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Summary

When we move from the complex plane to several complex variables, several things

changes. One of these things is that we can sometimes extend all holomorphic func-

tions defined on a domain to a larger domain. This gives rise to a question: for any

domain in Cn , what is the largest domain all holomorphic functions defined on it can

be extended to, and how do we find this domain? Several methods have been found,

but in 2008 Burglind Jöricke published a paper called "Envelopes of holomorphy and

holomorphic discs", that provided a way to construct this largest domain, called an en-

velope of holomorphy, in a far more effective way than previously. However, the proofs

were only given in the case of n = 2, and a lot of new concepts made it at times difficult

to understand. Therefore my Master’s thesis consists of generalizing the proofs to all

n > 1, and hopefully simplifying and changing some of the proofs.

There are three chapters: Chapter 1 is a short review of some notation and funda-

mental concepts and ideas. Chapter 2 proves some results needed for Jöricke’s proofs.

Finally, Chapter 3 is my version of the proofs in Jöricke’s paper, which sometimes differ

from the original.

Oppsummering

Når vi går fra det komplekse planet til flerdimensjonalt komplekst rom, er det flere ting

som endrer seg. En av disse tingene er at vi noen ganger kan utvide alle holomorfe

funksjoner definert på et domene til et større domene. Dette leder til et spørsmål: for et

domene i Cn , hva er det største domenet vi kan utvide alle holomorfe funksjoner på det

opprinnelige domenet til, og finnes det en metode for å finne det? Flere metoder har

blitt oppfunnet, men i 2008 publiserte Burglind Jöricke en artikkel kalt "Envelopes of

holomorphy and holomorphic discs", som gav en veldig effektiv måte å konstruere den

største utvidelsen, kalt holomorfienvelopen. Bevisene i den artikkelen var kun gitt i til-

fellet hvor n = 2, og den introduserte mange ne konsepter, noe som gjorde den vanskelig

å forstå. Derfor handler min masteroppgave om å generalisere bevisene til alle n > 1,
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og forhåpentligvis endre og forenkle noen av bevisene.

Det er tre kapitler: Kapittel 1 introduserer noe notasjon og flere fundamentale kon-

septer og ideer. Kapittel 2 beviser noen resultater som trengs for Jöricke’s bevis. Til slutt

er Kapittel 3, som er min versjon av Jöricke’s artikkel, noen ganger med endrede beviser.

Trondheim, May 30, 2016

Håkon Strand Bølviken
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Chapter 1

Preliminaries

1.1 Notations and Early Notions

This chapter will define some of the most important concepts used in this Master’s the-

sis, and provide examples that will motivate concepts in the later chapters. First, here

is some notation regarding holomorphic functions.

Definition 1.1.1. We will often call the set of all holomorphic functions on a domain D

by H(D).

Definition 1.1.2. Say that we have a domain D in Cn and a domain B for which D is a

proper subset. Let f be a holomorphic function on D. We say that a holomorphic function

F defined on B is an extension of f if f(z)=F(z) for all z ∈ D. If such an F exists, we say that

f can be extended to B.

This Master’s thesis will revolve around extending all holomorphic functions de-

fined on a domain to a lager domain. The next theorem will show that this is not

possible in one complex dimension, but we will later show that extending every sin-

gle function on a domain to some larger domain may be possible in several complex

2



1.1. NOTATIONS AND EARLY NOTIONS 3

Figure 1.1: A cut of G when b = 0.

Figure 1.2: G when b = 0 and y = 0.

dimensions.

Theorem 1.1.1. Let D be a connected domain in C, and let B be a domain so that D (B.

Then there is at least one analytic function defined on D that does not extend to B.

Proof: Let a ∈ B D . Then f (z) = 1

z −a
is holomorphic everywhere except at a.

That means that it is holomorphic on D , but not on B . It is also impossible that there

is an extension of f (z)|D which differs from f (z) on B , because extensions of analytic

functions are unique, thus any extension must go to infinity when we approach a. �

Next we have an example showing that extending all analytic functions on a domain

to a larger one is possible for at least one domain in C2.

Example 1.1.1. Let G be a domain in C2. We write z=x+iy and w=a+ib. Let G be the
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union of the following domains:

G1 = {(z, w) ∈C2 : |z| < 2, a ∈ (−1,0.5],b ∈ (−1,1)}

G2 = {(z, w) ∈C2 :
7

4
< |z| < 2, a ∈ (0,3),b ∈ (−1,1)}

An idea about the shape of this domain can be gotten from Figures 1.1 and 1.2.

A holomorphic function f on this domain must be on the form

f (z, w) =
∞∑

l=−∞
an(z)wn

where an is an analytic function. We can find a point b=(z,w) in the domain where

w=0. In b an and all its derivatives must be 0 for all n < 0, otherwise f or one of its deriva-

tives with respects to z would get a singularity in G. This means that an = 0 for n < 0,

so

f (z, w) =
∞∑

l=0
an(z)wn

Let us now look at a point inside the "glass", that is to say a point

ξ0 ∈ H = {|z| ≤ 7

4
, a ∈ [

1

10
,3),b ∈ (−1,1)}

Write ξ0 = (z0, w0). Now change the value of the imaginary part of w0 until you get

a point ξ1 = (z0, w1) inside G, so that | w0 |<| w1 | . At this point the power series of f

converges absolutely. But by the direct comparison test for convergence of series, f must

also converge absolutely in ξ0, as | an(z0)wn
0 |<| an(z0)wn

1 | for all n.So f converges for

all points ξ0 ∈ H, and so we can extend any f ∈ H(G) to G ∪H.

A result we will use without proof is that on a pseudoconvex domain, one can not

extend all analytic functions to a larger one. G ∪ H is convex, and thus pseudoconvex.

Therefore G ∪H is the largest domain we can extend all analytic functions to.



1.1. NOTATIONS AND EARLY NOTIONS 5

Example 1.1.1 shows us that unlike in 1 complex dimension, in several dimensions

there are domains so that all holomorphic functions can be extended to a larger do-

main. From this concept it naturally follows to think about the largest possible domain

so that all holomorphic functions on a domain can be extended to it. This gives rise to

the idea of an envelope of holomorphy. In this chapter it will not be proven that the

envelope of holomorphy of a domain exists, that will be proven in chapter 2.

Definition 1.1.3. The envelope of holomorphy of a domain D is the largest domain con-

taining domain containing D such that all holomorphic functions defined on D can be

extended to the envelope of holomorphy. The envelope of holomorphy of D can be written

as D̃.

Definition 1.1.4. A domain of holomorphy D is a domain which is equal to its own en-

velope of holomorphy, that is to say that for any domain B for which D is a proper subset,

at least one holomorphic function defined on D can not be extended to all of B.

Example 1.1.1 shows a way to find the envelope in a simple case, as the extension

found is convex, and thus pseudoconvex. However, there are problems that may arise

for some domains, as the next example will show. This example will resemble the last,

but with one part added that will drastically change the properties of the domain.

Example 1.1.2. Let U be a domain, U⊂⊂ C2. It will be the union of three parts, U1,U2

and U3. We will write a point in C2 as (z, w), where z = x + i y and w = a + i b.

U1 = {(z, w) ∈C2 : |z| < 2,−1

2
< a < 1

10
,b ∈ (−1,1)}

U2 = {(z, w) ∈C2 :
7

4
< |z| < 2,0 < a < 3,b ∈ (−1,1)}

U3 needs some more explanation. It will be a kind of tail going from the U1, going

on the outside of U2 and then dropping down into the inner part of U2. We start with

defining a curve made of these parts:

The curve starts at (0,0), then follows (3+3e i t ,0),−π≤ t ≤ π

2
to (3+3i ,0). Note that 3

is in the centre of this curve, that will be become important. Next, let the curve go straight
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Figure 1.3: Glass with tail as seen when b = 0. The tail is not quite accurate, but gives
the idea.

from (3+3i ,0) to (3,4), and then to (0,4). Finally, we have the curve go to (0,2). All of this,

except for the first part, is done through straight lines. U3 is gotten by slightly fattening

the curve described, by taking the points that lie less than
1

100
from it. Note that except

at the beginning, U3 does not intersect with U1 or U2, and that it ends inside of U2.

Now set U =U1∪U2∪U3. One can imagine this domain as a glass with a tail growing

out of the base, where the tail curves around the glass and into the opening. 1.3 and 1.4

are two images of this domain, one cut in 3D and one in 2D that together gives some idea

about U ’s appearance.

A holomorphic function f on this domain must be on the form

f (z, w) =
∞∑

l=−∞
an(z)wn

where an is an analytic function. We can find a point b=(z,w) in the domain where

w=0. In b an and all its derivatives must be 0 for all n < 0, otherwise f or one of its deriva-

tives with respect to z would get a singularity in U. This means that an = 0 for n < 0,

so

f (z, w) =
∞∑

l=0
an(z)wn

Let us now look at a point inside the "glass", that is to say a point ξ0 ∈ V = {(z, w) ∈
C2 : |z| ≤ 7

4
,0 ≤ a < 3,b ∈ (−1,1)}
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Figure 1.4: Glass with tail as seen when w = 0.

Write ξ0 = (z0, w0). Now change the value of the imaginary part of w0 until you get

a point ξ1 = (z0, w1) inside U, so that | w0 |<| w1 | . At this point the power series of f

converges absolutely, but by the direct comparison test for convergence of series, f must

also converge absolutely in ξ0, as | an(z0)wn
0 |<| an(z0)wn

1 |.So f converges for all points

ξ0 ∈V , and so we can extend any f ∈ H(U ) to U ∪V .

One might think that U ∪V is the envelope of holomorphy for U (or at least a subset

of it), but there is a problem, namely the "tail", U3. This part goes in a loop around z = 3

and ends inside V. Now consider the function g (z, w) =p
z −3, a holomorphic function

on U .
p

z −3 has two branches, and as U loops around z = 3 the function must change

branch. This means that for a point v ∈V ∩U3,
p

v −3 would have two different values,

so the extension fails.

The solution is to, in any point where there is such a conflict of values, create two or

more separate points, each said to be on a different "sheet", which each takes on one

of the values the function could have. This means that we no longer have domains in

Cn , but rather manifolds of complex dimension n. More on this will come in chapter
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Figure 1.5: The envelope of holomorphy of U . The glass has been filled in and the tail is
now on a different sheet.

2, for now I will refer to 1.5 which shows the extension of the domain mentioned in the

example, the envelope of holomorphy of U .

To be able to work with these, more complicated, cases, we generalize the concept of

a domain to one that is used in "Several Complex Variables" by Raghavan Narasimhan

(Narasimhan (1971)).

We will when it is convenient define an unramified domain D, also known as a Rie-

mann domain, as p: D→ Cn . D is an analytic manifold, except that instead of charts

there is a locally homeomorphic function p that projects D down to Cn . The analytic

structure on D is determined by p. A holomorphic function on D is defined in the same

way as on a manifold.

This way of defining a domain gives rise to new definitions when it comes to ex-

tending domains and what the envelope of holomorphy is.

Definition 1.1.5. Let p: D → Cn be a connected, unramified domain and f ∈H(D). Let

p1: X→Cn be a connected domain and g: D→ X a continuous map with p◦g=p1. We say

that F ∈ H(X ) is an extension on p1: X→Cn if F◦g = f .
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Definition 1.1.6. Let p: D → Cn be a connected domain, and p1: X→ Cn be its envelope

of holomorphy. If the function p1 is injective, we say that X is schlicht. This is equivalent

with saying that the envelope of holomorphy of D is in Cn , the same dimension D is in.

In this case we can use the first definitions of domain of holomorphy.

The construction of the envelope used in this Master’s thesis will rely largely on the

concept of analytic discs. To complete this preliminary chapter, we define an analytic

disc as such:

Definition 1.1.7. An analytic disc in Cn is the image of a holomorphic function f :∆→
Cn . A closed analytic disc is the image of a function g : ∆̄→Cn which is continuous on ∆̄

and holomorphic on ∆. Analytic disc can also refer to the function f or g . In the case of

unramified domains, an analytic disc disc can also be a holomorphic function from the

unit disc into the unramified domain.



Chapter 2

Sheaves and analytic discs

This chapter will prove results that are be necessary for Jöricke’s paper. Most of the

results come from Narasimhan (1971) or Forstnerič and Globevnik (1992). At the end

some ideas from Jöricke’s paper will be introduced.

2.1 Sheaf Theory and Domains of Holomorphy

This section bases itself on Narasimhan (1971). It will use sheaf theory to define and

prove the existence of an envelope of holomorphy for a general connected Riemann

domain.

Why do we have to make this generalization? In the cases where an envelope of

holomorphy is not schlicht, one needs to work with manifolds. For this purpose, we

use the theory of sheaves and germs, which will be defined in the following paragraphs.

First, let U be an open set in Cn and { fs } be a family of analytic functions on U,

where s ∈ S, S being an index. For a point z ∈Cn and (U , { fs }), (V , {gs }) with a ∈U , a ∈V ,

we create an equivalence relation by saying that these two pairs are equivalent if there

exists a neighbourhood W ⊂U ∩V such that, for all s, fs = gs when restricted to W . It

is easy to confirm that this is an equivalence relation, and one says that the quotient

space we get from this relation is the S-germ of holomorphic functions at a, denoted by

10
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ϑa(S). We now define the sheaf ϑ(S) =⋃
a∈Cn ϑa(S).

Further, define the projection pS : ϑ(S) → Cn , where for g ∈ ϑa pS (g ) = a. Usually it

will be simply be known as p, when it is clear to what projection we are referring. As any

element in the sheaf lies uniquely in one of the S-germs, this function is well-defined.

Next we define the basis of a topology on ϑ(S): let ga ∈ ϑa and let U be a basis

element of the topology on Cn containing a and fs a family of holomorphic functions

on U. Let gb be the element of the S-germ at a point b ∈ U defined with functions { fs }.

Let N (U , { fs }) = ⋃
b∈U gb . The set of these elements create a basis for the topology on

ϑ(S).

Theorem 2.1.1. Under the topology defined previously the map p is continuous and a

local homeomorphism. Also ϑ(S) is a Hausdorff space.

Proof: Take an open set U ⊂ Cn and consider p−1(U ), which contains all ga where

a ∈ U and the indexed functions in ga are either holomorphic on U or on some open

subset of U . Either of these cases are open balls in ϑ(S) and that means that p−1(U )

is the union of several open balls, which gives an open set. Thus, from the topological

definition of continuity, p is continuous. To see that it is a local homeomorphism, take

a basis element of the sheaf ad restrict p to it. Projecting it down, each element in the

basis goes to a different element in Cn , implying p is locally 1-1, and this projection

forms precisely the open set U from which the basis element was constructed above.

This will also hold for any basis element inside this one, it will go to a basis element in

Cn . This means that p restricted to the basis element is an open map, so its inverse is

continuous. As such, p is a local homeomorphism.

As for why the sheaf is Hausdorff, first note that for two different points x,y in ϑ(S),

either pS (x) 6= pS (y) or some pair of functions in the indexed functions are not equal.

In the first case we can find two open sets around pS (x) and pS (y). In this case we

can create two open disjoint sets X,Y and then take N (X , { fs }) and N (Y , {gs }). These

two must be disjoint. In the second case simply take N ( fa ,V ), N (ga ,V ) for some small
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V , and this again gives disjointedness. This is because at least one pair of functions

indexed by some s must differ on V . �

As mentioned before an unramified domain is a special type of a complex manifold.

