Time: Reservoir pressure: Choke-opening:

0 minutes 200 bar Z = 6%
40 minutes 270 bar Z = 6%
50 minutes 270 bar Z = 3%

Scenario 2: UBD connection
Time: Rig pump:

0 minutes qL = 0.133 m3/s
120 minutes qL = 0 m3/s
140 minutes qL = 0.133 m3/s
240 minutes qL = 0 m3/s
260 minutes qL = 0.133 m3/s

Scenario 3: UBD operating envelope
Time: Choke opening:

0 minutes Z = 20%
120 minutes Z = 12%
240 minutes Z = 8%
360 minutes Z = 5%
480 minutes Z = 3.5%

2.7. Conclusion

This paper has considered the topic of obtaining models representing gas-liquid
flow dynamics encountered in drilling for the purpose of model based estimation
and control design. We have used the framework that a complete simulation model
is made up of a mathematical structure, closure relations and a numerical scheme,
and argued that while the qualitative behavior of the model to a large degree is
determined by the mathematical structure, the quantitative accuracy is primarily
given by the closure relations.
For model based controller and estimator design it is desirable to have simpler

models than what is obtained from general first principle considerations. Significant
simplifications necessarily entail removing equations, thus altering the mathemat-
ical structure. This can be interpreted physically as imposing instantaneous equi-
librium of certain dynamics, which yields static relations in place of the dynamic
equations removed.
Simplifications reviewed in this paper employed imposing equilibriums:

• Between two phases: interphasic relaxation.

• Between two or more spatial locations: lump dynamics.

• Overall: discard dynamics.
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Figure 2.8.: Relation between the models considered in this paper.

Using these processes one can extend the hierarchy of relaxation models derived
from the Baer-Nunziato model, shown in Fig. 2.2. Specifically, the models consid-
ered in this paper follow the simplification processes as shown in Fig. 2.8.
The literature survey combined with a simulation study that was performed

indicates that quite significant simplifications can be undertaken without removing
essential qualitative behavior required to represent two-phase drilling dynamics.
The optimal blend between accuracy and simplicity for several applications seems
to be somewhere in between the classical 3 PDE drift flux model, and the lumped
ODE models. The reduced drift flux model that has seen renewed interest in recent
years is consequently very promising.
The main challenges to be dealt with in future work are to adapt closure relations

to simplified models and investigate how these can be effectively combined with
estimation techniques. Dealing directly with PDEs for controller and estimator
design in a robust manner also remains a challenge due to the complexity of most
such proposed solutions.
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Chapter 3

A methodology for classifying operating regimes in
underbalanced drilling operations

This chapter is based on the work presented in Aarsnes et al. (2016c).

Summary

This paper proposes an extension to an existing operating envelope
technique used for underbalanced drilling to enhance control of bottom-
hole pressure and inflow parameters. Using an implementation of the
drift flux model with boundary conditions typically encountered in Un-
derbalanced Operations (UBO), a steady-state analysis of the system
is performed. Through this analysis, four distinct operating regimes are
identified and the behavior in each of them is investigated through steady-
state calculations and transient simulations. In particular, the analysis
reveals that a section of the operating envelope previously believed to be
unstable/transient is in fact stable/steady when a fixed choke opening is
used as independent variable in place of a fixed well-head pressure. This
results in the steady-state operating envelope being extended and gives
an increased understanding of the well behavior encountered in UBO
towards enabling the introduction of automated control. Finally we in-
vestigate the mechanism behind severe slugging in UBO and argue that
the cause is different from that of the slugging encountered in production
and multiphase transport.

3.1. Introduction

Recent years have seen an increasing degree of automation in Managed Pressure
Drilling (MPD) (Thorogood et al., 2010). The pay-off has been increased safety as
well as enabling the drilling of previously undrillable wells, due to tighter control of
downhole pressure (Godhavn, 2010, 2011). It is natural to believe that we will see
a similar development towards increased automation, in Underbalanced Operations
(UBO).
Unfortunately, in the context of automated pressure and flow control, the dynam-

ics of the two-phase flow encountered in UBO is significantly more complicated than
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the single-phase flow of conventional drilling: In single-phase flow any operating
point is inherently stable, transients are short and predictable and, barring cer-
tain well control incidents, operating conditions are reasonably homogeneous. By
contrast, in two-phase UBO, the distributed gas–liquid flow and the reservoir–well
interaction result in classical non-linear behavior (see Khalil (2002) for description
of non-linear behavior of dynamics systems.) such as multiple steady-states, limit
cycles and bifurcations as described by Aarsnes et al. (2014a,b); Mykytiw et al.
(2003, 2004). Hence, to enable safe and robust algorithms for automated control
to be developed for UBO, increased understanding of these phenomena, their po-
tential occurrence in UBO and the behavior of the coupled well-reservoir dynamics
are required.

3.1.1. Contribution

The main contribution of this paper is the classification of operating points in UBO.
The associated analysis done to attain this classification also yields understanding
of the behavior of the system.
More precisely, a comprehensive steady-state analysis of a Drift Flux model cou-

pled with a reservoir is performed. The dynamics of this model replicates those
which are encountered in underbalanced operations in gas dominant reservoirs. In-
vestigating the steady states of a model also reveals a lot of the transient behavior.
To this end we present an extension to the operating envelope analysis technique

presented by Graham and Culen (2004) and used by Mykytiw et al. (2004), which
have properties that are particularly beneficial from a pressure control point of view
compared to the conventional UBO operating envelope analysis technique, used in
e.g. Saponja (1998); Guo and Ghalambor (2002).
This new technique, combined with analysis tools from dynamic systems theory,

is used to investigate when the flow in the well is stable/steady and when it might
become unstable. In particular it is shown that whether a well is hydrostatic or
friction dominated (in the sense used by Saponja (1998)) is not the determining
factor for flow stability in UBO. Instead a new classification of the UBO envelope
is proposed where the part with stable flow can be identified as either an intu-
itive regime with short and well-behaved transient dynamics, or a non-intuitive
regime with an inverted response in the Wellhead Pressure (WHP). In addition an
unstable regime with no stable steady-states, an operating region with potential
slugging, and finally conventional overbalanced drilling round out the classification
to 5 distinct regimes.

3.1.2. Outline

In the next section some concepts from dynamic systems theory are introduced
which will be helpful in the later discussion on the dynamics. Next, the Drift
Flux Model at steady-state is described with the full model given in Appendix A.
Using a short transient simulation case an alternative operating envelope analysis
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technique is hypothesized and then proposed. This is then used to identify and
classify 5 distinct operating regimes in UBO, when including severe slugging as
a distinct regime (as the potential occurrence of severe slugging is not captured
directly by this technique it is given its own treatment.) This is the main result of
the paper. We end the paper with a conclusion section and some thoughts on the
potential of automatic control in light of the preceding analysis.

3.2. Stable and unstable equilibria of dynamical systems

This section introduces some well-known concepts and results from the field of
dynamic systems theory that will be useful in the following discussion. For a more
comprehensive treatment the interested reader is referred to Khalil (2002).
Consider the autonomous system

ẋ = f(x), (3.1)

where x is a vector of system states and ẋ denotes the time derivative of these
states such that the dynamics of the system are described by the function f(x). A
state x̄ is an equilibrium of (3.1) if it satisfies f(x̄) = 0. The following definition
will be of importance.

Definition 3.1. The equilibrium point x̄ of (3.1) is

• stable if, for each ε > 0, there is δ = δ(ε) > 0 such that

‖x(0)− x̄‖ < δ =⇒ ‖x(t)− x̄‖ < ε, ∀t ≥ 0 (3.2)

• unstable if it is not stable

• asymptotically stable if it is stable and δ can be chosen such that

‖x(0)− x̄‖ < δ =⇒ lim
t→∞

x(t) = x̄ (3.3)

The implication of this definition is that a system will diverge away from an un-
stable equilibrium, remain close to a stable equilibrium and converge to an asymp-
totically stable equilibrium. The following example is illustrative.

Example

Consider the pendulum system shown in Fig. 3.1. The pendulum equation can be
derived using Newton’s second law of motion and written as

θ̇1 = ω (3.4)

ω̇2 = −g
l
sin(θ)− k

m
ω (3.5)
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Figure 3.1.: Pendulum.

where θ, ω denote the angular position and velocity and k is the frictional coeffi-
cient. This system has two equilibrium points θ = 0, ω = 0 and θ = π, ω = 0.
Starting in an equilibrium point, the system will remain stationary, i.e. at steady-
state. However, for the second equilibrium point at θ = π, all trajectories starting
arbitrarily close will eventually diverge and leave the ball ‖x − x̄‖ ≤ ε. This point
clearly does not satisfy the ε− δ requirement for stability and is hence an unstable
equilibrium point. Unstable points are not uninteresting, however, since they can
be rendered stable by feedback control and yield insight into the behavior of the sys-
tem. The equilibrium at θ = 0 is asymptotically stable as nearby trajectories will
not only remain close, thus satisfying the ε − δ requirement, but converge to the
equilibrium point as time tends to infinity due to frictional damping.

3.2.1. Analysis through linearization

A well known technique in analyzing non-linear systems is to exploit the fact that,
close to an equilibrium, a system’s behavior matches closely that of its linear ap-
proximation. In fact, the stability of an equilibrium point can in most instances be
determined by checking the stability of the linearized system, as per Lyapunov’s
indirect method (Khalil, 2002). This is usually done by utilizing a classic result
which states that a linear system is unstable if one or more of its poles (i.e. zeros of
the systems characteristic equation) are in the right half plane (i.e. have a positive
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Figure 3.2.: UBD schematic.

real part) (Åström and Murray, 2010). Furthermore, two different types of unstable
poles can be identified according to their location in the right half plane.

1. Pole on the real axis in the right half plane.

2. Complex conjugate pair of poles in the right half plane,

We will in the following refer to 1. as a static instability and 2. as a dynamic
instability. Since a system can have several modes, an equilibrium can have both
static and dynamic instabilities.
Close to the equilibrium, qualitative different behavior can be discerned between

the two cases (Xu and Golan, 1989): static instabilities exhibit a simple exponential
divergence from the equilibrium, while the dynamic instability causes the system to
oscillate around the equilibrium point with an exponentially increasing magnitude.
In the case of both dynamic and static instabilities, one of them will typically
dominate the behavior.
By identifying all equilibriums of a system and determining their properties

through linear analysis, one can make predictions about the full non-linear dynam-
ics as well. However, if the system’s trajectory becomes removed from the analyzed
equilibria, the predictions from the linear approximations might become invalid.
Thus predictions on behavior should be substantiated through further analysis and
transient simulations to obtain a comprehensive understanding of the system.
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n = αgρg Gas mass variable m = α`ρ` Liquid mass variable
Wg = Anvg Gas mass rate W` = Amv` Liquid mass rate

αg Void fraction α` Liquid holdup
ρg Gas density ρ` Liquid density
vg Gas velocity v` Liquid velocity
vM Mixture velocity P Distributed pressure

Table 3.1.: List of dependent variables

3.3. The Drift Flux Model at steady-state

To model the pressure and flow dynamics in the well, we will use the Drift Flux
Model (DFM), which is a frequently used model of multi-phase flow in drilling. The
DFM requires one distributed state for each phase to model the mass balance while
the momentum of the mixture is lumped into one equation. Seminal references on
two phase flow and the DFM are Wallis (1969); Ishii (1977).
In the context of drilling, seminal work was done by Lage et al. (2000) which

concluded that the DFM formulation was “broadly validated through full-scale
experimental data”. This work was extended by Fjelde et al. (2003) who again
confirmed that a “good agreement can be observed with the experimental data”,
but also concluded that accuracy improved when using flow pattern identification
and separate closure relations for each flow pattern. This again is consistent with
the results found by Lage and Time (2002) who proposed such closure relations to
be used for drilling with a steady state DFM, and then did extensive comparisons
with experimental data.
In the present work a DFM is used with simple friction and slip correlations in-

dependent of flow patterns. This simplifies the analysis of the model, and although
the accuracy is reduced, the qualitative behavior is retained.
A description of the full Drift Flux Model is given in Appendix A. What follows

is the boundary conditions and steady-state version of the DFM equations, which
are used to calculate the operating envelope. Description of dependent variables is
given in Table 3.1 and parameters in Table 3.2.

Boundary Conditions

Let x ∈ [0, L] denote the space variable. For clarity purposes we will denote the
pressure at the boundaries as P (x = 0) = BHCP and P (x = L) = WHP. Bound-
ary conditions on the downhole boundary are given by the mass rates of gas and
liquid injected from the drilling rig and flowing in from the reservoir. Denoting the
cross-sectional flow area by A, the boundary fluxes are given as:

Amv`|x=0 = k` max(Pres−BHCP, 0) +W`,inj(t), (3.6)

Anvg|x=0 = kg max(Pres−BHCP, 0) +Wg,inj(t). (3.7)
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Description Symbol Value Unit

Area of flow A 6.8× 10−3 m2

Gas Production Index kg 5× 10−7 kg/s/Pa
Liquid Production Index k` 0 kg/s/Pa
Slip Parameter K 1.5 -
Slip Parameter S 1.0 m/s
Inclination φ(x) π/2 -
Measured Depth L 2530 m
Reservoir pressure Pres 279 bar
Reference liquid density ρ0,` 1000 kg/m3

Table 3.2.: List of parameters

Here Pres denotes the reservoir pore pressure and kg, k` are the production index
(PI) of the gas and liquid respectively. The injection mass rates of gas and liquid,
WG,inj,WL,inj, are specified by the driller and can, within some constraints, be
considered as manipulated variables. The inflow from the reservoir is dependent on
the pressure on the left boundary, usually given by a Vogel-Type Inflow performance
relationship (IPR) (Wiggins et al., 1996), but within the operational range of a
typical UBD operation, a linear approximation should suffice.
We will consider two different topside boundary conditions, corresponding to two

potential operating scenarios.

1. the WHP is set to be constant:

WHP = const. (3.8)

2. WHP is dependent on the topside liquid and gas mass rates through a valve
equation:

mv`√
ρ`

+
nvg
Y
√
ρg

∣∣∣
x=L

=
Cv

(
Z(t)

)
A

√
WHP− Ps, (3.9)

where Cv is the choke opening given by the manipulated variable Z, Y ∈ [0, 1]
is a gas expansion factor for the gas flow and Ps is the separator pressure, i.e.
the pressure downstream the choke.

3.3.1. Steady-state Equations

The model is said to be at an equilibrium, or at steady-state, when both the
boundary conditions (3.6)–(3.7) and (3.9) or (3.8), and the distributed equations
(A.2)–(A.4) with the ∂·

∂t
terms set as zero, are satisfied. That is, at steady-state we
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have:

∂mv`
∂x

= 0, (3.10)

∂nvg
∂x

= 0, (3.11)

∂P +mv2` + nv2g
∂x

= −(m+ n)g sinφ(x)− 2f(m+ n)vM |vM |
D

. (3.12)

From (3.10)–(3.11) we have that the mass flux is constant w.r.t. the variable s.
Combining this with the boundary conditions and integrating (3.12) we find that
the system at steady-state must satisfy

WHP = BHCP +

∫ L

0

−
∂mv2` + nv2g

∂s︸ ︷︷ ︸
Acceleration

− (m+ n)g sinφ(x)︸ ︷︷ ︸
Gravity

− 2f(m+ n)vM |vM |
D︸ ︷︷ ︸

Friction

dx,

(3.13)

Amv` = k` max(Pres−BHCP, 0) +W`,inj(t), (3.14)

Anvg = kg max(Pres−BHCP, 0) +Wg,inj(t), (3.15)

and the topside boundary condition (3.8) or (3.9).

3.4. UBD operating envelope

In UBD well engineering, using a steady-state multiphase flow simulator is a popular
approach to develop an operating envelope, or operating window. This allows the
engineer to gauge the WHP and injection rates required to achieve the desired
BHCP as well as satisfying hole cleaning requirements. Publications referring the
use of such a technique are also numerous, see e.g. Saponja (1998); Guo and
Ghalambor (2002); Udegbunam et al. (2013); Nguyen et al. (2009); Suryanarayana
et al. (2006); Guo (2002); Pickles et al. (2004).
In the following, we consider an example case to illustrate the failure of the

conventional operating envelope to predict stability of certain equilibria due to the
assumption of constant WHP. An alternative approach that amends this problem
is then proposed. For the case considered, no gas injected and no liquid produced
(i.e. a constant liquid rate and pressure dependent gas rate), is assumed. See Table
3.2 for full list of parameter values used.

3.4.1. Conventional operating envelope analysis

The conventional way of developing the operating envelope is to assume a fixed
WHP, thus satisfying (3.8), and then specify a gas mass-rate nvG and solve (3.13)–(3.14)
to find the corresponding BHCP. This is then repeated over a range of gas mass
rates thus creating the Tubing performance curve (see. Fig. 3.3). This curve gives
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Figure 3.3.: Stable and unstable equilibrium in an UB operation.

the potential steady-state operating points of the well. To find the actual equilib-
ria of the system we need to overlay the solution of equation (3.15), which is the
inflow performance relationship (IPR) curve. The intersection points of these two
curves corresponds to an equilibrium, as it indicates that the full set of equations
(3.8),(3.13)–(3.15) are satisfied. These equilibria can be either stable or unstable,
see Definition 3.1.
In Fig. 3.3, there are two intersection points, but only one of these is stable

and a suitable operating point. By inspecting the curves we see that for gas rates
where the IPR curve is above the ’Tubing Performance’ curve, the well is not in
a steady-state but tends to a higher gas rate and vice versa, see Fig. 3.4. The
intersection point denoted by the red dot, then, is unstable: a slight perturbation
from this point to an increased BHCP would cause a reduced gas inflow further
increasing the BHCP. Vice versa, for a slight decrease in BHCP, the increased
gas-influx will displace the liquid in the well further decreasing BHCP and causing
yet more gas influx. Hence this is an unstable equilibrium caused by a statically
unstable pole, from which nearby trajectories will diverge.
For the steady-state denoted by the green dot, the intersection between the two

curves is in the opposite direction making this an attractive (i.e. stable) equilibrium.
In the field, changing BHCP is typically achieved by controlling the WHP. The

effect of changing the WHP for the current scenario can be seen in Fig. 3.5, where
the well will tend to the intersection denoted by the green dot for the ’Tubing
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Figure 3.4.: Dynamics of an unstable and a stable equilibrium.

Figure 3.5.: Highest achievable BHCP with a constant WHP.

Performance curve’ corresponding to the current WHP. Hence, according to this
analysis, the highest underbalanced BHCP at a stable steady-state that can be
achieved for this well by changing the WHP is 235 bar achieved with a WHP of 58
bar. Enforcing a WHP higher than this will lead to the well becoming overbalanced.

3.4.2. Alternative technique

In this section we present an alternative approach to finding equilibria in under-
balanced operations. The basis is similar to the techniques used by Mykytiw et al.
(2004); Graham and Culen (2004), but where these papers concluded that (what
we call) the non-intuitive regime is unstable, we show that this only is true when
using a constant WHP, i.e. (3.8), as a boundary condition. When we control by
setting a fixed choke opening instead, i.e. using (3.9), the stable regime is expanded
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Figure 3.6.: Transient simulation with decreasing choke opening.

as will be shown in the following.

Transient Simulation

To give an impression of the thinking behind this approach, consider a transient
simulation of the same well studied in the previous section but with the topside
boundary condition (3.9), see Fig. 3.6. Again, the injected liquid rate is kept
constant, the gas rate is dependent on the BHCP according to (3.15) and the only
manipulated variable is the choke opening. Note that the effect of changing the
choke opening is to change the WHP required to have a given mass-rate flowing
out of the well as given by (3.9).
Initially, the choke opening is set to a (see Table 3.3) and is changed (slightly

closed) to b,c and d after 3,6 and 10 hours. When the choke opening is changed,
there is a transient period before the pressure settles to the new steady-state. We
note the qualitatively different responses for each of the changes in choke opening.
For the change from a to b, both the WHP and BHCP increase as the choke opening
is decreasing, as expected. For the decrease in choke opening from b to c, however,
after an initial increase in WHP, a counter-intuitive response follows, where the
WHP decreases and settles at a lower value than the previous equilibrium. Finally,
when the choke opening is set to d after 10 hours the system drifts to overbalance.
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Time: 1–3[h] 3–6[h] 6–10[h] 10–12[h]
Choke opening: a=12% b=10% c=8.5% d=7%

Table 3.3.: Choke stepping program.

