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NUMERICAL MODELLING OF TURBULENT BOUNDARY LAYER 

 

Towed acoustic arrays are used in both military and civilian applications. The 

system consist of thin, very long cables that are submerged in water and towed 

by a surface ship, a submarine or an unmanned underwater vehicles (UUVs). A 

relative thick axisymmetric boundary layer is formed along the antenna, but 

occasionally the cable is rotating rapidly around its axis due to variation in 

tension caused by e.g. ship movement (tugging).  

 

FFI is currently using advanced CFD methods (LES and DNS) to compute the 

boundary layer, but it is of interest to investigate simpler methods based on the 

Reynolds-averaged Navier-Stokes (RANS) approach. The simulations will be 

conducted using OpenFOAM. 
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Abstract 

Most physical problems involving viscous fluid flows are characterized by 

turbulence where instabilities and large velocity gradients generate fluctuations 

in the flow field. Towed sonar arrays are exposed to turbulence in the boundary 

layer formed around the cable. Problems are related to the cable rotating around 

its own axis due to variations in tension force caused by the towing vehicle. 

Numerical calculations of a pressure driven flow along a cylinder are performed 

for the purpose of investigating the turbulent boundary layer around the cable. In 

this study, the numerical software OpenFOAM has been used in order to solve 

the flow field. The Reynolds Average Navier-Stokes (RANS) approach was 

applied, providing a time-average solution of the flow quantities. The results 

were used in a comparative study with data obtained from Large Eddy 

Simulation (LES).  

Simulations were carried out for two Reynolds numbers based on the 

shear velocity;              . The cylinder was assigned two different 

rotational velocities in addition to a case with zero rotation. Results show that 

the normalized mean velocity profile is in good agreement with the universal 

law-of-the-wall and previous published data. Comparison with LES data 

indicated good agreement with Reynolds shear stresses and the normalized mean 

velocities in the case of a non-rotating cylinder. However, deviations were 

observed when rotation was applied. In order to ensure the quality of the 

numerical results a convergence study was performed. Special attention was paid 

to the near-wall region in order to capture all levels of the boundary layer.  
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Sammendrag 

De fleste problemer som involverer viskøse strømninger er karakterisert ved 

turbulens. Ustabiliteter og store hastighetsgradienter forårsaker fluktuasjoner i 

strømningsfeltet. Tauede sonarer er utsatt for turbulens i grensesjiktet rundt 

kabelen. Problemer oppstår når kabelen roterer om sin egen akse på grunn av 

variabel strekkraft forårsaket av den slepende farkosten. Numeriske beregninger 

av en trykkdreven strømning langs en sylinder er gjort med den hensikt å 

undersøke det turbulente grensesjiktet rundt kabelen. I dette studiet er Reynolds 

Average Navier-Stokes (RANS) likningene benyttet i det numeriske verktøyet 

OpenFOAM for å beregne strømningsfeltet. Resultatene ble deretter brukt i en 

sammenlikningsstudie med data fra Large Eddy Simulation (LES). 

 Simuleringene ble utfør for to forskjellige Reynolds tall basert på 

skjærhastigheten;              . Sylinderen ble tilordnet to forskjellige 

rotasjonshastigheter i tillegg til et tilfelle der rotasjonen var lik null. Resultatene 

viste at den normaliserte gjennomsnittlige hastighetsprofilen var i god 

overensstemmelse med den universelle law-of-the-wall og tidligere publiserte 

data. Sammenlikninger med LES data indikerte at Reynolds skjærspenninger og 

den normaliserte gjennomsnittlige hastighetsprofilen stemte godt overens i det 

tilfellet av en ikke-roterende sylinder. På den annen side ble det observert avvik 

fra LES dataene der sylinderen roterte. For å sikre kvaliteten på de numeriske 

resultatene ble det utført konvergensanalyser. Det ble særlig tatt hensyn til 

området nært til sylinderoverflaten for å fange alle nivåene i grensesjiktet. 
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1 Introduction 
 

Turbulence is the state of fluid flow characterized by unpredictable and chaotic 

motions. It is one of the most challenging problems faced within the discipline 

of fluid dynamics. The nature of the flow are swirly motions forming eddies 

which vary in size, time and space. The path of the fluid particles are difficult to 

follow as oppose to laminar flow where they follow a smooth and orderly path in 

layers. For engineering application this type of flow is important, consequently 

scientists have invested a great deal of effort in understanding the phenomenon 

of turbulence. The characteristic eddies exist in a range of scales, where energy 

is transferred from the larger scales to the smaller, until it is dissipated through 

kinematic viscosity. Figure 1.1 illustrates the range of scales that occur in a 

turbulent flow. Kolmogorov formulated this into laws which pre-date the 

concept of the energy cascade [1]. In 1883 Osborne Reynolds performed an 

experiment illustrating the different states of fluid flow [2]. Dyed water was 

injected into a transparent pipe in which the main stream flowed. He observed 

that an increase in drag corresponded to the occurrence of turbulent flow. The 

change of the flow regime was quantified through a number, the Reynolds 

number, where the flow shifts from laminar to turbulent when a certain value is 

exceeded. 

 

 

 
Figure 1.1: Eddies exist in a range of scales. Modified picture from [3]. 

 

 

In this thesis, pressure driven turbulent flow along a cylinder, with and without 

rotation, is studied utilizing numerical methods. The Reynolds Average Navier-

Stokes (RANS) approach is applied to solve the flow field, providing a time-

averaged solution to the Navier-Stokes equations when specific flow quantities 

are known. Flow along cylinders is of interest for several applications, including 
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marine pipelines, aircrafts and towed acoustic array systems. Towed acoustic 

array systems are used for detection, tracking and reporting of objects below the 

water surface. It is utilized both in the civilian and military industry mainly for 

oil and gas exploration and in antisubmarine warfare. The concept of the system 

is simple; an arrangement of thin cables, up to          in length, are towed 

behind a surface vessel or an underwater vehicle. Acoustic receivers, mounted 

on the cables, register sound pulses transmitted or reflected by objects [4].  

When the cable is towed through water noise or unwanted acoustic 

signals is generated from the turbulent motions. Under normal operations this 

type of disturbances typically makes up 50% of the recorded noise at low 

frequencies (at less than       ) [5]. Occasionally, the cable also experiences 

variation in tension force due to the motion of the towing vehicle. The 

combination of the cable not being perfectly homogeneous, due to small 

asymmetries introduced during manufacturing, and variable tension causes the 

cable to rotate around its longitudinal axis. The rotation modifies the boundary 

layer and consequently also the noise. 

 

 

1.1 Towed acoustic arrays 

 

Towed acoustic arrays may be classified as passive or active systems, depending 

on how the recorded sounds are generated. An active system consists of 

transmitters and receivers, as depicted in Figure 1.2. The transmitters are placed 

below the surface vessel generating sound pulses which propagates through the 

water. When the sound pulses hit an object, or the seabed, they are refracted and 

an echo is generated. The echo is recorded by the receivers, or hydrophones, 

placed along the cables. The acoustic signals are then sent back to the surface 

vessel where they are processed. Passive systems are similar, but do not make 

use of transmitters. Instead, the hydrophones are used to detect sound generated 

from other objects, e.g. propeller noise or submarine navigation systems. The 

passive systems are mainly used by the military industry where it is vital not to 

reveal ones position. Towed acoustic arrays were adopted for the first time 

during World War I. In 1917, at the U.S. Navy Experimental Station, Dr. Hays 

developed a towed array system that was meant to detect submarines. The 

system was called Eal Sonar System [6].  
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Figure 1.2: Active array system. 

 

 

1.2 Computational Fluid Dynamics (CFD) 

 

Computational Fluid Dynamics (CFD) is a discipline within fluid dynamics that 

apply numerical models and algorithms to describe the flow field. The governing 

equations for most numerical software are the Navier-Stokes equations which 

describe the motion of viscous fluids. Numerical tools in engineering application 

have become more popular over the last decades as the computer capacity allows 

for more complex computations. Compared to the classical methods 

(experimental and theoretical), CFD is more cost-effective and flexible because 

it allows sampling of desired flow quantities at any point in the fluid domain.  

The approach of solving the turbulent flow field without any 

simplification of the Navier-Stokes equations is called Direct Numerical 

Simulation (DNS). The whole range, from the largest to the smallest dissipative 

scales, is solved directly. This is a computational expensive task and calls for 

high performance computers. In practice this method is only applied to flows 

with low Reynolds number. The Large Eddy Simulation (LES) approach does 

not resolve the full range of scales. As the name implies, it only solves for the 

largest scales occurring in a turbulent flow, which makes it less computational 

expensive compared to DNS. De Villiers [7] explain that the smaller eddies are 

believed to be more or less universal and are modelled using a sub-grid scale. He 

also points out that LES is justified because the largest scales contain the most 

energy and transports most of the conserved fluid properties. In the RANS 

approach the governing equations are simplified by time-averaging. This is 

equivalent to carry out a high number of identical experiments and then take the 

mean of the flow quantities at the same time instant. RANS is the least 

computational expensive method of the three approaches mentioned here and is 

capable of solving flows over complex geometries at high Reynolds number. 
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1.3 Flow along a cylinder 

 

Most physical problems involving viscous fluid flows are characterized by 

turbulence. Instabilities and large velocity gradients generate fluctuations in the 

flow field. From a physical perspective, the development of a boundary layer 

along a cylinder is in many situations similar to the case of flow over a flat plate. 

Consider the case of a cable towed through water; a relative thick axisymmetric 

turbulent boundary layer is formed along the cable. Flows experiencing axial 

symmetry have been the topic of many articles. Cham & Head [8] investigated 

the turbulent boundary layer of a rotating cylinder. They observed that the only 

evidence of three-dimensionality laid in the destabilizing effect of a rotating 

cylinder. By transforming the coordinate system to a set of axes rotating with the 

cylinder, the boundary layer downstream approximated closely to a two-

dimensional condition. 

