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"Imagination is more important than knowledge"

Albert Einstein

Abstract

I attended the technical student program at CERN (The European Organization for Nuclear
Research) from July 2007 to August 2008. More speci�cally, I worked with the PHOS (ALICE
Photon Spectrometer) detector, which is one of the sub-detectors in ALICE (A Large Ion
Collider Experiment). With this report I will try to describe in essence the various activities
I was involved in and present them in a step-by-step approach. The following topics will be
covered:

• The building blocks of our world. My personal introduction to particle physics.

• General description of CERN, LHC (Large Hadron Collider), ALICE and PHOS.

• Digital design on the TRU (Trigger Region Unit). Card description and design concept
analysis.

• Digital design on the TOR (Trigger OR). Design concept analysis.

• Writing C++ utilities for the RCUs. Description and analysis of o�ine control utility
and TRU register scanner.

• Appendixes which mainly contains information about my experiences working on digital
design in Linux, how to interface the electronics through embedded devices (called
DCS cards, Detector Control System), and how to communicate with the TRU design
through dedicated registers. The goal here is to provide hints and tips that might come
in handy for people aiming to resume my work.

I assume that the reader possesses basic knowledge regarding electronics and digital circuits.
However, most of the introductory material should be easy to understand for anyone inter-
ested. I will try to refrain myself from including any code in this document, and rather
explain principles with extensive use of graphics. If the reader wants the actual lines of code,
look up how to get it in 1.8 (Additional Resources). I strive to keep my code well commented
and self-explanatory, and should complement the report when more details are desired.

All �gures and pictures in this report are to be considered the result of my own work unless
otherwise noted. This applies also for written material, where the sources of my knowledge
will be mentioned and can be looked up in the bibliography.

Jo Inge Buskenes Hans Muller

I hereby assure that every e�ort has been
made in order to provide an accurate and
credible report.

I have read this report and can verify
that the contents of this report seems
credible.
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. . . hidden dimensions . . .

. . . the God particle . . .

. . . antimatter . . .

. . . dark matter . . .

. . . dark energy . . .

Interested, anyone? 1
Introduction

Have you ever looked up to the skies wondering what role you play in the big scheme of
things? What you were actually looking at, and what a miracle it seems to be that the world
as we know it exists at all? And has it ever occurred to you that through us, the universe is
in fact aware of itself? How come this marvel ever came to be?

Fig. 1.1 - What crazy scheme are we involved in? [imgEAS]

By studying how the Universe behaves, it quickly becomes apparent that the further we go
back in time the simpler the Universe was. This is how we will proceed; by travelling back
in time as far as our knowledge can take us, I will give you a insight about what we already
know about the building blocks of our world. Then I will move on to something even more
interesting; what we do not know. And as you might suspect, there is a place where several
of these questions might be answered very soon. Keep tuned for more information!
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1.1. Particle Physics 101

. . . �Where �nature laws� does not apply, but are created�. . .

Atom

Electron

Nucleus

Proton

u

u d

Molecule

Matter

Neutron

Quarks

Fig. 1.2 - The Building Blocks
of matter [docCERN]

1.1 Particle Physics 101

The most commonly accepted theory we have as to �how it
all started� is called the big bang, and refers a massive explo-
sion that occurred 13.7 billion years ago sourcing an immensely
energy-rich substance which was later bound to form the uni-
verse as we know it. Our knowledge goes back as far as to a few
millionth of a second after the blast. Then the substance had
cooled enough for the particles known as quarks, bosons and
leptons to form.

Quarks are particles of matter, and make up protons, neutrons
and a large number of lesser-known particles. Bosons are carri-
ers of force, representing - respectively - the photon, carrier of
electromagnetism; Z and W+/W− bosons, carrier of the weak
force; gluons, carrier of the strong force; and the yet to be ob-
served Higgs boson, a particle suspected responsible for imbu-
ing other particles with mass1. Leptons are particles immune
to strong forces; the most famous being the electron.

The strong force acts on gluons and quarks and ultimately
makes up matter, the weak force changes particles and atoms
from one type to another (nuclear reactions), and electromag-
netism acts on electrically charged particles. The bosons have a
�eeting existence as they only exist whilst carrying information
from one matter particle to another.

Now, let us go from crash course in particle physics to the unknown!

1Why is gravity not mentioned? See 1.2 (paragraph 4).
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1.2. The Missing Pieces

1.2 The Missing Pieces

Did you know that the Sun contains enough matter to fuel this solarsystem with energy for
billions of years to come? What does this mean? Matter must be some con�ned form of
energy? What is the mechanisms behind this phenomena? How come energy have so many
faces (this is one of the questions the ALICE experiment seek to �nd the answer to - see
[docALICE])?

When scientists started to research the subatomic realm they discovered that all particles had
an antiparticle, a counterpart with opposite electric charge. For every particle they created,
an antiparticle was created. The conditions under which they were created are expected to be
more or less the same as straight after Big Bang, so it is reasonable to think that there was an
equal amount of matter and antimatter back then. Finally, if a particle and its antiparticle
ever comes in contact with each other they will both be completely annihilated. Good thing
that did not happen you might think. Yes, but why is this? And where is all the antimatter
today?

There are billions of stars in our galaxy, and there are billions of galaxies in the Universe.
These contain �everything that we know�, such as stars and planets. However, astronomers
and physicists have found that all of this only accounts for roughly 4% of the total Universe!
The remaining part consists of dark matter (26%) and dark energy (70%). Dark matter are
�invisible�, but are proven to be there because of the huge gravitational �elds �it� sets up.
Dark energy is a mysterious substance that seems to be associated with the vacuum in space.
It is perfectly distributed both in space and time, and causes the Universe to expand in an
ever increasing pace. However, what this �dark stu�� actually is remains a mystery.

You may have noticed when we talked about bosons that gravity was not included. This is
because the most widely recognised model for particle physics today - the Standard Model
- does not explain how gravity �ts into the picture. However, there is a model that also
includes gravity - namely the String Theory. The only problem is, it also implies that in
addition to the 4 �known� dimensions (space+time) there must also be 6 additional spatial
dimensions! They are said to be �curled up� and so small that we can not see them. The
question is how small they are, and can their existence ever be proven? And, if they exist,
would it be possible to �move� between these dimensions?

And �nally, we mentioned gravity. What is that? Any idea why matter has mass? Did you
know that the the weight of a proton is 100 times that of the sum of the weight of the particles
it is composed of? Where does all the remaining mass come from? Another particle? Indeed,
this is what the scientists believe. They call it the Higgs particle, the God particle, but it
remains to be observed.

So, what is next? [ 2 ]

2Based on [intCHP, Science I All left side pages ], [intHBU].
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1.3. CERN

. . . �The Coolest Place in the Universe�. . .

Fig. 1.3 - The CERN Globe [imgCGL]

1.3 CERN

CERN (The European Organisation
for Nuclear Research) is located on
the Franco-Swiss boarder not far from
Geneva. It was founded in 1954 by a
handful of pioneers 3 aiming to share
the cost related to nuclear physics facili-
ties and unite European scientists. Since
then it has grown to become one of the
world's largest and most respected cen-
tres for scienti�c research. It is run by 20
European member states4, but 35 non-
member countries are also involved in
the programs in various ways. There are
around 2500 people currently employed
here, and in addition there are around 580 universities and institutes representing 85 di�er-
ent nationalities that use CERNs facilities. Roughly half of the worlds particle physicists
come to CERN for their research.

The work done here has brought forth 5 Nobel Prizes, groundbreaking new knowledge about
the inner workings of our world and the birth of the World Wide Web! Furthermore the
technology developed here can be applied in other �elds more relevant to our daily lives, for
example in medical equipment better capable of keeping us healthy. All of this �ts very well
with the CERN philosophy:

Fig. 1.4 - Some Citations from the CERN
Web Page [intCHP] [sofPPT]

• Leading the research into the fundamentals of
our Universe.

• Advancing the frontiers of technology.
• Bringing nations worldwide together through
science.

• Educating the scientists of tomorrow.

So what is really going on here? Take a look at some
of the citations in �g. 1.4 and make a wild guess.
They are from the CERN webpage. What is in the
air, or maybe, in the ground?

[ 5 ]

3Raoul Dautry (France), Pierre Auger (France), Lew Kowarski (France), Eduardo Amaldi (Italy), Niels
Bohr (Denmark) et al.

4Norway is one of the member states.
5Based on [intCHP, About us I All left side pages ].
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1.4. LHC

. . . �One Ring to Rule them All�. . .1.4 LHC

Fig. 1.5 - The Large Hadron Collider Complex [intPRESS, Custom Tags]

Take a look at �g. 1.5 and you will see a plane photo of CERN and its surroundings. In the
upper left corner you can see lake Geneva, and in the right corner you can catch a glimpse of
the Geneva airport. The CERN main site is located just under the illustration of the ATLAS
(A Toroidal LHCApparatus) detector, with the southern part of the site sticking out from the
upper right corner of the mentioned illustration. The white circles indicates the location of
various particle accelerator tunnels, the biggest one is called the The Large Hadron Collider
(LHC).

The LHC is - as mentioned - a huge circular particle accelerator situated 50-150m under-
ground. It measures 27 km in circumference, and along with its detectors represents the
largest scienti�c instrument ever made by human kind. The aim is to accelerate particles
up to very high speeds and produce head-on collisions such that they decompose into more
fundamental particles. While quite a few have been found (some were mentioned in 1.1),
there are probably more to be detected. The LHC is a lean and mean particle hunt machine
- the biggest one to date. Particles, beware.
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1.4. LHC
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Fig. 1.6 - The Accelerator Complex [docLHCUG]

So what is the crazy looking �g. 1.6 representing? Well, when particles are to be accelerated
to energies like at CERN several accelerators must be utilised. The �gure shows the network
of accelerators currently present at CERN (I advise the reader not to try to remember all the
abbreviations). The particles start their journey in some small accelerators at 99.9998% the
speed of light at an energy of 450GeV (eV = electron-volt). However, while no particle can
travel faster than the speed of light, there is no limit to the amount of energy the particle can
attain. When the particles ultimately are being injected into the LHC they are kicked up to
99.999999% the speed of light and an energy of 7TeV (the beam now contains enough energy
to melt 500kg copper6). You might see that when measuring energy in particle physics, it is
more appropriate to talk about electron-volts than the speed of the particle.

So what happens to particles when they are boosted to higher and higher energies? If we
imagine ourselves travelling from the eV-range to the TeV-range, we pass through many
distinct �landscapes�. In the eV world matter follows the rules of chemistry and solid state
electronics. Increasing the energy into the MeV-range will provoke nuclear reactions (atoms
decompose into protons and neutrons (electrons are leptons), and we are now talking about
roughly the energy that matter has attained in the center of the Sun. Moving into the GeV-
range we will �nd that the matter decomposes even further into bosons, quarks and leptons
- as mentioned earlier in 1.1. But what happens when the energy is increased into the
TeV-range? Will it help us ��ll in the blanks� in the knowledge of our world as mentioned in
1.2? Will we witness completely unknown phenomenas?

A vital part of the puzzle is missing; accelerating particles up to the high energies is to no
use unless we also have the necessary equipment to detect what happens as the particles
collide. From �g. 1.5 and �g. 1.6 you can see the 4 main detectors on the LHC ring: ATLAS,
CMS (The Compact Muon Solenoid Experiment), LHCb (The Large Hadron Collider beauty
Experiment) and ALICE. I worked with the latter, so let us have a look at it!

[ 7 ]

6For more fascinating facts, take a look at appendix E.
7Based on [docLHCUG], [magSCAM].
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1.5. ALICE

. . . �in Wonderland�. . .1.5 ALICE

Y

X
Z

NB. Please note that the coordination system in ALICE is right handed.

Fig. 1.7 - The ALICE Detector [imgALIDET, Custom Tags]

The ALICE detector is one of the four large detectors situated in the LHC accelerator ring
and is mainly dedicated to the study of heavy-ion collisions. It weighs around 10 000 tons and
measures 16m high and 26m long. It is composed of 18 subdetectors which together provide
the necessary sensory equipment to track and identify the tens of thousands of particle tracks
produced in each heavy-ion collision. In order to get a decent rate of interesting events the
ALICE detector must be capable of processing 8000 collisions per second (see 1.5.1).

When the particles collide inside the ALICE detector the collision point will be 100 000 times
hotter than the centre of the Sun (around 2000 billion ◦C). What happens to matter at these
temperatures? The current theory of the strong interaction8 predicts that at these immense
energies quarks and gluons should no longer be con�ned inside composite particles, but rather
exist in a �free� state of matter known as quark-gluon plasma. It is believed that this state
existed just a few millionth of a second after the Big Bang, so we are sort of �looking back
in time� with the ALICE detector. By studying how the quark-gluon plasma reverts back to
a con�ned state of matter we can expect to �nd the answers to how the mechanism behind
the con�nement work, and to why the weight of a proton is 100 times that of the sum of the
weight of the particles it is composed of (see 1.2).

8Called quantum chromodynamics.
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1.5. ALICE

As previously mentioned bunches of particles collide inside the ALICE detector at a rate
of thousands of times per second. For only one of these collisions a vast amount of data is
produced by all the various sensors. We need some sort of �lter; some sort of mechanism that
selects only the most interesting collisions (or events, as it is popularly referred to) to send
to the computers for further processing. For this purpose, we �lter the data with the use of
a triggersystem consisting of specialised electronics, which - due its huge parallel potential
- takes a look at all the data and creates �triggers� when the data has certain interesting
properties.

1.5.1 The Trigger System

To �lter out interesting data from what is not, ALICE utilises a triggersystem designed in 3
levels:

• Level 0. This trigger decision must arrive at the Central Trigger Processor (CTP)
within a total latency of 1.2µs. With all setup times and cable delays this leaves barely
500ns for electronic processing, which means that the decision can only be based on a
very simple criteria; like when the signal of a particle is bigger than the average.

• Level 1. If the Level0 decision is validated, the data of the pre-selected particle is
searched by more re�ned algorithms that need a little bit more time. These are mostly
based on physics criterias, like detection of two neighboring particles from a decay of
a single one. Due to the increase of complexity in the trigger calculation, the total
timeframe is 6.5µs.

• Level 2. Given that the data were accepted by the CTP by both level-0 and level-1
from several detectors for the same event, the Level2 trigger is asserted as a request
for the electronics to start sending data. Later on in the process there might also come
Level2 messages which rejects or accepts the event based on decisions by the CTP.
The timing requirements are even more relaxed here, typically the Level2 trigger comes
within 90µs and the �accept�/�reject� message within 500µs.

Now why am I mentioning this? Well, I was working on the Level0 trigger in one of the
ALICE subdetectors - the Photon Spectrometer (PHOS, see 1.6). You can see the PHOS
detector in �g. 1.7, it is situated on the bottom of the ALICE detector.

[ 9 ]

9Based on [docPHOSUM, page 85], [intIETNS] and [MyMind].
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1.6. PHOS

. . . �Let there be light�. . .1.6 PHOS
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Fig. 1.8 - The Basic Buildup of a PHOS Module [sofPPT] [sofPSP]

PHOS is - as the name implies - a detector designed to measure the energy of light particles
(photons). As I have tried to illustrate in �g. 1.8, a PHOS module is composed of two
�layers� - a set of crystals and the electronics necessary to process the data coming from the
crystals. Only one PHOS module is depicted, but in the end there will be a total of 5 similar
modules10. For each module there are a total of 3584 (56x64) high density lead-tungsten
crystals (PbWO4), each weighing around 1kg. But what are the electronics there for?

The clock in the LHC oscillates at 40MHz, which we have to use when the data are to to be
digitised. If we had sampled the data from the crystals directly we would have had to deal
with a steady stream of 40MHz * 12 [bits/sample] * 3584 [crystals] ≈ 215GB/s per
module, assuming a sample resolution of 12 bits. It should be obvious that there is no way
this amount of data can be processed in realtime in a computer.

The electronics layer is composed of 112 cards called FEEs (Front-End Electronics), 8 TRUs
(Trigger Region Unit) and 4 RCUs (Readout Control Unit). Each RCU controls 2 �branches�
of TRUs and FEEs, where each branch may be considered an independent group of cards.
Basically, the function of the electronics layer is fully de�ned with one branch, but scaled
up to 8 in total per PHOS module. Because of this, I will from now on speak about the
operation of a single branch and not the entire module.

10As of today (3.July 2008), there are 1 PHOS module installed in ALICE and two more are being commis-
sioned.
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Fig. 1.9 - 1 of the 8 �Branches� in the Electronics Layer [sofPPT]

Fig. 1.9 shows one of the mentioned branches of cards, consisting of 14 FEE cards and 1
TRU. Some of the kinetic energy from the particles produced in a collision in ALICE is
converted into photons in the PHOS crystals. The light is transformed into electric energy
with Avalanche Photo Diodes (APDs)11 which is in turn ampli�ed with Charge Sensitive
Preampli�ers (CSPs)12. Each FEE is connected to 32 CSPs (2 columns of 16 crystals, for
geometrical positions see tab. C.1, right side). The FEE has two main tasks: (1) Sampling
and recording high-gain and low-gain versions of these signals and store them in ALTRO
chips13 where they can be read out by the RCU via the GTL (Gunning Transceiver Logic)
bus, and (2) perform an analog sum of 2x2 patches of crystals (for a total of 8 sums per FEE),
shape them to a 100ns semi-Gaussian pulse and send them to the TRU (we call these signals
FastOR) via. LVDS (Low Voltage Di�erential Signaling) cables (the red ones in �g. 1.9).
With this data the TRU can decide whether a Level0 trigger is to be generated.

11The APDs have an e�ciency of 80% - which means that they e�ectively converts 80% of the energy in the
light into electric energy!

12The combination of APDs and CSPs in PHOS can sense bunches of photons down as low as 10 photons,
which is an extremely low light strength.

13See [docALTRORC] and [docPHOSUM] for more information.
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1.7. Report Structure

1.7 Report Structure

So what can you expect to �nd in the upcoming pages? In order of appearance, these are
the chapters:

• Introduction. The one you are currently reading. I started o� with a short intro-
duction to particle physics and questions which still remains unanswered. Then I said
a few words about CERN, the new particle accelerator LHC, the heavy-ion detector
ALICE and one of its subdetectors - PHOS. In the last section of this introduction I
will explain where additional resources can be found if desired.

• Trigger Region Unit (TRU). Presenting the card with a general description and
some history, before I proceed to discuss digital design where ADC (Analog to Digital
Converter) interfacing and resource utilisation will play a vital role.

• Trigger OR (TOR). After a short description I will proceed to describe some mapping
problems and present a design suggestion for the communication protocol between the
TOR and TRUs.

• Readout Control Unit (RCU). Two programs will be described in this chapter,
namely the TRU Register Scanner and the O�ine Control Utility.

• Conclusion. Some �nal thoughts made in the aftermath of my stay.

As you can see, I will order my work into chapters representing the card I was working on
(when the general introduction (this one) and conclusion is excluded). These chapters will
start with a small introduction before the various topics are presented. These topics may
be concluded separately, or they might be temporarily concluded while pending the �nal
conclusion of the chapter. In between the introduction and conclusion the structure will
vary depending on what topics are discussed, but the topics discussed in these chapters will
generally be related to �rmware and software design.
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1.7. Report Structure

During my work I frequently encountered situations where necessary documentation seemed
absent. However, from studying code and asking around I have grown to understand some
of these poorly documented aspects. Throughout this report I have tried to blend this
knowledge in between related topics, but some of it just does not well with these chapters.
This and other relevant information may be looked up in the appendixes:

• Other Activities. As the title indicates this appendix will act as a container for
other �activites� I was involved in and documented, but was not of such a nature that
they would blend in well with the main body of this report. Keywords here are Linux
experiences, BASH scripting for working with backups, DCS interfacing, miscellaneous
work with mapping and phase adjustment tutorial for ADC clocks.

• Chronograms. Some chronograms from ModelSim showing a simulation in progress.

• TRU Communication. Some scripts you may use when trying to write and read the
TRU registers via. the RCU will be presented, along with a complete list of the current
TRU registers.

• Fascinating Facts. For those interested.

• TRU Logic Usage. For those interested.

I hope that I succeeded in supplying a document which is digestable, even though it contains
quite technical material. The paradox is that whilst you are trying to keep it simple and
the prerequisited knowledge at a minimum, you can not leave out too many details as this
will render the documentation useless. The question should not be whether it is perfectly
ful�lling the criteria of some template, but rather if the message was adequately presented.

When writing a report like this it is impossible not to use some abbreviated words, not to
mention impractical as often they represent the names of electronic components in our project
- and I �nd that short names are easier to remember than long names. However, unless they
are thoroughly discussed somewhere locally in the report and not mentioned elsewhere - you
will �nd them in the glossary.

This report is best read as a pdf �le. This way you get to enjoy bookmark navigation and
hyperlinks functionality. However, the colorcodes should make it pretty straightforward to
read the paper version aswell. Green coloured words are links to the glossary, red coloured
words are references to the bibliography. In the bibliography you will �nd an extensive list
of sources and where to get additional information.

This is the extract of my year at CERN, happy reading.
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1.8. Additional Resources

1.8 Additional Resources

In my report I will describe and discuss several programs and documents. These will be
made available for the reader, either by logging into the server mentioned a few paragraphs
down or by simply clicking the references in this document (if you are reading the electronic
version). If you are reading the paper version you can still �nd the right �les by simply
looking up the reference-tag in the document bibliography.

I set the document-server up with ftp (File Transfer Protocol)14. To log onto it use the
following information:

Site: ftp.joinge.net

Username: iyearn

Password: forcern

You can expect to �nd the following information on this server:

• Sourcecode for this document.
• Sourcecode for the TRU (most recent).
• Sourcecode for the TRU (initial).
• Sourcecode for DCS O�ine Control Utility.
• Sourcecode for TRU Register Scanner.
• Sourcecode for TOR (most recent).
• Sourcecode for TOR (previous versions).
• Datasheets.
• PHOS related documents.
• ChipScope Project Files (for diagnosis).

Each printed copy of this report will also be accompanied with a CD containing the same
information as were present on this server at the date of printing.

14If you are using Windows you can can log onto ftps with Windows Explorer (the �lesystem browser), or
if you are using Linux you can use e.g. Konqueroror Nautilus - they all o�er drag-and-drop functionality
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2
Trigger Region Unit

The Trigger Region Unit (TRU) is the card in charge of calculating the Level0 trigger in
PHOS (see 1.5.1 for more details about the triggersystem in ALICE). This is �rst trigger
signal to be produced in the ALICE detector after a particle collision, and indicates whether
the data recorded of the event might be worth looking more thoroughly into. In the case of
PHOS, we need to produce a Level0 trigger whenever the energy absorbed by the crystals
exceeds a certain threshold.

It is important that the Level0 signal arrives at the CTP in the ALICE detector no later than
800ns prior to the time of a particle collision. Due to propagation delay in the electronics the
FastOR (The FastOR pulse is the analog sum of a 2x2 matrix of crystals) signals produced by
the FEE cards arrives at the TRU ≈150ns after impact time. This means that the TRU must
generate the Level0 trigger signal in less than 450ns (leaving around 200ns for propagation
time from the TRU to the CTP). This might sound hard, but since the TRU has resources
highly capable of performing parallel computations it is in fact quite feasible.

The TRU is the card I have spent most of my time with. My work related to the TRU can
be split into two parts:

• Digital design for the Virtex 2 Pro FPGA (Field Programmable Gate Array) present
on the TRU.

• Hardware testing, modi�cations and assembly.

This report will not deal with the latter, as I consider the former far more important. In
order to provide an �gentle start� on the topic of digital design I will start this chapter with
a general description of the TRU and present some of the key features of the Virtex 2 Pro
FPGA. In the section dealing with digital design I will describe the parts of the design I was
involved in and thoroughly discuss the various considerations that was made along the way.
Finally, the chapter will be wrapped up with a conclusion where I will suggest what future
work should be carried out.
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2.1 Introduction
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Fig. 2.1 - TRU Position in a Branch of Front-End Cards [sofPPT] [sofGMP]

In �g. 2.1 I tried to illustrate the environment in which the TRU operates. As you can see,
it is situated in the middle of 14 FEE cards and receives 8 FastOR signals from each of them
(the white cables in the illustration). The TRU is Front-End Card (FEC) number 0, and
the FEE cards receives addresses along the ALICE x-axis. The mapping is such that equally
indexed FEEs and TRU ADCs are connected together, as shown in the picture at the bottom
of �g. 2.1.