Steady-State Analysis

It is clear that this transient behavior cannot be fully understood by the conven-
tional operating envelope analysis, and the reason for this is the failure of that
method to take the effect of the back-pressure choke, (3.9), into account. Specif-
ically, the conventional operating envelope analysis considers the WHP as the in-
dependent (i.e. exogenous) variable when in practice, the choke opening is the
independent variable, which allows for including (3.9).
Instead, to understand this behavior, we return to the steady-state equations of

the DFM, but, following the suggestion of Graham and Culen (2004), we combine
the Tubing performance curve and the IPR to plot the curve shown in Fig. 3.7.
The blue WHP curve in this figure is calculated by fixing the BHCP, figuring out
the inflow rates using (3.14)–(3.15), and then finding the corresponding WHP by
integrating (3.13). Equilibria can then be found by overlaying either (3.8) (which
corresponds to Fig. 3.7) or (3.9) (corresponding to Fig. 3.8) according to which
the boundary condition is enforced.
By comparing Fig. 3.7 to Fig. 3.5, it is seen that the same equilibria points

are identified by both approaches. However, to understand the behavior from the
transient simulation, the boundary condition with the back-pressure choke, i.e.
(3.9), must be enforced. Overlaying (3.9) with the values in Table 3.3 yields Fig.
3.8. Again, for certain choke openings such as c, there are multiple points of
intersection between the curves and correspondingly multiple equilibria. These
can be checked for static instabilties in a similar fashion as for the conventional
technique: When the red line is below the blue line, there is more mass flowing
out of the well than into the well and BHCP will decrease and vice versa. Hence,
we can identify the qualitative behavior of the system and heuristically determine
the stability or instability of the equilibria (Note that this heuristic is only able to
detect static instabilities.), see Fig. 3.9. In this figure the behavior of the well is also
indicated by the arrows: if the well is initiated with a BHCP lower than that which
corresponds to the unstable equlibrium, we see that the red curve is below the blue
and the system moves to a lower BHCP corresponding at the stable equlibrium
indicated by the green dot. Thus the behavior of the transient simulation shown in
Fig. 3.6 can be understood from Fig. 3.8.
Considering the transient simulation (Fig. 3.6) in the context of Fig. 3.8, we

see that moving from choke opening a to b, we have an intuitive response as the
system moves to the apex of the steady-state WHP curve. Moving to choke open-
ing c, however, results in a decreased steady-state WHP as indicated by Fig. 3.8,
and finally at d there are no intersections between the two curves at underbal-
anced BHCPs and the well moves to the only equilibrium which is in overbalanced
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Figure 3.7.: Operating envelope technique as suggested by Graham and Culen (2004).

Figure 3.8.: Effect of using a valve equation at the boundary.
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Figure 3.9.: Characterising equilibria and transient response.

conditions.

3.5. Classification of operating regimes

Using the techniques presented in the previous section, 4 distinct regimes for the
UBD well in question can be identified, see Fig. 3.10. In addition, there is a fifth
regime caused by a dynamic instability which is characterized by a severe slugging
limit cycle. This is investigated in a later section.

Intuitive regime

This regime corresponds to BHCPs below (i.e. left in Fig. 3.10) the apex of the
WHP curve. The well in this regime is stable and well behaved without exhibiting
inverse responses.

Non-intuitive regime

In this regime the well exhibits inverse response in the WHP compared to BHCP. To
explain this phenomenon, consider the following approximation of (3.13), obtained
by neglecting the acceleration term:

BHCP = F +G+WHP, (3.16)
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Figure 3.10.: The four distinct operating regimes.

where F denotes the integrated frictional pressure drop and G the hydrostatic
pressure. Let ∆ denote a steady-state change in value. We have

∆WHP = ∆BHCP−∆F −∆G, (3.17)

=⇒ ∆WHP

∆BHCP
= 1− ∆F

∆BHCP
− ∆G

∆BHCP
. (3.18)

Inserting (3.15):

∆WHP

∆Wg

= − 1

kg
− ∆F

∆Wg

− ∆G

∆Wg

. (3.19)

Hence we get the non-intuitive response when1

1

kg
+

∆F

∆Wg

+
∆G

∆Wg

< 0, (3.20)

and the apex of the curve in Fig. 3.10 corresponds to the point when the left side
of (3.20) equals 0. Note that this condition is different from the one typically used

1Unfortunately this criterion requires a steady-state model of the well to find ∆F
∆Wg

; ∆G
∆Wg

, and

cannot be computed explicitly from well parameters alone.
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to identify a hydrostatically dominated well, which is:

∆(BHCP−WHP)

∆Wg

< 0 (3.21)

=⇒ ∆F

∆Wg

+
∆G

∆Wg

< 0. (3.22)

We emphasize that the determining factor for the behavior of the well is condition
(3.20) and not (3.22).
In this non-intuitive regime the pressure settles at a lower value, but since the

system’s initial response is an increase (see. Fig. 3.6) we get an inverse response
in the WHP. This phenomenon is referred to as the system being non-minimum
phase in systems theory. Because of this non-minimum phase response, the BHCP
should not be controlled on WHP in this regime. This is why steady-states in this
regime appear unstable when the conventional technique shown in Fig. 3.5 is used.
In this regime, BHCP should be controlled on choke opening.

Unstable regime

For larger values of BHCP, there are no stable equilibria. Closing the choke further,
e.g. from c to d, will cause the well to enter a limit cycle of severe slugging or drift
towards the steady-state in overbalanced conditions.
We note, however, that there are nominally unstable equilibria in this regime

which can be made stable through automatic feedback control of the choke using
BHCP measurements, i.e. by creating the appropriate dynamic mapping Z(t) =
C(BHCP). Thus, the UBD operating envelope can be extended, which would
enable performing UBO on wells with tight margins between fracture and collapse
pressure or with stringent limits on the amount of gas that can be flared.

Overbalanced regime

In this regime, for the given well, the system contains only liquid, which makes the
difference BHCP − WHP constant. Hence all steady-states are stable with short
predictable transients.

3.5.1. Identifying operating regime

As was shown, the operating envelope can be extended by using the choke opening
as the independent variable in place of WHP. While keeping the well under control
in this manner, the well’s operating regime can be identified by reducing the choke
opening and observing the corresponding change in WHP (see Fig. 3.6). In the
intuitive region far from the apex of the WHP curve (see fig. 3.10), the well quickly
goes to steady-state after the change, without any overshoot and with an increase in
steady-state WHP. Closer to the apex of theWHP curve (and thus closer to the limit
to the non-intuitive region), the well will need more time to reach steady-state and

66



3.5. Classification of operating regimes

Figure 3.11.: Block diagram of the feedback loop which potentially causes instability.

the WHP response will have an overshoot. In the non-intuitive regime, the WHP
will have an inverse response, and the well will need increasingly more time to reach
steady-state as the limit to the unstable regime or severe slugging is approached.

3.5.2. Validity of stability heuristic

In the previous sections, the stability of an equilibrium was determined by a heuris-
tic using the direction the steady-state curves of the operating envelope cross each
other, which is thus only able to detect static instabilities. A more rigorous way of
determining stability is to use the well-known Nyquist stability criterion, see e.g.
Åström and Murray (2010).
To use this criterion, we need to linearize the system and derive the Loop Trans-

fer function of a known stable loop. Assuming a well with constant choke opening
and constant gas and liquid mass rates entering at the bottom to be stable, we can
analyze the system by breaking the loop between the reservoir and the well, see
Fig. 3.11. In this block diagram, G0(s) denotes the linearized system dynamics
between a gas mass rate entering at the bottom of the system and the BHCP. By
closing the loop with the IPR, we obtain the full system with the boundary con-
ditions discussed previously. Hence, we can evaluate the stability of the system by
employing the Nyquist criterion on the Loop Transfer function of G0(s) multiplied
with the linearized IPR, here denoted by kg.
The loop transfer function is derived in Appendix 3.A, while the Nyquist criterion

is restated in Appendix 3.B. Using this theorem we can investigate the validity
of the heuristic. Consider again the equilibria shown in Fig. 3.9. The Nyquist
contours corresponding to the two underbalanced equilibria are shown in Fig. 3.12.
The equilibrium denoted as unstable has several encirclements of the −1 point (i.e.
the complex number −1 + 0j), meaning it is in fact unstable, thus confirming the
heuristic in this case.
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Figure 3.12.: Comparison of the Nyquist contours.

3.6. Choke opening sensitivity analysis

When controlling the BHCP by manipulating the opening of the back-pressure
valve, either through an automatic algorithm or with a “bloke on the choke”, it is
desirable to understand how the well reacts to this actuation. This is shown in Fig.
3.13. The steady-state values of BHCP and WHP (i.e. the green and red dots in
Fig. 3.9) are plotted over a range of choke openings given on the x-axis.
Consider a well initially in the overbalanced regime. Closing the choke will cause

the system to move along the red line until a choke opening of 8%. This corresponds
to a choke opening where the red dotted line in Fig. 3.8 is below the WHP minimum
occurring at the transition to underbalanced conditions. The system will then move
to the stable steady-states given by the blue curve in Fig. 3.13. Reducing the
choke opening when the system is in this state will make it move along the blue
curve. The end of the blue curve, moving towards left, is the limit of the stable
regime. Closing the choke past this point will either cause the system to go to the
overbalanced regime or enter a severe slugging limit cycle.

3.7. Dynamic instability: severe slugging in UBO

As have been discussed above, an equilibrium must be checked for dynamic instabil-
ities to guarantee a stable operating point. For the considered UBO scenario, where
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Figure 3.13.: Control envelope showing steady-state points plotted against choke opening. The
system shows a hysteresis-like behaviour in that it will converge to different steady-
states depending on whether the system is over- or under-balanced.
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the liquid rate is constant and the gas rate is dependent on drawdown, there have
been reports from the field by Graham and Culen (2004); Mykytiw et al. (2004), of
instabilities associated with low gas rates leading to a limit cycle of severe slugging.
(Note that by severe slugging we mean a violent, low frequency cycling between
long liquid slugs and a high gas flow rate, and not a slug flow pattern.) In recreating
this behavior in simulations it was found that the severe slugging could occur even
when there was no static instability. This leads us to conclude that the instability
associated with this severe slugging is caused by a dynamic instability.
In the literature, we find that there can be different mechanisms for severe slug-

ging, e.g.: terrain slugging (Jansen et al., 1996; Taitel, 1986), casing heading
(Eikrem et al., 2006, 2008) and density-wave (Sinegre, 2006; Hu, 2004). How-
ever, none of these mechanisms matches exactly with the boundary conditions of
constant liquid rate and drawdown-dependent gas rate, which are explored in this
paper.
Thus it seems that this particular mechanism for severe slugging in UBD has not

been extensively studied in the literature and hence is not yet clearly understood.
It is, however, known to be associated with low gas rates, meaning it tends to
occur close to the balance point. Furthermore, it seems to be caused by increases
in WHP due to gas flowing out through the choke. Thus keeping WHP constant
would remove the slugging but would initiate a static instability instead if the well
is in the non-intuitive regime.
To recreate slugging with the DFM, the back-pressure choke equation (3.9) with

a very small Y is required. The effect of this is that variations in gas flow through
the choke cause large changes in WHP. The operating envelope of a well that
exhibits slugging is shown in Fig. 3.14, here Y = 0.025 was used. Fig. 3.14
also shows the Required WHP curves of two slightly different choke openings: one
which corresponds to a stable equilibrium and one that has a dynamic instability.
With such a low Y constant, the unstable regime discussed in the previous section,
caused by the static instability, is avoided due to the steepness of the Required WHP
curves. Instead the occurrence of severe slugging becomes possible. To evaluate
the stability of these equilibria, we again find the loop transfer function using the
method described in Appendix 3.A and the Nyquist theorem from Appendix 3.B.
The loop transfer functions and the Nyquist contours of the linearized systems

obtained around the two equilibria are shown in Fig. 3.15. The loop transfer
function shows the frequency domain response of the system to an impulse of in-
creased gas influx. In the Nyquist plot we see that the slugging instability in this
case is caused by two unstable modes in the 2 × 10−3–1 × 10−2 (rad/s) frequency
range. This is consistent with the transient simulation shown in Fig. 3.16 where
the slugging has approximately a 20 minute period, which corresponds to 5× 10−3

(rad/s).
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Figure 3.14.: Operating envelope showing the equilibria at the transition to severe slugging.

3.8. Summary and conclusions

In this paper, an operating envelope technique for analyzing dynamics encoun-
tered in UBO is presented. Using this technique we are able to identify 5 distinct
operating regimes:

• Intuitive regime with short and intuitive transient dynamics, associated with
high gas rates.

• Non-intuitive regime with an inverted Wellhead Pressure (WHP) response,
associated with low to mid-range gas rates.

• Unstable regime, static instability, with no stable steady-states due to a static
instability, associated with low gas rates.

• Unstable regime, severe slugging, with no stable steady-states due to the well
tending to a severe slugging limit cycle, caused by dynamic instability, asso-
ciated with low gas rates.

• Overbalanced regime, with no reservoir influx and stable steady-states.

The accompanying analysis reveals that an important factor deciding the behav-
ior of an underbalanced gas well is not whether the well is frictionally or hydro-
statically dominated, but instead the limit between the intuitive and non-intuitive
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Figure 3.15.: Loop transfer functions (top) and Nyquist plot (bottom) of well entering a severe
slugging limit cycle by decreasing the choke opening.
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Figure 3.16.: Transient simulation of the well entering a slugging limit cycle when changing choke
opening at 3 hours.

regimes, given by the point when

1

kg
+

∆F

∆Wg

+
∆G

∆Wg

= 0. (3.23)

Another important determining factor for the behavior are the limits to the two
unstable regimes. It can be shown that both a steep and flat slope of the ’Required
WHP’ curve of the back-pressure choke can cause instabilities:

• A static instability in the case of a flat curve, see Fig. 3.9 and 3.12.

• A dynamic instability causing severe slugging in the case of a steep curve, see
Fig. 3.14 and 3.15.

The location of the limits to these two regimes will typically be uncertain, but
it was shown that they are both associated with low gas rates, and some insight
can be gained by deriving the loop transfer function and employing the Nyquist
stability criterion, as described in Appendices 3.A and 3.B.

3.8.1. Potential for automatic control

The analysis and classification provided in this paper could serve as a decision
support tool to identify operating conditions and anticipate the behavior of the
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system. This should allow operators to avoid counter-productive operation of the
choke, as is reported in Graham and Culen (2004).
An even more promising line of future research, however, is the potential for

automatic control. There are many examples from other industries where feedback
control has been utilized to turn a nominally unstable equilibrium into a stable one
(see e.g. Krstic et al. (1995)), hence making it a possible operating point.
By stabilizing the unstable regions with feedback control, UBO could be per-

formed arbitrarily close to the balance point, thus avoiding excessive flaring of pro-
duced gas and enabling underbalanced drilling of wells with low collapse margins.
Conceptually, stabilizing an underbalanced well can be understood as analogous
to controlling a pendulum at the upper equilibrium: straightforward to do with
an actuator controlled with feedback from position measurements, but possibly
challenging and tiring if done manually. This topic will be investigated in future
publications.

Appendix

3.A. Loop Transfer Function derivation

The goal of this section is to develop the system’s transfer functions of various
input/output configurations of interest. To do this, following the lines of Aarsnes
et al. (2014c); Aarsnes and Aamo (2016), we linearise the system around a steady-
state profile and take the Laplace transform of the system with regards to time.
We then obtain a third order linear, but space variant, ODE in space. This ODE
must be solved for its boundary conditions. There are two boundary conditions
on the left (downhole) boundary and one on the right (topside). Hence we must
obtain the transition matrix to transport the basis of the solution from the right
side to the left (or vice versa) to obtain the specific solution.

3.A.1. Linearization

The system (A.2)-(A.4) with boundary conditions (3.6)-(3.9) can be written on the
quasilinear form

∂q(x, t)

∂t
+ A

(
q(x, t)

)∂q(x, t)
∂x

= S(q(x, t)), (3.24)

with boundary conditions

h1
(
q(0, t), U(t)

)
= h2

(
q(0, t), U(t)

)
= h3

(
q(L, t), V (t)

)
= 0, (3.25)

where q =
[
m n I

]
is the state vector and the actuation acts through the exoge-

nous variables U(t) =
[
W`,inj Wg,inj

]T
and V (t) = Z.
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Let q̃(x, t) = q(x, t) − q̄(x) denote the distance from some equilibrium profile q̄.
Close to this equilibrium profile the dynamics of the system can be approximated
by the linear system (Di Meglio, 2011)

∂q̃(x, t)

∂t
+ A

(
q̄(x)

)∂q̃(x, t)
∂x

=

[
−∂A
∂q

· q̄′(x) + ∂S

∂q

]
q=q̄

q̃(x, t), (3.26)

where we have used the fact that the equilibrium satisfies

A(q̄)q̄′(x) = S(q̄). (3.27)

Also, note the notation:

∂A

∂q
· q̄′(x)

∣∣∣
q=q̄

=

[
∂A

∂m
m̄′(x) +

∂A

∂n
n̄′(x) +

∂A

∂I
Ī ′(x)

]
q=q̄

. (3.28)

Taking the Laplace transform of (3.26) in time, denoting the Laplace variable by
s we get the following ODE in space

∂q̃(x, s)

∂x
= Ā(x, s)q̃(x, s), (3.29)

Ā(x, s) ≡ A−1(q̄)

[
−∂A
∂q

· q̄′(x) + ∂S

∂q
− sI3×3

]
q=q̄

. (3.30)

3.A.2. Numerical solution

Since (3.29) is a linear ODE we can superimpose solutions to construct the transi-
tion matrix. This is done by solving the system (3.29) from x0 to x1 three times
with the initial conditions:

q̃1(x0, s) =

10
0

 , q̃2(x0, s) =

01
0

 , q̃3(x0, s) =

00
1

 . (3.31)

The solutions, denoted as q̃1(x1, s), q̃
2(x1, s), q̃

3(x1, s), make up the transition ma-
trix:

Φ(x1, x0) =
[
q̃1(x1) q̃2(x1) q̃3(x1)

]
, (3.32)

which has the property

q̃(x1, s) = Φ(x1, x0)q̃(x0, s). (3.33)
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3.A.3. Boundary Condition

Consider the following linearisation of the boundary conditions

∂h1
∂q

q̃(0, s) = −∂h1
∂U

Ũ(s), (3.34)

∂h2
∂q

q̃(0, s) = −∂h2
∂U

Ũ(s), (3.35)

∂h3
∂q

q̃(1, s) = −∂h3
∂V

Ṽ (s), (3.36)

where the partial derivatives are evaluated at q = q̄, U = Ū , V = V̄ . Using the
derived transition matrix we can write these in matrix form

q̃(0, s) =


∂h1

∂q
∂h2

∂q
∂h3

∂q
Φ(1, 0)


−1 −∂h1

∂U
Ũ(s)

−∂h2

∂U
Ũ(s)

−∂h3

∂V
Ṽ (s)


U=Ū

V =V̄
q=q̄

. (3.37)

The states at other positions can be obtained using (3.33).