 The terms “axisymmetric boundary layer” and “cylindrical boundary 

layer” are used interchangeably in articles to describe the two-dimensional 

behaviour. Obtaining complete axial symmetry in experimental methods is 

difficult because of physics that are not controllable when the boundary layer 

becomes thick. Lueptow [9] suggest that the term “cylindrical” is more suited in 

this case. His experiments of a cylinder in axial flow showed that the curvature 

in the transverse direction resulted in a higher frictional coefficient and a “fuller” 

velocity profile than in the case of a flat plate. For large cylinder radii (compared 

to the boundary layer thickness) the mean velocity profile was identical to the 

planar case, but when the radius became small the deviations increased. 

Measurements that were available for cylindrical boundary layers suggested that 

the distribution of the turbulent quantities were somewhat different from the 

planar case. The mean velocity profile on cylinders of various diameters was 

also investigated experimentally by Willmarth et. al. [10]. It was found that the 

profile was well described by the universal law-of-the-wall. The axisymmetric 

turbulent boundary layer was also the topic of the study by Afzal & Narasimha 

[11]. They examined available experimental data, including the data of 

Willmarth et. al., and found that the boundary layer was well described by the 

classical form of law-of-the-wall, given that the Reynolds number was of 

sufficient size to develop a fully turbulent boundary layer. Behaviour quantities 

relevant for the performance of towed arrays were investigated by Tutty [12]. 

Numerical calculations was carried out for flow along a cylinder at a Reynolds 

number ranging from      to       and subsequently compared to 

experimental data. The results showed good agreement with those from 

experiments. He also pointed out that strong turbulent flow only occurs near the 

cylinder surface and that turbulence was weak in the rest of the boundary layer.  

Marschall et. al. [13] and Potter et. al. [14] address the problem of 

increased turbulent flow noise for decreasing diameter of the towed array at a 

given tow speed. The motivation for decreasing array-diameter is related to 

weight and handling problems during launching and recovering. Marschall et. al. 
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discussed a marine seismic survey test conducted in the Antarctic using a non-

constant diameter array. The hydrophones were placed in a hydrodynamically 

housing creating a laminar boundary layer, rather than a turbulent, resulting in 

reduced turbulent flow noise. Potter et. al. explained that conventional towed 

arrays usually have a diameter of          and a weight of approximate 

      . As the length of the cables are in the order of       the overall weight 

becomes substantial. Because of this, specialized ships are required to operate 

the system. It was suggested that a drastic reduction in the overall diameter to 

below       may produce acceptable results with respect to turbulent flow 

noise. Other studies related to flow noise around seismic cables are found in [15] 

and [16]. The problem of flow noise is not explicitly the topic of this thesis, but 

reference is made as the performance of the towed array is limited by the noise 

generation. 

 

 

1.4 Introduction to OpenFOAM 

 

This chapter is a short introduction to the basic concepts of the program 

OpenFOAM (Open Field Operation And Manipulation). OpenFOAM [17] is a 

free open source software for numerical calculations of flow fields. The basis of 

the program is a C++ library which is divided into solvers and utilities. The 

solvers are designed to solve specific problems within continuum mechanics, 

and the utilities are used for pre- and post-processing of data. OpenFOAM is run 

through commands in a terminal window that requires a Linux operating system. 

For Windows users it is possible to install visualization software and run Linux 

as a guest operating system. The program applies for a broad range of fluid 

dynamic problems such as compressible/incompressible flows, multiphase 

flows, combustion, particle methods and electromagnetics. It offers many 

opportunities because it allows running standard or customized solvers. The 

main structure of OpenFOAM is illustrated in Figure 1.3.  
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Figure 1.3: The structure of OpenFOAM. 

 

 

The reason for its success might be due to its broad application area and the fact 

that the code is free and open. Even though the software is popular it has some 

disadvantages. Lysenko et.al [18] points out the most crucial as: 

 

- The lack of default settings. 

- The large amount of different numerical schemes and models, which is a 

disadvantage for inexperienced users.  

- The lack of documentation and references makes it difficult to validate 

and verify the quality of capabilities.  

 

Upon solving a problem in OpenFOAM one has to create a case directory. The 

case directory has to contain a minimum of three subdirectories; constant, 

system and 0. The constant-directory contains the discrete representation 

of the model, fluid domain and physical properties of the flow. The system-

directory contains information about the solver being used. Initial conditions for 

e.g. pressure and velocity are defined in the 0-directory. Figure 1.4 illustrates the 

structure of a case-directory in OpenFOAM. 
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Figure 1.4: Structure of case directory in OpenFOAM. 
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2 Governing equations 
 

This section is mainly based on White [19] and Cebeci & Cousteix [20]. In order 

to mathematically describe the motion of the fluid a set of equations has to be 

established. In fluid dynamics the classical laws of conservation is applied: 

 

- Conservation of mass, the governing equation is called the continuity 

equation. 

- Conservation of momentum, this relation is based on Newton’s second 

law. 

- Conservation of energy, the governing equation is called the energy 

equation. 

 

All of these equations are usually referred to as the Navier-Stokes equations. 

Here, three unknowns are present; the velocity  ⃗ , thermodynamic pressure   and 

absolute temperature  . In addition density, enthalpy and transport properties 

will influence the flow, but by assuming a fluid of homogeneous composition 

only  ⃗ ,   and   has to be considered. The following section contains a 

description of the governing equations followed by simplifications. The 

equations are presented on differential form which means they denote influences 

on a unit volume, or control volume. This allows us to study a certain amount of 

fluid flowing in and out of a system, Figure 2.1 illustrate such a system. 

 

 
Figure 2.1: Control volume. 
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2.1 Conservation of mass (continuity equation) 

 

The continuity equation states that the rate of mass going out of a system is 

equal to the rate of mass going in. In other words, no mass is neither created nor 

destroyed inside the control volume. On general form the continuity equation 

may be written: 

 

 
  

  
   (  ⃗ )    (2.1) 

 

for a three-dimensional flow in  -,  - and  -direction. Here,   is the density of 

the fluid,       is the rate of change of density and  ⃗          is the velocity 

vector.   is the differential operator;                          . 

 

 

2.2 Conservation of momentum (Newton’s 2
nd

 law) 

 

This law states that, within a control volume, the amount of momentum remains 

constant: 

 

 
  ⃗ 

  
  ⃗  (  ⃗ )     

 

 
     (   ⃗         ⃗ ) (2.2) 

 

for a three dimensional flow in  -,  - and  -direction.    represents gravitational 

body forces and    is the pressure-gradient. The last term on the right hand side 

represents viscous forces where   is the kinematic viscosity and   the coefficient 

of bulk viscosity which is associated with volume expansion.     is the 

Kronecker delta function: 

 

    {
          
          

 

 

 

2.3 Conservation of energy 

 

Conservation of energy is based on the first law of thermodynamics which states 

that the energy within a control volume remains constant: 

 

  
  

  
 

  

  
            (2.3) 
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where   is the fluid enthalpy,    is thermal conductivity (also called the 

transport coefficient) and    is the temperature gradient,   is called the 

dissipation function. 

 

 

2.4 Governing equation for incompressible flow 

 

The fluid is incompressible when the variations in density are so small that it can 

be neglected, i.e.        . Equation (2.1) is simplified to: 

 

    ⃗    (2.4) 

 

With the assumption of constant density   disappear from the momentum 

equation. In addition, assuming constant viscosity and neglecting gravitational 

body forces equation (2.2) simplifies to: 

 

 
  ⃗ 

  ⏟
             

  ⃗  (  ⃗ )⏟    
               

  
 

 
     (   ⃗ )⏟      

              

 (2.5) 

 

With the assumption of constant viscosity and density the equations for 

continuity and momentum becomes uncoupled from the energy equation and, 

hence, the temperature,  . The consequence of this is that one may solve 

continuity and momentum for   and   and later, if desired, solve for 

temperature. The body forces, in the momentum equation, are neglected since 

the momentum- and energy equation is uncoupled. 
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3 Turbulence modelling 
 

Turbulent flow is characterised by the ability to mix substances introduced in to 

the fluid and dissipate energy. Without turbulence, the substances would have 

followed in smooth and orderly layers and slowly diffuse by kinematic viscosity. 

Tennekes et. al. [21] explain that turbulent flow is always three-dimensional; the 

flow contain high levels of random fluctuations which cannot be maintained if 

the velocity-fluctuations are two-dimensional since a mechanism called vortex 

stretching is absent in a two-dimensional flow. 

Because eddies occur randomly in time and space analysis of turbulent 

flow becomes a complex task. Investigation of turbulent flow then requires 

statistical methods. The most widely used method is Reynolds decomposition 

where the instantaneous flow properties are divided into a mean and fluctuating 

part [22]. A typical record of turbulent behaviour is depicted in Figure 3.1, 

which illustrates measurements of e.g. wind velocity over a period of time. Here, 

the instantaneous velocity,  , is divided into a mean part and a fluctuating part; 

      , where   is the mean part and    is the fluctuating part. 

 

 

 
Figure 3.1: Record of wind velocity. 

 

 

 

 

 

 



Turbulence modelling 

 

12 

 

3.1 Plus units 

 

Plus units are non-dimensional variables used in turbulent boundary layer 

analysis. The use of non-dimensional parameters enables to more easily compare 

results. The variables of interest are: 

 

    
   

 
    

 

  
     

   

 
 (3.1) 

 

where    is the non-dimensional distance from the wall,    is non-dimensional 

velocity and     is the Reynolds number based on shear velocity    √    . 

   is the shear stress at the wall and   is the radius of the control volume. In the 

literature,    and    are also referred to as wall-coordinates. 

