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Abstract

Lifesaver is a point-absorber wave energy converter developed by Fred. Olsen. She is
currently deployed off the coast of England for pre-commercial testing. Lifesaver consists
of a toroidal floater supporting three Power-Take Off (PTO) units moored separately to the
seabed. The mooring lines are kept taut by electrical generators.

Large force oscillations have been encountered in the mooring lines during testing.
The source of force oscillations is identified as velocity fluctuations in the PTO drive train
due to sudden saturation of generator torque. The unfavorable transient response is a result
of low stiffness in the mooring line combined with large inertia in the drive train.

A numerical model of the mooring line and PTO unit is developed for use in control
system development. The system dynamics are identified through a frequency analysis
of a linearized model. Based on these findings a Kalman filter observer is developed to
estimate force and force gradient from the angular velocity of the electrical generator.

Three different controllers are proposed to mitigate the undesirable force oscillations.
The first prevents sudden saturation by limiting the generator force gradient, and should
be straight-forward to implement. Proportional-derivative (PD) feedback of the rope
force is enabled by the Kalman filter, and is shown to effectively mitigate the unwanted
behavior. However, PD feedback reduces the stability margin of the controller and must be
implemented with care. A control algorithm using hysteresis is explored. The hysteretic
controller behaves in a predictable and similar manner independent of the incoming wave,
and has the potential of increasing robustness during high sea states.

Real-time optimization of the main control parameter using extremum seeking is
explored. The algorithm may be used to track a time-varying optimum due to changes
in sea state. The adaptation rate is limited by the high peak-to-average power ratio of
Lifesaver.
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Sammendrag

Fred. Olsens bølgekraftverk Lifesaver er for tiden stasjonert utenfor England for pre-
kommersiell testing. Lifesaver består av en sirkulær flyter med tre separate enheter som
konverterer bølgeenergi til elektrisk energi. Enhetene er stramt forankret til havbunnen.

Kraftvibrasjoner i ankerlinene er blitt målt under testing. Kilden til kraftvibrasjoner
er identifisert som hastighetsvibrasjoner i giret som forbinder ankerlinen til en elektrisk
generator. Vibrasjonene oppstår som følge av brå saturering av kraften fra generatoren.
Den uønskede transiente responsen skyldes lav stivhet i ankerlinen kombinert med høy
treghet i giret.

En numerisk modell av ankerlinen og giret uvikles for å bli brukt til å teste ulike
kontrollsystemer. En frekvensanalyse av en linearisert modell blir utført for å bedre
forståelsen av dynamikken til systemet. Basert på resultatet blir et Kalman-filter utviklet
for å overvåke kraften i ankerlinene via hastigheten til generatoren.

Tre ulike regulatorer blir foreslått for å begrense de uønskede vibrasjonene. Den
enkleste unngår brå saturering ved å begrense kraftgradienten i generatoren. Kalman-
filteret muliggjør bruken av proporsjonal-derivat-regulering på taukraften. Dette viser seg
å være svært effektivt i å redusere vibrasjoner. En kontrollalgoritme som benytter seg av
hysterese utforskes. Hystere-regularoten oppfører seg likt og forutsigbart uavhengig av
den innkommende bølgen, og har derfor potensialet til å øke robustheten til systemet.

Til slutt blir sanntidsoptimering ved hjelp av ekstrempunktsøking utforsket. Algorit-
men finner den optimale dempningskoeffisienten til generatoren, og kan benyttes til å følge
et tidsvarierende optimum som følge av endring i sjøtilstand.
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Preface
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Chapter 1

Introduction

1.1 Motivation
It is now widely recognized among researchers that not only is the temperature of the
earth’s atmosphere rising, but also that human influence is the dominant cause of global
warming [2]. Limiting climate change will require substantial reductions of greenhouse
gas emissions. The largest source of man-made greenhouse gases is carbon dioxide from
the combustion of fossil fuels to produce power and heat. Although some reduction in
carbon dioxide emissions may be possible by use of carbon capturing [23], a significant
shift towards more use of renewable energy sources is necessary to mitigate climate change
[6].

Today, the vast majority of the earth’s energy supply, approximately 80%, comes from
fossil fuels. However, in recent years there has been a rapid increase in renewable energy,
as illustrated in Figure 1.1. In 2009 6% of the global final energy consumption came from
sources referred to as modern renewable energy sources [1]. In 2011 this number had risen
to 9.7% [4], an increase of more than 60%.

The most important renewable energy sources for production of electricity are hydro
power, wind power and solar power. With today’s technology, these energy sources can
provide 5.9 times the global energy demand [46]. A major challenge with renewable
energy is the uncertain and uneven power supply. Dividing the energy supply between
several sources yields a steadier supply. In this regard wave power has the potential of
becoming a significant supplement to the more established renewable energy sources.

1.2 Ocean Wave Energy
The idea of harvesting power from the ocean is not new. The first known patent for a Wave
Energy Converter (WEC) was filed in France as early as 1799 [15]. In Europe intensive
research and development of wave energy conversion began after the dramatic increase in
oil prices in 1973 [15]. Basic theory regarding wave energy conversion is well described
in literature, e.g. in the books by McCormick [31] and Falnes [17]. However, wave energy
technology is still considered to be very young and a commercial breakthrough is yet to

1



2 1.2 Ocean Wave Energy

Figure 1.1: Estimated renewable energy share of global final energy consumption for 2009 (top) [1]
and 2011 (bottom) [4].
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come. Only a few megawatt of wave power has been installed world-wide, most of it for
demonstration purposes [39]. Today most wave energy research focuses on operational
challenges and the practical aspects of producing electricity from ocean waves [21].

1.2.1 Energy potential
Fugro OCEANOR has calculated the total annual wave energy that approaches landmasses
worldwide to be approximately 17500 TWh [32]. This is slightly less than the world elec-
trical energy consumption (approximately 22000 TWh in 2008 [7]). Fugro OCEANOR
further estimate that the exploitable limit is at most 10-25%. This means that wave energy
has the potential to provide a significant portion of the worlds electricity needs. Wave
power is unevenly distributed across the world. High energy sites, such as some places in
the North Atlantic, have an average annual wave power of above 60 [kW/m] (see Figure
1.2).

The power of a wave reduces significantly as one approaches shallower waters [31].
This favors countries with deep coastal waters due to challenges with installing wave
energy sites far offshore [31].

Figure 1.2: Average annual wave power [kW/m] in Europe. Reprinted from Fugro OCEANOR
[32].
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Figure 1.3: Conversion principles as classified by Hagerman [20].

1.2.2 Common terms

The following is a list of common terms found in wave energy literature.

Absorber: The part of a wave energy converter which is set in motion by the
hydrodynamic excitation force.

Point absorber: An absorber which is short relative to the incoming wave length,
such that the excitation force is evenly distributed along the absorber.
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Reaction point: Power is extracted by relative motion between the absorber and the
reaction point. The reaction point may be a fixed structure, an inertial structure or
the seabed.

PTO: Power Take-Off, the system which converts the wave power into usable
power. May be placed at the absorber, at the reaction point or anywhere between,
but must be connected to both.

Machinery force: The force from the PTO acting on the absorber. In it’s simplest
form an absorber is acted upon by two forces; the hydrodynamic force and the
machinery force. Note; on the device considered in this thesis the machinery force
is the force from the production rope, which is referred to as the production force.

WEC: Wave Energy Converter, the full system needed to convert ocean wave energy
into mechanical or electrical energy. Includes at minimum the absorber, the PTO
and the reaction point. If the reaction point is the seabed a connection between the
reaction point and the absorber, i.e. a mooring line, is also needed.

1.2.3 Conversion principles
WECs operate on a wide variety of principles. Hagerman [20] has classified the converters
according to working principle as shown in Figure 1.3. The converters in the left column
utilize the varying surface elevation to drive a turbine, with either air or sea water as
the working fluid. The other converters utilize relative motion between bodies to extract
energy. Hagerman considers only systems where a hydraulic pump drives a working fluid,
but direct mechanical coupling between the absorber and an electrical generator is also
possible. The Lifesaver WEC, which will be presented shortly, is a combination of 6 and
8 (see Figure 1.3); pitching and heaving body tightly moored to the seabed.

1.2.4 Common challenges
Surviving the harsh ocean environment has been the most common challenge for
development of commercially viable wave energy technology. A WEC must obviously
be designed to withstand the most severe ocean storms. It must also withstand prolonged
exposure to less severe conditions, which may prove just as challenging. In order to be
cost-effective the device must be robust and low-maintenance, which is not an easy task
for mechanical and hydraulic components in proximity to sea water.

Another common challenge is achieving efficient conversion to usable energy, i.e.
electricity. This is a much more challenging task than merely converting into mechanical
energy [31]. To use off the shelf electrical generators the slow linear motion of the waves
must be converted to high-speed rotational motion. This adds both cost and complexity.
The irregular and oscillatory nature of ocean waves leads to a high peak-to-average ratio
for both power and forces [15]. This poses a challenge when designing electrical and
mechanical components.
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Figure 1.4: The Lifesaver Wave Energy Converter, pictured outside Falmouth Bay, England, where
she was deployed in April 2012. Courtesy Fred. Olsen.

1.3 The Lifesaver Wave Energy Converter
Lifesaver, pictured in Figure 1.4, is the latest of several WECs developed by Fred. Olsen.
She is currently deployed off the coast of England for pre-commercial testing, where she
is installed at a mean depth of 50 m. Lifesaver is a point absorber which produces power
from heave and pitch motion.

1.3.1 System Description
Lifesaver consists of a floater, the Power Take-Off (PTO) units, the primary mooring
lines and the secondary mooring system, in addition to an advanced electrical system
not considered in this thesis. A description of the electrical system is found in [42]. A
conceptual sketch of the device is shown in Figure 4.2. Key parameters are given in Table
6.1. Power is extracted by increasing the generator torque for positive heave velocities
when rope is being pulled out. The minimum generator torque is set to 10 kN to ensure
that the rope is kept taut for negative velocities.

Floater: For Lifesaver the absorber is referred to as the floater, and is a toroidal
steel structure with 16 m. outer diameter, 10 m. inner diameter and a mass of
approximately 55 tons. The floater can accommodate up to five PTOs.

PTO: Currently three PTOs are installed. Each PTO consists of a winch, a two-
step reduction gear and an electrical generator. The generators are connected to a
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Figure 1.5: Conceptual sketch of Lifesaver with the main PTO components; winch, gearbox and
generator. Courtesy Fred. Olsen.

common battery bank. The combined linear inertia of the PTO (generator, gearbox
and winch) is approximately 3000 kg.

Primary mooring line: The PTOs are moored to the seabed separately. Starting
from the seabed the primary mooring line consists of; a lower mooring rope of
approximately 30 m, a subsea buoy attached to the lower mooring rope, and a
production rope running from the subsea buoy to the winch. The subsea buoy
is located approximately 15 m. below mean sea level, and has a net positive
buoyancy of approximately 4 kN. The primary function of the subsea buoy is to
ease maintenance and allow for a shorter production rope.

Secondary mooring system: Lifesaver has five catenary moorings referred to as
the secondary mooring or storm mooring. The secondary mooring system serves to
limit the surge motion and as a safety precaution should the primary mooring lines
fail.

1.3.2 Operational challenges
Failure of the primary mooring lines has been the main operational issue of Lifesaver since
she was deployed in April 2012. The experiences gained during the first year of testing
with Lifesaver is presented by Sjolte et al [25]. Further literature on Lifesaver and the
Fred. Olsen wave energy project is found in e.g. [40], [12] and [41].

When operated correctly the winch and mooring line concept used on Lifesaver has a
high expected lifetime. However, the concept is vulnerable to abnormal loads and wear
mechanisms [25]. Force oscillations in the production rope, shown in Figure 1.6, have
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Table 1.1: Key parameters of Lifesaver. Stiffness parameters are approximate.

WEC Installation depth 50 m
Rated export power 70 kW
Installed generator capacity 400 kW
Number of PTOs 3
Total mass 55 tons

Floater Outer diameter 16 m
Inner diameter 10 m
Height 1 m

PTO Mechanical force limit 100 kN
Linear inertia 3010 kg
Gearbox ratio 39 rad/m

Production rope Mean length 15 m
Mean stiffness 1670 kN/m

Lower mooring rope Length 35 m
Stiffness 750 kN/m

Subsea buoy Height 1.0 m
Diameter 0.7 m
Volume 0.43 m3

Mass 217 kg

been encountered during testing. In addition, several incidents of slack mooring line has
been recorded with the on deck video surveillance. This unwanted behavior is likely to
cause additional wear and even mechanical failure. Especially the slack mooring line is of
concern, since it may lead to impulse loads or the rope getting tangled. The rope can be
kept taut by increasing the minimum force of the generator. Since the generator works as
a motor when winding in rope this will result in a decrease in energy output.