3.A.4. Transfer function

Finally, we can obtain the desired transfer functions. Considering the output g(q)
with perturbations denoted g̃

(
q(0, s)

)
= g
(
q(0, s)

)
− g
(
q̄(0)

)
, the transfer function

from e.g. the choke input Z(s) = V (s) is given as

g̃

Z̃
(s) =

∂g

∂q


∂h1

∂q
∂h2

∂q
∂h3

∂q
Φ(1, 0)


−1  0

0
−∂h3

∂V


U=Ū

V =V̄
q=q̄

. (3.38)

3.B. The Nyquist Stability Criterion

Assuming that for constant influx rates of gas and liquid the DFM is stable, the
cause for the potential instability must be the interaction between the dynamics in
the well and the Inflow Performance Relationship (IPR), see Fig 3.11.
Stability of an equilibrium point can be determined by checking the stability of

the linearized system, as per Lyapunov’s indirect method (Khalil, 2002). Hence
we can determine the stability of equilibria encountered in UBD by employing
the Nyquist criterion on the loop transfer function developed in Appendix 3.A. A
restatement of the Nyquist criterion is as follows (Åström and Murray, 2010):

Theorem 3.1. Let G0(s)kg be the loop transfer function for a negative feedback
system (as shown in Fig. 3.11) and assume that G0(s)kg has no poles in the closed
right half-plane (Re s ≥ 0) except for single poles on the imaginary axis. Then
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the closed loop system is stable if and only if the closed contour given by Ω =
{G0(jω)kg : −∞ < ω < ∞} ⊂ C has no net encirclements of the critical point
s = −1.
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Chapter 4

A Simplified Two-Phase Flow Model Using a
Quasi-Equilibrium Momentum Balance

This chapter is based on the work presented in Aarsnes et al. (2016b).

Summary

We propose a novel simple model of two-phase gas-liquid flow by im-
posing a quasi-equilibrium on the mixture momentum balance of the
classical transient drift-flux model. This reduces the model to a sin-
gle hyperbolic PDE, describing the void wave, coupled with two static
relations giving the void wave velocity from the now static momentum
balance. Exploiting this, the new model uses a single distributed state,
the void fraction, and with a suggested approximation of the two re-
maining static relations, all closure relations are given explicitly in, or
as quadrature of functions of, the void fraction and exogenous variables.
This makes model implementation, simulation and analysis very fast,
simple and robust. Consequently, the proposed model is well-suited for
model-based control and estimation applications concerning two-phase
gas-liquid flow.

4.1. Introduction

Multi-phase flow simulation models have evolved significantly over the last couple of
decades. With the increase in computational power and sophistication of numerical
schemes, simulating two-phase pipe flow no longer suffers the same limitations
on computational size, and state of the art high-fidelity models such as OLGA
(Bendiksen et al., 1991) and LedaFlow (Danielson et al., 2011) typically run many
times faster than real-time on a standard desktop computer.
Before this development, however, significant efforts were devoted to obtaining

simplifications of multi-phase flow models which could ease implementation and
increase their simulation speed. The Drift Flux Model (DFM) (Ishii, 1977) was
first proposed by Zuber and Findlay (1965) as a correlation for predicting steady-
state void-fraction profiles and later used in transient representations of two-phase
flow (Pauchon and Dhulesia, 1994). In this form it is a simplification of the tran-
sient two-fluid model obtained by relaxing (i.e. imposing immediate steady-state
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on (Fl̊atten and Lund, 2011)) the dynamic momentum equation of each phase, re-
placing them with a mixture momentum equation and a static relation typically
called a slip law.
Further simplification can be achieve by using a similar approach to other parts

of the dynamics deemed insignificant for the application at hand. Specifically,
by imposing steady state on the momentum balance, the pressure wave dynamics
are neglected, yielding so-called “No Pressure Wave” (NPW) models or “Reduced
DFMs”. This simplification is motivated by applications for which slow gas prop-
agation dynamics are more critical than fast pressure wave propagation. Further-
more, it has been shown that the validity of the Drift-Flux models representation
of the fast pressure dynamics is imprecise in many scenarios due to the relaxation
involved in the full formulation of Baer and Nunziato (1986) which lowers the sonic
velocity (Fl̊atten and Lund, 2011; Linga, 2015). Thus, if the “medium” complexity
DFM representation of the pressure waves is imprecise, the argument can be made
that they could be discarded.
This approach was used by Taitel et al. (1989) where the resulting model was

described by a single transient PDE of the liquid continuity, obtained by assuming
incompressible liquid, and a set of steady-state relations. The resulting model
was further investigated by Minami and Shoham (1994) where it was found to be
amenable for certain scenarios. The approach was expanded upon by Taitel and
Barnea (1997), where the assumption of incompressible liquid was dropped, yielding
two transient equations. A similar model was investigated by Masella et al. (1998),
here called the “No Pressure Wave” (NPW) model. More recent additions to the
literature on models using quasi-equilibrium momentum balance include Choi et al.
(2013); Aarsnes et al. (2015); Ambrus et al. (2015).
Interestingly, many of these recent studies have not been motivated by the desire

to reduce computational complexity. Rather, the advent of computerized automa-
tion and optimization in the oil and gas industry has created new applications for
various forms of simplified models, causing renewed interest in these models.

4.1.1. Application

Modern approaches to process monitoring, optimization and control promise to en-
hance the robustness and performance of automation through the merger of process
knowledge encoded in mathematical models with real-time measurements (Aarsnes
et al., 2016d). By intelligently combining predictions from the mathematical model
with information from multiple sensors one can estimate unmeasured quantities, op-
timize automatic control procedures, predict future behavior, and plan countermea-
sures for unwanted incidents. Such design techniques, often referred to as model-
based estimation and control (Åström and Murray, 2010; Anderson and Moore,
1990), require a mathematical model with the proper balance between complexity
and fidelity, i.e. the complexity must be limited to facilitate the use of established
mathematical analysis and design techniques, while the qualitative response of the
process is retained.
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Models that achieve such balance between complexity and fidelity are sometimes
referred to as fit-for-purpose models. Obtaining such models often proves difficult
for gas-liquid two-phase dynamics due to the significant complexity and distributed
nature of multi-phase pipe flow (Aarsnes et al., 2014b, 2016c).
If the appropriate model can be developed, however, it could see a wide range of

uses in model-based control and estimation applications where two-phase pipe flow
is encountered, such as underbalanced drilling of oil and gas wells (Pedersen et al.,
2015), well control (both in conventional and Managed Pressure Drilling) (Carlsen
et al., 2008), riser gas handling (Hauge et al., 2015), hydrocarbon production mon-
itoring (Bloemen et al., 2006; Teixeira et al., 2014) and mitigating severe slugging
during hydrocarbon production (Eikrem et al., 2008; Esmaeil and Skogestad, 2011;
Di Meglio et al., 2010).

4.2. The Drift Flux Model

In applications where the flow regime is most often bubble or slug flow, such as
in drilling, the preferred model for representing one-dimensional two-phase flow
dynamics at an acceptable fidelity is the classical three-state transient Drift Flux
Model (DFM), see e.g. Lage and Time (2000); Fjelde et al. (2003); Aarsnes et al.
(2014b).
For certain boundary conditions, the existence of solutions has been proven (Evje

and Wen, 2013, 2015), and it is well known that the DFM is, in most practical
situations, hyperbolic, with three (two fast and one slow) characteristic velocities
(Di Meglio, 2011). The two fast characteristics represent the fast pressure dynamics
in the pipe, while the slow characteristic velocity is associated with the transport
of matter, also sometimes referred to as the void wave (Lorentzen and Fjelde, 2005;
Masella et al., 1998).
In this section we restate the classical equations of the transient drift-flux model

and then cast the system in canonical form using the eigenvectors of the transport
matrix, which poses the model as a single Riemann invariant governing the prop-
agation of the void wave, coupled to the pressure dynamics, given by two PDEs,
through the gas velocity. We then show how the approximation employed by e.g.
Masella et al. (1998); Choi et al. (2013), using a static relation in place of a dy-
namic momentum balance, is related to relaxing both of the two PDEs describing
the pressure dynamics. Consequently this leads to a mixed hyperbolic/parabolic
system with one hyperbolic PDE with one finite eigenvalue.

4.2.1. The Drift Flux Model equations

We start the development of the proposed two-phase model from the classical Drift
Flux Model (DFM) formulation, described by the following equations (Gavrilyuk
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and Fabre, 1996; Evje and Wen, 2015):

∂(α`ρ`)

∂t
+
∂(α`ρ`v`)

∂x
= Γ`, (4.1)

∂(αgρg)

∂t
+
∂(αgρgvg)

∂x
= Γg, (4.2)

∂(α`ρ`v` + αgρgvg)

∂t
+
∂(P + αgρgv

2
g + α`ρ`v

2
` )

∂x
= S, (4.3)

where the independent variables t, x represent time and position along the pipe,
respectively, and the momentum source term, S is typically given as

S = −ρMg sin θ(x)−
2fρMvM |vM |

D
(4.4)

with the mixture relations

ρM = αgρg + α`ρ`, vM = αgvg + α`v`, (4.5)

and where αi, vi, ρi,Γi denote the volume fraction, velocity, density and mass source-
term, respectively, of phase i = g, ` (gas or liquid). Finally, f is the friction coeffi-
cient, D the hydraulic diameter, g is the acceleration of gravity and θ is the pipe
inclination angle (relative to the horizontal). For the remainder of this section we
will assume Γ` = Γg = 0.
Eqs. (4.1)-(4.2) represent the mass balance for the liquid and gas phases, while

(4.3) is the conservation of momentum for the gas-liquid mixture.
The following closure relations are needed to complete the system:

α` + αg = 1, P = c2gρg, (4.6)

where P is the pressure, and cg is the velocity of sound in the gas, while the liquid
is assumed incompressible. Finally the slip law

vg =
vM

1− α∗
`

+ v∞ = C0vM + v∞ (4.7)

where the profile parameter α∗
` ∈ [0, 1), usually given as the distribution param-

eter C0 = 1/(1−α∗
`), and drift parameter v∞ ≥ 0 determine the relative velocity

between the phases. These parameters typically depend on factors such as superfi-
cial velocities and inclination (Shi et al., 2005). Multiple correlations for obtaining
α∗
` , v∞ exist in the literature, see e.g. Zuber and Findlay (1965); Bhagwat and

Ghajar (2014); Choi et al. (2012).

4.2.2. Variable Change

To better highlight interesting features of the model, we rewrite (4.1)–(4.3) using
a transformation in accordance with Gavrilyuk and Fabre (1996) to obtain a new
set of variables

(χ`, ρ, vg) =

(
(α` − α∗

`)ρ`
ρM − α∗

`ρ`
, ρM − α∗

`ρ`, vg

)
. (4.8)
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The resulting equations allow the quasilinear formulation

∂u

∂t
+ A(u)

∂u

∂x
= Q(u), u =

χ`

ρ
vg

 , (4.9)

with A(u) given as

A(u) =

 vg 0 0
0 vg ρ

A31(u) A32(u) A33(u)

 , (4.10)

A31(u) ≡ c2g
ρg(u)− ρ`
αg(u)ρ`

−
(
vg − v`(u)

)2
, (4.11)

A32(u) ≡ c2g
(1− α∗

`)ρg(u)

αg(u)ρ2
−
(
vg − v`(u)

)2χ`

ρ
, (4.12)

A33(u) ≡ vg − 2χ`(vg − v`(u)), (4.13)

and

Q(u) =

 0
0

Q(u)

 , (4.14)

Q(u) = −
(
1 +

α∗
`ρ`
ρ

)(
g sin θ

+
2f
(
(1− α∗

`)vg − v∞
)
|(1− α∗

`)vg − v∞|
D

)
, (4.15)

where all dependent variables are in boldface.
For the case of a vanishing liquid mass source term Γ` = 0, the first state χ` is a

Riemann invariant : it satisfies a pure transport equation at the velocity vg. The
eigenvalues of the transport matrix, A(u), are (Di Meglio, 2011):λ1λ2

λ3

 =

 vg
vg + χ`

(
v`(u)− vg) + cM(u)

vg + χ`

(
v`(u)− vg)− cM(u)

 , (4.16)

with the mixture sound velocity

cM(u) =

√
χ`(χ` − 1)

(
vg − v`(u)

)2
+

(1− α∗
`)c

2
gρg(u)

αg(u)ρ
, (4.17)

and the left eigenvectorsl1l2
l3

 =

 1 0 0
A31(u)
A32(u)

1 ρ
χ`(vg−v`(u))+cM (u)

A31(u)
A32(u)

1 ρ
χ`(vg−v`(u))−cM (u)

 . (4.18)
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We note from this derivation that vg shows up as an eigenvalue in the transport
matrix and that the void wave dynamics are relatively simple due to our state trans-
formation. The relations for the fast pressure dynamics are much more complicated
and challenging to work with. In particular, finding a diagonalizing transformation
of the system is not feasible, if at all possible.

4.2.3. Relaxation of the distributed pressure dynamics

Multiplying (4.9) with the left eigenvectors yields:

l1(u)
[∂u
∂t

+ λ1(u)
∂u

∂x
−Q(u)

]
= 0 (4.19)

l2(u)
[∂u
∂t

+ λ2(u)
∂u

∂x
−Q(u)

]
= 0 (4.20)

l3(u)
[∂u
∂t

+ λ3(u)
∂u

∂x
−Q(u)

]
= 0. (4.21)

Following Di Meglio (2011), we proceed to a model reduction analogous to singular
perturbation techniques. Indeed, eigenvalues λ2 and λ3 correspond to sound wave
propagation (see, e.g. Masella et al. (1998); Lorentzen and Fjelde (2005)) and are at
least one order of magnitude greater than λ1, which corresponds to the transport of
the pseudo-holdup χ`. This suggests that the fast transport dynamics correspond-
ing to (4.20) and (4.21) can be relaxed when concerned with the slower time scale
of the void wave Eq. (4.19). Imposing instantaneous steady state for (4.20) and
(4.21) yields:

l1(u)
[∂u
∂t

+ λ1(u)
∂u

∂x
−Q(u)

]
= 0 (4.22)

l2(u)
[
λ2(u)

∂u

∂x
−Q(u)

]
= 0 (4.23)

l3(u)
[
λ3(u)

∂u

∂x
−Q(u)

]
= 0, (4.24)

where by inserting for the eigenvectors and eigenvalues we can write the resulting
system as

∂χ`

∂t
+ vg

∂χ`

∂x
= 0 (4.25)

∂ρ

∂x
= −A31(u)

A32(u)

∂χ`

∂x
+

ρQ(u)

A32(u)ρ− A33(u)vg
. (4.26)

∂vg
∂x

=
vgQ(u)

A33(u)vg − A32(u)ρ
(4.27)

The consequence of this is that χ` is still a Riemann invariant propagating with
velocity vg given implicitly by the relations (4.26)–(4.27).
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Relation to the No-Pressure-Wave Model

In Masella et al. (1998) and Choi et al. (2013) a reduced DFM referred to as the No
Pressure Wave (NPW) model is obtained by removing the time derivative term in
(4.3) and computing the pressure from the resulting static relation. Consider again
the original set of equations (4.1)–(4.2) but in place of the mixture momentum
equation (4.3) use the static force balance

∂P

∂x
= S. (4.28)

In Masella et al. (1998) it is noted that the resulting model has a single finite
eigenvalue, and that the remaining two states corresponds to eigenvalues that are
infinite, which is similar to the system of (4.25)–(4.27). This means that using
(4.28) in place of (4.3) effectively relaxes both the two characteristics associated
with the fast pressure waves. Hence, using a simpler approximation in place of
the expressions for ρ, vg it is possible to obtain a simple first-order PDE of the
two-phase flow dynamics. In the following we exploit these facts to develop such a
simple representation of the void wave propagation that remains when the pressure
dynamics have been relaxed.

New Approach

An approach to exploit the structure revealed by (4.25)–(4.27) was suggested in
Aarsnes et al. (2015) where a simplified model representation of these relaxed dy-
namics was developed. The problem with this approach is that pressure is given
implicitly in the states (due to the source term) such that the resulting simulation
requires the solution of an ODE for every time step. This problem is avoided in
the present paper by using αg as the distributed state in place of χ`, which allows
for finding an approximate relation for the pressure gradient which yields pressure
explicit in the states and exogenous variables.
More specifically the pseudo-holdup,

χ` =
(α` − α∗

`)ρ`
ρM − α∗

`ρ`
, (4.29)

changes according to:

dχ` =
ρg(α

∗
` − 1)dαg + αg(αg + α∗

` − 1)dρg(
αgρg − ρ`(αg + α∗

` − 1)
)2 . (4.30)

Plugging (4.30) into (4.25) we get the equation:

∂αg

∂t
+ vg

∂αg

∂x
= −αg(αg + α∗

` − 1)

ρg(α∗
` − 1)

(
∂ρg
∂t

+ vg
∂ρg
∂x

)
(4.31)

where ρg is given by the pressure. This motivates the approach taken in the fol-
lowing section.
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4.3. Derivation of the new formulation

The full three-state drift-flux model is too complicated for most model-based es-
timation and control approaches (Aarsnes et al., 2016d), hence simplification is
desirable. Based on the analysis of the previous section it should be possible to
reduce the full DFM down to a first order PDE when discarding the pressure wave
dynamics.
For this derivation we will again start with the classical Drift Flux formulation

(4.1)–(4.7). First note the relation from the slip law (4.7):

α`v` = (α` − α∗
`)vg − (1− α∗

`)v∞. (4.32)

From (4.1) we have (Gavrilyuk and Fabre, 1996):

∂α`

∂t
+
∂(α` − α∗

`)vg
∂x

=
Γ`

ρ`
(4.33)

=⇒ ∂αg

∂t
+ vg

∂αg

∂x
= (α` − α∗

`)
∂vg
∂x

− Γ`

ρ`
(4.34)

where the first term on the RHS of (4.34) is due to gas expansion which necessarily
translates to acceleration of the gas.
From (4.2) we have

∂vg
∂x

=
Γg

αgρg
− 1

αgρg

(
∂αgρg
∂t

+ vg
∂αgρg
∂x

)
(4.35)

=
Γg

αgρg
− 1

ρg

(
∂ρg
∂t

+ vg
∂ρg
∂x

)
− 1

αg

(
∂αg

∂t
+ vg

∂αg

∂x

)
. (4.36)

Inserting (4.36) into (4.34)

∂αg

∂t

(
1 +

α` − α∗
`

αg

)
+ vg

∂αg

∂x

(
1 +

α` − α∗
`

αg

)
= (α` − α∗

`)
Γg

αgρg
− (α` − α∗

`)

ρg

(
∂ρg
∂t

+ vg
∂ρg
∂x

)
. (4.37)

Thus, defining the convenience variable Eg:

Eg ≡ −αg(α` − α∗
`)

(1− α∗
`)ρg

(
∂ρg
∂t

+ vg
∂ρg
∂x

)
, (4.38)

we have from (4.37)

∂αg

∂t
+ vg

∂αg

∂x
= Eg +

1

1− α∗
`

(
(α` − α∗

`)
Γg

ρg
− αg

Γ`

ρ`

)
. (4.39)

86



4.3. Derivation of the new formulation

Then, defining the source terms Γ∗
g,Γ

∗
` :

Γ∗
g ≡

α` − α∗
`

(1− α∗
`)ρg

Γg, Γ∗
` ≡

αg

(1− α∗
`)ρ`

Γ`, (4.40)

we have

∂αg

∂t
+ vg

∂αg

∂x
= Eg + Γ∗

g − Γ∗
` . (4.41)

4.3.1. Pressure profile

The distributed, quasi-steady pressure is obtained from (4.28) and the pressure
boundary condition P (x=L) = PL:

P (x) = PL +

∫ x

L

S(ξ)dξ. (4.42)

This expression is implicit in that it is dependent on vM which is in turn depen-
dent on Eg(P ), and ρg(P ). To avoid this complication a simplification should be
used, e.g. by assuming vM uniform in space when calculating the pressure profile.
Essentially, what is modeled is

P (x) = PL + F (x) +G(x), (4.43)

where F (x), G(x) is the frictional pressure drop and hydrostatic pressure. Let
q`, qg denote the exogenous variables liquid, respectively gas, volumetric flow rates
entering at the bottom of the well. Then one possible approximation of (4.4) is

S(x) ≈ −ρ̄M(x)

(
g sin θ(x) +

2f(qg + q`)|qg + q`|
A2D

)
, (4.44)

ρ̄M = (ρ`α`(x) + ρ̄gαg(x)), (4.45)

i.e. a mean approximate gas density is used, which is an amenable approximation
for αgρg � α`ρ`. This makes the source term S explicit in the state αg and the
exogenous variables.