 

 

3.2 Turbulent boundary layer 

 

Consider a flow over a flat plate with a uniform velocity profile as in Figure 3.2 

at position 1. Close to the plate, fluid particles tend to stick to the surface where 

the velocity becomes zero. This phenomenon, referred to as no-slip, will in turn 

affect the adjacent particles. The region where the fluid particles are affected by 

no-slip is called the boundary layer, as illustrated at position 2 in Figure 3.2. 

After some distance the flow becomes unstable and eddies are formed. At 

position 3 a turbulent boundary layer is formed. The thickness of the boundary 

layer is denoted  . The presence of a wall, or boundary, makes the structure and 

behaviour of the turbulent boundary layer different from free shear flows. In 

contrast to the fully turbulent region of the flow where the effect of kinematic 

viscosity is negligible this is present and important close to a wall. The 

production and dissipation of turbulent energy peaks near the wall where more 

than 30% of the total production and dissipation takes place.  

The turbulent boundary layer is commonly treated as a composite layer 

consisting of an inner- and outer region. The inner layer is about     of the 

boundary layer thickness and is further divided into a linear sublayer, buffer 

layer and log-law region. The outer layer is about     of the total boundary 

layer thickness [20]. There is not fixed limit on where the outer layer starts and 

the inner layer stops, in some cases these overlap each other. 
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Figure 3.2: Formation of laminar and turbulent boundary layer. Modified picture 

from [23]. 

 

 

Close to an impermeable wall, in the inner layer, the velocity profile for a fully 

turbulent boundary layer can be non-dimensionalized in terms of plus units. The 

resulting curve takes a characteristic form which is similar for different 

Reynolds number. The universal curve is referred to as law-of-the-wall, or the 

log-law, where the velocity at a point is proportional to the logarithm of the non-

dimensional distance from the wall   . The law-of-the-wall was first proposed 

by von Kármán in 1930 [24] and has shown valuable for predictions of turbulent 

flow behaviour. For instance, the presence of a universal law formed the basis 

for the Preston tube [25] which is used in measurement of wall skin friction. At a 

distance far enough from the wall where kinematic viscosity is negligible the 

velocity can be approximated: 

 

    
 

 
          (3.2) 

 

where   is the von Kármán constant, usually equal to     ,    is an integration 

constant, generally taken as     and    is the natural logarithm. Closer to the 

wall the velocity varies linearly: 

 

       (3.3) 

 

The existence of the log-law has been confirmed by many since von Kármán’s 

discovery. Some examples are; Nikuradse [26], Prandtl [27] and Schlichting 

[28]. A typical representation of the velocity distribution in the inner layer is 

given by Bernardini et. al [29]: 
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Figure 3.3: The inner layer of a turbulent boundary layer. Comparison between 

DNS data for two different Reynolds number. 

 

 

In the inner layer the mean velocity distribution is determined by the wall shear 

stress   , viscosity   and the distance from the wall   with the assumption of 

linear variation of    with increased  . Hence, it becomes independent of the 

condition in the outer layer. In the linear sublayer, defined in the range of 

      , the velocity follows the approximation given in equation (3.3). The 

log-law region is entered about       where the velocity is described by 

equation (3.2) [3]. The buffer layer is defined in the range of        . 

Neither equation (3.2) nor (3.3) is valid in this region. More details on the 

characteristics of the turbulent boundary layer with zero pressure-gradient are 

given by Klebanoff [30]. In the outer layer the velocity profile have a slight 

deviation from the log-law. Coles [31] observed an additional wake-like velocity 

component and formulated what is referred to as law-of-the-wake. In Figure 3.4 

the law-of-the-wake starts to emerge at       . 
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3.3 Effect of pressure-gradient 

 

The presence of a pressure-gradient has an effect on the turbulent statistics in 

terms of mean velocity distribution, shear stress and turbulence production. The 

pressure-gradient is usually classified into Adverse Pressure-Gradients (APG) 

where the flow experience a positive pressure-gradient (       ) and 

Favourable Pressure-Gradients (FPG) where the flow is exposed to a negative 

pressure-gradient (       ) (  denotes the streamwise direction). In FPG 

flows the gradient of the velocity outside the boundary layer is positive and leads 

to an accelerating flow. APG flows cause a negative velocity gradient outside 

the boundary layer and leads to a deceleration. An accelerating flow causes the 

boundary layer to be thinner and stabilized, but a deceleration gives a thicker 

boundary layer and in some cases lead to flow separation [32]. If the 

acceleration of the free-stream is large, the turbulence does not have much time 

to respond. When this happens, the turbulence fluctuations are nearly constant 

and the free-stream velocity increases. The velocity distribution is characterized 

by a constant value of the parameter  : 

 

   (
 

  
) (

  

  
) (3.4) 

 

which represents the ratio of shear forces to pressure forces in a section of the 

boundary layer. Here,   is the boundary layer thickness. This parameter was first 

suggested by Clauser [33] in 1954. Spalart & Watmuff [34] studied the effect of 

pressure-gradient on the turbulent boundary layer. They found that the velocity 

profile in the buffer- and lower log-layer shifted up when the flow was exposed 

to FPG and correspondingly a shift downwards occurred for APG. These results 

were similar to the findings of Nagano et. al. [35]. More recently, Harun [36] 

investigated the effect of APG and FPG on the turbulent boundary layer. His 

results confirm the findings by Spalart & Watmuff, and found that the shift in 

velocity was independent of the Reynolds number, see Figure 3.4. The Clauser 

parameter   was varied while the Reynolds number was kept constant. 

The APG increases the turbulence production close to the wall and in the outer 

region. Correspondingly the FPG decreases the turbulence production. Skåre & 

Krogstad [37] explain that the high production in the APG flow is due to the 

very high turbulent shear stresses found in the outer region. Boundary layers 

undergoing strong FPG may take a laminar-like form. This phenomenon is 

called relaminarization or reverse transition. Especially for the velocity profile 

and the skin friction this is evident and is due to loss of turbulent transport close 

to the wall [32]. Relaminarization is investigated by many, e.g. Patel & Head 

[38] Blackwelder & Kovasznay [39] Badri Narayanan & Ramjee [40] and 

Launder [41].  
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Figure 3.4: Effect of increased APG on velocity profile. ( )    , (◊)       , (○) 

      , (□)       , ( ⃰ )       . After Harun [36]. 

 

 

3.4 Reynolds Average Navier-Stokes (RANS) equations 

 

Turbulent flow is characterized by a high degree of fluctuations and almost an 

infinite range of scales. Solving the Navier-Stokes equations for all these scales 

will be a comprehensive task. A solution is to reduce the number of scales by 

applying Reynolds decomposition where the instantaneous variables are 

separated into a fluctuating part and a mean part. 

 

                            
 

Here  ,  ,  ,   are the instantaneous values,  ,  ,  ,   are the mean values 

and   ,   ,   ,    are the fluctuating part. The instantaneous variables in the 

Navier-Stokes equations (equation (2.4) and (2.5)) are replaced by the mean and 

fluctuating part and simplified through a process called Reynolds averaging 

where the unsteadiness of the flow is removed through time-averaging. The 

details of the procedure are not given here, and reference is made to Cebeci & 

Cousteix [20] and Durbin & Reif [3]. On component form, the result is the 

following equations valid for incompressible flows: 

 

 
  

  
 

  

  
 

  

  
   (3.5) 
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(3.8) 

 

Equation (3.5) is equivalent to conservation of mass and (3.6)-(3.8) corresponds 

to conservation of momentum. The bar denotes time-averaged velocity. The 

difference between these equations and the equations governing laminar flow are 

the Reynolds shear stresses       ̅̅ ̅̅ ̅̅ ̅ appearing on the right hand side of equation 

(3.6)-(3.8). Whereas the solution of laminar flow can be treated purely 

mathematical, problems involving turbulent flows has to be treated both 

mathematical and physical because there are no exact theories relating the 

Reynolds shear stresses to the dependent variables. Some important features of 

the RANS equations; they are non-linear and coupled. The non-linearity is due 

to the convection term in the momentum equation since they contain the velocity 

squared. The coupling is due to the velocity appearing in both equations; hence 

they cannot be solved separately. 

 

 

3.5 Turbulent boundary layer equations 

 

Further simplifications of the Navier-Stokes equations are possible when the 

ratio of the boundary-layer thickness δ to a reference length L is sufficiently 

small. In this way, terms that are smaller than a factor of δ/L are negligible. The 

resulting equations are called boundary-layer equations, and for three-

dimensional incompressible flows we have: 

 

 
  

  
 

  

  
 

  

  
   (3.9) 
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The total shear stresses appearing on the right hand side of the momentum 

equation in  -direction can be written: 

 

          
  

  
       ̅̅ ̅̅ ̅̅   (3.13) 

 

where    is the laminar, or viscous, contribution to the shear stresses and    is 

the turbulent contribution which corresponds to the Reynolds stress. Similar 

argument is valid for  -direction. In the laminar sublayer the turbulent shear 

stresses are negligible small because in most cases it is assumed that   ,    and 

   is equal to zero at a solid surface.  

 

 

3.6 Turbulence models 

 

Consider the RANS equations ((3.5)-(3.8)) The unknown variables are  ,  ,  , 

  and the Reynolds shear stresses       ̅̅ ̅̅ ̅̅ ̅ which means that there are more 

unknown than equations – they do not form a closed set of soluble equations. To 

overcome this, turbulence models are used in order to express the Reynolds 

shear stresses in known variables. The purpose of applying turbulence models is 

to add further equations such that the equation-set is closed. These models are 

generally based on empiricism and curve fitting from experimental data, and are 

therefore restricted to certain flow phenomena. Because kinematic viscosity is of 

less importance in turbulent flows an eddy viscosity   , representing transport 

and dissipation of energy at smaller scales, is used in the prediction of the flow. 

For the problem in question, the Spalart-Allmaras model is applied, but a short 

description of other commonly used models are included as well. 