The RCU communicates with the TRU over the GTL bus, either via a low speed serial
communication protocol (called SlowControl) which utilises the GTL Control bus1, or via a
high speed parallel communication protocol (called ALTRO - ALICE ReadOut) which utilises
the GTL Data bus.
1At the time of writing - 20.June 2008 - the SlowControl protocol is not operational for the TRU.
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2.1. Introduction

Fig. 2.2 - Front Side View of the Trigger Region Unit (TRU) [sofPSP]

In �g. 2.2 you can see the front-side of one of our new TRUs, which is a 12 layer printed
circuit board (PCB) card. In the lower left corner you can see the power cables. Going from
left to right you �rst have the two orange lines carrying 4.2V digital voltage, then a red cable
carrying 3.3V digital voltage followed by two green cables with electrical ground, and �nally
a the white cable with 4.0V analog voltage.

In �g. 2.2 I have tagged what I believe is the most important components. A bunch of voltage
regulators on the left side of the card will ensure a stable and accurate power supply to the
electric components. The ADCs are there to digitise the analog FastOR signals coming from
the FEE cards. The GTL drivers are located in the bottom right corner as close to the
GTL bus as possible to prevent the capacitive load caused by the card to become higher
than necessary. In the upper right corner you will �nd the logic needed for Virtex 2 Pro
FPGA con�guration storage and JTAG (Joint Test Action Group) connectivity. Finally, in
the center of the board we have the FPGA - where all the magic happens.
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2.1. Introduction

2.1.1 Technical Data

I believe that a list of components present on the TRU and the links to where you can
�nd the datasheets might come in handy, so I supply this information for TRU design v1.1
[docTRU1.1] (tab. 2.5)2:

Component Type Design Unit DataSheet

Virtex 2 Pro FPGA XC2VP50 IC17 [docV2PDS]
[docV2PUG]

ADCs ADS5270IPFP IC1_[1,7],IC2_[1,7] [docADC]
Con�gurable Flash Memory XCF32P IC24 [docXCF32P]
ProASIC Flash Memory APA075 IC13 [docAPA075]
Flash memory MX29LV640DBTI-90G IC12 [docMX29LV]
GTL Drivers GTL16612DGG IC3-IC9 [docGTL]
Voltage Regulator LT1963A-1.5 Q2 [docVR15V]
Voltage Regulator LT1963A-2.5 Q1,Q3 [docVR25V]
Voltage Regulator * LTC1844ES5-1.8 REG1 [docVR18V]
Voltage Regulator MIC29301-33BU IC33 [docVR33BU]
Voltage Regulator MIC29501-33WU IC31 [docVR33WU1]
Voltage Regulator MIC20151-33WU IC32 [docVR33WU2]
Power Supply Transistor SO2222A Q4,Q5 [docSO2222]
Temperature Sensor * MAX6627 IC34 [docMAX6627]
Temperature Sensor AD7417 IC22,IC23 [docAD7417]
Clock Distribution Chip MPC9109 IC28 [docMPC9109]
LVDS Driver ALT_SCLK * SN65LVDS101 IC1 [docLVDS101]
LVDS Driver J21,J19 * SN65LVDS31 IC2,IC14 [docLVDS31]
LVDS Receiver J20 * SN65LVDS32 IC15 [docLVDS32]
MUX/DEMUX ADG774 IC25,IC26,IC27 [docADG774]
Transceiver Rocket IO ** V23818-K305-V17 IC16
Receiver Rocket IO ** HDMP-1034 IC19
Transceiver Rocket IO ** HFBR-5720AL IC10,IC18,IC20,IC21

* Component names from Design Sheet v1.1 [docTRU1.1]. I was not able to verify them.

** Rocket IO components were never installed.

Tab. 2.1 - TRU Components

For my work there is in fact only the two topmost components that we really need to know
a bit about. The FPGA is a pretty complex device that enables us to program the logic that
tie all the other components together in an uni�ed way. In the �eld of programming such
devices - digital design - quite a bit of experience is required in order to be able to produce
anything with a decent level of quality. A good starting point is to know the speci�cations of
the FPGA we are working with, so we will take a closer look at the Virtex 2 Pro XC2VP50
FPGA in the next subsection.

2Some of the component names may di�er from what is speci�ed in the design sheet as these are the actual
components installed on the board, visually veri�ed.
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2.1.2 Virtex 2 Pro Resources

From the Virtex 2 Pro datasheet we can dig up the following information (tab. 2.2):

RocketIO Transceiver Blocks 16
PowerPC Processor Blocks 2
18x18 Bit Multiplier Blocks 232
Con�gurable Logical Blocks (CLBs) providing:
Slices 23 616
Max DistributedRAM (kb) 738

DCMs 8
Block Select RAM+ featuring:
18 kbBlocks 232
Max BlockRAM (kb) 4 176

Maximum User IO Pads 852

Tab. 2.2 - Virtex 2 Pro (XC2VP50) Speci�cations [docV2PDS, page 2]

Now, while it may be a bit overwhelming to get all these numbers thrown at you, it is
important to mention them as they represent the boundaries we have to keep clear of when
designing the code. Especially important are they in the case of our project and the TRU, as
we are struggling to �t all the functions we wish the TRU to have into this FPGA. This will
be discussed in appropriate places throughout the report, but �rst I will walk you through
the parameters from tab. 2.2. The subsections will be labelled accordingly.

Rocket IO Blocks 2.1.2.1

RocketIO is a technology aimed to provide serial communication at very high speeds. In
recent FPGAs from Xilinx the RocketIO functionality resides in the silicon fabric and o�ers
excellent performance. However, the technology was introduced with the Virtex 2 Pro and
in this generation the latencies were too high for it to be used in the TRU design. The
components for RocketIO has therefore never been mounted on the board. [ 3 ]

PowerPC Blocks 2.1.2.2

The PowerPC Processors are neat if you want to run a Linux OS in your FPGA. However,
there is no need for this on the TRU so they will be left alone.

Multiplier Blocks 2.1.2.3

The Multiplier Blocks are designed to be used with the Block SelectRAM (Read Access
Memory) 18kb blocks. It features on-the-�y multiplications of the values stored in a Block
SelectRAM block at a low power consumption, which is really nice if you for instance wish to
implement digital �lters. However, I do not see how we can utilise these in the TRU design
as time is a very critical factor. Maybe future designers will �nd an area of use for them, but
for now they will be left out of the design. [ 4 ]

3Based on conversation with John Evans, Xilinx seminar 28. May 2008.
4Based on [docV2PDS, page 58].
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2.1. Introduction

Con�gurable Logic Blocks (CLB) 2.1.2.4

The Con�gurable Logic Blocks (CLBs) are the main logic resource for implementing sequential
as well as combinatorial circuitry. Since it is an extremely important resource to understand
when designing the logic for the FPGA, I made a drawing of how these logic blocks are built
up in the Virtex 2 Pro (�g. 2.3):
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Fig. 2.3 - A Simpli�ed Illustration of the Virtex 2 Con�gurable Logic Block (CLB)
[docV2PDS, page 45] [sofPPT]

First, have a look the right side of �g. 2.3 and notice what is called a slice. A slice is
the smallest group of logic in the FPGA, and consists of 2 lookup-tables (LUTs), 2 storage
elements, a few multiplexers and a some gates, chains and tri-state bu�ers. A slice is fully
con�gurable, which means that it can be programmed to realise almost any digital circuitry.

Each lookup table (LUT) has 4 inputs and can be con�gured either as a function generator,
16 bits of read-access memory (Distributed SelectRAM ) or a 16 bits shift register (SRL).
When con�gured as a function generator it can cover all boolean functions of 4 inputs (by
simply looking them up), but with the use of the multiplexers functions for up to 9 inputs
can be realised within a single slice. A 2 input multiplexer can be implemented with 1 func-
tion generator and some associated multiplexers in the slice, where each additional function
generator added will provide 2 extra inputs to the multiplexer.

The Distributed SelectRAM blocks have one address port for synchronous write and - if it is
con�gured as dual-port - one address port for asynchronous read. The extra port will always
require the use of an additional LUT, for instance will a 16 bits RAM block with dual port
require 2 LUTs as opposed to 1 LUT for the single port version.
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When the LUT is con�gured as a shift register the write will be synchronous, while the values
may be read asynchronously with the 4-bit address bus. If a synchronous read is required
the storage element may be utilised. This will also improve the system performance since
the storage element provides far superior clock-to-out speed.

The storage elements can be con�gured either to realise a level triggered latch or an edge
triggered register. The input data can either be supplied from logic inside or outside of the
slice.

The carry logic and shift chains, plus the various multiplexers are used for implementing
arithmetical and logical functions, but can alternately be utilised for connecting slices to-
gether within a CLB to extend the logic capacity. Each CLB can then provide the following
logic:

LookUp Tables, can also be con�gured as: 8
Distributed SelectRAM 128 bits
Shift Registers 128 bits

FlipFlops 8
Multiplier AND Gates 8
Arithmetic and Carry Chains 2
SumOfProducts (SOP) Chains 2
Tristate bu�ers 2

Tab. 2.3 - Logic Provided by 1 Con�gurable Logic Block (CLB) [docV2PDS, page 52]

For most of my work with digital design the upper half of this table seems interesting whilst
the lower half does not. I have never encountered a situation were there was a shortage of
gates and arithmetical or logical routing, the bottleneck seems always to be related to data
storage.

Please note that I just presented a rather simpli�ed image of the CLB. While you may
perform �rough calculations� on resource utilisation by referring to the numbers above, the
reality might prove to di�er since the software used to break up the code and create the FPGA
con�guration might alter or implement the design in a way you did not expect it to. It might
decide that some resources ought to be shared or that the design should be redistributed in
order to achieve a better compromise between logic utilisation and performance.

Each CLB is connected to the global routing network through a Switch Matrix and to adjacent
CLBs with Fast Interconnect (see �g. 2.3). When necessary, CLBs can be connected together
to create functions which can not be created with a single CLB. However, as the complexity
of the logic increases so will the performance hit. I have come to believe that good coding
style involves breaking down any problem into simple functions which can be implemented
with as few slices as possible. [ 5 ]

5Based on [docV2PDS, page 45-54].
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Digital Clock Managers 2.1.2.5

The Virtex 2 Pro FPGA has a wide variety of interconnect for routing data and clocksignals6.
For global clock signals, or for very high speed clocks the global clock routing network should
be used. This is because it is the only net which is directly connected to everything in the
FPGA, thus providing shared timing models). This network can host a maximum of 16
clocks, but with restrictions. To clarify, I made an illustration (�g. 2.4):
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Fig. 2.4 - Virtex 2 Pro Global Clock Distribution [docV2PUG, page 69] [sofPPT]

The global clock network is made up of 8 �banks� or �clockmultiplexer pairs�, each of which
contains a primary and secondary clockmultiplexer (or bu�er, e.g. BUFGMUX 0S and 0P)7.
Each multiplexer pair shares routing resources in the same quadrant of the FPGA (NW,
SW, NE, SE, according to geometrical direction), so if the primary bu�er access the NW
quadrant, the secondary bu�er may only access the remaining 3 quadrants. The input to
the global clock bu�ers can come from either the global input clock pins (IBUFG)8, from
internal logic or from Digital Clock Managers (DCMs, described on the next page).

6For a nice hierarchical overview of the Virtex 2 Pro interconnect, refer to [docV2PDS, page 65].
7Global clock MUXs can shift glitch-lessly from one clock to another.
8Global clock pins can drive DCMs on the same clock edge.
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While the global clock network is the best suited for distributing clocks in the design, sec-
ondary clocks or high fan-out signals can be routed using a pattern of alternative routing
resources (�long lines9�, �hex lines�, �double lines�, ..)10 that results in low skew, but the best
results are usually achieved by letting the implementation software handle it single-handedly.
When you need to specify some timing criterias use timing constraints.

A Digital Clock Manager (DCM) is a self-calibrating and fully digital solution for:

• Clock distribution. Source a clock signal to it and let it supply internal logic or external
components with high quality clock signals. The fan-out capability is very good and
the phase-locked loop (PLL) inside the DCM will assure perfect duty-cycle.

• Delay compensation. Use the post-bu�er clock signal as feedback to make the DCM
�transparent� (clock has same phase before and after DCM).

• Clock frequency multiplication and division. Create derived clocks with a wide range of
possible frequencies.

• Coarse-grained clock phase shifting. Supplies output clocks with 0◦, 90◦, 180◦ and 270◦

phaseshifts, respectively.

• Fine-grained clock phase shifting. Provides the ability to on-the-�y adjust the clock
phase in increments of T/25611. [ 12 ]

Block Select RAM 2.1.2.6

The BRAM blocks you see in �g. 2.4 are the 18kb Block SelectRAM mentioned in tab. 2.2. It
features two synchronous ports where the width is programmable from 1 bit (depth 16 384
bits) to 36 bit wide (depth 512 bits). Each port has an address bus which is independently
clocked. It is not as fast as the shallow CLB memory, but will in return provide massive
storage space. [ 13 ]

Input and Output Bu�ers 2.1.2.7

The Input and Output Bu�ers (IOB) is the interface between the �external� (outside FPGA)
and internal logic. For both inputs and outputs a wide range of signalling standards are
supported - for both di�erential and single ended schemes. Optional input delay elements
may be used to synchronise input data streams, and input impedance can be selected either
digitally (with Digitally Controlled Impedance, DCI) or by toggling an input termination
parameter. Each IOB bu�er has several registers, for driving the output pins or for clocking
input data (even Dual Data Rate - DDR (Dual Data Rate)- is supported). However, the
data may also just be routed through.

9The long lines are often referred to as the �backbone�, you can force your design to use them with the
USELOWSKEWNETS constraint.

10All interconnect is designed to minimise crosstalk, so for internal logic this does not need to be evaluated.
11Overridden by DCM_TAP_MIN and DCM_TAP_MAX, the minimum increment seems to be ≈40ps.
12Based on [docV2PDS, page 61-65] [docV2PUG, page 68-84, 89-93].
13Based on [docV2PDS, page 54-57].
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2.1.3 History

From the previous subsection you have learned what resources the TRU FPGA has to o�er.
I will shortly take this one step further as I present my work the digital design (see 2.2).
However, as many people has been working with the TRU prior to my arrival, I �nd it
appropriate to provide an abstract of the work done so far (tab. 2.4):

Date: Event:

2004 First TRU (v1.0) card proposed by Hans Muller.
Two versions: PHOS: v1.0a, EMCAL (ElectroMagnetic CALorimeter): v1.0e.

2004/2005 Board design (schematics, layout, ..) completed by Rui Pimenta.
2005 Alexandra Oltean starts with code design. Major work put into a deserialiser

using oversampling.
2006 A PCB layout with Cadence Allegro is made by Xi Cao.
2006 The PCB layout is produced with two prototypes in Wuhan, China.
2006 The prototypes are tested. Linfeng He (China) is improving the digital design

(reset schemes, veri�cations, BoardController).
2006/2007 Rui Cai (China) started to work on hardware veri�cations (signal termination

at the ADCs, ADC bias schemes, FEE channel mapping).
2007 Nicolas Degrenne (France) continues Rui Cais work.
2007 Alan Crouau (France) picks up the lead after Nicolas, and performs major work

related to improvement of the deserialiser and creates the �rst prototype code
for TRU-TOR data transmission.

2007 I arrive and spend a few months with Alan where he unloads some of his acquired
knowledge to me, and where we discuss ideas for future TRU development.

2007 A revision of the TRU hardware design is done by Rui Pimenta and Xi Cao.
2007 New TRUs (v1.1) are produced and tested in Wuhan, China.
2008 The �rst PHOS module is installed in ALICE and with it 8 TRUs (v1.0a).
2008 Dong Wang (China) will resume TRU development where I left it.

Tab. 2.4 - TRU History [docNICOLAS, top part from page 88]

Let us move on to the digital design, shall we?
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2.2 Digital Design

The task of programming the digital logic of the TRU FPGA has proved to be quite a
challenge. The Virtex 2 Pro FPGA were simply never designed to take on a design such as
the TRU, but nevertheless used, so we just have to try to �nd a way to make it work against
the odds. You may wonder what on Earth I am talking about, so lets just start with basics
- a break-down of the TRU design to date14 (�g. 2.5):

2.2.1 Code Buildup
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Fig. 2.5 - TRU Code Buildup [sofPPT]

In �g. 2.5 I have tried to illustrate how the TRU design can be �thought of� in terms of
functional behaviour. The right half of the �gure contains what we call the BoardController,
which may be thought of as a �control unit� which monitors temperatures, voltages and
currents, controls the GTL busses and the relevant communication protocols, and �nally
contains a rather huge list of registers - which is where the RCU can read data from or write
data to. A wire variety of functions has its roots in the BoardController registry, as can be
seen from the TRU registry list supplied in appendix C.

The left half of the �gure represents the framework of modules in charge of the actual Level0
trigger calculation. A brief description will follow on the next page, and more thorough
explanations can be found throughout this subsection.

14As of 26. July 2008.
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In the upper left corner you can spot the ADCs, coloured grey since they represent hardware
and not programmable logic. There are 14 ADCs in total, each connected to a respective
FEE card from which it receives 8 FastOR signals. The dynamic range of the ADC inputs
is ±1V (linear range, input bias within a few mV), which is digitised with 12 bits accuracy
(resulting in a resolution of 2V/212 ≈ 0.5mV) at 40MHz. These bits are then sent serially to
the FPGA at both edges of a 240MHz clock, e�ectively creating a bitrate of 480Mbps.

When these bits arrive at the FPGA they �rst need to be synchronised with the internal
clock of the FPGA (see 2.2.5), and then deserialised (see 2.2.6). Several factors related to
the operation of the ADCs may be controlled with a dedicated ADC interface (see 2.2.4).

Each FastOR pulse is around 100ns long, which can be represented with 4 samples in our
40MHz digital world. As only the positive part of the FastOR pulses contains any valuable
information, the average is subtracted on a per-channel basis (referred to as pedestal sub-
traction, see 2.2.7). If the channels are noisy they may be masked out with the use of a
mask register. We call the data at this point raw data. Since this is the type of data the
FakeALTRO protocol are meant to ship to the RCU upon request, it will be stored in a Block
SelectRAM element which can retain a history of 256 samples (equals 6.4µs).

The Level0 trigger is based on an evaluation of the energy in a �shower� of photons. In time
the energy is spread out over 100ns (the length of the FastOR pulse). To integrate the energy
in time, we simply sum up the 4 samples which describes the respective FastOR pulse. At
this point we call the data time summed (see 2.2.7), which is the type of data the TOR needs
in order to calculate the Level1 trigger. Similar to the �raw data� storage for the FakeALTRO
protocol, the �time summed� data will be sent in a Block SelectRAM element retaining a
history of 256 samples.

When particles hit the PHOS crystals the light might disperse into several adjacent crystals15.
In order to get a scalar representing the total energy of the particle, we will need to sum up
matrices of 4x4 crystals (referred to as space summing, see 2.2.7). As each of the FastOR
signals represent the sum of 2x2 crystals, the 4x4 sum can be calculated by summing 2x2
FastOR signals. All possible combinations of 2x2 FastOR signals will be summed (the idea
being that at least one of these �squares� be be centered over the particle entry point), but
as the edges of the branch can not be summed (the TRU can not �see across� the branch
boundaries) only 91 space sums may be calculated out of the 112 FastOR signals received16.

If the energy of any of the 91 space+time summed values exceeds a certain set threshold, a
Level0 trigger will be generated. It is currently sent to the TOR on a dedicated line, but this
might change as the TOR communication interface is being developed (see 2.2.8).

15The dispersion factor is both a function of the particle angle and size.
16From the 112 FastOR signals (14 FEEs (z-axis) times 8 channels (x-axis)) only 13x7=91 squares of 2x2

FastOR signals may be summed. Only the Level0 calculation will su�er from this ��aw�; only time summed
data will be sent to the TOR which allows it to re-do the space sum without the branch boundary limitation
(the TOR receives data from all TRUs, thus the only boundary will be those of the PHOS module).
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2.2.2 General Design Changes

I have made quite a few general edits to the code since the version of the TRU code I received
upon arrival (see [srcTRUDESIGN]). They are summarised in the following list:

• Conversion to Verilog 2001. The design code I received used almost extensively the
Verilog 95 syntax, which means no multidimensional arrays, no generate statements,
and port lists where the ports had to be rede�ned 3 times in order to declare the name,
direction and type, respectively. For those of you who are not into the terminology:
The design code very quickly becomes very messy and very huge. I suggest that you
load a few source �les from the new code and the old to see the di�erence.

• Rewriting functions to improve logic distribution. The old design used synchronous
design elements for everything17. Even for concurrent arithmetical operations where
only the end results were interesting, the data was clocked into respective registers
along the way. The main advantage of such an approach is that design elements can
run at very high speeds, but as the TRU base clock runs at 40MHz (which is considered
a low/moderate speed) this involves bad performance (as for the greatest part of a clock
cycle nothing will get done) and a non-optimal logic distribution (as in my experience
the design works best with a balanced logic usage). As registers were always the
bottleneck in the old design, and the alternative resources were hardly used, the logic
should be redistributed.

• Design altered to better integrate with future design elements. High up on the wish-list
for my supervisor at CERN and other people in my project were the communication
interface to the TOR and the FakeALTRO interface for the RCU. The former is nec-
essary if we want the Level1 trigger in PHOS as the TOR can not calculate anything
without any raw data from the Level0 trigger event. The FakeALTRO, is, as the name
implies, a �fake� ALICE ReadOut protocol. It enables the RCU to read out the raw
data from the TRU in the same way as it reads out the raw data from the FEE cards
(from the ALTRO (ALICE ReadOut) chips [docALTRORC]). Both design objects re-
quires access to the relevant data, but as storage is limited I redesigned the code a bit
in order for it to be plug-and-play with these functions - with a minimum of extra logic
required.

The rest of this subsection will deal with design elements which I altered or added. In the
next subsection I will talk about which clock domains the TRU must relate to (see 2.2.3).

17If you �think� like in a high-level programming language when designing hardware, you will end up with
the register elements (in a CLB, see 2.1.2.4) as your bottleneck. The reason is simple: What is stored
in the registers are always accessible at any given time (not like in a RAM where only some addressed
bits can be accessed at a given time), which provides data in exactly the same �state� as in a high level
variable.
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2.2.3 Managing Clocks

I rewrote the global clock and reset distribution scheme for the TRU (the �box� you can see
in the top-right corner of �g. 2.5). What does this mean? First, have a quick look at the
table below (tab. 2.5) for a complete list of clocks entering and exiting the TRU FPGA:

Clock name: Description Type: Frequency: Global?

BRD_CLK40M On-board crystal clock LVCMOS 40MHz Yes (4S)
ALT_SCLK ALTRO Sample clock (LHC domain) LVDS 40MHz No

TorReadOutClk TOR Readout clock (LHC domain) LVDS 40MHz No
ALT_RDOCLK ALTRO Readout clock LVCMOS 40MHz Yes (6P)

RCU_SCL RCU Serial clock LVCMOS 10MHz No
SNS_SCL Serial clock to various sensors LVCMOS 10MHz No

ADC_SCLK_P Serial clock to ADC LVDS 13MHz Yes (0P)
ADC_SCLK_N Serial clock to ADC LVDS 13MHz Yes (1S)

ADC_CLK40M_P Base clock to ADC LVDS 240MHz No
ADC_CLK40M_N Base clock to ADC LVDS 240MHz No

ADC_ADCCLK_P[1:14] Frame clocks from ADC LVDS 40MHz Yes (2P)
ADC_ADCCLK_N[1:14] Frame clocks from ADC LVDS 40MHz Yes (3S)
ADC_LCLK_P[1:14] Bit clocks from ADC LVDS 240MHz No
ADC_LCLK_N[1:14] Bit clocks from ADC LVDS 240MHz No

Tab. 2.5 - TRU External Clocks

The Readout Clock (ALT_RDOCLK) is the clock we must use if/when data has to be sent to
the RCU (�Fake ALTRO� implementation in the TRU). The RCU serial clock is used for
the �Slow Control� communication protocol18, and the SNS_SCL signal is supplied to the
various sensors on the TRU. The ADC_SCLK signal is supplied to the ADC for communication
purposes (see 2.2.4), and the ADC_CLK40M signal is supplied to the ADC to drive the sampling
process. Back from the ADCs we receive a serial data stream along with a synchronised bit-
and frame-clock (ADC_ADCCLK and ADC_LCLK, respectively).