4.3.2. Boundary condition and velocity profile

Defining vg0 ≡ vg(x=0, t), we have from (4.7):

vg0 =
C0

A
(qg + q`) + v∞. (4.46)

The downhole boundary condition of (4.41) is given as

αg(x=0, t) =
qg
Avg0

, (4.47)
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The velocity gradient is obtained by combining (4.36) and (4.41):

∂vg
∂x

=
Eg + Γ∗

g − Γ∗
` + Γ`/ρ`

α` − α∗
`

, (4.48)

=
Eg + Γ∗

g

α` − α∗
`

+
1

1− α∗
`

Γ`

ρ`
. (4.49)

Now note the relation for the gas density in (4.6). In the following we will make
this relation slightly more general by instead using

ργg
P

= C, (4.50)

where C is a constant and γ is the adiabatic gas constant equal to one for constant
temperature. In differential form, we can write (4.50) as

γργ−1
g dρg = CdP, (4.51)

and substituting the value of C from (4.50), we further have:

dρg
ρg

=
dP

γP
. (4.52)

Note that the term γP is equivalent to the isentropic bulk modulus of an ideal gas.
Eq. (4.52) allows us to recast (4.38) in terms of the pressure profile, P (x):

Eg = −αg(1− C0αg)

γP

(
∂P

∂t
+ vg

∂P

∂x

)
, (4.53)

For deriving the velocity, we neglect the ∂ρg
∂t

term from (4.38). Furthermore, in
implementation, the singularity at α` = α∗

` should be avoided, hence we rewrite
(4.49) as:

∂vg
∂x

=C0

(
− αgvg

Pγ
S +

c2g
Pγ

Γg +
1

ρ`
Γ`

)
, (4.54)

and consequently, by defining the integral

Iv(x) =

∫ x

0

C0αg(ξ)

P (ξ)γ
S(ξ)dξ, (4.55)

the distributed velocity is obtained as

vg(x) =e
−Iv(x)

(
vg0+

C0

x∫
0

(
c2g(ζ)

P (ζ)γ
Γg(ζ) +

1

ρ`
Γ`(ζ)

)
eIvg (ζ)dζ

)
. (4.56)
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4.3.3. Lumped pressure dynamics

For the case when the pressure at the topside boundary is exogenous, the equations
in the previous sections give a complete description of the simplified two-phase
flow model. In many cases, however, the topside boundary pressure is indirectly
determined by additional dynamics, e.g. when controlling pressure with a choke
valve in Managed Pressure Drilling (Godhavn, 2011; Kaasa et al., 2012).
To model this scenario we use a lumped expression for the pressure dynamics:

∂PL

∂t
=
β`
V

(
q` + qg + TEg − qc

)
, (4.57)

with qc the volumetric flow rate through the choke, and TEg the effect of in-domain
gas expansion on the lumped pressure dynamics. The term TEg can be found by

integrating the gradient of the gas velocity along the well. Including the ∂ρg
∂t

term
in (4.38), TEg can be written as:

TEg =A

∫ L

0

Eg + Γ∗
g

α` − α∗
`

+
1

1− α∗
`

Γ`

ρ`
dx. (4.58)

We will now show that the total gas expansion, TEg , can be split into a term
affecting the effective bulk modulus of the gas-liquid mixture, β̄, and a remaining
term, TXE, accounting for source terms and the gas expansion when propagating
through the negative pressure gradient.
Express the gas expansion dynamics in the principal variables:

Eg = −αg(α` − α∗
`)

(1− α∗
`)γP

(
∂P

∂t
+ vg

∂P

∂x

)
, (4.59)

∂P (x, t)

∂x
= S(x), (4.60)

∂P (x, t)

∂t
≈ ∂PL

∂t
=
β`
V

(
q` + qg + TEg − qc

)
, (4.61)

and consequently the TEG term can be split into a term which includes ∂PL

∂t
and a

remainder

TEg =TXE − A

∫ L

0

C0αg

γP
dx
∂PL

∂t
, (4.62)

TXE =A
(
vg(L)− vg0

)
, (4.63)

where we have used the fact that the remainder equals the integrated velocity
gradient with the ∂ρg

∂t
term excluded.

Inserting the total gas expansion (4.62) into the pressure dynamics (4.57):

∂PL

∂t
=
β`
V

(
q` + qg − qc − TXE − A

∫ L

0

C0αg

γP
dx
∂PL

∂t

)
, (4.64)
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we get

∂PL

∂t

(
1 +

β`
L

L∫
0

C0αg

γP
dx

)
=
β`
V

(
q` + qg − qc + TXE

)
, (4.65)

hence

∂PL

∂t
=
β̄

V

(
q` + qg − qc + TXE

)
, (4.66)

β̄ ≡ β`

1 + β`

L

∫ L

0

C0αg

γP
dx
, (4.67)

where we have defined the effective bulk modulus β̄.
The complete model is restated in Table 4.1 for convenience.

4.4. Some Numerical Examples

In this section two numerical examples are considered. The first one highlights
the effect of removing the pressure dynamics, while the second numerical example
illustrates the feasibility of employing the model in a typical scenario from under-
balanced drilling.
For both scenarios we consider a 1000-meter long domain with cg = 300m/s, ρ` =

1000 kg/m3, v∞ = α∗
` = 0. The full Drift-Flux model equations (4.1)–(4.3) are

implemented with the AUSM scheme of Evje and Fjelde (2002) while the PDE
of the simplified model is implemented with a first order upwind scheme and the
integrals evaluated with trapezoidal quadrature. In both cases a grid size of ∆x=1
m are used.

4.4.1. Shock Tube

We initially investigate the model in a so-called shock-tube scenario, see Evje and
Fjelde (2002). The source terms are set to zero, corresponding to a frictionless
horizontal tube, and the simulation is initialized with the domain split in half with
αg = 0.2 and αg = 0.8 for the right and left domain respectively, and with a right
boundary condition of P (x=L) = 1 bar.
The simulation results are shown in Fig. 4.1, where the void wave can be seen

propagating towards the right while the faster pressure waves in the full DFM travel
back and forth in the domain, being reflected at the boundaries. These pressure
oscillations cause perturbations in the void fraction around the nominal trajectory
followed by the simplified model.
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Table 4.1.: The complete Simplified Two-Phase Model

Pressure dynamics:

∂

∂t
PL(t) =

β̄(t)

V

(
q`(t) + qg(t)− qc(t) + TXE(t)

)
, (4.68)

TXE(t) = A
(
vg(L, t)− vg0(t)

)
, (4.69)

β̄(t) ≡ β`

1 + β`

L

∫ L

0

C0αg(x,t)

γP (x,t)
dx
, (4.70)

Distributed dynamics:

∂

∂t
αg(x, t) + vg(x, t)

∂

∂x
αg(x, t) = Eg(x, t) + Γ∗

g(x, t)− Γ∗
`(x, t), (4.71)

αg(x=0, t) =
qg(t)

C0(qg(t) + q`(t)) + Av∞
. (4.72)

Γ∗
g(x, t) ≡

1− C0αg(x, t)

ρg(x, t)
Γg(x, t), (4.73)

Γ∗
`(x, t) ≡

C0αg(x, t)

ρ`
Γ`(x, t), (4.74)

Closure relations:

S̄(x, t) = −ρ̄M(x, t)

(
g sin θ(x) +

2f(qg(t) + q`(t)|qg(t) + q`(t)|
A2D

)
, (4.75)

ρ̄M(x, t) = ρ`α`(x, t) + ρ̄gαg(x, t), (4.76)

P (x, t) = PL(t)−
∫ x

L

S̄(ξ, t)dξ, (4.77)

vg(x, t) =e
−Iv(x,t)

(
vg0(t) + C0

x∫
0

(
c2g

P (ζ, t)γ
Γg(ζ, t) +

1

ρ`
Γ`(ζ, t)

)
eIvg (ζ,t)dζ

)
,

(4.78)

Iv(x, t) =

∫ x

0

C0αg(ξ, t)

P (ξ, t)γ
S(ξ, t)dξ, (4.79)

vg0(t) ≡
C0

A

(
qg(t) + q`(t) + v∞

)
. (4.80)

Eg(x, t) ≡ −αg(x, t)(1− C0αg(x, t))

γP (x, t)

(
∂

∂t
PL(t) + vg(x, t)S̄(x, t)

)
, (4.81)

91



Chapter 4. A Two-Phase Flow Model for Estimation and Control of Drilling Operations

Figure 4.1.: Shock tube test with all source terms set to zero. The pressure dynamics, discarded
in the relaxed model, causes the full model to oscillate around the trajectory of
the relaxed model. With no source terms to drive the pressure dynamics to the
equilibrium, these oscillations would in theory continue indefinitely, although here
the effect of numerical diffusion can be seen.

4.4.2. Underbalanced Drilling Connection

Next we consider a scenario relevant for the potential application of the model to
underbalanced drilling. When performing a pipe connection in a vertical well, the
liquid injection through the drill-string is stopped and the topside back-pressure
choke valve opening is reduced so as to try to maintain a constant bottom-hole
pressure (Pedersen et al., 2015; Nygaard et al., 2004). This means that liquid rate
entering at the left boundary is reduced to a smaller amount accounting for the
liquid that would typically be produced by the reservoir. Monitoring and controlling
this operation effectively is of importance both for maintaining reservoir and well
integrity, as well as for enabling characterization of the reservoir productivity and
pore pressure while drilling (Suryanarayana et al., 2007a; Shayegi et al., 2012).
For this scenario, we include the lumped pressure dynamics of Section 4.3.3 where

the flow out, qc, is found from the multi-phase choke relation from Aarsnes et al.
(2014b). On the left boundary, a constant gas injection rate is applied while the
liquid rate and choke opening are varied according to Fig. 4.2.
The pressure trends in Fig. 4.2 and void profiles in Fig. 4.3 show the model’s

ability to qualitatively represent the essential dynamics for control and estimation
applications in this scenario. We do, however, note the following errors and their
causes:

• The steady state error in the downhole pressure P (x=0) is due to the ap-
proximated momentum source term (4.44), in particular the failure of the
approximation to account for the increased frictional pressure loss due to in-
crease in gas velocity towards the rightmost part of the domain. This error
can easily be amended by tuning the friction coefficient f .
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Figure 4.2.: Trends of the changing exogenous variables (left) and the topside and bottom-hole
pressures (right) during the connection scenario.

Figure 4.3.: Void fraction profiles before, during and after the connection.

• A significant transient error can be seen during the time periods 5–15 minutes,
and 20–30 minutes. This error seems to be connected to the change in pressure
at the right boundary which is not taken into account when the velocity profile
is computed, see (4.54). This means that the simplified model over- and
under-predicts the gas velocity, respectively in each of the two time periods,
and this could cause the observed transient error.

These two errors are both due to the approximations done to enable the model
to be cast in explicit form. For the time scales of importance in this scenario, the
discarded pressure waves do not have significant impact on the accuracy of the
results.
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4.5. Summary and conclusions

In this paper we have presented a simplified two-phase flow model obtained by
relaxing the distributed pressure dynamics, equivalent to using a quasi-steady mo-
mentum balance. The resulting model is a transport equation, with void fraction
as the distributed state. The gas travels with an exponentially increasing (for neg-
ative pressure gradient), quasi-steady velocity driven by the gas expansion, which
is modeled as a source term in the transport equation. The closure relations can
be approximated as explicit functions and quadratures of the states and exogenous
variables. This enables the implementation of simple, fast and robust two-phase
simulators, which is amenable for control and estimation applications where sim-
ulation speed and robustness are of importance such as Model Predictive Control
(Pedersen and Godhavn, 2013) and particle filters (Lorentzen et al., 2014).
To deal with cases where the right boundary condition is specified as a flow rate

in place of a pressure, a relation is required to describe the pressure at the boundary.
This is done by assuming a lumped pressure for the whole conduit, with dynamics
modeled by an ODE coupled with the PDE. The resulting first order ODE model
describing the lumped pressure dynamics can for some applications enable the use
of established model-based algorithms in pressure control and estimation problems,
where the full DFM is too complicated Aarsnes et al. (2016d).
Further work on this topic should deal with the following points not yet addressed:

• More elaborate phase behavior models

• Integrate the model with more accurate closure relations for the pressure drop
(i.e. the momentum source term) and the slip law.

• Handle the phenomenon of phase separation in a shut-in scenario.
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Chapter 5

Model-Based Estimation of Reservoir Inflow and
Pore Pressure

This chapter is based on the work presented in Aarsnes et al. (2015); Ambrus et al.
(2015, 2016).

Summary

The ability to perform accurate reservoir and pore pressure character-
ization during a kick incident is necessary, particularly when drilling in
formations with narrow pressure margins. Current available techniques
for pore pressure estimation and reservoir characterization either rely
on empirical correlations requiring access to well logging data and other
petrophysical information, or require downhole pressure sensing and ad-
vanced flow metering capabilities. This paper presents a model-based
estimation technique which uses surface measurements commonly avail-
able in a Managed Pressure Drilling system, coupled with a novel tran-
sient two-phase model, capable of representing essential dynamics during
a gas kick with reduced computational overhead, without sacrificing sig-
nificant modeling accuracy . The model is validated in a kick scenario
against experimental data and against a commercial multi-phase simu-
lator, showing good agreement between key measured parameters and the
model predictions, and thereby justifying the model applicability to field
operations. Data from the commercial simulator case and also field data
from an MPD operation are used to evaluate the proposed methodology
for real-time reservoir characterization. The application yields promis-
ing results, where pore pressure and reservoir productivity are estimated
within the uncertainty bounds, and the model-predicted flow out rate
and surface back-pressure yield a reasonable match to their respective
measurements.

5.1. Introduction

With the depletion of easily accessible hydrocarbon resources, the focus of the
upstream oil and gas industry has shifted towards harsher environments such as
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complex geo-pressured deepwater prospects (Karimi Vajargah et al., 2014). In
wells drilled in such challenging environments, it is crucial to maintain the wellbore
pressure at a value above both the reservoir pore pressure and the mud pressure
required for wellbore stability. Furthermore, wellbore pressure should not exceed
the fracture pressure at any time, which effectively limits the available pressure
window for safe drilling. Of these pressure limits, the most critical is the pore pres-
sure, as falling below this value in an uncased hole section (e.g. due to insufficient
mud weight, poor hydraulics management, improper hole fill-up during tripping or
an abnormally pressured zone) leads to influx of formation fluids (oil, water, gas,
or a combination thereof) into the wellbore (Aarsnes et al., 2015). Influxes (also
known as kicks) tend to be more hazardous when the formation fluids contain gas,
which expands in the annulus causing large variations in annular pressure (Karimi
Vajargah, 2013). An uncontrolled kick triggers a blow-out, which has potentially
catastrophic consequences, impacting rig personnel safety, the surrounding envi-
ronment, project economics, company and industry reputation (Karimi Vajargah
et al., 2014). As a result, the proper planning and execution of well control opera-
tions is a major concern in any well being drilled, and the ability to model the gas
influx dynamics in real-time, in addition to robustly estimating pore pressure, can
significantly improve the success of a well control procedure (Aarsnes et al., 2015).
Managed Pressure Drilling (MPD) techniques enable real-time management of

annular pressure and also facilitate dynamic pore pressure testing (Rostami et al.,
2015). A particular variant of MPD which has become more prevalent in recent
years is the constant bottom-hole pressure (CBHP) technique, which relies on a
dedicated choke manifold for applying back-pressure on the annular side. Addi-
tionally, CBHP MPD systems include an accurate flow metering system, enabling
early kick detection by constant monitoring of return flow in the closed-loop cir-
culation system (Santos et al., 2003). The early kick detection, combined with
immediate application of back-pressure by manipulating the size of the choke valve
orifice, allows small and medium size kicks to be safely circulated out the of the
well without the need for a conventional shut-in operation (Karimi Vajargah et al.,
2014; Kinik et al., 2015; Aarsnes et al., 2016a).
In addition to state-of-the art actuation and sensing equipment, the CBHP MPD

technique also requires a hydraulics model with multi-phase flow capabilities. Al-
though advanced models have been developed to this end, their complexity makes
them impractical for real-time applications such as model-based closed-loop con-
trol and estimation. As a result, most control systems in the industry still rely
on single-phase dynamic models (e.g. Godhavn (2010); Kaasa et al. (2012); Re-
itsma and Couturier (2012)). Therefore, introducing a fit-for-purpose model which
can capture the essential dynamics of gas expansion with limited computational
expense and complexity is highly desirable (Aarsnes et al., 2016d; Ambrus et al.,
2015). One potential application of such a model is the real-time estimation of pore
pressure and reservoir productivity during a kick incident. This paper introduces a
model-based estimation methodology employing a simplified two-phase flow model
developed by the authors (Aarsnes et al., 2016b). Experimental test data is used to
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validate the model, and subsequently the estimation algorithm is applied on a test
case generated using a commercial multi-phase simulator and also field data from
an MPD operation, both offering additional opportunities for model validation as
well.

5.1.1. Background

The proper knowledge of pore pressure, together with fracture pressure and the
pressure required for wellbore stability is a primary factor in the design of a well
program prior to drilling the well (Rostami et al., 2015). Traditional methods for
determining pore pressure in a drilling operation rely either on repeat formation
tests and drill stem tests, or on empirical correlations to petrophysical logs, such as
sonic, density and resistivity logs (Aadnøy et al., 2009). One of the most widely used
correlation techniques is Eatons method, which is used to estimate pore pressure in
shales based on normal compaction trends and data from resistivity and sonic logs,
or normalized drilling parameters (d-exponent) Eaton (1975). Another notable
technique for pore pressure estimation is Bowers method, which uses a correlation
between sonic velocity and effective stress which accounts for the underlying causes
of overpressure (Bowers, 1995).
The development of MPD techniques has enabled new approaches to real-time

pore pressure estimation during kick incidents. Gravdal et al. (2013) used statis-
tical modeling of the surface back-pressure build-up curve during shut-in to arrive
at an estimate of pore pressure. A polynomial curve-fit was used to ascertain the
wellbore pressure balanced the formation pressure, such that the measured bottom-
hole pressure could be used as the new pore pressure estimate. Application of this
algorithm requires a downhole pressure sensor, or an estimate thereof arrived at
using a transient model such as the one suggested in this paper. Rostami et al.
(2015) described a dynamic pore pressure test for statically underbalanced wells.
The test consists of stepwise reduction in surface back-pressure until a micro-influx
is detected. The downhole pressure is continuously monitored during the test using
a Pressure While Drilling (PWD) tool, and the readings are used to calibrate pre-
vious pore pressure esitmates, obtained using Eatons d-exponent method or other
similar techniques.
Real-time reservoir characterization has also been facilitated by underbalanced

drilling (UBD), where the bottom-hole circulating pressure is intentionally kept
below the pore pressure, effectively producing formation fluids while drilling (Ve-
fring et al., 2002). In addition to minimizing reservoir impairment and maximizing
production, UBD enables a better understanding of reservoir properties through
comparison of real-time production rates to well logging data (Culen and Killip,
2005). Additional information can be inferred from pressure buildup data and gas
and liquid flow metering on surface, leading to more accurate estimates of reser-
voir pressure and productivity index for different reservoir sections (Suryanarayana
et al., 2007a; Shayegi et al., 2012).
In addition to the methodologies above, which are mostly empirical and/or
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measurement-intensive, several researchers have attempted model-based estima-
tion techniques, relying on physics-based models of the drilling hydraulics. Zhou
et al. (2010) used an adaptive observer in conjunction with a single-phase hydraulic
model and a linear reservoir model to estimate influx rate and pore pressure in an
MPD system. Their estimation algorithm did not take gas expansion into account,
which reduced performance when the gas was circulated out. An adaptive ob-
server was also used by Hauge et al. (2012) for estimating the influx rate as well
as the depth of the influx zone. A more sophisticated approach, using an infinite-
dimensional boundary observer was applied to a transmission line model of the
drilling hydraulics in order to estimate influx or lost circulation events occurring in
an MPD setting (Hauge et al., 2013a).
In the context of UBD operations, Vefring et al. (2003) used an Ensemble Kalman

Filter and the Levenberg-Marquardt method on the Drift-Flux Model coupled with
a dynamic reservoir model to estimate reservoir pore pressure and permeability.
Biswas et al. (2003) employed a genetic algorithm in conjunction with a transient
two-phase reservoir simulator for the problem of estimating reservoir permeability
as a function of depth. Aarsnes et al. (2014a) used the Drift-Flux Model in conjunc-
tion with an Extended Kalman Filter for on-line estimation the production index,
while uncertain model parameters, such as friction factor, choke model coefficients
and slip velocity, required off-line calibration.