 

 

 

 

 



Turbulence modelling 

 

19 

 

3.6.1 The Spalart-Allmaras model 

The Spalart-Allmaras model, henceforth termed S-A, is a one-equation 

turbulence model for compressible/incompressible flows. The model is based on 

the earlier model of Baldwin & Barth [42] and was originally developed for 

aerodynamics flows. Its formulation was derived using empirical relations, 

dimensional analysis and Galilean invariance. The transported variable is an 

effective viscosity  ̃ which is assimilated to the eddy viscosity.The advantage of 

just one equation is that it becomes less memory-intensive than other models 

using two equations because it does not require as fine grid resolution as e.g. the 

    model. The transport equation for this model is written: 

 

 
  ̃

  
   ( ̃ ⃗ )  

 

 
       ̃   ̃        

 

 
   |  ̃|  (3.14) 

 

On the left hand side of equation (3.14) the temporal-, convective- and diffusive 

term is recognized. On the right hand side we have production   , destruction    

and transport respectively. The production term is written         ̃, where   

is the vorticity magnitude of the mean flow field. The turbulence production is 

controlled by the vorticity created at the wall, and is hence important for near-

wall flows. The destruction term takes the form           ̃  ⁄   , where    is 

a non-dimensional destruction function and   is the distance to the wall. When 

      the coefficients     and     equals        and       respectively. The 

indices   and   stands for basic and wall. The destruction term is related to 

inviscid blocking which is due to turbulent fluctuations are damped by the local 

pressure in the vicinity of a wall. The Boussinesq eddy viscosity assumption is 

used in the evaluation of the Reynolds shear stresses, where the eddy viscosity is 

obtained from: 

 

     ̃    (3.15) 

 

The viscous damping function is given by: 

 

     
  

      
  (3.16) 

 

where 

 

   
 ̃

 
 (3.17) 

 

  is the kinematic viscosity, the coefficient     is typically     and     is a 

damping function. With the Boussinesq assumption the Reynolds stresses are 

considered proportional to the rate of strain tensor. The model performs well on 
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flat plate boundary layers and two-dimensional mixing layers, but fails in 

complex flows such as jet flows and separated flows. Generally, the S-A model 

has shown inappropriate to predict the relaminarization phenomenon, but 

performs well for fully turbulent computations [43]. For further information 

about the details of the S-A model, please see Spalart & Allmaras [44]. 

 

 

3.6.2 The     model 

The purpose of the     model is to predict an eddy viscosity from velocities 

and time-scales.The model contain two equations where the transported 

variables are the turbulent kinetic energy   and the rate of turbulent dissipation 

 . A number of variations of the     model exist, and what is referred to as the 

standard     model was derived by Jones & Launder in 1972 [45]. This model 

is applicable for problems with high Reynolds number. However, modifications, 

such as the Launder-Sharma and Chien, are designed to handle low-Re 

problems. For further details on low-Re models reference is made to Patel [46]. 

The     model is the most widely used turbulence model. Frei [23] justify this 

popularity by pointing out the good convergence rate and relative low memory 

requirement of the model. Further he explains that the model performs well for 

external flows around complex geometries, but is not suited for jet flows or 

problems where the flow exhibit strong curvature or adverse pressure-gradients. 

Problems arise when considering the near-wall region. The model fails 

to predict the supressing of turbulent mixing that takes place in this region [3]. 

For situations where the near-wall region is important this deficiency will have 

serious consequences for the prediction of skin friction. A method to overcome 

this shortcoming is to abandon the     in the near-wall region and apply a set 

of prescribed profiles called wall functions. In this way, the     is applied in 

the free-stream region and the wall functions are used in the near-wall region. 

 

 

3.6.3 The         model 

The abbreviation SST stands for “Shear Stress Transport” and was proposed by 

Menter in 1994 [47]. This is a modification of the standard     which solves 

for the turbulent kinetic energy   and the specific dissipation  . A shortcoming 

of the     model is that the shear stresses have a tendency of being 

overestimated; this is fixed in the         model. The advantage of this 

model is that it apply the     formulation in the boundary layer and switch to 

a     in the free stream region making it applicable for high- and low-Re 

problems. 
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4 Computational method 
 

The process of performing numerical calculations can be divided into three 

phases; pre-processing, running the solver and post-processing. Pre-processing 

involves definition of the fluid domain, discretization and definition of 

boundary- and initial conditions. This is typically the most time-consuming 

phase as it generally includes dependence-study of different parameters and 

domain on the solution. The choice of solver depends on the flow problem. If the 

fluid is incompressible, a solver intended for incompressible flows should be 

chosen, or, if the flow is compressible a different solver should be applied. 

Visualization and interpretation of results obtained from the numerical 

simulation are performed in the post-processing phase. The bulk of this section 

is based on the book by Versteeg & Malalasekera [48]. 

 

4.1 Discretization 

 

The fluid domain cannot be infinite, numerically this would be impossible to 

solve. We have to restrict the problem to a certain amount of fluid. The chosen 

amount of fluid is referred to as the computational domain. In order to 

mathematically describe the fluid flow the computational domain and the 

governing partial differential equations (PDE) have to be discretized. 

Discretization is the description of a continuous system by discrete entities, and 

is divided into temporal- and spatial discretization. Spatial discretization 

involves breaking up the computational domain into finite number of elements 

called cells. The governing PDEs are discretized both in time and space in order 

to express the discrete solution of the flow field. The PDEs are then transformed 

into sets of algebraic equations. There exist numerous of discretization methods, 

some examples are the Finite Difference Method (FDM), Finite Element Method 

(FEM) and Finite Volume Method (FVM).  

In the FDM the governing equations are replaced by series expansions 

where the most common procedure is to employ Taylor series. The more terms 

included the more accurate the solution, but the drawback is increased 

complexity and number of discrete nodes. The FDM is advantageous for simple 

geometries and can be applied to any cell type. In the FEM the equations are 

integrated over a two-dimensional or three-dimensional element and multiplied 

by a weighting factor. OpenFOAM employ the FVM which is the most widely 

used. The method is based on volume integrals, where the governing equations 

are integrated over a volume element.  
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4.1.1 Domain discretization 

In the FVM the computational domain is divided into three-dimensional cells, 

and all the cells within the domain constitute what we call the mesh, or grid. 

There are two main grid categories; co-located and staggered. In the co-located 

grid all flow quantities, such as pressure and velocity, are stored at a single point 

in the cell centre (Figure 4.1 a)). The velocities are used in the calculation of 

fluxes through the cell surface. For co-located grids, the velocities are then 

interpolated from the cell centre to the cell surface. The advantage of this is the 

number of coefficients that has to be calculated and stored is minimized and 

makes programming simpler [49]. The co-located type of arrangement also has 

an advantage for complex solution domains with slopes and discontinuities in 

the flow field. In the staggered grid arrangement the pressure is defined at the 

cell centre whereas the velocities are defined at the cell face (Figure 4.1 b)), 

meaning that there is no need for interpolation. In OpenFOAM the co-located 

grid type is adopted. 

 

 

 
Figure 4.1: a) Co-located type of grid. b) Staggered type of grid. 

 

 

4.1.2 Discretization of governing equations 

The advantage of the integral form is that it can handle arbitrary shapes of the 

cells, making it flexible and suitable for complex geometries. Most spatial 

derivatives appearing in the governing equations are transformed to surface 

integrals by use of Gauss’ theorem, or the divergence theorem. Consider a 

general quantity   that may represent e.g. mass or velocity, Gauss theorem is 

written: 

 

 ∫        
 

 ∫        
 

 (4.1) 
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where   is control volume and   is the control surface. The product     is 

interpreted as the component of vector   in the direction of   normal to the 

surface   . This transformation is applicable for the continuity equation. To 

keep it consistent, consider the momentum equation for the general quantity  : 

 

 

  

  ⏟
             

   ( ⃗  )⏟    
               

        ⏟      
              

     ⏟
           

 
(4.2) 

 

Here,   is the diffusivity coefficient, e.g. kinematic viscosity  . All terms that 

cannot be written as temporal, convection or diffusion contribution is written as 

a source term. When applying Gauss’ theorem, the momentum equation on 

integral form become: 

 

 ∫
  

   

   ∫ ( ⃗  )   
 

   ∫        
 

   ∫     
 

   (4.3) 

 

 

4.1.3 Linearization 

The equation systems that govern particular scientific problems cannot be solved 

directly in an efficient way. Instead they are linearized and solved in sequences. 

In this case, the volume and surface integrals are linearized with an appropriate 

linearization scheme and evaluated as fluxes through the cell surface. As 

velocities are stored at the cell centre they have to be interpolated to the cell 

surface in order to calculate the net flux. The net flux is then the sum of integrals 

over six surfaces for a three-dimensional cell. The continuity equation is 

linearized as follows: 

 

 ∫        
 

 ∑∫        
   

 ∑     

 

 (4.4) 

 

where    is the area vector pointing in the direction of the surface normal vector 

  at face   and    is the flux through  ( see Figure 4.2). The convection- and 

diffusion term of the momentum equation is linearized as follows: 

 

 ∫ ( ⃗  )   
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 (4.5) 
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Figure 4.2: Three-dimensional cell with face   and surface area vector   . P is the 

cell centre where the flow quantities are stored. 

