
Jigsaw EMF Editor

Oddvar Hungnes

Master of Science in Computer Science

Supervisor: Hallvard Trætteberg, IDI

Department of Computer and Information Science

Submission date: February 2016

Norwegian University of Science and Technology

1

Jigsaw EMF Editor
Oddvar Hungnes

Supervisor: Hallvard Trætteberg
Abstract—In our previous paper, Jigsaw Language
Toolkit [1], we have shown that the jigsaw puzzle
metaphor can be used to visualize syntactical con-
straints in languages with complex type systems and
static type checking.

There are several successful jigsaw-based programming
languages, but we believe that the jigsaw-based visual
syntax can also be successfully applied to general-
purpose modeling.

In this paper, we present the Jigsaw EMF Editor, which
is a jigsaw-based visual editor for the Eclipse Modeling
Framework. We subject the editor to both user testing
and evaluation against a selection of existing models.
This helps us learn more about the strengths of the
jigsaw-based visual syntax, and what kinds of models it
is well-suited for.

I. Introduction

In the Jigsaw Language Toolkit paper, [1] we imple-
mented a programming toolkit in Java [37] for creating
visual domain specific languages based on the jigsaw puz-
zle metaphor. The central aspect of the jigsaw puzzle
metaphor, as popularized by the Scratch programming
system, [43] is interaction with blocks that snap together
in a manner similar to how a jigsaw puzzle is assembled.
Each block has a number of protrusions and depressions
along its border, named tabs and slots, respectively. Fig-
ure 1 illustrates some of the basic terminology we have
established.

Fig. 1: The jigsaw toolkit and its terminology. Blocks
can be copied from the palette and assembled into block
clusters by connecting their tabs and slots.

A key feature of jigsaw-based visual languages is that the
syntax restrictions of the language are explicitly visualised

as the shapes of the tabs and slots on the blocks. This
enables users to immediately understand what sort of
connections can and cannot be made. Visual programming
systems built around the jigsaw metaphor can be made
very simple to use. Typically, they present a pure drag-
and-drop interface, and the available programming blocks
are usually available in a palette. Considering Don Nor-
man’s Design Principles, [3] this provides an outstanding
presentation of constraints, visibility, feedback, consistency
and affordance.
The modeling discipline is concerned with creating models
of domains of interest using various modeling languages,
such as UML. [51]

Fig. 2: An very simple UML class diagram. The language of
UML class diagrams is a graph-based modeling language;
Classes and their relationships are expressed using nodes
and edges.

UML aims to unify the modeling practice with a general
purpose visual modeling language. However, modeling can
be applied to many problems, and it is unreasonable
to assume that there exists a one-size-fits-all solution
to the modeling problem. Sometimes a domain-specific
language(DSL) is necessary. [33]
Graph-based languages such as the UML class diagram
are widely used among professional developers, but other
kinds are gaining popularity among novices. We believe
that it is worthwhile to look into other types of visual
languages as well. Jigsaw-based languages perform well
as programming languages, but they are also expressive
enough to be applied to general-purpose modeling.
Our goal is to make visual languages based on the jigsaw
metaphor available to the modeling discipline, and conduct
some initial research into what kinds of models jigsaw-
based languages may be well-suited to. In this paper,
we describe the design, implementation and evaluation
of a general-purpose jigsaw-based DSL editor for EMF
models.
The structure of the paper is as follows.

• Related work - we study the state-of-the-art in both
the jigsaw-based visual programming discipline and
the modeling discipline.

2

• Methodology - we specify the requirements for the
editor and how it will be evaluated.

• Design - we describe the conceptual problems and
solutions we find when adapting the jigsaw-based
syntax to the abstract models.

• Implementation - we describe key features of our
software implementation, and some of the challenges
we face.

• Results - we describe the results of evaluating the
editor.

• Discussion - we discuss our results, including benefits
and drawbacks of the editor compared to other model
editors.

• Conclusion - we briefly sum up our most important
achievements and further work.

II. Related Work

In this section, we review existing literature and soft-
ware pertaining to data modeling and the jigsaw puzzle
metaphor, establishing a conceptual framework.

Much of our focus will be on the Eclipse Modeling Frame-
work(EMF) in particular. EMF has a living community of
developers, modelers, and users, making it a good platform
for our editor.

A. Domain-Specific Languages

DSLs are formal languages developed for a particular
domain. They are useful in many situations, but some of
the main points [53] are:

• The DSL can serve as a formal language for more
precise communication with domain experts.

• A DSL is typically easier to learn and simpler to read
and write than a programming language or another
general purpose language such as UML [51] or XML.
[52] This allows people who are not programming
experts to participate more in the production of a
project.

• A well-designed DSL can help improve productivity
by being a more efficient language for its task than
a general purpose language.

• DSLs can help provide runtime flexibility in a soft-
ware project. Configurations and behaviours can be
expressed using the DSL instead of being hard-coded.

A DSL can be said to consist of an abstract syntax,
semantics, and one or more concrete syntaxes. [54]

1) Abstract Syntax and Semantics: An abstract syntax
defines the structure of the data that the language is able
to represent. It is purely structural; it does not specify
what its representation might look like in the language.
[55] As an example, the abstract syntax for a programming
language typically defines the structure of an abstract
syntax tree. In modeling languages, the abstract syntax
is typically given in the form of an abstract syntax graph
definition known as a metamodel. [54]
For clarity, the term instance is sometimes used to de-
note models, to separate them from their metamodels.
[64]
The abstract syntax is supplemented with a specification of
language semantics, which defines what the data should be
interpreted to mean, or how it should be used. For exam-
ple, the semantics of an interpreted programming language
is concerned with how an interpreter should execute the
statements and evaluate the expressions contained in the
abstract syntax tree. [55]
2) Concrete Syntax: A concrete syntax defines what the
representation of data looks like in the given language.
Multiple concrete syntaxes can exist for the same abstract
syntax and semantics. For example, even if the following
expressions are use different concrete syntaxes, they rep-
resent the exact same mathematical idea: [55]

• English: The sum of twenty and fourteen
• Reverse Polish Notation: 20 14 +

A concrete syntax may also be visual in nature, or pertain
to any other modality. Traditionally, the following cate-
gories of concrete syntaxes are commonly used:

• Textual syntax, where the language is expressed
using linear sequences of symbols. Typically, the
symbols are characters from the Latin alphabet.

• Graph-like syntax, where the language is expressed
using visual symbols and links, [56] representing the
nodes and edges of a graph.