Normally the analytic structure on the manifold is defined by a collection of charts, but

for an unramified domain there is instead a function p : M → Cn , where p is a local

homeomorphism, and M is the manifold. p then defines the structure on M in the

usual way on manifolds. M will always be assumed to be connected.

A small but important theorem concerning unramified domains is this:

Theorem 2.1.2. Say p : X →Cn and p1 : Y →Cn are two unramified domains, and let u

be a continuous function between X and Y such that p1◦u = p. Then u is a local analytic

isomorphism, meaning that for a sufficiently small restriction of p to a neighbourhood

U around any point a ∈ X p creates a biholomorphism between U and p(U ), that u is

holomorphic, and that u−1 is locally holomorphic.

Proof: Both p and p1 are local analytic isomorphisms, which easily follows from the

fact that they are local homeomorphisms, and that they define the analytic structure on

their respective manifold. u is analytic, as p−1◦u◦p1 = i d for a small enough restriction.

For a small enough restriction, we also have u = p−1
1 ◦ p, which is a homeomorphism

on a small enough restriction on X , meaning u is a local homeomorphism. On such a

restriction, u−1 = p−1 ◦p1, and by the definition of an analytic function between mani-

folds this is analytic. Putting all this together proves the assertion. �

For an unramified domain we can define generalized versions of the concept of ex-

tension and envelope. All unramified domains will from this point on be assumed to be

connected.

Definition 2.1.1. Let p0 :Ω→ Cn be an unramified domain, and let p : X → Cn be an-

other unramified domain where we have a continuous function ϕ : Ω → X such that

p0 = p ◦ϕ. Let S ⊂ H(Ω). Then we say that X is an S-extension ofΩ if for each f ∈ S there
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is an F ∈ H(X ) such that f = F ◦ϕ. Simply put, the diagram below should commute for

every function f ∈ S.

C

Ω

f

OO

p0

��

ϕ // X

F

dd

p
zz

Cn

If S = H(Ω), p0, p are just identity maps on Cn and ϕ is the standard inclusion then

this notion is exactly the notion of extending all analytic functions on a domain to a

larger domain. Next, we define the envelope:

Definition 2.1.2. Let p0 : Ω→ Cn be an unramified domain and S ⊂ H(Ω). One says

that p : X → Cn is an S-envelope of Ω if X is an extension of Ω with function ϕ :Ω→ X

such that for any other extension p1 : X1 →Cn , ϕ1 :Ω→ X1 we have an analytic function

u : X1 → X so that p1 = p ◦u,ϕ= u◦ϕ1 and F1 = F ◦u, where F1 and F are the extensions

of the same function f ∈ S on X1 and X respectively. This corresponds to this commuting

diagram for every f ∈ S:

C

X1

F1

::

p1

$$

u

GGΩ
ϕ1oo

f

OO

p0

��

ϕ // X

F

cc

p
{{

Cn
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An easy consequence of this definition is that all S-envelopes of a domain p0 : Ω

are isomorphic to each other, so the envelope, if it exists, is unique up to isomorphism.

To see this, say that there are two envelopes with the necessary functions: X , p,ϕ and

Y , p1,1 where with analytic functions u : X → Y and v : Y as described in the defini-

tion(the exists because X and Y are extensions). Then ϕ = v ◦ϕ1 and ϕ1 = u ◦ϕ. This

gives us u◦v ◦ϕ1 = u◦ϕ=ϕ1, implying that u◦v is the identity onϕ1(Ω) and by unique-

ness of analytic functions it is the identity on all of X1. In the same way we find that v ◦u

is the identity on X , and so one finds an isomorphism.

The next theorem will justify that we can always talk about an envelope of holomor-

phy:

Theorem 2.1.3. For an unramified domain p0 :Ω→ Cn the S-envelope of holomorphy

exists.

Proof: Let p0 :Ω→Cn be an unramified domain, and S be a fixed, ordered subset of

H(Ω). We want to construct a function ϕ from Ω to ϑ(S). For an a ∈Ω, let a0 = p0(a).

Take a small open neighbourhood U around a, so that p0|U is a homeomorphism be-

tween U and its image. Say U0 = p0(U ). Now, for any function s ∈ S let fs = s ◦ (p0|U )−1.

Then say that ga = [(U0, fs ] ∈ϑa0 (S) is an equivalence class in the S-germ at a0, and thus

in the sheaf. Now put ϕ(a) = ga .

It is easy to show that ϕ is continuous. Take a basis element in the topology in the

sheaf. Notice that p(ϕ(a)) = a0. So locally ϕ = p−1 ◦p0. This is continuous on a small

restriction, and so it is continuous on Ω and a local analytic isomorphism by previous

theorem. We assume that Ω is connected, and so ϕ(Ω) is also that. Let X be the con-

nected component of it in ϑ(S). The claim is that p : X → Cn is then the envelope of

holomorphy ofΩ, with ϕ as the inclusion ofΩ into X .

First we prove that X is an S-extension ofΩ. We have the ϕ function needed, so we

just need to find functions Fs ∈ H(X ). Take an element g in ϑ(S) and take a represen-

tative (U , { fs }) ∈ ϑa(S) of the equivalence g represents. Then set Fs (g ) = fs (a), that is to
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say, take the value of the s-th defining function at the point which g "belongs" to. To

see that it is an analytic function, take a small basis element B in ϑ(S) which is home-

omorphic to its projection. Then Fs ◦ (p|B )−1 is holomorphic, as fs is holomorphic on

p(B) and Fs ◦ (p|B )−1 takes a point a to fs (a).

Next, to show that X is the envelope, take another extension p1 : X1 → Cn with ϕ1 :

Ω→ X1. We need a function u : X1 → X , and it simply defined the same way that ϕ was

using p1 and the extensions Gs of each s ∈ S, by going down toCn , pulling the extensions

down to some neighbourhood around the point and using that to find a point in the

sheaf. Note that for a point b ∈ X1 with b =ϕ(a) for some a, we have p1(b) = a0 = p0(a)

by definition, and that for any extended function Gs , being an extension of the function

s, in some small ball N around g we have:

Gs ◦ (p1|N )−1 =Gs ◦ϕ1 ◦ϕ−1
1 ◦ (p1|N )−1 = s ◦ (p0|ϕ−1

1 (N )

This means that the extended functions when pulled down to Cn are similar to the

original functions on some small neighbourhood. All this means that u(ϕ1(a)) =ϕ(a),

as the value of both are defined by the point inCn and the functions around the point. u

is continuous, which one finds in the same way it was shown for ϕ, and obviously p1 =
p ◦u, so it is a local analytic isomorphism, and thus holomorphic. As it is continuous

and X1 is connected, u(X1) is connected, and as u ◦ϕ1 =ϕ, u must go to the connected

component known as X . It is obvious that Gs = Fs ◦u and thus all the requirements for

X being an envelope are fulfilled.

This means that the envelope always exists and is unique up to isomorphism.�

Let us now define a domain of holomorphy:

Definition 2.1.3. A domain of holomorphy X is an unramified domain which is isomor-

phic to its own envelope of holomorphy, and whereϕ is the isomorphic function between

them. Another way of saying this is that ϕ is bijective. The envelope of holomorphy is the

S-envelope when S = H(X ).
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Theorem 2.1.4. An envelope of holomorphy is a domain of holomorphy.

Proof: Remembering how X was constructed in Theorem 2.1.3, and how ϕ was de-

fined in the same Theorem, we get that ϕ is surjective when constructing the envelope

of X , as Y must be the same connected component that X is. In fact, ϕ is easily shown

to be the identity on X . �

Theorem 2.1.5. Let p0 : Ω→ Cn be an unramified domain and p : X → Cn be the en-

velope of holomorphy with ϕ as the function between them. Then, if ϕ is injective, the

holomorphic functions onΩ separates the points ofΩ.

Proof:

One can write p0 = (p1, p2.....pn), and it is easy to see that each p j is holomorphic

by using the definition of holomorphic functions on a manifold. Now, take two points

a,b ∈Ω, a 6= b. Either p0(a) = p0(b) or not. If they are different, then for some j , p j (a) 6=
p j (b) and the holomorphic functions separate a and b.

Next, assume p0(a) = p0(b) = z. As ϕ is injective ϕ(a) 6= ϕ(b), and associating X

with the connected component of the sheaf as in theorem 2.1.3 . Now, let U and U1 be

neighbourhoods around a and b that is mapped by p0 unto the same neighbourhood

P around z. ϕ being injective implies that there is some analytic function f defined on

Ω such that

f ◦ (p0|U )−1 6= f ◦ (p0|U1 )−1

This must be true because if no such function exists, then ϕ will map a and b to

the same point, as the point they are mapped to in X is determined by their projection

down to Cn , which is equal, and the functions defined around it.

From this one gets that there must be some α ∈Nn so that

Dα f ◦ (p0|U )−1(z) 6= Dα f ◦ (p0|U1 )−1(z)
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and this proves the theorem. �

Closely related to unramified is the concept of sheets.

Definition 2.1.4. An unramified domain p0 : Ω → Cn is called n-sheeted if max{k ∈
N|∃a1...ak ∈Ω, p0(a1) = p0(a2) = ....p0(ak )} = n. If a domain is 1-sheeted p0 is injective,

andΩ can be embedded into Cn

Note that the case where Ω is 1-sheeted and its envelope is not is exactly the case

where the domain is not schlicht.

2.2 Analytic Discs

Kontinuitätssatz, which we will often denote as "satisfying the disc property", is a prop-

erty of a domain Ω first defined by by Hartog. We will in this section show that this

property is equivalent with being pseudoconvex, and use this to find a way to construct

the envelope of holomorphy of a domain. Here we will first work with the case whereΩ

is embedded in Cn .

Definition 2.2.1. A domain satisfies the disc property if for any G(t , z) : [0,1]× ∆̄→ Cn ,

with G continuous in the first coordinate and analytic in second coordinate on ∆, where

G(0, ∆̄) ⊂Ω and G(t ,∂∆) ⊂Ω for all t ∈ [0,1], the entire image of G is inΩ.

This definition can easily be extended to general manifolds embedded into a larger

manifold X , simply replace Cn with X .

This next theorem comes from Fornæss and Stensønes (1987).

Theorem 2.2.1. A domainΩ⊂Cn is pseudoconvex if and only if it satisfies the disc prop-

erty.

Proof: First, let us prove that Ω being pseudoconvex implies that the disc property

holds. Assume the opposite, thatΩ is pseudoconvex but that the disc property does not

hold. Then there is a function G(x, z) that gives a continuous family of analytic discs,

where for some x ∈ [0,1], we have that G(x,∂∆) ⊂Ω but that some part of G(x,∆) is not

inΩ.There is also a plurisubharmonic exhaustion function ρ(z), z ∈Ω.
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As there is some part of the image of G(x, z) that is not inΩ we can find a sequence

of points zx ∈ ∆ such that G(x, zx ) → ∂Ω as we go from x = 0 as x tends to some value

s(recall that for x = 0 the image lies in Ω). This implies that ρ(G(x, zx )) →∞ as x ↗ s.

On the other hand, ρ(G(x,∂∆)) is a compact set, meaning ρ(G(x,∂∆)) < C for some C .

But for some point y we have that ρ(G(y, zy )) >C , which gives us an analytic disc G(y,∆̄)

where the maximum principle does not hold. This is a contradiction.

For the second part of the proof, we want to show that the disc property being sat-

isfied on Ω ⊂ Cn implies that Ω is pseudoconvex. For this we prove the contrapos-

itive. Say that Ω is not pseudoconvex and let u(z) be a distance-function that for a

point z in Ω measures that points distance to ∂Ω. Our assumptions would imply that

ρ(z) =−log (u(z)) fails to be a plurisubharmonic exhaustion function. That means that

there must exist a set L = {aw +b : w ∈ C} partially in Ω such that ρ |L∩Ω is not subhar-

monic. This again gives us the existence of an open disc D around some part of L and

a harmonic function h such that −log (u(z)) ≤ h(z), z ∈ ∂D and −log (u(z0)) > h(z0) for

some point z0 ∈ D .

From these results we get u(z) ≥ e−h(z), z ∈ ∂D and u(z0) < e−h(z0). Define the an-

alytic function g so that Re(g ) = h. Also define D as being the image of γ : ∆̄→ Cn , γ

being holomorphic. Then define the function

H(x, z) : [0,1]× ∆̄→Cn

where

H(x, z) = γ(z)+ cxe−g (z)

c is here a unit vector constructed so that xe−g (z0) goes in the same direction as the

vector going from z0 to the closest point from it on the boundary. Note that for any

fixed x, we get an analytic disc. The distance between z0 and the boundary is less than

e−g (z0), meaning that H(x, z0) will go past the boundary of Ω as x increases, and so we

get a continuous family of closed analytic discs where the first discs are contained inΩ
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but the later have part of their interior outsideΩ. But H(x,∂D) is contained entirely inΩ

because the distance between w and the boundary is larger than | e−g (w) |. This means

that the disc property does not hold. Having proven that not pseudoconvex implies that

we do not have the disc property, we know that the disc property implies pseudoconvex.

�

Pseudoconvexity is also equivalent with the disc property for Riemann domains.

This comes from Theorem 3 in Chapter N of Gunning (1990). No proof will be given

here.

Next, here is a way of finding, for a domainΩ, a larger domain where we can extend

all H(Ω).

Theorem 2.2.2. Let Ω be a Riemann domain embedded into a another domain X and

let G be a family of continuous discs such that {G(0,∆̄)} ∪ {G(x,∂∆), x ∈ [0,1]} is in Ω,

but where not all of the image of G is in Ω. Then any f ∈ H(Ω) can be extended to Ω∪
Imag e(G).

Proof: Assume that this was not true. Then there would have to exist a family of

continuous discs G with {G(0,∆̄)}∪ {G(x,∂∆), x ∈ [0,1]} inΩ but image not entirely con-

tained inΩ, and some holomorphic function f defined onΩwhich can not be extended

toΩ∪Imag e(G). That means that the image of G is not contained in the envelope ofΩ.

But as {G(0, ∆̄)}∪ {G(x,∂∆), x ∈ [0,1]} is contained in the envelope, we get that the enve-

lope does not satisfy the disc property, implying it is not pseudoconvex. The envelope

must therefore contain the image of G to be pseudoconvex. �

Of course, the envelope might not be schlicht, in which case pushing the discs can

cause problems with one point having two values as in example 1.1.2. In that case, for

a general Riemann domainΩ, we use the inclusion ofΩ into its envelope, and then use

the method as described earlier. Next, a construction of the envelope of holomorphy.
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Theorem 2.2.3. Let Ω0 = φ(Ω), Ω’s inclusion into its envelope of holomorphy. Create a

sequence of domains Ωn , n = 0,1,2... in the following way: for a Ωn you construct Ωn+1

by taking all continuous families of discs with first disc and boundary of all the discs in

Ωn , and add the image of the entire family of discs toΩn . Then

Ω̂=⋃
n
Ωn = Ω̃

That is to say, the union of these domains equals the envelope of holomorphy ofΩ.