 

 

4.1.4 Time discretization 

Time discretization involves integrating the governing equation with respect to 

time   over a small interval   , let us say from   to     . For the problem in 

question the Crank-Nicholson method is applied. This combines the two first 

order Euler methods; backward and forward. A coefficient specified in the 

Crank-Nicholson method defines the weighting between the backward and 

forward method. When considering the general vector field  , the time integral 

can be written [7]: 

 

 ∫       
    

 

 [              ]   (4.7) 

 

where   is the weighting factor,       represents the value of the dependent 

variable at the new time instant and    represents the previous time. We have 

that      , where     corresponds to Euler backward and     

corresponds to pure Crank-Nicholson. Because the Crank-Nicholson method is 

based on central differencing it is second-order accurate in time. With sufficient 

small time-step it is possible to achieve greater accuracy than with the Euler 

backward method. 
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4.1.5 Grid topology 

A three-dimensional mesh may be built up by polyhedrals, pyramids, wedges or 

hexahedrals. In this study, structured hexahedral cells are placed in a polar 

domain (see Figure 4.3). Graded cells are useful in the sense of higher resolution 

close to an area of interest without having to increase the number of cells in the 

whole domain. The grading is set such that the cell closest to the cylinder surface 

is 10% of the cell furthest from the cylinder. The non-dimensional parameter    

describes the importance of turbulent to laminar influence in a cell and indicates 

how coarse/fine the mesh is for a particular case. To capture the laminar 

sublayer a requirement of      is applied at the cylinder surface. Where    

spans from the cylinder surface to the outer boundary of the domain in radial 

direction. 

Domain discretization is done through the blockMesh-utility in 

OpenFOAM, where the computational domain is decomposed into three-

dimensional hexahedral cells. Each cell is built up by 8 vertices located at the 

corners of the hexahedron. blockMesh runs the dictionary blockMeshDict 

located in the constant/polyMesh-directory. In blockMeshDict nodes 

and vertices are defined using a right handed coordinate system. Meshing 

through blockMeshDict is text-based and requires some practice. Running 

the checkMesh-utility adds more control to the user in a way that it allows to 

check the quality of the mesh during pre-processing. The output from this utility 

is number of cells, max aspect ratio, skewness and non-orthogonality of the 

mesh to mention a few.  

 

 

 
Figure 4.3: Grid topology. 
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4.1.6 Boundary- and initial conditions 

The flow problem is defined in terms of initial- and boundary conditions; it is a 

required part of the mathematical model. Boundary condition constitutes 

physical boundaries such as walls, inlets and outlets. At the boundaries certain 

conditions are prescribed to velocity and pressure, as well as for the turbulence 

variables. It is important that these are specified correctly so that they do not 

affect the flow in an unphysical manner. Initial conditions define known field 

values prior to the first time step. While boundary conditions are set for the 

whole simulation, initial conditions have a more transient effect as they will 

converge during simulation. The cylinder is placed in a cylindrical domain, as 

illustrated in Figure 4.4. The free-stream is bounded by four boundaries; the 

cylinder wall, inlet, outlet and the far field. The main stream is defined in the  -

direction and relevant dimensions are listed in Table 4.1.  

The length of the towed array extends over several kilometres. Due to 

the symmetry of the cylinder it is sufficient to model just a small part and apply 

cyclic condition to the inlet and outlet. For cyclic boundary conditions the flux 

of the flow variables at the outlet equals the flux entering the inlet. In this way, 

the length of the cylinder is only limited by the end-time of the simulation. For 

external flows the far field is an artificial boundary defined to restrict the flow to 

a certain volume. The location of this should be set at a reasonable distance so 

that it does not affect the flow close to the cylinder. To allow the flow to “leave” 

the computational domain without being reflected by the far field, the gradient of 

the flow parameters is set equal to zero. 

The interaction between the fluid and the cylinder surface will give rise 

to the no-slip condition due to viscous effects. The velocity at the cylinder 

surface is therefore set equal to zero;  ⃗         . The eddy viscosity    and the 

effective viscosity  ̃ is also affected by the presence of the cylinder. Close to the 

surface, turbulent viscosity is negligible and they can be set to     ̃   . In 

the direction normal to the cylinder surface, the pressure-gradient is 

approximated equal to zero;        . Two main cases are investigated; a 

cylinder with and without rotation. For the case of rotation the cylinder surface 

is assigned a specific rotational speed. The free stream region is the area where 

the flow is not affected by the boundaries. Here, the initial values of the flow 

quantities should be specified.  
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Figure 4.4: Schematic sketch of the flow problem. 

 

 
Table 4.1: Dimensions of cylinder and computational domain. 

Cylinder                  

Domain                 
 

 

4.2 The OpenFOAM solver pimpleFoam 

 

Two issues arise when we consider the momentum and continuity equation 

((3.5)-(3.8)) Firstly, the convective terms in the momentum equations are non-

linear. Secondly, all equations are coupled since the velocity appears in both the 

continuity- and momentum equation. The pressure is defined in the momentum 

equation for all directions, but there are no equations to solve this explicitly. 

These problems can be tackled by use of iterative solution strategies. In this 

thesis the pressure-velocity coupling in the discrete Navier-Stokes equations is 

solved using the PIMPLE algorithm, a combination of the SIMPLE and PISO 

algorithm [50]. The corresponding solver in OpenFOAM is called 

pimpleFoam, a transient solver for incompressible flow and is designed to 

handle large time-steps. SIMPLE is an acronym and stands for Semi-Implicit 

Method for Pressure Linked Equations. It was formulated by Patankar & 

Spalding [51] and is the core algorithm for most numerical codes. In a simplified 

manner the procedure can be explained as follows: 
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1. An initial pressure field    is guessed, or taken from the previous time-

step, to obtain the velocity field    from the momentum equation. This 

is referred to as the predictor step. 

2. The velocity will not satisfy continuity unless the pressure is corrected. 

A correction of the pressure    is introduced so that the total pressure 

becomes        . This is called the corrector step. 

3. A new velocity field is calculated from   to satisfy continuity. 

4. Step 1-3 is repeated until convergence is achieved.  

 

In step 2 a correction to the pressure  ’ is introduced, however when    is far 

from the correct solution divergence may occur during iteration of the equations. 

To overcome this a relaxation-factor is added to the correction;         
   . When   is equal to 1 the pressure field is corrected by   , and a value of   

equal to zero corresponds to no correction. The relaxation-factor is useful to 

speed up or slow down the changes in the iterative process. An over-relaxation is 

applied if it is desirable to speed up the process, and an under-relaxation is 

applied to slow it down. Under-relaxation corresponds to       and is more 

commonly used. It is noted that the use of relaxation factors are not applicable 

for transient flow problems. The PISO (Pressure Implicit with Splitting of 

Operator) algorithm may be regarded as an extension of SIMPLE and was first 

proposed by Issa [52] for finite difference schemes. A finite volume formulation 

was presented by Jasak [53] and the procedure is described as follows: 

 

1. An initial value of the pressure field    is guessed to obtain the velocity 

field    from the momentum equation. This is called the predictor step.  

2. The velocity field    will not satisfy continuity unless the pressure is 

corrected. The new pressure is written          , where    is the 

correction. A new velocity field     is calculated. This is called the first 

corrector step. 

3. A second correction of the pressure and velocity field is conducted using 

    and    . This is called the second corrector step.  

4. Step 2-3 can be repeated a number of times, and this repetition is 

referred to as PISO-loops.  

 

In the PIMPLE algorithm the whole iteration procedure is repeated a specified 

number of times, referred to as PIMPLE-loops. If the number of PIMPLE-loops 

equal to one the algorithm reduces to PISO. In OpenFOAM the number of 

PISO-loops are controlled by nCorrectors and the PIMPLE-loops is 

controlled by nOuterCorrectors. The number of loops affects both 

computational time and accuracy of the solution. The more loops the greater the 

computational cost, on the other hand the achieved accuracy is not necessary 

equivalent high. 
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4.2.1 Linear solver control 

When the Navier-Stokes equations are linearized they take the form     , 

where   and   are matrices. The linear solver control controls how this equation 

system is solved. Two linear solvers are used in this thesis; the preconditioned 

conjugate gradient (PCG) and the preconditioned bi-conjugate gradient 

(PBiCG), which are standard solvers.  

Without going into much detail, a conjugate gradient is a method of 

solving symmetric and positive-definite matrices. The principle behind the 

conjugate gradient is to start with an initial guess of the solution and gradually 

improve the answer through the iteration procedure. For each step a residual   is 

calculated,       , which becomes smaller and smaller for each step. 

Preconditioning is a technique used for improving the conjugate method and 

solves the system           , where   being the preconditioner [54]. 

Explained in simple terms, the preconditioner improves the propagation of 

information through the cells.  

There are several options when it comes to the preconditioner  . For the 

present case the diagonal incomplete-Cholesky (DIC) and diagonal incomplete-

LU (DILU) preconditioners are chosen. The PCG and DIC is applied to the 

pressure, and PBiCG and DILU is chosen for the velocity and turbulence 

properties. A more thorough explanation of the preconditioned conjugate 

gradient algorithm is given by Caraba [55]. 

 

 

4.2.2 Stability of numerical solution 

To ensure temporal accuracy and numerical stability the Courant-Frederich-

Levy condition has to be considered. This condition can be expressed in terms of 

a coefficient, the CFL number, and acts as a limit for how far the fluid can travel 

during one single time-step. If the fluid is allowed to travel too far the results 

may diverge or become erroneous. The CFL number has the following form: 

 

     
  | |

  
 (4.8) 

 

where    is the time-step, | | is the magnitude of the velocity through a cell and 

   is the size of the smallest cell. In order to maintain stability of the solution 

the CFL number should not exceed a certain value. This value depends on the 

solver in use. For an explicit solver CFL should be   , and for implicit solvers 

the value may be larger. Because the magnitude of | | and    vary during run-

time    should be adjusted to meet the requirement. The pimpleFoam solver is 

semi-implicit because it apply the Euler backward method in time with explicit 

corrections to account for non-orthogonality in the mesh and non-linear terms 

amongst others, hence the CFL number should be kept below  . 
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5 Convergence study 
 

Before any measurements can be discussed or compared the quality and 

reliability of the solution has to be ensured. The quality of the solution is 

affected by the number and size of the cells, as well as their distribution in the 

computational domain. Few cells may cause poor results because important flow 

characteristics are not captured. If the computational domain is too small, 

blockage effects may occur. That is, the area of interest is affected by the far 

field boundaries resulting in a less reliable solution. Another factor that has to be 

considered is the computational time. Computational time means the time it 

takes to perform a numerical simulation and is highly affected by the size of the 

domain and number of cells. Convergence studies are performed to ensure 

solution quality and to find an optimal combination of the abovementioned 

factors. This type of analysis is comprehensive, and probably the most time-

consuming activity when performing numerical calculations. The aim is to find a 

good compromise between accuracy and computational cost.  