It is in place with a quote from the team responsible for developing Lifesaver:
"This [unwanted] behaviour is expected to be manageable through active generator
compensation, but until such control is in place, conservative control parameters are set
for the high wave states" (Sjolte et al [25]).

1.4 Objectives

Model development: The current numerical model of Lifesaver solves the floater
motion considering the mooring line forces as idealized control inputs. Experience
acquired during testing of Lifesaver has indicated that the mooring force cannot
be considered ideal. Hence it is desirable with a high-fidelity numerical model of
the PTO and mooring line, which later can be used to examine different control
systems. The model can also be used to assess the energy potential of Lifesaver
and as a design tool when upgrading or altering the system. The framework for the
expanded model was established during the project thesis Modelling and control of
a wave energy converter [30]. This model needs to be further improved.
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Figure 1.6: Force oscillations encountered during testing in rough sea. The oscillations have a
frequency of approximately 2 Hz. Fmooring is the tension of the mooring line while Fgen is the
force provided by the generator.

System analysis: In order to mitigate unwanted behavior a better understanding
of the mooring line and PTO dynamics is needed. This includes identification of
the source of force oscillations and identifying the resonant frequencies of the full
system.

Control system development: The previous objectives are merely necessary
prerequisites in order to explore different options for robust control of Lifesaver.
The aim is to develop a control system that limits the wear of the PTO and mooring
line. It is believed that a more sophisticated control system will be able to mitigate
the unwanted behavior without reducing the power output. Control strategies that
increase power output are also to be explored.



Chapter 2

Literature review

2.1 Modelling

Realistic models of WECs include several energy domains, usually hydrodynamic,
mechanic/hydraulic and electric. Models that consider the whole conversion chain from
wave power to electric power are referred to as wave-to-wire models. A time-domain
wave-to-wire model of Lifesaver has previously been developed and is described in [36].

Wave-to-wire models may be idealized in one or several of the energy domains. The
wave-to-wire model of Lifesaver includes only a very simple model of the mechanical
components. The mooring line and the PTO is replaced by an idealized machinery force
given by the control input.

2.1.1 Modelling of mooring lines

Hals used bond graph modelling to develop several wave-to-wire models of WECs [21],
some of which included mooring lines running from the reaction point to the absorber.
The mooring lines were modelled as spring-damper systems. Bond graph modelling is
a graphical and systematic approach to modelling of dynamic systems. It is only the
modelling procedure which is different from the more common method of formulating the
model as differential equations using physical principles. The resulting model will be the
same using the two procedures.

To the authors knowledge high-fidelity models of similar PTO and mooring line
configurations as found on Lifesaver have not been previously developed. A comparable
modelling problem was addressed by Rustad in her doctoral thesis [34]. She modelled
top-tensioned risers connected to a semi-submersible using the Finite Element Method
(FEM). The obtained model was simple yet realistic and well suited for use in control
system development. Rustad considered the platform dynamics uncoupled from the riser
dynamics, a simplification which cannot be made when modelling WECs.

FEM was also used by Aamo and Fossen for modelling of moored vessels [8]. They
considered mooring lines of constant length. The proposed procedure is well suited for
modelling of the secondary mooring system of Lifesaver. The primary mooring, however,

10
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is of variable length, making it challenging to formulate a FEM model of the system.
The problem can be circumnavigated by introducing an element of variable length at the
coupling between the floater, PTO and mooring line1.

2.2 Control
The control objective for a WEC is to optimize the power output under constraints imposed
by the system, and to ensure the structural integrity of the device. The first objective can
be considered optimal control, while the second objective belongs to robust control. This
thesis is mainly concerned with robust control.

2.2.1 Optimal control
Optimal control of WECs has been a popular research topic for many years. Jørgen Hals
covers the topic in detail in his doctoral thesis [21]. Although optimal control is outside
the scope of this thesis, knowledge about it is important to understand the challenges faced
when designing and controlling WECs. A frequency-domain approach to optimal control
is provided by Johannes Falnes in Ocean Waves and Oscillating Systems [17]. Hals goes
one step further in his thesis by evaluating control procedures in the time domain. The
theory in this section is mainly based on his work.

Optimal power extraction in frequency-domain

According to Hals the following equation "holds a linear approximation to the dynamic
behavior of a rigid body in water":

(
iω(M +Ma(ω)) +Rr(ω) + S

iω

)
v0e

iφu = Fe0e
iφe + Fm0e

iφm . (2.2.1)

(2.2.1) describes a body oscillating in a single degree of freedom with velocity amplitude
v0 when excited by periodic forces of amplitude Fe0 and Fm0 . ω is the oscillation
frequency, M +MA is the rigid body mass and added mass, Rr is the radiated resistance
(often termed added damping or potential damping), while S is the hydrostatic stiffness.

Fe is the hydrodynamic excitation force due to incident waves. Fm is the machinery
force, which in the case of Lifesaver is the force from the primary mooring lines. The left
parenthesis of (2.2.1) is termed the intrinsic impedance of the body. Further we have that
the intrinsic reactance is

X(ω) = ω(M +MA(ω))− S/ω, (2.2.2)

while the machinery impedance Zm is given by the relationship Fm0e
iφm = Zmv0e

iφv .

1This was done at an early stage of the model development, but the resulting model was computationally
intensive and did not add much value compared to the spring-damper approach.
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Optimal power extraction is achieved when the absorber is oscillating in phase with
the excitation force and with amplitude v0 such that the radiated power equals half the
excitation power [21] [17]. This is obtained if Zm equals "the negative complex-conjugate
[...] of the intrinsic impedance" [21]. Since Zm is complex it follows that the machinery
force has components both in-phase and out-of-phase with the velocity.

Selected control strategies

Optimal control requires knowledge of the future wave excitation, which in the case of
irregular waves becomes a non-causal control problem. Such a control system can not
be realized in practice. The problem can be made causal by predicting the future wave
excitation, e.g. by a Kalman filter or by upstream measurements. Many ingenious control
strategies have been devised to remedy the uncertain knowledge of the future, a selection
of which are described below.

Reactive control: In wave energy control, as opposed to other control theory,
reactive control refers to control strategies that require reactive machinery forces.
Machinery forces are reactive if the associated power flow is both in and out of the
system. The device can be forced to oscillate with optimal phase and amplitude by
requiring that the machinery force matches the intrinsic reactance of the oscillating
body [21]. Except at the natural frequency, where X(ω) is zero, this requires large
reactive forces and power flow [21]. For this reason reactive control is very difficult
from an engineering point of view.

Resistive loading: If the machinery force is restricted to not provide reactive power
the machinery force can be written Fm = Zmv. The controller becomes purely
resistive and the resulting system is called a passive converter [21]. Since the
machinery force depends only on the velocity we replace Zm with the damping
coefficient B. Hals shows that the optimal machinery damping is frequency-
dependent according [21]

B(ω) = −
√
Rr(ω)2 + (ω(M +MA(ω))− S/ω)2. (2.2.3)

Latching/clutching control: Optimum phase can be achieved without the use of
reactive power by stopping the motion during parts of the cycle [21]. This is
termed latching control. The main challenge with this control procedure are the
large machinery forces required during latching. Determining the latching instant is
also a challenge in irregular waves. Another way of achieving optimum phase is to
let the body oscillate freely during parts of the cycle [21]. This is termed clutching
control since the machinery force is disengaged when the body oscillates freely.

Tuning of damping:A third way of achieving optimal phase without the use of
reactive power is to tune the damping parameter B during the wave cycle. This can
be considered a combination of clutching and latching, since the machinery force
is increased or decreased depending on the desired phase. Schoen, Hals and Moan
used fuzzy logic for tuning of B [37]. For many WECs the saturation limits of B
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are very close to each other. If this is the case the optimal is to use a hysteretic
"bang-bang" controller which switches only between the maximum and minimum
values of B [24]. If Bmin = 0 this corresponds to clutching control.

Phase control: Control strategies where the desired machinery force depends on the
oscillation phase are commonly referred to as phase control. All control strategies
above expected the passive converter are considered phase control.

Extremum seeking: Extremum seeking is a real-time optimization procedure
which can be used in combination with any of the control strategies listed above.
Hals used extremum seeking in combination with resistive loading, where he
showed that the algorithm can track a time-varying optimum due to changes in sea
state [22]. Extremum seeking has also been used to increase power output of wind
turbines [47] [14].

Lifesaver is optimised for use as a passive converter, as this is believed to be the most
cost-efficient solution [42]. With the exception of very low sea states the PTOs are not
able to deliver the machinery force required for more advanced control strategies [41].

2.2.2 Robust Control
Hals defines robust control of WECs as "protecting the device and its machinery under
severe storm conditions" [21]. In this thesis the definition is expanded to "protection of the
device and machinery under all operating conditions", which also includes limiting wear
of mechanical components.

Robust control of WECs has not received much attention in literature. This is
somewhat peculiar, seeing that robust performance has been one of the main challenges
with developing commercially competitive technology. One explanation may be that few
devices have made it past an early development stage, in which proof of concept usually
receives the most attention.

Robust fuzzy-logic

Schoen et al ([37],[38]) proposed a procedure to increase the robustness of a fuzzy logic
controller. Fuzzy logic was used to maximize short-term energy production through
tuning of B. This required knowledge of the model and the sea state. The robustness
to process uncertainty was improved by an optimization algorithm that maximized the
stability margin of the fuzzy logic in the s-domain2. The main control problem addressed
in this thesis is related to actuator dynamics. The hybrid controller proposed by Schoen et
al is not considered applicable at this stage of the control system development.

Similar systems in different applications

Winches used for installation of subsea components or heave compensation of drilling
risers both bear resemblance with the PTO concept of Lifesaver. The actuator control

2s-domain refers to the Laplace transform of the controller, which will be explained in the subsequent chapter.
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objective of a WEC is to track the fast changing desired machinery force. For heave
compensation the control objective is to track a desired position [28]. This control
objectives differs significantly, such that experience from this field is difficult to benefit
from.

A comparable control problem is force control for wire tension during marine crane
operations. Skaare and Egeland state that the critical phase is maintaining wire tension
when the load goes through the splash zone [43]. During this phase inertial forces from
the load results in large oscillations in the wire tension. A parallel force/position control
strategy was shown to have best results in maintaining minimum wire tension. The
controller tracks a desired position at high-frequency and a desired force at low-frequency.
The inner loop position tracking limits accelerations, thus reducing dynamic forces. For
this to work a desired position must be available. This is in general not the case for WECs
as the absorber motion is given by the excitation force and difficult to predict. The strategy
also requires an accurate estimate of the wire tension.

Sagatun, Fossen and Lindegaard propose an impedance control scheme augmented
with acceleration feedback to limit dynamic forces of crane operations without requiring
other measurements than position and velocity [35]. The procedure, however, requires
desired acceleration, velocity and position, neither of which are readily available for
Lifesaver.

Pure acceleration feedback has been explored for Lifesaver in [30]. The performance
was limited due to poor acceleration estimates which resulted in unstable behavior.



Chapter 3

Theoretical background

In this chapter the necessary theoretical background for hydrodynamic modelling and
control system development is provided.

3.1 Wave theory
The theory in this section regarding ocean waves is extracted from the book Sealoads
by Faltinsen [18]. Long derivations are omitted since only the results are considered
important. For further reading on wave theory (including proofs for several of the
equations presented below) Marine Hydrodynamics by Newman [33] is recommended.

3.1.1 Regular wave theory
Ocean waves are commonly described by their velocity potential. For simplicity we
assume infinite water depth, although the theory is easily extended to finite water depth.
The velocity potential of a regular sinusoidal wave propagating in the negative x-direction
is

φ = gζa
ω
ekz cos(ωt− kx), (3.1.1)

where g is the acceleration of gravity, ζa is the wave amplitude, ω is the circular frequency,
k = ω2/g is the wave propagation number, while z is the vertical coordinate defined
positive upwards. Regular waves are often defined by their height H = 2ζa and their
period T = 2π/ω.

From the velocity potential we find the dynamic pressure pd of the wave as

pd = dφ
dt = ρgζae

kz sin(ωt− kx), (3.1.2)

where ρ is the water density. The total pressure in the fluid is according to Bernoulli [18]

15
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p = pd − ρgz + po, (3.1.3)

where po is the atmospheric pressure. By requiring that the water pressure is equal to the
atmospheric pressure on the surface we find the surface elevation as

ζ = pd
ρg

= ζae
kz sin(ωt− kx)

≈ ζa sin(ωt− kx). (3.1.4)

The last approximation is in accordance with linear wave theory, and is exact on the mean
surface level z = 0. The horizontal water particle velocity vx and vertical particle velocity
wx is found from the velocity potential as

vx = dφ
dx = ωζae

kz sin(ωt− kx), (3.1.5)

vz = dφ
dz = ωζae

kz cos(ωt− kx). (3.1.6)

The horizontal and vertical water particle acceleration is found by the time derivative of
(3.1.5) and (3.1.6), respectively.