• Syntaxes using other conventional GUI widgets such
as tree views, [57] lists, tables and forms. [58]

A mapping between the concrete syntax and abstract
syntax is required in order to keep the separate represen-
tations in sync. In the context of modeling languages, the
set of rules involved in this mapping is called the mapping
model. [59]
The mapping can be defined in either or both direc-
tions. For example, a textual programming language has a
parser which translates the textual representation into an
abstract syntax tree. However, there is usually no need
to go the other way, so the reverse mapping may be
omitted.
In programming language design, there are established
techniques and tools which work well and make the process

3

vastly more structured and efficient. [60] It is reasonable to
suggest that similar techniques and tools should be used
in the design of DSLs, rather than building the entire
framework from the ground up.

B. MetaEdit+

MetaEdit is a framework for creating domain-specific lan-
guages and tools. It was initially released in the early 1990s
[61], and has evolved into the more modern MetaEdit+,
which is maintained by MetaCase. MetaEdit+ has the
features of a modeling framework, enabling developers to
create metamodels, as well as integrated modeling tools
for creating graphical DSLs and working with model in-
stances. [63] A screenshot is shown in Figure 3.

Fig. 3: A screenshot of the MetaEdit+ modeler. [65]

Metamodels in MetaEdit+ are defined using graphs, ob-
jects, properties, ports, roles and relationships, consti-
tuting the GOPPRR modeling language. [66]. Thus, the
metamodel defines a graph-based language. A concrete
syntax can be automatically created using default symbols
for each element. However, developers are able to replace
symbols with customized graphics or text.
MetaEdit+ offers facilities for model transformations,
placing constraints on models, and generating source code.
Code generation can be configured using the MERL lan-
guage, which MetaCase claims to be expressive enough to
target any programming language.
SOAP [67] can be used for generic communication with
the models, and they can be serialized using standard
XML.

C. Generic Modeling Environment

The Generic Modeling Environment (GME) is a config-
urable toolset which supports the creation of graphical
domain-specific modeling environments. [62] These mod-
eling environments are generated through interpretation

of domain-specific metamodels. GME is component-based.
The environments are assembled from a set of components,
including user interface elements, interpreters and model
storage facilities. Developers may develop their own add-
on components without modifying GME itself.
GME metamodels are defined using a complex set of mod-
eling concepts, focusing on the decomposition of models
into sub-models. A GME metamodel can be divided into
multiple abstraction layers. For example, when working
with electronic circuits, there might be one diagram editor
for working on the logic gate level and one for working on
the transistor level.
Like MetaEdit+, GME maps each element in the meta-
model to a graphical element, e.g. a node with a given
shape, or some user interface widget like a text field.
Contraints in GME are supported through a predicate
expression language derived from OCL. [15] Models can
be serialized to a proprietary binary format, a database
format based on MS SQL, [16] or the developer can define
their own model storage add-on.

D. Eclipse Modeling Framework

Most famously, Eclipse is known for being a powerful inte-
grated development environment(IDE) for Java program-
ming. The Eclipse Platform is, however, a fully generic
framework for building IDEs. Through its plugin-based
architecture, it is possible to implement an IDE for virtu-
ally anything. [4] The Eclipse Modeling Framework(EMF)
resides at the core of the Eclipse Modeling Project [10],
which seeks to facilitate model-driven development in the
context of Eclipse. Despite the name, however, EMF can
be used separately from the Eclipse Platform.
Ecore is the metamodel provided by EMF. It is based on
the EMOF standard, [12] which is essentially a subset of
the UML class diagram, which has a good balance between
simplicity and expressiveness.
Ecore supports packages, classes, features, operations, ref-
erences and attributes. Classes form a hierarchy through
inheritance [19].

Fig. 4: Containment reference (line with black diamond
and arrow) and a cross reference (line with arrow) in the
EcoreTools [5] graphical editor.

Containment references (Figure 4) maintain a special role
in EMF. Containment references are equivalent to compo-
sition associations in UML. A model is expected to form
a containment tree, often with a single root.

4

Names in Ecore are typically stylized with an ’E’ prefix,
e.g. EClass, EObject, and so forth.
EMF supports code generation, primarily targeting the
Java programming language through the EMF.Codegen
framework. The Java code generation is somewhat con-
figurable through genmodel files, but the overall structure
of the resulting code is always the same. The generated
code exposes both a concrete Java API and a set of meta-
objects, such as EMF package and class primitives, as well
as object factories. The meta-objects enable efficient use of
the reflective API, allowing libraries and applications such
as editors to work with models in a completely generic
way. Furthermore, a developer can choose to modify the
generated code by hand, and, with proper care, they can
ensure that the code generator will not conflict with their
changes if the metamodel needs to be updated later in the
development process.
As an alternative to generating code, developers can choose
to employ Dynamic EMF [11], which is essentially a
generic implementation of the reflective API. This allows
an application to create models with no generated code,
which is helpful in cases where code generation would
be cumbersome or unnecessary. The tradeoff is that no
hand-written code modifications are possible, and that
dynamic instances cannot provide the same compile-time
guarantees or type safety as generated code. However, since
they share the same reflective API, the application can
be written to be agnostic about whether the instance is
dynamic or uses generated code.
By default, EMF includes support for serializing models
using the XML Metadata Interchange(XMI) [13] format.
XMI, by design, only includes the abstract model, e.g.
expressions in the abstract syntax. Hence, if EMF is used
to implement a DSL, then a separate concrete model is
often used to store expressions in the concrete syntax.
The concrete model typically contains information such
as the locations of boxes in a graph-based language, and
is sometimes simply called the view or the diagram. [25]
This separation adds complexity, but it has the advantage
that the same abstract model can be shared between
multiple editors, even with different concrete syntaxes. In
practice, this can be somewhat finicky, especially if the
different views overlap. An editor may need to adapt or
completely regenerate its concrete model if the shared
abstract model is modified by another editor. By necessity,
any such adaptation algorithm involves some amount of
guesswork.
EMF supports generics: Model classes can have type pa-
rameters, which serve as placeholders for a concrete type.
The type parameters may be replaced by concrete types,
using type arguments, in a subclass or when an instance
of the model class is created. This can affect the types
of references and attributes on that instance. Generics in
EMF are implemented in accordance with how generic
programming is implemented in the Java programming
language. [37] This means that, while type arguments

introduced by a subclass are reifiable, type arguments
introduced in the model instance are non-reifiable. [38]
Non-reifiable types are useful in the generated API, but
they are not included in the abstract model.