This chapter summarizes the findings from a parameter- and mesh 

independency study. The influences of equation solver tolerance, PIMPLE- and 

PISO-loops are also investigated. Preliminary simulations are performed for a 

cylinder without rotation. The resultant monitoring parameters are the frictional 

drag coefficient and wall shear stress at the cylinder surface. Details of 

simulation set-up are found in Appendix A. 

 

 

5.1 The frictional drag and wall shear stress 

 

For engineering application the drag coefficient is one of the most important 

parameters. The non-dimensional coefficient is used in the estimation of the total 

resistance on a body. It is commonly divided into frictional drag and form drag, 

where frictional drag is due to viscous interaction with the body and fluid, and 

form drag originates from the effect of shape. For bodies experiences lift, such 

as airfoils, an induced drag is included. In this case, the frictional drag is 

calculated as: 

 

     
  

             
  (5.1) 
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where    is viscous force,      is projected cross sectional area of the cylinder 

and   
  is free stream velocity at the inlet.     is calculated by integrating the 

skin-friction force over the cylinder. Wall shear stress is defined as the tangential 

force per unit area exerted by the fluid flow and is proportional to the velocity 

gradient normal to the wall [56]. In OpenFOAM it is calculated as: 

 

        

  ⃗ 

  
       

  ⃗ 

  
 (5.2) 

 

where      is called the effective kinematic viscosity and is the sum of the 

kinematic- and turbulent viscosity,   and    respectively.   ⃗     is the velocity 

gradient normal to the cylinder surface. Equation (5.2) implies that the velocity 

gradient is a linear function of the wall shear stress. 

 

 

5.2 Convergence of friction drag 

 

Ensuring convergence of statistics to a steady value is the first thing one has to 

consider. As long as the flow quantities changes with time the solution has not 

converged. In a converged solution the results will not change significantly 

when the simulation is run for additional time-steps. A non-zero change with 

time is not the aim of the test, but when the changes are small and/or periodic it 

is said to have reached a steady value. In the preliminary tests a uniform 

distribution of the initial condition is applied.  

 

 

 
Figure 5.1: Development of     during simulation. 
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Figure 5.1 indicate how the frictional drag at the cylinder surface develops over 

time. Relative large values occur the first     seconds due to unphysical initial 

conditions. These are omitted. Because the problem is time-dependent, the 

distribution of initial values is not important since the flow evolves and will 

eventually take the correct form. Around        the changes in     is in the 

order of     . These are so small that they are considered insignificant and we 

may say that a steady value is reached. The time-rate-of-change of any 

parameter is proportional to the residual in the iterative Navier-Stokes equations 

and for this reason convergence is not reached while this is non-zero. Using the 

residual as a convergence indicator is therefor also helpful.  

Utilizing only the frictional drag coefficient as a measure of convergence 

has its limitations; firstly, there may be other quantities converging slower than 

   . If these quantities are significant for the solution of the investigated case, 

the results will obviously be questionable. Secondly, spurious results may occur. 

Using more than one monitoring parameter may be helpful in a way to identify 

the overall trend in the convergent solution. For example the pressure coefficient 

   could be used as an additional monitoring parameter.  

 To check the stability of the solution the CFL number has been plotted 

with respect to time (Figure 5.2). The number stabilizes after about      where it 

becomes constant. Even though the number is above the recommended limit of 

 , the fact that it remains constant indicates a good stability of the numerical 

results. 

 

 

 
Figure 5.2: Development of CFL number during simulation. 
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5.3 Mesh independency study 

 

The second type of convergence investigated is mesh independency. The 

principle of mesh independence study is to start out with a simulation that meet 

the criteria of convergence and gradually increase the number of cells in the 

computational domain. When the solution does not change with increasing 

number of cells it is independent of the mesh. Complete mesh independence will 

in most cases lead to such a high number of cells that the achieved accuracy is 

not justified by the increased computational cost. More preferably, the relative 

error with respect to the finest mesh is calculated to evaluate the quality of 

coarser mesh.  

The solution is also limited by the validity of the turbulence models and 

their corresponding wall functions. The validity is usually measured by means of 

the shear velocity based Reynolds number     and the non-dimensional 

parameter   . An uncritical increase of cells should then be avoided. In the case 

of applying the S-A model, no wall functions are necessary as the model 

assumes the first grid point to be in the linear sublayer. Six different cases are 

tested and the number of cells in each mesh is indicated in Table 5.1 . In this 

study, attention is paid to the region close to the cylinder as the value of    is 

important for resolving the boundary layer. 

 

 
Table 5.1: Number of cells in  -,  - and  -direction in computational domain. 

Mesh  -direction  -direction  -direction 

Mesh_1          

Mesh_2           

Mesh_3           

Mesh_4           

Mesh_5            

Mesh_6 

(reference) 
           

 

 

   is calculated at a single point along the cylinder surface for each mesh 

according to equation (3.1) and the result is shown in Table 5.2. Because    

depends on the wall shear stress it will not be constant over the cylinder surface, 

but it is assumed that they are in the range of the presented values. As the linear 

sublayer is defined in the range of       , clearly, all regions of the 

turbulent boundary layer is captured for all the mesh types. 
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Table 5.2: Calculated    for the different meshes in the mesh independency study. 

Values extracted from         . 

Mesh        
Mesh_1      

Mesh_2      

Mesh_3      

Mesh_4      

Mesh_5      

Mesh_6 

(reference) 
     

 

 

Figure 5.3 shows the frictional drag coefficient and wall shear stress at the 

cylinder surface plotted with respect to increased number of cells in the domain. 

The reference mesh (Mesh_6) is also included here. It is observed that the slope 

of     and    decreases with increasing number of cells in the domain because 

the results are approaching the reference value. The error is therefore decreasing. 

The computational time increased with nearly      from the coarsest mesh to 

the finest. A trade-off between the achieved accuracy and computational cost is 

then needed. 

Generally, the deviations are small with a maximum error of       for 

    and       for   . Errors below    are treated as acceptable; hence the 

four last meshes (including Mesh_6) are usable. Even though the finest mesh is 

expected to be well-resolved, limitations due to extensive computational time 

make it difficult to use it for further investigations. Figure 5.3 show that 

complete mesh independency is not accomplished. If one was to achieve this the 

number of cells had to be further increased beyond the reference mesh. Most 

likely the deviations are smaller than those presented here, so further increase is 

unnecessary. Mesh_3, with          cells, is chosen as acceptable and is used in 

the remaining calculations. This decision was made on the basis of the achieved 

  -value, accuracy and time required to finish the run. 

 

 

 

 

 

 

 

 



Convergence study 

 

35 

 

 
Figure 5.3: Effect of increased number of cells. Values extracted from         . 
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Results generally show that an increased number has a negligible effect on the 

solution (see Figure 5.4). The changes are about         whereas the 
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computational cost increased with over      from   PIMPLE-loop to   

PIMPLE-loops.  

As for the PIMPLE-loops the aim of increased number of PISO-loops is 

to achieve higher accuracy. Four different PISO-loops have been tested, ranging 

from     while the number of PIMPLE-loops is set to  . Again, the relative 

error between the different PISO-loops is quite small and provides more or less 

the same answer. The difference is about         from the configuration with 

  PISO-loop to the one with   loops. Although Figure 5.5 indicate that a fully 

converged solution with respect to increased number of PISO-loops is not 

achieved the deviations are practically zero. Applying more than   PIMPLE- 

and PISO-loop is therefore unnecessary. 

 

 

 
Figure 5.4: Effect of increasing number of PIMPLE-loops. Values extracted from 

        . 
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Figure 5.5: Effect of increasing number of PISO-loops. Values extracted from 

        . 
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pressure tolerance was varied from           and correspondingly the 

velocity and  ̃ varied from          . 

As expected the number of iterations for the pressure, velocity and  ̃ 

increased for decreased tolerance level. When the tolerance becomes tighter the 

solver has to perform additional iterations to meet the criteria. It is seen (Figure 

5.6) that a tighter tolerance have a negligible effect on the solution. The 

convergence study shows that the results generally are insensitive to the number 

of PIMPLE- and PISO-loops and decreased tolerance.  

 

 

 
Figure 5.6: Effect of tolerance level. 
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6 Results and discussion 
 

In this section results from simulations of flow along a cylinder with and without 

rotation is presented. The simulations are carried out for Reynolds number 

              and the ratio of axial to rotational velocities are       
           . From the convergence study the influence of several key 

numerical parameters on accuracy and computational time was investigated. For 

faster convergence of flow parameters, the flow field from the last time-step of 

the optimal configuration are mapped into new cases. All simulations are run for 

   time-units. 

Results are then used in a comparative study with LES data. While the 

LES method provides instantaneous values of the flow quantities, the RANS 

approach give time-averaged statistics. It is therefore necessary to subtract the 

mean quantities from the instantaneous to obtain time-average data from the 

LES approach. Important parameters in boundary layer analysis are the plus-

units, Reynolds shear stresses and turbulent eddy viscosity.  

The advantage of applying the S-A model is that it does not require wall 

functions, hence, one less thing to take into consideration when assessing the 

flow set-up. In addition, the transport equation is defined in such a way that the 

flow will never exhibit laminar structure. Since time-averaged statistics is the 

output from RANS the characteristic eddies will not be visible in the resulting 

flow field.  