3.1.2 Irregular sea
A real sea that one encounters at the ocean is referred to as an irregular sea. An irregular
sea can be described as a superimposed finite sum of sinusoidal waves of different phase,
amplitude and frequency. The surface elevation is then realized as

ζ = ΣNi=1
√

2S(ωi)∆ω sin(ωit− kix+ εi), (3.1.7)

where
√

2S(ωi)∆ω, ωi and ki is the amplitude, frequency and wave number of the
individual wave components while 0 < εi < 2π is a random phase angle. S(ω) is the
energy spectrum, which specifies how the energy is distributed across the frequencies.

The JONSWAP spectrum with values recommended by Faltinsen [18] is used in this
thesis. A sea state is then sufficiently defined by its significant wave height Hs and peak
period Tp. Hs is (approximately) the average of the one third highest waves, while Tp is
the frequency with the highest energy. Figure 3.1 shows the JONSWAP spectrum for a
moderate sea state Hs = 2.75 m., Tp = 10 s., along with a realization of the given sea
state. Hs and Tp are often assumed to be constant over a time period of 20 minutes.

3.2 Control theory
The theory in this section is taken from the books Marine Control Systems by Sørensen
[44] and Computer-Controlled Systems by Åstrom and Wittenmark [10].
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Figure 3.1: JONSWAP spectrum with parameters recommended in [18] forHs = 2.75 m., Tp = 10
s. A short realization of the sea state below.

3.2.1 Continous-time state space model

In control theory it is common to represent dynamic systems as state space models. In
continuous time (CT) a state space model is a set of differential equations,

ẋ = f(t,x,u,w),
y = h(t,x,u,v), (3.2.1)

where x is the state vector, u are the control inputs, w are the disturbances, y is the output
vector and v is the measurement error. If the system is linear and independent of time
(3.2.1) can be written

ẋ = Ax + Bu + Ew,
y = Cx + Du + v. (3.2.2)

This is known as a linear time invariant (LTI) system. A is the system matrix, B is the
input matrix, E is the disturbance matrix, while C and D are output matrices.
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3.2.2 Transfer functions
Linear systems can be effectively described and examined by use of transfer functions.
The Laplace transform is defined as

F (s) =
∫ ∞
−∞

f(t)e−stdt. (3.2.3)

Consider the differential equation

ẋ(t) = ax(t) + bu(t). (3.2.4)

Assuming x(t = 0) = 0 the Laplace transform of (3.2.4) is

sx(s) = ax(s) + bu(s). (3.2.5)

The relationship between input u(s) and output x(s) is

h(s) = x(s)
u(s) = b

s− a
. (3.2.6)

h(s) is known as the transfer function, and contains information about the dynamic
properties of the system. The transfer function of a LTI system can be found as

H(s) = C(sI−A)−1B + D. (3.2.7)

H will be an n×m matrix of transfer functions, n being the length of y and m being the
length of u, providing the relation between each input-output pair. Conversely a state space
model can be realized from a transfer function, which is often exploited when designing
control systems with desired dynamics.

3.2.3 Discrete-time state space model
Whereas real physical processes are continuous in time, a computer operates on Discrete
Time (DT) intervals. When designing a computer-controlled system and checking stability
we must also consider the DT implementation. The DT equivalent of (3.2.8) is a set of
difference equations,

x[k + 1] = Φx[k] + ∆u[k] + Γw[k],
y[k] = Cx[k] + Du[k] + v[k], (3.2.8)

where k denotes the time instant tk. It is assumed that the sampling time is constant such
that tk+1− tk = h, where h is the sampling time. For sufficiently small sampling time the
discrete time matrices can be approximated by Φ = I + hA (I being the identity matrix),
∆ = hB and Γ = hE. However, better approximations exist and are easy to find using
e.g. the c2d-function included in the Control System Toolbox of MATLAB [3]. In this
thesis the trapezoidal Tustin method [44] was commonly used.
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3.2.4 Pulse-transfer functions
The DT equivalent of the transfer function is the pulse-transfer function. Consider the
difference equation

x[k + 1] = ax[k] + bu[k] (3.2.9)

The forward-shift operator z is defined as zx[k] = x[k + 1]. This yields

zx[k] = ax[k] + bu[k]. (3.2.10)

The input-output relation is

h(z) = x[k]
u[k] = b

z − a
. (3.2.11)

h(z) is known as the pulse-transfer function. The pulse-transfer function of a DT LTI
system is

H(z) = C(sI− φ)−1∆ + D. (3.2.12)

To find the pulse-transfer function of a computer-controlled system, which consists of a
CT process and a DT control system, the digital-to-analog converter must also be included.
The digital-to-analog converter converts the discrete control signal u[k] to a continuous
signal u(t). If u(t) is constant over one sampling interval the conversion is done using the
Zero-Order-Hold (ZOH) method. The transfer function of the ZOH is

g(s) = 1− e−sh

s
(3.2.13)

The pulse-transfer function H(z) of the cascade g(s)h(s) can be found by following a
procedure described in [10]. For many systems H(z) can be found in look-up tables, e.g.
on page 54 of [10].

3.2.5 Stability, Controllability and Observability
Stability, controllability and observability are three important concepts within control
theory. The concepts will only be introduced briefly to ensure a common understanding.

Stability A system is marginally stable if the states |x(t)| < ∞ for all times t ≥ 0
and all initial conditions x(0). A system is asymptotically stable if |x(t)| → 0
as t → ∞. Marginal stability occurs for only an exact set of parameters and is
not relevant in practice [11]. For this reason asymptotic stability is implied when
writing only stability. A CT system is asymptotically stable if all poles of the transfer
function lie in the left half of the complex plane. A DT system is asymptotically
stable if all poles of the pulse-transfer function lie within the unit circle.



20 3.2 Control theory

Controllability A system is controllable if one can find a control input u that brings
the system from an initial state to a desired state in finite time. A DT LTI system is
controllable if the controllability matrix,

C = [∆,Φ∆, .. ,Φn−1∆], (3.2.14)

has full column rank, where n is the number of states.

Observability A DT LTI system is observable if the state vector x can be
reconstructed from the input u and output y. A DT LTI system is observable if
the observability matrix,

O = [CT ,ΦTCT , .. , (ΦT )n−1CT ]T , (3.2.15)

has full column rank, where n is the number of states.



Chapter 4

Model Development

A MATLAB [3] simulation model of Lifesaver has been provided by Fred. Olsen.
The provided model consists of the floating body only, with mooring line tension as an
idealized control input. The model is expanded to include both the mooring line and
PTO. With these changes the generator torque becomes the idealized control input for the
simulation.

η2

η3

φ1

φ2 φ3
τη1

η4

z

x

Figure 4.1: Illustration of the numerical model with a single PTO and mooring line.
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4.1 Overview of model
The Degrees Of Freedom (DOFs) included in the final model are shown in Figure 4.1. The
model is restricted to the x-z-plane. For simplicity only a single mooring line and PTO is
considered when developing the model.

η1 = [η1x
η1z

θ1]T is the absorber motion in surge, heave and pitch. Surge is the
horizontal motion while heave is the vertical motion. Pitch is the clockwise rotation
about the body-fixed origin, which is placed at the volumetric center of the floater.

η2 = [η2x
η2z

]T is the point where the production rope is connected to the floater,
and is referred to as the PTO position.

η3 = [η3x
η3z

]T is the position of the subsea buoy, which is placed approximately
15 metres below the mean sea level.

η4 = [η4x
η4z

]T is the position where the lower mooring rope is anchored.

φ = [φ1 φ2 φ3]T is the rotation of each stage of the belt gear.

τ is the electrical torque of the generator.

The distance from the rotation axis to the PTO is

r1/2 =
[
η2x
− η1x

η2z
− η1z

.

]
, (4.1.1)

Since r1/2 is a constant body-fixed vector we can write

η2 =
[
η1x

η1z

]
+ R(θ1)r1/2. (4.1.2)

R(θ1) is the Euler angle rotation matrix [19], which for a rotation in the x-z plane is given
by

R(θ1) =
[
cos(θ1) sin(θ1)
−sin(θ1) cos(θ1)

]
. (4.1.3)

We further define the vectors ri/j = ηj − ηi for i, j 6= 1.

4.2 Hydrodynamic model of floater
The provided model solves the force balance equation of the floating body,

MRBη̈1 = Fe(t) + Fs(t) + Fr(t) + Fm(t), (4.2.1)

where MRB is the rigid body mass matrix and Fe, Fs, Fr and Fm are vectors of external
forces and moments. The model is well described in the master thesis of Sandvik [36].



Chapter 4. Model Development 23

4.2.1 Hydrostatic and hydrodynamic forces
Fs is the hydrostatic force vector given by the displacement from the equilibrium position.
Fe and Fr are the hydrodynamic forces and moments. The excitation force vector Fe is
due to incident waves. The radiation force vector Fr is due to the diffracted wave caused
by a body oscillating in water. Fr is implemented as a state-space model,

ξ̇r = Arξr + Brη̇

Fr = Crξr + Drη̇ (4.2.2)

Ar, Br, Cr and Dr are approximated from the frequency-domain solution of the
oscillating body, following a procedure proposed by Taghipour, Perez and Moan [45].
ξr holds the fluid memory effects that are important when modelling WECs. Fe is
implemented in a similar way as Fr, but with the wave elevation ζ as input.

4.2.2 Mooring forces
Fm is the machinery force vector, which in the expanded model becomes the mooring
force vector. It is given by the tension, angle and placement of the mooring line. Let F
denote the force in the production rope. Assuming the rope follows a straight line from η2
to η3, the translational forces become

[
Fx
Fz

]
= Frn2/3, (4.2.3)

where

rn2/3 =
r2/3

||r2/3||
. (4.2.4)

||r2/3|| is the Euclidean norm of r2/3 such that rn2/3 is a normalized vector. The
corresponding pitch moment about the origin is

My = Fx(η2z − η1z )− Fz(η2x − η1x). (4.2.5)

Fm can be written as

Fm =

FxFz
My

 = F

[
rn2/3
R

]
, (4.2.6)

where

R =
∣∣∣[rn2/3 r1/2

]∣∣∣ (4.2.7)

is the determinant of a matrix with the two vectors in the columns.
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Figure 4.2: Schematic diagram of the PTO drive train. φ1 represents the winch, φ2 represents the
middle shaft of the gear and φ3 represents the generator.

4.2.3 PTO model
The PTO drive train consists of the winch and the generator output shaft connected by a
two-stage belt gear, as shown in Figure 4.2.

The belt force has both a static and a dynamic component. The static force is due to
pretension and does not create any resulting torque about the DOFs. The dynamic belt
force can be both positive and negative, and are sufficiently modelled as linear damper-
spring systems,

f1 = E1A1

l1
(φ1R1 − φ2r2) + d1(φ̇1R1 − φ̇2r2), (4.2.8)

f2 = E2A2

l2
(φ2R2 − φ3r3) + d2(φ̇2R2 − φ̇3r3). (4.2.9)

where tension is defined positive. The first terms of (4.2.8) and (4.2.9) are the spring forces
and the second terms are the damping forces. E is the elastic modulus of each belt,A is the
cross sectional area and l is the span. The equation of motion for each degree of freedom
is

I1φ̈1 + 2f1R1 = −Fr1, (4.2.10)

I2φ̈2 − 2f1r2 + 2f2R2 = 0, (4.2.11)

I3φ̈3 + 2f2r3 = τ, (4.2.12)
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where F is the rope force, τ is the generator torque and I1−3 are the rotational inertias.
(4.2.8) - (4.2.12) can be written in matrix form as

Iφφ̈ + Dφφ̇ + Kφφ = τφ, (4.2.13)

where τφ =
[
−Fr1 0 τ

]T
are the external moments. The system matrices are found

as

Iφ =

I1 0 0
0 I2 0
0 0 I3

 , (4.2.14)

Dφ = 2


d1R

2
1 −d1R1r2 0

−d1r2R1 d1r
2
2 + d2R

2
2 −d2R2r3

0 −d2r3R2 d2r
2
3

 , (4.2.15)

Kφ = 2


E1A1
l1

R2
1 −E1A1

l1
R1r2 0

−E1A1
l1

r2R1
E1A1
l1

r2
2 + E2A2

l2
R2

2 −E2A2
l2

R2r3

0 −E2A2
l2

r3R2
E2A2
l2

r2
3

 . (4.2.16)

4.2.4 Generalized PTO model
It is desirable to transform the rotational system to an equivalent translational model. By
relating all displacements to a common reference it is easier to identify the dominating
components of the PTO dynamics. The generalized coordinates are chosen as

q1 = φ1r1, (4.2.17)

q2 = φ2r2
r1

R1
, (4.2.18)

q3 = φ3r3
r2

R2

r1

R1
. (4.2.19)

(4.2.17) - (4.2.19) relate the PTO rotations to the linear motion of the production rope.
The generalized displacement vector is defined as q = [q1 q2 q3]T . The transformation
can now be written in matrix form as

q = T−1φ, (4.2.20)

where
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T−1 =

r1 0 0
0 r2

r1
R1

0
0 0 r3

r2
R2

r1
R1

 . (4.2.21)

Since T is independent of time it follows that q̇ = T−1φ̇. The equation of motion for the
generalized model is written

Iqq̈ + Dqq̇ + Kqq = τ q. (4.2.22)

Iq, Dq and Kq are found by requiring conservation of energy. The kinetic energy of the
system is

Ek = φ̇
T Iφφ̇ = q̇T Iqq̇. (4.2.23)

Inserting (4.2.20) into (4.2.23) and solving for Iq the generalized inertia matrix is found
as

Iq = TT IφT. (4.2.24)

Kq and Dq are found in a similar manner from the potential energy and energy dissipation
rate, respectively. The generalized force vector is found directly as τ q = Tτφ. Defining
the generalized generator force as

u = r3
r2

R2

r1

R1
τ, (4.2.25)

yields τ q = [−F 0 u]T .