Fig. 5: A screenshot of an EMF tree editor. [6]

EMF supports form-based DSLs using trees, tables and
property sheets. The tree editor is shown in Figure 5. A
customized tree editor can be generated along with the
model code, enjoying the use of generated model classes
and the customizations described in the genmodel file. The
tree editor can also be used to work with Ecore models
without generated code, in a form known as the reflective
editor, [24] which employs Dynamic EMF and the reflective
API. The advantage of the reflective editor is that it can be
deployed more quickly than the generated editor.

Fig. 6: The activities involved in deployment of reflective
and generated EMF tree editors. Note the shorter deploy-
ment path of the reflective editor, and that the generated
editor must be loaded into a new Eclipse workbench before
use.

5

Often, the tree editor is unsuitable or insufficient. The
EMF.Edit framework allows the reuse of many features
from the tree editor, such as label providers, table cell
factories and the command framework. The latter may
significantly simplify the implementation of undo and
redo functionality. EMF is not a complete DSL devel-
opment framework, but it does provides the foundation
for interoperability and code reuse between complex DSL
editors. EMF-based DSL development frameworks usually
treat the Ecore model as an abstract syntax definition
and specify a separate model to be used as the concrete
syntax.

E. EMFText

EMFText is a framework for developing textual DSL
editors (Figure 7) for EMF models. The grammar is writ-
ten the Concrete Syntax Specification Language(CS), [26]
which is based on EBNF. [29]

Fig. 7: A screenshot of an EMFText editor. [28]

The bulk of a CS file consists of a set of rules, each
corresponding to a model class. CS is able to express any
context-free grammar, as well as the Java programming
language itself. EMFText provides a large number of sam-
ple grammars in the Concrete Syntax Zoo. [27]

The CS editor (Figure 8) can take an Ecore model as
input, thus providing auto-completion and validation for
the grammar. An EMFText editor can then be generated
from the CS file. The generated EMFText editor requires
that EMF model code has been generated in order to
successfully compile, but it is possible to add an option to
the CS file that results in EMF model code being automat-
ically generated. The generated editor can then be loaded
into a new instance of the Eclipse workbench as a plugin,
or it can be embedded in a different application.

Fig. 8: A screenshot of an EMFText CS grammar. [28]

Fig. 9: The activities involved in deployment of EMFText
editors.

The CS file is used to generate a two-way mapping between
the concrete syntax and the abstract syntax, where the
abstract syntax is given as an EMF model. The two
directions of transformation are handled separately: The
parser handles the text-to-model transformation, while the
printer handles the model-to-text transformation.

In this approach, if the user makes an edit to the text,
then the only obvious way to synchronize it with the
abstract model is to discard the model and run the parser
again on the entire text. The same is true for the other
direction.

Although optimizations are possible, this is the natural
way to handle the mapping for text-based DSLs, and
the two-way mapping in EMFText enables interoperability
with other EMF editors. Of course, if the grammar allows
for multiple ways to express the same thing, then infor-
mation may be lost and the exact original representation

6

cannot be faithfully reproduced by the printer. As a trivial
example, the exact number of whitespace characters used
to separate two lexemes is not reproducible, but it is
possible to provide hints as to how the printer should
handle such choices.

F. XText

XText is another framework for developing textual DSL
editors. [30] Like EMFText, XText uses an EBNF-like
grammar language. A key difference, however, is that it
does not require an existing Ecore model. Instead, the
syntax tree of the parser is generated as an Ecore model
and can be used directly as the metamodel of the language.
It is also possible to automatically generate a default gram-
mar from an existing Ecore model, although the default
grammar will normally need to be hand-edited.

Fig. 10: The activities involved in deployment of XText
editors. Note that it is also possible to use a separate
metamodel, making the deployment more similar to that
of EMFText (Figure 9).

Like EMFText, XText editors can be embedded in non-
Eclipse applications. It also offers web browser support and
IntelliJ IDEA [20] integration.
XText is a popular framework which enjoys widespread
use. It is natural to assume that this is, at least in part,
due to the flexibility and relative ease of deploying XText
editors.

G. Sirius

Sirius is a framework for creating graphical DSL editors
for EMF models, designed to run in Eclipse (Figure 11).
It is built on the Graphical Modeling Framework(GMF)
[31], which in turn leverages the Graphical Editing Frame-
work(GEF) [32] and EMF. Knowledge of GMF and GEF
are optional since they are normally hidden under a layer
of abstraction. Sirius supports three dialects out of the box:
Diagrams, tables and trees. However, it is possible to create
new dialects as extensions. [34] It is also possible to create

multiple viewpoints into the same EMF model, so that
a single model can be edited using different Sirius-based
editors.

Fig. 11: A screenshot of a Sirius diagram editor. [35]

A Sirius workbench is defined using a viewpoint specifi-
cation project(VSP), [35] which takes an Ecore model as
input and serves as its mapping model (Figure 12). A
viewpoint specification is a hierarchical structure which
provides a large amount of flexibility. For example, a
diagram viewpoint specification contains nodes and edges,
which typically represent model objects and their relations.
The modeler is expected to assign a style to each node,
which defines its visual characteristics such as the shape
and color.
The mapping from the model elements to the nodes and
edges is implemented using a query language such as
Acceleo. [36] This allows the concrete model to differ
significantly from the abstract model.

Fig. 12: A screenshot of a partial Sirius viewpoint specifi-
cation model. [35]

Sirius viewpoint specifications are interpreted; [35] no
editor code needs to be generated, and viewpoint specifi-
cation files can be reloaded in a running Sirius workbench.
However, the editor does require that model code has been
generated and loaded into the Eclipse workbench. Fur-
thermore, developers are expected to build the viewpoint
specifications from scratch, which can be a large amount
of work.

7

Fig. 13: The activities involved in deployment of Sirius
editors. The viewpoint specification project can be edited
in the same Eclipse instance as the running editor, even
while the Sirius editor is in use.

H. Jigsaw-based languages

Visual languages based on the jigsaw puzzle metaphor are
characterized by blocks that snap together in a manner
similar to how a jigsaw puzzle is assembled. The blocks can
be moved around using drag and drop, and these languages
are excellent at visualizing the constraints of the language;
The user can easily tell which blocks are available from a
palette and how they may be assembled by inspecting their
shapes.
1) Scratch: Scratch [43] is a visual programming system
based on the jigsaw puzzle metaphor for developing simple
digital games and animated art. It is popular among novice
users and has seen success as an educational tool. [44]
Scratch is largely responsible for popularizing the jigsaw
puzzle metaphor, although it was inspired by the older
Starlogo. [45] A screenshot of Scratch can be seen in
Figure 14.

Fig. 14: A screenshot of the programming tab in Scratch.