Proof: There are two parts to this proof: proving that any f ∈ H(Ω) can be extended

to Ω̂ and that Ω̂ is pseudoconvex. For the first part: any point z ∈ Ω̂ must be in some

ΩN . That means that it is in a domain made by extending Ω by repeated disc-pushing,

and from our earlier theorem we know that that implies that f can be extended to z.

For the second part, take a family of continuous discs G where {G(0,∆̄)}∪{G(x,∂∆), x ∈
[0,1]} lies in Ω̂. {G(0, ∆̄)}∪ {G(x,∂∆), x ∈ [0,1]} is compact, and Ωn is an open cover-

ing of Ω̂ and thus of {G(0, ∆̄)}∪ {G(x,∂∆), x ∈ [0,1]}. By the definition of compactness,

a finite covering Ωn1 ....Ωnk covers {G(0,∆̄)}∪ {G(x,∂∆), x ∈ [0,1]}. But Ωn−1 ⊂ Ωn , so

{G(0, ∆̄)}∪{G(x,∂∆), x ∈ [0,1]} must be inΩM , where M = max{n j }. ButΩM+1 is created

by pushing discs every way we can, so the entire image of G lies in ΩM+1, meaning it

lies in Ω̂ too.

Since this holds for any G the disc property is true for Ω̂, and by the previous the-

orems that implies that it is pseudoconvex. So Ω̂ is a pseudoconvex domain that all

analytic functions defined onΩ can be extended to. Thus it is the envelope of holomor-

phy. �

An obvious question would be whether it really is necessary to create a sequence of

domains Ωn or if pushing discs all ways you can only once is enough. Jöricke (2009)

is about exactly this question, and this question will be what Chapter 3 builds towards

answering. For now, here is an example for which it is not obvious that you can do it in

one go:
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Example 2.2.1. The domain in this example can be thought of as a cylinder partially

inside of a glass, where the glass and cylinder are connected by a thin thread. Some intu-

ition can be gotten from the images 2.1 and 2.2.

This domain V lies in C2 and will be the union of four different domains Vi . We use

coordinates z = x + i y and w = a + i b, and the function k(t ) = (1+ 3t
4 ,2) will be used to

define the domains.

V1 = {(z, w) ∈C2 : |z| < 2,−1

2
< a < 0,b ∈ (−1,1)}

V2 = {(z, w) ∈C2 :
7

4
< |z| < 2,0 ≤ a < 3,b(−1,1)}

V3 = {(z, w) ∈C2 :
3

4
< |z| < 1,1 < a < 6,b ∈ (−1,1)

V4 = {(z, w) ∈C2 : ||(z, w)−k(t )|| < 1

10
}

Let V be the union of these four domain.

Let us try to use the disc property to find domains to extend all analytic function on

V to. We see that we can fit the {Gt (0, ∆̄)}∪ {Gt (x,∂∆), x ∈ [0,1]} of a family of continuous

discs Gt into the union of V1 and V2 for any b ∈ (−1,1), having one disc in V2 and the

boundary of the other discs in V1 and V2. One can for example set Gs (x, z) = (2z, x −0.1+
i s), s ∈ (−1,1). One can also extend slightly further in the a-direction by other families

of continuous discs, so that any points "inside" V2 can be put in such a disc. This means

that all analytic functions can be extended to V ∪B, where

B = {(z, w) : |z| ≤ 7

4
,0 ≤ a < 3,b ∈ (−1,1)}

This domain can be seen in Figure 2.3.

There are no other obvious families of continuous discs G with {G(0, ∆̄)}∪{G(x,∂∆), x ∈
[0,1]} we can place inside V , but for V ∪ Imag e(Gs ) one can create a new family of an-
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Figure 2.1: A cut of the domain when b = 0.

Figure 2.2: A cut of the domain when w = 0.
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Figure 2.3: A 2D-cut of V ∪B .

alytic discs where {Gs (0,∆̄)}∪ {Gs (x,∂∆), x ∈ [0,1]} is in Imag e(Gs ) and V3, the first disc

being in Imag e(Gs ) and the boundary of the others being in Imag e(Gs ) and V3. For in-

stance, families of continuous discs Ht might be defined as Ht (x, z) = (0.9z,3x+2.9+ i t ).

Like in the previous extension, one can also extend slightly further in the a-direction by

other families of analytic discs. Thus one get an extension to

D = {(z, w) : |z| ≤ 3

4
,3 ≤ a < 6,b ∈ (−1,1)}

This domain, V ∪B ∪D, can be seen in Figure 2.4.

We can also show that the extension here is schlicht. Imagine if there were some colli-

sion of values, that would happen at the points lying in a disc with boundary in V2, and

also in a disc with boundary in V3 (or a point in V3). Basically, the difference would come

from the extension we get from extending the large glass not matching with the cylinder.

It is the tread connecting the glass and the inner cylinder that makes it schlicht. Take

a fattended line segment going through that thread. The extension of any analytic func-
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Figure 2.4: A 2D cut of a further extension of V .

tion defined on the glass, has a unique extension along this line, which must agree with

how the function was already defined there. Thus the extension must match the original

function in some small open ball in V3, and by unique extension the extension is equal

to the original in the entirety of V3. Finally, there can by the same arguments as before be

only one possible extension to the inside of V3. This means that the domain is schlicht.

Note that the schlichtness in the example above was dependent on V4 lying inside

V2. Should V4 go on the outside, as in Figure 2.5, we would get a situation similar to

Example 1.1.2, where we could construct a function that separates V3 into a different

sheet from the extension of V1 and V2.

From Theorem 2.2.3 we know that using families of discs to extend domains gives

the envelope of holomorphy if one repeats the process an infinite number of times.

The previous example showed a case where it is not obviously possible to do it in one

go, that is to say, it is not obvious that Ω1 equals the envelope for a domain Ω. Jöricke

(2009) nevertheless states that this is possible, and some of the results from that paper

will be investigated further down. The next example, courtesy of Professor John Erik
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Figure 2.5: Different version of V with non-schlicht extension.

Fornæss, is an example of how one can get the points in D in the previous example to

be in a family of discs with boundary in V and whose first disc is embedded in V .

Before the example, a lemma is needed, which is a consequence of Theorem 2 of

Chapter 5 in Goluzin (1969).

Lemma 2.2.1. Say that we have a continuous set of simply connected domains B in C

whose boundary is a Jordan curve, where the domains are indexed by t ∈ [0,1]. We define

a continuous set of domains as such: around for any domain indexed by k, where the

boundary of the domain is parametrized by S : S1 → C, we can for any ε> 0 find a small

interval around k, where the boundary of each domain indexed by one of the numbers in

that interval has a parametrization A : S1 → C, such that |S(z)− A(z)| < ε for all z ∈ S1.

This means that boundaries of discs close to each other have similar boundary.

Here we say that the domains in B are either increasing or decreasing, so for a,b ∈
[0,1], we either have Ba ⊂ Bb for all a < b, or Bb ⊂ Ba . We also have that some point ξ is

in all Bt . If we have this, then the Riemann mappings C (t , z) : [0,1]×∆→C from the unit

disc to the various Bt which sends 0 to ξ and has positive derivative in 0 is continuous

with respect to t .

Proof: Take any converging sequence x1, x2... ∈ [0,1], where xn → x. It is sufficient
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Figure 2.6: Cut of V at w = 2.

to show that C (xn , z) → C (x, z) for any z. But that follows from Theorem 2 of Chapter

5 in Goluzin (1969), when you take An to be the unit disc, Bn to be the domains Bxn

and fn to be the maps of the Riemann mapping theorem. With the assumptions above,

where either Bx1 ⊂ Bx2 ... or the other way around, the conditions of the theorem are

obviously fulfilled, and so C (t , z) is continuous in the first coordinate. �

Example 2.2.2. Let V be the domain defined in Example 2.1. In the images used here all

parts of V will be coloured blue for the sake of clarity. The task is to construct a family of

discs indexed by t ∈ [0,1] such that the first one is embedded in V , all have their boundary

in V and any point on the "inside" of V3 can be made the centre of the last disc. In this

example the family will be constructed so that the point (0,5) lies inside in the family. For

all other points inside the cylinder V3 the process is pretty much the same.

Start with the disc f (z) = (1.9z,−0.25). This is embedded into V . Then create a fam-

ily given by F (t , z) = (1.9z,−0.25+2.25t ). To picture the disc one ends up with, look at

Figures 2.6 and 2.7. These are cuts taken along w = 2.

Next, continually remove a part of the disc, so that one gets a "valley" and so that the

boundary lies partially inside V4. One step of this process is shown in Figure 2.8. This

can be done so that each step is simply connected, and as every disc can be considered

to lie in the z-plane, as its coordinate in the w-plane is constant, it is an analytic disc by
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Figure 2.7: Cut of V at w = 2, analytic disc is yellow.

Figure 2.8: Cut of V at w = 2, analytic disc is yellow.

the Riemann mapping theorem. Carathéodory’s theorem tells us that one can extend the

function to the closure of the disc, and it is known from Lemma 2.2.1 that the Riemann

mappings can be made continuously.

Using the same theorems as above, one can continually change the analytic disc to

create two curves going almost around the cylinder, leaving only a very small gap, as can

be seen in Figure 2.9. The exact size of the gap will be determined later. Call this disc

d : d(z) = (d1(z),2), d1 being the Riemann mapping.

Take a compact set K in the complex plane that looks almost like d, except that the

the small gap is just a line segment l. Let f be a function defined on K, where f is 0 on the

outer almost-annulus, 1 on the disc inside of the annulus, and a linear function going
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Figure 2.9: Cut of V at w = 2, analytic disc is yellow.

from 0 to 1 on the line segment, so that f is continuous on K, and analytic on the interior

of K.

Note that K is compact and simply connected and as the w coordinate is constant one

can take it to lie in the complex plane. By Mergelyan’s theorem f can be approximated

by a complex polynomial P, so that it approximates better than some small ε. Extend it

in a small closed neighbourhood of the line segment l, so that the values P takes in the

neighbourhood is only ε from the values it takes on l.

Let d be so that it matches K together with the neighbourhood. Create a new family

of analytic discs D(t , z) = (d1(z),2+3tP (d1(z))). At t = 0 this is the disc d. At t = 1 the

outer half-moon of d has not moved more than 3ε, which for small epsilon is hardly

anything, but the disc in the center now has w coordinates close to 5. The line segment

creates a line between the two parts. It is obvious that for ε small enough the boundary

lies inside V , and by linearly shifting the disc a maximum of 5ε in one direction(which

is again possible if ε is small enough), it contains the point (0,5). The disc is pictured in

Figure 2.10. Taking all the families of discs used here together and re-indexing, one gets

the family of discs needed.
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Figure 2.10: The final analytic disc.

2.3 Pulling a Disc

The following theorem will be very important. The theorem and its proof comes from

Forstnerič and Globevnik (1992).

Theorem 2.3.1. Say that we have a point p∈ Cn and a closed analytic disc defined by

H:∆̄ → Cn such that H(0)=p. Further, let us say that we have a continuous function

G(e iθ,ζ) : [0,2π]×∆̄→Cn that is analytic in the second coordinate, so that for any G(e iθ, ·)
we get a closed analytic disc. For now we shall also assume that G(·,ζ) is continuous for

all ζ. We also say that G(e iθ,0) = H(e iθ) for all θ. Then we can for any ε,δ > 0 and

r,0 < r < 1, find a function Q(z):∆̄→Cn , so that ∥Q(z) ∥< δ for any | z |< r , Q(0)+H(0)=p

and mi n ∥Q(z)+H(z)−G(z,∂∆) ∥< ε for z∈ ∂∆.

What does this mean intuitively? We have a closed analytic disc H with the point

p contained in its interior. G is here a function that for each point q in the boundary

of H(∆̄) gives us a closed analytic disc that contains q in its interior. What we want to

show is that there is that there exists another analytic disc, Q(z)+H(z) which is almost

like H for most of the interior, contains p in its interior and where any point on the

boundary of the disc Q(z)+H(z) is arbitrarily close to the boundary of one of the discs G

generates. There are three figures here to help with understanding what we are trying to

accomplish. Figures 2.11 and 2.12 shows the starting disc and what it ends up as, while

Figure 2.3.2 gives a 2D image containing H, G and the final disc.

Proof : We say that G=(g1, g2.....gn) and H=(h1....hn). We then create a function

v=(v1, ....vn), where v j (e iθ,ζ) = g j (e iθ,ζ)−h j (e iθ). Note that this means that v j (e iθ ,0) =
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Figure 2.11: Let the green surface represent H.

Figure 2.12: Q+H, which keeps most of H the same, but varies wildly towards the edges.
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Figure 2.13: Here H is represented by the horizontal line, and G are the two vertical
lines at each end of H(we represent the entire boundary of H by the two end points of
the horizontal line). The green line shows the disc we end up with, which most of the
time is like H, but towards the boundary it approximates the boundary of the discs in G.

0.

v j is continuous in the first coordinate and analytic in the second, so we can expand

to

v j (e iθ,ζ) =
∞∑

l=1
a j ,l (e iθ)ζl

Here a j ,l is a continuous function on the unit circle. The sum starts at l=1 because

we know that there is no constant term.

We now remove all terms in the sum above a certain limit, and thus get a finite sum

v̄ j (e iθ,ζ) =
N∑

l=1
a j ,l (e iθ)ζl

We adjust N so that ∥ v j − v̄ j ∥< ε
2n .

Next, by using the complex version of the Stone-Weierstrass theorem we get that any

continuous function on the unit circle can be approximated uniformly by a sum of the
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type
∑∞

n,m=0 an,m zn z̄m , where an,m is a constant. This is because the identity function

I(z)=z separates points, so one can construct the necessary *-algebra from that.

For each a j ,l we can find a function A j ,l where | a j ,l − A j ,l |< ε
4nN and where

A j ,l (e iθ) =
∞∑

t ,s=0
b j ,l ,t ,s e i tθ ¯e i sθ

However, as we are on the unit circle, ¯e iθ = e−iθ. Also, we can approximate A j ,l by a

finite sum

B j ,l (e iθ) =
M∑

t ,s=0
b j ,l ,t ,s e i tθe−i sθ

where we cut off t and s at M, where M is so large that | A j ,l −B j ,l |< ε
4nN for all l. As

there are only N functions A j ,l we only take the maximum of a finite set, so we can find

such a maximum. By the triangle inequality we get that | a j ,l −B j ,l |< ε
2nN .