You may have noticed that I skipped the three topmost clocks listed in tab. 2.5. These
represent alternatives for the global 40MHz clock. So far the TRU design has been �driven�
by the internal crystal (BRD_CLK40M) which is mounted on the board. However, when the TRU
is installed in ALICE it must utilise the LHC clock domain (such that all the electronics in
the LHC scheme is synchronised). There are two paths through which the TRU can receive
the LHC clock: From the TOR (TorReadOutClk), or from the RCU as a signal labelled
ALT_SCLK on the GTL bus.

18The �slow control� protocol does not work on the TRU as of 25.June 2008.
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What we want to do here is to have both the LHC clock and the crystal clock connected
to their respective DCM, and connect the output clocks to a global clock multiplexer19.
The multiplexer should be controlled with the LOCKED signal of the LHC clock DCM (which
indicates whether the LHC clock is present) such that the LHC clock is used whenever
possible.

I mentioned that I ended up redesigning the entire clock and reset distribution scheme. This
was caused by the following factors:

• The need to create the global clock multiplexer (as previously mentioned) interfered
with the old global reset scheme.

• The old ADC control modules were nested into the clock and reset scheme. This
was confusing, and since I needed a control mechanism with more features anyway I
redesigned both this and the clock distribution module.

• The old clock distribution code was messy. It was modi�ed many times by several
people and proved to be very hard to read. Some design choices were also bad, for
instance was the clock supplied to the ADCs gated through �ip-�ops. This is not an
optimal solution since these logical blocks were never designed to provide high quality
clock signals. A high quality clock has perfect phase and duty cycle, rapid rise/fall times
and are guaranteed to be glitch free. With bad clocks we may quickly �nd ourselves
struggling with metastability issues [intMETA].

• There were quite a few �remains� from previous deprecated design elements. Cleaning
up the code is important in order to get a clear picture of what you are doing.

The clock distribution design elements are encapsulated in the InitAndClkDist module in
the TRU design code [srcTRUDESIGN], have a look if you are interested. In the next
subsection we will take a look at the ADC interface, which - among other features - contains
the �control modules� that were removed from the global clock scheme.

19Note that the clock multiplexing scheme is not present in my last version of the code as I never got around
to re-add it after I reverted my code to an older version in my work with the ADC synchronisation, see
2.2.5.
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2.2.4 ADC Communication

The TRU-ADC interaction is split into two parts: (1) Communication between the two
required in order to alter the default behaviour of the ADCs, and (2) dealing with the
sampling process. Take a look at �g. 2.6 to see how it all �ts together. This subsection will
deal with the communication protocol, while the next (see 2.2.5) will describe the various
challenges related to ADC data synchronisation.
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Fig. 2.6 - ADC Interaction [sofPPT]

Motivation 2.2.4.1

The TRU had an ADC interface module which were located in the BoardController. When
I was redesigning the deserialiser (see 2.2.6) the need to know exactly what input to expect
from the ADCs arose. Since the ADCs are capable of sending out custom patterns, I re-
searched how to set them up in such a way. Basically, you will need to send a few 8 bit words
to the ADCs via a SPI/Microwire serial protocol. However, even though there was already a
TRU module aimed to provide this functionality, I was not able to get the the ADC interface
working (it was not even connected initially) and could not �nd any documentation on its
inner workings.

So I went ahead and made my own protocol, and here is the documentation!
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Communication Protocol 2.2.4.2

In the lower half of �g. 2.6 you will �nd the relevant signals and �blocks� that make up the
communication system. Basically, the communication is a one way deal where the TRU tells
the ADCs how to behave. It does so by targetting the relevant ADCs through the use of the
�ChipSelect� lines (ADC_CS[13:0]), one for each ADC. An ADC accepts the communication
words when the �ChipSelect� line is low. The command word is sent serially over the data
line (ADC_SDATA) with MSB (Most Signi�cant Bit) �rst, which is and clocked into the
ADC on positive edge of the dedicated clock line (ADC_SCLK ). This clock has the same
source as the 40MHz clock driving the sampling process, but is 3 times slower.

The module AdcControl listens to reg0x7c (bits [7:0]) and will initiate a process of updating
all the ADCs with the relevant data should the change prove to be stable for at least 5 clock
cycles. The data in reg0x7c[7:0] corresponds to the bits D7:D0 of the command word
you wish to send to the ADCs (for all possible commandwords see C.1). The ADCs are
�rst targeted by the AdcControl module, then the control is handed to the AdcDataPusher
module which will send the word according to protocol.

As a precaution measure I set the AdcControl module up to update only one ADC at a time.
A chronogram of the whole process undergoing simulation can be found in �g. B.1.

Conclusion 2.2.4.3

The communication with the ADCs seems to be working �awlessly. I have used it extensively
to adjust the output current of data and clock signals, set up various data patterns (for
synchronisation or deskew purposes) and to power up/down channels while debugging the
design. For a complete list of possible commands, have a look at register 0x7c in the TRU
register list (see C.3).

While the communication interface works nicely now, it would also be nice to specify settings
for only a certain set of ADCs. As the protocol is currently designed, the 8 least signi�cant
bits of the value held by register 0x7c is written to every ADC. Maybe the remaining 8 most
signi�cant bits of this register could be used to specify which ADCs should be updated with
the value set? I never got around to do this myself.

The module containing these relevant design elements is labelled InitAdc, look it up in the
TRU design (see [srcTRUDESIGN]). Now, let us take a look at the data synchronisation
part of the ADC interface.
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2.2.5 ADC Data Synchronisation

As you can see from �g. 2.6, the ADCs receives - in addition to the communication clock
(ADC_SCLK ) - a clock operating at 40MHz (ADC_CLK40M ) which is fed into the ADC
PLL (Phase Locked Loop) to drive the sampling process. The PLL - used to assure perfect
duty cycle and low skew internal clock distribution - can not operate at frequencies lower
than 20MHz or higher than 40MHz. These are the boundaries within which we have to keep
our sampling speed in order to get predictable results.

The FastOR signals are digitised into 12 bit samples at a 40MHz frequency. Each ADC input
has a dynamic range of ±1 V, which translates to an e�ective sample resolution of ≈500µV.
The bits are sent serially to the FPGA 20 over the dedicated data lines21 (ADC_QUAD), with
an accompanying bit-clock (ADC_LCLK ) and word-clock (ADC_ADCCLK ) that can be
used to ease the deserialisation process. The serial approach means less interconnect (hence
less EMI (ElectroMagnetic Interference) and possibly higher speed), less clock-to-data skew,
and allows the designer to choose an FPGA with fewer pins (which will reduce the cost a lot
in big designs). The drawback is that a deserialiser must be implemented in the other end,
which must be done manually in the FPGA used in the PHOS TRU 22.

In this subsection I will deal with the ADC data synchronisation issue, but this topic is also
very closely related to the ADC data deserialiser, a variant of which will be described in the
next subsection (see 2.2.6).

Motivation 2.2.5.1

To synchronise the ADC data with the internal FPGA clocks has proved to be a big design
challenge for the TRU. Quite a few people has been working on this issue, with varying degree
of success. When I received the TRU code from Alan Crouau he was very close to a fully
working solution. On the next page I supply an illustration (�g. 2.7) of a readout I performed
of the entire PHOS module 2 while it was installed in ALICE 23, which used Alans design.
I manually read the TRU ADCs out with ChipScope (see A.2.3), then roughly calculated
the size of the average noise in ADC counts. These values I then put in the coordination
system (of the ADC channels) you can see in �g. 2.7. Green and blue channels are more or
less healthy, but the red and yellow ones are not. This is a synchronisation problem.

20The user can de�ne whether MSB or LSB (Least Signi�cant Bit) are to be sent �rst with the use of the
ADC communication interface (see 2.2.4.2)

21The datalines are designed such that they all have the same length. This is in order to match up the phase
of the data as good as possible at the FPGA entry point.

22The Xilinx Virtex-II Pro FPGA which does not support hardware deserialisation.
23Readout performed 11. July 2008.
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Fig. 2.7 - Noise Map of PHOS Module 2 [sofXLS]

A readout like the one illustrated in �g. 2.7 is not very accurate as only a data history of
≈0.2µs will be read out for every ADC channel24. This means that channels that are �nearly
unstable� might be coloured green if they happened to be in a �good state� when they were
read. This especially applies to the �spike� e�ect as I tagged yellow in �g. 2.7. I believe
the spikes indicates channels which are �living on the edge�, and even small environmental
changes (temperatures, external noise, electromagnetic interference, etc.) may provoke a
faulty state. Even if this applies for only an instant, it might be enough to set o� a Level0
trigger (depending on the threshold levels). When the TRUs were con�gured with Alans
design we saw that way too many Level0 triggers were generated, even when the completely
unstable channels were masked out (the red ones in �g. 2.7). How could this be �xed?

The solution did not come about easy. In the next subsection I will present an analysis of
the problem, which is based on my experiences with the design process.

24The amount of data read out by ChipScope is de�ned by the size of the ChipScope core. The mentioned
≈0.2µs history is achieved by using a ChipScope core which stores 8188 samples of data per channel.
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Problem Breakdown 2.2.5.2
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Fig. 2.8 - Synchronising the ADC Databits [sofPPT]

Fig. 2.8 shows the key aspects of concern when the ADC data is to be synchronised. The
key factor here is the high 480Mbps data bit rate, e�ectively causing problems with:

• Signal integrity. As the speed of clock and data signals increases the signal quality
generally tend to decrease. Even small impedance mismatches may cause big signal
re�ections, and parasitic components such as capacitive load will kill the signal edges.
The duty cycle of clock signals may deteriorate as a function of jitter (unintended phase
variations) and the �golden eye� of the data will shrink25.

• The datasignals arrive at the FPGA with di�erent phases. One ADC has 8 channels,
each of which is providing datasignals with relatively low skew (≈100ps). However, the
the skew is much higher if channels from several ADCs are considered. This means
that the �common golden eye� is very small, or hardly exists at all.

• Delays in the FPGA routing network. When signals are to be distributed internally in
the FPGA, delays of a few ns from source to destination are not uncommon (depending
on the type of interconnect utilised, see 2.1.2.5). Here arises the problem of how to
correctly synchronise all the bits when the bitrate is higher than the skew of our internal
clocks.

• Design veri�cation. The ChipScope module becomes very hard to work with at speeds
greater than 80MHz, which means that you must validate this part of the design in
simulation and hope for the best when con�guring the FPGA with it (which works well
for low speed designs, but not at all for high speed designs).

25The �golden window� is the timeinterval of which the data is stable.
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Discovering Impedance Mismatch 2.2.5.3

At this point you may ask yourself why just not use the bit- and frameclock supplied by
the ADCs to synchronise the data in the FPGA? This is exactly the same question I asked
myself when I received the TRU design code. Previous designers all chose to go with DCMs
for clocking the bits and frames into the FPGA, but why?
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Fig. 2.9 - Synchronising Bits and Frames [sofPPT]

In �g. 2.9 I have illustrated the �input path� of a FastOR pulse (1 ADC channel). First it
enters the input bu�er (IOB block, see 2.1.2.7), where the signalling standard (LVDS_25
in most cases) may be set, along with various other settings (termination, pullup/pulldown,
input impedance, delay, ..). The input bu�ers can be either synchronous26 (store the bits)
or route-through, and if the former is desired dual-data rate register (DDR) can be chosen27,
which is the case in �g. 2.9. These IOB registers must be supplied a clock directly from
the DCMs, which will propagate through very fast interconnect (the �grey �eld� in �g. 2.9)
e�ectively assuring a minimum of clock skew.

There are only a total of 8 DCMs available (see 2.1.2), and since 3-4 DCMs must be reserved
for the global clock distribution scheme and to drive/receive external signals, 3-4 ADCs must
share bit- and frameclock from the same DCM. However, say you use 1 DCM from each
quadrant of the FPGA to clock the ADCs in that respective quadrant. Then the clock skew
can almost be neglected, and relative skew between IOB channels can be �netuned with the
input bu�er delay constraint (IOBDELAY)28. Since the IOB bu�ers and DCMs never change
position this approach can be considered permanent. Once done, it will never have to be
redone.
26Synchronous IOB bu�ers is preferred as this provides very good fan-out properties.
27IOB DDR registers can be considered �free� as they are localised in the IOB block itself. They were not

previously utilised, but when internal clocks are used to do the bit-synchronisation they are ingenious as
they make the serial datastream �system synchronous� as opposed to �source synchronous�. As a bonus
you get two bitstreams with half the initial bitrate, which are easier to handle. Specify the usage with
the INST "<hierarchical path to instance>" IOB=TRUE constraint.

28Thanks to Dr. Raúl Esteve Bosch, Universidad Politécnica de Valencia, for tipsing me about this one.
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In �g. 2.9 I made an simpli�ed illustration of the simplest deserialiser one can make; clock
the bits into a shift-register consisting of �ip�ops, and clock the data out when all the bits
are in the right position. Naturally, the data is only in the �right position� for only about
2ns (less when jitter is evaluated). This means that such an approach requires a frameclock
with minimal skew (remember, we have to use the same few DCMs to supply frameclocks).
But, even if the global clock banks (see 2.1.2.5) are utilised, the skew in the internal logic
of the FPGA will be higher than that of the fast interconnect surrounding the IOB bu�ers.
How can be synchronise the frameclock in this environment?

My �rst take on the situation was to construct a deserialiser which uses Distributed Se-
lectRAM (see next section, 2.2.6) to allow the bit- and frameclock to be completely phase
independent. Basically this means that the frame synchronisation would be directly resolved
in the deserialiser. However, due to problems with veri�cation of the design and shortage of
time I chose to make a deserialiser so simple (like the one shown in �g. 2.9) that �nothing
could possibly go wrong�. I knew it would be hard to get it working on all ADC channels,
but for most of them it would (as this was also Alans approach). Then I set one DCM up to
provide the bitclock, and another to provide the frameclock. After creating a few statema-
chines I was able to adjust the frameclock with register 0x79, and the bitclock with 0x7a (see
C.3 for a description of the registers, and A.6 for directions on how to use them).

Using the ADC setup register 0x7c, the phase adjust registers 0x79 and 0x7a and ChipScope
to read samples on-the-�y I was now able to �map� the real cause of the deserialiser failure.
From �ddling with this setup for a while I gained some unexpected but valuable knowledge:

• The phaseinterval where the bit-clock correctly clocked the bits for a couple of ADCs were
at least 400ps (10 values di�erence in register 0x7c). This seems to verify my previous
statements; the DCM-IOB interconnect is fast enough for the bits to be clocked with
a single clock.

• A bitsequence like 0000 0011 1111 was often interpreted as 0000 0010 1111, and

• data was not stable as a function of ADC output current (drive strength). These two
observations had me puzzled. Were the ADCs generating patterns which were not in
accordance with the settings I speci�ed? Was the deserialiser still unstable, or were
the ADCs su�ering from a bad power supply (the given bitpattern causes all 112 ADC
channels to go from 0 to 1 at the same time, which may cause the energy deposits in
the powersupplies to deplete)? Or could there be an impedance mismatch somewhere?

All the TRU input bu�ers were previously con�gured for the 2.5V LVDS signalling standard,
with a di�erential termination of 100Ω. Maybe this was not the optimal solution? I tried
a few alternatives, and �nally found that using bu�ers with Digitally Controlled Impedance
(DCI) completely resolved the problem29! With a digitally de�ned input impedance of 50Ω
the bits were suddenly clocked in perfectly, and the �golden window� of the datastream
widened quite a bit!

29The name of the DCI bu�er I used: LVDSEXT_25_DCI, where �EXT� means �extended� and refers to the
voltage range (maximum and minimum ratings).
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Conclusion 2.2.5.4

While this subsection could have been merged into the next one dealing with the deserialiser
(see 2.2.6), I chose to separate the two in order to specify which elements our synchronisation
problem really consist of. While I have tried to present this information in a way that is
�natural to read�, the problem was only slowly de�ned as I started to investigate the reason(s)
for why the deserialiser was unable to deliver the correct samples.

To sum it all up, the data may appear badly synchronised if:

• The input bu�ers are slightly miscon�gured.
• The databits are clocked into the input registers when the data is in a metastable state
(bad phase of the bitclock).

• The parallel read of bits from a deserialising array of �ip�ops are not synchronised
correctly (bad phase of the frameclock).

The �rst point were discovered by creating a deserialiser with variable bit- and frameclocks,
such that those two factors could be tuned out of the picture. When a better input bu�er type
was selected, the the results acquired when testing designs with various bit- and frameclock
schemes suddenly seemed much more reliable. A disturbing factor had been removed from
the design.

I also learned that the problem was not as much to synchronise the bitstream on the way
into the logic, as it was to correctly synchronise the bits with the 40MHz internal clock.
Even across ADCs a single bit-clock seemed to to the trick, but in order not to push our luck
we should generate clocks and deserialise channels on a quadrant-to-quadrant basis30. This
should assure that the bits always receive the best possible welcome upon FPGA arrival.

You may have noticed that I never speak about using the frame- and bitclock supplied by
the ADCs to clock the data. The reason for this is that I initially tried them out, but
with very bad results31. However, with the new DCI bu�er this seems to work �awlessly
32. The DCMs are a valuable resource which can be used for alternative purposes, and
besides, setting them up to generate a 240MHz clock from a 40MHz clocked input means
pushing them beyond the absolute ratings33 (though the functional behaviour still seems to
be correct). On the other hand, using DCMs provides better timing models (as the design
becomes �system synchronous�) and eases the process of setting up timing constraints.

30To me it does not seem to make any major di�erence whether the IOB register is clocked by the DCM or
by externally/internally generated clocks, but the datasheet recommends the use of the former.

31For instance, I struggled half a day trying to understand why a DCM with a 240MHz clock from one of
the ADCs connected to the input refused to let me adjust the output phase. I eventually noticed that the
input clock was so bad that the DCM was not even able to lock on it.

32Dong Wang, the Chinese (Wuhan) student who continued my work has done so with success (see 2.2.6.7).
33When the input of a DCM is clocked at 40MHz the DFS_FREQUENCY_MODE parameter of the DCM is set to

�LOW�, and this mode does not support upscaling of the frequency to 240MHz. If you �cascade� DCMs
(increase the frequency in two steps) you must connect the CLK2X port of the �rst DCM to the input of the
next. Using the CLKFX port messes up the timing models, causes distorted clocks (according to datasheet
[docV2PDS] the jitter conditions of an CLKFX signal is not optimal) and is not recommended by Xilinx
designers (you will not �nd this approach in any application note).

Page 36



2.2. Digital Design

2.2.6 Deserialiser

You should not read this subsection unless you �rst read the previous one (see 2.2.5). Issues
described here and in the previous subsection are very closely related.

Motivation 2.2.6.1

As previously mentioned the Virtex 2 Pro FPGA does not provide a hardware solution for
deserialisation of external serial streams (as is featured by more recent models in the Virtex
family), so this must be implemented manually in the FPGA internal logic. There are several
ways of doing this, and almost all have been tried in the TRU design with varying degree of
success. The �rst solution, designed by Alexandra Oltean, featured an approach where the
input data stream were �oversampled�. She used 4 input registers per ADC data channel, and
used 1 DCM to generate 4 clocks with 0◦, 90◦, 180◦and 270◦ phase o�set, respectively. The
approach was very similar to the one discussed in this application note [docXAPP225].

I �nd this approach elegant, but it has several potential pitfalls. First, from a 240MHz
clock you will get 4 clock signals which are 1ns (90◦) out of phase. Add jitter (10-20%) and
skew (more than for other approaches as more CLBs are utilised in this approach) to this
equation, and you are looking at very strict timing and placement requirements. Besides, the
CLB represents the most valuable resource we have in the TRU FPGA (it always seems to
represent the �bottleneck� in the design) so using 4 times the number of input registers does
not seem like a good idea to me.

My predecessor, Alan Crouau, made a deserialiser similar to the one I mentioned in the
previous subsection (see 2.2.5.3). He did not use IOB registers, but routed the data through
the IOB bu�ers and clocked them into a �ip�op chain with a dynamically adjusted bitclock
which were common for all ADCs (the design was an upscaled and slightly modi�ed version
of the one discussed in this application note [docXAPP774]). He used the internal 40MHz
clock for frame synchronisation, but had to use an extension stage (use twice the number of
�ip�ops in order to postpone the moment where the bits have to be synchronised with the
frameclock) to get it working. He was very close to a fully working solution, in his last design
≈90% of the ADC channels were correctly deserialised (see �g. 2.7).

Just before Alan left, we had some interesting discussions about how to make an even better
deserialiser. The approach in this application note [docXAPP194] seemed particularly inter-
esting, and a little on the side I probed into it so see if it could be used in our case. Finally,
I gave in for the temptation and felt that I had to give it a try because:

• It would require only half of the CLBs utilised in in Alans �rst deserialiser.

• The outputs and inputs would be fully phase independent, e�ectively resolving the
frame synchronisation problem completely.

Let us have a look at it!
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Design Introduction 2.2.6.2

The deserialiser which will be discussed has a very untraditional approach to the deseriali-
sation issue. The idea is to use multiplexers to sort the bits into RAM blocks, where each
of them store bits with a given level of signi�cance. The RAM blocks can then be read out
independently of the write mechanism, and with a well thought out addressing method the
samples can be put together and synchronised with a few registers.

I will implement the deserialiser through the use of Distributed SelectRAM (see 2.1.2.4). This
renders possible a very clean approach to coping with the various clock domains introduced
by the ADCs, and at a minimum of logic usage.

Input Stage - Sorting the Bits 2.2.6.3

When using RAM to implement deserialisers there are a few issues we need to consider. First,
while RAM generally has good storage capacity, only the addressed data can be accessed
during a single clock cycle. This problem can be confronted by increasing the frequency
at which the RAM output operates, but this will in turn require stricter timing constraints
and make the design more prone to errors. Also, with this approach you will most likely be
designing the module representing the biggest hit to performance in the overall design.

As illustrated by Xilinx digital designers (see [docXAPP194]) one can avoid an increase in
frequency if shift registers and multiplexes are utilised. The trick is to shift the words one bit
relative to each other, such that no bit with the same level of signi�cance appears at the same
clock cycle. I have chosen this approach, but with a tweak in order for it to be applicable for
our design. The design discussed by the Xilinx designers had the same number of channels
as sample resolution (hence good symmetry), and the raw data was single data rate (SDR)
serial streams. In our situation we have to cope with DDR data streams and asymmetry
between the channel number and sample resolution; the TRU ADCs deliver samples with a
resolution of 12 bits, while there are 8 ADCs per TRU.

The �rst part of my deserialisation design is illustrated in �g. 2.10 (page 40). It shows two
shift registers clocking in data on positive and negative edge of the sampleclock, respectively.
The ADCs has 8 channels, so I build the deserialiser in segments of 4 and 4 channels. If 2
�dummy� channels are added to each segment, the symmetry will be restored (6 bits word
on each edge of the clock, 6 channels).