The Scratch community has created a substantial number

of modifications [46], including projects like Web Blox
[48], which reuses the visual syntax of Scratch for other
languages. However, Scratch has a number of limitations
that make its syntax unsuitable as a general purpose visual
syntax for DSLs. It only has a few basic types of blocks [47],
so it cannot visualize the constraints in a language with
a complex type system. The blocks can only participate
in containment structures; there is no proper support for
cross references. There is little flexibility in how a block
can be structured, so if an a block participates in many
different associations with other blocks, then the layout
becomes awkward very quickly.

2) Google Blockly: Google Blockly, seen in Figure 15, is a
framework designed for developing editors for visual pro-
gramming languages based on the jigsaw puzzle metaphor.
MIT App Inventor [49] is one example which uses Google
Blockly to define the logic of Android applications. How-
ever, there are also projects that use it for domains other
than programming, such as BlocksCAD. [50] The visual
syntax of Google Blockly is very similar to Scratch, al-
though it does introduce a few modifications. The block
layout is slightly more flexible, but the type system is even
simpler, with only statement blocks and expression blocks
available. Again, it is unsuitable as a general framework
for DSLs.

Fig. 15: A screenshot of the Google Blockly demo applica-
tion.

3) Jigsaw Toolkit: The Jigsaw Toolkit (Figure 16) is a
framework for implementing editors for DSLs based on the
jigsaw puzzle metaphor. [1] It extends the expressiveness
of jigsaw-based languages in a way that offers support for
complex type systems, multiple references to a single block,
generics, and a relatively flexible layout.

8

Fig. 16: A screenshot of the Jigsaw Toolkit window builder
demo application. The left column contains a palette split
into two tabs. The right column contains a work area.

The Jigsaw Toolkit visualises the type system using the
shapes of tabs and slots. Each type has a particular shape
associated with it. A slot and a tab with the same type
are displayed as inverted images of each other.

A block may have a tab in its upper-left corner, which
symbolises the type of the block itself. It may also have
any number of slots along its down- and right-facing edges,
whose shapes determine what types of blocks may be
connected to them. A block can be assumed to fit into
a slot that faces either downward or rightward, meaning
the orientation of its tab will be different depending on
where it is connected. When it is not connected to any
block, the tab orientation is indeterminate. By default,
this case is actually represented as two tabs with different
orientations, although only one is usable at a time. This is
illustrated in Figure 17.

Fig. 17: Blocks display two tabs until they are connected
to a slot.

The shape of any particular type inherits the cuts from the
shapes of the supertypes, as illustrated in Figure 18. This
is intended to communicate that a block with the subtype
can be inserted in a slot with the supertype, but not the
other way around.

Fig. 18: The shapes of the tabs and slots are constructed
to conform to how subtype relationships work. Note how
a subtype tab can fit into a supertype slot, even if the
supertype tab doesn’t fit into the subtype slot: Their
borders would overlap.

Blocks and slots may have parameterized types (Fig-
ure 19). This enables applications to make use of generic
type checking, [42] although the functionality is somewhat
limited. Importantly, a tab and a slot must have the same
set of type parameters in order to fit together visually.
In EMF, however, a subtype can define a different set of
type parameters than its supertype, making them visually
incompatible. However, we assume that in most practical
cases, this will not be a major concern.

Fig. 19: How a generic type with two type parameters <K>
and <V> would be represented in the Jigsaw Toolkit. The
shapes associated with the type arguments are rendered as
add-ons to the raw type’s shape.

Type arguments can be assigned by dragging type chips
onto concrete type boxes, as seen in Figure 20. A limita-
tion of this is that the concrete type cannot itself be a
parameterized type. It must be a simple type. To assign
parameterized type arguments, a more sophisticated user
interface element will certainly be needed. However, we
again assume that this will not be a major concern in most
cases.

9

Fig. 20: A type argument can be provided by dragging
a type chip onto the black concrete type box. The type
chip for a given type can be obtained from any block of
that type, and is shaped like a block’s tab. When no type
argument is specified, the type of the slot becomes the
upper bound of the type parameter.

Cross references can be created by using a special type
of block called a pointer block, illustrated in Figure 21.
The pointer block holds a reference to a particular block
and can be substituted for that block in any slot. In
other jigsaw-based visual languages, blocks can only be
referenced by a single container block.

Fig. 21: Pointer blocks in the Jigsaw Toolkit. The pointer
blocks have pointer arrows pointing to the referenced
block. It is possible to disable the pointer arrows or install
application-defined GUI widgets on the pointer blocks.

III. Methodology

In this section, we describe how our work is evalu-
ated.

A. Requirements

Our editor must conform to a set of requirements, which
are listed at the end of this section. In the first part, we
explain the choices we make in order to arrive at the given
set of requirements.
The editor has different stakeholders, which can be cate-
gorized as follows:

• Developers - People who write and modify code
for the editor. This includes us and eventual future
developers.

• Modelers - People who configure the editor for a
given domain.

• End users - People who use the editor to build model
instances.

The different stakeholders have different needs, and these
should be accommodated as best as possible within the
constraints of the project.
The editor can be seen as a mapping mechanism be-
tween an abstract EMF model and a jigsaw-based concrete
model. The Jigsaw Toolkit is used to implement the con-
crete syntax.
For textual editors, we have seen that the mapping mech-
anism is implemented as a parser and printer. Typically,
the parser is run periodically, reconstructing the entire
abstract model. The abstract model is ephemeral and
can be discarded before re-parsing, and only the concrete
model is stored on disk. For graph-based editors, the
mapping is continuous, so that the two models are always
in sync. Typically, both models are explicitly stored with
links between them.

Fig. 22: For textual editors such as EMFText, it is common
to first perform an edit, then run the parser (or printer) to
rebuild the abstract (or concrete) model. For graph-based
editors such as Sirius, it is more natural to continuously
keep the models in sync.

It is natural for our editor to follow the established ap-
proach for graph-like editors such as Sirius, since it shares
more traits with them than with textual editors. The editor
should continuously keep the blocks in sync with the EMF
model and vica versa.

Fig. 23: Our editor should perform live transformations to
always keep the two models in sync.

Modelers will expect that the mapping is somewhat flexi-
ble, and that the editor can be configured for their domain.
To facilitate this, we intend to use a mapping model
(Figure 24). Broadly speaking, for graphical DSLs, we have

10

seen two approaches. The first approach is to let each
element in the abstract syntax map to some graphical
symbol, as in MetaEdit+ or GME. The second approach
is to define a more detached graphical structure, which
maps to elements in the abstract syntax using queries, as
in Sirius. The Sirius approach is much more flexible, as it
allows the graphical structure to differ significantly from
the abstract structure. However, this approach may also
be more labor-intensive for both developers and modelers,
since the mapping model becomes a much more complex
data structure.