One can now replace each instance of a j ,l in the formula for v̄ j with B j ,l . Naming

this new series C j , we get

C j (e iθ,ζ) =
N∑

l=1
B j ,l (e iθ)ζl

Putting in the definition of B j ,l gives:

C j (e iθ,ζ) =
N∑

l=1
(

M∑
t ,s=0

b j ,l ,t ,s e i tθe−i sθ)ζl

Using the triangle inequality repeatedly we get that ∥C j − v j ∥< ε
n . Next, we set ζ=

ηkM , where k is an integer larger than or equal to 2. We put e iθ = z for some z ∈ ∂∆, and

finally we also extend C j a little so that the function is defined on a half-open annulus

R where one part of R’s boundary is the unit circle, and this part of the boundary is in R,

and the other part is a circle of radius r < 1. If you could not do this, then there would

have to be singularities of C j arbitrarily close to the circle, meaning that the absolute

value of C j would have to be arbitrarily big at some point on the circle. But C j must be

bounded on the circle, so that is impossible.
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We now have an analytic function C j : R ×∆→C. Next define a function q j :

q j : R →C=C j (z, z)

This gives us

q j =
N∑

l=1
(

M∑
t ,s=0

b j ,l ,t ,s z t z−s )zkMl

= q j =
N∑

l=1
(

M∑
t ,s=0

b j ,l ,t ,s z t zM−s )z(k−1)Ml

The last rewriting of q j makes it apparent that q j can be extended to the entire

closed disc, as none of the powers of z are negative, and q j is a finite sum. Now we can

define Q(z)=(q1, q2...qn). This is the function we wanted. First, for any disc with center

in 0 and radius r less than 1, we can get | q j |< ε
n by increasing the constant k. As the

absolute value of z is less than r, increasing k by 1 will mean that the absolute value of

q j will lower by at least | r M |. This can be done until the absolute value is low enough.

It is obvious that Q(0)=(0,0...0), so Q(0)+H(0)=p. Finally it needs to be shown that

mi n ∥ Q(z)+ H(z)−G(z,∂∆) ∥< ε for any ε >0 and z∈ ∂∆. Remember that | q j (z)−
v j (z, zkM ) |< ε

n when z ∈ ∂∆. Using the triangle inequality and recalling that v j (e iθ,ζ) =
g j (e iθ ,ζ)−h j (e iθ) we get the correct result. �

2.3.1 Taking a Disc fromΩn toΩn−1

We here assume thatΩ is an open domain embedded in Cn .

The following lemma will motivate a lot of the new concepts in Chapter 3. The even-

tual goal of chapter 3 is to show that if we have a continuous family of analytic discs

where the first disc and the boundary of all the discs lie in Ω1, then we can create a

family of analytic discs with first disc and boundary of all the discs in Ω, but where the

centres of the discs in the first family are the centres of discs in the second. This would

show that those points are actually inΩ1, thus showing thatΩ1 =Ω2.
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These next lemmas will prove something much smaller. In the case where we have

an analytic disc d with centre p and boundary inΩn , we want to find a continuous fam-

ily of discs with centres along the boundary of d and who themselves have boundary

in Ωn−1. Then we can use Theorem 2.3.1 to get a disc with boundary in Ωn−1. First,

let us assume that around the boundary of d we have a continuous family of discs

G(e iθ, z) : [0,2π]× ∆̄→ Cn , where the centres of the discs follow d ’s boundary, and the

discs have boundary inΩn−1. Then we can construct an analytic disc with centre p and

boundary inΩn−1.

Note that by the way Ωn is constructed, any point in it is the centre of an analytic

disc with boundary inΩn−1.

Lemma 2.3.1. Say that we have an analytic disc d : ∆̄→Cn with centre p and boundary

inΩn−1. Also say that there is a continuous family of analytic discs G(e iθ , z) : [0,2π]×∆̄→
Cn , where G(e iθ ,0) = d(e iθ) and G(e iθ,∂∆) ∈Ωn−1. Then there exists an analytic disc e

with centre p and boundary inΩn−1.

Proof: This is simply an application of Theorem 2.3.1. First, by a compactness-

argument find an ε so small that if any point lies less than ε from the boundary of any

of the discs in G , then it lies inΩn−1. Now simply use Theorem 2.3.1 to get a disc e with

centre p and whose boundary lies a distance less than ε from the boundary of the discs

in G �

This shows that for any element p inΩn+1, if we can find a d and G as above where

p is the centre, we can find an analytic disc with boundary in Ωn−1 that p is the centre

of. This does not prove that p is in Ωn , but the lemma above is the starting point for

theorems that will work basically the same as the lemma, but allow us to make sure

that p is in fact a member of Ωn . This would show that the process of constructing the

envelope which has been discussed before, can be halted after a finite number of steps.

It might not be possible to find a continuous set of analytic discs around the bound-

ary of d . But let us say that it was possible to choose the discs so that there were only a

finite number of discontinuities. Having only a finite number of discontinuities is justi-
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fied, as for any analytic disc we can always shift them a little bit. This means that if a disc

has a centre on some point of the boundary, the same disc shifted continuously have

centres at some interval of the boundary around that point. A compactness argument

gives us a finite number of discontinuities.

Next, imagine that we could at any discontinuity, change the disc d a bit. More

specifically, say that we could create a new disc, d1, which also has centre p. d1 would

be virtually identical to d , except at the discontinuity, where it would, like in Figure 2.15,

have an added curve that would allow us to bridge the discontinuity of the discs around

the boundary. We basically add a curve to the boundary in a way that would give us a

new analytic disc, and with continuous discs along the boundary.

The first, simple case, is where we can find a curve going from the discontinuity into

Ωn , and where the discs at each side of the discontinuity could be continually along

the curve, until we at the end had a disc embedded in Ω. It is fairly obvious that any

two discs in Ω with the same centre can be continually changed into each other, by

shrinking and rotating the discs, so in this case we would have a continuous family of

discs.

We do need to make sure that what we create an analytic disc. We can approximate

the line in the following way: add to the disc d the curve previously discussed in Cn .

Attach a line segment to the closed unit disc in C, and we can use Mergelyan’s theorem

to find a function that approximates d on the unit disc, and the added line on the seg-

ment added to the unit disc. This is because if the function f approximates d on the

unit disc, and the curve on the added line, then all requirements for using Mergeylan’s

theorem are fulfilled. Mergelyan approximates function in one complex dimension, but

it is obvious that it can be used to approximate functions from one to several complex

dimensions.

After making the approximation we can slightly fatten out the line to on the closed

unit disc and extend the approximation function to that new set, and in this way get

something similar to the curve. This also means that we get something that is biholo-
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morphic to the closed unit disc by the Riemann mapping theorem. We can also slightly

shift the discs along the boundary so that they are continuous along the boundary. Then

we can use Lemma 2.3.1 and get the result.

We could imagine that we can not get continuous discs along a curve, that there

is another discontinuity along the curve. Then we might repeat the process, adding a

new curve to the first one, and repeat the process. Also, it might be that we can not

get a curve that ties the discontinuity together, but that we can use two curves to tie

both sides to some third disc at the discontinuity. Then we can add two curves to get

continuous discs along the boundary. This almost gives a notion of transitivity of discs

with the property that we can use curves to bridge the discontinuity. One here sees

the notion of an equivalence relation of discs showing up. This notion will be defined

properly in Chapter 3. Next follows a result that further motivates the concept of using

curves to remove discontinuities.

In the next lemma we will assume that the discs along the boundary of d were cho-

sen so that,at the points of discontinuities, we could place trees along the boundary.

Along the trees there should be a set of continuous discs which starts with the first disc

in the discontinuity, and ends with the last, thus creating a continuous family of discs

with boundary in Ωn−1 around a disc similar to d but with trees added to it, which we

can call d1. A picture of a disc with trees added can be found as Figure 2.15, and an

example of two discs being connected by a tree can be seen in Example 3.1.1. It is not

obvious that we can choose the discs this way, that will be covered in Chapter 3.

A quick word on what trees are. In the complex plane a tree is a finite union of line

segments of finite length, so that the union of the segments is simply connected. We call

one of the endpoints of one of the line segments the root, this one should not be meet

any other line segments on the tree. In several complex dimensions, any continuous

function from a tree in the complex plane into Cn is a tree. The root is the image of the

root of the tree in the plane.

Theorem 2.3.2. Assume thatΩ is a domain inCn with schlicht envelope. Let p be a point
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inΩn+1, and d :∆→Cn be a closed analytic disc which contains p(one can assume that

p = d(0)) and which has boundary inΩn . If we can choose discs around the boundary of

d in a way that there is only a finite number of discontinuities, and those discontinuities

can be bridged by attaching trees along which we get a homotopy of analytic discs with

boundary inΩn−1, then p is contained in a disc with boundary inΩn−1.

Proof: The way to do this is to find a continuous family of discs with boundary in

Ωn−1, where all the discs have centres along the boundary of the analytic disc d . Then

we use Lemma 2.3.1. What we will do, however, is to replace d with another analytic disc

d1 with boundary in Ωn and d1(0) = p, and find a family of continuous discs around

d1’s boundary instead. The next paragraphs will construct d1. It is essential to find a

continuous set of analytic discs around d1, we will denote those discs by G(e iθ, z).

From the assumptions one can construct a piece-wise continuous family G0(e iθ, z) :

[0,2π]× ∆̄→ Cn (piecewise continuous in the first argument, holomorphic in the sec-

ond) of discs along the boundary of d . The trouble is now to make them continuous.

For any discontinuity point q we can, by assumption, find a tree T in Cn so hat we

can find a continuous set of discs along them bridging the discontinuity. Now, one can

take a tree T1 in the plane so that there is a continuous bijection from T1 unto T . This

is because T consists of line segments that overlap only at end points, so make the tree

out of equally many line segments put together in the same way, and the construction

of the function is obvious.

Take the union of the tree T1 and the closed unit disc, so that the tree and the disc

only intersect at the point q , at the root of the tree, as can be seen in figure 2.14. Tak-

ing the analytic function d and extending it along the tree using the bijection men-

tioned above, one gets a continuous function (d1,d2....dn) : ∆̄∪T → Cn defined on a

simply connected compact set which is holomorphic on the interior of the set. Thus,

Mergelyan’s theorem gives us a polynomial P approximating the polynomial as closely

as one wishes by approximating each variable di by a polynomial P1 and letting P =
(P1...Pn). If the approximation is close enough, one can then shift it by a small constant
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Figure 2.14: The unit disc with trees glued on at the discontinuity points of the family of
discs.

Figure 2.15: The unit disc with trees, now "fattened" so that one gets a domain biholo-
morphic to the unit disc.
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so that P (0) = p without the boundary going out ofΩn . By assumption there is a homo-

topy of discs going along the tree that creates a continuous family of discs between the

two discs.

Next one "fattens" the tree T1 to a set T2, by taking a very small constant δ and

taking any taking any point with distance less than δ from the tree. Some requirements

for how small δ must be are necessary.

As P is a polynomial it can be extended to the union of the disc and T2, and we will

simply call the extension P . It is required that δ is so small that that the values P takes

in T2 are close to the values it takes along T1, particularly so that the boundary is still

in Ω, but also so that any of the discs in the homotopy of discs from Lemma 3.1.2 on

the tree can be shifted by a constant to create a disc on the new boundary. δ must be

so small that the fattened lines in C does not intersect with itself in a way that would

create a set that is not simply connected in the plane, furthermore one wants it so that

the boundary of the domain is a Jordan curve. δ must also be so small that all other

discontinuity points are further away from q than δ.

We also require that the boundary of the fattened tree meets the disc, and that the

discs along the boundary of the tree and the discs along the closed unit discs meet con-

tinuously. This is always possible, but requires some work which will be detailed further

down.

To remove the discontinuity one needs to make sure that the discs are continuous at

the point where the tree meets the boundary of the disc. Look at the discs with centres

on the unit disc closer than the δ one has gotten in the previous steps to q on either

side. On each side, these discs create a continuous family J (γ(t ), z) : [0,1]× ∆̄→ Cn(if

one includes the end discs), where you get one of the original pair of discs at the point

q when t = 1. Here γ is a parametrization of the closed interval from q to the point of

the boundary of the unit disc δ away in either direction.

By the same arguments used earlier one can shift the entire family a value σ away.
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Now, make a tiny change in index by using kt (the same k on both sides) instead of t

with some k slightly more than one, and so that no disc is shifted more than σ. This

means that the discs are pulled slightly back. The final requirement on δ is that it is

smaller than the distance from q to γ(k), which is the same on both sides by construc-

tion. In the point where the tree and the unit disc meets the discs from both sides is

simply one of the discs in q shifted by a consonant to that point. As such there is a

continuous family of discs and the discontinuity disappears.

We do this with all the discontinuities at once, making sure that nothing intersects.

The final remaining problem is that we no longer have a disc, but a disc with trees glued

to it. But we know that this set is simply connected, and so the Riemann mapping

theorem gives us a biholomorphism unto the domain, and the discs associated to the

boundary of the disc with trees can now be associated to the disc. Since the boundary

of the disc with trees is a Jordan curve, the biholomorphism extends to the boundary,

by Carathèodory’s theorem. As such there is an analytic disc with boundary inΩn con-

taining p with a continuous family of discs along the boundary, each of which have

boundary in Ωn−1. Theorem 2.3.1 gives us the result, when we choose ε to be so small

that all of the boundary lies inΩn−1. �

The concept of the discs at the discontinuity being connected discs along a tree

might seem arbitrary, but in Chapter 3 we will create an equivalence between discs

based on trees, and this will lead to a way of constructing the envelope of holomorphy

for a domain in Cn . The concept of discs along trees will then prove quite useful.

2.4 Pulling a Family of Discs

Having shown how to pull one disc, this section will show that this can be done for a

family of discs, that is to say that for a continuous family of discs H(t , z), with a disc

G(t ,e iθ , z) going through every boundary point of every disc, and where the discs along

the boundary change in a continuous manner, one can create a new family of discs that

is mostly close H , but whose boundary lies close to the boundary of the discs G(t ,e iθ , z).
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The proof will for the most part be exactly the same as the proof for Theorem 2.3.1,

just with an added variable.

Theorem 2.4.1. Say that we have a curve p(t ) ∈Cn and a family of closed analytic discs

defined by H : [0,1] × ∆̄ → Cn such that H(t ,0) = p. Further, let us say that we have

a continuous function G(t ,e iθ,ζ) : [0,1]× [0,2π]× ∆̄→ Cn that is analytic in the third

coordinate, so that for any G(t ,e iθ, ·) we get a closed analytic disc. We also say that

G(t ,e iθ ,0) = H(t ,e iθ) for all θ. Then we can for any ε,δ > 0 and 0 < r < 1 find a func-

tion Q(t , z) : [0,1]× ∆̄→ Cn , so that ∥ Q(t , z) ∥< δ when | z |< r , Q(0)+ H(0) = p and

mi n ∥Q(t , z)+H(t , z)−G(t , z,∂∆) ∥< ε for z ∈ ∂∆.

Proof : We say that G = (g1, g2.....gn) and H = (h1....hn). We then create a function

v = (v1, ....vn), where v j (t ,e iθ,ζ) = g j (t ,e iθ ,ζ) − h j (t ,e iθ). Note that this means that

v j (t ,e iθ,0) = 0.

v j is continuous in the first and second coordinates and analytic in the third, so we

can expand to

v j (t ,e iθ ,ζ) =
∞∑

l=1
a j ,l (t ,e iθ)ζl

Here a j ,l is a continuous function on the cylinder C y = [0,1]×∂∆. The sum starts at

l=1 because we know that there is no constant term.

We now remove all terms in the sum above a certain limit, and thus get a finite sum

v̄ j (t ,e iθ,ζ) =
N∑

l=1
a j ,l (t ,e iθ)ζl

We adjust N so that ∥ v j − v̄ j ∥< ε
2n .