4.2.5 Drive train friction
Dq is the damping associated with internal displacements in the drive train. Due to torque
balance between the pulleys no energy is dissipated through the belts. In addition to the
belt damping there is substantial friction in the drive train. The torque loss from generator
to winch has been found experimentally for a wide range of generator torques and speeds.
The measured values are shown graphically in Figure 4.3.

The drive train torque loss is approximated by a static component, a torque-proportional
component and a velocity-proportional component, which in general coordinates can be
written

floss = f0 + duu+ dv q̇. (4.2.26)
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Figure 4.3: Drive train torque loss found from experiments.

The coefficients du and dv are found by least-squares fitting. The velocity-dependent
component is assumed distributed evenly between the gear steps and is included in (4.2.22)
as an additional term dv/3 in the diagonals of Dq .

The static and torque-dependent component is implemented as a force loss directly on
the control input u. This can be done using a Coulomb friction model [26], which yields

ueff = u− f(u) tanh (cq3), (4.2.27)

where f(u) = f0 + duu. ueff is the effective force acting on the PTO and replaces u in
τq . c is set as high as possible without causing instability in the numerical solution.

4.3 Mooring line model
The mooring line is modelled as shown in Figure 4.1; two massless springs connected by a
point mass. This neglects the hydrodynamic forces acting on the rope sections. This may
be an oversimplification of the production rope dynamics, as will be shown by assessing
the magnitude of hydrodynamic forces.

4.3.1 Assessment of hydrodynamic forces

Morison’s equation, as presented by Faltinsen in [18], is a well-known formula for
calculating the hydrodynamic forces of submerged cylinders due to incident waves.
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The production rope can not be considered a circular cylinder1. Instead the equation
recommended by DNV-GL (formerly DNV) in RP-C205 will be used [16], where
Morison’s load formula is presented for slender structural members. The horizontal force
on a small longitudinal section dl of the rope is

dF = ρ(1 + CA)Av̇x + 1
2ρCDDvx|vx|, (4.3.1)

where the added mass coefficient CA and drag coefficient CD are found in tables. A is
the cross-sectional area andD is the characteristic cross-sectional dimension (typically the
width normal to force direction). The water particle velocity vx is found from the velocity
potential. The total force is found by integrating along the rope.

Except for very short wave periods the drag force was found to be dominating. Since
vx reduces exponentially with depth (remember (3.1.5)) the total force on the production
rope is approximately the same for different rope lengths. Table 4.1 shows the drag force
for different waves.

Table 4.1: Maximum drag forces on the upper 15 metres of the production rope for a selection of
regular waves.

Wave height [m] 1.0 2.0 4.0 8.0
Wave period [m] 6.0 8.0 10.0 14.0
Drag force [kN] 1.44 2.55 5.53 15.0

Recall that the minimum force of the generator is set to 10 kN. Since the hydrodynamic
force is normal to the rope it is probable that the hydrodynamic forces cause significant
deflection of the production rope during moderate and rough sea states.

4.3.2 Modelling of subsea buoy
Equation of motion

The subsea buoy is idealized as a point mass and assumed to move in heave and surge only.
Since the buoy has the shape of a circular cylinder the hydrodynamic forces acting on the
buoy depend on its orientation. This means the hydrodynamic forces must be evaluated in
local coordinates. The body-fixed velocity vector ν3 is given by the relation

η̇3 = R(θ3)ν3. (4.3.2)

The pitch angle θ3 of the buoy is not included as a separate degree of freedom, but
approximated as

cos θ3 = η2z
− η4z

||r2/4||
, (4.3.3)

1Fred. Olsen wishes to keep information on the production rope classified, so no further details will be given
here.
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or equivalently

sin θ3 = η2x − η4x

||r2/4||
, (4.3.4)

where r2/4 is a straight line from the PTO to the anchor. Using this approximation the
rotation matrix can be written as

R(r2/4) = 1
||r2/4||

[
η2z − η4z η2x − η4x

η2x − η4x η2z − η4z

]
. (4.3.5)

The 2DOF differential equation for the subsea buoy becomes

η̇3 = R(r2/4)ν3, (4.3.6)
MRB3 ν̇3 = Fm3 + Fhyd + Fs3 . (4.3.7)

MRB3 is the rigid body mass matrix, Fm3 are the forces from the two rope sections, Fs3

are the static forces due to gravity and buoyancy and Fhyd3 are the hydrodynamic forces.
Here we have neglected the Coriolis forces that arise when the body-fixed frame rotates
relative to the earth-fixed frame, a natural consequence of neglecting the pitch dynamics

Hydrodynamic forces

A simple procedure for evaluating the forces on the subsea buoy can be obtained by
combining a procedure recommended by DNV-GL with the theory given by Faltinsen
in [18]. Again according to DNV RP-C205 [16] the hydrodynamic force on a small 3-
dimensional body at rest affected by waves and current can be approximated as

Fi = ρV 1 + CAi
v̇i) + 1

2ρCDi
Sivi|vi|, (4.3.8)

where i is the force direction, V is the volume of the object, Si is the projected area normal
to the force direction, and vi is the water particle velocity evaluated at the volumetric centre
of the body. We recognise this as a Morison type formulation, which according to Faltinsen
[18] can be expanded to include body motion as

Fi = ρV CAi
(v̇i − ν̇i) + 1

2ρCDi
Si(vi − νi)|vi − νi|+ ρV v̇i, (4.3.9)

where νi and ν̇i is the body velocity and acceleration in the force direction. The first
and second terms are the added mass force and drag force, which depend on the relative
velocity between the body and the water. The last term is the force generated by the
undisturbed waves (in hydrodynamic literature referred to as Froude-Krylov forces), and
thus does not depend on the body motion.

The hydrodynamic force vector can be written in matrix form as
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Fhyd = MA(v̇− ν̇3) + Ddrag(v− ν3)|v− ν3|+ MFKv̇, (4.3.10)

where v is the two-dimensional water particle velocity in the body fixed frame. MA,
Ddrag and MFK are diagonal matrices representing the added mass, hydrodynamic drag
and Froude-Krylov forces, respectively.

Mooring forces on subsea buoy

The mooring force in global coordinates is given by the tension and angle of the two rope
sections as [

Fx
Fz

]
= Frn2/3 − Flrn2/3, (4.3.11)

where Fl is the tension of the lower rope. The force vector in local coordinates is

Fm3 = R−1
3 (r2/4)

[
Fx
Fz

]
. (4.3.12)

The calculation is simplified by R−1 = RT , since the rotation matrix is skew-symmetric
[19].

4.3.3 Mooring rope tension

Mechanical properties

Both ropes are characterized by progressive stiffness and low hysteretic damping. There is
uncertainty in the mechanical properties, and to complicate matters further the properties
are time-varying. This justifies the use of a simplified linear elastic model similar to the
one used for the belts.

Assuming negligible stiffness in compression F and Fl can be written on the form

F =
{

EεAε+ Eε̇Aε̇ ε > 0
0 ε < 0 ,

(4.3.13)

where ε is the rope elongation, Eε is the stiffness modulus and A is the cross sectional
area. Eε̇ is the loss modulus [29], and can be found by estimating the dissipated energy
during cyclic loading. Values for Eε̇ were hard to come by. Also, the expression for ε̇ of
the production rope (the time derivative of (4.3.17)) becomes computationally intensive.
For these reasons the combined damping of the rope sections were included as a linear
term dlinν2 acting in the longitudinal direction of the subsea buoy.
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Elongation of lower mooring rope

For the lower rope section the elongation is given by the displacement of the subsea buoy
as

εl =
||r3/4|| − ll0

ll0
, (4.3.14)

where ll0 = ||η40 − η30 || is the unstretched (initial) length of the rope.

Elongation of production rope

We get a similar equation for the production rope, but now the unstretched length is a
function of the winding of the rope;

l(φ1) = ||r20/30 || − r1φ1, (4.3.15)

where ||r2/30 || is the initial rope length. (4.3.15) can also be written

l(q1) = ||r2/30 || − q1. (4.3.16)

The rope elongation is then found as

ε =
||r2/3|| − l(q1)

l(q1) . (4.3.17)

4.4 Implementation and numerical solver
The numerical model consists of the floater, the mooring line and the PTO, which are
coupled by the force in the production rope. The system is implemented in SIMULINK
[5]. Due to the large range of inertias the model becomes very stiff. Simulations were done
using two different solvers implemented in MATLAB; the ode15s solver with a relative
error tolerance of 10−4 and ode23tb with a crude relative error tolerance of 10−3. Both
solvers are well suited for stiff systems. ode23tb was much faster and with no significant
reduction in performance.

Parameters of the mooring line and PTO model are given in Appendix C.

4.5 Model verification
The model is verified by comparing randomly chosen waves in similar sea states. This
allows only for a qualitative comparison between simulations and recorded data. The most
characteristic behavior of Lifesaver are the oscillations in the rope velocity. Recorded
velocity oscillations are shown in Figure 4.4. Simulated results for a similar wave are
shown in Figure 4.5. The simulation model captures the system dynamics sufficiently for
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control system development. The simulated oscillations are larger in amplitude and appear
to occur more frequently than in the real system. This indicates that the simulation model
behaves worse than the real system, in which case it can be considered conservative.

The model should be further verified before it is used as a design tool. This may be
done by performing a step response test on Lifesaver in calm water, such that the main
excitation is from the generator. The dominant system parameters can then be calculated
from the transient response. If the steps in generator force are both positive and negative
non-linearities in the system can also be identified.
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Figure 4.4: Characteristic velocity oscillations recorded during testing.
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Figure 4.5: Characteristic velocity oscillations from simulations. Note; the simulated wave was
randomly generated and does not compare to the wave during testing.



Chapter 5

System analysis

In this chapter the dominating components of the system dynamics are identified through a
frequency analysis and sensitivity analysis. The knowledge gained is then used to develop
a Control Plant Model (CPM) for use in control system design.

5.1 Linearized model

k4

q4

k1

q1k2q2k3q3

u

q6

q5

θ

Figure 5.1: Linearized model of Lifesaver with a single PTO and mooring line. u is the generator
force.

By restricting the surge motion of both the floater and the subsea buoy and assuming
small motions in pitch a linearized model can be developed. The linearized model is shown
in Figure 5.1, where the generalized coordinates q1 − q6 are defined. q1 − q3 correspond

33
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to the generalized coordinates introduced previously. q4 and q5 is the heave motion of the
subsea buoy and floater respectively.

q6 ≈ −||r1/2||θ is the motion of the PTO due to pitch rotation, where r1/2 is the
distance from the rotation axis to the PTO, as defined previosly. The corresponding inertia
is

m6 = I6||r1/2||2, (5.1.1)

where I6 is the moment of inertia in pitch. The corresponding stiffness is

k6 = kθ||r1/2||2, (5.1.2)

where kθ is the waterplane stiffness in pitch. Further, let k5 denote the waterplane stiffness
in heave.

The PTO, the subsea buoy and the floater are coupled by the force in the production
rope, which in the linearized model becomes

F = k1(q1 − q2 + q5 + q6). (5.1.3)

The equation of motion can be written directly as

Mq̈ + Dq̇ + Kq = u, (5.1.4)

where q = [q1, ..., q6]T and u = [0 0 u 0 0 0]T .
M = diag(m1, ...,m6) is the inertia associated with each degree of freedom. Added

mass is included in m4 −m6. The stiffness is found from (5.1.3) and Figure 5.1 as

K =


k1 + k2 −k2 0 −k1 k1 k1
−k2 k2 + k3 −k3 0 0 0

0 −k3 k3 0 0 0
−k1 0 0 k1 −k1 −k1
k1 0 0 −k1 k1 + k5 k1
k1 0 0 −k1 k1 k1 + k6

 . (5.1.5)

The linear damping matrix D has the same form as K, but the values are both uncertain and
difficult to evaluate. For d2 and d3 the linear damping terms of the numerical model were
used. For d5 and d6 no linear terms exist, while d1 and d4 consists of both the unknown
rope damping and the nonlinear damping from the subsea buoy. The unknown damping
terms are in any case assumed low such that the dynamic behavior of the system can be
sufficiently evaluated without correct values. All parameters used are shown in Table 5.1.
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Table 5.1: Parameters of the linearized model, with the associated component listed above. The
abbreviations are gen.;generator, p.rope; production rope, l. rope; lower rope.