Fig. 24: The Jigsaw EMF Editor fulfills the role of con-
necting the Jigsaw Toolkit to an EMF model. A mapping
model should be used to provide flexibility in how the
mapping is performed.

One option would be to implement our editor as a jigsaw-
based Sirius dialect. We decide against this for a number
of reasons. Firstly, it is unknown whether this would
save or cost us time within the scope of this project. A
large amount of additional preliminary research would be
necessary, and the additional project dependencies would
weigh us down to some extent. Secondly, it would lock
us to the Sirius way of doing things, which has its own
shortcomings, such as not being able to work with dynamic
model instances. Thirdly, while the Sirius architecture
would surely provide benefits, it is unclear how much value
it would actually bring.

The jigsaw-based syntax naturally lends towards repre-
senting containment hierarchies such as EMF models.
Furthermore, we do not immediately see any strongly
compelling reasons for creating a jigsaw-based representa-
tion which significantly deviates from the structure of the
model. It is possible that this will turn out to have signifi-
cant value, but it should be implemented as a response to
an actual need.

Thus, our mapping model should favor simplicity, being
more similar to those in MetaEdit+ and GME.

We have seen that different EMF editors require different
deployment patterns, some more convenient than others.
Each of the ones we have reviewed require some form
of code generation before they can be used, with the
exception of the reflective tree editor. Sirius is special
in that is allows the metamodel to be configured on the

fly, while XText makes it possible to implicitly define the
metamodel through the grammar.

We believe that ease of deployment is an important quality
for modelers, and that it is worth taking appropriate steps
to ensure that the editor can be deployed in a way that
is convenient for them. The editor should be able to work
both with and without generated model code, like the EMF
tree editor. As with Sirius, The modeler should be able to
edit the mapping model while the editor is running, but the
editor should also be able to generate a complete default
mapping model.

Fig. 25: It is possible to provide a relatively high amount
of flexibility in the deployment pattern by making the
right design decisions. The editor should be able to use
models with and without generated model code. A default
mapping model should be generated, so that creating your
own mapping model from scratch is not necessary. It
should be possible to edit the mapping model while the
editor is running.

1) EMF Integration: The editor should be able to work
with EMF models and offer basic interoperability with
other EMF-based tools.
Requirement F 1. The editor must be able to work with
Ecore models.
Requirement F 2. The editor must be able to save and
load EMF model instances using the xmi format.
Requirement F 3. The editor must be able to represent
root objects as blocks or work areas.
Requirement F 4. The editor must be able to represent
both cross references and containment references.
Requirement F 5. The editor must support editing of
object attributes.
Requirement F 6. The editor should be able to represent
model elements with generic types.

11

2) Mapping Model: It should be possible to customize the
editor using a mapping model. The mapping model should
leverage the flexibility of the Jigsaw Toolkit.
Requirement F 7. The mapping model should define
which model elements should be visible in the editor.
Requirement F 8. The mapping model should define
where a structural feature appears on a block and how it
is oriented.
Requirement F 9. The mapping model should allow for
customization of labels for each class.
Requirement F 10. The mapping model should define
whether objects of a given class should be represented as
a block or a work area.
Requirement F 11. It should be possible to define which
model elements are in the palette.
Requirement F 12. It should be possible to define a
palette with multiple tabs.
3) Usability: In order to encourage adoption, the editor
must be convenient to use. This applies to both the DSL
development aspect and the modeling aspect.
Requirement F 13. The editor should be able to work
with models with and without generated model code.
Requirement F 14. The mapping model should be
initialized with useful defaults.
Requirement F 15. It should be possible to change the
mapping model without requiring a restart of the editor.
Requirement F 16. The editor should be able to save
and load layout information, such as the locations of
blocks.
Requirement F 17. The editor should support undo and
redo.

B. Model Evaluation

The editor is evaluated against a selection of EMF models.
This serves two purposes. Firstly, it aids in improving
the design of the editor by exposing limitations of the
editor itself. Secondly, it helps us determine the character-
istics of a domain that is well-suited to the jigsaw puzzle
metaphor.
The following test models are used:

• A library model. [7]
• The Ecore metamodel.
• A family model. [35]
• A model of a quiz domain.

The rationale for model selection and the evaluation
methodology is explained in greater detail in Sec-
tion VII.

C. Survey

The editor is tested by EMF users, who are asked to fill
out a survey. The survey covers multiple aspects of the
project.

Firstly, the survey acts as a usability test. Secondly, the
survey provides guidance on how to improve the editor, by
asking the respondents about their expectations for an ed-
itor such as ours. Thirdly, the survey indicates whether the
respondents believe that the editor and the jigsaw-based
concrete syntax have the potential to be useful.
The survey design is explained in greater detail in Sec-
tion VII-E, and the full survey is included in Ap-
pendix B.

IV. User Interface Design

In this section, we describe the solutions to conceptual
problems regarding the design of the editor’s user in-
terface. Specifically, we look at how the different EMF
constructs can be meaningfully represented through the
Jigsaw Toolkit.

A. Object representations

An EMF model instance consists of objects which form
a containment hierarchy rooted in a resource. The most
straightforward approach is to let the resource be repre-
sented by a work area, and let the objects be represented
as blocks.
However, in many models, the resource only contains a
single root object (Figure 26). This means that with the
aforementioned approach, the work area would often only
contain a single block cluster. This is a problem because it
strips the user of all freedom in terms of layout; the layout
of a block cluster is completely automatic. It is also likely
to make poor use of the available screen space.

Fig. 26: How an EMF model with a single root maps to a
single block cluster.

To get around this, we propose to allow root objects to
optionally be represented as work areas (Figure 27). This
means that a work area may either be a resource or an
object. This presents a few challenges.

Fig. 27: Allowing the root object to be represented by a
work area provides more layout freedom.

12

Since there can be more than one work area, and they can
be assumed to take up a large amount of screen space,
organizing them into tabs seems like a good idea. There is
normally no need to look at more than one at the time, but
there may be a need to move blocks between them. One
way to facilitate this is to allow the user to bring up two
work areas side by side. Furthermore, the user should be
able to create and destroy work areas. Destroying them can
be done by clicking on a button located on the tab. Since it
is completely valid to have several classes of objects which
may be represented as work areas, the user may need to be
able to select which type of work area they want to create.
This can be achieved by opening a drop-down menu when
the user clicks on a button. The proposed user interface is
illustrated in Figure 28.