Next, by using the complex version of the Stone-Weierstrass theorem we get that

any continuous function on C y can be approximated uniformly by a sum of the type∑∞
n,m,o=0 an,m,o zn z̄m t o , where an,m,o is a constant. This is because the two functions

I(t,z)=z and T(t,z)=t separates points on C y , so one can construct the necessary *-algebra

from that. Finally, as t̄ = t on C y , one does not need to count in t̄ .
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For each a j ,l we can find a function A j ,l where | a j ,l − A j ,l |< ε
4nN on [0,1]×∂∆ and

where

A j ,l (t ,e iθ) =
∞∑

o,u,s=0
b j ,l ,u,s,o t oe i uθ ¯e i sθ

However, as we are on the unit circle in the second coordinate, ¯e iθ = e−iθ. Also, we

can approximate A j ,l by a finite sum

B j ,l (t ,e iθ) =
M∑

o,u,s=0
b j ,l ,t ,s t oe i uθe−i sθ

where we cut off o,u and s at M, where M is so large that | A j ,l −B j ,l |< ε
4nN for all l.

As there are only N functions A j ,l we only take the maximum of a finite set, so we can

find such a maximum. By the triangle inequality we get that | a j ,l −B j ,l |< ε
nN .

One can now replace each instance of a j ,l in the formula for v̄ j with B j ,l . Naming

this new series C j , we get

C j (t ,e iθ,ζ) =
N∑

l=1
B j ,l (t ,e iθ)ζl

Putting in the definition of B j ,l gives:

C j (t ,e iθ ,ζ) =
N∑

l=1
(

M∑
o,u,s=0

b j ,l ,t ,s t [oe i uθe−i sθ)ζl

Using the triangle inequality repeatedly we get that ∥C j − v j ∥< ε
n . Next, we set ζ=

ηkM , where k is an integer larger than or equal to 2. We put e iθ = z for some z ∈ ∂∆, and

finally we also extend C j a little so that the function is defined on a half-open annulus

R where one part of R’s boundary is the unit circle, and this part of the boundary is in R,

and the other part is a circle of radius r < 1. If you could not do this, then there would

have to be singularities of C j arbitrarily close to the circle, meaning that the absolute

value of C j would have to be arbitrarily big at some point on the circle. But C j must be

bounded on the circle, so that is impossible.

We now have an analytic function C j : [0,1]× R ×∆→C. Next define a function q j :
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q j : [0,1]×R →C=C j (t , z, z)

This gives us

q j =
N∑

l=1
(

M∑
o,u,s=0

b j ,l ,t ,s t o z t z−s )zkMl

which we rewrite to:

q j =
N∑

l=1
(

M∑
o,u,s=0

b j ,l ,t ,s t o z t zM−s )z(k−1)Ml

The last rewriting of q j makes it apparent that q j can be extended to the entire

closed disc, as none of the powers of z are negative, and q j is a finite sum. Now we

can define Q(t , z) = (q1, q2...qn). This is the function we wanted. First, for any disc with

center in 0 and radius r less than 1, we can get | q j |< ε
n by increasing the constant k.

As the absolute value of z is less than r, increasing k by 1 will mean that the absolute

value of q j will lower by at least | r M |. This can be done until the absolute value is low

enough.

It is obvious that Q(t ,0) = (0,0...0), so Q(t ,0)+ H(t ,0) = p(t ). Finally it needs to be

shown that

mi n ∥ Q(t , z) + H(t , z) −G(t , z,∂∆) ∥< ε for any ε >0 and z∈ ∂∆. Remember that

| q j (t , z)− v j (t , z, zkM ) |< ε
n when z ∈ ∂∆. Using the triangle inequality and recalling

that v j (t ,e iθ,ζ) = g j (t ,e iθ ,ζ)−h j (t ,e iθ) we get the correct result. �

2.4.1 Taking a Family of Discs fromΩn toΩn−1

This section will be about doing the same thing we did in Lemma 2.3.2, but for a family

of discs. If we could for any continuous family of discs H with boundary of all the discs

and first disc inΩn find a family of discs J with boundary inΩn−1, for which the centres

in H lie in the centres of the discs in J , and in addition J (0, z) ∈Ωn−1, then by the defi-

nition of Ωn we would have that Ωn =Ωn−1. This would mean that Ω1 is the envelope

ofΩ, which is what we wanted to prove.
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Here we will construct J in a case where we have several assumptions made. These

assumptions will be justified in Chapter 3. First, while we do not assume that all discs

around the boundary of H are continuous, we assume that on each disc H(t , ·) they can

be made piecewise continuous, and that at the discontinuities we, like in the section

"Taking a disc from Ωn to Ωn−1", have trees that we can use to create a continuous set

of discs.

We also assume that there is a curve a(t ) : [0,1] → ∂∆ which takes values close to

1, and where along the curve H(t , a(t )) and in a small neighbourhood of the boundary

around it which we will call Γwe have it so that the discs are very small discs embedded

inΩ, and that this is always the same disc, just linearly shifted. An underlying assump-

tion is then that H(t , a(t )) is inΩ. Finally, we assume that the first disc in H is embedded

inΩ, and for that disc we can make the continuous set of discs into small discs embed-

ded in Ω. Again, all these assumptions will be justified in the next chapter. Also note

that by applying continuous rotations on the closed unit disc, we can make it so that

a(t ) = 1 for a rotated version of H .

Theorem 2.4.2. Under the assumptions made above, we can for a family of discs H find

a new family of discs J with first disc and boundary of all discs in Ω, and whose centres

after a time follow the curve H(t ,0).

We split the proof up into two lemmas.

• The first will create a piecewise continuous family of analytic discs which will be

approximations of the discs in H , but with trees. Around each there should be a

continuous set of discs.

• The second lemma will make this piecewise continuous family into a continuous

one by adding trees in strategic places and creating new discs to "tie together" the

discontinuities.

Lemma 2.4.1. From the family of discs H previously described we can find a piece-

wise continuous family of analytic discs H1, where the discontinuities happens in the
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Figure 2.16: What we wish to accomplish with Lemma 2.4.1. Each colour marks a con-
tinuous family of discs. At the discontinuity the two families of discs have approxi-
mately the same "main" part, but different trees attached. Each individual disc looks
like Figure 2.17.

t-coordinate, and all points H(t ,0) are contained in the new family(and those are the

only centres of the discs in H1). There are finitely many discontinuity points, and at each

discontinuity point one can find one disc from each of the two continuous families on

either side that would be a continuous extension of each family. These two discs are ba-

sically the same, i.e they are the same basic disc but with different fattened trees. Also, at

H1(t , a(t )) we should have small discs along the boundary.

Each continuous piece of analytic discs has a continuous set of discs defined along the

boundary. However, along H1(t , a(t )) the boundary discs are small and embedded in Ω,

and the discs are just the same tiny disc linearly shifted. This also holds in some small

neighbourhood of the curve, which we call Γ.

Proof: To start, take any disc d = H(k, ·). The boundary of the disc has a lift to Ω1,

and using Theorem 2.3.2 one constructs a disc e which almost contains the original d ,

as the change is less than δ. In addition there are a finite number of trees along the

boundary. For this disc we have a continuous set of analytic discs G along the boundary

of e.

We can shift e and all discs around its boundary a little in all directions. Now, as H

is a continuous family of discs, one can find other discs close to d in H2 so that e shifted

by a constant is an approximation which never differ by more than δ, except that it has
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trees. These shifted discs can be chosen so that they have the same centre as the discs

in H they are approximating. Thus e and linear shifts of e are approximations of discs

close to d. These approximations are done by linear shifts, but one could possibly cover

more discs by letting e change continuously. However, this is not important for the

proof.

This way one finds an interval around the index k of d of indexes of discs, where

all the discs can have the same trees, only continually changing, and the same discs,

except again changing continuously. Taking these intervals around each disc one gets

an open cover of the interval [0,1], or of all the discs. Take a finite cover, and each cover

gives a continuous family of discs with continuous discs along the boundary. It is easy

to see that this construction fulfils all the requirements in the first paragraph of the

description of the Lemma.

What remains then is to prove the second paragraph of the lemma, that which con-

cerns itself with H3(t , a(t )). We remember from Theorem 2.3.2 that we place trees in the

intersection between two of the open intervals in the cover of the boundary we create.

That means that we have some choice of where the trees are put, so we can make sure

that the trees are not on H1(·, a(t )). In addition, by a compactness-argument, we can

make a small interval around H1(·, a(t )) where there are no trees.

By assumption we can choose the discs around the boundary so that they are small

around H1(t ,1). The lemma follows. �

Lemma 2.4.2. The family of discs H1 described in Lemma 2.4.1 can be made into a con-

tinuous family of closed analytic discs H2 where the points H2(t ,0) are contained in the

centres of H1 and vice versa. Also, the boundary of the discs is each the center of an ana-

lytic disc with boundary inΩ, and those discs varies continuously with the boundary.

Proof: The problem here is to, at any discontinuity point t0 in H1, find a way to

create a continuous family of discs that connects the two families of discs that meet at

the discontinuity point(we can call the first disc, first being determined by index, d−
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Figure 2.17: An image of D .

Figure 2.18: The result of "peeling" a disc: removing points around b(t ) until you get a
slightly smaller disc with a tree going around the disc.
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and the other d+), so that a continuous set of analytic discs with boundary in Ω can

be found along the boundary. The process that we will use here can be imagined as

"peeling". If one imagines the first disc d− as an unpeeled orange, and d+ as a peeled

one, then one starts with the unpeeled orange and then makes cut in the disc in a circle

around the boundary, "revealing" d+ underneath. Then one will get something close to

d+ except with a tree attached to it and all other discs in the same continuous piece(the

tree being the orange peel still barely attached). This process is then repeated for all

discontinuity points.

Note that we do not end up with d+, but with an approximation of d+ with a tree

added. Approximations of the continuous family of discs d+ belongs to will have this

tree continuously added to it.

First, let us assume the simple case where d+ has no trees, meaning that the con-

struction in Lemma 2.4.1 was straightforward and a continuous set of analytic discs

with boundary inΩ could be found around the boundary without any trouble.

Let F : ∆̄→ Cn and G : ∆̄→ Cn be the continuous functions(holomorphic on the

interior) that defines d− and d+ respectively. Let F1,G1 : ∂∆× ∆̄→ Cn be the function

giving the continuous set of discs along the boundary of each analytic disc.

As said before, the discs d− and d+, as well as those in F1,G1 can be moved by some

small constant, let us say by a value smaller than ε for both of them. We also want all

trees to be able to be shifted by ε, and as there are finitely many one can indeed find

such an ε.

We remember from the proof of Theorem 2.3.1 that we construct a disc in the plane

which is the closed unit disc together with a finite number of trees attached at the

boundary. The defining functions from the unit disc to the analytic disc (F and G in

the cases above) were constructed by taking a composite of a function from the disc

with trees and the function η gotten from applying the Riemann mapping theorem to

the unit disc and the closed unit disc with trees. As the discs d− was constructed this
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way, we can find the function F 1, which is the function from the unit disc to d−. For the

case of d−, call the closed unit disc with trees D .

Let us assume that a(t ) = 1 at the discontinuity, and that η(1) = 1, which we can say

by the use of rotations. We also assume that 1 is on the boundary of D , that is to say

that no fattened trees are at 1 or in some small neighbourhood around it. Then, take a

curve b(t ) in D starting at 1 and then going slightly in towards 0 to a point r < 1, before

counter-clockwise along r e iθ almost the entire way around back to r again. This curve

should be so close to ∂∆ ∈ D that the image of F 1(b(t )) lies less than
ε

3
away from the

image of F 1(∂∆) and the image of G(∂∆). Recall that d+ and d− are approximations of

the same disc, so if that approximation is made good enough, this holds.

We now remove the points around b(t ) that lies so close that the the image of the

points under F 1 differs from the image of F 1(b(t )) by less than ε
100 . This is done contin-

uously, that is to say we create a continuous family of analytic discs, the first being D ,

and the others have a small part removed along b(t ). We remove part of D all the way

around to the end of b(t ). The endpoint of b(t ) is determined to be r e iθ, θ < 0, where r

is as close to 1 as previously mentioned and θ being so that F 1(e iθ) maps to the part of

the boundary of d− so close to 1 that the discs defined around the boundary are small

discs, that is to say that F 1(e iθ) is in Γ. We must make sure that D with this set removed

is still connected, but that is possible.

It follows from 2.2.1 that the Riemann mapping theorem gives a continuous fam-

ily of discs when the domain the unit disc is mapped to changes continuously. That

means that when one continuously removes b(t ) and the points close to it as described

above, it gives us a continuous family of analytic discs D(t , z) lying inC. Taking B(t , z) =
F 1(D(t , z)) we get a continuous family of analytic discs in Cn , where B(0, z) coincides

with d−.

We need to find a continuous set of analytic discs with boundary inΩ along the discs

B(t , z), so that for D(0, z) the discs match those defined for d−, in way that would help

"tie" together the discs d− and d+. We split the boundary of B(t , z) into three parts: we
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call the boundary of D for ∂D , and the boundary of the inner part of the removed set

along b(t ) will be split up into the parts b1 and b2. b1 marks the part of the curve closest

to ∂D , and b2 the other half. We make it so that b2(t ) is simply a curve following r1e iθ

for some r1 (this is useful in the case where d+ has trees), and let b1 make a small curve

at the end to tie together it and b2. Now we define the analytic discs along each part.

• For F 1(∂D) we define the discs in the same way that they were defined for d−, that

is to say taking F1.

• For F 1(b1) take the discs in G1. These are defined along the boundary of ∂∆ (re-

member that we first assumed that there were no trees on d+), so we can just

shift them slightly to get a similar family of discs defined along F 1(b1). So if

b1(t ) = r e iν, then take the disc that is on the point G1(e iν).

• F 1(b2 is defined in the same way as F 1(b1).

We need to check that this is continuous at the part where these different definitions

meet. As the second and third parts of the boundary only meets the third at the place

close to 1, where the discs defined is the same, small disc, just linearly shifted, they are

continuous. Where F 1(b1) and F 1(b2) meet, the discs are defined by the same disc in

G1, so again we have continuity.

Remember that the constructions in previous lemmas were such that d− and d+

were approximations of the same analytic disc, just with different fattened trees added

to them. As long as δ was small enough, they were both approximations that on the

"main body", the part without the trees, the approximations were better than δ. That

means that aside from at the trees d− and d+ approximate each other better than 2δ.

Here we assume that d+ does not have any trees, in which case we can take d+ as

an analytic disc from ∆̄ ∈ D . Now, if r is big enough and δ is small enough, then the

values that B(1, z) takes at the inner part, that is to say the disc formed by completing

the arc b2 to a complete circle, gives us an approximation of d+. Thus, F 1(B(1, z)) is
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an approximation of d+ with a tree, the tree being the image under F 1 if the part of D

separated by the boundary of D and b1. We can always continuously make it so that d+

goes from the new, smaller disc instead of from the unit disc.

Now we want to create a continuous family of discs going from F 1(B(1, z)) and along

the continuous family of discs that d+ belongs to, while keeping the centres intact and

making sure that these continuous analytic discs goes all the way to the next discon-

tinuity point(or to the end of H2 if this was the last discontinuity). To do this, we use

Mergelyan’s theorem on B(1, z). We want to find a function on B(1, z) that we can ap-

proximate with Mergelyan’s theorem, where the function when added to F 1(B(1, z))

should approximate the family of discs that d+ belongs to, while having the tree pretty

much still, so that we can make sure it does not leave the domain or something similar.