Mass [kg]
winch gear gen. buoy heave pitch
m1 m2 m3 m4 m5 m6
406 450 2235 456 2.21 · 105 1.66 · 108

Stiffness [N/m]
p. rope 1. belt 2. belt l. rope heave pitch
k1 k2 k3 k4 k5 k6
1.67 · 106 1.18 · 108 2.44 · 108 7.51 · 105 1.23 · 106 9.86 · 108

Damping [Nm/s]
p. rope 1. belt 2. belt l. rope heave pitch
d1 d2 d3 d4 d5 d6
3330 6.41 · 106 1.33 · 107 1503 1.23 · 103 9.86 · 105

5.2 Frequency analysis
The linearized model can be written in state-space form as

[
q̇
q̈

]
= A

[
q
q̇

]
+ Bu. (5.2.1)

(5.2.2)

The system matrix A is

A =
[

06×6 I6×6
−M−1K −M−1D

]
, (5.2.3)

where I6×6 is the identity matrix. The input matrix B is

B =
[
01×8 1/m3 01×3

]T
. (5.2.4)

The frequencies of the system can be found from the eigenvalues of A [11]. To find the
natural frequencies set D = 06×6

1.
The natural frequencies are given in Table 5.2, along with the main drivers. It is

possible to find the main drivers analytically, e.g. from the individual transfer functions of
each degree of freedom or from oscillation modes. Due to the large range of frequencies

1The damping parameters are used in the model comparison in section 5.5
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this was numerically challenging. Instead an ad hoc procedure was used, where the DOF
of interest was isolated by fixing the other DOFs.

The lowest frequencies are related to the heave and pitch motion of the floater. The
frequency of approximately 2 Hz is the interesting one. It corresponds to the oscillations
recorded during testing, and is the lowest natural frequency of the combined PTO and
mooring line. At this frequency the full system, q1 − q4, oscillate together. The frequency
is in large caused by the elasticity of the mooring and the combined inertia of the PTO.

11.9 Hz is the natural frequency of the subsea buoy when fixing the PTO and floater.
75.5 Hz is associated with the winch, while 158 Hz is associated with the gearbox.

Table 5.2: Natural frequencies of the linearized system, with the associated main drivers.

Frequency [Hz] 0.37 0.39 1.99 11.9 75.5 158
Main driver heave pitch PTO buoy winch gear
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Figure 5.2: Step response of rope force for values of k4.

5.3 Sensitivity analysis
The main uncertainty of the model is related to the mechanical properties of the two rope
sections and the hydrodynamic added mass of the subsea buoy. A sensitivity analysis was
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Figure 5.3: Step response of rope force for different values of rope damping.

performed by comparing the response in rope force for a step in generator force. Since the
main elasticity is found in the lower mooring rope the stiffness sensitivity was assessed
by altering k4. Results are shown in Figure 5.2 - 5.4. The oscillation frequency is, not
surprisingly, sensitive to change in stiffness. Mooring line damping has an effect on the
force oscillations. Uncertainty related to the added mass of the subsea buoy does not have
a significant impact on the force oscillations.

5.4 Control Plant Model
A CPM needs to capture the main dynamics of a process without being overly complicated.
From Table 5.1 we note that

k6 � k5 and m6 � m5, i.e. the mooring-induced floater motion is much larger in
heave than pitch, indicating that the pitch dynamics can be neglected.

k3, k2 � k1, k4, i.e. stiffness of belts are much higher than stiffness of ropes,
indicating that the drive train dynamics can be neglected.

m3 � m4, i.e. the generator inertia alone is much larger than the subsea buoy,
indicating that the subsea buoy can be neglected.
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Figure 5.4: Step response of rope force for different values of added mass of subsea buoy.

K
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φ
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Figure 5.5: Illustration of the CPM.

The resulting CPM when neglecting pitch, subsea buoy and the gearbox is shown in Figure
5.5. x1 is defined as the rope reeling, x2 = ẋ1 as the rope velocity, x3 as the vertical
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position of the floater and x4 = ẋ3 as the vertical velocity of the floater.
The combined PTO inertia is

M = m1 +m2 +m3 = 3091 [kg]. (5.4.1)

The equivalent stiffness of the mooring line is

K =
(

1
k1 + 1

k4

)−1
= 5.18× 105 [N/m]. (5.4.2)

The equation of motion can be written.

[
M 0
0 m5

] [
ẋ2
ẋ4

]
+
[
D 0
0 d5

] [
x2
x4

]
+
[
K K
K k5 +K

] [
x1
x3

]
=
[
u
0

]
(5.4.3)

D = dv is chosen, i.e. the linear friction of the drive train. The mooring line damping,
which is uncertain, has thus been omitted. This means we have no terms in the diagonals
of the damping matrix.

5.4.1 Simplified Control Plant Model
Due to the difference in inertia between floater and PTO x1 responds much faster
to changes in rope force than x3. This means that at sufficiently small time scales,
approximately smaller than 0.3 seconds, the floater motion can be considered given. Then
a simplified CPM with only one DOF is

Mẋ2 +Dx1 +K(x1 + x3) = u (5.4.4)

where x3 can be considered an unknown disturbance. The natural frequency of the
simplified CPM,

Fn =
√
K/M

2π = 2.06 [Hz], (5.4.5)

is only ≈ 3.5 % larger than the corresponding frequency of the linearized model. The
discrepancy is smaller than the uncertainty of the values.

5.5 Comparison of models
A comparison of the three models can be done by plotting the transfer function in a
Bode plot [11]. Figure 5.6 shows the transfer function from control input to rope force.
The slight discrepancy between the CPMs and the linearized model around the critical
frequency of the 2 Hz is due to the subsea buoy, which adds both inertia and damping. The
CPMs show very similar response for frequencies above 1 Hz.
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Another way to assess the model dynamics is by the step response. The generator force
is given a step from 0 to 10 kN. The resulting displacement, as measured at the generator,
is shown in Figure 5.7. The dominant oscillations are similar in amplitude and frequency,
but the linearised model and CPM also include a low-frequency motion due to motion of
the floater.
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Figure 5.6: Bode magnitude plot of the transfer functions from u to F of the different models.
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Figure 5.7: Response in the generator displacement for a step in generator force from 0 to 10 kN.



Chapter 6

Control system development

This chapter starts with the formulation of two state observers. Next a DT CPM is
developed to evaluate stability for different control systems. Finally four different control
schemes are proposed:

Reference model: Mitigates rope force oscillations by limiting the generator force
gradient.

PD feedback: Dampens oscillations by Proportional-Derivative (PD) feedback of
the rope force.

Hysteretic control: A control algorithm with the potential of both increasing power
output and robustness.

Extremum seeking: An optimization algorithm which can be used in combination
with any of the aforementioned controllers.

6.1 Preliminaries

6.1.1 Reference table
Table 6.1 containing key parameters and definitions used in the control system design is
provided as a reference. The states are defined in Figure 5.5.

6.1.2 Current control system
Lifesaver operates as a passive converter. The generator force follows the force-velocity
relation shown in Figure 6.1. Recall that x2 is defined positive when reeling in rope, such
that negative velocities corresponds with upwards motion. Three operating domains can
be identified:

Damped domain: The region from approximately −0.26 < x2 < 0 follows the
nominal control law

41
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Table 6.1: Key parameters used in control system development.

States x1 Rope displacement
x2 = ẋ1 Rope velocity
x3 PTO vertical position
x4 = ẋ3 PTO vertical velocity

Output F = K(x1 + x3) Rope force
Input u Generator force

Measurements y1 = x1 + v1 v1 is measurement error
y2 = x2 + v2 v2 is measurement error

System M = 3091 Drive train inertia [kg]
parameters D = 897 Drive train friction [Ns/m]

K = 5.18× 108 Rope stiffness [N/m]
ωn =

√
K/M ≈ 13 Natural frequency [rad/s]

f(u) = f0 + duu Nonlinear friction [N]
Control B ≈ 300× 103 Damping coefficient [Ns/m]

parameters h = 1/200 Sampling time [s]
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Figure 6.1: Generator force u as a function of velocity x2, with Fmin = 10 kN, Fmax = 100 kN
and B = 350 kNs/m.

u = umin −Bx2, (6.1.1)

where B = 350 kNs/m is used in Figure 6.1.

Undamped domain: Force saturation occurs at umin = 10 kN to ensure that the
rope is kept taut, and at umax = 100 kN which is the mechanical limit of the
drive train. When saturated the force is independent of velocity, which results in an
undamped system.
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Negatively damped domain: At -1.55 m/s another saturation mechanism occurs.
The generator reaches its power limit and is no longer able to deliver the desired
torque. If x2 continues to decrease u also decreases, resulting in a negatively
damped system.

B should be chosen such that the converted electrical power is maximised. Optimal B
depends on conversion efficiency, system dynamics and sea state. The generator efficiency
is shown in Figure 6.2 along with the two saturation mechanisms. B = 350kNs/m was
chosen initially. During testing Fmax has been reduced to 50 kN and B to about 250
kNs/m (different values have been used throughout the test period). For these values force
saturation occurs already at ≈ 0.16 m/s, while power saturation occurs at ≈ 3m/s.

Figure 6.2: Efficiency plot for the generator. The thick line corresponds to the force-velocity plot
in Figure 6.1. Note: the velocity direction is defined opposite of that used elsewhere in this thesis.
Courtesy Fred. Olsen.

Remark on negatively damped domain

Power saturation has not been properly addressed in this thesis. Obviously negative
damping results in unstable behavior. The following update law for B is proposed to
increase robustness when power saturation occurs;

B = umin − u(x2,min)
x2,min

, (6.1.2)

where x2,min is the minimum recorded value of x2 and u(x2,min) is the force the generator
can deliver at x2,min. This ensures a sufficiently low B such that power saturation does
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not occur before x2,min, thus avoiding negative damping. x2,min can be reset for each
wave or follow the update law

x2,min[k + 1] =
{
x2[k] x2[k] < x2,min[k]
(1− h/Tf )x2,min[k] x2,min[k] < x2[k]

. (6.1.3)

where Tf is a time constant which decides how fast x2,min is increased.

6.1.3 Implementation
The generator force is set to follow the damping coefficient in the frequency transformer,
which operates at several kHz. This is possible since the control law depends only on the
velocity such that the generator operates as a pure damper. More sophisticated control
systems may have to be imposed at a higher level with lower operating frequency.

6.1.4 Sensors
In an attempt to keep costs down the only measurements available for the control system
are the rotation and angular velocity of the generator, both of which are measured by an
encoder. In the generalized coordinates of the CPM the measurements are y1 = x1 + v1
and y2 = x2 + v2.

It has not been possible to identify the sensor noise variance, but both measurements
are of high quality. The measurements are currently being sampled at a frequency of 200
Hz. This is also the frequency chosen for both the observers and controllers considered in
this thesis.

6.2 Observers
For control purposes an estimate of the rope force, and in some cases also the motion of the
floater, is desired. Two observers are proposed. The first estimates F from acceleration,
and is easy to design and implement. The second, a model-based Kalman filter, is more
computationally intensive and time-consuming to implement, but provides better estimates
with less delay.

6.2.1 Kinematic observer
The rope force can be estimated from the PTO dynamics as

F̂ [k] = u[k]−Mâ[k]−Dx̂2[k]− f(u[k])sign(x̂2[k]), (6.2.1)

where â is the estimated acceleration. Since F̂ is estimated using the kinematic relation
a = ẋ2 this can be considered a kinematic observer. In the simulation model f(u) was
implemented as Coulomb friction. In the control system it is sufficient to model it as
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opposing motion, hence f(u[k])sign(x̂2[k]). Eulers backward difference method [44]
yields an explicit expression for â;

â[k] = x̂2[k]− x̂2[k − 1]
h

, (6.2.2)

where h is the sampling time. This requires a smooth x̂2, which can be obtained by low-
pass filtering the measured velocity. One possible choice for filter is the second-order
Butterworth filter,

Flp(s) = ω2
c

(s2 +
√

2ωcs+ ω2
c

, (6.2.3)

where ωc is the filter cut-off frequency. According to [44] the corresponding discrete filter
is constructed by replacing s with

s = 2(z − 1)
h(z + 1) . (6.2.4)

ωc must be chosen smaller than the Nyquist frequency ωN = π/h, and significantly larger
than ωn. ωc = 8× 2π yielded satisfactory results.