5.2. The Reduced Drift Flux Model

The Drift-Flux Model (DFM) is one of the multi-phase models which is most fre-
quently used in drilling applications. The DFM consists of separate mass balance
equations and a combined momentum balance, together with several closure re-
lations and a slip relation. Although widely employed in well control simulation
software (Podio and Yang, 1986; Rommetveit and Vefring, 1991; Petersen et al.,
2008), the DFM remains too unwieldy for real-time application in conjunction with
model-based estimation and control techniques (Aarsnes et al., 2016d).
Finding efficient numerical solutions of the DFM is considered difficult due to

strong non-linear coupling mechanisms and challenges associated with transition to
single-phase regions (Evje and Wen, 2013). As such, a series of “reduced” DFMs,
also called “No Pressure Wave” models, have been suggested (Taitel et al., 1989;
Masella et al., 1998; Choi et al., 2013). These models represented attempts to sim-
plify the classical DFM by imposing a quasi-equilibrium momentum balance, with
the goal of simplifying the resulting model equations. The use of these models has
been justified for applications where the relatively slow gas propagation dynam-
ics are more important than the fast pressure dynamics. For applications such as
MPD, where the transient evolution of the wellhead pressure as controlled by the
back-pressure choke is of importance, a relation giving the dynamics of the pressure
at the boundary is required (Ambrus et al., 2015). The proposed reduced DFM
addresses this issue by adding a first-order ordinary differential equation represent-
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ing the pressure dynamics, coupled with a transport equation for the propagation
of the void fraction through the well.
In this paper we employ the model presented by Aarsnes et al. (2016b), aug-

mented with the slip law of Shi et al. (2005) to improve performance when com-
pared to full-scale wellbore operations. Main parts of the model are summarized in
the following but the reader is referred to Aarsnes et al. (2016b) for details.
The model uses the void fraction αg(x, t) as the one distributed state, hence a

function of the two independent variables x, t denoting position in the well and
time. The lumped pressure dynamics is described by the wellhead back-pressure
Pc(t), and the dynamic equations are given as:

∂αg(x, t)

∂t
+ vg(x, t)

∂αg(x, t)

∂x
= Eg(x, t), Void wave advection, (5.1)

∂Pc(t)

∂t
=
β̄(t)

V

(
q`(t) + qg(t)− qc(t) + TXE(t)

)
, Lumped pressure. (5.2)

In the PDE (5.1) vg is the gas velocity and Eg is a source term accounting for the
local gas expansion, given as

(5.3)

Eg(x, t) ≡ −αg(x, t)(1− C0αg(x, t))

γP (x, t)

(
∂Pc(t)

∂t
+ vg(x, t)S(x, t)

)
, (5.4)

where S is the momentum source term giving the pressure gradient, i.e.

P (x, t) = Pc(t)−
∫ x

L

S̄(ξ, t)dξ, (5.5)

S̄(x, t) = −ρ̄M(x, t)

(
g sin θ(x) +

2f(qg(t) + q`(t)|qg(t) + q`(t)|
A2D

)
, (5.6)

The gas velocity writes

vg(x, t) =e
−Iv(x,t)vg0(t) (5.7)

Iv(x, t) =

∫ x

0

C0αg(ξ, t)

P (ξ, t)γ
S(ξ, t)dξ, (5.8)

vg0(t) ≡
C0

A

(
qg(t) + q`(t) + v∞

)
, (5.9)

where qg(t), q`(t) are the volumetric mass rates of gas and liquid entering the bottom
of the well, and C0, v∞ are slip parameters. Finally, the boundary condition writes:

αg(x=0, t) =
qg(t)

C0(qg(t) + q`(t)) + Av∞
. (5.10)

99



Chapter 5. Model-Based Estimation of Reservoir Inflow and Pore Pressure

For the lumped pressure dynamics (5.2), the effective bulk modulus β̄ and total
effective gas expansion TXE are given as

(5.11)

β̄(t) ≡ β`

1 + β`

L

∫ L

0

C0αg(x,t)

γP (x,t)
dx
, (5.12)

TXE(t) = A
(
vg(L, t)− vg0(t)

)
. (5.13)

It should be noted that, due to the simplifying assumptions, the formulation does
not handle scenarios where the well is completely shut-in (i.e. with both the blow-
out preventers and choke closed), as it can prescribe only one boundary condition.
In a shut-in case, an additional boundary condition is required to accommodate a
zero net flow rate at the well head. This limitation can however be avoided if the
slip velocity is low enough (or the well long enough) such that the gas bubble does
not reach the well head before the circulation is resumed and the well control choke
is opened. Furthermore, this is not an issue for well control operations in MPD,
where up to a certain kick size, a complete shut-in is not required to safely bring
the well back to overbalance.

5.2.1. Slip velocity Model

We use the slip velocity model of Shi et al. (2005), i.e.

v∞ =
1− αgC0K(αg)vc
αgC0

ρg
ρ`

+ 1− αgC0

, (5.14)

where

vc =

(
σg(ρ` − ρg)

ρ2`

) 1
4

, (5.15)

K(αg) =

{
1.53
C0
, αg ≤ 0.2

3.182
(
1− e−

D̂
9.3833

)
, αg > 0.4

(5.16)

with

D̂ =

√
g(ρ` − ρg)

σ
D. (5.17)

For values of αg between 0.2 and 0.4, a linear interpolation between the K(αg)
values in Eq. (5.16) can be used.

5.3. Model Validation

The reduced DFM formulated in the previous is validated using commercial multi-
phase simulator OLGA, and also using experimental data from a gas kick event
simulated by injecting natural gas into a well used for test purposes.

100



5.3. Model Validation

Table 5.1.: Input data for OLGA simulator scenario.

Parameter Value Unit
Well depth 12,100 ft
Casing shoe depth 8,000 ft
Casing size 9.625 in
Hole size 8.5 in
Drill pipe outer diameter 3 in
Circulation rate 200 gpm
Mud weight 12 lb/gal
Fluid viscosity 30 cP
Bulk modulus 3105 psi
Annulus friction factor 7.210-3 -
Formation pore pressure 7750 psi
Choke valve coefficient 0.0694 ft2

Choke gas expansion factor 0.3 -
Specific heat ratio 1.3 -
Surface temperature 60 F
Bottom-hole temperature 150 F
Slip law profile parameter 0 -

5.3.1. High fidelity simulator

The scenario generated using the commercial simulator is that of a 12,100 ft deep
vertical land well drilled with a CBHP MPD system. For simplicity, it is assumed
that drill pipe extends all the way to the bottom of the well, and that casing is set to
a depth of 8,000 ft. 12-ppg water-based mud is circulated at a constant rate of 200
gpm. A dry gas reservoir with an average pore pressure of 7,750 psi is encountered
at 12,090 ft. The well is initially underbalanced by approximately 300 psi, which
results in a 10-bbl kick taken over a period of 10 minutes (time t=0 corresponds to
the start of the kick). Choke opening is then decreased and the additional back-
pressure brings the well to an overbalanced state. The amount of choke opening is
subsequently adjusted by the software to maintain a constant bottom-hole pressure
at 7,900 psi. A linear temperature profile is assumed throughout the simulation.
Table 5.1 summarizes the parameters used in this simulation scenario. The gas

influx rate along with the choke opening profile generated by the simulator, pre-
sented in Figure 5.1, are entered as inputs to the reduced DFM.
As Figure 5.2 and Figure 5.3 indicate, there is a good agreement between the

downhole and wellhead pressures, and also the flow out and pit gain computed
by the proposed model and those obtained from the commercial simulator. Slight
discrepancies towards the end of the simulation can be attributed to uncertainty
in the choke flow model when gas reaches the choke. Examining the gas volume
fraction profiles in Figure 5.4 also indicates a good agreement until the gas influx
reaches the surface.
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Figure 5.1.: Choke opening and gas influx rate used in the simulations.

Figure 5.2.: Comparison of the commercial simulator with the reduced DFM, bottom-hole pressure
(upper) and casing pressure (lower).
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Figure 5.3.: Comparison of the commercial simulator with the reduced DFM, mud flow out (upper)
and pit gain (lower).

5.4. Experimental data

The model described in the previous section was validated on an experimental data
set obtained from a well control test conducted at Louisiana State University. The
test setup, illustrated in Figure 5.6, was detailed by Chirinos et al. (2011). An
11-bbl gas kick was simulated by injecting natural gas inside the 1.25-in tubing
while water-based mud was continuously pumped through the annulus formed by
the 3.5-in drill pipe and the 1.25-in tubing, with returns taken through the annulus
between the 9.625-in casing and the 3.5-in drill pipe. A manually operated choke
manifold was used to provide back-pressure, with the goal of keeping a constant
drill pipe pressure throughout the gas circulation. The mud circulation and gas
injection rate recorded during the test were used as inputs to the model and are
shown in Fig. 5.7. Well geometry, mud properties and other model inputs are
detailed in Table 5.2.
The reduced DFM was implemented using an explicit, first-order upwind scheme

with a time step of 1 second and 200 grid cells. The simulation results were com-
pared to flow out and pit gain data (Fig. 5.8) as well as pressure data recorded
from the experiment (Fig. 5.9), showing excellent match for pressure and reason-
able agreement for the pit gain and flow out, as indicated by the percent errors in
Table 5.3.
For flow out, it is noted that around the 100-minute mark in the simulation,

the measured values became erratic, possibly due to the presence of gas in the
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Figure 5.4.: Comparison of the commercial simulator with the reduced DFM, gas volume fraction
along the depth during gas migration.

Figure 5.5.: Comparison of the gas velocities. Note that the discrepancy for when the αg(x) = 0
has no bearing on the actual simulation.
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Figure 5.6.: Louisiana State University well schematic (Chirinos et al., 2011).

Table 5.2.: Input data for simulation on experimental data set.

Parameter Value Unit
Well depth 5,884 ft
Casing shoe depth 5,884 ft
Casing size 9.625 in
Drill pipe outer diameter 3.5 in
Gas injection tubing diameter 1.25 in
Circulation rate 90-150 gpm
Drilling fluid density 8.6 lb/gal
Plastic viscosity 8 cP
Yield point 2 lb/(100ft2)
Bulk modulus 2.15105 psi
Annulus friction factor 7.410-3 -
Drill pipe friction factor 7.310-3 -
Choke valve coefficient 0.107 ft2

Choke gas expansion factor 0.25 -
Specific heat ratio 1.3 -
Surface temperature 93 F
Bottom-hole temperature 140 F
Slip law profile parameter 0 -
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Table 5.3.: Average percent error between experimental data and reduced DFM

Parameter Average percent error
Bottom-hole pressure 0.5
Casing pressure 1.9
Flow out rate 28.9
Pit gain 10.4

flow meter. As far the pressure measurements are concerned, since there was no
down-hole pressure sensor available in the experimental setup, the bottom-hole
pressure was inferred from the drill pipe pressure (measured at the stand pipe)
according to the following formula (Guo and Liu, 2011):

Pbh = Pd + ρ`gh− 2fdρ`q
2
`

AdDd

L (5.18)

where Pd is the recorded drill pipe pressure and fd is the drill pipe friction factor.

5.5. Proposed Methodology for Pore Pressure and Reservoir

Inflow Estimation

In this section, we present an approach for estimating the inflow rate and pore
pressure of the flowing zone based on drilling parameters recorded during a kick.
This requires a fit-for-purpose hydraulics model and a reservoir model, which cor-
relates flow from the reservoir to the pressure drawdown, and also to a productivity
index, a lumped parameter which is affected by the length of exposed zone, reser-
voir permeability, porosity, skin factor, reservoir fluid viscosity and compressibility
(Vefring et al., 2003). For this application, we are more interested in the qualita-
tive relationship between inflow rate, productivity and pore pressure, thus we use
a qualitatively correct, linear inflow relationship (Shayegi et al., 2012):

qres = J(Pres − Pbh), (5.19)

with Pres the reservoir pressure and J the productivity index. In the above, it is
assumed that Pres > Pbh (i.e. well is underbalanced), otherwise, qres is set to zero.
Eq. (5.19) can be recast in a form more amenable for parameter estimation

qres = φTX, (5.20)

where X =

[
JPres

J

]
is the vector of unknown or uncertain parameters and φ =[

1
−Pbh

]
is the regressor. Since, for kick incident, qres is not directly measured, we

will instead use and estimate q̂res.
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Figure 5.7.: Choke opening and gas injection rate for experimental test scenario.

Figure 5.8.: Comparison of experimental data with the reduced DFM, mud flow out (upper) and
pit gain (lower).
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Figure 5.9.: Comparison of experimental data with the reduced DFM, bottom-hole pressure (up-
per) and casing pressure (lower).

Figure 5.10.: Gas volume fraction along the depth, as predicted by reduced DFM.
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As a baseline, we can compute q̂res from the instantaneous mud flow out rate mi-
nus the mud injection rate, however, this is susceptible to measurement noise (par-
ticularly in flow out), and does not account for dynamics due to pressure changes
and gas expansion as the kick is circulated. Therefore, we employ the first-order
pressure dynamics from Eq. (5.2), where we use q̂res in place of the gas source term
qg and we isolate all terms which explicitly depend on q̂res (Note: in the follow-
ing, all parameters which are estimated or derived from estimated quantities are
denoted with aˆsuperscript):

∂Pc

∂t
=
β̂

V

(
q` − qc + q̂res + I0 + 2(q` + q̂res)

2I1

)
, (5.21)

with

I0 =

L∫
0

C0α̂g

γP̂
v̂gρ̂Mg sin(θ(x))Adx, (5.22)

I1 =

L∫
0

C0α̂g

γP̂
v̂g

f

AD
dx, (5.23)

where I0, I1 account for gas expansion due to the hydrostatic and frictional pressure
gradients, respectively. Note in the above that v̂g is computed from Eqs. (5.7)–(5.9)

and the quantities β̂, P̂ , v̂g, α̂g are also estimates of the true values as they all depend
on q̂res. For MPD scenarios, where kick size is usually limited, we can assume
q2res � q2` , and thus neglect the quadratic qres term in Eq. (5.21), which yields:

∂Pc

∂t
=
β̂

V

(
q` − qc + I0 + 2q`I1 + q̂g(1 + 4q`I1)

)
. (5.24)

This equation can be low-pass filtered to remove noise in the measurements, and
also to allow a mathematical formulation which enables linear regression techniques.
Using Laplace transform notation for the low-pass filter F (s) = 1/(τs+1), we have

s

τs+ 1
Pc −

1

τs+ 1

β̂

V

(
q` + qc + I0 + 2q2` I1

)
=

1

τs+ 1

{
β̂(1 + 4q`I1)

V
φtX

}
(5.25)

Denoting the left-hand side of (5.25) by y and the term 1
τs+1

{
β̂(1+4q`I1)

V
φtX

}
by

ψ allows us to finally write a linear equation of the form y = ψTX, which can be
solved using an on-line regression technique, such as recursive least squares (RLS)
Ljung (1999). Details of the RLS implementation are provided in Appendix 5.A.
Using the notation above, an alternate approach to estimating influx rate is by
computing the instantaneous estimate:

q̂instres =
Vy

β̂(1 + 4q`I1)
. (5.26)
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Figure 5.11.: Proposed estimation methodology.

The estimation methodology is summarized in Fig. 5.11. Since the reservoir
model (5.19) is only valid while the well is underbalanced, the RLS algorithm can
only be applied on a narrow time window starting from the detection of the kick
up to the point when the well reaches an overbalanced state and inflow from the
formation ceases. Thus, in order to ensure the estimated parameters do not diverge
from the values computed while the well is underbalanced, the RLS method needs
to be stopped as soon as the flow out and pit gain trends stabilize. As the gas
percolates in the annular space, a slow increase in flow out and pit gain will be
still observed, but the rate of change is much slower than when the kick enters the
wellbore, and should not be misinterpreted as additional influx.

5.6. Validation of Estimation Methodology

5.6.1. Commercial Multi-Phase Simulator Case

The pore pressure and reservoir inflow estimation methodology was first tested on
a MPD well control scenario generated using the commercial multi-phase simulator
OLGA (Bendiksen et al., 1991). As a simulation case the same scenario from the
validation section was used, see Table 5.1. At 12,090 ft the well intersected a dry
gas reservoir with an average pore pressure of 7,750 psi, and a linear PI model was

110



5.6. Validation of Estimation Methodology

Table 5.4.: Drilling parameters (Kinik et al., 2015).

Drill string 7,810ft 4” DP/w 253ft 4.5” BHA
Bit 5.25” PDC - 8x14” nozzles
Rig Pumps 2 triplex /w 12” Stroke x 5.5” Liner - 95% Efficiency
Auxiliary Pump Triplex /w 6” Stroke x 4.5” Liner - 96% Efficiency
Intermediate Casing 34.2lb/ft 7”OD-6.36”ID at 6,535ft MD/TVD

used to simulate the reservoir influx. The initial underbalance of 300 psi resulted
in a 10-bbl kick taken over a period of 10 minutes. The choke opening was then
reduced with the resulting back-pressure bringing the well to an overbalanced state.
The built-in controller in OLGA adjusted the choke opening to maintain a target
bottom-hole pressure of 7,900 psi.
The flow out trend is shown in Fig. 5.12, together with the estimate of the

gas influx rate, with both the RLS and instantaneous result. It should be noted
that both show good agreement to the OLGA values during the kick, but the
instantaneous estimate goes negative after the gas reaches the surface. Fig. 5.13
shows the estimates of pore pressure and PI, which converge in the proximity of the
actual values (pore pressure estimate converged within 30 psi of the OLGA input,
which is reasonable for practical purposes). This error can be further reduced if Pbh

is directly measured from PWD equipment, instead of being computed from the
reduced DFM. It is worth mentioning here that the RLS algorithm was started after
an initial pit gain of 0.5 bbl, which is sufficiently early to capture the magnitude of
the influx, however, if higher thresholds are used for starting the algorithm, some
of the gas entering the well would not be accounted for by the model, leading also
to larger estimation errors. These results are based on the RLS estimated qres.

5.6.2. Field Data Case

The pore pressure and reservoir inflow estimation methodology was also imple-
mented on data from a deviated well drilled in the western Canadian sedimentary
basin. A methane kick was taken at a measured depth of 8,063 ft while drilling the
build-up section with a 10.3 lbm/gal oil-based mud. The key drilling parameters
are provided in Table 5.4, while the mud properties are detailed in Table 5.5. A
CBHP MPD system was being used in the section, which enabled quick detection
of the kick after a pit gain of 17 gal (Kinik et al., 2015), and back-pressure was sub-
sequently applied from surface using an automatically controlled hydraulic choke.
The driller picked up off bottom, stopping rotation and keeping circulation at 250
gpm while circulating the gas kick out of the well.
The top plot of Fig. 5.14 shows the mud flow out rate measured by a Coriolis

flow meter, indicating the onset of the kick and the moment when overbalance in
the well is restored as a result of the back-pressure applied from surface. The lower
plot of Fig. 5.14 shows the estimated influx rate from the formation, using the RLS
algorithm, as well as the instantaneous value. The RLS algorithm was initiated

111



Chapter 5. Model-Based Estimation of Reservoir Inflow and Pore Pressure

Figure 5.12.: Mud flow rate out from OLGA and predicted by the reduced DFM (upper); esti-
mated gas influx rate (lower).

Figure 5.13.: Reservoir pore pressure (upper) and PI (lower) estimated by the RLS algorithm.
Actual data are OLGA simulation inputs.
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Table 5.5.: Drilling mud properties (Kinik et al., 2015).