The input counter will cycle through the numbers 0 to 5, which speci�es which channels the
multiplexers will select when the counter is used as an index in the look-up table (MUXchLUT
in �g. 2.10). Each multiplexer has an unique index o�set, which means that no multiplexer
will access the same bit at any given time. The dummy-bits will not be written to RAM
as the �write enable� port will be disabled when the dummy bits are indexed, this �write
mask� will be speci�ed with the LUT (WEmask), as is illustrated in �g. 2.11 (page 41). Each
RAM block are indexed in accordance with the index of their respective multiplexer. The
RAM blocks and the multiplexers come in pairs, each multiplexer is dedicated to the task of
selecting the bits to feed a single RAM block.
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Output Stage - Phase Correction 2.2.6.4

The input stage and the output stage may live their separate lives, as long as we make sure
that the exact same address of the RAM blocks is not written to and read from at exactly
the same time. In the design this can easily be solved by having a two-bit counter keep track
of the number of cycles the input counter has performed. Each Distributed SelectRAM block
has a depth of 16 bits, which means that when 12 of them are utilised (1 for each bit with
a given level of signi�cance) they may hold a total of 4 samples. Here we encounter the the
best part of the design, by making sure that readout is delayed - say 25ns (which equals 1
clock cycle) - we will not have to worry about the phase of the readout clock at all!

To clarify, if samples are being written to RAM address 0:3, we read from address 8:11 and
may allow outself to relax because we have a skew margin of almost 45ns. For the next
sample, when the addresses 4:7 are written to, we read from addresses 12:15, and so on.

The only �problem� in the output stage is that the sample from all 4 channels must naturally
be read out before a new set of samples are being written in. This means that the outputs
must be read at a rate of 160MHz, which will then have to synchronised down to 40MHz.
The best idea I could think of was to connect the output line to 4 registers, and use the
readout address as a ChipEnable signal to direct the bits into their respective registers.

I can imagine your thoughts right now goes something like: �wait a minute, the period
where the 160MHz registers all contain the correct bits - and must be clocked over to the
40MHzregisters - are only 6.25ns! How come this does not create the same sort of frame-
synchronisation problem as this design was trying to solve�? A very good question, but
one that can easily be answered. Remember that the outputs of the RAM block is phase
independent, which means that if the 160MHz clock is created with the same DCM that is
distributing the 40MHz base clock, and a global routing bu�er is selected for both clocks,
the phase of these two clocks will be perfectly matched no matter what part of the design
they are distributed to.

The next two pages contains the concept drawings I made of the deserialiser. After this I
will list the logic usage and mention some of the problems I encountered during the design
process.
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Fig. 2.11 - Deserialisation Stage 2 - Deserialisation and Phase Correction [sofPPT]
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Resource Utilisation 2.2.6.5

I have previously claimed that this design requires only about half the logic of the deserialiser
made by Alan. I feel that these statements might need some weight, so here are some numbers
for you (tab. 2.6):

Part of Design: Type of Logic: Logic Usage:
LUTs Registers Slices CLBs

Alans design:
Shift Chain FlipFlops 1344 672 168
Extension Stage 1344 672 168
Output Synchronisation 1344 672 168

TOTAL 4032 2016 504 of 5 904 (8.537%)

My design:
Shift Registers 288 144 36
4-input MUXs 672 336 84
Distributed SelectRAM 336 168 42
Output Synchronisation 448 224 56
Counters 90 45 11.25
LUTs 15 7.5 1.875

TOTAL 1311 538 924.5 231 of 5 904 (3.9%)

Tab. 2.6 - Deserialiser Logic Usage - Compared with Alans Deserialiser

If you have no idea of what I am talking about here, I suggest you take a look at the subsection
where the Virtex 2 Pro logic was discussed (see 2.1.2).

Running Into Problems 2.2.6.6

When I designed this deserialiser I made the bad mistake of assuming that ChipScope would
be there for design end-veri�cation and �ne-tuning. Even though the ChipScope core itself
stays stable for clock speeds up until 400MHz, the signals routed to the core will naturally
be bothered with internal propagation delays which basically renders veri�cation at speeds
greater than ≈80MHz impossible (as mentioned in last subsection, see 2.2.5.2).

Nevertheless, I was pretty sure that I would be able to get it working. I had ModelSim (see
A.2.4) to simulate my design, and I could control what bitstreams were generated by the
ADCs and read the samples produced with ChipScope. However, while I was trying to get
this design working I had not yet discovered the issue with the input impedance mismatch
(see 2.2.5.3). For the most part I was debugging the design with the clocks supplied from
the ADCs and a bad bu�er con�guration, which were doomed to fail.

Since this design is entirely made up of CLB logic (see 2.1.2.4) the design should be able
to easily handle the speeds required. The limiting element when it comes to performance
seems to be the shift registers (as can be seen in the Virtex 2 Pro datasheet [docV2PDS,
page 103]). If I ever had time to retry this design with proper input data and still found that
it failed, the �rst thing I would try is to make the outputs of the shiftregisters synchronous
by connecting the output to a register (which provides superior clock-to-out performance).
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Conclusion 2.2.6.7

In the aftermath of working with the deserialising scheme for the TRU I would certainly say
that a few valuable lessions has been learned, the most important being:

• If you are having problems with interfacing external signals make sure you know what
input data you are dealing with.

• If you are planning your design make sure you will be able to verify and debug the design
when it is done, or

• If you are constructing a high speed design assume that post-implementation veri�-
cation tools (like ChipScope for Xilinx FPGAs) will be absent. Only start on such a
design if you know the timing parameters by heart, and feel con�dent that can get the
design working without the mentioned tools.

It might seem odd, but the deserialiser was one of the �rst designs I made. The development of
the ADC communication protocol and bit-/frameclock adjustment protocol, and the research
into clock routing networks and timing parameters were all subsequent actions. I had no real
idea of the scope of the deserialisation/synchronisation problem when started working on
this design, which is why this design was sort of started �in the wrong end�. The importance
of a subject called called timing closure was initially ignored.

Timing closure is a term de�ned by digital designers which describes the challenge of getting a
design to meet the timing constraints. A nice summary of the techniques available for tuning
your design to meet the timing speci�cations can be found here [docTIMCLOS]. From my
own experiences, consultations with other digital designers and some reading on the Xilinx
forums I have come to conclude as follows:

• Always strive to keep the level of constraints speci�ed at a minimum. As soon as you
start specifying constraints you are interfering with the natural �ow of the implementa-
tion software, hence the general quality of the implementation decreases and the time
it takes to implement the design will increase34. Look up the term over-constraining
to see what I mean.

• If your design does not achieve timing closure without constraints, always reevaluate
the design �rst to see if you can perform changes in coding style that can resolve the
issue. There seems to be a general consent among digital designers in this respect; if
the automatic implementation tools can not �nd a way to place the design according to
the timing and placement constraints speci�ed by the designer, changes are that there
is a �aw on the design entry level.

These were the main arguments for developing the deserialiser described in this subsection.
But what if it refuses to work no matter how well it gets polished?

34For the TRU design I have had implementation times ranging from half an hour to a couple of hours
depending on the constraints I set, and they were never many.
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I believe that for the TRU design, only two deserialiser designs will do the trick: The Dis-
tributed SelectRAM and serial-in/parallel-out variant. See comparative summary below:

Distributed SelectRAM deserialiser

Advantages:
I Output runs at 40MHz and is phase indepen-
dent from input, hence no problems should oc-
cur with frameclock (and constraints will not
be needed).

I Will require 45% to 85% less logic than the
serial-in/parallel-out deserialiser*. The distri-
bution of logic will also be better as there are
more LUTs available than registers.

Disadvantages:
I Design is more complicated, and harder to ver-
ify since ChipScope does not support the op-
erating speed of the input stage.

I The counters on the input stage need some �ne-
tuning the the indexing to be correct (this can
be done by using the ADC communication in-
terface to pulse known patterns**.

Serial-in/Parallel-out (�simple�) deserialiser

Advantages:
I Simple design. The deserialiser itself takes only
a few minutes to design. Constraints are pretty
easy to set as register elements is the only logic
type utilised.

I �Less things can go wrong�. This is an aspect
which one learns to appreciate, especially at
speeds when veri�cation tools can not be used.

Disadvantages:
I The output is hard to synchronise as the frame-
clock must hit the �valid data� window of ≈2ns.

I Location and timing constraints must be used
in order to get it working.

I Will use 16% to 122% more logic than the
Distributed SelectRAM deserialiser*, and the
logic type utilised is more unfortunate (there
are fewer registers available than LUTs, and
this deserialiser utilises only registers).

*The logic utilisation di�erence may vary depending on whether synchronous multiplexers and shift regis-
ters are required in order to make the Distributed SelectRAM deserialiser work, and whether the extension
stage of the simple deserialiser becomes redundant after post-implementation tweaking.

**The �netuning of the Distributed SelectRAM can be done by using the phase-adjustable clocks (controlled
with register 0x79 and 0x7a) to clock the counters.

Just before I left CERN I was discussing further actions on this part of the design with my
successor, Dong Wang, which is a student from China. Previously he had been working on
the design of the FEE BoardController, and had knowledge of post-implementation logic
tuning from this and previous projects. Basically, there was never any doubt of which path
he wanted to go; tuning the serial-in/parallel-out deserialiser. The Distributed SelectRAM
deserialiser would have required some time �getting into�, and time is a critical factor.

A few weeks later he had successfully synchronised all ADC channels by using a program
called Floorplanner for setting up location constraints35 (specify where you want your design
elements physically placed in the FPGA) and FPGA Editor to change some routing paths36.
When input bu�ers with Digitally Controlled Impedance were used the clocks from the ADCs
seemed to work nicely, so these were used. In addition, he used the Synplify synthesiser (see
A.2.5) instead of Xilinx XST (as I was stuck with in order to be cross-compatible with the
designers which were working with other versions of the TRU).

35After Floorplanning you get a lot of new constraints which look like this:
INST "<hierarchical path to instance>" LOC = "SLICE_<x-y-coordinate>".

36Dong told me that the implementation software insisted on routing all clocks through the global multiplexer
bu�ers, which had to ��xed� as this is naturally not what we want to do.
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While Dong Wang found a way to achieve timing closure on the deserialiser design, the
method of constraining the design down to speci�c logical elements in the FPGA were not
optimal. He later told me that as soon as he started making edits to other parts of the TRU
design, the timing closure tended to break leading to synchronisation failure on several ADC
channels. Also, when more than 90% of the available CLBs were used the constaints placed
on the deserialiser would cause other parts of the design to fail. While this substantiates my
previous arguments about being careful with the usage of constraints, it may not be a way
around it. We push the Virtex 2 Pro FPGA to its limit, so making it work perfectly may
never be possible. With this in mind, I suggest that the Distributed SelectRAM deserialiser
is revisited if:

• there is a critical shortage of register logic, and there is no other �obvious� way of
improving this situation.

• the implementation process is getting too slow to work with.

• the design starts to su�er from overconstraining (using constraints to ��x� one part of
the design only causes new problems to appear elsewhere).

• no other parts of the design has higher priority.

No matter the future development on this area, I will look back at a lot of fun designing the
deserialiser and probing into the topic of timing closure.

You may have noticed that I avoided discussing speci�c timing parameters and their impact
on the design. Presenting the numbers and following them up with evaluation would have
made this report a lot bigger and more technical, so I have tried to �conclude with words�
instead. In fact, Xilinx spokesmen claim37 that few digital designers ever get completely
familiar with all of the timing parameters (I assure you, setting up the constraints �le by
hand is easier said than done). I assume that this is why you see that Xilinx releases several
software packages these days which provides a graphical approach to the timing closure topic
(Floorplanner and FPGA Editor is only two out of many).

As a �nal tip I would like to suggest that a �spike �lter� is added behind the deserialiser, one
for each ADC channel. The cause of the spikes are unknown, although I guess it is inherent
to point out unstable synchronisation or �bit-�ips� in the ADC digitising process as prime
suspects. Just a single spike may cause a fake Level0 trigger (depending on the size of the
spike and the threshold levels speci�ed), but these can easily be �ltered. It may simply be
enough to subtract the previous sample from the current and assume that it is a spike if
the di�erence is greater than a certain speci�ed value. A real FastOR pulse will always be
�smeared� out in time.

37I spoke to some Xilinx spokesmen on a Xilinx seminar at CERN, 28. May 2008.
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2.2.7 Level0 Trigger Calculation

As I have come to mention several times during this report - but never really thoroughly
discussed - the TRU is in charge of the Level0 trigger generation. The changes I made to
this part of the design and tips for the future will be provided throughout this subsection,
but let us start with the principle (�g. 2.12):
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Fig. 2.12 - Level0 Trigger Generation [sofPPT]

1. Subtract the pedestal value from each individual sample.

2. Sum 4 subsequent samples of each FastOR pulse in order to �integrate� the energy of
this pulse in time.

3. Sum all possible 2x2 matrices of FastOR pulses in order to �integrate� the energy of
total photon shower (the light will disperse into several adjacent crystals).

4. Generate a Level0 trigger if:
I energy exceeds that of the trigger condition. This is accomplished by comparing the
91 scalars with a set of given thresholds.

I the shape of the signal seems correct. A simple comparison of the samples is done
here; I de�ned a �valid� pulse as one �up� and two �downs�. This will make sure
the trigger is always generate at the same �spot� on the pulse, and �lter out some
unfortunate conditions which might a�ect the Level0 energy evaluation (like spikes).
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Motivation 2.2.7.1

When I received the TRU design code and started development I quickly encountered a
variety of problems related to a shortage of free logic resources in the FPGA (have a look
at appendix D for a summary from the map process (part of the implementaion processes),
where logic utilisation is listed for the old and new design). This naturally lead to the research
into how the design could be optimised, and my conclusions can be found below - along with
my choice of action.

Design Changes 2.2.7.2

• The design used an excessive amount of CLB registers. When the base clock speed is
40MHz there is no need to synchronously bu�er your signals for every logical/arithmetical
operation that is carried out. This only makes the design slower as for the greater part
of a clock cycle nothing happens. The time margins will be very good margins (for
setup, hold and clock-to-our time), but you will use more logic to �remember� data
than you need to.
I Lead to the redesign of �SumInSpace� and �SumInTime�. Within a 40MHz clock
cycle there is plenty of time to perform both of these arithmetical operations in a
combinatorial way, the only bits we need to store with registers is the �nal sum.

• Design looked messy due the previous designers using Verilog95 syntax. Verilog95 was
a very limited HDL language feature-wise. It lacked multidimensional array and adap-
tive instantiation capabilities, thus the design code became incredibly long and hard
to follow (as replications were hardcoded). Take a look at the old design to see what I
mean (see [srcTRUDESIGN]).
I I rewrote all modules discussed in this subsection to Verilog2001 syntax, which dras-
tically reduced the amount of code and made it less error-prone (as replication of
logic can be done syntax-wise and not with a copy-paste/hard-coding approach.

• The old design used an algorithm to �nd the �peak� of the pulse which produced a Level0
trigger. Is this necessary?
I I redesigned this to what was already mentioned on the last page, the �shape indica-
tion� mechanism. If the trigger criteria itself contains not only an energy evaluation
but also a �weak� shape evaluation, the triggerpulse will always be in the same po-
sition when the Level0 trigger is generated (the �peak� will always be the second
sample).

However, there is still work to be done. Tips for digital designers in the future can be found
in the conclusion on the next page.
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Conclusion 2.2.7.3

I have not encountered any problems related to my design changes (not much can go wrong
here really, this part of the design is pretty simple). However, I believe that the design
should still be improved in certain areas, and some insight I have gained needs to be commu-
nicated. We start with the pedestal correction and work ourselves back to the Level0 trigger
generation.

Ideally, when the ADCs digitise the FastOR input signals, an reference input voltage of 0V
should be represented with a sample value of 2048 (the center value of a 12 bit sample).
However, the digital values have a typical o�set error of ±8 and a maximum error of ±30
counts38. To correct for this undesirable e�ect and remove the pedestal from the FastOR
signals, the average value the last 32 samples are subtracted from each new sample begin
produced. There are two important factors I feel the designer should be aware of here:

• The averaging function should be improved. There is no way you can store 32 subsequent
samples in order to calculate the average. What you must do is remember the average
value of the last 35 subsequent samples and have the value of the most recent sample
a�ect the average with a factor of 1/36 (this solution was used in the old design).
However, this means that every time a FastOR pulse comes along a positive o�set will
be added to the average. This is undesired, but can be easily �xed by locking the
averaging function when a new sample deviates from the previous average too much
(and add some logic to make sure the function is not locked when the TRU is booting
up).

• Do not throw away the MSB just because the pedestal is removed. What happens if
you subtract the pedestal of a channel where the samples has an average value of, say
2035, and then throw away the MSB? The dynamic range would be 212-2035 > 211,
which means that 11 bits is not enough to hold all the values in the dynamic range.
You could �x this by AND-ing the 11 LSBs with the MSB, and then use the 11 LSBs
of the results , but to me it does not sound resource e�cient to to create 11 2-input
AND gates in order to avoid storing an extra bit.

38The ADS5270 datasheet [docADC] speci�es a typical DC o�set error of ±0.2%, and a maximum ±0.75%
of full scale (equals ±8 to ±30 values).
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The following factors related to the time- and space-summation should be looked into:

• Perform the time-sum before the space-sum. This might sound confusing to you, as in
all my illustrations and discussions I have claimed that the time-sum was performed
before the space-sum. However, this was not the case in the old design and I never
got around to change it (a great part of the design process is planning for the future).
Since we are only talking about summations here, which is a commutative arithmetical
operation, the sum will be equally valid no matter the order of the summations. Due
to the trigger timing constraints in ALICE (discussed in 2.2.8) only 1 sample per ADC
channel can be sent to the TOR, inherently suggesting that this sample must be a
timesum. It should also be a timesum of the raw data (and not spacesums), as this
enables the TOR to re-do the space-sum across branch boundaries (see page 25, and
2.2.8.3).

• Use Block SelectRAM for FakeALTRO and TOR data transmission storage. There are
two types of RAM in the Virtex 2 Pro FPGA, small and fast Distributed SelectRAM
blocks implemented in the CLBs and big (but slower) Block SelectRAM (see 2.1.2 for
logic description). Distributed SelectRAM will be used by the ChipScope core (but
only in the development phase) and for my own version of the deserialiser (if it ever
enters the design again).

The Block SelectRAM was not used at all, but they are perfect for storing data for the
FakeALTRO protocol and for data transmission to the TOR. The former needs access
to a history of pedestal corrected data, and the latter needs access to time-summed
data. If a single Block SelectRAM block is con�gured as dual-port with a port-width
of 36 bits it will be 512 addresses deep (36*512=18432 bits) [docV2PDS, page 55].
This means that no matter the type of data, it should not pose any problem to store 2
samples/timesums per Block SelectRAM block per cycle. There will be a total of 112
samples and 112 timesums to store per cycle, so a total of 112 Block SelectRAM blocks
will be required (there are 232 blocks in total) with this approach. The depth of 512
addresses means that a data history of 512*40MHz=12.8µs can be retained.
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2.2.8 TOR Communication

The TOR will - when all 5 PHOS modules are installed - communicate with 40 di�erent TRUs.
Since the TRU is short on resources it is vital that we properly de�ne this communication
protocol such that it can be taken into account in the design planning process, ultimately
leading to a nicely integrated solution.

Motivation 2.2.8.1

In June/July 2007 I worked with Alan Crouau to come up with a design for the TRU/TOR
interaction (the communication is parallel for all TRUs so I will only discuss the relation-
ship between one TRU and the TOR). The communication medium is a category 7 (CAT7
(Category 7)) TP (Twisted Pair) cable39 which provides 4 LVDS lines (so 4 signal lines per
TRU). Our initial approach was to use one of the 4 available transmission lines for the Level0
signal, one as a busy line (for the TOR to tell the TRUs when to start pushing data), and
the two remaining lines for the data itself.

However, in the above mentioned scheme we were a little optimistic as to what amount of
data we would be able to send. It was also a pure data transmission scheme, and other
aspects of the communication between the TRU and the TOR were improperly de�ned. The
design needed to be revised. The key reasons for my involvement here were as follows:

• The communication protocol must be implemented on both the TRU and the TOR
side. Since I worked extensively with the TRU and was familiar with its various design
aspects my input would most likely be of some value.

• In order for the TOR to be able to calculate the Level1 trigger it needs some data -
from which the Level0 trigger was based - sent from each TRU. Which data type and
size that are chosen will have a major impact on certain parts of the TRU design. It has
to be stored in a memory until the TOR requests it, and when the request comes the
right set of data needs to be retrieved from the history retained. As the TRU is short
on resources we do want to �nd the best (or cheapest, logic-wise) way to do things.

The current design suggestion is illustrated in �g. 2.13. It is expected to represent a fairly
good compromise between timing, data value and logic usage. The model also introduces the
concept of command encoders/decoders, which will (if implemented) render possible more
powerful and feature-rich communication methods.

39The CAT7 cable is rated for transmission speeds up to 600 MHz.
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Fig. 2.13 - Design Suggestion for TRU-TOR Communication [sofPPT]

Timing 2.2.8.2

The TOR has two clock sources - the internal crystal and the clock received through optical
�bres from the TTC (Timing Trigger Controller). When present, the latter should be used in
order for the electronics to be synchronised with the LHC clock40. From the TOR the clock
is sourced to the TRU which makes it easy to synchronise communication in this direction.
The TRU will use the same clock for clocking data onto the bus, and the necessary phase
adjustment will be committed in the TOR through the use of a DCM. Since we must use
the same phase correction for all incoming lines to the TOR (there is not enough DCMs
available) it is very important that the CAT7 TP cables between TOR and TRU have the
exact same length.

The main limitation when it comes to transmission speed seems to be the TOR routing
[docLSF] 41. Some channels are downright bad, but we were able to push the clock frequency
to around 200MHz on �good channels�, or e�ectively 400Mbps when a we use both edges of
the clock to clock the data (DDR). The transmission capacity can be expressed as (eq. 2.1):

Transmission Capacity = tdatatransfer ∗ feffective ∗ nlines

= tdatatransfer [µs] ∗ 400 [bits/µs] ∗ nlines

(2.1)

40If the internal clock are used there will be an additional clock domain the TRU must cope with, there is
currently no support for this.

41Since the routing in the TOR is proven to be poor, it will probably be replaced by the STU (Summary
Trigger Unit) in EMCAL in the future
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Where tdatatransfer represents the time it takes to send all necessary data from the TRUs to
the TOR. But how much time do we have?

If the Central Trigger Processor (CTP) in ALICE validates an initial Level0 trigger condition
(see 1.5.1), a Level0 �accept� signal will be sent back to the subdetectors to initiate the
process of determining whether the event also quali�es for a Level1 trigger. In PHOS the
Level0 �accept� signal will arrive at the TOR ≈1.2µs after the particle collision. When this
happens, the TOR must initiate a readout of all the TRUs in order to get the raw data o the
event. This data will be reevaluated with a di�erent set of criterias (physics related) to see if
a Level1 condition is justi�ed. If it is, Level1 trigger must be at the CTP in less than 6.5µs
after the particle collision. This leaves us with a timeframe of ≈4.8µs (see eq. 2.2) for the
data to be shipped from the TRUs to the TOR and to do the necessary Level1 calculations.

twindow for TOR = tLevel1 @CTP − tpropagation delay TOR−>CTP − tLevel0 “accept′′ @TOR

= 6.5 [µs] − 500 [ps] − 1.2 [µs]
= 4.8 [µs]

(2.2)

To leave some time for the Level1 calculations, we aim to get the data sent from the TRUs
to the TOR in less than ≈3µs. As you can see from �g. 2.13 we intend to use only 1 line
for data, which means the total amount of data sent per line should not exceed ≈1200 bits
(given by eq. 2.1).

Data Transmission 2.2.8.3

A TRU has 112 ADC channels (14 ADCs and 8 channels per ADC). We can now see that -
if we only send 1200 bits from each TRU - we can see that we can only send 1200 [bits]

/ 112 [channels] ≈ 10 [bits per ADC channel]. What data can we �t within these
constraints?