6.2.2 Model based observer
A more sophisticated observer can be constructed by utilizing the knowledge of the system.
The process is adequately described by linear equations, making it suitable for a Kalman
filter observer. The Kalman filter can be constructed in many ways depending on how
uncertainty and unmodelled forces are included. The CPM illustrated in Figure 5.5 is used
for the Kalman filter.

System equations

The rope force can be written

F = K(x1 + x3) + b1, (6.2.5)

where b1 is an unknown time-varying bias that accounts for modelling error and unknown
forces. The PTO dynamics can be written

ẋ1 = x2, (6.2.6)
Mẋ2 = −Dx2 − F + u− f(u)sign(x2). (6.2.7)

The floater dynamics can be modelled as
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ẋ3 = x4, (6.2.8)
m5ẋ4 = −d5x4 − F + b2, (6.2.9)

wherem5 and d5 is the inertia and damping in heave. b2 represents the unmodelled forces.
The water plane stiffness is omitted since the instantaneous wave elevation is unknown.
The main damping of Lifesaver is from the PTOs, which is difficult to evaluate due to
the complex coupled dynamics. As such d5 can be considered a tuning parameter in the
Kalman filter. d5 = 10× 103 was used in implementation.

Bias model

The bias states are modelled as random processes. A first order Gauss-Markov model [13],

ḃi = − 1
Tbi

bi + wi, i = 1, 2, (6.2.10)

was chosen for both b1 and b2. Tbi is the bias time constant, while wi is zero-mean
Gaussian white noise.

b1 includes error in the mooring line stiffness and drive train friction, and is probably
well described by (6.2.10). b2, on the other hand, is dominated by the hydrostatic and
hydrodynamic forces, which we know oscillate with the mean wave period. Additional
states could be included to better represent the wave forces, but this would add complexity.
The proposed model was found to be sufficient.

State space formulation

We define the state vector as x = [x1 x2 x3 x4 b1 b2]T . Further we have the measurement
vector y = [y1 y2] , measurement noise vector v = [v1 v2] and process noise vector
w = [w1 w2]. (6.2.7) is linearized by including the nonlinear term f(u)sign(x2) in the
input using y2 directly in the argument. This yields

u = u− f(u)sign(y2). (6.2.11)

Since y2 is measured with high accuracy this is a valid approximation. (6.2.5)-(6.2.11) can
be written in matrix form as

ẋ = Ax + Bu + Ew, (6.2.12)
y = Cx + v. (6.2.13)

The obtained system is observable, and thus an observer can be constructed to recreate the
unmeasured states.
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Observer equations

According to [44] the discrete time Kalman filter equations for an LTI system can be
written

x̂[k + 1] = Φx̂[k] + ∆u[k] + K[k](y[k]− ŷ[k]), (6.2.14)
ŷ[k + 1] = Cx̂[k + 1], (6.2.15)

where φ and ∆ are the discretized versions of A and B, respectively. The ZOH
discretization method was used in implementation. x̂ is an estimate of x. K[k](y[k]−ŷ[k])
is a feedback term which drives ŷ towards y. For a time-invariant system the steady-state
Kalman filter gain is found as [13]

K∞ = XC(CXC′ + R)−1, (6.2.16)

where X is the solution of the discrete time Riccati equation;

ΦTXΦ−X−ΦTX∆(∆TX∆ + R)−1∆TXΦ + Q = 0. (6.2.17)

R and Q are the covariance matrices of the measurement noise v and process noise w.
Assuming uncorrelated noise R = diag(R1, R2) and Q = diag(Q1, Q2).

Rope force and force gradient estimate

The rope force is estimated from (6.2.5) using x̂1 and x̂3. Differentiating (6.2.5) the
gradient can be approximated as

˙̂
F = K(x̂2 + x̂4), (6.2.18)

where ḃ1 has been omitted to produce a cleaner estimate.

Filter tuning

Kalman filter tuning is not trivial. There is a total of six parameters that affect K∞, which
must be tuned interdependently. Tb1 and Tb2 are a measure of how fast the unmodelled
forces vary.

R represents the measurement uncertainty while Q represents the model uncertainty.
The generator rotation and velocity are measured with high precision and accuracy,
whereas the modelling error is in general large. This gives for a low R and high Q.
However, to produce clean estimates, i.e. for feedback control, more trust must be placed
on the model by lowering Q.

Tuning was done by trial and error under the following initial assumptions:

Tb2 ≈ 5 : b2 has a time scale approximately half a wave period.
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Tb1 � Tb2: b1 varies significantly faster than b2.

R2 � R1: R2 must be low such that error in the predicted acceleration leads to
update of b1. A largerR1 places less emphasis on y1 such that the estimates become
more robust to errors in K.

Q1 � Q2: The unmodelled forces acting on the floater are several orders of
magnitude larger than the uncertainty in the PTO model.

During tuning R and Q deviated far from their physically plausible values. The final
parameters are presented in Table 6.2.

Table 6.2: Kalman filter gains used in final implementation.

T1 T2 R1 R2 Q1 Q2
1 5 10−7 5× 10−9 1 100

6.3 Discrete time CPM

To ensure stability of different control laws the digital implementation must also be
considered. This can be done by designing a DT CPM, illustrated in Figure 6.3. The pulse-
transfer function P (z) represents the discrete process dynamics preceded by a digital-to-
analog conversion of the control signal. C1(z) and C2(z) are control laws in z-domain.

Σ C1(z)

CONTROLLER

P(z)

PROCESS

C2(z)

CONTROLLER

u0[k] u[k] y[k]

Figure 6.3: Discrete time control plant model.

The simplified CPM, which is controllable, is chosen as basis for the DT CPM. For further
simplicity friction is omitted. This is considered conservative since damping forces are
dissipative, i.e. they remove energy from the system. The Laplace transform of the
simplified CPM can be written
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sx1(s) = x2(s), (6.3.1)

sx2(s) = 1
M

(−Kx1(s) + u(s) + w(s)) , (6.3.2)

wherew(s) is an unknown disturbance mainly given by x3. A block diagram of the control
plant model in combined CT-DT with C1(z) = 1 and C2(z) = −B is illustrated in Figure
6.4, where x2 has been chosen as the process output. This corresponds to the nominal
control law currently used.

Σ ZOH Σ 1
Ms

SAMP−B

−K
sΣ

u0[k] u[k] u(t) x2(t)

x2[k]

F (t)

w(t)

Process

Figure 6.4: Control plant model with nominal control law. x1 is not shown explicitly in the diagram
but is part of the inner process loop.

Now the goal is to transform the CT part of the block diagram (the Process rectangle)
preceded by a ZOH to a DT transfer function P (z). P (z) will then provide the input-
output relation between the control input u[k] and sampled PTO velocity x2[k].

The process transfer function p(s) is found by inserting (6.3.1) into (6.3.2), which after
some rewriting yields

x2(s)
u(s) = p2(s) = 1

Ms+Ks−1 = 1
M

s

s2 + ω2
n

, (6.3.3)

where we in the last step have used that ω2
n = K/M . The transfer function of the ZOH is

g(s) = 1− e−sh

s
. (6.3.4)



50 6.3 Discrete time CPM

In time-domain this corresponds to holding the input value constant for a period h. The
discrete transform of the cascade g(s)p(s) is (according to Table 2.1 in [10])

P (z) = 1
M

ω−1
n sin(ωnh)(z − 1)

z2 − 2 cos(ωnh)z + 1 . (6.3.5)

Since ωnh ≈ 13/200 = 0.065 we have that sin(ωnh) ≈ ωnh and cos(ωnh) ≈ 1. (6.3.5)
simplifies to the much nicer

P (z) = 1
M

ω−1ωh(z − 1)
z2 − 2z + 1

= h

M

z − 1
(z − 1)2 . (6.3.6)

P (z) has two real poles at z = 1, which means it is marginally stable. The marginal
stability is due to the fact that the dissipative force Dx2 has been omitted. Hence we can
conclude that the internal dynamics of the real process are stable, in which case P (z) can
be simplified further;

P (z) = h/M

z − 1 , (6.3.7)

which covers only the input-output relation. This is the pulse-transfer function that results
from setting K = 0 in Figure 6.4, and corresponds to an integrator with gain 1/M . Since
−Kx1 is a stabilizing force doing so will not hide any internal instability.

6.3.1 Stability of nominal control law
The closed-loop pulse-transfer function H(z) of the system shown in Figure 6.4 is found
through the following steps;

H(z) = x2(z)
u0(z) = P (z)

P (z)B + 1

=
h

M(z−1)
hB

M(z−1) + 1

= h/M

hB/M + z − 1 . (6.3.8)

The stability region is found by setting z = ±1. The solution z = 1→ B = 0 corresponds
to the undamped domain with u0 = umin or u0 = umax. It is marginally stable, but again
stability can be assumed by considering the effects of Dx2.

Setting z = −1 yields B = 2M/h. This means that the maximum damping that can
safely be imposed by the control system is inversely proportional with the sampling rate.
This may be a limiting factor when designing more advanced control systems that require
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lower sampling rates. For the sampling rate considered in this thesis 2M/h ≈ 1200×103,
which is approximately 4 times the current value of B.

B < 0 corresponds to the negatively damped domain. The resulting system is unstable.
This is of course intuitive, but can also be seen from the poles of H(z).

6.4 Reference model
In steep waves with large accelerations the damped domain may last as short as 0.5
seconds. This excites the PTO dynamics causing the undesirable transient response. A
simple way to avoid sudden saturation is by limiting the generator force gradient according
to

T u̇+ u = ud, (6.4.1)

where ud is the desired generator force given by the nominal control law. (6.4.1) ensures a
feasible transition from the current state to the desired state, and is commonly referred to as
a reference model. The reference model is chosen to be of first order to avoid introducing
unnecessary delay.

6.4.1 Stability in z-domain

Discretizing (6.4.1) using Eulers forward method yields

u[k + 1] = u[k] + h

T
(ud[k]− u[k]). (6.4.2)

The result is both causal and explicit, which means it can be implemented without further
modification. The discrete transfer function is found using the forward-shift operator. This
yields

C1(z) = u(z)
ud(z)

= h/T

z − 1 + h/T
. (6.4.3)

The open-loop dynamics, which must be considered since they correspond to the
undamped domain, are

C1(z)P (z) = h/T

z − 1 + h/T

h/M

z − 1

= h2/(TM)
(z − 1 + h/T )(z − 1) , (6.4.4)

which is stable for T > h/2. The closed-loop dynamics are



52 6.5 Feedback control of rope force

H(z) = C1(z)P (z)
−C1(z)P (z)C2(z) + 1

=
h2/(TM)

(z−1+h/T )(z−1)
h2B/(TM)

(z−1+h/T )(z−1) + 1

= h2/(TM)
h2B/(TM) + (z − 1 + h/T )(z − 1)

= h2/TM

z2 − (2− h/T )z + h2B/(TM) + 1− h/T . (6.4.5)

Inserting h = 1/200, B = 300× 103 and M = 3000 the denominator becomes

den = z2 − (2− 1
200T )z + 300

2002 × 3T + 1− 1
200T (6.4.6)

Solving for T analytically is time-consuming and will not be done. Inserting T = 0.1
yields

z2 − 1.95z + 0.9525 = 0, (6.4.7)

with complex roots z = 0.975 ± 0.0433i. Since
√

0.9752 + 0.04332 = 0.976 the system
is stable, but not by much. Hence a reference model with low T should be implemented
with care.

6.4.2 Choice of T

The time constant T is a tuning parameter. For a step in ud and assuming ideal
implementation it can be interpreted physically as

u(t+ T )− u(t) = (1− 1
e

)ud ≈ 0.632ud, (6.4.8)

i.e. the time it takes for the generator force to reach 63.2% of the desired value. To avoid
exciting a natural frequency T > 2π/ωn must be chosen. A large T means production loss
since the generator force deviates from the desired force. The step response of the system
for different T are shown in Figure 6.5. T = 0.2 yields 17 % overshoot, while T = 0.4
yields 8 % overshoot. Both are a significant decrease from the system with no reference
model.

6.5 Feedback control of rope force
Feedback control can be used to improve tracking of a desired rope force given by
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Figure 6.5: F (solid) and u (dashed) for a step in ud from 10-50 kN, with first order reference model
T u̇+ u = ud.

Fd =


Fmin, 0 < x2

Fmin −Bx2 −x2,sat < x2 < 0
Fmax x2 < x2,sat,

(6.5.1)

where x2,sat = (Fmax−Fmin)/(−Bx2). A force balance equation of the PTO dynamics
can be written

F = u−Mẋ2 −Dx2 + f(u)sign(x2). (6.5.2)

Inserting u = Fd, as is the case for the current control system, yields the rope force error

F̄ = F − Fd = −Mẋ2 −Dx2 + f(u)sign(x2). (6.5.3)

The aim of feedback control is thus to cancel the inertial and dissipative forces of the PTO
dynamics, which will inevitably lead to a reduction in stability.