Because the flow is modelled as pressure driven a pressure-gradient has to 

be imposed. The magnitude of this should correspond to the desired      In 

OpenFOAM, this is done by specifying a bulk velocity. The mean wall shear 

stress that arises due to the bulk velocity is equivalent to the time-average of the 

pressure-gradient. The relation between the wall shear stress, shear velocity and 

pressure-gradient is given by: 

 

  
  

  
 

  

 
 

  
  

 
 (6.1) 

 

and is achieved by considering the overall momentum equation. For the free 

stream region the velocity is set equal to the bulk velocity in all cases. Since the 

pressure-gradient is defined implicitly by     one cannot know in advance what 

value to assign the bulk velocity. An iterative approach is needed to solve this; 

the bulk velocity is guessed and     is calculated from the converged solution. 

This procedure is repeated until the Reynolds number reaches the desired value 

of     and    . However, one must also take into account the   -parameter 



Results and discussion 

 

40 

 

because the velocity also affects the value of this. First, results from a stationary 

cylinder will be presented followed by a cylinder of rotation. 

 

 

6.1 Cylinder without rotational velocity 

 

The Reynolds shear stress    ̅̅̅̅  is calculated based on the velocity gradient 

normal to the cylinder surface: 

 

    ̅̅̅̅      

   

  
 (6.2) 

 

Below are presented the data from the RANS- and LES approach for a cylinder 

without rotation. The data is taken from the last time-step of the converged 

solution. In the free-stream region a bulk velocity of           and         

corresponded to               respectively. The kinematic viscosity was 

set to               , while the effective- and eddy viscosity was assigned 

the values  ̃         .  

 For boundary layer type of flows the Reynolds shear stress    ̅̅̅̅  is the 

most important parameter affecting the mean motion as it controls most of the 

momentum transfer.    ̅̅̅̅  is also directly related to the frictional drag at the wall 

surface. Figure 6.1 display the resulting    ̅̅̅̅  from RANS and LES. Also 

included is the distribution of viscous shear stress. Several distinct regions are 

identified in the plot. In the region closest to the surface the viscous shear 

stresses are dominant whereas the Reynolds shear stresses are zero. This region 

is recognized as the viscous sublayer, or the linear sublayer. Because the eddy 

viscosity is zero at the surface (according to no-slip condition)    ̅̅̅̅  is also zero. 

It is therefore approximated that the shear stresses in this region are only a result 

of viscous action. This means that the relevant parameters are the shear velocity 

   and the kinematic viscosity  . The assertion of linearity comes from a linear 

variation of the velocity in this region. Moving further away from the viscous 

sublayer the Reynolds shear stresses peaks (about      ), this occurs in the 

buffer layer where most of the turbulent energy production and dissipation takes 

place. Here, both    ̅̅̅̅  and viscous shear stresses are of equal importance.  

 After    ̅̅̅̅  peaks the viscous shear stresses drops to an almost constant 

value. This region is called the constant stress-layer. Here, Reynolds shear 

stresses are substantial meaning that the momentum transfer is more or less due 

to turbulence. In dimensional form the total shear stresses are approximate to the 

wall shear stress   . Table 6.1, where    and peak value of    ̅̅̅̅  is given, 

confirms this to some extent. Using the term constant stress layer is somewhat 

inaccurate in the case of low Reynolds number because the constant region is 

non-existing. For increased Reynolds number the peak will generally increase, 

move away from the wall and gradually flatten. This effect is not seen in Figure 
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6.1 due to the range in Reynolds number is too small, but is better illustrated in 

the article by Sreenivasan [58] (Fig. 4). As a part of a turbulent skin friction 

study Monte et. al. [59] investigated the influence of     (Reynolds number 

based on cylinder radius) and     (Reynolds number based on boundary layer 

thickness) on the Reynolds shear stresses. With varying     and constant     

the peak value of    ̅̅̅̅  moved away from the wall and increased with increasing 

   . The localization of the shear stress peak did not vary for increasing     

(and constant    ), but became wider while decreasing in value. This means that 

the Reynolds shear stresses become important for a larger part of the log-layer 

and that the turbulent contribution decreases for increasing boundary layer 

thickness. The distribution of    ̅̅̅̅  is similar for both the RANS and LES 

approach. 

Vorticity describes the local rotational motion of the fluid which is, in 

mathematical form, expressed as the curl of the velocity vector: 

 

       ⃗  (6.3) 

 

The unit of the vorticity is     and the calculated magnitude is shown in Figure 

6.2 Even though the surface is not the source of the vorticity it is concentrated in 

this region. Calculations show that the bulk of vorticity takes place in the normal 

direction of the cylinder and are diffused outwards. The components can also be 

estimated by considering the velocity distribution because it is directly linked to 

the velocity vector. In turbulent flows the vorticity intensity is increased with 

decreasing scales of motion. This is correlated with the energy cascade in which 

large eddies spawn smaller and smaller eddies. At the smallest scales eddies lose 

directional preference and are considered anisotropic. 
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Figure 6.1: Reynolds shear stresses    ̅̅ ̅̅  from RANS simulation and LES for 

             . Values extracted from         . 

 

 
Table 6.1: Wall shear stress and peak value of Reynolds shear stress. 

 |  |             ̅̅̅̅               

                    

                    

 

 

 
Figure 6.2: Resulting magnitude of vorticity from RANS simulations. Values 

extracted from         . 
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In Figure 6.3 the normalized velocity profile for the axial velocity component 

  
  is displayed. Dotted lines indicate the law-of-the-wall. Included are the 

results from RANS and LES for the two Reynolds numbers. The RANS data 

holds similarities with the classical law-of-the-wall, although it deviates slightly 

for       . The laminar sublayer and buffer layer are clearly visible in the 

range of        . This is in accordance with the findings by Willmarth et. 

al. [10] where regions in which the two-dimensional law-of-the-wall are seen. 

While law-of-the-wake is visible in the results of Harun [36], this is not the case 

here. The results are in fair agreement with the LES predictions and differ only 

slightly in the log-layer where the S-A model over predicts the velocity. For a 

flow exposed to a constant adverse pressure-gradient Harun found that an 

increase of Reynolds number corresponded to a constant shift-down in the 

profile provided that the Reynolds number range is sufficient large. Having also 

studied the effect of varying pressure-gradient with constant Reynolds number 

he suggested that deviations from the log-law were caused by the pressure-

gradient. For the present case, both the pressure-gradient and the Reynolds 

number range are too small to identify any shift-down in the profile. Because of 

symmetry about the axis the flow field reduces to a two-dimensional problem, 

i.e. the condition is axisymmetric. In Figure 6.4 the distribution of the axial 

velocity component in the fluid domain is visualized. The no-slip condition 

causes    to gradually decrease from its free-stream value to   at the surface. 

The distribution of    in the domain indicate the two-dimensional behaviour of 

the velocity; constant in  -direction and varying in the   -plane. The magnitude 

of the radial- and circumferential velocities,    and   , are zero in this case, 

indicating that cross-flow effects are absent. 

 The maximum transported viscosity for S-A occurs for    values larger 

than    . Figure 6.5 show the turbulent eddy viscosity distribution across the 

domain. The distribution of the effective viscosity show similar behaviour as the 

eddy viscosity. However, the values are quite low. What is expected is ratios in 

the order of     , and the low values in the present case indicate laminar 

behaviour. Generally, it is advised to use  ̃       [60],  ̃     [43], or 

 ̃       [61]. Simple tests where the value of  ̃ and    was varied showed 

the same trend as in Figure 6.5 with only minor changes in the values of the 

quantities. 
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Figure 6.3: Velocity profile from RANS simulation compared to LES for     
         . Dotted lines indicate the law-of-the-wall. Values extracted from 

        . 

 

 

 
Figure 6.4: Velocity distribution in the axial direction for         (upper) and 

        (lower).  
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Figure 6.5: Eddy viscosity ratio from RANS for              . Values 

extracted from         . 

 

 

When the cable is towed through water the greatest pressure will be concentrated 

in the vicinity of the surface. With increased distance to the wall, the pressure 

will gradually decrease. This behaviour is very well captured in the LES data in 

Figure 6.6 (upper). The pressure peaks about         , which is also the 

case for RANS where         (see Figure 6.6 (lower)). Considering the 

resulting pressure from the RANS approach (where        ), the distribution 

is unphysical. The fluctuating values do not suggest any concentration of the 

pressure close to the surface. Figure 6.7 also show how the pressure varies at the 

cylinder surface for RANS. Because of the fundamental differences between 

LES and RANS it is not expected that the results will be in the same order of 

magnitude. It is the general trend in the distribution of the mean quantities that is 

of interest. Rumsey & Spalart [43] applied the S-A model for different Reynolds 

numbers and found that the model did not perform well in transition (e.g. low 

Reynolds number). They concluded that the model was best suited for fully 

turbulent high Reynolds number computations. Following this, it seems that the 

S-A model does not perform well in the prediction of pressure in this case. 
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Figure 6.6: Pressure distribution in radial direction for LES (upper) and RANS 

(lower). 
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Figure 6.7: Contour plot of pressure distribution from RANS for         

(upper) and         (lower). 

 

 

6.2 Cylinder with rotational velocity 

 

The analysis in this section is based on results obtained from a cylinder rotating 

at two different velocities;              . The data is taken from the last 

time-step of the converged solution. The velocity on a rotating cylinder consists 

of an axial, radial and circumferential component. This results in a skewed 

velocity profile because the velocity vector is forced in the direction of rotation 

at the surface. The adjacent particles are affected by this and propagate outwards 

in the boundary layer with gradually decreasing strength. The additional velocity 

components may generate larger velocity gradients and increased turbulence 

intensity. The frictional drag coefficient is dependent on the rotational-to-free-

stream-velocity ratio. This dependency is due to the fluid rotates with the 

cylinder in the immediate vicinity of the surface where it is subjected to strong 

centrifugal forces [62].  