Fig. 28: A mockup of the proposed user interface used to
manage work areas. The work areas are organized in tabs.
The user is able to drag the tabs around, or bring them
up side by side and move blocks between them. They can
be created and destroyed using dedicated buttons.

If an object represented as a work area has attributes, then
they may be represented in a property sheet next to the
work area. However, a work area is not a block, and as such
it does not have all the facilities that a block provides. In
particular, it does not have a tab connector and it does not
have slots. Because of this, there are certain limitations on
objects represented as work areas:

• It is not possible to create a pointer block to a
work area, so references to such objects cannot be
represented.

• A work area only supports containment references.
• If an object represented by a work area has multiple

containment references, they should not have over-
lapping types. If the types are separate, then it is
possible to determine which reference a block should
be assigned to by inspecting its type. This limitation
also exists for objects in the EMF tree editor.

Also, unlike the resource, objects may not be able to
contain every type of object. This means that some blocks

might not be possible to place directly into an object work
area. It is possible to work around all of these limitations
if it becomes necessary, but it would lead to relatively
complicated solutions.
Objects that are not represented as work areas, are repre-
sented as blocks.

B. Attributes and references

1) Property sheets: Object attributes may be represented
as conventional property sheets. In the EMF tree editor,
the property sheet appears in a separate pane next to
the tree view. This is an option, but we believe that
it is better to let the attributes appear on the block
itself, much like the editable properties on Scratch blocks.
However, in many cases this may lead to very large and
unwieldy blocks. This is particularly evident in the Ecore
metamodel, which we talk about in Section VII-B. To
alleviate this, we propose to allow the property sheets to
be expanded and collapsed by the user, freeing up screen
space as necessary (Figure 29).

Fig. 29: Property sheets on blocks can be collapsed to save
space.

2) Containment references and cross references: The test
application written for the Jigsaw Toolkit does not dif-
ferentiate between containment references and cross ref-
erences: Pointer blocks are mutually substitutable for
their referenced blocks. In EMF models, however, there
is a sharp distinction between the two types of refer-
ences.
We imagine this discrepancy can be mitigated in two
different ways.
The obvious solution is to set them apart using some visual
symbol. Slots that require a reference block would need
to appear different from slots that require an ordinary
block. This effectively mandates that the jigsaw block
structure must match the actual containment structure of
the model.
Another possible solution would be to allow the block con-
tainment structure to differ from the model containment
structure, and let the editor infer which references are
actual containment and which are not. This would provide
some additional freedom for the user, but it also creates
some complications. Firstly, it would be somewhat difficult
to implement, but more importantly, it would quickly
lead to confusing situations. For example, it is illegal for
an EMF object to be contained in two parents, but if

13

the actual containment structure is obscured, then this is
not immediately obvious. It would also be easily possible
to create blocks that are referenced but not contained
anywhere, which is an error.
For these reasons, we decide to maintain the separation
between containment references and cross references. Slots
that represent cross references are marked with an arrow
symbol, and require a pointer block. Slots that represent
containment references do not have the arrow symbol, and
require a regular block (Figure 30).
In models with many cross references, the pointer arrows
associated with pointer blocks can become obtrusive and
make the model more difficult to read. The Jigsaw Toolkit
allows the arrows to be hidden, but this leaves us with
the problem of identifying which block the pointer block
is referencing. As a possible solution, we propose two mea-
sures. Firstly, it should be possible to let blocks display a
label that distinguishes them from other blocks of the same
class, for instance by displaying a (unique) name or title.
Many models include object names which are suitable for
this purpose. Secondly, the pointer blocks should display
the same label text as their referenced blocks. This allows
user to identify what is the referenced block, even if the
pointer arrow is hidden(Figure 30).

Fig. 30: The labels for slots that represent cross references
are marked with a special symbol. We initially used a
transparent diamond, similar to aggregation in UML, but
we later found that users preferred the arrow symbol.
Pointer blocks are marked with the same label text as their
referenced blocks. If the referenced block has an unique
name, this allows users to identify the relationship, even
without the pointer arrow.

3) Bidirectional References: In the Jigsaw Toolkit, there
are no nondirectional or bidirectional associations. Both
ordinary block containment and references via pointer
blocks are inherently unidirectional. To represent a bidi-
rectional references, we could create one pointer block in
each direction, but this would often be rather messy and

inconvenient. As an alternative to this, we can choose to
represent it as an unidirectional reference, and let the other
direction be implicit. This will not always work, however.
For example, if both sides of the reference are parame-
terized types, then they both need to be represented as
slots.

V. Modeling Related Design

In this section, we describe the solutions to modeling
problems related to the design of the editor, seen from
a modeling perspective.
The editor must be able to work with Ecore models and the
associated model instances. We employ the EMF libraries
to create and modify models. Thus, the editor is backed
by a set of EMF models when in operation. Each object
in the model instance is represented using a jigsaw object,
as described in Section IV.
The EMF libraries also provide support for saving and
loading XMI models, as well as undo and redo support
through the EMF.Edit framework. To benefit as much
as possible from this, substantial parts of the editor are
modeled using EMF.

A. Layout model

The jigsaw objects contain some layout information which
is not represented in the abstract model, such as the loca-
tions of blocks and the order of the work area tabs.
In order to make layout changes undoable through
EMF.Edit, the layout information needs to be stored in
an EMF model. We would like to maintain the separation
between the abstract model and the concrete model. This
is achieved this by designing a separate layout model,
which is analogous to the diagram model in Sirius.
The layout model is essentially a mapping from EMF
objects to representation objects which hold the layout
information for each jigsaw object, as well as a reference
to the underlying EMF object in the model instance. A
diagram of the layout model can be seen in Appendix A.
When saving the model instance, a layout file is saved
separately, so that the layout can be recovered when
loading the model later.
When loading a model instance, the layout file may be
nonexistent or incomplete. If this is the case, then the
editor should fill in default values for the missing layout
information. This way, it ensures that it can still work with
models that have been modified by other editors, although
the layout may need to be manually adjusted.