6.5.1 Feedback using kinematic observer
A proportional feedback control law using estimates from the kinematic observer is
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u[k] = Fd[k]− kP (Fd[k]− F̂ [k]). (6.5.4)

Inserting (6.2.1) for F̂ yields

u[k] = Fd[k] + kP
1 + kP

(Mâ[k] +Dx̂2[k] + f(u[k])sign(x̂2[k]). (6.5.5)

The expression can be made explicit by replacing f(u[k]) with f(Fd[k]). Mâ[k]
corresponds to acceleration feedback, which was explored in [30] and found to be difficult
to implement. The two last terms can be considered friction compensation [44], and should
be straight-forward to implement.

6.5.2 Feedback using model based observer
The Kalman filter provides estimates of F and Ḟ of sufficient quality for PD feedback.
By also including derivative feedback both performance and robustness is increased
significantly. The PD control law can be formulated as

u[k] = Fd[k] +Kp(Fd[k]− F̂ [k]) +Kd(Ḟd[k]− ˙̂
F [k]). (6.5.6)

Ḟd can be provided by a reference model Ḟd = (Fr − Fd)/T , where Fr is now given by
(6.5.1). In general Ḟd[k] is unknown, in which case it is omitted.

Error dynamics

Stability in the z-domain is shown in Appendix D assuming perfect estimates and no
disturbance (x3 = x4 = 0). However, this was found to be more of theoretical interest.
The estimates are far from perfect, and the assumption of no disturbance does not hold.
Instead robustness must be ensured through careful implementation. To gain a better
understanding of how PD feedback affects the system the error dynamics will be derived in
continuous time. Neglecting friction the force balance equation of the PTO can be written

Mẍ1 +K(x1 + x3) = u. (6.5.7)

For simplicity we assume that Fd and Ḟd are known and independent of x2. For the special
case of x3 = ẋ3 = 0 the rope force becomes F = Kx1. It follows that Fd = Kx1,d.
(6.5.6) can now be written as

u = Kx1,d +Kp(Kx1,d −Kx1) +KdK(ẋ1,d − ẋ1). (6.5.8)

Inserting (6.5.8) into (6.5.7) we obtain the stable error dynamics
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M

1 +Kp

¨̄x1 + KdK

1 +Kp

˙̄x1 +Kx̄1 = 0, (6.5.9)

from which it is clear that the proportional term removes mass from the system. The
natural frequency of the closed-loop system becomes

ωnP D
=
√
K(1 +Kp)

M
= ωn

√
1 +Kp. (6.5.10)

Choice of Kp and Kd

A natural upper bound is Kp = 1, which compensates F̄ exactly. Kd can be found from

Kd = 1 +Kp

K
2ζ

√
MK

1 +Kp

= 2ζ(1 +Kp)1/2ω−1
n , (6.5.11)

by specifying the relative damping ratio ζ. Kp = 1 and ζ = 1 yields Kd ≈ 0.21.

6.6 Hysteretic controller
The Kalman filter separates the wave-frequency floater motion from the high-frequency
rope motion. This enables control strategies that require knowledge of the phase. One
such strategy will be explored. The strategy is inspired by the "bang-bang" control scheme
proposed by Hoskins and Nichols in [24]1, and modified for use on Lifesaver.

For resistive loading in combination with a reference model B and T must be tuned
such that the performance is robust for the steepest waves. For less steep waves this limits
the power output unnecessarily.

Instead of following the nominal control law from umin to umax it may be more
efficient to bring the rope force to its mechanical limit in a controlled manner independent
of wave steepness. The following control algorithm, illustrated in Figure 6.6, is proposed
in combination with a reference model:

Initial phase: When at wave trough ud = umax.

Damped phase: After tdelay seconds switch to ud = umin −Bx2.

Down phase: When wave crest is reached ud = umin until wave trough.

The wave crest and wave troughs are identified from the sign of x4. A reference model
ensures smooth transition from u to ud. The control algorithm brings u to umax also for
waves that normally would not saturate. This means it is not suited for low sea states.

1The controller was discussed in Section 2.2.1
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Reference model Process Start algorithm

t > tswitch?ud = uprevious

phase=down?x4 < 0?ud = umin −Bx2

phase=down

x4 > 0?ud = umin

ud = umax, phase=up, tswitch = t+ tdelay

no

yes

nono

yes

yes

no

yes

Figure 6.6: Algorithm for hysteretic controller. Logic operations are marked by bold rectangles.
The rest are declarations.

6.7 Real-time optimization
Let B∗ denote the value of B that maximizes power output. B∗ is unknown and time-
varying. Extremum seeking can be used to find B∗ without requiring prior knowledge of
the sea state or process dynamics. The method does not require a model of the plant, an
important distinction from many other adaptive control methods [9]. This makes it suitable
for complex processes such as the one at hand.
In very general terms, the method finds the extreme value (minima or maxima) of
a performance function by introducing small perturbations in the control settings and
measuring the change in output. The algorithm is, in fact, rather intuitive. If the
performance increases the control parameter changes in the direction of the perturbation.

Stability of extremum seeking for general nonlinear dynamic systems has been proven
by Krstic and Wang [27]. There exists several variations of extremum seeking. The method
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implemented for use in this paper, illustrated in Figure 6.7, is described below.

Performance function: The process output J must be convex in the input parameter
B such that an extremum exists [22]. To maximize the average power output a
natural choice for J is simply the low-pass filtered electrical power. The filter F (s)
must filter out the power fluctuations due to variations in the incoming waves. This
means that the time scale of the filter should span several waves. A second order
lowpass filter,

F (s) = 1
T 2
F s+ 2TF s+ 1 (6.7.1)

with TF = 60 was used in simulations.

Perturbation signal: A perturbation is applied to B to get an implicit estimate
of the gradient of J . The perturbation can be periodic or stochastic, as long as it
has zero mean to avoid bias. The perturbation must be large enough to produce a
measurable change in J , while the frequency must be chosen lower than the process
dynamics, which are given by F (s). A sinusoidal perturbation,

B(t) = B0(t) + a sin(ωt), (6.7.2)

with ω = 2π/180 and a = 5× 103 was used. Different values for B0 were used.

High-pass filter: The gradient of J is found by removing the stationary part with a
high pass filter

p(B, t) F(s)
J(t)

HHP(s)×HLP(s)γ/s+

B(t)

sin(ωt− φ)a sin(ωt)

Process

Figure 6.7: Extremum seeking scheme used on Lifesaver to drive the performance function J(t)
towards its maximum. p(B, t) denotes the unknown process dynamics.
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HHP (s) = THP s

THP s+ 1 . (6.7.3)

Variations in J due to the perturbation signal must be allowed pass. This means
THP > πω must be chosen. THP = 160 was used.

Demodulation signal: The variations in J are multiplied with sin(ωt− φ) to drive
B towards B∗. φ is chosen such that the demodulation signal is in phase with
variations in J due to perturbations in B. The delay was found experimentally to be
approximately 20 seconds, in which case φ = 20ω.

Lowpass filter: The lowpass filter,

HLP (s) = 1
TLP s+ 1 , (6.7.4)

is not strictly necessary, but serves to remove wave-frequency oscillations in J
without introducing additional phase lag before the demodulation signal. The
oscillations occur due to the high peak-to-average power ratio during a wave cycle.

Integrator: To find the positive gradient γ must be positive. To avoid fluctuations
in B0 the short term variations must be dominated by the perturbation signal. This
means that γ must be chosen sufficiently low such that the integrator works at the
slowest time scale. γ was found by trial and error. Since the average electric power
varies significantly with wave height and period a single value of γ that works well
for all sea states was not found. This may be overcome by choosing a performance
function that is relatively independent of incoming wave power, e.g. the average
electric power divided by the estimated incoming wave power. This is similar to
what was done by Hals et al in [22].

Table 6.3: Parameters used in extremum seeking.

ω a TF THP TLP φ γ
2π/180 5× 103 60 160 20 20ω 1



Chapter 7

Results and discussion

7.1 Observer performance

The observers were tested on real data recorded on Lifesaver. Since neither the true rope
force nor true floater motion is known performance can only be evaluated qualitatively.

7.1.1 Comparison of observers

Figure 7.1 compares y2 and x̂2 using the Kalman filter and the kinematic observer.
Subscript lp is used for the kinematic observer. y2 can be assumed to be very close to
the correct value. x̂2lp

is phase-shifted, as one would expect. x̂2Kalman
is in phase with

y2, but deviates at local extrema.
Figure 7.2 compares F̂ using the Kalman filter and the low-pass filter. The Kalman

filter produces a cleaner estimate than the low-pass filter. Since x̂2Kalman
is in phase with

y2 it can be assumed that F̂Kalman is also in phase with F .
The kinematic observer does not provide estimates of sufficient quality for feedback

control. To ensure stability of pure proportional feedback kp must be set very low, which
limits the effect. This is mainly due to the estimation delay introduced by the low-pass
filter. The kinematic observer can however be used as a supervisor to ensure that the rope
force stays within acceptable limits by tuning of the control parameters. umax, umin, B
and T (if a reference model is used) are all control parameters that can be updated real-time
to obtain desired robustness for the prevailing sea state.

7.1.2 Additional Kalman filter estimates

The Kalman filter outputs two additional estimates; x̂4 and ˙̂
F . Figure 7.3 compares x̂4

with x̂2. Included in the plot is also the floater motion estimated by fusion of GPS and
IMU (accelerometer) measurements. The accuracy of this estimate is not high enough for
this to be considered the true value, but it does give an indication of the smoothness of the
floater motion.
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Figure 7.1: Estimates of x2 from Kalman filter and kinematic observer. y2 is recorded rope velocity.
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Figure 7.3: x̂4 estimated by the Kalman filter. x4 measured is the floater motion estimated by
fusion of GPS and IMU measurements.
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˙̂
F = K(x̂2 + x̂4) is shown in figure 7.4 along with the gradient of F̂ (calculated
numerically). The Kalman filter produces a clean estimate of Ḟ which is well suited for
feedback control.

Notice that x̂4 does not oscillate in the same way as x̂2. The Kalman filter may not
produce an accurate estimate of the floater velocity, but it is able to separate wave induced
motion from the motion due to elongation of the mooring line. The high-frequency
velocity oscillations can be damped by tracking of x̂4, thus limiting inertial forces. In
fact, by looking at the expression for ˙̂

F , this is what is done with the derivative term of the
PD feedback.

7.2 Controller performance

Performance of five different controllers were compared for a sea state Hs = 2.75 m.,
Tp = 12 s. The controllers and control parameters were:

Current controller

Reference model: T = 0.2.

PD feedback: kp = 1, kd = 0.1.

PD feedback/reference model: kp = 1, kd = 0.2, T = 0.2.

Hysteretic controller: tdelay = 1, T = 0.2.

B = 250 kNs/m, umin = 10 kN and umax = 50 kN were used for all controllers. kd was
set lower for the pure PD feedback controller since Ḟd is not available without a reference
model. Robustness of the hysteretic controller will be evaluated separately. Additional
plots from the case study are found in Appendix A.

7.2.1 Robustness

Rope force for a selected wave is compared in Figure 8.1, while generator force is
compared in Figure 8.2. The current control law shows significant oscillations and also has
an incident of slack in the mooring line between 37 and 38 seconds. The reference model
effectively reduces force peaks and should be easy to implement. It reduces oscillation
amplitude but does not dampen them.

The PD feedback controller is effective in dampening oscillations, but has a larger
initial overshoot than the reference model. The combination of PD feedback and reference
model removes oscillations and significantly reduces the initial overshoot when saturation
occurs.

The performance of PD feedback depends largely on the quality of estimates. If
estimates are poor the system may become unstable. For this reason PD feedback should
be implemented with care, and Kp and Kd may have to be set lower than the values used
in simulation. Robustness to modelling error should be verified by altering the model
parameters used in simulations.



Chapter 7. Results and discussion 63

37 38 39 40 41 42 43 44 45 46 47
0

1

2

3

4

5

6

7
x 10

4

Time [s]

F
o
rc

e
 [
N

]

 

 

Current

Reference

PD feedback

PD/reference

Figure 7.5: Rope force for a selected wave with four different controllers.
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Figure 7.6: Generator force for a selected wave with four different controllers.
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7.2.2 Power output
Generator power of the different controllers are shown in Figure 8.3. Average power output
of the short simulation considered in the controller comparison are shown in Table 7.11.
60 seconds is not enough for a conclusion to be drawn, but in any case direct comparison
using same B and saturation limits is not relevant. The proposed controllers deviate from
the nominal control law, and will inevitably lead to a reduction in power output if the same
B and saturation limits are used. However, the new controllers allow for less conservative
settings, which of course leads to an increase in power output.