When the analog FastOR signals arrive at the TRU they are �rst sampled, deserialised and
pedestal corrected. The data has now a resolution of 12 bits, and since the FastOR pulses are
≈100ns long 4 samples will cover it (Tsampleclock = 25ns). It should be obvious that we must
send timesummed data (energy integral), as we can not send 4 samples with a fair resolution
from each ADC. The ADCs has a dynamic range of ±N V, so only 11 bits are needed to hold
the pedestal corrected values (but do not throw away the MSB of the sum to achieve this,
see 2.2.7.3 for more information). When 4 subsequent samples are summed two more bits
are needed, so the net resolution must be 13 bits.
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Since it does not matter whether the timesum or spacesum is performed �rst (the calculation
is commutative, see 2.2.7), I chose to do the timesum �rst. This enables us to send the data
untouched by the spacesum calculation, thus circumventing the branch �edge-e�ect� 42. The
spacesum calculation can be implemented with combinatorial logic (and low logic usage) in
the TOR, ultimately providing the same triggerdata but without the undesirable edge-e�ects
(except for the module edges of course).

We will need to store the timesums before they are sent to the TOR. This for two reasons.
The �rst is that the TRUs has two clock domains - the clock received from the TOR and
the readout clock from the RCU. The latter controls the ADCs, so we must use some sort
of temporarily storage just to synchronise the data stream between these two clock domains.
The second reason why we need to store the data is because the actual readout request
(which comes from the TOR) will arrive at the TRUs several clock cycles after the trigger
data which caused it.

The memory resource I suggest are used for this storage purpose is the Block SelectRAM
(refer to 2.1.2.6 for more information), which is integrated in our Xilinx FPGAs. These RAM
modules deliver to the table 18kB of storage and dual asynchronous ports with a adjustable
width of up to 32 bits. I suggest that the max width is used, and that 2 timesum scalars are
written to each of the RAM blocks per clock cycle. The timesum from all 112 ADC channels
can then be clocked into 56 RAM blocks with space to spare. Add the 56 RAM block I
suggest are used for raw data storage (for FakeALTRO protocol) and we end up at a new
total of 112 Block SelectRAM modules - of the 232 available in the Virtex 2 Pro FPGA in
the TRUs. With this setup the Block SelectRAM has an addressing depth of 512 bits, which
means that a data history of 12.8µsis retained.

You may ask why I recommend to use the Block SelectRAM blocks instead of the Distributed
SelectRAM memory modules. This is because the former has a much greater storage capacity,
and there is frankly not much else to use them for. The latter has a much greater range of
application (can for example be used for deserialising the ADC data, see 2.2.6), are used by
ChipScope and the various synthesisers are better at automatically utilising the features they
provide. When doing digital design for the TRU we can not a�ord the luxury of choosing
the �easy� solutions, as they usually involves spending more logic than necessary.

Before the data are sent onto the bus they need to be serialised. This should be a pretty
straightforward process so I will not discuss it here, but rather move on to the deseriali-
sation process (at the TOR). I suggest that the ISERDES (Input SERialiser/DESerialiser)
primitives are used for this purpose. They do not o�er out-of-the-box 13-14 bit word dese-
rialisation, but they o�er 7 bit word deserialisation. Send 14 bits from the TRU and let it
chew a couple of times before you merge the two 7 bit parallel words into the correct 14 bit
word. It will be completely up to the TOR designer to decide what he/she wants to do in
this matter.

42The TRU can only �see� one branch of FastOR signals, so the spacesum will be �broken� around the edge
of its region.
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Command Exchange 2.2.8.4

When the TOR receives a Level0 signal from one of the TRUs, it will issue a busy signal to
all the TRUs indicating they should enter a state where no subsequent Level0 signals will
be produced and data readout can commence. To make communication more capable and
versatile we decided to encode the commands into 10 bit words (and clock it with the same
clock as used for the data). Of course, other package sizes might also be worth considering.

The packages should contain 1 bit for parity check (to detect single bit errors), then the
rest it will be up to the designer to decide. Use a bit for Level0 trigger maybe? And one
for acknowledge? Maybe set it up such that the �rst package indicate what packages (or
package types) are to come? This way you can read/write all the TRU registers without
even touching the GTL bus, which might prove to be a much more enjoyable experience.

Also, if this is implemented there should be no problem sending some extra information
over the �communication lines� for example about compression properties (as not all data
will contain any valuable information). With this setup you could select the channels worth
reading out in the TRU, then sending the �readout pattern� over the communication lines
while the actual data is sent over the data lines. Or, since the capacity are there send all
data over the dataline, and some information about why the channels triggered. Again, the
possibilities are many for future designers.

Conclusion 2.2.8.5

The TOR-TRU communication protocol discussed in this subsection should only be consid-
ered a draft. It is hard to reach a good conclusion here as I have never implemented this
design and experienced its �validness�. I suspect that there might still be �aws in the design,
but I am not able to point them out at this point.

That being said, it is not even sure it ever will be implemented. However, even de�ning
alternative designs might prove useful. How can you as a designer promote a speci�c design
solution if you never considered the alternatives? During my work at CERN I have really
learned the importance properly de�ning design solutions, as you can avoid a lot of potential
pitfalls with careful planning.

It is like my supervisor tended to say, �the easy solutions generally works best�. Naturally, if
it does not sound easy then there are aspects of the solution which you are not fully aware
of. Both the initial design process and future maintenance are likely to cause you headache
in these situations.
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2.2.9 Testbench

I spent a lot of time with the testbench43 to verify various parts of my design with ModelSim
simulations. Despite this fact, I will not spend too much time explaining the �ins� and �outs�
of my testbenches. I suspect future designers will �nd their own methods for performing
pre-synthesis veri�cation (like simulation), and as such never bother to resume the work on
a somewhat messy alternative testbench.

A few inputs in the TRU design are always stimulated in the same way. The 40MHz base
clock needs to be simulated, and all signals tied to the GTL bus has to be tri-stated (as this
is how this bus operates). Also, to make sure that the design boots up properly I usually
always produce a reset signal a few µs into the simulation time. Most of the testbench design
will of course be speci�c for what you want to test. For me, these three parts of the design
created the most noteworthy testbenches:

1. ALTRO Communication Protocol. This was the most thorough version of the testbench.
It read the �le rcu-commands.txt, interpreted the commands listed in this �le and
�acted� as the RCU when it controlled the various signals on the GTL bus. This way
I found a few bugs in the GTL driver protocol in the BoardController, and generally
learned a lot about testbench design and the ALTRO protocol44.

2. ADC Data Deserialisation and Synchronisation. This testbench was basically generat-
ing 112 serial data streams to simulate the 112 ADC channels. What words were sent,
and phase delays from channel to channel could be adjusted.

3. Level0 Calculation Algorithms. To make sure that the Level0 trigger were produced
under similar conditions as before I redesigned this part of the design, this testbench
generated some arti�cial samples for each ADC channel, and every now and then values
indicating a FastOR pulse would come along. The thresholds was naturally also set
with the testbench.

The most valuable lession learned from my work with testbenches is that �object orientation
is your friend�. Hardware is per de�nition �objects�, so any other approach in the testbench
design will lead to messy, hard-to-read and less �exible testbenches. However, Verilog2001
is not an object-oriented language. The new System Verilog HDL (Hardware Description
Language) language will be, but it is not fully supported by the various synthesisers yet.

Look up the sourcecode for the testbench and other parts of the TRU design in the bibliog-
raphy (see [srcTRUDESIGN]).

43A testbench is a module which encapsulates the design. A testbench normally generates stimuli for the
design inputs, and monitors the design outputs.

44The ALTRO protocol needs to be understood in-depth when the FakeALTRO protocol are developed. For
a while I was working on the FakeALTRO protocol, and had the entire GTL bus hooked up to a logical
state analyser in order to debug it. However, it simply takes too long do post-implementation veri�cation,
so I planned to use this testbench for FakeALTRO protocol debugging. However, time was short and
priorities were changed before I was able to complete this work.
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2.3 Conclusion

I have gained very valuable experience from my work with the TRU design. I performed
a lot of research into the Virtex 2 Pro FPGA technology, and wrote design solutions for it
with the Verilog2001 Hardware Description Language (HDL). I designed clock distribution
schemes, communication protocols, investigated data integrity issues, came up with a very
specialised deserialiser, made countless testbenches and simulations (hence learned Model-
Sim) and rewrote/redesigned almost the entire part of the design dealing with the ADCs and
Level0 trigger generation. I have spent many evenings studying application notes from Xilinx
designers and probing forums wanting to learn more about FPGA design techniques. This
was in order to be able to design logic which not only works well, but also �looks elegant�
and are properly documented and commented.

But maybe the most valuable lession of them all was learned when I realised that when
working on big projects and with other people, you must use version numbers and log the
development45. Not only will this keep your own head straight when you are sitting there
late at night tapping your keyboard realising that your sense of the general picture is long
gone, but it will help others to keep track of your work46 and it serves an important role in
the aftermath where you have to sit down and think about what you where actually doing.

I also performed all my development in a Operating System (OS) called Linux, which were
not done by any of my predecessors. This naturally involved a little hassle in the beginning,
but I gained a lot from it in the end both with respect to the general quality of my work and
in knowledge. I wrote down some of my experiences with Linux in appendix A.2.

As I mentioned in the introduction of this section about the TRU, I hardly made any edits to
the BoardController. My only contribution here was a clean-up of the port-lists (remember,
in Verilog95 they must be rede�ned 3 times, as opposed to once in Verilog2001) and the
register_block module, and a small correction in the GTL driver protocol (as it was not
working properly). Since I hardly spent much time with this part of the design, I will be
careful about stating anything about what needs to be looked into here.

Finally, when looking through my log �les and I see that there are more topics than I can
possible start to discuss in this report. I initially planned to discuss in-depth the various
technical aspects of the design, and walk through the logs created by the implementation
tools to add some weight to my statements, but realised that this was not feasible. In order
not to lose my intended readers I have tried to the discussions on a �concepts only� level. The
topic I chose to document here were based on a selection where �time spent on the topic�,
�topic importance� and �how well the topic blended into the general layout of the report� was
the main criterias.

45The log from the last part of my design process can be found in the BackUp folder in the TRU design (see
[srcTRUDESIGN]).

46My version numbering started from 0.0.00, but was not a good idea as the previous versionnumber for
the TRU design was 0.2. This will most likely cause confusion one day, so I am sorry about that. It was
not done with intention.
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TriggerOR

The main purpose of the TOR (Trigger OR card) is to calculate the Level1 trigger (see 1.5.1
for more details about the triggersystem in ALICE). While the Level0 trigger is created when
the energy of some FastOR signals exceeds a certain threshold, the Level1 trigger needs to
be calculated based on a certain set of physics criterias.

A summary of my work related to the TOR can be found in the list below:

• Verifying the TOR pin-out mapping.
• Stabilising the LVDS inputs.
• Digital Design with the TOR FPGA.
• De�nition and speci�cation of the communication between the TOR and the TRUs.

Verifying the TOR pin-out mapping and creating the BusController/pulsegenerator was done
very early in my placement, as a means to learn Verilog 2001 (the programming language
used here) and digital design - programming of FPGAs. These topics will therefore not be
very technical.

The communication between the TRU and TOR is subject to ongoing discussions, where the
exact protocol to be used is not yet completely de�ned. However, during my stay I have
spoken to several people regarding how this should be de�ned - and I have spent numerous
hours in my o�ce with my supervisor (Hans Muller) going over numbers and constraints to
make sure that the design is possible to implement. The result from this work can be found
in the last section in this chapter.

I received the TOR code from a French student named Alan Crouau, which had started to
write the TOR design from scratch and had some basic functionality in place. I will notify
the reader of when I am talking about his work and mine.

Page 57



3.1. TOR Pin-out Mapping

3.1 TOR Pin-out Mapping

3.1.1 Motivation

The TOR is connected to the 40 TRUs in PHOS, distributed over 5 modules which translates
to 8 TRUs per module. The chosen media for signalling between TOR and TRUs is category
7 twisted pair TP cables, one from each TRU. As described in A.5 it is important to get
the mapping correct with these cables, as bad mapping translates to bad conditions for high
speed communication. When working with a FPGA, correct mapping means connecting the
pin-names (or rather coordinates, since this is how they are indexed) to the correct design
variables (in the code).

3.1.2 Veri�cation

The mapping of pins to design variables is an operation which fall under the category location
constraints in the design. As with all constraints which can be user-modi�ed they should be
written in the constraint �le (�lename *.ucf)1. When I received the TOR code from Alan
Crouau he had set up the location constraints needed for the buscontroller (see 3.3) and
for a few of the RJ45 connectors (which he used for data transfer from the TRU to TOR at
400MHz, see 2.2.8).

The veri�cation were carried out in the following way:

• I wrote the constraints �le from scratch whilst keeping the pin names according to design
sheet [docTORDESIGN]. I tried to be consistent and keep the design names as signal
names (usually capital letters), such that it will be easy to spot what is an IO variable
and what is not in the design. I also grouped pins into two- and threedimensional arrays
since this makes the design cleaner. I have no idea why this was not done before.

• When I �nished writing the constraints �le, I made a small C++ application (�nd the
sourcecode in the bibliography, [srcMAPCHECK]) which compared my new constraints
�le with the previous one, and outputted the deviations (it might sound silly, but it is
the best way to eliminate the �repetition-makes-you-sloppy� e�ect).

• For the few deviations, I doublechecked the values and corrected them accordingly.

While I was at it, I performed the same operation on the TRU code (but it will only be
discussed here).

3.1.3 Conclusion

I believe that the mapping of the TOR should now be veri�ed. During my more recent work
on this card I have not encountered any e�ects where it is natural to suspect the mapping.
I added all the signals listen in the design sheet, so for all future development on this card
there should be no need to change these.

1The use of the ucf �le has - in addition to general �cleanness� of your code - the added bene�t of not
a�ecting the synthesis, hence lead to a reduction in recompile time.
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3.2 Stabilising LVDS Inputs

3.2.1 Motivation

When the TOR is connected to the TRUs - which it receives the Level0 triggers from - we
discovered that the triggerrate seemed surprisingly high. In fact, at times it more or less
skyrocketed. While this might be caused by the TRU actually producing such a high number
of triggers (unintentionally, if this is the case), I noticed that the TOR sometimes interpret
�oating inputs (no cable connected) as logical high and not low. This should not be the case
as the LVDS inputs are internally (in the FPGA) terminated with a 50Ω impedance between
the di�erential wire-pairs.

3.2.2 Investigation

The natural response here would be to try to get rid of the ��oating� e�ect while maintaining
the di�erential termination. The TOR FPGA supports several internal features here, and
I ended up trying out all possible combinations of pull-up, pull-down or keeper (make the
inputs a little more resilient to noise). The only way to get a ��oating� level to get interpreted
as �low� is by pulling the negative input bu�er high and/or the positive complementary low
and remove the di�erential termination (see �g. 3.1). The weak pull-ups/pull-downs seemed
not to disrupt normal data�ow when the input were connected to LVDS cables.

IBUFDS

-
+

PULLUP

PULLDOWN

Signals 
from 
TRU

FPGA 
Logic

IO Standard

is LVDS_25

DIFF. TERM

Z = 50

Fig. 3.1 - LVDS Input Bu�er [sofPPT]

3.2.3 Conclusion

To be sure that you maintain signal integrity any input should always be terminated such that
the energy of the signal is absorbed at the input and not re�ected back towards the source.
Even if the data integrity seemed good when the di�erential termination was removed, I
would be reluctant to actually implement this as a means to solve the problem. There are
still some options which should be investigated, for instance the use of input bu�ers with
digitally controlled impedance. A workaround would be to leave the di�erential termination
and use the mask register on the TOR to �mask o�� the TRUs that are not connected or
o�ine.d
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3.3 Digital Design

3.3.1 Motivation

When I �rst arrived at CERN I was working with Alan Crouau on the documentation of the
data transmission protocol from the TRU to the TOR. It is safe to say that back then I did
not know much about digital design on FPGAs, but that had to change. Since Alan had just
recently designed a BusController for the TOR RCU bus (the TOR card has a DCS card
attached to it, just like the RCUs 2) he suggested that I should look into it and pull some
wires just for the sake of learning.

Half a year later I worked with a German student named David Königseder, which were
designing a trigger multiplexer for switching between locally and externally generated triggers
in PHOS. To test his design he needed a pulsegenerator, so I made a module in the TOR to
provide this to him.

In the previous section I mentioned that we at times noted very high trigger rates from the
TRU, and a possible reason for this is that the TRU possibly sends out heaps of triggers
when a bunch of particles hit the crystals. We have a �busy-box� in production which is
supposed to �hold o�� subsequential triggers for a certain amount of time after the �rst
one is produced, but it might be nice to have this busy functionality in the TOR aswell for
situations where the busy-box is not present.

3.3.2 Operation

I would like to emphasise that the BusController is not originally my work, but the reader
should be aware of the modi�cation if he ever decides to dig up the code on from my source
database (see 1.8 for more information) as it is the module currently in use in the most
recent version. The BusController enables you to read and write to variables in your code
with the familiar syntax rcu-sh <w/r> <Reg No.> (<Value>) from the DCS card. Value
is only used when writing, and both Reg. No. and Value must be on the form 0x.....

2The TOR has an �RCU bus�, not because it is connected to the RCU bus in any way, but because the DCS
�rmware for the TOR is just a modi�ed version of the DCS �rmware for the RCU.
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Look up the pulsegenerator as a module in the TestPulses.v �le in the TOR design. The
time between pulses must be de�ned when the module is instantiated, but the pulsewidth can
be adjusted on-the-�y. For the pulsegenerator I set the BusController up with the following
registers (tab. 3.1):

Register Name: Address:
LVDSOut 0x3
FastPulseEN 0x4
SlowPulseEN 0x5
PulseWidthSlow 0x6
PulseWidthFast 0x7

Tab. 3.1 - Pulse Generator Registers

As you might suspect from tab. 3.1 I set the TOR up with up two pulsating lines; one sending
pulses at 0.5s intervals and another at 2s intervals (hence the �FastPulse� and �SlowPulse�
tags). Register 0x3 enables the LVDS outputs, 0x4 and 0x5 enables/disables the fast and
slow pulses (non-zero value = enable), and the width of the pulses are de�ned in 0x6 and
0x7 where the value indicates the pulse duration in number of clock cycles (shortest pulse
would then be 25ns, which is the period of the onboard clock).

I implemented the busy functionality, but never tested it. I suspect there is still some work
to be done here for it to be fully functional.

3.3.3 Conclusion

The few mentioned designs above represent my work on digital design for the TOR. For the
designer that will end up making the Level1 trigger (that is, actually doing the real design
for the TOR) I recommend starting from scratch. Take the constraints �le (which I believe
should be 100% accurate) and the BusController (either mine or Alan's), and make the design
your own.
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Readout Control Unit

The RCU (Readout Control Unit) is in charge of communication with the FEEs and TRUs
in PHOS. There are 4 RCUs per PHOS module, and each of these communicates with 2
�branches� of cards. Each branch has 14 FEE cards and 1 TRU. See �g. 1.9 for an illustration
of such a branch and the position of the RCU (only one branch is shown but the RCU is -
as previously mentioned - also connected to an additional branch).

My work on the RCU can be split into two parts:

• Writing the O�ine Control Utility for the PHOS module.
• Writing the TRU Register Scanner.

4.1 Motivation

The DCS card that resides on the RCU has an Ethernet connection, which is our �way
in� when we wish to communicate with these cards1. All the DCS cards has a static IP
address and DHCP (Dynamic Host Con�guration Protocol) functionality. If the card fails
to acquire an IP address dynamically (which will happen when it is not connected to the
CERN network) the static IP address will be used (see A.4.1 for more information). Would
it be possible to control the module if it is not even connected to the CERN network? Yes,
my O�ine Control Utility should provide the necessary features for this.

The need to test the TRUs arise quite often either because some new boards arrives or because
we wish to be reassured that the old ones are still healthy (which are certainly not always the
case). My TRU Register Scanner is aimed to thoroughly test the ALTRO communication
(communication over the GTL bus) by writing and reading TRU registers and write relevant
test results to a log �le. This was the �rst step in a program I planned to develop to fully
test all functions of a TRU, thus providing a fully automated way to do this.

Lets start with the basics shall we?

1With a certain RCU �rmware (from a project called TPC) it is also possible to communicate with the RCU
via the optical-�bre cable which is connecting the RCU with the computers that will receive and process
the data from it. However, at the point of writing it is not working with PHOS.
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4.2 Compiling the Source Code

Both of the already mentioned programs are written in C++ and compiled with a special
crosscompiler called arm-uclibc-gcc2 [intDCSCOMP]3. Follow the instructions on that
page to install the compiler, and compile the source code of my programs with the following
command:

arm-uclibc-g++ -W <file containing source code> -o <specified output file>

If you plan to make any changes to my code be aware that this compiler has some limitations
as to what features it support4. Do not trust the code to work with this compiler just because
it worked with some other C++ compiler (such as g++ as I used for reference).

Keep it simple! Stick with the C++ standard std library, as the DCS cards are already short
on space and the amount of libraries stored on them should be kept at a minimum.

4.3 Preparing the DCS Cards

I have been told that the DCS cards have around 8MB of local memory. However, with NFS
(Network FileSystem) you can mount folders on your computer into the �lestructure of the
DCS card (folders are shared between the two, but the actual contents are only located on
the computer, see A.4.3 for instructions on how to set up a NFS connection). You can do
this as soon as you are connected to the DCS cards, but you might also wish to have the
programs reside on the card such that there will be less hassle getting them up and running5.
No matter whether you decide to use a NFS mount or to store the programs locally, you
should aim to keep the memory usage of the programs as low as possible. When the output
binary size ends up of a few 100kB means that you are already pushing the limits.

In order to run my programs on the DCS cards they must be set up with the proper li-
braries. On all the cards I have ported it to so far, the library �les libstdc++.so.5.0.5 and
libgcc_s.so.0.9.9 were missing - both needed in order for the C++ program to start. Add
them to /lib and you should be �ne. You might also need to set a symlink6 to the standard
C++ library (libstdc++.so.5 -> lystdc++.so.5.0.5).

2Version 3.3.1.
3The other compiler mentioned on [intDCSCOMP] is not needed to compile my programs and make them
work on the DCS cards.

4Be extra aware of this when using getline() and concurrent executions.
5I am not sure if it is possible to have NFS mounts when you connect to the DCS cards through a serial
line (see A.4.2).

6Syntax for setting symlinks in Linux: ln -s -T <target> <symlink name>
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4.4 PHOS O�ine Control Utility

Please look up [srcPHOSCTRL] for example �les and sourcecode.

4.4.1 Motivation

When PHOS is powered on and the RCUs are connected to the CERN intranet, there is
higher level software available for controlling the module. But what about those situations
where you might not be able to connect to the CERN intranet? How can you control your
cards �manually�, without all those fancy buttons?

Well �rst of all, you will need to connect to the DCS cards either via Ethernet or via the serial
port. For information on how to do this, refer to appendix A.4. When you are logged onto
the DCS cards - and it sits on a RCU - you can execute commands with the syntax rcu-sh

<command>7. However, controlling the module like this quickly becomes very timeconsuming
as you need to write several commands for doing simple things8, and it is almost impossible
to remember the syntax for all the di�erent commands.

For this reason, we normally put commands into BASH scripts. These scripts are part of
most Linux systems and acts as text�les which can be executed9. The BASH scripts are read
line by line, so it is perfect for listing commands which are to be run consequently. However,
while you can do almost everything with these scripts I can not say I am an expert at writing
them, nor was any of the people I was working with.

So I sent some e-mails around to �nd out whether someone had written a C or C++ compiler for
the DCS cards. This seemed indeed to be the case (as you can see in 4.3), so I quickly decided
to write this control application in C++. You can �nd it the the /dcs/controlProgram folder
on each of the DCS cards which is currently10 in use for the �rst PHOS module that went
down into the ALICE cavern.

7Refer to [docPHOSUM], [docRCUFM] or [docALTROUM] for more information.
8Take a look at C - �rst two sections - to see the amount of commands you normally execute just to read
and write from the TRU.