Density 10.3ppg OBM Diesel Oil No2
Retort analysis Water=16%, Oil=64%, (OWR = 81/19)
Fann35 Rheology θ600/θ300/θ3 = 337/21/4 at 110◦F

Thermal properties
Heat capacity = 0.42 Ntu/lb-ft,
Thermal conductivity = 0.30 Btu/ft-◦F-hr

after the differential flow rate (i.e. return flow minus flow in rate) exceeded 0.5 bbl
over 30 seconds, and was stopped after the differential flow rate decreased to 0.1
bbl over 30 seconds. The instantaneous influx rate was computed throughout the
simulation, yielding a reasonable pattern during the period of underbalance, but
becoming erratic when the well is overbalanced and the kick is being circulated out.
Thus, it is important to evaluate whether the algorithm detects actual influx or the
effects of gas expanding as it travels upward in the annulus.
During the RLS estimation, measured flow out and back-pressure were fed back

to the algorithm for determining q̂res but after the influx ceased, the model was
run in a feedforward mode (thus allowing comparison of predicted flow out and
back-pressure to their measurements). The discrepancy in the flow out after 45
minutes could be attributed to gas breaking out of the drilling mud as the pressure
falls below the bubble point pressure of the oil phase. It should be noted that
he reduced DFM used in this simulation did not include mass transfer terms, and
neglecting the gas dissolution in the oil-based mud may lead to erroneous prediction
of the expansion, particularly once gas breaks out of the solution; however, the
overall pit gain in an oil-based mud will normally be less than in water-based
mud (Karimi Vajargah, 2013). While this modeling limitation was acknowledged,
the data set was nevertheless pursued in order to evaluate the pore pressure and
inflow estimation algorithm, which should not be affected by the phase behavior, as
significant expansion and changes in mud compressibility would not happen during
the period of active reservoir inflow.
The estimated values of pore pressure and PI are plotted in Fig 5.15. The

estimated values were initiated with 4480 psi, and 1.461 ft3/min/psi, respectively.
Since the true value of pore pressure for this well was not available, a range of
possible values was determined, based on offset well data (Contreras et al., 2013)
and also based on the observed bottom-hole pressures before and after the kick
event (used as hard limits which the pore pressure could not go beyond). This
resulted in a 300 psi uncertainty margin. Similarly, a range of possible PI values
were determined based on the estimated influx rates and the pressure draw-downs
obtained using the minimum and maximum pore pressure values. As Fig. 5.15
indicates, the estimated values arrive within these limits once the kick is detected
at 26.5 minutes in the simulation, and stay inside the region until the estimation
algorithm is halted 3 minutes later, at which point the last valid estimates are
saved. The algorithm ultimately determined a pore pressure of 4,916 psi and a PI
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Figure 5.14.: Mud flow rate out measured and predicted by the reduced DFM (upper); estimated
gas influx rate (lower).

Figure 5.15.: Reservoir pore pressure (upper) and PI (lower) estimated by the RLS algorithm.
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Figure 5.16.: Bottom-hole pressure from OLGA and predicted by the reduced DFM (upper); sur-
face back-pressure from OLGA and predicted by reduced DFM (lower).

of 0.0178 ft3/min/psi.
Fig 5.16 shows bottom-hole pressure and surface back-pressure before and during

the kick incident. The back-pressure predicted by the reduced DFM matches the
actual data, with both indicating an increasing trend as the gas kick is circulated.
Bottom-hole pressure was not directly measured in the well, but can be indirectly
computed from the surface pressure data:

Pbh = Pd + PG,d − PF,d − Pbot (5.27)

with Pd denoting the drill pipe or standpipe pressure (SPP), Pbot is the difference
between on-bottom and off-bottom pump pressure, and PG,d, PF,d are hydrostatic
and frictional pressure drop in the various drillstring components (these include the
pressure drop generated through the bit nozzles, mud motor etc.). The bottom-
hole pressure computed using Eq. (5.27) agrees for the most part with the value
from the reduced DFM, except for a portion towards the end of the simulation,
possibly due to an under-estimation of the oil-based mud expansion. As shown
in Fig. 5.15, the RLS estimated qres is lower than the expected value based on
instantaneous estimates, which implies that the reduced DFM may under-predict
the influx, regardless of solubility considerations. This is a point of future work for
this approach.

115



Chapter 5. Model-Based Estimation of Reservoir Inflow and Pore Pressure

5.7. Conclusions

Proper determination of pore pressure and other parameters which affect the pro-
duction of reservoir fluids is vital for successful well construction, particularly in
geo-pressured environments where narrow margins between pore and fracture pres-
sure present significant operational challenges to drilling and completion activities.
While conventional methods for estimating pore pressure and / or reservoir pro-
ductivity (or equivalently, the inflow rates obtained for a given pressure drawdown)
resort to empirical correlations based on petrophysical logs, or require sophisti-
cated multi-phase flow metering and downhole pressure measurements. This paper
presents a novel approach which leverages a fast transient two-phase wellbore flow
model, and a Recursive Least Squares regression technique. Preliminary validation
on field data from an MPD kick incident highlights the potential of this model-based
estimation method.
Further work on this topic, aside from validation on additional data sets and

field scenarios, should extend the algorithms to accommodate more general reser-
voir inflow performance (Wiggins et al., 1996) and possible non-linear extensions
to the least squares regression technique. To this end, techniques such as Extended
Kalman filters, particle filters or neural network regression can be investigated.
While this paper focused on MPD applications, the approach can be readily ap-
plied on UBD or conventional well control scenarios. Further improvements can
also be made on the reduced DFM, particularly incorporating mass transfer and
more elaborate phase behavior models. Ultimately, the estimation methodology to-
gether with the reduced DFM can be integrated within an automated well control
decision-making framework (Karimi Vajargah et al., 2014).

Appendix

5.A. Recursive Least Squares Algorithm

We start from the linear model

y = φTX (5.28)

where y and φ represent measured parameters (y is a scalar, while φ is a vector)
and X is the vector of unknown parameters. If we denote X̂(t) as the time-varying
estimate of X, P (t) the covariance matrix and 0 < λ ≤ 1 the forgetting factor, we
have the RLS scheme (Ljung, 1999):

P(t) =
1

λ

[
P(t− 1)− ε(t)φT (t)P(t− 1))

]
(5.29)

X̂(t) = X̂(t− 1) + ε(t)[y(t)− φT (t)X̂(t− 1)]) (5.30)
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with

ε(t) = P (t− 1)φ(t)
1

λ+ φT (t)P (t− 1)φ(t)
. (5.31)

The RLS scheme, Eqs. (5.29)–(5.31), was initialized with the following values for
the field data case:

X̂(0) =

[
3.0885
10−7

]
, P(0) =

[
0.0169 5.49× 10−10

5.49× 10−10 0

]
, λ = 1. (5.32)

In field units, these values corresponding to an initial pore pressure of 4,480 psi and
a PI of 1.461 ft3/min/psi.
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Chapter 6

Robust Controller Design for Automated Kick
Handling in Managed Pressure Drilling

Summary

The problem considered in this paper is that of controlling downhole
pressure during oil and gas well drilling, with a particular focus on
handling gas kicks leading to two-phase gas-liquid flow conditions. We
identify a first-order approximation to the infinite-dimensional system
which captures the dominating mode of the pressure dynamics in the
frequency range of interest, while the high-frequency pressure dynam-
ics are represented by a multiplicative uncertainty. This approximation
is then modified to accommodate the changes to the dynamics intro-
duced by the two-phase flow. The linearized plant has an open-loop time
constant which varies between 2 and 600 seconds depending on operat-
ing point and gas distribution in the well. Robust controller design is
then performed using Linear Matrix Inequalities (LMIs) via a polytopic
norm-bounded description of both the high-frequency multiplicative, and
the low-frequency parametric uncertainty. It is shown that, in order
to achieve acceptable performance over such a large range of open loop
time constants, a time-varying controller gain is required. The main
contribution of the paper is to achieve this control objective systemati-
cally by formulating the control design problem as an LMI optimization
problem. Then optimal solutions of the LMI problem can be obtained in
polynomial time by using modern Interior Point Method (IPM) numer-
ical solution algorithms.

6.1. Introduction

With the depletion of easily accessible hydrocarbon resources, the focus of the
upstream oil and gas industry has shifted towards harsher environments such as
complex geo-pressured deepwater prospects (Karimi Vajargah et al., 2014). When
drilling wells in such environments, it is highly important to maintain the downhole
drilling mud pressure at a value above the reservoir pore pressure and also the
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pressure required for geomechanical wellbore stability, while keeping it below the
formation fracture pressure(Karimi Vajargah et al., 2014).
This means, effectively, that the control goal is to keep the pressure at the bot-

tom of the well within set constraints (Godhavn, 2010). The constant bottom-hole
pressure Managed Pressure Drilling (MPD) technique addresses this problem by
applying additional back-pressure via an automatically controlled choke valve at
the well outlet (Godhavn, 2011). A key challenge associated with introducing au-
tomated choke control in drilling is dealing with influx of gas, referred to as a gas
kick, which occurs when pressure in the open-hole section (i.e. the section of the
well where casing and cement have not yet been set, exposing the well to formation
fluids) is below the pressure in the surrounding reservoir. In such a scenario, the
system response to actuation changes greatly due to the increased flow and com-
pressibility introduced by the gas influx. At the same time, rapid and precise control
becomes essential as the pressure in the well must be controlled to a higher set-point
to stop the gas influx (Zhou et al., 2011). Failure to react appropriately to a kick
incident can lead to a blow-out which has potentially catastrophic consequences, af-
fecting not only rig personnel safety, but also the surrounding environment, project
economics, and, ultimately, the company and industry reputation(Karimi Vajargah
et al., 2014).

6.1.1. Control of Gas Kicks

Automatic choke control of gas kicks has previously been considered in the literature
(Zhou et al., 2011; Carlsen et al., 2008, 2013; Hauge et al., 2012; Asgharzadeh
Shishavan et al., 2015). These investigations typically consider single-phase flow
and do not explicitly try to quantify and handle the significant effect the gas influx
has on the system dynamics. Failure to do so may lead to degraded performance
of the control algorithms and, in some cases, instability(Reitsma and Couturier,
2012).
This paper presents an approach to explicitly capture the effect of the gas influx

and incorporate this in the controller design.

6.1.2. Key Challenges and Control Approach

The control problem poses the following key challenges for effective controller de-
sign:

• The distributed pressure dynamics are described by an infinite-dimensional
model.

• The choke valve actuation is non-linear.

• Large variation in plant parameters in the presence of gas.
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Drill Bit

Figure 6.1.: Schematic of a vertical well with gas influx (from (Aarsnes et al., 2015)).

To address these challenges, the infinite-dimensional plant is approximated with a
first-order model and the resulting high-frequency error is represented as a multi-
plicative uncertainty. The effect of the actuation non-linearity and changes in plant
parameters due to gas influx is captured through explicit relations resulting in a
linear time-varying first order plant with multiplicative uncertainty.
This plant is represented by a norm-bounded polytopic linear differential inclu-

sion (LDI) which allows for robust controller design using LMIs (Boyd et al., 1994a).
First, an approach is taken where a static feedback controller is designed, but due
to the wide range of plant parameters encountered, the resulting performance of the
controller is poor. To address this, a second approach is proposed where a robust,
time-varying controller is designed using an estimate of the plant time constant and
a bound on estimate uncertainty.
The controller is tested in simulations with an explicit numerical implementation

of the Drift-Flux Model (DFM) representing the two-phase flow dynamics (Evje
and Fjelde, 2002; Udegbunam et al., 2015).

6.1.3. Robust Control Using LMIs

Often when controller design is performed, there can be a disconnect between the
control objective and the parameters that are adjusted to achieve it. For example,
one could be trading off robustness versus performance by adjusting the relative
weighting between control effort and error penalty in an LQR controller. Although
this typically yields satisfactory results, in the present control problem, it is de-
sirable to specify the control problem to be solved directly: i.e. maximize the
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performance subject to the robustness constraint. For the present problem this can
be achieved systematically by using LMIs, which motivates the approach taken in
this paper.
LMIs present a rigorous framework to handle model uncertainties (Boyd et al.,

1994b, 1997). They are used to bound the uncertainties in the model via con-
vex constraints (Açıkmeşe and Corless, 2008), which result in convex optimization
problems for control synthesis. The resulting optimization problems have linear
inequality constraints on matrix solution variables, which are called LMIs and have
been utilized to tackle many control problems (Packard et al., 1991; Gahinet and
Apkarian, 1994; Açıkmeşe and Corless, 2002) as a systematic approach to ensure
control design objectives within the uncertainties inherent in the system.

6.2. Model Description

Our goal in this section is to obtain a low-order approximation of the pressure
dynamics in the wellbore annulus, and be able to quantify the resulting error in the
frequency domain. This will enable us to design robust low-order controllers.
To this end, we will take the following steps:

1. Obtain an infinite-dimensional LTI representation of the single-phase dynam-
ics in Section 6.2.1.

2. Approximate the infinite-dimensional LTI model with a first-order plant and
quantify the resulting uncertainty, in Section 6.2.2.

3. Obtain a high-order LTI representation of the two-phase pressure dynamics,
in Section 6.2.3.

4. Modify the first-order approximation from Step 2 to accommodate the effect
of the two-phase dynamics and quantify the resulting uncertainty, in Section
6.2.4.

6.2.1. Single-Phase Infinite-Dimensional Model

As a starting point for understanding the implications of representing the dis-
tributed pressure dynamics with a low-order approximation, we consider a hydraulic
transmission line model (Egeland and Gravdahl, 2002). The states of interest are
the flow rate through the back-pressure choke qc(t), the flow rate into the bottom
of the well qbh(t), and the pressure at the wellhead pc(t) and bottom pbh(t), see also
Fig. 6.1.
We are concerned with the transient pressure behavior, which is captured by

variables describing perturbations from an initial steady state. Assuming the sys-
tem to initially be at rest at an equilibrium with states denoted by q̄c = q̄bh ≡ q̄
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and p̄c, p̄bh, we will use the perturbed variables:

q̃c(t) =qc(t)− q̄, q̃bh(t) = qbh(t)− q̄, (6.1)

p̃c(t) =pc(t)− p̄c, p̃bh(t) = pbh(t)− p̄bh. (6.2)

Perturbed downhole pressure, which we desire to control, and perturbed choke back-
pressure are related to the changes in flow through the choke by a wave equation
describing distributed hydraulics in the well. For single-phase flow these dynamics
can be expressed by the irrational transfer matrix derived in Appendix 6.A. Denot-
ing the Laplace transformed variables with capital letters, and the Laplace variable
with s, we can write: [

Pbh(s)
Pc(s)

]
=

[
G1(s)
G2(s)

]
Qc(s). (6.3)

This transfer matrix describes the pressure-flow dynamics in the well when the
inflow at the bottom is constant.

6.2.2. First-Order Approximation

By discarding the distributed pressure dynamics in the well we can approximate the
model with a single control volume representation (which is similar to the models
used in (Pavlov et al., 2010; Kaasa et al., 2012)):

ṗc(t) =
β

V

(
qbh − qc(t)

)
, (6.4)

where β is the drilling mud bulk modulus, and V is the annular volume. This
model is obtained by discarding the fast pressure dynamics (Aarsnes et al., 2015),
an implication of which is that we get the approximation:

ṗbh(t) ≈ ṗc(t). (6.5)

It is interesting to note that using the approximation tanhΓ(s) ≈ Γ(s) (see Ap-
pendix 6.A) which is valid when s → 0 =⇒ Γ → 0, the distributed system
transfer function (6.62) becomes identical to (6.4). This is the first-order series
approximation to the irrational function sinhΓ, and using higher-order approxi-
mations yield lumped models valid over a larger frequency range (Makinen et al.,
2000). The match of this simple approximation at low frequencies can be seen in
Fig. 6.2. The first-order approximation is valid up to the frequency range for which
the distributed pressure dynamics start to become important.

6.2.3. Model Modifications for Two-Phase Flow

The gas propagation dynamics are significantly slower (on a time-scale of 10+ min-
utes) than the pressure dynamics. However, the gas volume fraction profile αg(x, t),
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Figure 6.2.: Comparison of infinite-dimensional and first-order transfer function, p̃bh/q̃c(s) (note
that the magnitude is normalized).

strongly affects the magnitude and phase of the pressure dynamics. To reflect this,
we will in this subsection develop a higher-order LTI model which approximates the
pressure dynamics in a well for a given static gas profile: αg(x, t) = αg(x). Then
by considering different gas profiles, we can represent how the pressure dynamics
changes over time as the kick progresses.
The response of this LTI model is then compared to that of the Drift-Flux Model,

implemented with the explicit AUSM numerical scheme (see Appendix A), to vali-
date the approach.
Next, we derive relations which allow us to approximate these two-phase dynam-

ics with the first-order model from Section 6.2.2. We then compare the first-order
model to the higher-order model to evaluate the match and the frequency range over
which the first-order model is valid. The end result is a first-order model, represent-
ing a slow pressure mode, obtained by discarding both the slow gas propagation
dynamics and the fast distributed pressure dynamics. This model is amenable
for controller design as it gives a good representation of the dynamics around our
desired cross-over frequency, and a quantification of the discarded high frequency
dynamics such that robustness can be ensured.

Linear approximation of pressure dynamics

For controller design we seek LTI descriptions of the pressure dynamics that en-
able frequency domain analysis. The key is to attain a model useful for design
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which gives a good representation of the dynamics in a frequency range around the
crossover frequency. We consider the gas propagation effect on the bottom-hole
circulating pressure (BHCP) through changing hydrostatic pressure as a slowly
varying disturbance, and will handle this disturbance through integral action in
the controller.
To capture the effect of the gas distribution on the pressure dynamics we use

a modified version of the control volume model described in e.g. (Egeland and
Gravdahl, 2002; Landet et al., 2012; Aarsnes et al., 2012) to obtain the desired LTI
approximation. This approach has been shown to yield a good approximation at
low frequencies while accuracy at higher frequencies can be retained by increasing
the number of control volumes (Aarsnes et al., 2012).
To accommodate the effect of the gas distribution we modify the effective density,

ρ̄, and bulk modulus, β̄, used in each control volume by accounting for the amount
of gas in the volume. Using the definition of bulk modulus β in a volume V (White,
2003):

β = −V dp

dV
, (6.6)

where p is the pressure in the volume, we can find the effective bulk modulus, β̄,
of two different phases (i.e. gas and liquid) subject to the same pressure (treating
each phase as a separate volume):

β̄ = −(V1 + V2)
dp

dV1 + dV2
=

(V1 + V2)
V1

β1
+ V2

β2

. (6.7)

Consequently, denoting the gas volume fraction profile as αg(x, t), and noting that,
for an ideal gas, the isothermal gas bulk modulus is equal to the pressure (White,
2003), we find the effective bulk modulus in a control volume where gas is present:

β̄j =
β`p(xj)

p(xj)
(
1−αg(xj)

)
+ β`αg(xj)

, (6.8)

where p(xj), αg(xj) denote that the pressure and void fraction quantities are aver-
aged over control volume j, and β` denotes the bulk modulus of the liquid phase.
The effective density in control volume j is given as

ρ̄j = ρ`(1−αg(xj)) + ρgαg(xj), (6.9)

where ρ` and ρg are liquid and gas densities, respectively.
Using N control volumes, each of length l = L/N , and again only considering

deviations from a steady state, we can write the lumped dynamics as:

ṗj =
β̄j
Al

(qj−1 − qj), j = 1, . . . , N (6.10)

q̇j =
A

lρ̄j
(pj − pj+1)− kqj, j = 1, . . . , N−1 (6.11)

q0 = 0, qN = q̃c, (6.12)
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Figure 6.3.: Gas volume fraction profiles at different times after an uncontrolled kick incident.

and the resulting input–output descriptions can be denoted by the transfer functions[
Pbh(s)
Pc(s)

]
=

[
G̃1(s)

G̃2(s)

]
Qc(s). (6.13)

These high-order LTI models G̃1, G̃2 represent the pressure dynamics for a given
gas distribution αg(x, t) and pressure profile, p(x, t), in the well. During a kick inci-
dent these models will change as the gas distribution propagates through the well.
The impulse responses of the resulting high-order LTI models G̃1, G̃2 are compared
to the impulse response simulated with the Drift-Flux Model (Udegbunam et al.,
2015) in the next section.