Table 7.1: Average power output [kW] during 60 seconds.

Current Reference PD feedback PD/reference Hysteretic
6.73 6.54 6.14 5.92 6.14

7.2.3 Hysteretic controller
Performance of the hysteretic controller is shown in Figure 8.7. The algorithm appears to
be robust. Some chattering of ud occurs near wave crests (see additional plots in Appendix
A), but since u is low-pass filtered through the reference model this is not considered a
concern. It can also be avoided by additional hysteresis.

The peak rope forces are independent of wave steepness and depend only on the choice
of T . This means the force limits can be sustained simply by deciding T . PD feedback may
be used to remove the oscillations. The algorithm still needs some improvement. Currently
the power output is low. This is partly due to the fact that it occasionally wrongfully
identifies a wave trough, as happened at the 50 second mark in Figure 6.6. However, it
does show that phase control is possible using the estimates from the Kalman filter.

7.3 Extremum seeking
Extremum seeking was tested for regular waves where a time-independent optimum J
exists. The same B was used for all PTOs. Due to coupled dynamics multi-parameter
extremum seeking [9] must be implemented in order to individually tune B for each PTO.

The algorithm had largest effect for sea states were u did not saturate. For this reason
umax = 100 kN was used. Results for a steep wave H = 1.5 m., T = 6.8 s. are shown
in Figure 7.9, while results for a benign wave H = 1.5 m., T = 12 s. is shown in Figure
7.10. B0 = 250 kNs/m was chosen for the first, and B0 = 350 kNs/m for the second. The
adaptation rate was limited by the high peak-to-average power ratio. Convergence was
not achieved during the 60 minutes of simulation after the algorithm was switched on2.
However, the two tests show that the algorithm does indeed increase power output.

The adaptation rate is expected to be even lower in irregular seas. Still, it may be fast
enough to track a time-varying optimum due to changes in sea state.

1The simulations were short due to time-constraints and a computationally intensive model.
2Simulation length was limited due to computational constraints.
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Figure 7.7: Generator power for a selected wave with four different controllers.
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The increase in power output is closely linked to how convex J is in B, and how much
B∗ depends on sea state. If B∗ is relatively constant for a wide range of sea states, and
J is relatively constant for a wide range of B, the benefit from extremum seeking will be
low. For the steep wave (Figure 7.9) the increase in J is less than two percent. For the
benign wave (Figure 7.10) the increase is almost eight percent.

Figure 7.11 is included to show how the algorithm behaves when convergence is
achieved. Unfortunately there was a mistake in the generator efficiency such that B∗ is
lower and more defined compared to Figure 7.9.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
2.6

2.65

2.7

2.75
x 10

4

Time [s]

P
o
w

e
r 

[W
]

 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500
2.4

2.6

2.8

3

3.2

3.4

3.6
x 10

5

D
a
m

p
in

g
 [
N

s
/m

]

J

B

Figure 7.9: Normalized output function J and damping coefficient B for a regular wave H = 1.5
m., T = 6.8 s. ES algorithm is switched on after 1200 seconds due to transients in HHP . Wave-
frequency oscillations in J have been removed for clarity in plot.

7.4 Recommendations for future design
Although this thesis is mainly concerned with the control system, it is clear that the
unwanted behavior also can be mitigated by altering the design. The transient response
of the system is given by the stiffness, inertia and damping. Below is a discussion of how
these parameters affect the system, and how they can be altered.

Stiffness: Increasing the stiffness will move Fn away from the wave frequencies,
making the system less sensitive to fast changes in the generator force. The main
elasticity is found in the lower mooring rope. In the future a stiffer rope should be
considered.
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Figure 7.10: Output function J and damping coefficient B for a regular wave H = 1.5 m., T = 12
s. ES algorithm is switched on after 1200 seconds due to transients in HHP . Wave-frequency
oscillations in J have been removed for clarity in plot.

Inertia: Lowering the drive train inertia will also reduce Fn, which will affect the
system in the same way as increased stiffness. A decrease in inertia will also change
the magnitude of force oscillations. However, reducing the inertia is difficult due
to the large gear ratio required from winch to generator, and the required structural
strength.

Damping: Increased damping will of course reduce the transient response. Increas-
ing the drive train damping is not an option since it will lead to a production loss.
However, damping may be included anywhere along the mooring line. The most
cost-effective option is probably increasing the viscous damping of the subsea buoy,
e.g. by increasing the surface roughness or surface area. This will also increase the
hydrodynamic forces due to current and waves. The implications of this should be
assessed beforehand.

In the future Lifesaver may be installed at deeper waters. An assessment of this is included
in Appendix B.
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Chapter 8

Conclusion and future work

8.1 Conclusion
Analysis: The force oscillations are identified as the transient response due to
sudden saturation of the generator force. The main elasticity is found in the mooring
line while the dominating inertia is the combined inertia of the PTO. It is possible to
mitigate the oscillations by altering the design, but this may be difficult and costly.

Observers: In the author’s opinion the biggest achievement of this thesis is the
Kalman filter. It enables the use of several more advanced control algorithms,
including PD feedback and phase control. The kinematic observer is easier to
implement and may be used indirectly to ensure that the rope force stays within
acceptable limits.

Sampling time: Due to the large B needed for efficient energy conversion the
operating frequency of the control system must be sufficiently low.

Reference model: Limiting the generator force gradient is the easiest way to limit
force oscillations. A first order reference model is well suited for this. The reference
model does not rely on state feedback, which makes it robust and straight-forward
to implement.

Feedback control: PD feedback in combination with a reference model removes
both oscillations and the initial overshoot after saturation. Using this controller the
saturation limits may be chosen close to the mechanical limit of the drive train.
Since PD feedback cancels inertial and dissipative forces it must be implemented
with care. Error or delay in estimations may result in unstable behaviour.

Hysteretic control: Phase control is an interesting topic that should be explored
further. The proposed hysteretic controller behaves in a predictable and robust
manner. With further improvement it may also increase power output.

Optimization: Real-time optimization using extremum seeking is possible, but the
effect may be limited.
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8.2 Recommendations for future work
Model verification: The model should be further verified by experimental testing
on Lifesaver. A step response test is believed to be well suited, as the system
dynamics can be identified from the transient response. Such an experiment also
has high repeatability, making it more robust to external disturbances.

Controller testing: Robustness of the proposed controllers should be further
verified by simulations.

Increase damping of subsea buoy: The possibilities for limiting oscillations by
increasing the damping of the subsea buoy should be further explored.

Augmented Kalman filter: The proposed Kalman filter can be augmented with
a damped harmonic oscillator that represents the wave excitation. This should
improve the prediction capabilities.

Impedance control: Using Kalman filter estimates as input impedance control
schemes may be possible to implement. Tracking the floater velocity in an inner
loop and the desired force in an outer loop is a robust control procedure that may
limit force oscillations.

Multi-parameter extremum seeking: Individual tuning of B may increase the
power output. Extremum seeking can also be used to optimise the rope force in the
wind-in phase.

Phase control in low seas: Power output can be increased by improving the
oscillation phase of the floater such that the peak velocities are closer to the peak
excitation forces. In low sea states this may be achieved by active tuning of B. The
neural fuzzy-logic controller proposed by Schoen et al [37] may be suitable for this
purpose.
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Appendix A

Comparison of controllers
Additional plots from case study with Hs = 2.75 m. and Tp = 12 s.
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Figure 8.1: Rope force for with four different controllers.
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Figure 8.2: Generator force with four different controllers.
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Figure 8.3: Generator power with four different controllers.
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Figure 8.4: Rope force, generator force and desired force with the hysteretic controller.
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Appendix B

Effects of increased water depth

Case study with varying values of T for the reference model and varying depth. Elastic
modulus and cross-sectional area of ropes and submergence of subsea buoy is kept
constant. Increasing T reduces oscillations. Increasing depth reduces stiffness which
leads to reduced oscillation frequency. Reduced frequency means the PTO is less excited
by fast changes in generator force. Reduced stiffness means more motion of the subsea
buoy, which increases damping. For these reasons the oscillation amplitude does not
differ significantly. However, elasticity of mooring leads to production loss. If Lifesaver
is installed at deeper waters a thicker rope should be considered such that the resulting
stiffness is similar or higher than at the current location. Note; scale of plot with 100 m.
water depth differs from the others.
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Figure 8.5: Rope force (solid) and generator force (dashed) with different values of T and 50 m.
water depth.
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Figure 8.6: Rope force (solid) and generator force (dashed) with different values of T and 100 m.
water depth.
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Figure 8.7: Rope force (solid) and generator force (dashed) with different values of T and 200 m.
water depth.
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Appendix C

Numerical model
The floater model is classified. Numerical values of the PTO and mooring line model
developed in this thesis are presented below. The PTO and mooring line model can be
implemented in any model that simulates the motion of η2.

Generalized PTO model

Iqq̈ + Dqq̇ + Kqq = τ q.

Iq = 103 × diag(0.4062, 0.4500, 2.2347)

Dq = 106 ×

 6.4051 −6.4051 0
−6.4051 19.668 −13.263

0 −13.263 13.263

+ 299.3×

1 0 0
0 1 0
0 0 1



Kq = 108 ×

 1.1798 −1.1798 0
−1.1798 3.6228 −2.4430

0 −2.4430 2.4430



τ q =
[
−F 0 ueff

]T
ueff = u− (1001 + 0.0358u) tanh(100q3)

Subsea buoy model

η̇3 = R(r2/4)ν3

MRB3 ν̇3 = −Dmν3 + Fm3 + Fhyd + Fs3 .

Fhyd = MA(v̇− ν̇3) + Ddrag(v− ν3)|v− ν3|+ MFKv̇,
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Fs3 = RT (r2/4)[0 2188]T

MRB3 = diag(217, 217)
MA = diag(285.2, 238.9)

MFK = diag(440, 440)
Ddrag = diag(358.75, 197.3)

Dm = diag(0, 4000)

Dm represents mooring line damping acting on subsea buoy.

Lower rope model

Fl = max(26.3× 106 ||r3/4|| − 35
35 , 0)

η4 = [0 − 50]T

Production rope model

F = max(25× 106 ||r2/3|| − 15 + q1

15− q1
, 0)
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Appendix D

PD feedback in z-domain
In section 6.5 we showed that PD control, in particular the proportional term, will reduce
stability. Since the DT CPM is not exact, and the feedback is on estimated rather than
exact states, stable poles of the pulse-transfer function is not sufficient to indicate stability.
Instead stability must be ensured by simulations and careful implementation. The rather
lengthy calculations will, however, show how stability can be ensured in the z-domain for
proportional-derivative control.

When Ḟd is unknown the PD feedback control law is

u[k] = Fd[k] +Kp(Fd[k]− F̂ [k])−Kd( ˙̂
F [k]).

Assuming perfect estimates and no disturbances (x3 = x4 = 0);

F̂ [k] = Kx1[k],
˙̂
F [k] = Kx2[k].

The DT CPM developed in section 6.3 outputs x2 and can not be used for the PD feedback
controller. Let px1(s) denote the transfer function from u(s) to x1(s). px1(s) can be found
from p(s) (the transfer function from u to x2 of section 6.3);

px1(s) = p(s)
s

= 1
K

ω2

s2 + ω2 (8.2.1)

The cascade g(s)px1(s) is found from Table 2.1 in [10] as;

Px1(z) = 1
K

(1− cos(ωh))(z + 1)
z2 − 2 cos(ωh)z + 1

The relation between x2[k] and x1[k] can be written

x1[k] = x1[k − 1] + h

2 (x2[k] + x2[k − 1]) (8.2.2)

where the trapezoidal (Tustin) method is used to ensure a stable mapping ([k] instead of
[k+ 1] on the right-hand is chosen to ensure a causal expression). Applying the backward
shift operator yields
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zx1[k]− x1[k] = h

2 (zx2[k] + x2[k])

2x1(z − 1) = hx2(z + 1)
x2

x1
= 2(z − 1)
h(z + 1) (8.2.3)

The control law can now be expressed solely as a function of x1. In the damped domain
we get;

u[k] = (1 +Kp)umin[k]−
{
KpK + (B(1 + kp) +KdK) 2(z − 1)

h(z + 1)

}
x1[k] (8.2.4)

The curly brackets is C2(z), i.e. the pulse-transfer function of the feedback controller. In
addition we have a gain (1 + kP ) of the input. The closed-loop dynamics are

H(z) = x1(z)
umin(z) = (1 + kP ) Px1(z)

−C2(z)Px1(z) + 1 (8.2.5)

The poles of H(z) are found numerically using the symbolic maths toolbox implemented
in MATLAB [3]. Inserting h = 1/200, ω = 13, Kp = 1, Kd = 0.1, B = 300× 103 and
K = 5.2 × 105 yields z = 0.992 and z = 0.057. For the undamped domain B = 0 the
poles are z = 0.955± 0.08.
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