We might not be able to find a function that can do this in one go, but we should be

able to find one that lets us get a little bit further. Look at d+ and the family it belongs

to, which we will call J (t , z). As said before F 1(B(1, z)) approximates J (0, z) as closely as

we want, say better than τ. τ should already be so small that we can make a straight line

inΩ between any F 1(B(1,e iθ)) and J (0,e iθ).

Now, take the closed unit disc in the complex plane together with a tree connected

to the boundary at the same place that B(1, z) has a tree, except not fattened. The tree

should otherwise be the same as the tree in B(1, z). Now, on the closed unit disc, we

can now define the function f = J (0, z)−F 1(B(1, z)), the difference between d+ and its

approximation. This function is holomorphic. On the tree we let f have the value 0,

except at the part of the tree closes to the unit disc, where it linearly goes from 0 to the

value the closed unit disc takes at the intersection of it and the tree. This line segment

must be so short that the entire tree lies inΩ.

By Mergelyan’s theorem we can approximate f as closely as we wish, say by an error

smaller than
α

2
, by a polynomial P . Extend P slightly to the fattened version of the tree,

but not more than so that P on the fattened tree has a value so small that the tree on

F 1(B(1, z)) can be moved that much without going out ofΩ. It might be that the tree on
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Figure 2.19: l grown out.

B(1, z) is too fat, so that the extension of P gives too large values. In that case, create a

continuous family of discs from B(1, z) to a version where the tree has been "shrunk",

so that the problem no longer exists.

Taking the family of discs F 1(B(1, z))+ tP (z) we get a family of discs that when t = 1

approximates d+ better than
α

2
. Each disc constructed here will have the same centre

as the discs in H2, but if that were not the case, the fact that our approximation is better

than
α

2
means that each disc need only be moved a maximum of

α

2
to get it to the centre

of the disc we are approximating. The error then becomes α. Moving the discs like this

can be done continuously, and will be useful for what is coming up. For now, we just see

that we can get as good an approximation of d+ as we want, except with a tree added.

Now we use the same process as in the last two paragraphs, except that f on the

closed unit disc now is the difference between F 1(B(1, z)) + P (z) and J (t1, z). When

this is added to the approximation of a previous disc(for starters, the approximation

of d+), we move to an approximation of the J (t1, z). We then repeat the process, and by

a compactness-argument we only need to do this a finite number of times to get to the

next discontinuity point on H2 (or the end of H2). This solves the problem in the case

that d+ has no trees.

Now we take the case where d+ has trees. Here we use a process we might call "grow-

ing twin trees". We recall that when we started cutting the curve b(t ) through D , we
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Figure 2.20: l being cut down the middle to create two twin trees.

needed to define the continuous set of discs along the boundary, and that for both b1

and b2 these were the discs defined on d+. That means that when we do this process

when d+ has trees, trees must be added to make it so that the discs are continuous, and

to get a good approximation of d+.

As mentioned before, the construction of d+ consists of taking the union of the

closed unit disc and some trees, and then approximating the disc we wanted. Call the

disc with trees in the case of d+ E(recall that this was called D for d−). In this construc-

tion, we have some choice about how the trees attached to the unit disc looks. Here, we

want the trees to be so small that they fit well inside the part we dig out of D , note that

this is not a problem, as we just redefine the function from the tree to Cn to make it fit.

We can also make it so that at each point where several edges meet on the tree, only two

meet. In the case that there would be several edges meeting, we can just move them

slightly.

Finally, we make it so that the tree starts of with one edge, being the "main" part of

the tree, and all edges connected to it are added to the left of that edge. This also holds

for all sub-trees of the tree, where other edges meet edges connected to the "main" part.

Call this tree T , and the function on it used to define the tree in d+for g .

Now, when b(t ) has arrived at a place where d+ has a root, we stop, and create a new

continuous family of discs that at the end gives us the trees we need. As said before, we

want to create to copies of T , one on b1, one on b2, and we easily see that the one

on b1 should be a mirrored version of T . The way we do this is like this: start with
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Figure 2.21: Inner trees being constructed. Two twin trees are being constructed at the
place b(t ) has gotten to, and one pair of trees have already been constructed.

continuously growing a fattened edge l from where b1 and b2 meet, and let the function

on this edge be an approximation of g on the main part. More on how exactly that works

later.

The continuous family of discs defined along l are those defined along the right side

of T , on both sides of l . This makes it easy to see that the discs along the boundary are

continuous. Now, in the case where T only consisted of one single edge, we would at

this point cut l in to. To be specific, once l had grown completely, we would continu-

ously remove a small set of points along the central line of l , thus creating a Y-shaped

tree, until it reached the bottom, when it would become two trees. The discs defined on

this inner boundary would on both sides be the discs T has along the left boundary. In

this way we end up with two copies of T , one mirrored, and can continue the process

of removing points along b(t ). Figure 2.21 shows what we end up with.

In the case where there T is more complicated, the process starts as before, with

making l and then cutting it. But then we come to the point where we can not cut any

longer, because T has an edge s there. We then stop cutting l , and instead let a new
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edge grow from the center of the Y-shape. Recall that there is only one edge attached at

any point of the main part. Now, we repeat the process we have done with l on this new

edge, except that this one estimates s. We let the edge grow, have the function on the

edge be the one g is on s, and let the discs along the boundary be the the ones on g (s)’s

right side, and then start cutting. Repeat this process until all edges have been cut, and

you are left with two mirrored versions of T , with the discs properly defined.

When we repeat this process all the way around, we get a disc that approximates d+

together with a tree as before. The rest of the process is as it was previously. Thus, the

only remaining issue is the extension of F 1 unto the copies of T . If we were to extend F 1

itself, we would only get the values F 1 had on D in the removed parts. What we instead

do is to once again use Mergelyan’s theorem.

When we reach the point where we want to start growing T , we construct the disc

with a line segment from which l could be considered a fattening. On this construct,

we create a polynomial C that approximates F 1 on the remaining part of D , and ap-

proximates g on the line segment. We then fatten, making sure that the boundary of

l is so close that all necessary boundary discs can be centred where they should. We

make sure that C takes the same value that F 1 does at 0, and so we create a family of

continuous discs (1−t )F 1+tC , that all have the same centre. When we extend C to l we

get what we want. Note that when we cut l , we must make the part we remove so small

that what remains is still a good approximation. Repeat the process for all edges on T

when we reach those.

It might be that the trees we originally had on E were too big to fit inside the small

part of D we are digging out, after all we made E in the previous lemma, before we

knew how much discs could be shifted. In that case, simply create a new version of E ,

E1, with trees with the same structure, but small enough to fit in the removed part of

D . Then construct a function from E1 to E , where the closed unit disc is mapped to the

closed unit disc, and the trees are mapped unto the corresponding tree on E . Then use

Mergelyan’s theorem to approximate this function. Then, when we want to move along

the family of d+ as mentioned before, we first construct the function on E , then use the
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constructed function.

This solves the case where there are trees on d+. �

Proof of Theorem 2.4.2:

Using lemmas 2.4.1 and 2.4.2 we get a continuous family of discs A with the first

disc embedded in Ω and with a continuous family of discs with boundary in Ω along

the boundary of A, and whose centres follow the curve a(t ) = H(t ,0) after a certain

point. Now, simply use Theorem 2.4.1 with an ε so small that all of the boundary of the

new family of discs are inΩ. This is possible by a compactness-argument. We can make

it so that the discs along the boundary of the first disc has a very small radius, so that

the disc is still embedded inΩwhen we construct our new family. Theorem 2.4.1 keeps

the centres in place, and thus we have the theorem. �



Chapter 3

Burglind Jöricke’s paper

This chapter deals with Burglind Jöricke’s paper (Jöricke (2009)). The main idea is this:

we take the set of all analytic discs of a certain type with boundary in a domain Ω, and

create an equivalence relation between them. We then give the equivalence classes the

structure of a Riemann domain, and show that that Riemann domain is the envelope of

holomorphy. Finally we show that the domain is in factΩ1.

3.1 A Riemann Domain Based on Discs inΩ

The purpose of this section is this: to define a set of a particular type of analytic disc

which we will callΩ0, and then construct an equivalence relation onΩ0 to create a new

set calledΩ1. Ω1 will then be given the structure of a Riemann domain. Everything here

comes from Jöricke (2009).

One thing to note is that unlike Jöricke’s work, here we only work with domains

embedded in Cn .

First, for a domainΩ, defineΩ0 as the set of analytic discs d inCn with the following

properties:

Definition 3.1.1. An analytic disc is inΩ0 if there is a continuous family of discs G(t , z) :

57
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[0,1]×∆̄→Cn , where G(0, ·) is embedded inΩ, G(1, ·) = d, and G(t ,e iθ) ∈Ω for all t ∈ [0,1]

and θ ∈ [0,2π].

One can think of these discs as the final disc in the continuous family of analytic

discs used in for instance Theorem 2.2.3, or as the set of discs for which there exists a

homotopy of discs with boundary inΩ that connectes the disc to a small disc embedded

in Ω. A disc in Ω0 will be called a Ω0 disc. Next, we define an equivalence relation on

Ω0.

Definition 3.1.2. The equivalence relation is defined to be the smallest, that is to say the

one with the fewest possible equivalent discs, so that these two requirements hold:

• TwoΩ0 discs that are embedded intoΩ and have common center are equivalent.

• The equivalence relation is preserved under homotopies of equally centered pairs

ofΩ0 discs.

We will simply refer to this relation as the "equivalence relation", as there are no other

equivalences on discs used here, so there is no confusion.

Another way of looking at the second requirement is that if for two equally centered

Ω0 discs there is a path from the center to another point, and you for each disc create

a continuous family of discs, F1(t , z) and F2(t , z), where the center goes along the path

and the families are so constructed that they have the same center for any t ∈ [0,1],

that is to say F1(t ,0) = F2(t ,0), and the discs at the end point of the continuous families

are equivalent, that is to say F1(1, z) is equivalent to F2(1, z), then the two first discs are

equivalent.

Here is a short lemma about this equivalence relation:

Lemma 3.1.1. Any pair of equivalent discs can be constructed by performing the follow-

ing operations a finite number of times:

• take a pair of equally centered discs embedded inΩ.
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• take a pair of discs that is homotopic through a pair of equally centred discs to a

pair of equivalent discs, as in part 2 of definition 3.1.2.

• let d1,d2,d3 beΩ0 discs where d1 and d2 are equivalent, and d2 and d3 are equiv-

alent. Then take the pair d1,d3.

Proof: First, notice that step 1 and 2 gives us equivalent discs as defined in definition

3.1.2. Also notice that this way of matching pairs of discs is symmetric and reflexive.

From step 3 one gets transitivity. As such we get an equivalence relation. Because any

equivalence relation that fulfils step 1 and 2 must have transitivity which step 3 gives,

this construction is indeed the minimal equivalence relation we previously defined. �

Next, here is a lemma that shows that for any pair of equivalent disc, there exists a

certain homotopy ofΩ0 discs between them. First we define a tree the same way we did

in the previous chapter:

Definition 3.1.3. A rooted tree in the complex plane is a graph without simple closed

paths and one vertex chosen as root, that is to say, a finite set of line segments connected

only at their endpoints and with no loops (the tree is simply connected). From here on a

tree can also be a continuous function from such a rooted tree inC toCn , and in that case

the root of the tree is the point that the root of the rooted tree is mapped to. A leaf of a tree

is an endpoint of a line segment, other than the root, that is not connected to any other

line segment.

Lemma 3.1.2. For any pair of equivalent discs, one can find a tree with root at their

common center and all leaves in Ω, so that for any point on the tree, there is a pair of

equivalent discs defined with centres in that point. We will say that one of these discs

is on the left side, and one on the right, and so that at the leaves of the tree there is a

disc embedded into Ω with center at that point. This can be done so that if you start

at the root of the tree, and go around the tree in either in clockwise or counterclockwise

direction, picking the "right" discs for one side and the "left" side for the other, you get a

homotopy of discs connecting the two discs at the root.
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Figure 3.1: A simplified imagining of a tree. The thick structure is the tree, while the
thinner black lines are the analytic discs. Along every point on the tree there are two
discs, and when ordering one of each pair to one "side", each side gets a continuous
family of discs. At the leaves of the trees there is an embedded disc. The red part isΩ.

Basically, one can find a tree and Ω0 discs with centres on the tree so that the discs

create a continuous family of discs going from one of the discs in the pair of equivalent

discs to the other.

Proof: Lemma 3.1.1 gives us a way of constructing all equivalent discs. So take two

discs and the finite sequence of steps necessary to get us from one to the other. For each

step, one constructs a segment of a tree in the following way: for step 1, the embedded

discs, one constructs a leaf of the tree or simply a point if you will. It is easy to find a

continuous family of discs between these discs, all with common center. Just shrink

both discs until they are small enough that you can rotate them and manipulate them

as you wish.

For step 2, the equivalent discs goes along a line from a pair of equivalent discs, so

simply let the tree be the line segment of the common centres. As for step 3, take the

union of the trees, gluing them together at their common root. How to construct the

discs around the tree is obvious from this construction. �

Lemma 3.1.3. Let d be a Ω0 disc, and let U be the connected component of ∆̄ such that
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for z ∈ U , d(z) ∈ Ω and that ∂∆ is in U . Then d together with an automorphism A on

the closed unit disc that moves the center of d to a point in U i equivalent to a small

embedded disc.

Proof: Call d with moved centre d1. Let e be a small embedded disc in Ω with the

same centre as d1. Let D(t , z) be the continuous family of discs which d is a part of. Now

create a continuously changing automorphism A(t , z) on the closed unit disc where

A(1) = A and which moves the centres of D so that they lie in Ω. As the discs in D

must have a continuous component in Ω near the boundary, and because of how U

is defined, we can find such an A(t ). Then simply create a continuous family of small

embedded discs from e along the centres of D(t , A(t , z)). As all discs embedded in Ω

with the same centre are equivalent, D(0, A(0, z)) is equivalent to the small disc we have

there. Since equivalence is preserved under homotopies of analytic discs with common

centre, we have our result. �

Next, an example of non-obvious equivalent discs in a domain:

Example 3.1.1. Here we again write z = x + i y and w = a +bi , (z, w) ∈ C2. Let G be a

domain in C2 constructed by the union of the following sets:

G1 = {(z, w) ∈C2 : |z| < 2,−2 < a <−1.5,b ∈ (−0.1,0.1)}

G2 = {(z, w) ∈C2 : 1.5 < |z| < 2,−1.5 ≤ a < 0.5,b ∈ (−0.1,0.1)}

G3 = {(z, w) ∈C2 : |z| < 4,1.5 < a < 2,b ∈ (−0.1,0.1)}

G4 = {(z, w) ∈C2 : 3.5 < |z| < 4,−0.5 < a ≤ 1.5,b ∈ (−0.1,0.1)}

G5 = {(z, w) ∈C2 : |(k,0)− (z, w)| < 0.1,k ∈ [−2,−3.5]}
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Figure 3.2: A two-dimensional cut of G , cut along the x-a plane. The red part is G1 and
G2, the blue part G3 and G4 and the green part G5. The two black lines are analytic disc,
one with boundary in G2 and one in G4. These are mean to have equivalent centres, but
are slightly apart for visual reasons.