B. Mapping Model

The mapping model is split into three parts:

14

• The slot and tab shapes
• The palette
• The jigsaw mapping model

1) Slot and tab shapes: The slot and tab shapes are man-
aged by the Jigsaw Toolkit. The toolkit is able to generate
default cuts, but these are often not very helpful. Editing
them is an important step in configuring the editor for
a target domain. To facilitate this, the Jigsaw Toolkit
provides a dedicated image editor for slots and tabs, called
the Cut Editor. The shapes can also be edited through
almost any other image editor, since they are stored as
PNG [17] image files.
The types defined in the Ecore metamodel are likely to
be reused across many domains. Because of this, we have
elected to create a set of default shapes for these types,
which are imported as defaults when generating a new
mapping model.
Also, some classes usually do not need a unique shape, so
cut generation can be skipped for some types. Specifically,
we assume that if, for a given type, there are no slots
with that type, then the type does not need a unique
shape. Since slots represent references, this is equivalent
to checking if there are any EMF references in the domain
which have that type. If generics are used, then it is
possible to construct a scenario where this assumption does
not hold. However, that is a low price to pay, since the
shapes are very easy to customize.
To understand why this is normally a sensible assumption,
consider a domain that contains power supplies that can
be used to charge a phone. Think of the charger plug as a
tab, and the charging port as a slot. The class power supply
is an abstract class which has multiple subclasses, e.g.
linear power supplies and switched mode power supplies.
[22] While the implementations are certainly different,
there is no case where one is required over the other.
Thus, it would be redundant to mark the plugs differ-
ently(Figure 31).

Fig. 31: We could give the two types of power supplies
unique shapes, like at the top. However, there are no slots
that discriminate between the two: The slot takes any
power supply, so the two types do not need unique shapes.
They can share the generic power supply shape.

The Scratch programming system also exploits this: In
reality, it has a large number of block types, but the

number of unique block shapes is very limited because
there is no need to discriminate between them. Reducing
the number of unique shapes is important, because as the
number of unique shapes grows, their complexity increases,
making them much more difficult to read.

2) Palette model: The palette model defines which blocks
should appear in the palette.

At the top level, the palette model consists of one or
more tabs. This allows items to be grouped together in a
meaningful way, similar to how it is done in Scratch and its
relatives. Each tab consists of palette items. Each palette
item is used to generate a block in the palette.

There are two different types of palette items, which serve
different purposes:

• Container palette items - contains a prototype EMF
object of a particular class. This object is used
to create a block representation of that object in
the palette. Since the item contains a prototype
object, it is possible to have multiple items for each
class. Furthermore, the prototype objects may have
customized attributes or even contain other objects.
This makes it possible to add preconfigured objects
to the palette.

• Reference palette items - holds a reference to an
EMF object that exists in a different model. This is
used to create a special type of pointer block in the
palette, enabling the creation of references to objects
from other models, which can be very important. For
example, these items can be used to refer to the data
types in the Ecore metamodel.

By default, the editor adds references to the Ecore literals
to the palette. Also, when the editor loads an Ecore
model and finds an instantiable class which doesn’t have a
representative in the palette, it will create a palette item
for that class. The editor fills in missing elements wherever
it finds them. However, this means that even if a modeler
deletes a palette item from the generated palette model, it
might reappear later. To avoid this, each palette item can
be disabled, effectively making it disappear and preventing
the editor from making it reappear.

Since the palette model is an EMF model, a modeler can
edit it in any sufficiently powerful EMF-based editor. A
diagram of the EMF model used for the palette can be
found in Appendix A.

C. Generics

The Jigsaw Toolkit supports both rendering generic types
and assigning type arguments. The editor should leverage
this functionality. A problem with this is that type ar-
guments introduced in the EMF model instance are non-
reifiable. This means that if they are to be used, they need

15

to be included in the concrete syntax model along with the
layout information.
Thus, the layout model also contains the values of type
arguments assigned to each object.
The generics support also has a few other implications. It
is entirely legal to use a data type as a type argument in
EMF. This can affect the type of an attribute, meaning the
associated property sheet element may need to be swapped
out by the editor.
But that is not all. When a type argument is assigned to a
block or a slot in the Jigsaw toolkit, the shape of the type
argument is rendered extruded from the primary type, as
we illustrated in Figure 19. This means that data types
need to have slot and tab shapes, even though there can
never be a block or a slot whose type is a data type.
Furthermore, type arguments in the Jigsaw Toolkit are
assigned by dragging type chips onto concrete type boxes,
as we illustrated in Figure 20. Type chips are normally
obtained from a block with the desired type, but there
are still no blocks whose type is a data type. However,
it is possible to create a pointer block to the meta-object
which defines the data type. Recall that the palette can
contain references to objects in other models, including
the meta-model. If a pointer block references a meta-object
which defines a data type in the current model, then we
can expose the data type chip on that block, as shown in
Figure 32.

Fig. 32: A pointer block to the meta-object which defines
the string data type. It exposes a type chip for the string
type. Note that the type of the block is not the string
type: The type of the block is simply the data type type.
The string type is the object itself.

1) Jigsaw mapping model: The jigsaw mapping model is
based on the idea that each structural concept in the Ecore
model should be represented by a jigsaw object. At the top
level, the mapping model contains a mapping from EMF
classes work area mappings or block mappings.
A work area mapping dictates that the class should be
represented as a work area. A key feature of work areas
is that they need to be able to infer which reference an
object should be assigned to based on the type of the
object. To facilitate this, the work area mapping maps
classes to references. The work area mapping also maps
attribute names to form element mappings, which are
used to organize the attributes into a property sheet. The
property sheet is displayed above the work area, in a
rectangular region which uses a grid layout. A work area
form element mapping indicates a location and a relative
size in this grid. In addition, it specifies the name of a

factory class, which is responsible for creating the GUI for
the attribute.

The default factory creates a label with the attribute
name, and an appropriate GUI widget depending on the
type of the attribute:

• A checkbox is created if the attribute type is a
boolean type.

• A combobox with a drop-down menu is created if the
attribute type is an enum type.

• A non-editable label is created if the attribute type
is not a serializable data type.

• A text field is created in all other cases. The text field
uses the built-in EMF serialization functionality to
display and parse the value.

The default factory also takes care to swap out the
GUI widget if the type of the attribute changes, i.e.
because a type argument which affects the attribute is
changed.

A block mapping dictates that the class should be rep-
resented as a block. Like the work area mapping, it maps
attributes to form element mappings, which determine how
and where the attributes are displayed on the block.

When loading an Ecore model, the editor fills in block
mappings for each class that does not have a mapping.
Furthermore, mappings for attributes and references are
automatically filled in. Again, this means that mappings
deleted by the modeler can be recreated. To avoid this,
every mapping can be disabled, making it disappear from
the editor. A special mapping object which is always
disabled can also be created.

A modeler should be able to customize the labels for a
class. The EMF.Edit label providers can be customized
by specifying a label feature, which is an attribute whose
value is inserted into the label text. In Sirius, labels can
be written using a query language.