6.2.4. Comparison with the Drift-Flux Model

Consider a Managed Pressure Drilling scenario where a well is drilled with a BHCP
of 415 bar (a typical value for a 3000-meter deep vertical well (Aarsnes et al., 2015))
see Fig. 6.1, when encountering an over-pressured hydrocarbon reservoir at 421 bar
of reservoir pressure causing gas influx into the well. If no response is taken, the well
will tend to blow-out conditions over time as the lighter gas displaces the heavier
drilling mud, causing yet more influx. The propagation of the gas profile in the
well over time for this case can be seen in Fig. 6.3.
We are interested in how the pressure dynamics change during a kick from a

control perspective, specifically how the BHCP reacts to changes in choke flow rate
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Figure 6.4.: Comparison of impulse responses of well head pressure (WHP) and bottom-hole pres-
sure (BHCP) to an impulse in choke flow at different points in time after kick start
(left) and the resulting perturbed response in the BHCP (right).

qc. Fig. 6.4 shows the pressure responses simulated using the Drift-Flux Model
when the system is subject to an impulse in choke flow at different times after the
kick started, i.e. corresponding to the profiles in Fig 6.3.
Subtracting the nominal, undisturbed trajectories from the ones affected by the

choke actuation we get Fig. 6.4 (right). This figure illustrates how the impulse
response changes during a kick incident, from an early stage of a kick represented
by the blue ’4 min’ curve (with the ’4 min’ αg profile in Fig. 6.3), to an almost
fully developed blow-out situation given by the purple ’16 min’ curve.
The impulse response of the high-order LTI system G̃1(s) is compared to that

of simulations with the Drift-Flux Model (see Appendix A) at different points of
gas distribution is shown in Fig. 6.5. The crossover frequency of the designed
controller is expected to be in the range of 0.015–0.1 Hz, and we conclude that the
LTI approximation is satisfactory for this range. For significantly lower frequencies
the slow gas propagation dynamics, which are not captured by the LTI model, start
to dominate (Aarsnes et al., 2016d).
Fig. 6.5, on the right, shows the Bode diagrams of the LTI models, illustrating the

large variation in gain, as well as noteworthy change in the high-frequency pressure
dynamics, caused by the gas. For a controller to be able to retain performance and
robustness in handling such a kick, it is imperative to understand these changes in
the system response.

Two-Phase First-Order Approximation

Returning to our first-order approximation (6.4), our two-phase equivalent writes:

ṗbh(t) ≈
β̄(t)

V

(
qbh − qc(t) + d

)
, (6.14)
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Figure 6.5.: Impulse responses of the lumped approximations G̃1(s) compared with the DFM
simulation (left) and their Bode diagrams (right).

where d represents unmodeled two-phase dynamics which will be treated as a dis-
turbance. For the two-phase dynamics we also have to modify the effective bulk
modulus, β̄, according to, see Eqs. (6.7)–(6.8);

β̄(t) =
L∫ L

0

[
αg(x,t)

p(x,t)
+ 1−αg(x,t)

β`

]
dx
. (6.15)

We further note that the change in the effective bulk modulus is responsible for the
changes in system gain seen in Fig. 6.5.
Equation (6.14) is a first order time-varying linear approximate representation of

the distributed non-linear dynamics described by the drift-flux model, see Appendix
A. What motivates this approximation is that general control results of systems
at the level of complexity of the drift-flux model do not exist, and while results
exist for linearized versions of this system (Di Meglio and Aarsnes, 2015), these
do not include robustness results and are exceedingly complicated. More tools are
available for dealing with first order time-varying linear systems with high-frequency
uncertainties.
In the next section we linearize the actuation nonlinearity and formalize repre-

sentation of the high frequency uncertainty.

6.3. Proposed Controller Structure

We now turn to the task of developing a controller for the bottom-hole pressure
pbh.
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Figure 6.6.: Block diagram showing the controller with the proposed static mapping.

6.3.1. Choke Equation Non-Linearity

The flow rate out of the well is given by a choke equation relating it to choke
pressure and choke opening (Godhavn, 2011):

qc = ψ(z, pc) ≡
Cv(z)√
ρ`

√
pc − pc0, (6.16)

where Cv(z) > 0 is the choke coefficient which, in the operating range of interest,
is assumed to be an invertible function of the choke opening z ∈ [0, 1] and pc0 is
the pressure downstream of the choke.
With two-phase flow through the choke, the resulting equation becomes more

involved. One possible such relation is considered in Appendix 6.B.
We introduce a static mapping between the controller output u and the choke

opening z:

z(u) = C−1
v

(
qbh

√
ρ`√
u

)
, (6.17)

where the mapping was chosen such that u corresponds to the steady state p̄c− pc0
for qbh = qc and liquid-only flow, for which (6.16) now writes

qc = qbh

√
pc−pc0√
u

. (6.18)

We note that this formulation does not require any feedback before the nominal
controller design (see Fig. 6.6).
To conform to the Polytopic LDI formalism to be employed, the choke equation

(6.18) is linearized and evaluated at a given operating point. For the general two-
phase case, using the perturbation variables, we obtain a relation of the form (see
Appendix 6.B for details):

q̃c =Kpp̃c −Kuũ. (6.19)
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6.3.2. Linear Uncertain Plant

Combining (6.19) with (6.3) we get the linear perturbation dynamics represented
by the plant transfer function

Pbh = P (s)U, P (s) ≡ −G1(s)Ku

1−G2(s)Kp

.

Using the first-order approximation from (6.14) we obtain the nominal first-order
plant Pn(s) which, at equilibrium, can be written as

Pbh ≈ Pn(s)U, Pn(s) ≡
1

τs+ 1
, (6.20)

τ = V/(Kpβ̄), Kp =
1

CK

1

ū
. (6.21)

The time constant of the first-order plant will in practice be time-varying, i.e.
τ = τ(t), as it will change with the operating point and the amount of gas in the
well through the ‘effective bulk modulus’ β̄. Since this quantity is not directly
measured it will be treated as uncertain and dealt with as such in the controller
design.
The high-frequency dynamics that were discarded to obtain the first-order plant

Pn(s) also entail uncertainty that must be dealt with. The discarded dynamics
are seen in the frequency domain as a series of resonances and anti-resonances
caused by traveling and reflecting pressure waves in the well (see Fig. 6.2 and
6.5). Such resonances are difficult to model accurately as they change amplitude
and location rapidly with changing choke opening (Aarsnes et al., 2014c). The
Richardson annular effect, combined with possible Non-Newtonian rheology of the
drilling mud, further complicates capturing the in-domain energy dissipation and
consequently the amplitude of the resonances (Wahba, 2013; Stecki and Davis,
1986). This motivates discarding these dynamics as they would in any case have
to be considered highly uncertain. We note that these effects reduce the amplitude
of the resonances, meaning that ignoring them yield results that are conservative
in terms of the significance of the resonances.
The discarded high-frequency dynamics are represented by a multiplicative un-

certainty with the frequency weight τ∆s. That is, the full plant P (s) is encompassed
by the uncertain plant P∆(s) given as

P∆(s) =
1

sτ + 1

(
1 + τ∆s∆(s)

)
, ‖∆(s)‖∞ ≤ 1, (6.22)

The constant τ∆ is the period (in seconds) at which the high-frequency pressure
dynamics become important. For the considered case, with a well depth of 3000
meters, τ∆ = 4 seconds was chosen.
The corresponding fit of the nominal plant Pn(s) when compared to P (s) derived

with the single-phase infinite-dimensional transfer functions G1(s), G2(s) is seen on
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the left in Fig 6.8. Similarly, we compare the nominal plant to the high-order
LTI approximations of the 2-phase dynamics on the right in Fig 6.8. Here τ(t)
changes with both the gas profile αg(x, t) and the operating point ū. We see that
the constant τ∆ = 4 is sufficient to represent the error caused by the high frequency
dynamics, while the relative error at lower frequencies is caused by uncertainty in
τ(t).

6.4. Controller Design and Results

6.4.1. Case 1: Static Feedback Design

Recall the low-order uncertain plant formulation

Pbh =
1

sτ + 1
(1 + τ∆s∆(s))U (6.23)

To represent the uncertainty, and obtain integral action in the control, the actua-
tion ũ is added as a state to allow representation of the time-derivative ud of the
actuation, and Ie for the integrated error (Ge et al., 2002). The system is then
written in state space form as

˙̃pbh = − 1

τ(t)
(p̃bh + ũ+ w + τ∆p) (6.24)

˙̃u = ud (6.25)

İe = p̃bh, (6.26)

where w is the disturbance, the open loop time constant τ(t) is time varying and
the uncertainty due to the high-frequency pressure dynamics is represented through
p given as

q = ud (6.27)

p = ∆(t)q, |∆(t)| ≤ 1. (6.28)

The resulting control problem is to find a state feedback gain, K, which robustly
minimizes the L2 gain of the integrated error:

sup
‖w‖2 6=0

‖Ie‖2
‖w‖2

, (6.29)

given the bound τ(t) ∈ [τ , τ ]. This problem formulation is summarized in Table
6.1.
To solve this problem we will represent the system as a Linear Differential In-

clusion (LDI) (Boyd et al., 1994a). In state space form, we write:

ẋ = A(t)x+Buu+Bw(t)w +Bp(t)p, (6.34)

q = Cqx+Dquu+Dqpp, (6.35)

z = Czx (6.36)

p = ∆(t)q, |∆(t)| ≤ 1, (6.37)
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Figure 6.7.: Comparison of infinite-dimensional plants P (s) (–) and first-order approximations
Pn(s) (- -), with the relative error (· · · ) and error bound τ∆s (with τ∆ = 4 seconds)
for different operating points ū, that is, with no gas in the well.

Figure 6.8.: The full complement of nominal plants and the resulting error, corresponding to the
gas distributions in Fig. 6.3 (plus the three plants without any gas), is shown. The
error bound τ∆s covers the high frequency error while the error at lower frequencies
is due to uncertainty in τ .
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Table 6.1.: Control problem formulation

Control problem formulation

Find a controller C(s) that robustly minimizes the L2 gain

sup
‖w‖2 6=0

‖Ie‖2
‖w‖2

, (6.30)

subject to

˙̃pbh =
1

τ(t)
(−p̃bh + ũ+ w + τ∆p) , (6.31)

İe = p̃bh, ũ = C(s)p̃bh, (6.32)

p = ∆(t) ˙̃u, ‖∆(t)‖ ≤ 1, τ(t) ∈ [τ , τ ]. (6.33)

where A(t) is the time varying system matrix, and the actuation, disturbance and
norm-bound uncertainty enter through the input vectors Bu, Bw(t), Bp(t) respec-
tively. We use a quite general formulation for q in (6.35) as it will be needed for
Case 2. With the bounds on τ(t) ∈ [τ , τ ], and denoting τ1 = τ , τ2 = τ the time
varying plant (6.34)–(6.37) can be described as an LDI given by the set

Ω = Co

{A1 Bu Bw,1 Bp,1

Cq Dqp Dqu 0
Cz 0 0 0

 ,
A2 Bu Bw,2 Bp,2

Cq Dqp Dqu 0
Cz 0 0 0

}. (6.38)

with

Ai =

−1
τi

1
τi

0

0 0 0
1 0 0

 , Bw,i =

 1
τi

0
0

 , Bp,i =

 τ∆
τi

0
0

 (6.39)

and

Bu =

01
0

 , Cq =

00
0

T

, Cz =

00
1

T

, (6.40)

and finally Dqp = 0, Dqu = 1.
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Formulation as an LMI

We synthesize a controller for this problem by solving the following eigenvalue
problem (Boyd et al., 1994a) in the free variables Y,Q, γ, µ:

minimize γ (6.41)

subject to: Q > 0, µ > 0 (6.42)
 AiQ+QAT

i

+BuY + Y TBT
u

+Bw,iB
T
w,i + µBp,iB

T
p,i

 ∗ ∗

CzQ −γ2 ∗
µDqpB

T
p,i + CqQ+DquY 0 −µ

 < 0, (6.43)

i = 1, 2.

The solution of this problem yields the feedback gain:
[
k1 k2 k3

]T
= Y Q−1

of the state space formulation (6.24)–(6.26). Consequently, the controller can be
written as the mapping U = C(s)Pbh with

C(s) =
k1s+ k3
s(s− k2)

. (6.44)

We note that the minus in (6.59) is due to the formulation (6.41)–(6.43) assuming
a positive feedback, meaning that k1, k2, k3 < 0.

6.4.2. Case 2: Time-Varying Feedback Design

If we have some way of obtaining an estimate τ̂ of the value of τ(t), it is natural to
conclude that better performance could be achieved by encoding this information
into the controller actuation, effectively making the controller gain dependent on
our estimate τ̂ . This approach leads to a time-varying feedback law. By augmenting
the plant with this time-varying feedback, it can be included in the LDI. Then we
design a static feedback law for the augmented plant which ensures robust stability
for the LDI and tries to optimize a performance index.
To facilitate such a controller we introduce an additional proportional feedback

gain, kτ (τ̂), dependent on the estimated time constant τ̂ . This additional feedback
also enters into the the norm-bound uncertainty meaning that we have to modify
the expression for q. Including this extra feedback gain, the state space description
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becomes

˙̃pbh = −1 + kτ (τ̂)

τ(t)
p̃bh +

1

τ(t)
(ũ+ w + τ∆p) (6.45)

˙̃u = ud (6.46)

İe = p̃bh, (6.47)

q = −1 + kτ (τ̂)

τ(t)
pbh +

1

τ(t)
ũ+ ud +

kτ (τ̂)

τ(t)
p (6.48)

p = ∆(t)q, |∆(t)| ≤ 1. (6.49)

For kτ (τ̂) we would like a simple and explicit relation that can improve performance.
In principle, there are a number of approaches to designing this mapping, but for
our purposes the following function was found amenable:

kτ (τ̂) = (
√
ρτ̂ + 1− 1), (6.50)

where ρ is a tuning factor. (6.50) can be shown to be identical to an optimal Linear
Quadratic Regulator with intregral action for the appropriately chosen tuning.
Having chosen a time-varying feedback gain, we proceed with the design. We

have the same LDI as given by (6.38)–(6.40), except for the following changes:

Ai =

−1+kτ (τ̂i)
τi

1
τi

0

0 0 0
1 0 0

 , (6.51)

Cq,i = kτ (τ̂i)
[
−1+kτ (τ̂i)

τi

1
τi

0
]
, (6.52)

Dqp = kτ (τ̂i)
τ∆
τ
. (6.53)

Here we need four edges to describe the polytope. Given a total range for τ :
τ ∈ [τ , τ ] and a bound on uncertainty given by r such that τ ∈ [τ̂ r, τ̂/r], the
parameters at the edges are

τ1 = τ , τ̂1 = τ/r, (6.54)

τ2 = τ/r2, τ̂2 = τ/r, (6.55)

τ3 = τr2, τ̂3 = τr, (6.56)

τ4 = τ , τ̂4 = τr. (6.57)

Consequently, for ρ = 0 this formulation yields results identical to Case 1.
The controller C(s) is now found the same way as before, and the full feedback

is given as

U = (C(s)− kτ )Pbh. (6.58)
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Figure 6.9.: Closed loop performance of controllers parametrized in robustness by the upper limit
of τ : τ .

6.4.3. Design Results

A comparison of the performance achieved by the controllers, parametrized in the
range of robustness, is shown in Fig. 6.9. Not surprisingly, the performance de-
creases rapidly with increasing upper bound on τ(t) denoted by τ (the x-axis).
The polytopic LDI formulation is known to be conservative in some cases due to
the formulation requiring all conditions be met with a single Lyapunov function
(implied by the matrix Q). This is likely to account for some of the decrease in
performance.
Furthermore we note the success of the time-varying feedback controllers of Case

2 which are able to yield significant increases in performance even for large uncer-
tainties in τ . The results shown are with ρ = 0.08 which was found to give the best
results.

6.5. Simulations

To evaluate the performance of the controllers formulated in Section 6.4, we consider
the dynamic handling of a gas kick in a Managed Pressure Drilling setting, similar
to the one presented in Section 6.2.4, simulated with the DFM. During the kick
removal process, the plant time constant, τ of (6.21), experiences very significant
changes due to the required back-pressure, pc, needed to attenuate the kick, and the
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effect of the gas on the effective bulk modulus, β̄ in (6.15). To test the performance
and robustness of the controller, a particularly severe kick is simulated with a
resulting range of τ between 2 and 600 seconds, see Fig. 6.10.
The pressure trends from the simulations with these controllers are shown in

Figs. 6.11–6.13. The kick is initiated at 5 minutes, then attenuated at 7 minutes
with a change of the downhole pressure setpoint prbh, and then circulated out. The
gas reaches the choke at around the 15 minutes mark, at which point the large
expansion of the gas and its subsequent removal from the annulus through the
choke cause large variations in hydrostatic pressure that must be compensated for.

6.5.1. Case 1

The pressure trends for the controller design with static feedback are shown in Fig.
6.11. Controllers designed with an upper bound τ equal to 18, 61 and 150 seconds,
respectively, are shown. For the case of τ = 18 seconds the controller covers the
time constants that can occur for single-phase flow, and in simulations without gas
influx it showed excellent performance. For the kick scenario considered, however,
the performance degrades when τ increases above this range due to the gas influx.
In spite of the performance degradation, the controller does not seem to become
unstable with the change in τ , which is not surprising as an increase in τ implies
the system response is getting slower.
For the controllers designed for robustness to higher τ the performance is compa-

rable. It seems clear that for the considered scenario, with such a large variation in
τ , we are unable to increase performance significantly with a static, time invariant,
controller. This motivates the approach of Case 2.

6.5.2. Case 2

The pressure trends for controller design with time-varying feedback are shown in
Fig. 6.12. Controllers designed with an upper bound τ equal to 18, 61 and 150
seconds respectively, and a 30% uncertainty in τ , are shown. In all cases ρ = 0.08
was used for the time-varying feedback gain (6.50). For this initial investigation,
the gas profile αg(x, t) was assumed known and τ̂(t) was calculated using (6.15)
and (6.21).
The first thing to notice is that the conclusion from Section 6.4.3 holds in the

simulations: using an estimate of the time constant τ in the feedback law allows
for significantly improved performance. This is clearly seen by comparing Fig. 6.11
and Fig. 6.12.
Next we note that the controllers designed are quite conservative: the τ = 18 and

τ = 61 controllers maintain good performance and do not show overly oscillatory
behavior (a sign of vanishing phase margins), even when the actual τ(t) reaches
values upwards of 600 seconds for a short time. Again, this is believed to be in large
part due to the conservatism introduced by the LDI formulation wherein the same
Lyapunov function is used throughout the range of τ ∈ [τ , τ ]. This can perhaps be
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amended (with a resulting increase in performance) by dividing the interval [τ , τ ]
into a set of overlapping sections, and using a separate Lyapunov function in each
of them1.

6.5.3. Wrong Estimate of τ

In our final simulation we consider the flip-side of assuming τ known: what happens
when this assumption is wrong. Again we use a τ = 18 and a 30% uncertainty in
τ . This time, however, the τ̂ is off by a factor of 4 compared to the τ calculated
from the model state.
The τ̂ = 1/4τ shows a degraded performance compared to τ̂ = τ in being slower,

with larger overshoots and poorer disturbance rejection. By linear analysis in a
Nichols chart (not shown) the overshoots were found to be due to the degraded
phase margins of this controller. However, under-predicting τ does not jeopardize
stability because the poor phase margin is located at a low frequency where delays
have little effect on the phase. Furthermore, under-predicting τ results in a large
gain margin, which also accounts for the slower response.
The τ̂ = 4τ controller becomes unstable when τ increases as the controller is

overly aggressive. Specifically, the time-varying gain increases with τ̂ , see (6.50),
while the high-frequency uncertainty decreases with τ(t), see (6.24). Consequently,
over-predicting τ may lead to instabilities.