An idea of how the union G looks like can be gotten by Figure 3.3. The two black lines

on the figure(note that they are supposed to have equal center even though that is not

clear on the figure) represents these two discs:

d1 : z ∈ ∆̄→ (1.8z,0)

d2 : z ∈ ∆̄→ (3.8z,0)

It is clear that these two have equal center (0,0), but it is not obvious that they are

equivalent, as the boundaries are in different parts of the domain. To show that they are

in fact equivalent, first consider the case where we through an automorphism on each

disc, labelled B 1,B 2 have moved their centre to, for instance (1.7,0) in Ω, the same for

both. By Lemma 3.1.3 d1(B 1(z)) is equivalent to a small disc with centre (1.7,0) em-

bedded in Ω, and the same for d2(B 2(z)). As all embedded disc with equal centre are

equivalent, and by transitivity, the discs are equivalent.

While this is valid, for this example the homotopy and tree will be constructed. Start

with the disc d1(B 1) = (1.8B 1(z),0). Create a homotopy given by D1(t , z) = (1.8B 1,−1.6t ),

so that D1(0, z) = d1 and D1(1, z) is embedded in G with centre in (1.7,−1.6). Now create a

new homotopy which shrinks the disc, D2(t , z) = ((1− 999t
1000 )1.8B 1(z)+1.7 999t

1000 ,−1.6+0.1t )



3.1. A RIEMANN DOMAIN BASED ON DISCS INΩ 63

giving us at D2(1, z) a disc with radius 1.8
1000 and center (1.7,−1.7). Call this disc S(z) =

(s(z),−1.7)

The next homotopy D3(t , z) = (s(z),−1.7+1.7t . This creates homotopies of discs, all

with centres in (1.7,−1.7t ), meaning that that d1(B 1) and (s(z),0) are equivalent. In a

similar way one constructs two homotopies along the line going from (1.7,0) to (3.7,0)

, one being made using automorphisms on d2 moving the centre along the straight line

between the two points, and having small discs going along the same curve. Then we

create another pair of homotopies going to (3.7,3.7) by shifting d2 and the small discs

upwards, where the two discs are equivalent. This shows that d2(B 2) is equivalent to a

small disc embedded in Ω with centre (1.7,0). Finding a tree that creates a homotopy

between the two small discs is easy, and again one uses transitivity to get the result. The

tree is made of the line segment from (1.7,0) to (1.7,−1.7), the one going from (1.7,0) to

(3.7,0) and then to (3.7,3.7).

Now to prove the original discs are equivalent. Simply take the straight line going

from (0,0) to (1.7,0). It is easy to see that you can use Blaschke factors on the disc to

create a continuous family of Ω0 discs going from dν to dν(Bν),ν = 1,2. Simply take

B(t , z) = z −a(t )

1− ¯a(t )z
, for a fitting curve a(t ). Thus part 2 of the definition of the equivalence

class states that d1 and d2 are equivalent. The tree is the line segment from (0,0) to (1.7,0)

plus the tree mentioned in the previous paragraph.

Note that this would not work if the corridor connecting the two glasses goes in a

curve on the outside of the glasses, which we know would give non-shclicht results. In

that case we could not say that the largest of the two discs was equivalent to a small disc

lying in the small glass, because moving centres from close to the boundary of the big disc

into the small glass would force you to leave the domain.

Definition 3.1.4. The quotient space onΩ0 given by the equivalence relation mentioned

above will be referred to asΩ1.

Ω1 can be given the structure of a Riemann domain in the following way:
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Figure 3.3: G with the tree referred to in the example. The point is the center of the discs
d1 and d2.

First, a basis for the topology: A basis element around some element k in Ω1 is

created by taking a representative disc f for the element k, and then for each point in a

small ball around the center of d , taking a disc that is homotopic to f through a family

of continuousΩ0 discs. For simplicity, one can take discs that are simply linear shifts of

f .

It is obvious that any disc f : ∆̄→Cn inΩ0 can be moved slightly by a constant ε> 0

smaller than some constant σ to get a Ω0 disc f + ε. This is because the boundary of

the disc is compact, and so its minimal distance from the boundary of Ω is larger than

some positive constant. One can thus create a "ball" of size σ of discs moved slightly in

any direction from the original, where the centres form an open ball in the topology of

Ω. Take each of these discs to their equivalence class, and say that this is an element in

the basis.

Several things needs to be checked here: first, is this definition well-defined? Con-

sider two equivalent discs with the same center, and that you shift both of them small

distance in the same direction. The two discs you end up with must be equivalent, as
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we can take a straight line between the first centre and the centre of the new discs and

create two homotopies of shifted discs along them where discs pairwise has the same

centre. The definition of the equivalence relation gives us that the shifted discs must be

equivalent.

This procedure can be done for any disc, so one finds that the basis indeed covers

every element of the equivalence class. Also, taking two balls that overlap, one can take

an element in the intersection and shift a representative slightly in all directions, and

one gets a ball lying inside the intersection. As such, one has a basis of the topology,

and this basis makes it so that a continuous family of discs lifts to a continuous curve in

Ω1 when taking each disc to their equivalence class.

It is clear that the space is connected: simply remember that we are working with

Ω0 discs, which means that there is a continuous homotopy to a disc embedded in Ω.

This lifts to a continuous curve with our topology. Any two embedded discs can be

continuously changed into another, and so one easily finds that any two elements inΩ1

have a line between them.

To prove thatΩ1 is Hausdorff, we prove that for any two elements inΩ1 we can find

one open set around each so that the open sets do not intersect. Take two different

elements of Ω1. Either the discs in those classes have different centres, or they have

same center but are not equivalent. If the first is the case, one can create balls inΩ of so

small radius around each so that they do not intersect. If these balls are small enough

one can for each linearly shift a representative around in it and get discs which lift to an

open ball in the topology of Ω1, and these can not intersect as none of the discs share

centres.

In the case that the discs do share centres, take a small ball around the centre and

shift representatives of the two elements around in that ball. Lift both of these sets of

balls to get open balls in Ω1. Imagine if there was an intersection between them. Then

take a line segment from the centre of the original discs to the center of the intersecting

element. Along this line segment construct the continuous discs that are a constant
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shift of the two originals. Now there is a homotopy from the original elements to a pair

of equivalent discs, and from the definition of the equivalence class one has that the

original discs are equivalent. Therefore, this can not happen.

The projection π : Ω1 → Cn is simply taking any element to the centre of any disc

in the equivalence class, which all have common center. It is clear that this is a local

homeomorphism, as a basis element in Ω1 maps to a basis element in Ω(or the Stein

manifold it is in), and vice versa. This means thatΩ1 is a Riemann domain.

We can summarize the previous paragraphs as:

Theorem 3.1.1. Ω1 is a Riemann domain.

In the next example we construct G1 for a domain G .

Example 3.1.2. As usual, let z = x + i y and w = a+bi . Let G be the domain in C2 which

is the union of these three sets:

G1 = {(z, w) ∈C2|a,b ∈ (−1,1), |z| < 4}

G2 = {(z, w) ∈C2|a ∈ [1,5),b ∈ (−1,1),3 < |z| < 4}

G3 = {(z, w) ∈C2|a ∈ [1,5),b ∈ (−1,1), |z| < 1}

Figure 3.4 and Figure 3.5 gives some idea about what this domain looks like.One thing

to note is that for any point (z, w) in the domain, the straight line between (z, w) and (z,0)

lies in the domain. This means that any analytic disc f = ( f1, f2) with boundary in G is

a G0 disc, since F (t , z) = ( f1, t f2) creates a homotopy between f and a disc embedded in

G, where the boundary of all discs lie in G. Note that f1 maps any point to a point with

absolute value less than 4, as the boundary is mapped to points with absolute value less
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Figure 3.4: A 3D cut of G . G3 is marked in green, and the other parts in blue.

than 4.

The homotopies mentioned in the previous paragraph makes it so that two discs with

equal center have equal centres along the entire family F . This means that they are equiv-

alent, as the first discs are embedded in G. So all discs with equal centre and boundary in

G are equivalent, for instance g = (0.5z,3) and h = (3.5z,3) despite one having boundary

in G2 and in G3.

Let G4 = {(z, w) ∈ C2|a ∈ (−1,5),b ∈ (−1,1), |z| < 4}. Any point (z0, w0) ∈ G4 is in the

centre of a G0 disc. For a point in G this is obvious, and otherwise j (z) = (3.9z, w0) to-

gether with an automorphism makes this clear. No point outside of G∪G4 can be reached

by a G0 disc, though, as G4 is convex, and thus pseudoconvex. In addition, by the disc

property all analytic functions on G can be extended, so G4 is the envelope of holomor-

phy.

As G4 is pseudoconvex, no G0 disc can have image outside of G4. So G1 is a domain

with one sheet per point, and the image of its projection equals G4. Thus it is isomorphic

to G4, which is also the envelope of holomorphy. What we want to show in this chapter is

that G1 is in fact always the envelope.
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Figure 3.5: A 2D cut of G . Colours are as in Figure 3.4

3.2 Ω1 as an Extension ofΩ

This section will prove that Ω1 is an analytic extension of Ω, the way it was defined in

Chapter 2. For this it needs to be shown that for any analytic function on Ω can be

extended toΩ1, and an inclusion ofΩ intoΩ1 is needed.

We start with the inclusion map φ: for any point p ∈Ω one can find a small analytic

disc d embedded in Ω with center p. Let φ(p) = [d ]. As all embedded discs around a

common point are equivalent this is well defined, and it is easy to see that it is a local

analytic isomorphism.

For the extension of an analytic function f ∈ H(Ω), the following lemma is needed.

Lemma 3.2.1. Take two equivalent discs, d1 and d2. As they are Ω0 discs we can extend

any holomorphic function on Ω to the centre of those discs. Their value at their centre is

the same for any analytic function onΩ. Another way to say this is that if you lifted both

discs to Ω̃, then their centre in the envelope would still be the same.

Proof: Take the tree which creates a homotopy between d1 and d2. The continuity

principle gives us that any analytic function on Ω can be extended to the entire tree.

Here is how one shows that the analytic functions extend to the same value for each

step: for step 1 the centre is inΩ, so its value is given and equal for both discs. For step

2: assuming that the starting discs have equal value, both homotopies of discs have

the same centres all the way, and the analytic function only has one extension along
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that line. So the function must have equal value at the centre of both discs. In step 3,

assuming that d1 and d2 have equal values in the centre, and so does d2 and d3, then

obviously the centres of d1 and d3 also share their value for any analytic function. d2

can only have one unique value in the centre, as its value is determined by the value

along the boundary. �

Using this lemma it is possible to define an extension of an analytic function f on

Ω1. For an element p ∈Ω1, take a representative disc d . As one knows the values on the

boundary(which is in Ω), one can calculate the value at the center, and because of the

way aΩ0 disc is defined, we know that f has a value there. Also, by the previous lemma

the choice of d does not matter. Let f1 be the function on Ω1 defined by choosing the

value f has in each centre.

We must show that f1 is analytic. Taking π as Ω1’s projection, look at f1 ◦π−1 on an

open ball U ⊂Cn so small that π−1 is injective on U and that. f 1 locally takes the exact

values f takes on some extension to U . So f 1 is analytic and matches f when we use

the inclusion fromΩ intoΩ1.

Theorem 3.2.1. Ω1 is an extension ofΩ, when the inclusionφ ofΩ intoΩ1 is the function

which takes a point p inΩ to the equivalence class of embedded discs with p as center.

3.3 Pulling a Family of Discs toΩ

This section will prove that for a continuous family of analytic discs, where the first disc

and the boundary of all the discs have a lift to Ω1, we can find Ω0 discs going through

the centres of all the discs in the original family. This is perhaps the most important

part of proving that Ω1 is envelope of holomorphy of Ω, as the theorem will be used to

find anΩ0 disc which is a representative of a certain point inΩ1.

Theorem 3.3.1. LetΩ be a domain in Cn and let H(t , z) : [0,1]×∆̄→Cn be a continuous

family of discs, where H(0, z)∪ H(t ,e iθ) has a lift to Ω1 when t ∈ [0,1], z ∈ ∆̄,θ ∈ [0,2π].
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Then we can find a continuous family G(t , z) of Ω0 discs so that every centre in H is the

centre of at least one disc in G. Also, if we let a(t ) be the curve of the centres of H, then

starting at some disc G(t0, z), the discs in G will follow the same curve.

The proof of Theorem 3.3.1 consists of two lemmas that together will give us an-

other set of discs that satisfy conditions of Theorem 2.4.2. Each lemma is constructive,

and constructs a new family of analytic discs based on the construction in the previous

lemma, keeping the properties of the previous lemma, but adding additional proper-

ties. Simply put:

• The first lemma will give us the property that the first disc is embedded inΩ, and

the lift of that disc will be identical to φ.

• The second lemma will make it so that each disc has part of its boundary in Ω,

with lift being identical to φ. This part of the boundary varies continuously with

t .

These lemmas and Theorem 2.4.2 together will prove the theorem.

Lemma 3.3.1. LetΩ be a connected domain inCn . Let H be a continuous family of closed

analytic discs such that the first disc and the boundary of each disc has a continuous lift

toΩ1. Then one can construct a new family of discs, H1, where for the discs H1(t , z) with

t close to one, the discs would be the same as in H, and with the properties that the first

disc and the boundary of all discs have a lift toΩ1. Also, the first disc, H1(0, z), should be

embedded into Ω, and the lift of that disc to Ω1 should be in the image of φ(Ω), where φ

is the inclusion ofΩ intoΩ1 defined previously.

Proof: Recall thatΩ1 is a connected Riemann domain. Take the lift of H(0, z) and call

it K . Say that the lift of H(0,0) is k ∈Ω1. Then there is a line segment l inΩ1 connecting

k with some element in φ(Ω). Shrink K to a small disc around k. The projection of Ω1

down to Cn gives us a continuous family of shrinking discs.

Further, taking the small disc around k and moving it along l we eventually gets a

disc embedded inφ(Ω). This is possible when the disc is shrunk enough. Again project-
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Figure 3.6: A picture of the initial situation in Ω1. The three black lines are meant to
be the lift of the first disc(the horizontal line) and the boundary of the other discs (the
vertical lines) in H . The orange part is meant to be φ(Ω).

Figure 3.7: A picture of what lemma 3.3.1 accomplishes. We shrink the first disc in H ,
then move it into φ(Ω) so that the first disc is embedded there. The orange part is φ(Ω).
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Figure 3.8: The initial situation for Lemma 3.3.2. The first disc and boundary of the
family of discs H1 is shown. The red part isΩ.

ing down we get a continuous family of analytic discs, the last one being embedded in

Ω. Taking this constructed family together with the family H and re-parametrizing to

get a family H1, we get our result. �

Lemma 3.3.2. Let H(t , z) : [0,1]×∆̄→Cn be a continuous family of discs where H(t ,e iθ)

lifts to Ω1, and say that we have created a new family of discs H1 as in Lemma 3.3.1.

Then one can create another family of analytic discs H2(t , z), where all point in H2(t ,0)

are centres of some disc in H1, and all the centres in H1 is H2(t ,0) for some t. Also there is

a curve a(t ) on the boundary of the unit disc so that H2(t , a(t )) ∈Ω.