9Similar to the .bat �les from Microsoft.
10As of 5.July 2008
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4.4.2 Features And Usage

Summary 4.4.2.1

I will start with a summary of the features the program provides, which will be followed with
a more in-depth explanation.

• Support both the ALTRO protocol and the �Slow Control� protocol.
• All user customisable settings are read from �le.
• Automatic detection of online and/or o�ine TRUs/FEEs.
• Power on/o� FEEs and/or TRUs with a �soft� step-by-step approach.
• Sets the FEE cards up with initial trigger and ALTRO con�guration.
• Applies high voltage bias' to the Avalanche Photo Diodes.
• Some other small features which basically simpli�es readout of some important RCU
registers.

PreCompilation Options 4.4.2.2

When the PHOS O�ine Control Utility is compiled, you may choose whether it is to be run
in ALTRO (ALICE (TPC) Readout) mode or Slow Control mode. The ALTRO protocol
utilises the GTL data bus and is a custom made communication protocol for the PHOS and
TPC subdetectors. It has a wide variety of control signals and �ags, and is used when data
has to be read out via the RCU. The �Slow Control� protocol is - like the name implies - a
slow serial protocol, but as it is meant to be used only for control signals the communication
speed is less important. The mode is default set to use the �Slow Control� protocol, as we
had best results with this one. If you wish to use the ALTRO protocol, you can change
the COM_MODE variable in the source code and recompile. See [docALTROUM] for more
information about both protocols.

In the sourcecode you also have the option of enabling the use of a log �le (log.txt), which
logs all the commands the program executes. However, since the size of this �le quickly
increases into several hundred kB, I left it default o�.

Finally, you can also set a �ag in the sourcecode which disables the use of �automatic detec-
tion� of active cards, and rather manually specify it in the �le currentACL.txt.
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4.4. PHOS Offline Control Utility

Settings File 4.4.2.3

The program receives all of its parameters from a text�le called HARD_TRIG_SETTINGS.txt,
which must be located in the same folder as the program itself. It will be read into the
program when you execute it, which is why you need set it up prior to executing the program.
The format of the �le is as follows (tab. 4.1):

Format:
0000 0000 0000 0001 0000 0000 0000 0000 (1)
0000 0000 0000 0001 0000 0000 0000 0000 (2)
2b1 2b1 2b1 2b1 2b1 2b1 2b1 2b1 2b1 2b1 2b1 2b1 2b1 2b1 2b1 (3)
2b1 2b1 2b1 2b1 2b1 2b1 2b1 2b1 2b1 2b1 2b1 2b1 2b1 2b1 2b1 (4)
000 (5)
044 (6)
f (7)

Comments:
(1) Active Cards List (From Left to Right: Branch B FEC14 -> Branch A FEC0)

(2) Altro Enable List (From Left to Right: Branch B FEC14 -> Branch A FEC0)

(3) HV Branch A (First is "global" - then FEC14 down to FEC1)

(4) HV Branch B (First is "global" - then FEC14 down to FEC1)

(5) ACQ Start (10 bit) - BoardController register 0xA[19:10]

(6) ACQ End (10 bit) - BoardController register 0xA[9:0]

(7) Number of pretrigger samples - BoardController register 0x0C[3:0]

Tab. 4.1 - PHOS Control Utility - Settings File

When Executed 4.4.2.4

When the program is launched it will try to detect which TRU/FEE cards are powered
on/o�. It makes the RCU try to read all cards on both branches, and determines the current
�status� based on an interpretation of the outcome of the read operation. This is important
for the program to �know�, since only one card card should be turned on/o� at the time
(�soft� power on/o�). Without this information the program would have no way of knowing
where to start powering on or o� in order to achieve the desired map of active/inactive cards
(as speci�ed in the settings �le).

The program then heads on to read the settings �le, and �nally outputs whatever it has read
in from this �le plus the current active cards list - which the program determined in the �rst
step. This way the user can visually check whether the program initialised correctly. Does
the �active cards list� actually show the correct map of active cards? Was the settings�le read
in correctly? Both might be worth having a look at, as the determination of the active cards
list (ACL) is based on a rather simple method and the read of the settings �le is deemed to
fail if the �le is not 100% correctly formatted.
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4.4. PHOS Offline Control Utility

The Menu 4.4.2.5

What do you want to do?

<0> -> Quit <60> -> Read 0x6000 (LastReadValue)

<1> -> Run "INIT" <78> -> Read 0x7800 (ErrorStatus)

<2> -> Load status and settings <80> -> Read 0x8000 (ActiveCardsList)

<3> -> Run "HARD TRIG" <81> -> Read 0x8001 (SoftErrorList)

<4> -> Set high voltages

<11> -> Write to a register <22> -> Read from a register

Choice: _

This menu lists the operations available to the user when the PHOS O�ine Control Utility
has booted up. The interesting ones are the single digit commands, and they should be
executed in the order they are listed. They perform the following operations:

• <1> - Initialise RCU. This command will reset the RCU a few times, them make the
DCS card �master� of the RCU (which is the default), before it also launches a reset of
the FEEs/TRUs.

• <2> - Restart. If you commit a change to the settings �le or the power status on some
of the cards in the branch changes, you can hit this command instead of restarting the
program. The e�ect will be the same.

• <3> - Initialise FEE/TRU . This command �rst turn on or o� the FEEs and TRUs
according to the active cards list (ACL) listed in the settings �le. Then it resets the
cards that were powered on, and sets up the ALTRO Enable List (line 2 in the settings
�le) and some initial trigger con�guration - such as acquisition start and stop, and
number of �pretrigger samples� (line 5-7 in the settings �le - see [docPHOSUM] for
more information about the ALTRO chips). Finally it enables the �mezzanine� on the
RCU, through which it can receive external triggers.

• <4> - Set APD bias voltages. In order for the FEE cards to be completely initialised,
the Avalanche Photo Diodes have to be set up with the correct bias setting. This is to
��netune� the voltages across these diodes such that the gain equals out and becomes
the same. This the values are written to a set of registers on the FEE cards, which will
in turn adjust the voltages accordingly (the voltages are controlled by the FEE cards).

• <11> and <22> - Read and Write to BoardController Registers. When you need to read
or write to one of the many registers in the BoardController of either the FEE cards
or the TRUs 11, you may use this command. Note that these commands are not very
robust. When asked for FEC # enter a single hex value, when asked for branch enter
either 'A' or 'B', when asked for register number enter two hex digits, and - if you are
writing to a register - when asked for data enter four hex digits.

11The commands for reading and writing registers always uses the �Slow Control� protocol (ALTRO mode
is not implemented), which means it will not work well with the TRU before this protocol is properly
veri�ed in the TRU BoardController.
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4.4. PHOS Offline Control Utility

4.4.3 Conclusion

This was my �rst C++ program written for the Linux environment which is running on the
DCS cards. Due to a shortage of time when it was made, it is rather poorly commented and
most of the features it provides are �hardcoded� into the sourcecode, which means the only
way to change them would be to edit the sourcecode and recompile. Optimally, all settings
should be user con�gurable.

When started to write the program I used the ALTRO protocol for everything, but for some
reason this solution was far from reliable12. So I switched to use the �Slow Control� protocol
instead, even though the TRU did not support it at the time. That being said, there is no
real need to �initialise� the TRU as we do with the FEE cards (at least not yet), so the only
real demand at the moment is that it must be able to control the FEE cards. Which it also
does, but with a limited amount of customisability.

Although the TRUs does not need to be initialised, it would surely be nice if you could read
and write to the various registers it has. This is not possible with this program as the read
and write functions utilises the �Slow Control� protocol. However, even though my program
can not provide this functionality (at least, not right now) you can easily read and write to
the TRU using the BASH scripts I suggest in C.1 and C.2.

When using the �Slow Control� protocol, the determination of the active cards will always
fail to detect the correct status of the TRU (or rather, the program will always assume that
the TRU is o�). This is no disaster, however, as you can manually make sure they are o� by
specifying this in RCU register 0x8000 (Active Card List). This problem will automatically
be resolved as soon as the �Slow Control� protocol on the TRU is �xed. However, you could
also make the program more robust by making it read the Active Cards List register on the
RCU and correlate it with the �try and error� detection method as is used now.

Before a program is handed to a third-party user, the designer should make sure that it is
as robust as possible. This utility has a long way to go here. The requirement was to get
it working, and when it was working it was operated by myself. This way robustness never
really became an issue, and further development of the code was stopped as other issues
received higher priority. I would like to conclude with a plot acquired from the computer
controlling the powersupplies in PHOS, when my program powered up the cards (�g. 4.1):

I

The colours specifies the channel (voltage, can be duplicates) of the powersupply(-ies).
t

Fig. 4.1 - Current Supplied by the PHOS PowerSupply during Card-by-Card PowerUp [sofGMP] [sofPPT]

12More speci�cally, the only problem with the ALTRO protocol which seemed hard to work around was that
the RCU error-status register 0x7800 returned unforeseen values.
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4.5. TRU Register Scanner

4.5 TRU Register Scanner

Please look up [srcTRUREGSCAN] for example �les and sourcecode.

4.5.1 Motivation

As mentioned in the introduction of this chapter, the need to test the TRUs arise every now
and then. No criterias were set in advance as for how these tests should be carried out,
but some sort of test routine should be in de�ned in order to ensure proper validation. For
instance could such a routine require you to:

• Inspect the TRU visually in order to spot any obvious damages.
• Verify that the voltage regulators operate properly by measuring the voltages at each
testpoint.

• Flash the TRU FPGA with a con�guration which enables us to read out the RMS
(root mean square) noise measurement of each ADC channel. The RMS values may
be read from from a set of dedicated registers, or via the FakeALTRO protocol if some
�ag were added which toggled between readout of �raw-data� and the RMS data. The
RMS values should prove to be a pretty good indicator of the ADC healthiness.

• Run a testprogram on the RCU which performs the following tests:

(1) Read and write various TRU registers for a few minutes. If this works then you
know that the GTL drivers and the FPGA are operational.

(2) Read the RMS noise from the ADC channels while the FEE cards are inactive,
and verify that the noise has a reasonable value. Now you know that the ADCs
work.

(3) Read out temperature, voltage and current values from the respective registers.
Verify that they seem OK.

At the moment13 neither the proper con�guration �le for the FPGA nor the comprehensive
testprogram exists. However, I considered it wise to have these potentials in mind when I
made my TRU Register Scanner. My arguments for making it were as follows:

• The functions could be used to one day make a complete testprogram.
• I was requested to provide some sort of statistics of the performance of read and write
operations of the TRU registers.

• It could be used as a means to verify which registers in the TRU BoardController
were healthy and which were not. Which were read-only, inactive or not connected? I
wanted to know this as I was also asked to provide a complete and �nal list of TRU
registers with some explanations on how to use them (see C.3 for this list).

• It would not take long to make it as several elements of the code would be reused from
the PHOS O�ine Control Utility (see 4.4), which I had previously developed.

13As of 5.July 2008
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4.5. TRU Register Scanner

4.5.2 Features And Usage

When I wrote the TRU Register Scanner I made some improvements in the routines from the
PHOS O�ine Control Utility. Since one of the keyelements in this program is to read and
write TRU registers, I tried to come up with a design which not only performed the read and
write, but also had veri�cation routines and kept some statistics about the operation. For
instance, straight after a write operation a read operation should carried out in order to verify
that the data was written correctly. This information should then be crosschecked against
the error status �ags, to make sure these indicators never deviates. Upon write failure (the
rate of which seems exponential to the level of activity on the GTL bus), the program retries
for a set number of times whilst recording statistical data. If a write operation fails for a
total of 5 times straight, the register is considered dead and �agged as such in the results �le
(results.txt).

PreCompilation Options 4.5.2.1

While you may edit any part of the code you like, I would like to draw the attention to
the WRITE_LOG constant, which de�nes whether a complete list of rcu-sh ... executions
performed by this program are to be written to a log �le (log.txt). While it is nice to have
this feature enabled for debugging purposes, it should be disabled if the program are to be
stored locally on the DCS cards as the �lesize quickly exceeds 500kB.

Settings File 4.5.2.2

For this program the settings �le contains a long list of registers and instructions for the
program of how they should be treated. The format is as follows:

Format:
<branch> <FEC#> <register#> <value to write> <'r' if read-only, else 'w'>

<a line which describes the register, will be outputted to the results file>

Example:
a 0 001 00321 w

0x01 [T1_TH] R/W Maximum Temperature

a 0 002 00321 w

0x02 [A4V0_TH] R/W Min. 4V Ana. Voltage

a 0 003 00321 w

0x03 [A4V0C_TH] R/W Max. 4V Ana. Voltage

Tab. 4.2 - TRU Register Scanner - Settings File

Make sure you get the number of digits right for each value, as the program will fail other-
wise.

Page 70



4.5. TRU Register Scanner

When Executed 4.5.2.3

When we are only dealing with the TRU there is no need to initialise the FEE cards, thus
not many initialisation commands are required. In fact, we will only need to setup the RCU.
This usually involves invoking a soft-reset a few times, specifying that the DCS card are to
be master of the RCU and that that the backplane type is PHOS (and not TPC)14. The
program will run these commands when executed.

Results 4.5.2.4

As previously mentioned the statistical data from this program are stored in the results.txt
�le. After a successful execution the top part of this �le may look as follows (tab. 4.3):

RCU and FECs are reset. Test commencing:

Error Status: 0

Test 1: Registers:

0x01 [T1_TH] R/W Maximum Temperature [ OK ] (Attempts: 1) (Def.: 0xa0)

a 0 002 00321 w

0x02 [A4V0_TH] R/W Min. 4V Ana. Voltage [ OK ] (Attempts: 1) (Def.: 0x1d8)

a 0 003 00321 w

0x03 [A4V0C_TH] R/W Max. 4V Ana. Voltage [ OK ] (Attempts: 1) (Def.: 0xc)

Tab. 4.3 - TRU Register Scanner - Results File

The output will vary depending on the settings speci�ed in the settings.txt �le. The �rst
line simply informs the user that the RCU and the front-end cards are reset and should
be ready to go. At this stage, should the error status on the second line be anything but
zero there is something seriously wrong with the setup and the rest of the results�le can be
disregarded as rubbish. You might have to powercycle the RCU and DCS card to get the
setup up and running again15.

On the contrary, should no error occur we may have a closer look at the read and write
statistics. The left half of this section of the results �le are a duplicate of the settings �le,
and the right half contains the test summary. The word in the square brackets may be either
OK or ERROR. If the register tested was read-only, the error status will be triggered if the RCU
error status register at any given time during the read operation were unequal to zero. For
registers which can be written to, the error status will be triggered if the speci�ed values
are not written and read back correctly within 5 attempts. For these registers the number
of attempts are also written to the results �le. Finally, the rightmost entry in the results
�le shows the default value of the register, which are read into the program when the given
register is targeted for a write operation. When the test is �nished, the default values are
written back to the respective registers.

14The TPC project utilises the same RCUs, but the front-end card addressing scheme is di�erent.
15This are still some bugs in the RCU/DCS software, so power-cycles are quite common.
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4.5.3 Conclusion

As mentioned in the introduction this program may play a role in a bigger test scheme for
the TRU. It performs read and write operations, and will keep track of some statistics for
you. It should be fairly easy to expand this program to include more speci�c test algorithms,
such as a more in-depth evaluation of the values held by the various registers (for instance,
statistics about temperatures, currents and voltages).

There are several ways to get the RMS noise measurement from each ADC channel. Instead
of implementing the calculation in hardware, you could use the Fake ALTRO protocol (when
it is implemented) to send a few samples of raw data from the TRU to the RCU, which could
then be picked up by the test program running on the DCS card. The RMS will now be
pretty easy to calculate, and the values could be printed to the result �le as �noise plots�
(like �g. 2.7). This way, not only could you verify that the TRUs actually works, but you
can use the data for more sophisticated diagnostics (for instance could you compare noise
plots from the FEE cards and the TRU to see where the noise is introduced on the TRU).

I guess it all comes down to how thorough you want to be when asked to test the TRUs. A
routine like this can be con�gured to perform all sort of tests, and once its made it can be
easily deployed and executed on several cards with a minimum of extra e�ort required. The
program can also run on the PHOS module which is now 16 installed in the ALICE detector,
and be used as a �gatherer� of useful information which could be fetched from the result
�le.

As for the build quality of the program, there might still be bugs present and the code is
rather poorly commented. Time is always a critical factor, and as soon as something �works�
the priority is shifted onto another project before the �nishing touch can be put on the
previous project. That being said, this project was �rst and foremost created by myself to
verify certain aspects of the old TRU design. Even though it will probably never be continued
it gave me the answers I was searching for, thus it served its initial purpose.

16As of 5.July 2008.
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5
Conclusion

What is the future of particle physics? Scientists all around the world are scratching their
heads trying to come up with good predictions about the future, but predictions will never
make it past that stage unless some new hard facts are put on the table. The Large Hadron
Collider (LHC, see 1.4) is designed to boost particles up to energies never before probed by
human kind, and the various detectors are designed to provide the ultra sensitive sensory
equipment necessary to see what is actually going on. Together they form a giant microscope
which is able to create and detect particles down to a scale of a nanometer of a nanometer
(10−18m)!

When I came to CERN I had the feeling of entering a completely foreign �environment�. I
use the word environment as many people consider CERN the place to be when the inner
mysteries of our world is put on the agenda. �Only on CERN...� is a phrase I have come to
hear often, and it applies to quite a few areas. I would go as far as to say that CERN does
something to your state of mind, a state which you can never revert from. The �impossible�
is merely a challenge for the future.

In ALICE we are trying to �nd out why matter has the properies it has. The idea is that we
heat it up to extreme temperatures such that it decomposes into more fundamental particles,
and study what happens when the temperature decreases again and the matter reverts to its
old state. There ALICE detector is made up of several subdetectors, each of them specially
designed to detect a certain range of particles and/or the properies these may have. PHOS-
a PHOton Spectrometer - is a subdetector aimed to detect and measure the exact energy
of photons produced when certain particles hit the lead-tungsten crystals that make up the
inner �wall� of this detector.
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ALICE has a triggerscheme which is supposed to act as a �lter that only let through data
with a certain set of interesting properties. The triggers come in 3 levels, where Level0 is the
simplest and fastest one. In the case of PHOS the Level0 trigger is generated if the energy
of the photons produced in the mentioned crystals exceeds a certain user-de�ned threshold.
The pulses of photons are approximately 100ns wide, and may disperse into several adjacent
crystals. To sum up all the energy of this light pulse the energy must be integrated both in
time (equals the discrete sum of 4 samples with a sampling speed of 40MHz), and in �space�
(equals the discrete sum of 4x4 crystals centered over the particle entry point). Both of these
calculations are made by the Trigger Region Unit (TRU).

The single greatest task I had at hand while working at CERN was to do digital design for the
TRU, the main emphasis was put on improving the logic in charge of generating the PHOS
Level0 trigger. The term digital design refers to the process of using Hardware Description
Languages (HDL) to de�ne the logical layout of a con�gurable logic device. In the case of
the TRU this device was a Field Programmable Gate Array (FPGA). To design hardware in
this way requires knowledge about the HDL you are using (in my case Verilog), digital logic
in general and more speci�ally about the resources available in the FPGA you are using. For
high speed designs more in-depth knowledge about the logic placement processes and timing
constraints has to be thoroughly understood, but even though I have spoken about this in
general terms throughout this report I have never gone into great detail.

The digital design �eld is huge and there is no way I could discuss all the various parameters
I have probed into in a report like this. Instead of going into great detail of the various parts
of the design, I have discussed the concepts and spent the remaining part of the report to
speak about other aspects of my work. The intention with this report was never to be dead-
on speci�c, but rather to give a general impression of the various activites I was involved in,
hence the name activity report.

But what activities are we really talking about? The chapters of this report deals with the
mentioned digital design concepts with regards to the TRU FPGA mainly, but also some
design aspects with the TOR card are described. I also spent one chapter describing some of
my experiences with C++ programming for the RCU DCS cards. The keyword for all these
chapters was design, a decision made in order to have a somewhat clear line of topics in the
main body of the report.

In the appendixes a variety of topics are described. I experienced great grati�cation as I
started working with Linux, so I start the �other activities� appendix o� by argumenting for
how this operating system made me more e�cient og productive during development. Since
it was not obviuous how to get the digital design software up and running in Linux, I provide
some quick hints about this in addition to general experiences with the programs in the
�software� section. I became a fan of using BASH scripts for automating certain repetetive
tasks in my work, for instance for making backups and jumping between them. This will be
mentioned next in the appendix.
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In my work at CERN I experienced embedded designs1 for the �rst time in the form of the
DCS cards. They run a small Linux core, and most of the storage space are mounted into
the �lesystem from external devices through ethernet network protocols. There are compilers
available for compiling programs for these Linux cores (I used one of these to compile my
C++ programs), so these embedded design naturally becomes the �interface layer� between
the electronics and the higher level software (where software engineers are in charge). What
I learned about logging onto the DCS cards are discussed in the �DCS Interfacing� section
in the �other activities� appendix.

The remaining part of the �other activities� appendix provides some information about the
RJ45 standard (a must to know about this one when you are making ethernet cables, as I
found myself doing every now and then), a short tutorial of how to adjust the phase of the
ADC clocks with the respective TRU registers, and �nally a �gure illustrating the CSP to
FastOR mapping through a FEE card will be shown. They should be considered reference
material if the reader happens to be interested in this information.

The next appendix lists some �chronograms�, or waveforms, which shows the response of some
of my FPGA designs when they are simulated in a dedicated testbench. I spent many hours
studying such waveforms, so if you are curious have a look (though you might not get much
out of them unless you have already studied the design code). The �TRU Communication�
appendix presents some self-made BASH scripts for reading and writing TRU registers (a
full list of registers comes shortly after).

Every now and then a period came along where I was mostly busy with modifying hardware
and making testsetups for testing my designs or debugging various electronics, thus improving
my handyness with the soldering iron and various test equipment (especially useful was the
experience gained through the use of a logical state analyser on the GTL bus). Some of
this work - like assembly and modi�cations of new TRU and FEE cards that we received -
required components which were initially missing, so I learned how to order them through
the CERN EDH system2.

Through working in a big collaboration like CERN I have become much better organised.
I tried to blog day to day activities in my journal at http://joinge.livejournal.com,
and when working with designs I have learned the importance of using version numbers and
writing changelogs. The latter is especially important to keep your head straight during late
hours. Unfortunately I did not get properly started with the logging before February 2008,
but rather late than never right?

1The design is referred to as embedded if the FPGA processor core and memory interfaces are utilised, for
instance for running a Linux core.

2If you want to learn more about the procedures involved in component ordering through EDH refer to the
excellent explaination by David Koenigseder in his Activity Report, [docDAVID, page 85-87]
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To experience a quantum leap in your english skills is inevitable when you work in an inter-
national environment like at CERN. At work or o� work, the language was always english.
You get to know people from all around the world, and learn to adapt to the various cultures
present in your working environment. I found it very interesting to see how the various
cultures put their distinctive touch to the environment, and what con�icts often arose across
cultures and professions.

I have also learned a lot about document typing. This report was my �rst �real� document
in english, and it has undergone a lot of revisions since its early beginning. I wrote it in a
typesetting language called LATEX, which is widely used amoung international students for
the creation of professional documents. As you can see in the source �les for this document,
I have customised the packages quite a bit to get things exactly how I wanted them. I spent
a great deal of time doing this as I wanted to create an enviroment for myself in the future
for writing professional documents, with ease, and without having to redo the typesetting
for every document.

The bottom line is: My stay here at CERN has been a very enjoyable and selfevolving a�air.
The whole experience stand out as very positive event which enlightened me in many ways.
My work may not have have been groundbreaking, but when I look back at where I was when
I arrived at CERN I can certainly say that I have come a long way since.

I would like to thank my supervisor, Hans Muller, for trusting me with challenging tasks
even though I was not always able to solve them quite as well as I wished for.