 Figure 6.8 display the normalized velocity profile for the axial velocity 

component where              . The profiles collapse in the linear sublayer 

for both RANS and LES. The classical linear sublayer and log-region is 

indicated by dotted lines. For the LES data there is no identifiable log-region, 

whereas for RANS it deviates for       . Compared to the LES data there 

are large differences in the profile for the buffer- and log-region (Figure 6.8 

upper). Differences within the LES data is observed when comparing the 

velocity profiles for         and          , while the RANS data is more 

or less unaffected in all the three cases. This is seen by comparing Figure 6.3 and 
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Figure 6.8. In the previous section it was stated that the velocity components in 

the radial and circumferential direction was equal to zero. When the cylinder 

rotates the velocity vector is forced in the direction of rotation causing cross-

flows to be significant. This effect is strongest closest to the source of rotation 

with gradually decreasing strength for increased distance to the cylinder. Plot of 

the normalized radial velocity component   
  for         (Figure 6.9) show 

the effect of rotation; as    decrease the influence increases. 

 

 

 

 
Figure 6.8: Normalized mean velocity profile. Upper;          , lower; 

       . Dotted lines indicate the law-of-the-wall. Values extracted from 

        . 
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Figure 6.9: Normalized radial velocity component    for        . Values 

extracted from         . 

 

Contour plot of pressure at the cylinder surface is displayed in Figure 6.10. As 

for the velocity, the pressure is also affected by the rotation causing a three-

dimensional behaviour at the surface. This is seen by the contour lines varying in 

all three directions. As mentioned, the greatest pressure is located in the vicinity 

of the surface with gradually decreasing effect outwards. This is seen Figure 

6.11. 

 

 

 
Figure 6.10: Contour plot of pressure at cylinder surface from RANS. 
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Figure 6.10 continued: Contour plot of pressure at cylinder surface from RANS. 

 

 

 
Figure 6.11: Visualization of pressure distribution in fluid domain at        , 

        (upper) and        ,         (lower). 
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7 Conclusion and recommendations 
 

Numerical calculations of a pressure driven flow along a cylinder are performed 

for the purpose of investigating the turbulent boundary layer. A convergence 

study is conducted to ensure the quality of the solution, where special attention 

is paid to the near-wall region in order to capture all levels of the turbulent 

boundary layer. Influence on key numerical parameters was investigated in 

terms of solver tolerance, number of PIMPLE- and PISO-loops, number of cells 

in the computational domain and time. It was found that that         cells were 

sufficient to capture all regions of the boundary layer and that the effect of 

decreased tolerance and increased number of PIMPLE- and PISO-loops was 

negligible. In order to make the convergence study more reliable it is 

recommended to include additional key parameters. Investigating the effect of 

far field boundary size is also beneficial to avoid possible blockage effects. 

The Reynolds Average Navier-Stokes (RANS) approach is utilized in 

order to solve the flow field, and the Spalart-Allmaras model is used in the 

prediction of turbulence. Two rotational velocities are applied to the cylinder, in 

addition to a case of zero rotation, to simulate the behaviour of an acoustic array 

towed through water. Simulations are carried out for two different Reynolds 

number based on the shear velocity;               and the velocities are 

given in terms of the axial velocity component;                  . Because 

of symmetry about the axis the flow field reduces to a two-dimensional problem 

in the case of        . With rotation added cross-flow effects become 

significant because of centrifugal forces. 

Results show that the normalized mean velocity profile is in good 

agreement with the findings by Willmarth et. al. [10] where regions in which the 

two-dimensional law-of-the-wall are seen. Comparisons with LES data indicate 

good agreement with the normalized mean velocities and Reynolds shear 

stresses in the case of a non-rotating cylinder. However, the pressure distribution 

is not very well predicted for RANS in this case. When rotation is added a more 

realistic distribution of the pressure is seen, whereas the normalized mean 

velocity have a considerably deviation from the LES data in the log-region. 

In this study, a turbulence model suited for low-Reynolds number 

calculations is applied. It has shown to predict the normalized mean velocity in a 

satisfactory way, but it is of interest for further investigation to apply additional 

turbulence models. The         model applies for both high- and low-Re 

problems combining the classical     and     models to predict the 

turbulent flow field. The  ̅    model has shown success in the prediction of 

near-wall flows at low Reynolds numbers. It resembles the     model, but 
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does not make use of wall functions. A velocity scale  ̅  is used in the prediction 

of the eddy viscosity and a relaxation factor   to model the anisotropic 

behaviour close to the wall. 
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A OpenFOAM control files 

 

A.1 controlDict 

 
/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.2.2                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "system"; 

    object      controlDict; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

application     pimpleFoam; 

 

startFrom       startTime; 

 

startTime       0; 

 

stopAt          endTime; 

 

endTime         60; 

 

deltaT          0.001; 

 

writeControl    runTime; 

 

writeInterval   20; 

 

purgeWrite      0; 

 

writeFormat     ascii; 

 

writePrecision  8; 

 

writeCompression off; 

 

timeFormat      general; 

 

timePrecision   8; 

 

runTimeModifiable false; 

 

 

functions  

{ 

 

       forces  

        {  



OpenFOAM control files 

 

60 

 

            type                forces;  

            functionObjectLibs  ("libforces.so");  

            outputControl       timeStep;  

            outputInterval      1;  

            patches             ( cylinder );  

            pName               p;  

            UName               U;  

            rhoName             rhoInf;  

            rhoInf              1000;  

            log                 true;  

            CofR                (0 0 0); 

        }  

          

        forceCoeffs  

        {  

            type                forceCoeffs;  

            functionObjectLibs  ("libforces.so");  

            outputControl       timeStep;  

            outputInterval      1;  

            patches             ( cylinder );  

            pName               p;  

            UName               U;  

            rhoName             rhoInf;  

            rhoInf              1000;  

            magUInf             10.7;  

            log                 true;  

            liftDir             (0 1 0); //Acts perpendicular to flow  

 //direction. 

            dragDir             (1 0 0); //Acts in the flow direction. 

            CofR                (0 0 0);  

            pitchAxis           (0 1 0);  

            lRef                0.1818; //Diameter of cylinder. 

            Aref                0.033;  //Projected area in yz-plane. 

      //Aref=lRef*height=0.1818*0.1818 

        } 

 

} 

 

// ************************************************************************* // 

 

 

 

A.2 fvSchemes 

 
/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.2.2                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "system"; 

    object      fvSchemes; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

ddtSchemes 
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{ 

    default            CrankNicolson 0.95; 

} 

 

gradSchemes 

{ 

    default            Gauss linear; 

    grad(p)            Gauss linear; 

    grad(U)            Gauss linear; 

} 

 

divSchemes 

{ 

    default            none; 

    div(phi,U)          Gauss linear; 

    div(phi,nuTilda)   Gauss linear; 

    div((nuEff*dev(T(grad(U))))) Gauss linear; 

} 

 

laplacianSchemes 

{ 

    default            none; 

    laplacian(nu,U)     Gauss linear corrected; 

    laplacian(nuEff,U)     Gauss linear corrected; 

    laplacian(rAUf,p)     Gauss linear corrected; 

    laplacian((1|A(U)),p)     Gauss linear corrected; 

    laplacian(DnuTildaEff,nuTilda) Gauss linear corrected; 

} 

 

interpolationSchemes 

{ 

    default           linear; 

    interpolate(HbyA)   linear; 

    interpolate(U)    linear; 

} 

 

snGradSchemes 

{ 

    default         orthogonal; 

} 

 

fluxRequired 

{ 

    default         no; 

    p               ; 

} 

// ************************************************************************* // 
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A.3 fvSolution 

 
/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.2.2                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "system"; 

    object      fvSolution; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

solvers 

{ 

    p 

    { 

        solver          PCG; 

        preconditioner  DIC; 

        tolerance       1e-07; 

        relTol          0.05; 

    } 

 

    pFinal 

    { 

        solver          PCG; 

        preconditioner  DIC; 

        tolerance       1e-07; 

        relTol          0; 

    } 

 

    "(U|nuTilda)" 

    { 

        solver          PBiCG; 

        preconditioner  DILU; 

        tolerance       1e-06; 

        relTol          0.05; 

    } 

 

    "(U|nuTilda)Final" 

    { 

        $U; 

        tolerance       1e-06; 

        relTol          0; 

    } 

} 

 

PIMPLE 

{ 

    nOuterCorrectors 1; 

    nCorrectors     2; 

    nNonOrthogonalCorrectors 1; 

    pRefCell        0; 

    pRefValue       0; 

} 

 

// ************************************************************************* // 
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A.4 fvOptions 

 
/*--------------------------------*- C++ -*----------------------------------*\ 

| =========                 |                                                 | 

| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 

|  \\    /   O peration     | Version:  2.2.2                                 | 

|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 

|    \\/     M anipulation  |                                                 | 

\*---------------------------------------------------------------------------*/ 

FoamFile 

{ 

    version     2.0; 

    format      ascii; 

    class       dictionary; 

    location    "system"; 

    object      fvOptions; 

} 

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 

 

 

momentumSource 

{ 

    type            pressureGradientExplicitSource; 

    active          on;            //on/off switch 

    selectionMode   all;       //cellSet // points //cellZone 

 

    pressureGradientExplicitSourceCoeffs 

    { 

        fieldNames  (U); 

        Ubar        (10.7 0 0); 

        gradP0    gradP0 [0 1 -2 0 0] 1e-02;    // initial pressure-gradient 

        flowDir     (1 0 0);                    // flow direction 

    } 

} 

 

// ************************************************************************* // 

 
 

 

 

 

 

 

 

 

 

 

 

 