Adding to this, the results from Lemma 3.3.1 still applies, that is to say, the first disc

should be embedded inΩ and the first disc and boundary of all discs should have a lift to

Ω1.

Proof: We now assume that we have the family H1 from Lemma 3.3.1.

Let c(t ) = (t ,1). Since H1 has a lift to Ω1, so does H1(c(t )). Then use that to find

a continuous family of discs along H1(c(t )), and make sure that the first disc is a very

small one, which is possible since the lift of the first disc is the inclusion ofΩ, and small

embedded discs are representatives of those elements. We add trees at a finite number

of the discs indexed by H1 to make sure that the discs are continuous. Each tree T has
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Figure 3.9: At the end of Lemma 3.3.2 we have a continuous family of discs where most
of the boundary lies close to the boundary of H1, the first disc is almost the same and
the centres of the discs are the same, but where part of the boundary of each disc now
lies inΩ. H2(t ,1) lies inΩ for all t .

its root on the boundary of one disc d , indexed by t0. We can now make a new disc by

combining d and a fattened version of T in the same way as in Theorem 2.3.2.

To quickly go over the procedure used again, one takes the closed unit disc in the

plane and the function f which defines the analytic disc d . Then one adds trees on the

unit disc, and extends f continuously along the trees so that f takes the trees on the

unit disc to the tree in Cn mentioned above. Use Mergelyan’s theorem to approximate

P , and then slightly fatten the tree on the unit disc, extending P to this new set K .

A small change to c(t ) needs to be made here. To make it easier to grow trees, we

change c(t ) a little at each discontinuity point. At each t0, we make c(t ) go along the

boundary of that disc for a small distance, that is to say move along (t0,∂∆), and the

tree is constructed along that interval. If this line segment is small enough, we do not

risk getting more discontinuities, as any disc can be moved a little. Call this new line

a(t ).

We know that any Ω0 disc can be shifted slightly in all directions. The fattening

of the trees should be so small that any point in the boundary of the fattened tree is

contained in the centre of an Ω0 disc which is a linear shift of one of the discs that
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Figure 3.10: The continuous family of discs with a tree added at the discontinuity of
discs along H1(t , a(t )), to makeΩ0 discs along a(t ) (the black line) continuous.

creates a homotopy of discs on the tree. Now, make sure that K is simply connected,

and then use the Riemann mapping theorem to show that P : K → Cn together with a

biholomorphism between the unit disc and K gives an analytic disc.

We want to put in new discs in the family H1 at discontinuity points. These discs will

allow us to grow trees, and will basically be the disc at the discontinuity point with a tree

continuously growing and then the tree being shrunk back. We make sure that all these

discs have the same centre, which is the centre of the original disc at the discontinuity.

Figure 3.10 shows what we want to accomplish. The black line is H1(t , a(t )). There is a

tree constructed, and we have discs overlapping with the disc with the tree so that we

get a continuous family of discs, by having discs slowly growing out the tree.

We can create a continuous family of closed analytic discs E(t , z) where E(0, z) = z

and Imag e(E(1, z)) = K . This can be done because K consists of the closed unit disc

and trees, and the trees are contractible, so we can use Lemma 2.2.1. P (E(t , z)) gives a

new family of analytic discs where at t = 0 we approximate d as closely as we wish, and

at t = 1 the disc is an approximation of d with T attached.



3.3. PULLING A FAMILY OF DISCS TOΩ 75

It is easy to create a homotopy of discs between d and P (E(0, z)) when you make the

approximation extremely accurate, simple create discs tP (E(0, z))+ (1− t )d between

them. After having gotten to P (E(1, z)) we add even more discs, the same discs as

P (E(t , z)), but in reverse order, going back to d . In this way we get that the family of

discs is still continuous with respect to the other discs in H . a(t ) will during these discs

lie "still", that is to say that it will stay at approximately the point where it first reached

the disc indexed by t0. It will then cross over T when the tree has been fully grown.

In this way we can construct a continuous family of closed analytic discs H1 con-

taining all discs in the original family H and where along the curve H1(t , a(t )) we have

a continuously changing set of Ω0 discs. We can also make a(t ) the image of (t ,1) by

using continuous rotations on the unit disc.

Now, we want to use Theorem 2.4.1. That theorem would give us a family of discs

with centres the same as in H1, but where the along the curve H1(t , a(t )) the discs along

the curve would move the edges of the family of discs into Ω, giving us what we want.

For this, though, we need to define discs along the entire boundary of H1 so that they

are continuous with respect to each other and theΩ0 discs defined along H1(t , a(t )).

This is easily done, but please note that the discs constructed along the boundary

here are not necessarily Ω0 discs outside of H1(t , a(t )). Along a tiny neighbourhood of

H1(t , a(t )) we shrink the discs on H1(t , a(t )). The shrinking of an analytic disc f (z) is

given by f (r z), where r is continuously made so small that f (r z) is smaller than some

ε (the size of f is given by the maximum distance from the centre to the boundary),

where ε is so small that for any point on the boundary of H1, shifting it any direction

would still give you a lift to Ω1 in the same sheet as the current lift. We have to make

sure that the shrinking happens in the same way around H1(t , a(t )), so that the discs

are continuous, and the shrinking should happen so fast that if λ is the distance we can

move all of the Ω0 discs so that they still have boundary in Ω, the shrinking should be

finished before we have gotten
λ

2
away from a(t ). Having done this, we get the family

of analytic discs H2 from Theorem 2.4.1. Note that H2 has the same centres as H1.
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We next define the lift of the boundary and first discs of H2 toΩ1. For the first disc,

we as before define the lift to be the inclusion φ. Note that this means that the first disc

lies close to the lift of H1(0, z). Along the parts of the boundary where we attached discs

of very small size, the boundary point H2(t , z) lies close to H1(t , z), so simply take a rep-

resentative of the lift of H1(t , z) that can be shifted to H2(t , z) and use the equivalence

class it belongs to. Locally, this is continuous as H1’s lift is continuous and the lifts are

from centres close to each other.

That leaves us with points close to H2(a(t )). For the points on H2(a(t )), we use a

similar definition to the one before: we let take the equivalence class of the disc we

defined on H1(a(t )), only shifted and with centre changed so it covers H2(a(t )). Note

that by Lemma 3.1.3 this is the same as taking the inclusion φ.

For the points close to H2(a(t )), where the discs around H1 had not yet gotten to

size ε, we again use the disc we defined on H2(a(t )), let us take such a point H2(x, w).

By the way we shrunk the discs H2(x, w) must be covered by a shifted version of a disc

C on H1(a(t )). Use a shifted C to define the class. This means that we get a continuous

lift with respect to the defined lift of H2(a(t )). Also, it is continuous with respect to the

parts of H2 which lie close to H1, as C can be extended further to the parts which had

small discs. This is because we can make a representative of the lift at the part with

small discs be the same disc we use to define H2(x, w), only shifted, since we assumed

that C should be able to be shifted that far. This must go to the right sheet because of

the lift on H1, and locally the topology is defined by continuously changing discs, like

shifting C . Lemma 3.4.1 below tells us that Ω1 is not unbranched, so we have to get to

the right element. This means that we have continuity. �

Proof of Theorem 3.3.1: Using lemmas 3.3.1 and 3.3.2 we get a family of discs fulfill-

ing the conditions of Theorem 2.4.2 while having the centres of the discs of the new fam-

ily containing the centres of the original family of discs H . Note that when we choose

aΩ0 disc along the boundary of our family H2 by using the lift the boundary has toΩ1,
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we can make continuous changes in a small interval around that part of the boundary.

Also note that close to the curve embedded in Ω, we can make the discs small because

the lift there is the inclusion of Ω into Ω1. Also, at any discontinuity we can because of

the lift make a tree bridging the gap.

Thus, using Theorem 2.4.2, we get a continuous family of discs G with first disc and

boundary of all the discs inΩ, where the centres of the discs at some point start follow-

ing the curve made by the centres of H . �

3.4 The Envelope ofΩ

This section will finally prove Jöricke’s Jöricke (2009) theorem thatΩ1 is the envelope of

ΩwhenΩ is a connected domain in Cn . First, a lemma is needed.

Lemma 3.4.1. Ω1 is an unbranched Riemann domain.

Proof: Assume that there was a point p in Ω1 which was branched, that is to say

that there is no neighbourhood around p which is homomorphic to a ball of n complex

dimensions. Take a small ball U around p, so small that all elements in it can be taken

as discs continually changed from p(this was how the topology was defined). We must

have that the projection down to Cn is not injective, so there must be two elements

a,b ∈Ω1 being projected to the same element q . Take the straight line between q and

π(p). There is a homotopy of discs between a representative of a and a representative of

p going along that line, and the same for b and p. By the definition of the equivalence

class, this implies that a = b. �

Theorem 3.4.1. LetΩ be a connected domain in Cn . ThenΩ1 is Stein.

Proof: This proof depends on a result by Doquier and Grauert (1960). They define

p7∗ convexity, and show that for an unbranched Riemann domain G over a Stein mani-

fold, if the disc property is fulfilled it implies that G is Stein. In this case the disc property

means that for any continuous family of analytic discs, if the first disc and the boundary
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of all the discs are in G , the discs never touch the boundary of G . The construction of a

boundary, denoted ∂̃Ω1 of a Riemann domain is found in Fritzsche and Grauert (2002),

page 100-103. This is the same construction used in Doquier and Grauert (1960) and is

also used in Jöricke (2009). It is referred to as the set of accessible boundary points.

So, let us takeΩ1 and let F (t , z) be a continuous family of analytic discs inΩ1∪ ∂̃Ω1.

Say that for all t < 1, F (t , z) lies entirely inΩ1, and the boundary of F (1,∂∆) is also inΩ1.

By Lemma 3.3.1 we can assume that F (0, ·) lies in φ(Ω).

Define p = F (1,0). We want to show that p ∈ Ω1. We say that F (0, ·) is embedded

in φ(Ω). By the same process as in Lemma 3.3.1 this can always be done. We want to

show that we can find a disc which lifts to p, in the sense that when taking the limit of

F (t ,0), t → 1, we find anΩ0 disc that can be lifted to that limit.

Take the projection on Ω1, π, and apply it to F to get a family of analytic discs G

in Cn , G = π ◦ F . Note that the construction of the boundary of Ω1 in Fritzsche and

Grauert (2002) gives us a projection of the boundary that is continuous with respect to

the projection on Ω1, and an analytic disc projected down using this projection would

still be analytic.

G obviously has a lift toΩ1 along the boundary of the discs, namely the boundary of

the discs in F . Now we can use Theorem 3.3.1 and get a family ofΩ0 discs H(t , z) where

the set of centres of H are the same as the ones in G , and occur in the same order. The

only difference is that for H we sometimes stay at one centre for a while(this happens

at the discontinuities in Lemma 2.4.1).

Next, look at the curve a(t ) = F (t ,0). We can project it down to a curve a1(t ) in

Cn , which is equal to G(t ,0). For all t except 1 we can for any a(t ) get a Ω0 disc which

represents that particular element inΩ1 and with centre in a1(t ). What we wish to prove

is that the equivalence classes of the discs in H is a(t ), meaning that the continuous

family of discs H are representatives of a(t ).

First, let us look at a(0), and recall that it lies in φ(Ω). As H(0, z) is embedded in Ω
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and H(0,0) = a1(0), the first disc of H lifts to a(0). Now, let A(t ) be representatives of

a(t ) for all t except 1, where there might not be any representatives. Let A(t ) a piecewise

continuous family of discs, done so that they share centres with H and always have

same center, H(t ,0) = A(t ,0). By the definition of the equivalence class, when we move

along a1(t ) with the discs H(t , ·) and A(t , ·), they must be equivalent, as the first discs

were equivalent, they move along the same centres, and Ω1 is unbranched. We easily

see that this holds for all t . Thus H(t , ·) are representatives of a(t ) for all t < 1.

Obviously H(1, ·) is the limit of the discs in H as t goes to 1. Let k be the representa-

tive of the equivalence class inΩ1 that H belongs to. Remembering that the topology on

Ω1 is locally determined by continuously changing functions, a(t ) converges to k. That

means that k = p, as a(1) = p. But we can create an open ball inΩ1 around k by taking

H(1, ·) and shifting it slightly in all directions, then taking those discs to their equiva-

lence classes. Thus p is not on the boundary, which was what we wanted to show. This

implies thatΩ1 is p7∗ convex, and thus Stein by Doquier and Grauert (1960). �

Theorem 3.4.2. Ω1 is the envelope of holomorphy ofΩ.

Proof: This follows from Theorem 3.2.1 and Theorem 3.4.1. �

Theorem 3.4.3. Ω1 is isomorphic to Ω1 through an analytic isomorphism that satisfies

all requirements used by Narasimhan’s definition of the envelope of holomorphy, mean-

ing thatΩ1 is the envelope of holomorphy ofΩ.

Proof: We know that the points in Ω1 are separated by analytic functions, as it

is Stein. That means that we can create a bijection u between Ω1 and Ω1 by for any

point p ∈Ω1 taking the projection down to Cn , and then projecting into the envelope of

Ω(defined by using sheaf-theory) by using the analytic functions defined locally around

p. This function is 1-1, as the analytic functions separate points onΩ1, and it goes into

Ω1 ⊂ Ω̃, since the projection of p must lie in a family of continuous discs with boundary

inΩ. Also note that u(φ(Ω)) equals the inclusion ofΩ intoΩ1
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We also have that u is surjective, as any point p in Ω1 is in the centre of a family of

analytic discs G(t , z), and when projected down, this family gives rise to an element q

in Ω1. They project to the same point using the respective manifold’s projections, and

their value of the functions at q must match p’s, as they are both given by the value that

G takes around the boundary, by Cauchy’s theorem. Thus q maps to p.

Locally u is equal to the projection ofΩ1 composite the inverse of the projection of

Ω1. As they are both local homeomorphisms, so is u, so u and its inverse are continu-

ous. This also means that u and its inverse are locally holomorphic. We have thatΩ1 is

biholomorphic to the envelope ofΩ.

We can show the result using the definitions of envelope of holomorphy introduced

in Chapter 2. For any extension Y of Ω we have a holomorphic map from Y into Ω1

with properties described in the definition of envelope of holomorphy. Take that map

together with u intoΩ1, and it is clear that we have a map that satisfies all requirements

forΩ1 being the envelope of holomorphy. �



Chapter 4

Summary and Recommendations

for Further Work

4.1 Summary and Conclusions

Any point in the envelope of a connected domain Ω⊂ Cn lies in the image of a contin-

uous family of analytic discs with first disc and boundary in the inclusion ofΩ into the

envelope.

4.2 Discussion

The result proven here is slightly weaker than in Jöricke’s paper. Here it is assumed that

Ω is a domain in Cn , not a general Riemann domain. However, for a domain in Ω, it

provides a much shorter way of constructing the envelope than the standard method.

On the other hand, this result holds for all n > 1, not just n = 2.
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4.3 Recommendations for Further Work

The theorems in this thesis provides new ways to work with the envelope of holomor-

phy, which could lead to new results. It is for instance an open question whether the

envelope of a domain i Cn with smooth boundary must have a finite number of sheets

over any point, and this result might help with proving or disproving that.
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