6.6. Conclusion and Future Work

This paper proposed a controller structure and a first-order model approximation
of two-phase flow in an oil and gas well which facilitates effective design of high-
performance choke controllers for Managed Pressure Drilling. The accompanying
analysis confirmed the proposition made in previous literature on this topic that
the single-phase dynamics are dominated by a slow pressure mode, captured by the
first-order approximation. It was shown that this fact also extends to the two-phase
case.
Linearizing the choke actuation resulted in a first-order system with a time con-

stant, τ , dependent on the operating point and the amount of gas in the well. For
the severe kick scenario considered in this paper, a static feedback controller yielded
poor performance due to the large variation in τ . Using a time-varying feedback and
incorporating an uncertain assumption of τ , we were able to significantly improve
performance while maintaining a satisfactory degree of robustness.
We did not elaborate on how the estimate of τ should be obtained, but possible

approaches include techniques such as in (Aarsnes et al., 2015) or (Kaasa et al.,
2011). Combining the estimation with the controller structure investigated in the

1Although the idea is simple, the required analysis to prove stability would presumably be
quite involved as the system would have to stay within a section for sufficient time such that
continued convergence can be shown even while the Lyapunov function changes.
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Figure 6.10.: Range of τ(t) trends.

Figure 6.11.: Case 1 controllers.
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Figure 6.12.: Case 2 controllers.

Figure 6.13.: Case 2 controllers: the effect of under- or over-predicting τ(t).
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current paper, i.e. designing adaptive controllers, is the goal of future work. In this
context, the following conclusion is of importance:

• Assuming too low τ → loss of performance.

• Assuming too high τ → loss of robustness.

It was noted that the controllers designed seemed to be conservative when re-
quired to be robust for a large range of τ . It is believed that this is due to the LMI
design approach requiring a single Lyapunov function to stabilize the whole set of
polytopic uncertain plants. By splitting the envelope of τ into multiple overlapping
sections when performing the controller design, thus allowing for the use of switched
Lyapunov functions, it is believed that performance can be further improved.

Appendix

6.A. Hydraulic Transmission line modelling

Let p(x, t), q(x, t) denote the profiles of pressure, respectively, volumetric flow rate
in the well. We denote t ∈ R+ the time variable and x ∈ [0, L] the position where
x = 0 is the bottom of the well such that

pbh(t) = p(0, t), pc(t) = p(L, t),

qbh(t) = q(0, t), qc(t) = q(0, t).

We are concerned with the transient behaviour of the well, and as such, we denote
perturbations from some initial steady state profile p̄(x), q̄ (note that the steady
state flow rate is constant while the steady-state pressure is dependent on position
x)

p̃(x, t) = p(x, t)− p̄(x), q̃(x, t) = q(x, t)− q̄

In the following we drop the (x, t) arguments when this is obvious from the context.
Using the equation of continuity and the momentum balance coupled with the

equation of state, respectively, we obtain

∂p̃

∂t
+
β

A

∂q̃

∂x
= 0 (6.59)

ρ0
∂q̃

∂t
+ A

∂p̃

∂x
= −kq̃ (6.60)

where β, ρ0, A, k are the effective bulk modulus, nominal liquid density, cross-
sectional flow area, and a viscous linear dissipation factor, respectively.
This model gives an excellent approximation of the single-phase flow dynamics

in a well. The limiting factor of this model’s performance is the simplicity of the
linear, frequency-independent, friction factor. The above simplification should be
valid given that:
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• We are considering relatively small perturbations around the original steady
state such that higher-order frictional effects are not significant.

• The resistive losses occurring at the boundaries are significantly higher than
the viscous losses occurring along the line (Goodson and Leonard, 1972). This
is typically satisfied in MPD operations as a partly open back-pressure choke
is highly resistive. In cases where this assumption does not hold, frequency-
dependent friction (Di Meglio and Aarsnes, 2015) or other more rigorous
models could be used (Aarsnes et al., 2014c).

Using the model (6.59)-(6.60), the propagation operator Γ and characteristic line
impedance Zc are given as (Goodson and Leonard, 1972)

Γ(s) =
sL

c0

√
1 +

k

s
, Zc(s) =

ρ0c0
A

√
1 +

k

s
, (6.61)

where c0 =
√
β/ρ0 is the sound velocity and s is the Laplace variable.

6.A.1. Irrational Transfer Function

The Laplace transformed, perturbed, pressure and flow dynamics (denoted by cap-
ital letters) can be written in standard form as (Goodson and Leonard, 1972)[

Pbh

Qbh

]
(s) =

[
cosh Γ Zc sinh Γ
1
Zc

sinh Γ cosh Γ

] [
Pc

Qc

]
(s),

where the propagation operator Γ, and characteristic line impedance Zc are given
in (6.61). For developing the desired transfer functions, the appropriate two-port
configuration can be found in (Goodson and Leonard, 1972) (where we have Qc

defined as flow out of and Qbh as flow into the well):[
Pbh

Pc

]
= Zc

[
cosh Γ
sinh Γ

− 1
sinh Γ

1
sinh Γ

− cosh Γ
sinh Γ

] [
Qbh

Qc

]
, (6.62)

≡
[
−G2(s) G1(s)
−G1(s) G2(s)

] [
Qbh

Qc

]
.

6.B. Linearized Two-Phase Choke Equation

The topside flow out of the well is given by a two-phase choke equation relating the
flow rate to choke pressure and choke opening. In the following we will consider
the choke equation from (Aarsnes et al., 2014b):[ρ`v`α`√

ρ`
+
ρgvgαg

Y
√
ρg

]∣∣∣
x=L

=
Cv(z)

A

√
pc − pc0, (6.63)
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where ρi, vi, αi, i = G,L are the density, velocity and volume fraction of the gas and
liquid, respectively, and Y ∈ [0, 1] is a gas expansion factor for the gas flow. Herein,
A, Y, ρ`, pc0 are assumed to be constant or slowly varying. We note that when the
flow is liquid only (6.63) reduces to the classical single-phase choke equation (6.16).
Using the mapping (6.17) we are looking for a linearized approximation on the

form

q̃c =Kpp̃c −Kuũ, (6.64)

Now denote qc = AvM = A(αgvg + α`v`)
∣∣
x=L

as the mixture flow through the
choke. We have from (6.63), inserting (6.17), and assuming the slip law vg =
C0vM + v∞, valid for αg < 1/C0 (Zuber and Findlay, 1965):

qc =
1

CK

(√
pc−pc0√
u

+
A

2
v∞XG

)
, (6.65)

CK = 1− 1

2
C0XG, XG =

[
αg

(
1− 1

Y

√
ρg√
ρ`

)]∣∣∣
x=L

. (6.66)

CK ≤ 1 is to be understood as a two-phase modification factor equal to 1 for
liquid-only flow.
Consequently, we have:

Kp =
q̄bh
CK

1

2
√
pc−pc0

√
u
, (6.67)

Ku =
q̄bh
CK

√
pc−pc0
2u

√
u
. (6.68)

Combining (6.19) with (6.3) and using the first-order approximation from (6.14)
we obtain the nominal first-order plant

Pbh ≈ ku
τs+ 1

U, (6.69)

τ = V/(Kpβ̄), (6.70)

ku =
Ku

Kp

=
pc−pc0
u

. (6.71)

In the controller design we assume ku ≈ 1, which is valid at the equilibrium point.
Furthermore, at the equilibrium we also have

τ =
V CK2ū

β̄q̄bh
. (6.72)
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Concluding remarks

The drilling of petroleum wells often entail dynamics which are complex and/or
non-intuitive, and monitored with limited measurement capabilities. As such re-
searchers have, over the years, developed and validated mathematical models cov-
ering the full range of operations. This means that the drilling process is ripe
for improvement through the application of the appropriate automated algorithms
which could reduce risk, increase productivity and act as an enabling technology
of the increasingly challenging prospects.
Such expectations have been slow to realize up until recently. But, the advent of

back-pressure drilling, together with a larger industry pull for topside automation,
have made available the necessary sensor and actuation equipment. Consequently
automated pressure control using a backpressure choke for MPD is now readily
offered, including such products as:

• Expro PowerChokes R©ABP Automatic Back Pressure Choke (Expro,
2015).

• Kelda Leidar R©Control System (Kelda Drilling Controls, 2015a).

• Weatherford Microflux R©Control System (Weatherford, 2015).

• MI Swaco @balance drilling (MI Swaco, 2015).

It is natural to expect the standardization of automated pressure control that
has happened in MPD to percolate to other back-pressure drilling approaches such
as flow drilling and UBD. When this happens models of the two-phase flow en-
countered, that are amenable for control and monitoring algorithms, will be re-
quired. This thesis has attempted to provide a basis for designing and choosing
such fit-for-purpose models. In particular, a heuristic has been proposed that sug-
gests which type of dynamic dominates at different time scales (or equivalently,
frequency ranges), summarized in Table 7.1.
Automatic pressure control of UBD has the potential of making a big impact,

probably even more so than the automation that has occurred in MPD. The rea-
son for this is that the dynamics encountered in UBD are more complicated and
challenging to control, resulting in a larger potential for improvement from the con-
ventional “bloke on the choke” to a state of the art control algorithm. Furthermore,
the diverse operating conditions and challenges encountered in UBD means that
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Table 7.1.: Time scale heuristic.

Time-scale Dominating dynamics
∼ 10 seconds Distributed pressure dynamics

∼ 1−10 minutes Slow compression pressure mode
∼ 10 minutes to hours Void wave advection

automated pressure control has a potential as an enabling technology: e.g. avoiding
large pressure transients in tight reservoirs.
Specific scenarios and procedures from UBD where these algorithms can make an

impact were covered in the introduction. Of these, the following can be improved
with automated feedback control of the back-pressure choke:

• Connection transients.

• Severe slugging.

• Extending the operating envelope to the unstable regime.

These transients are primarily driven by the void wave propagation dynamic (i.e. at
the time scale of 10-minutes to hours). Consequently, by closing the feedback loop
at a crossover frequency around 1–10 minutes, e.g. using the approach proposed in
Chapter 6, these scenario can be effectively controlled and stabilized.
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Appendix A

The Drift-Flux Model

This Appendix is based on the work presented in Aarsnes et al. (2014b) and Aarsnes
et al. (2016a).

A.1. Governing Equations

The model consists in expressing the mass conservation law for the gas and liquid
phases separately, and a combined momentum equation. The drilling mud, oil and
water are lumped into one single liquid phase. In developing the model, we use the
following mass variables

m = α`ρ`, n = αgρg

where for k = `, g denoting liquid or gas, ρk is the phase density, and αk the volume
fraction satisfying

α` + αg = 1. (A.1)

Further, vk denotes the phase velocity, and p the pressure. All these variables are
functions of time and space. We denote t ≥ 0 the time variable, and x ∈ [0, L] the
space variable, corresponding to a curvilinear abscissa with x = 0 corresponding to
the bottom of the well and x = L to the outlet choke position (see Fig. 6.1). The
equations are as follows:

∂

∂t
m+

∂

∂x

(
mv`

)
= 0, (A.2)

∂

∂t
n+

∂

∂x

(
nvg
)
= 0, (A.3)

∂

∂t

(
mv` + nvg

)
+

∂

∂x

(
P +mv2` + nv2g

)
= S. (A.4)

In the momentum equation (A.4) we have the source term

S = −(m+ n)g sinφ(x)− 2f(m+ n)vM |vM |
D

, (A.5)
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where the term (m + n)g sin θ represents the gravitational source term, while
2f(m+n)vM |vM |

D
accounts for frictional losses. The mixture velocity is given as

vM = αgvg + α`v`. (A.6)

Along with these distributed equations, algebraic relations are needed to close the
system.

A.1.1. Closure Relations

Both the liquid and gas phase are assumed compressible. This is required for the
model to handle the transition from two-phase to single-phase flow. The densities
are thus given as functions of the pressure as follows

ρg =
P

c2g(T )
, ρ` = ρ`,0 +

P

c2`
, (A.7)

where ck is the velocity of sound and ρ`,0 is the reference density of the liquid phase
given at vacuum. Notice that the velocity of sound in the gas phase cG depends
on the temperature as suggested by the ideal gas law. The temperature profile is
assumed to be known and fed into the model.
Combining (A.7) with (A.1) we obtain the following relations for finding volume

fractions from the mass variables:

αG =
1

2
−

c2g
c2`
n+m+

√
∆

2ρ`,0
,

∆ =
(
ρ`,0 −

c2`
c2`
n−m

)2
+ 4

c2G
c2L
nρ`,0

Then the pressure can be found by using a modified expression to ensure pressure
is defined when the gas vanishes:

P =


(

m
1−αg

− ρ`,0

)
c2` , if αg ≤ α∗

g

n
αg
c2g, otherwise.

(A.8)

Because the momentum equation (A.4) was written for the gas-liquid mixture,
a so-called slip law is needed to empirically relate the velocities of gas and liquid.
Traditionally, the Zuber-Findlay (Zuber and Findlay, 1965) slip law is used

vg = C0vm + v∞

where C0 and v∞ are constant parameters. However, to handle the transition
between single and two-phase flow, a more involved relation, with state-dependent
parameters is needed (Evje, 2011; Shi et al., 2005). More precisely, we use the
following slip law:

vg = (K − (K − 1)αg)vM + α`S (A.9)

where K ≥ 1 and S ≥ 0 are constant parameters.

148



A.2. Numerical Implementations

A.1.2. Boundary Conditions

Boundary conditions on the left (downhole) boundary are given by the mass rates
of gas and liquid injected from the drilling rig and flowing in from the reservoir.
Denoting the cross sectional flow area by A, the boundary fluxes are given as:

mv`|x=0 =
1

A

(
WL,res(t) +WL,inj(t)

)
, (A.10)

nvg|x=0 =
1

A

(
WG,res(t) +WG,inj(t)

)
. (A.11)

The injection mass rates of gas and liquid,WG,inj,WL,inj, are specified by the driller
and can, within some constraints, be considered as manipulated variables. The
inflow from the reservoir is dependent on the pressure on the left boundary, usually
given by a Vogel-Type inflow performance relationship (IPR) (Wiggins et al., 1996),
but within the range of drawdown (i.e. difference between reservoir and downhole
pressure) considered here, an affine approximation should suffice, i.e.

WL,res = kL max(Pres−P (0), 0)
WG,res = kG max(Pres−P (0), 0)

Here Pres is the reservoir pore pressure and kG, kL are the production index (PI) of
the gas and liquid, respectively.
The topside boundary condition is given by a choke equation relating topside

pressure to mass flow rates[mv`√
ρ`

+
nvg
Y
√
ρg

]∣∣∣
x=L

=
Cv(z)

A

√
max (P (x=L, t)− Pc0, 0), (A.12)

where Cv is the choke opening given by the manipulated variable z, Y ∈ [0, 1] is
a gas expansion factor for the gas flow and Pc0 is the separator pressure, i.e. the
pressure downstream of the choke. Changing the choke opening is the primary
control actuation for the drilling system.

A.2. Numerical Implementations

Throughout the work, one out of the two numerical schemes were employed, de-
pending on the requirements of the application.

1. The explicit AUSM scheme described in (Evje and Fjelde, 2002) for applica-
tions where resolution of the fast pressure waves was required.

2. A backward time, central space (BTCS) implicit scheme for long simulations
where the slow gas propagation dynamics were of interest.

The implicit scheme is detailed below.
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A.2.1. Implicit Scheme

Model (A.2)–(A.12) rewrites as the following nonlinear 3-state hyperbolic system
of conservation laws (Masella et al., 1998)

∂q1
∂t

+
∂f1(q1, q2, q3)

∂s
= 0 (A.13)

∂q2
∂t

+
∂f2(q1, q2, q3)

∂s
= 0 (A.14)

∂q3
∂t

+
∂f3(q1, q2, q3)

∂s
= FW (q1, q2, q3) + FG(q1, q2) (A.15)

where q = (q1, q2, q3) = (n,m, nvG + mvL) is the set of conservative variables.
Traditionally, explicit numerical schemes are favored for such systems, because they
preserve shocks and limit numerical diffusion (Evje and Fjelde, 2002; Fjelde et al.,
2003). However, to ensure their stability, the time and space steps ∆t and ∆s are
required to satisfy, at all times, Courant-Friedrichs-Lewy (CFL) types of conditions,
of the form ∣∣∣∣λmax(u)

∆t

∆s

∣∣∣∣ ≤ 1 (A.16)

where λmax(u) is the largest (in absolute value) characteristic velocity of the prob-
lem, i.e. the largest eigenvalue of the matrix ∂f

∂u
(u). In the case of two-phase flow,

the largest eigenvalue, which corresponds to the propagation of pressure waves in
the gas, is of the order of 300 m.s−1. In the case of single-phase liquid flow, the
order of magnitude jumps to around 1000 m.s−1. For, e.g., a 3000 meter-long well
with 100 space steps, this imposes a time step of the order of ∆t < 0.1s.
For this reason, we choose an unconditionally stable implicit scheme to numer-

ically solve the equations, therefore not subject to CFL conditions. More pre-
cisely, consider a time-space grid t ∈ {0,∆t, ...}, s ∈ {0,∆s, ..., (P − 1)∆s}. De-
noting q(p∆s, n∆t) = qn(p), we consider the following approximate equations

qn1,2(p)− qn−1
1,2 (p)

∆t
+
f1,2(q

n(p+ 1))− f1,2(q
n(p− 1))

2∆s
= 0 (A.17)

qn3 (p)− qn−1
3 (p)

∆t
+
f3(q

n(p+ 1))− f3(q
n(p− 1))

2∆s
= FW (qn(p)) + FG(q

n(p)) (A.18)

These equations are valid for p = 1, ..., P −2, yielding 3× (P −2) implicit nonlinear
equations to be solved at each time step. The boundary conditions (A.10)–(A.12)
yield 3 more equations, that can be written in the following implicit form

hbottom,1(q
n(0)) = hbottom,2(q

n(0)) = htop(q
n(P )) = 0 (A.19)
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The last 3 equations are given by using a de-centered second-order discretization
of the spatial derivative at the boundaries

∂f1,2(q)

∂s
((P − 1)∆s, n∆t) ≈

3f1,2(q
n(P − 1))− 4f1,2(q

n(P − 2)) + f1,2(q
n(P − 3))

2∆s
(A.20)

∂f3(q)

∂s
(0, n∆t) ≈ −3f3(q

n(0)) + 4f3(q
n(1))− f3(q

n(2))

2∆s
(A.21)

This yields a set of 3P equations with 3P unknowns to be solved at each time step.
To increase computational speed, the Jacobian of these equations is computed
analytically, and a simple Newton algorithm is used to solve them. More precisely,
the algorithm takes the following steps

1. At t = 0, pick a suitable initial condition, e.g. an equilibrium profile.

2. At t = n∆t, considering that qn−1(p) is known for all p = 0, ..., P − 1 from
the previous iteration, do the following to compute qn(p)

a) Use qn−1(·) as the initial guess of qn(·).
b) Rewriting Equations (A.17)–(A.21) as F (qn) = 0, compute F (qn).

c) If the norm of F is low enough (given a pre-defined threshold value),
the Newton algorithm has converged: go to step 3. The norm can be
chosen, e.g., as a weighted 2-norm, i.e. F TWF , where W is a suitably
chosen weighing matrix.

d) Compute the 3P × 3P Jacobian matrix

J =
∂F

∂qn
=
(

∂F
∂qn1 (1)

· · · ∂F
∂qn1 (P−1)

∂F
∂qn2 (1)

· · · ∂F
∂qn3 (1)

· · ·
)

(A.22)

e) Update qn

qn := qn − J−1F (qn) (A.23)

f) Repeat steps (b)–(e) until the norm of F is low enough.

3. Increment n and go to step 1.

Remark: The choice of the norm in the stopping criterion for the Newton algorithm
is critical to the algorithm performance and robustness. Particular attention should
be given to scaling the equations to maximize the conditioning of matrix J .
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