I would also like to thank the reader for keeping with me this far. Hopefully the report
was digestable, even though it might have been somewhat lengthy (but hey, how can you
summarise one year abroad otherwise?), but if anything was unclear and you are curious
about what I meant please feel free to contact me!
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A
Other Activites

This appendix contains - as the title indicates - some information about various other activies
I carried out and documented, but was of such a nature that I chose not to put them in the
main body of this report. The following topics will be covered:

• Linux as Operating System (OS). Why I chose to do almost all my work in this operating
system.

• Software for Digital Design of Xilinx FPGAs . Most of this software I was able to get
working in Linux, a small how-to get them up and running and some usage tips will be
provided. The topic of installation instructions gain relevance as there are almost no
documentation available on the CERN software server (dfs).

• Creating backups. Now why would I talk about this? Basically because I used BASH
scripts to do this instead of the built-in �snapshot� option in ISE, and as I believe my
scripts represents a better option I will supply them here.

• Interfacing the DCS Cards. These cards hosts a small Linux system which I frequently
had to log into in my work. I will explain how to connect to these cards and try to
show how they �t into the overall PHOS picture.

• The RJ45 Standard. I got to know this one well when I was making Ethernet cables.
Might be worth the read for the sake of reference.

• Adjusting the TRU ADC Clocks. You have no idea how to go ahead in order to get the
ADC bit- and frameclock adjusted? This section provides a quick tutorial.

• FEE CSP to FastOR Mapping. Want to know which CSP pin is connected to each pair
FastOR output pins on the FEE? Then this might be worth looking into.
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A.1. Why Linux?

A.1 Why Linux?

Why Linux was my OS of choice when working in PHOS:

• One can interface the PHOS electronics via the DCS cards. These cards have a few
MBs of �ash memory and an FPGA with a processor core. They host a small Linux
system which can be accessed via the onboard Ethernet port or serial port. There is
a DCS card attached to the TOR and each of the RCUs. You log into them via SSH
(Secure Shell) 1, which is bundled with almost all of todays Linux systems.

• It is very easy to send �les from one Linux �lesystem to another, but not so easy to
transfer �les between Windows based systems and Linux based systems. In Windows
I know of two alternatives: (1) You can set up a NFS server, share a folder and mount
it as a part of the DCS �lesystem (see 4.3), or (2) you can use the Secure Copy
protocol (scp2 which is part of the SSH (secure shell) package in Linux. In Windows
you can achieve the same thing by installing e.g. the graphical software WinSCP, but
it will not blend in as well as with Linux. Furthermore, you must make sure that the
newline characters in the text�les you send are converted3. By using Linux you may
avoid these small obstacles, and the overall e�ciency can be greatly improved if you
utilise the powerful features of the BASH shell and scripts (for instance for managing
concurrent �le transfers.

• In Linux you can use SAMBA (A Service for Print and File Sharing) to mount Windows
folders into your Linux �lesystem. This provides an easy way of transferring �les
between your Linux machine and other Windows machines. However, the DCS cards
have a very limited Linux OS and does not support SAMBA (so the previous point still
applies).

• I �nd that I work much more e�cient in Linux than any other OS I have tried. It better
utilises the available hardware resources, almost never crashes and generally just leaves
me with the impression that it wishes to help out rather than making life miserable.

1Syntax for logging into a system using SSH: ssh <username>@<card ID> where the username is usually
root and card ID can be IP-number or DNS name with or without domain post�x.

2Syntax for copying �les with SSH: scp <path to file> <user>@<card ID>:<path to put the file>.
Swap the two parameters if you want to copy the �le from a card to your own �lesystem instead.

3Linux and Windows utilise di�erent newline characters.
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• Backup and restore becomes a breeze with the use of BASH scripts (see A.3). The
Xilinx Integrated Software Environment (ISE) o�ers �snapshots�, but I prefer using my
own scripts because:

(1) it enables me to specify exactly what �les I want to backup. When I make a selected
assortion of �les from the ISE project folder I usually end up with a backup measuring
a size of 4MB, the equivalent size of the backup the �snapshot� tool creates is often
several hundred MB4.

(2) it becomes easy to distribute the code to external computers, hence these can be used
to implement your code and less strain will be put on the system you are working on.
Again, this will only work nicely if you send small amounts of data, in accordance
with (1). A handy feature of Linux here is how �les can be opened in several programs
simultaneously, and where these programs �catch� the changes committed to the �le
externally. This very nice for instance if I use BASH scripts to revert to and old
copy of my code by overwriting the project directory with the backup �les. In this
situation the text editors immediately refreshes its opened �les according to the
changes, and without further actions you can start editing this version of your work.

(3) making backups and �reverting� to old versions becomes easy. These two operations
are simply two sides of the same story.

A.2 Software

Since I decided to do the Linux route all the software necessary for doing digital design on
Xilinx FPGA had to be adapted aswell. Unfortunately not many people at CERN was work-
ing with Linux5 which was probably the reason why I was not able to �nd any documentation
on how to install the Linux editions of the various software on the CERN intranet/websites.
Since I know how to do this now, this section will serve as a short �how-to� for people with
some Linux experience. Three software packages will be discussed:

• The Xilinx Integrated Software Environment (ISE) and ChipScope. ISE has all neces-
sary tools for breaking up the HDL code (like Verilog), producing the binary �le used
to con�gure the FPGA and for actually programming the FPGA.

• The simulation tool Modeltech ModelSim. Used for all sorts of simulations, and is far
superior the light simulator in ISE.

• The synthesiser Synplicity Synplify (which I believe is superior to the Xilinx XST
synthesiser - bundled in ISE - both with respect to features6 and synthesis quality.

4If you choose to �cleanup project �les� in ISE prior to making the snapshot the backup size decreases to a
total of around 50MB. However, since I tend to make hundreds of backups this is simply not good enough.

5As I discovered on the Xilinx seminar at CERN the 28.May 2008 when the presenter asked how many of
the designers present were running Linux.

6In my humble opinion Synplify has better support for Verilog HDL syntax, more options for �netweaking
the synthesis, better represents the results (both with graphics and text) and is easier to use.
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All the programs I will dedicate some words to can be found at

ISE & ChipScope "\\<server>\dfs\Services\caeprogs\xilinx" [locXilinx]

ModelSim "\\<server>\dfs\Services\caeprogs\modeltech" [locModeltech]

Synplify "\\<server>\dfs\Services\caeprogs\synplicity" [locSynplicity]

The servers you can choose from are cern.ch, cernhome01 or cerndfs01. You should be
connected to the CERN intranet via cable for full access (and much greater speed) when
getting the programs from the speci�ed locations.

A.2.1 Xilinx ISE

The Integrated Software Environment from Xilinx pretty much provides all necessary tools
for FPGA development to the table. It features a texteditor, the XST synthesiser, implemen-
tation tools (like translate, map and place&route) and a binary con�guration �le generator.
After installation, the following variables needs to be set:

PLATFORM="lin"

XILINX="<installation path>"

LMC_HOME="${XILINX}/smartmodel/lin/installed_lin"

PATH="${XILINX}/bin/lin"

LD_LIBRARY_PATH="${XILINX}/bin/lin:/usr/X11R6/lib"

NPX_PLUGIN_PATH="${XILINX}/java/lin/jre/plugin/i386/ns4"

qtDir="<your home directory>/.qt"

myxilinxrc="${qtDir}/xilinxrc"

You can also run the settings.sh script in your ISE installation directory, but I did not succeed
in getting satisfying results this way. The licence for both the Windows and Linux version
of ISE can be found in <locXilinx>/CERN_readme.txt.

On the next page I will say a few words about one of the programs in the ISE package
called iMPACT, which is a standalone program we always used to program the con�guration
memory of our electronics cards.
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A.2.2 iMPACT

Impact is the software you have to use in order to program the Xilinx FPGAs7. ISE should
also be able to do this, but as Impact is made for the single purpose of programming FPGAs
and con�guration devices it became my preferred choice. Since programming the con�gura-
tion devices is a task I encountered quite often - and no good tutorial was ever made on how
to do it - I will try to give a simple and direct explanation on how to do it here 8.

• iMPACT Project is the title of the pop-up window you should get when launching
iMPACT. Select create a new project (.ipf) and hit OK.

• iMPACT - Welcome to iMPACT is the title of the next window you will get. Select
Prepare a PROM File and click Next.

• iMPACT - Prepare PROM Files. Check that I want to target a... is set to Xilinx

PROM, PROM File Format... is set to MCS, and Checksum Fill Value (2 Hex Digits)...
is set to FF. Finally you need to �ll the PROM File Name... �eld, and set the location
to where you want the MCS �le stored. When done, hit Next.

• iMPACT - Specify Xilinx PROM Device. Make sure the Select a PROM (bits)...
leftmost rolldown box says xcf, and the rightmost rolldown box contains the name of
the con�guration device you want to program9. When these boxes are set hit Add.
Make sure all the checkboxes on this page are unchecked, and click Next.

• iMPACT - File Generation Summary. Verify the settings and click Finish.

A small pop-up box informs you that you should now adding �les to the project. Click OK,
then select the .bit �le you want to program the con�guration device with. Answer NO to
the next box asking you whether you want to add more devices or not. Next doubleclick the
��ow� named Boundary Scan in the topleft �Flows� window. The �main� window should now
say Right click to Add Device or Initialise JTAG chain. Do the latter and select the proper
.bit �le and .mcs �le when confronted with this. In the same window you should now be
able to see two icons, respectively representing the con�guration device and the FPGA (see
�g. A.1).

7Impact comes bundled with ISE
8Approach may vary with software version. I used iMPACT version 9.2.04i.
9The con�guration device on the TRU are named xcf32p
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Fig. A.1 - Screenshot of iMPACT

To start the programming procedure hit arrow tagged Program in the �iMPACT Processes�
window. In the window that appears check the box reading Erase Before Programming

(under General CPLD And PROM Properties); likewise with the box labelled Load FPGA

(under PROM Speci�c Properties). All the other checkboxes I tend to leave unchecked.
When done hit the OK button and the programming should commence.

When done you might want to save your project in order to just pick up the trace where you
left it the next time you are in need of �ashing some con�guration devices. This basically
wraps up my knowledge of this program. I simply found an approach �that works�, and kept
doing it that way. Feel free to explore.
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A.2.3 ChipScope

The ChipScope Pro is a JAVA based application which allows you to analyse FPGA logic,
various buses and even provides a function for making virtual inputs/outputs. While the
ChipScope Pro core are optimised for size and performance and are designed to operate at
speeds up to 200 MHz in Virtex-II Pro FPGAs, caution should be taken when speeds exceed
150 MHz or logic usage exceed 80%. The ChipScope core uses some logic and a fair bit
of Distributed SelectRAM (see 2.1.2.4). However, in our TRU/TOR designs the ChipScope
core will never driven at these speeds. This means we should be �ne as long as the ChipScope
cores are not made too big.

TopModule

ICON
Integrated 
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Virtual 

Input/Output

ILA
Integrated Logic 
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Rest of the 
Design

co
n

tro
l0

syn
c_o

u
t
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c_in

trig0

ChipScope Pro

JTAG

Fig. A.2 - ChipScope Principle [sofPPT]

For a complete tutorial on ChipScope I suggest looking into this one [docXCSTT].

ChipScope can be used to program FPGAs, but can not program the con�guration devices.
This means that the FPGA will keep its con�guration until it is powercycled, when it will
be reprogrammed with the data in the con�guration memory.

I was never able to get the drivers for the Xilinx USB programmer dongle to work under
Linux. While I know that this is doable I did not care to bother with it as PHOS has a
laptop dedicated to the task of programming electronics (it runs Windows XP). I used the
CERN Desktop for transferring �les between my private laptop and the PHOS laptop10.

[ 11 ]

10The path for a user speci�c CERN Desktop is:
\\cern.ch\dfs\Users\<first letter of username>\<username>\Desktop

11Based on Based on [docXCJ50, page 54],[docXCSTT].
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A.2.4 ModelSim

First, if you are installing ModelSim on a private computer you will need to set up a few
variables.

PATH="<installation path>/modeltech/linux"

MGLS_LICENSE_FILE="1717@licman1.cern.ch:1717@licman2.cern.ch:1717@licman3.cern.ch"

It is important to put the location of all the binaries in your PATH to get full interoperability
for ISE, ModelSim and Synplify. Especially the compilers start to misbehave if the binaries
are not in you PATH variable. The licence is ��oating� here at CERN, which means there
are CERN servers handing them out. The above licences work for both Linux and Windows
versions of ModelSim.

When you have ModelSim up and running, you have to perform some initial procedures:

• Clean Start. If you have simulated your project with ModelSim before, you yourself a
favour and head over to your project location and delete the old work library (folder),
the modelsim.ini �le, and the <projectname>.mpf before doing anything else. I am
not sure why, but my ModelSim has a tendency to mess up badly if I skip this step.

• Set Project Directory. File I Change Directory....

• Create Working Library. File I New I Library.... Use default library name �work�,
check that a new library and a logical mapping to it is selected and hit OK.

• Create the Project. File I New I Project.... Select a proper name for it, check
that the project location is set right and make sure �work� is set as the default library.
Do not copy settings from a previous modelsim.ini �le, as we want to start blank in
order to know things are under control. Make sure that �eld is blank, and that the
option for copying library mappings is checked. When done, hit OK.

• Add items to the Project. This is the label of the window appearing after you created
the project. You may want to start making some folders to set up a hierarchy. When
adding �les I suggest you choose to reference to your �les instead of copying them (at
least I want it to simulate my source �les and not some �backup� I made).
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When this is all done, you will need to compile the �les the �ModelSim way� and add them
to a simulation. This is best accomplished by using a .do �le. It is more reliable, much
quicker and features a wide variety of options for customising the simulation to better suit
your preferences.

quit -sim #Quit any old simulation you may have got running.

vlog +acc -sv TopModule.v #Compilation of the files you might have.

#(-acc = detailed transcript -sv = SystemVerilog)

vsim work.TopModule #Start the simulation

radix hex #I prefer the default radix to be hex

formatTime +commas +bestunits #I also prefer the use of "scientific units"

add wave -label <name> <ModuleName>=<SumModuleName>=<SignalName>

run 15 us #Simulation length

view wave #Show the wave window.

The compiler will probably complain about it not being able to �nd the Xilinx primitives you
have used throughout your code. However, Xilinx has been so kind as to provide modules
which will behave the same way as the primitives when they are run in simulation. Get the
ones you need and copy them into your project (say, into a folder labelled primitives).

<ISE installation path>/verilog/src/unisims/ #High level modules.

<ISE installation path>/verilog/src/XilinxCoreLib/ #Low level components.

Some other documents you should read

Get Started Tutorial <installation path>/modeltech/docs/pdfdocs/modelsim_se_tut.pdf

UserManual <installation path>/modeltech/docs/pdfdocs/modelsim_se_user.pdf

Support for SystemVerilog <installation path>/modeltech/docs/technotes/sysvlog.note
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A.2.5 Synplify

The Xilinx synthesiser called XST does a fairly good job, but Synplify is - in my opinion -
far superior. What you do is open the source code �les into Synplify (.v , .ngo , .edn

, .ucf), run the synthesis (this is the �rst step of the implementation process) and notice
that .ngc/ngo �les are created as output. There is a speci�c project type in ISE which has
these �letypes as �basis�, so you basically create one of these and let ISE do the rest of the
implementation after Synplify. After installation of Synplify, the following variables will need
to be speci�ed:

PATH="<installation path>/fpga_902/bin:<installation path>/identify_25/bin"

SYNPLICITY_LICENSE_FILE="1709@licman3:1709@licman2:1709@licman1"

Also these licences seem to work �awlessly on both Linux and Windows operating systems.

When you wish to start using Synplify on a new project there is a small trick I use to
get started quicker. First load up ISE with the project you want you synthesise, then set
your synthesiser to be Synplify (Pro). Run the synthesis once to get ISE to hand along
some parameters to the Synplify project that will be made 12. Once done (it does not matter
whether the synthesis succeeded or failed) close ISE and start up Synplify (Pro). Have it open
the Synplify project which is now located in your project directory, and hit Implementation
Options -> Verilog. Check the box tagged �SystemVerilog� and accept the changes. Voila,
you are good to go!

12If you use Synplify version 9.0.1 it will always fail due to a bug that causes incompatibility between ISE
and Synplicity
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A.3 Creating Backups

When you are creating backups you need to know what �les are important in your project
directory. If you simply copy it all you will end up with backups of several hundred MB,
most of it being binaries from the implementation software which is not necessary to backup
(as you can simply rerun the implementation to get them back). From starting a project
from scratch with a bare minimum of �les, I have found that the only �important� �les we
need to backup are:

*.v Verilog Source Code Files (The designer should know which are important)

toplevel.ucf The constraints file for the design

TopModule.ise The ISE Project File

*.ngo \& *.ngc Presynthesised code, or "black boxes". TopModule.ngc not needed.

The rest are just software generated �les. If you ever run into problems where the software
you use does not seem to �catch changes�, then delete all �les not mentioned above. This will
strip the design down to a absolute scratch, and force the programs to start all over with the
source �les.

#! /bin/bash

cd <project path>/Backups #Assumes a "Backups" folder exist

mkdir ${1} #Create the directory to store the data

cp ../*.v ${1} #Copy all the Verilog source files,

cp ../*.ucf ${1} #the .ucf constraints file,

cp ../TRURevised.ise ${1} #the ISE project file,

cp ../*.bit ${1} #the .bit file (used to program the FPGAs),

cp ../*.ngo ${1} #all .ngo and

cp ../*.ngc ${1} #.ngc files (presynthesised modules)

rm ${1}/TopModule.ngc #except this one which is created by ISE,

cp -r ../TriggerOut ${1} #and finally all the files for TriggerOut,

cp -r ../BoardController ${1} #BoardController and

cp -r ../Clk ${1} #Clk.
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A.4 DCS Interfacing

A.4.1 Via Ethernet

The easiest way to connect to a DCS card is if it is connected to the CERN intranet. Then
it will be assigned an IP-address from a CERN router (via DHCP), and you can access it by
using this IP or by using the name of the card (which will be translated to the IP-address with
the CERN DNS (Dynamic Name Server) service). Look at �g. A.3 to see which DCS cards
were used in ALICE. In addition to these cards, I also interfaced a DCS card situated on a
TOR development board (called pcdcstor2), and a DCS card situated on RCU development
board (called pcdcs0002). If the DCS cards are not connected to the CERN network they
will use an IP-address speci�ed in the /etc/network �le. Often this IP-address can be found
with the following method:

10.1. (DCS number.>256)?1:0 . (DCS number.>256)?DCS number-256:DCS number

For instance, DCS number 279 (called alphdcs0279 on the network) would have IP-address:

10.1.1.(279-256) = 10.1.1.23

While other methods for addressing are used in ALICE, the method mentioned here was used
for the DCS cards prior their installation in the ALICE detector.

If you know the local IP-address of a DCS card you can connect to directly with your
computer, or to via a router. You just have to make sure that you manually set the IP-
address of your computer such that it is on the same subnet as the DCS card you want to
access. For instance, if you want to access a DCS card with the IP-address 10.1.1.23, you
should set your computer up with for instance the IP-address 10.1.1.10. Now you can connect
without problems.

When you connect to the DCS card with the IP-cable (SEMTEC connector), make sure that
the red Light Emitting Diode (LED) starts to blink. This indicates that the communication
is up and running. If nothing happens, try to powercycle the +4.2V power supply. This is a
common problem and is caused by a bug in the DCS �rmware (the bug is known, but is not
yet corrected).
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A.4.2 Via Serial Line

You can also connect to the DCS cards over the serial line (RS232 protocol). Fire up any
program that can deal with this for you (for instance the HyperTerminal application in MS
Windows) and connect with the following settings:

COM Port ........ 1

Baud Rate ....... 57600

Data Bit ........ 8

Stop Bit ........ none

Parity .......... none

In my experience it is best if you try to connect straight after you rebooted the DCS card
(either via. typing the command reboot or by powercycling the +4.2V power supply).

A.4.3 Set Up NFS Shares

NFS shares are folders which are physically present only on a host, but can be �mounted� into
the �lesystem of other devices on the network (such as the DCS cards). Using this method
with the DCS cards enables them to access lots of storage space even if they only have a few
MB of local memory.

To get started the computer need to have a NFS server up and running (see A.1), which
should the the out-of-the-box case for most Linux distributions (distros). If not, they are
easy to set up. When the server is up, share (or export) the folder you wish to share (should
also be pretty self-explanatory). The computer is now ready.

The DCS cards are already ready for mounting NFS folders. The command used to do this
is listed below:

/usr/local/sbin/nfsmount <computer name>:<path to folder> <path to local folder> rw

The computer name can be either an IP-address or a DNS address, and the rw switch simply
indicates that the folder should be both readable and writeable. If you want the DCS card
to attempt to mount your folder every time it starts up place the mount command in the
�le:

/usr/local/sbin/nfsmount_all

It is surprisingly easy to do this, and it works surprisingly well.
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A.4.4 Connecting to DCS in ALICE

Even when the PHOS module is in the ALICE cavern and none of the DCS cards are publicly
available on the CERN network, there is a way to remotely communicate with them. You
have to be added in the PHS (short for PHOS) security group, and when you are you will
be able to login to a controlnode called alidcscom001.cern.ch via MS Windows Remote
Desktop Connection13. The mentioned node runs a Windows operating system, so to get
from there to the DCS cards (which runs Linux) you need to use a program called Putty.
Putty provides a SSH interface for use with Windows.

You might also wish to transfer �les from and to the DCS cards, which you can use a program
calledWinSCP for. For �letransfer between the alidcscom001 node and your own computer,
use the DFS Desktop:

cern.ch I dfs I Users I <first letter of username> I <username> I Desktop

When the PHOS module was installed in the ALICE detector the DCS cards were allo-
cated di�erent names than they had on the CERN network. The current14 names of the
various DCS cards can be looked up in �g. A.3, along with a summary of what I have just
mentioned.

Z

X

alidcsdcb1587

alidcsdcb1586

alidcsdcb1584

alidcsdcb1585

alidcsdcb1572

Transfer files 
via  DFS 
Desktop

Remote login 
with  MS 
Remote 
Desktop 

Connection

alidcscom
001.cern.ch

Transfer files 
with WinSCP

Terminal login 
with  Putti

Fig. A.3 - Communication Flow when Remote Controlling DCS in ALICE [sofPPT]

13MS Windows Remote Desktop Connection should be a part of the bundled software that comes with most
Windows installations.

14As of 5.July 2008
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A.5 RJ45 Standard

Fig. A.4 - The RJ45 Standard

The only category 7 CAT7 twisted pair TP cable connected to the TRU are intended for use
with TOR communication (described in detail in 2.2.8). This means there are 4 pairs of wires
available for signalling between these two units. Fig. A.4 shows the correspondence between
pin numbering, LVDS pairs and wire colours for the T568B variant. The most important
factor to �get right� is the pair matching. The positive and negative complementary LVDS
pulse should be sent through the same twisted pair. This insures better data integrity (less
crosstalk from other wires and better impedance matching) than if a random pair of wires
were selected. Also, for consistency, the designer should try to make sure that pulses with
given polarity propagate through de�ned type of wire (e.g. positive pulses always propagate
through wires with homogeneous colour).
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A.6 Adjusting the TRU ADC Clocks

Test procedure for adjusting the bit- and frameclock for synchronising ADC data:

1. 0x0040 I 0x7c - Sample[3:0] = 4'h0
0x0050 I 0x7c - Sample[7:4] = 4'h0
0x0064 I 0x7c - Sample[11:8]= 4'h4
0x000c I 0x7c - Launch pattern, 3.5mA

This sets the ADCs up to output 1 on Sample[10]. Note what channel is showing
this bit.

2. 0x0040 I 0x7c - Sample[3:0] = 4'h0
0x0050 I 0x7c - Sample[7:4] = 4'h0
0x0068 I 0x7c - Sample[11:8]= 4'h8
0x000c I 0x7c - Launch pattern, 3.5mA

This sets the ADCs up to output 1 on Sample[11]. Did this 1 appear on the correct
channel (the more signi�cant than the previous one)? Yes (4). No (3).

3. 0x0005 I 0x7b - Add 45◦ to ADC_LCLK

See if the bits swap places. Keep adding 45◦ till they do.

4. 0x0010 I 0x79 - Add 22.5◦to ADC_ADCCLK

See how the MSB move. Keep adding 22.5◦ till its on Ch11.

You have now successfully tuned the bit- and frameclock to roughly the correct spot. By
performing small phaseadjustments while watching the samples generated you may �nd the
�golden eye� to clock each ADC channel.

If the samples are stable over time but the bits are correctly placed the frameclock is badly
adjusted. When samples vary over time either clock (or both) may be incorrectly adjusted,
but chances are the bitclock is the sinner.
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A.7 FEE CSP Mapping

The FEE performs analog sums of the signals coming from the CSPs of 2x2 crystals, and
sends them to the TRU. It also stores high-gain and low-gain versions in on-board ALTRO
chips (for more information: [docALTRORC]), which can be read out by the RCU over the
GTL bus. There is extensive documentation on the FEE cards currently available, and if more
information is desired I suggest you start with the PHOS User Manual [docPHOSUM].

I did not work a whole lot on the FEE, but performed a CSP-to-FastOR mapping. It was
requested of me to provide documentation about this, so here it is.

Basically, there are 32 CSPs (each of which is connected to a single crystal) connected to
each FEE 15. The map was performed by simply pulsing one and one CSP input on the FEE
and note which FastOR output reacted to the input stimulus (a 1ms step function). Every
other pin on the FEE input connector is GND, which the stimulus were referenced to over a
50Ω resistor. The FEE shapers are quite capable of dealing with step functions, producing
100ns FastOR signals as if the inputs were connected to CSPs. The preamp was tested in a
similar fashion, the result of it all is summarised in �g. A.5:
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Fig. A.5 - STMM, FEE Input and FEE Output (FastOR) Pinout Mapping

15The geometrical position of each CSP can be seen in tab. C.1 (the right side of the table).
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Chronograms

The chronograms shows the responses of some of my designs when they underwent simulation
in Modeltech ModelSim. The testbenches used to create stimuli to the design inputs are men-
tioned in 2.2.9. The signal names are the same as in the design code (see [srcTRUDESIGN]),
so unless you have a look this aswell the chronograms will probably seem cryptic to you.
If you just wanted to have a quick look then consider them a technological preview of the
�waveform� function in ModelSim.
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Fig. B.1 - The Process of Updating the ADCs with new Data Page 95



Fig. B.2 - First Stage of Deserialisation - Sorting the Bits [sofSIM]
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C
TRU Communication

In this attachment I will describe the various TRU registers currently1 available for the TRU.
However, as a starting point I will show a few scripts I made in BASH which makes the task
of communicating with the TRU pretty easy.

I will use the ALICE ReadOut protocol (ALTRO)2 for this, although communication can
also be done via the low-speed serial lines (slow control)3. While these are BASH scripts,
my two C++ programs (the DCS O�ine Control Utility and TRU Register Scanner) have
both slow control and ALTRO functionality implemented, see 4 for a description of these
programs. I also implemented the ALTRO protocol in my TRU Testbench, as a means to
validate the GTL controller (see 2.2.9).

The registers listed here comes straight from the code, but has been trimmed down quite a bit
since earlier versions of the code. The reason for this is that several registers were addressing
functionality that is no longer present, or - if present - has been rendered redundant due to
a change in design.

1Register list as of 30. June 2008
2For more information about the ALTRO protocol, take a look at the ALTRO User Manual [docALTROUM]
and the RCU Firmware Manual [docRCUFM].

3See RCU Firmware Manual for more information about the slow control protocol [docRCUFM]. This
communication protocol does not work very well with the TRU yet.
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C.1. Reading from the TRU

C.1 Reading from the TRU

Make a script�le on the DCS card (or in a folder mounted on the DCS card) - say <path to

file>/ReadFromTRUReg.sh and put the following text in it:

#! /bin/bash

if [ $# -ne 2 ]; then

echo 1>&2 "Usage: $0 <register> <branch>"

echo 1>&2 "Example: $0 72 a"

echo 1>&2 "Read the register 72 on branch a"

exit 127

fi

branch=""

if [ ${2}x = "ax" ]; then

branch=2

fi

if [ ${2}x = "bx" ]; then

branch=3

fi

if [ ${branch}x = "x" ]; then

echo 1>&2 "Not a valid branch!"

exit 127

fi

rcu-sh w 0x7000 0x5${branch}00${1} #Setup address to read from.

rcu-sh w 0x0 0x300000 #Set stop flag.

rcu-sh wait 1 us

rcu-sh r 0x7800 #Read ErrorStatus Register

rcu-sh wait 1 us

rcu-sh r 0x6000 1 #Output the value read back*

Now call the command - e.g. do <path to file>/ReadFromTRUReg.sh 72 a - and see what
value register 0x072 (which holds the value for the Global Level0 Threshold) on branch a

contained.

If you really want to know what all these commands do, feel free to look it up in the ALTRO
User Manual [docALTROUM] or in the PHOS User Manual [docPHOSUM].

Page 99



C.2. Writing to the TRU

C.2 Writing to the TRU

Make a script�le on the DCS card (or in a folder mounted on the DCS card) - say <path to

file>/WriteToTRUReg.sh and put the following text in it:

#! /bin/bash

if [ $# -ne 3 ]; then

echo 1>&2 "Usage: $0 <value> <register> <branch>"

echo 1>&2 "Example: $0 00ff 72 a"

echo 1>&2 "Write the value ff to TRU register 72 on branch a"

exit 127

fi

branch=""

if [ ${3}x = "ax" ]; then

branch=2

fi

if [ ${3}x = "bx" ]; then

branch=3

fi

if [ ${branch}x = "x" ]; then

echo 1>&2 "Not a valid branch!"

exit 127

fi

rcu-sh w 0x6c01 0x0 #Clear the Error Status Flag

rcu-sh w 0x7000 0x6${branch}00${2} #Setup address to write to.

rcu-sh w 0x7001 0x70${1} #Setup data to write.

rcu-sh w 0x7002 0x5${branch}00${2} #Setup address to read from.

rcu-sh w 0x7003 0x390000 #Set stop flag.

rcu-sh wait 10 us

rcu-sh w 0x0 0x300000 #Execute

rcu-sh wait 10 us

rcu-sh r 0x7800 #Read ErrorStatus Register

rcu-sh wait 10 us

rcu-sh r 0x6000 1 #Output the value read back*

if [ $# -ne 3 ]; then

echo 1>&2 "Usage: $0 <value> <register> <branch>"

echo 1>&2 "Usage: $0 <value> <register> <branch>"

echo 1>&2 "Example: $0 00ff 72 a"

echo 1>&2 "Write the value ff to TRU reguster 72 on branch a"

exit 127

fi

Now call the command - e.g. do <path to file>/WriteToTRUReg.sh 00ff 72 a - and �nd
that the value 0x00ff was written to TRU register 0x072 on branch a (which holds the value
for the Global Level0 Threshold).
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C.3. Register List

C.3 Register List

In case you wonder, these registers should be the same as the ones being scanned if you are
using my TRU Register Scanner (see 4.5). The format is as follows:

<register address> [design name] <'R'ead-only or 'R'ead/'W'rite> <A short description>

Temperature, Voltage and Current Sensors
0x01 [T1_TH] R/W Maximum Temperature

0x02 [A4V0_TH] R/W Min. 4V Ana. Voltage

0x03 [A4V0C_TH] R/W Max. 4V Ana. Current

0x04 [D4V2_TH] R/W Min. 4.2V Dig. Voltage

0x05 [D4V2C_TH] R/W Max. 4.2V Dig. Current

0x06 [TEMP1] R Temperature Value ( decimal value/4 = temperature

0x07 [A4V0] R 4V Analogue Voltage Value

0x08 [A4V0C] R 4V Ana. Current Value

0x09 [D4V2] R 4.2V Dig. Voltage Value

0x0a [D4V2C] R 4.2V Dig. Current Value

Interrupt registers
0x11 [CSR0] R Interrupt - Mask Register

0x12 [CSR1] R Error Status Register

Fake ALTRO register
0x1A [CHRDO] W Channel ReadOut (Fake ALTRO register)

Note: This is not a BC register!

The TRU retains a history of 256 samples (or 256*40MHz = 6.4µs) in Block Select RAM
(which is pedestal corrected), of which the 10 last samples (250ns) may be read as trigger
data type 1. This is what the Fake ALTRO readout mechanism are for.

Consult the PHOS User Manual [docPHOSUM, page 102] for the ALTRO protocol data
format.

Important! When the ALTRO Readout command are executed the RCU are addressing the
ALTRO chips (which are located on the FEE cards, see [docPHOSUM] for more information).
This means that my �example script� can not be used to launch this command (�branch
numbers� must be changed from 2 and 3 to 0 and 1, respectively). Also, an extension in the
TRU BoardController will be needed here in order not to ignore this command as an ALTRO
request (a command is either a BoardController or ALTRO request, never both).

Firmware revision
0x20 [BC_VER] R Version of BoardController
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C.3. Register List

Temperature, Voltage and Current Sensors

0x21 [T2_TH] R/W Maximum Temperature

0x22 [D3V3_TH] R/W Min. 3.3V Dig. Voltage

0x23 [D3V3C_TH] R/W Max. 3.3V Dig. Current

0x24 [D2V5_TH] R/W Min. 2.5V Dig. Voltage

0x25 [D1V5_TH] R/W Min. 1.5V Dig. Voltage

0x28 [TEMP2] R Temperature Value ( decimal value/4 = temperature)

0x29 [D3V3] R 3.3V Dig. Voltage Value

0x2a [D3V3C] R 3.3V Dig. Current Value

0x2b [D2V5] R 2.5V Dig. Voltage Value

0x2c [D1V5] R 1.5V Dig. Voltage Value

0x2e [ADC_ID] R Temp./Voltage Sensor ID

0x2f [TEST_REG] ? Test Register???

Auxiliary Interrupt registers for Monitoring (not clear if we need these)

0x65 [VTS] bits to be re-allocated for TRU Aux. Interrupt Flag register

0x66 [INT_MASK] bits to be re-allocated for TRU Interrupt mask

Hardware Versions

0x70 [CARD_NO] R TRU board version ( Current is 2.0 )

0x71 [SER_NO] R TRU serial Number ( just upcounting )

Global Level0 Threshold

0x72 [GTHR_L0] R/W L0 Global Threshold

This threshold only applies for those 4x4 which has a �local 4x4 threshold� set to a value
unequal to 0, see the registers 0xa5 to 0xff.

TOR Readout Sync

0x78 [TORSYNC] R/W Relative bunch number register (8 bits)

The TOR will receive 14 bit time-summed data which are stored in Block Select RAM (since
these are huge a history of 256 samples will be retained). The plan is to use this register to
specify the position of the data in the RAM block to �neadjust what data the TOR receives.
The position will be relative to �position of peak� which will be internally stored for the last
Level0 produced.

The �rst bunch will arrive at the TRU ≈350ns after beam crossing (particle collision). After
580ns the Level0 must be produced and so the necessary history to store is 580ns350ns =
230ns- which translates to roughly 10 samples.
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C.3. Register List

ADC Deserialiser Sync

0x79 [ADCoutSYNC] R/W Value 0..511 - PhaseShift for DCM sourcing "frameclock"

0x7a [ADCinSYNC] R/W Value 0..511 - PhaseShift for DCM sourcing "bitclock"

Refer to attachment A.6 for instructions on how to use these registers.

ADC Control Register

0x7c [ADCCONTROL] R/W ADC serial data pattern (ADS5270 data sheet)

ADDRESS DATA DESCRIPTION REMARKS

D7 D6 D5 D4 D3 D2 D1 D0 All Data Outputs

0 0 0 0 LVDS Bu�ers
0 0 Normal ADC Output (default after reset)
0 1 Deskew Pattern *
1 0 Sync Pattern *
1 1 Custom Pattern *

0 0 IOUT LVDS ≈ 3.5mA (default after reset)
0 1 IOUT LVDS ≈ 2.5mA
1 0 IOUT LVDS ≈ 4.5mA
1 1 IOUT LVDS ≈ 6.0mA

0 0 0 1 CLOCK CURRENT
0 X X 0 LVDS Clock Output Current IOUT ≈ 3.5mA(default)
0 X X 1 2x LVDS Clock Output Current IOUT ≈ 7.0mA

0 0 0 1 LSB/MSB MODE
0 0 X X LSB First Mode (default after reset)
0 1 X X MSB First Mode

0 0 1 0 POWER DOWN ADC CH.
X X X X Power-Down Ch. 1 to 4.

D3 = Ch.4, D0 = Ch.1

0 0 1 1 POWER DOWN ADC CH.
X X X X Power-Down Ch. 5 to 8.

D3 = Ch.8, D0 = Ch.5

CUSTOM PATTERN
0 1 0 0 X X X X *
0 1 0 1 X X X X *
0 1 1 0 X X X X *

* Take a look at tab. C.2

Tab. C.1 - Commandwords you can send to the ADC [docADC][Page 6]

Serial Output LSB
ADC Output D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

Deskew Pattern 1 0 1 0 1 0 1 0 1 0 1 0
Sync Pattern 0 0 0 0 0 0 1 1 1 1 1 1

Custom Pattern D04 D14 D24 D34 D05 D15 D25 D35 D06 D16 D26 D36

Tab. C.2 - Description ADC Patterns [docADC][Page 6]
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C.3. Register List

Trigger mask registers for 2x2 inputs before pedestal correction

0x7d [mask_reg1] R/W Mask Reg. ADC1&2

0x7e [mask_reg2] R/W Mask Reg. ADC3&4

0x7f [mask_reg3] R/W Mask Reg. ADC5&6

0x80 [mask_reg4] R/W Mask Reg. ADC7&8

0x81 [mask_reg5] R/W Mask Reg. ADC9&10

0x82 [mask_reg6] R/W Mask Reg. ADC11&12

0x83 [mask_reg7] R/W Mask Reg. ADC12&14

ChipScope MUX table (diagnostics via. JTAG)

0x92 [CSSelect] R/W ChipScope Input Select

ChipScope can - with the core currently4 compiled into the TRU code - look at a variable
192 bits wide over a maximum of 8192 clock cycles. I have tried in several ways to sample
the mentioned 192 bit variable at high speeds (200MHz+), and in most of my versions of the
TRU code this has been the case. However, as from version 0.1.49 and onwards I settled with
80MHz clock speed. This means that when you read out data using ChipScope now you will
bu�er a total of 8192 samples * 80MHz = 102.4µs

The CSSelect register can hold the values mentioned in tab. C.3. I also supply the name of
the ChipScope project you should load together with the choice of the MUX value, simply
because this will give you the name of the signals in ChipScope (a struggle to read the values
if busses etc. are not de�ned properly).

CSSelect Which Project to
Value Data Sent to ChipScope Load in ChipScope
0x0000 Pedestal Corrected 2x2 from ADC1&2 TRUNew.cpj
0x0001 Pedestal Corrected 2x2 from ADC3&4 TRUNew.cpj
0x0002 Pedestal Corrected 2x2 from ADC5&6 TRUNew.cpj
0x0003 Pedestal Corrected 2x2 from ADC7&8 TRUNew.cpj
0x0004 Pedestal Corrected 2x2 from ADC9&10 TRUNew.cpj
0x0005 Pedestal Corrected 2x2 from ADC11&12 TRUNew.cpj
0x0006 Pedestal Corrected 2x2 from ADC13&14 TRUNew.cpj

Tab. C.3 - ChipScope MUX Values

4As of 30. June 2008
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C.3. Register List

Trigger threshold registers (91 instances)

0xa5

to [4x4Thr] R/W 4x4 local thresholds to space-time-sums (16 bit )

0xff

To get some impression of which of the addressed 4x4Thr registers applies to which geomet-
rical 4x4 bunch of crystals, take a look at �g. C.1.

Z

X

Channel FEE1 FEE2 FEE3 FEE4 FEE5 FEE6 FEE7 FEE8 FEE9 FEE10 FEE11 FEE12 FEE13 FEE14

CSP
location:

1
0        16
1        17

2
2        18
3        19

3
4        20
5        21

4
6        22
7        23

5
8        24
9        25

6
10      26
11      27

7
12      28
13      29

8
14      30
15      31

ADC1 ADC2 ADC3 ADC4 ADC5 ADC6 ADC7 ADC8 ADC9 ADC10 ADC11 ADC12 ADC13 ADC14
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C7

C8

C9

CA
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CF 
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D1
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D6 

D7

D8

D9

DA

DB

DC

DD 

DE

DF

E0

E1
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E4 

E5

E6

E7
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E9

EA

EB 

EC

ED

EE

EF

F0

F1

F2 

F3

F4

F5

F6

F7

F8

F9 

FA

FB

FC

FD

FE

FF

Fig. C.1 - 4x4 Threshold Map [sofXLS]

Fig. C.1 depicts a branch of 14 FEE cards (the TRU sits in the middle but I left it out), seen
along the positive y-axis (that is, looking at the �back� of the PHOS module; the electronics
layer). FEEs are mapped to equally indexed ADCs on the TRU, and the FastOR channels to
equally indexed ADC channels. The numbering increases along the positive axis' of x and z,
respectively. On the right side of the table I attached the CSP numbering (charge sensitive
preampli�ers, one per crystal). This way you can now see which CSP are being mapped to
which 4x4, and which 4x4 threshold(s) that are a�ecting it.

Example: <path>/WriteToTRUReg.sh 00ff a5 a would write to the TRU on branch a. You
write to register a5 the value 0x00ff, which means that if the energy of CSP0,1,2,3,16,17,18,19
from FEE1 and FEE2 combined exceeds the value 0x00ff then you have a level0. Remem-
ber that you sum up the energy not only in space, but also in time. Also, what the number
0x00ff actually represent in respect to �energy� is not yet clear.
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D
TRU Logic Utilisation

This appendix simply shows a small selection of the MAP process summary (a part of the
implementation software in Xilinx ISE). They give an indication of the logical usage of the
old versus the new TRU design, but should not be considered absolute as there are several
factors that can a�ect them. First of all, the synthesiser, translate-, map- and place and
route function can all introduce small variations to the �nal distribution of logic. Only a
minor change in the code can cause several domino-e�ects which makes these tools decide
to go for a complete di�erent set of logical elements. Especially true is this for designs that
consumes an amount of logic which is close to the limit of resources available in the FPGA.
Then the tools will start to �nd ways to �pack� logic together and share common resources
fabric, which makes it very hard to keep track of what sort of impact your change in design
had for the total level of resource usage.

Also, I have seen that the numbers change quite a lot between di�erent versions of Xilinx ISE.
From version 9.1 to version 10.1 the register usage reported by XST (Xilinx ISE Synthesiser)
increased by about 5%, while the place and route tools reported about the same decrease.
Both of the summaries below is therefore from an implementation with ISE 10.1.

The single most important reason why you should not compare the numbers listed here
directly is that the old and the new design contains di�erent functional elements. Some new
functions were added, some old and redundant were removed, and a lot of the code was
revised. These factors aside, please feel free to have a look if you are interested. Note that
the new design uses less logic in general (the CLB usage is below the critical 90% level), and
takes only a fraction of the time to implement.
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D.1. Old Design

D.1 Old Design

Design Summary

--------------

Number of errors: 0

Number of warnings: 59

Logic Utilisation:

Total Number Slice Registers: 32,505 out of 47,232 68%

Number used as Flip Flops: 32,491

Number used as Latches: 14

Number of 4 input LUTs: 32,809 out of 47,232 69%

Logic Distribution:

Number of occupied Slices: 23,614 out of 23,616 99%

Number of Slices containing only related logic: 19,068 out of 23,614 80%

Number of Slices containing unrelated logic: 4,546 out of 23,614 19%

*See NOTES below for an explanation of the effects of unrelated logic.

Total Number of 4 input LUTs: 34,706 out of 47,232 73%

Number used as logic: 29,978

Number used as a route-thru: 1,897

Number used for 32x1 RAMs: 20

(Two LUTs used per 32x1 RAM)

Number used as Shift registers: 2,811

Number of bonded IOBs: 395 out of 692 57%

IOB Flip Flops: 5

IOB Master Pads: 118

IOB Slave Pads: 118

Number of TBUFs: 1 out of 11,808 1%

Number of RAMB16s: 130 out of 232 56%

Number of BUFGMUXs: 11 out of 16 68%

Number of DCMs: 6 out of 8 75%

Number of BSCANs: 1 out of 1 100%

Number of RPM macros: 15

Peak Memory Usage: 734 MB

Total REAL time to MAP completion: 12 mins 41 secs

Total CPU time to MAP completion: 12 mins 27 secs
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D.2. New Design

D.2 New Design

Design Summary:

Number of errors: 0

Number of warnings: 131

Logic Utilisation:

Total Number Slice Registers: 17,192 out of 47,232 36%

Number used as Flip Flops: 16,982

Number used as Latches: 210

Number of 4 input LUTs: 26,007 out of 47,232 55%

Logic Distribution:

Number of occupied Slices: 20,882 out of 23,616 88%

Number of Slices containing only related logic: 20,882 out of 20,882 100%

Number of Slices containing unrelated logic: 0 out of 20,882 0%

*See NOTES below for an explanation of the effects of unrelated logic.

Total Number of 4 input LUTs: 27,566 out of 47,232 58%

Number used as logic: 24,798

Number used as a route-thru: 1,559

Number used for Dual Port RAMs: 672

(Two LUTs used per Dual Port RAM)

Number used for 32x1 RAMs: 20

(Two LUTs used per 32x1 RAM)

Number used as Shift registers: 517

Number of bonded IOBs: 396 out of 692 57%

IOB Master Pads: 144

IOB Slave Pads: 144

Number of TBUFs: 1 out of 11,808 1%

Number of RAMB16s: 50 out of 232 21%

Number of BUFGMUXs: 9 out of 16 56%

Number of DCMs: 3 out of 8 37%

Number of BSCANs: 1 out of 1 100%

Number of RPM macros: 15

Peak Memory Usage: 576 MB

Total REAL time to MAP completion: 2 mins 24 secs

Total CPU time to MAP completion: 2 mins 19 secs
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E
Fascinating Facts

Please note that this is a copy-paste (with few edits) from [docLHCUG], but I put them in
anyway since I found them to be a good read.

1. When the 27-km long circular LHC tunnel was excavated, between Lake Geneva and
the Jura mountain range, the two ends met up to within 1 cm.

2. Each of the 6400 superconducting �laments of niobium-titanium in the cable produced
for the LHC is about 0.007mm thick, about 10 times thinner than a normal human
hair. If you added all the �laments together they would stretch to the Sun and back
�ve times with enough left over for a few trips to the Moon.

3. All protons accelerated at CERN are obtained from standard hydrogen. Although pro-
ton beams at the LHC are very intense, only 2 nanograms of hydrogen are accelerated
each day. Therefore, it would take the LHC about 1 million years to accelerate 1 gram
of hydrogen.

4. The central part of the LHC will be the world's largest fridge. At a temperature colder
than deep outer space, it will contain iron, steel and the all important superconducting
coils.

5. The pressure in the beam pipes of the LHC will be about ten times lower than on the
Moon. This is an ultrahigh vacuum.

6. Protons at full energy in the LHC will be travelling at 0.999999991 times the speed of
light. Each proton will go round the 27 km ring more than 11 000 times a second.

7. At full energy, each of the two proton beams in the LHC will have a total energy
equivalent to a 400 t train (like the French TGV) travelling at 150 km/h. This is
enough energy to melt 500 kg of copper.

8. The Sun never sets on the ATLAS collaboration. Scientists working on the experiment
come from every continent in the world, except Antarctica.

9. The CMS magnet system contains about 10 000 t of iron, which is more iron than in
the Ei�el Tower.

10. The data recorded by each of the big experiments at the LHC will be enough to �ll
around 100 000 DVDs every year.
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