We have elected to use a variant of the format string,
[18] which is stored on the work area mappings and block
mappings. This allows for a fair amount of flexibility while
being very simple to implement. The format string consists
of two parts. The first part is a string surrounded by
double quotes, which can contain an arbitrary number
of %s tokens. The second is a comma-separated list of
attribute names. The number of attribute names must be
equal to the number of %s tokens. Each %s token will be
replaced by the value of the attribute which is named at
its respective position in the attribute name.

For example, consider a block mapping for the class Au-
thor, which has an attribute name. The format string is as
follows:

”%s: %s”, eClass, name

16

If the user creates an Author block and fills in Bob for the
name. The label text for the block will then be Author:
Bob. The default label text pattern is similar to what is
given above.
Again, the jigsaw mapping model is an EMF model,
meaning a modeler can edit it in EMF-based editors. A
diagram of the EMF model used for the jigsaw mapping
model can be found in Appendix A.

VI. Implementation

In this section, we describe important aspects of the
implementation of the editor.

A. Overview

The editor is intended to be able to integrate with the
Eclipse platform as a plugin. The Eclipse plugin APIs are
well-documented, but Eclipse is implemented using the
SWT GUI library, while the Jigsaw Toolkit is implemented
using the JavaFX GUI library. Fortunately, interoperabil-
ity between the two libraries is very simple. [39]
Despite this, we decided to implement the editor in a
way that allows it to be run as a stand-alone application.
This has two benefits. Firstly, it ensures that the editor is
readily deployable outside of the Eclipse platform, which
may be beneficial in the future. Secondly, it reduces the
overhead for testing the editor during development: Since
there is no need to load the plugin in a new Eclipse
workbench for each test run, the time wasted on loading
times is significantly reduced.
Eclipse plugins are able to benefit from the user interface
of the Eclipse workbench, such as menu bars and hotkeys.
The stand-alone version of the editor needs to implement
its own window, menu bar and layout in order to function.
Since these UI elements will be obsolete in the plugin
version of the editor, they are kept logically separate from
the core editor UI in the implementation. This prevents
them from impinging on the development of the plugin.
The separation is illustrated in Figure 33.

Fig. 33: A screenshot of the stand-alone editor. The stand-
alone editor UI, including the window, is logically separate
from the core editor UI.

The stand-alone editor provides 3 different views. The first
view is the jigsaw editor itself, which contains the palettes
and work areas. The two remaining views contain a simple
tree editor and the Cut Editor.
The Cut Editor is reused from the Jigsaw Toolkit (Fig-
ure 34). It facilitates efficient editing of the shapes of the
slots and tabs in the model domain.

Fig. 34: The Cut Editor is an integrated editor for slot and
tab shapes.

The tree editor (Figure 35) employs a JavaFX implemen-
tation of the user interface adapters from the EMF.Edit
framework [41] provided by the e(fx)clipse project. [40]
It provides access to editing and inspection of all EMF
resources used by the editor. This is useful for debugging
purposes and makes it easier to edit the mapping model
while the editor is running.

Fig. 35: The JavaFX tree editor exposes the objects in each
EMF resource used by the editor.

The tree editor and the Cut Editor can be used to modify

17

the mapping model directly. The stand-alone editor per-
forms a full rebuild of the user interface when switching
back to the jigsaw editor tab. Thus, the jigsaw objects are
recreated with the updated mapping model.

B. EMF integration

Every work area and block represent some object in the
EMF model. There are multiple types of work areas and
blocks used for different purposes:

• ResourceWorkArea - Represents an EMF resource,
which is a special facility for holding root objects.
The ResourceWorkArea contains all root objects
that have block representations.

• EObjectWorkArea - Represents a root object as a
work area, and contains block representations of its
children.

• EObjectBlock - Is the canonical block representa-
tion of an object, i.e. the one that participates in
containment relationships. Since an object can only
have one container, there should never be more than
one EObjectBlock representing the object. This type
of block is created from container palette items,
mentioned in Section V-B2.

• EObjectPointerBlock - Is a pointer block which
holds a reference to an EObjectBlock. EObjectPoint-
erBlocks are created from EObjectBlocks.

• EProxyPointerBlock - Is a pointer block which holds
a reference to an object that is contained in a another
model. This type of block is created from reference
palette items, also mentioned in Section V-B2.

Every slot represents an EMF reference, and every prop-
erty sheet element represents an EMF attribute.
The editor exclusively uses the reflective API to com-
municate with the models. This allows it to work with
both dynamic model instances and model instances with
generated code.
The jigsaw objects propagate changes to their underlying
EMF objects. For example, when moving a block onto
a slot, the EMF object represented by the block gets
assigned to the reference represented by the slot. The
command stack mechanism from EMF.Edit is used to
implement undo and redo. When performing changes to
the underlying EMF objects, the editor uses command
objects to record the changes in the command stack. The
jigsaw objects have adapters registered on their respective
EMF objects in order to listen to changes. This allows
the jigsaw objects to respond to any changes that happen
to the EMF objects when the user triggers an undo or a
redo.
An EObjectPointerBlock requires a reference to an EOb-
jectBlock before it can be properly initialized. However,

when an EObjectPointerBlock is created, is not always
obvious which EObjectBlock it is supposed to point to,
even if the reference to the underlying EMF object is
known. For example, a pointer block might be created
because the value of a cross reference changes as a result
of an undo event. In some cases, the order of operations
may even lead to the pointer block being created before the
block it is referencing. To get around this, we implemented
a reference resolver mechanism, which maps EMF objects
to EObjectBlock representations. When attempting to
resolve a block that doesn’t exist yet, a placeholder object
is returned, which is updated as soon as the block becomes
available.

VII. Results

In this section, we present our results from the model
evaluation and survey.

During the course of this project, we have spent the great-
est amount time on design and implementation in order to
produce a prototype that fulfills all of the requirements.
For evaluation purposes, we have made our best effort to
select strategies that provide the most informative results,
given the time constraints of the project.

Existing jigsaw-based visual languages are based on con-
tainment, so it seems reasonable to assume that the editor
will function best for models that exclusively use con-
tainment references. However, it is not known whether
a jigsaw-based language will function well for languages
that predominantly use cross references. Thus, the models
selected for evaluation should provide coverage in terms
of the ratio of containment references to cross refer-
ences.

Furthermore, the models should be relevant to real mod-
eling problems.

The following test models are used:

• A library model, with books and authors. [7] This
model uses containment references for the root object
and cross references elsewhere. It is used in many
tutorials, both for EMF and other DSL frameworks.

• The Ecore metamodel. This model is used to create
other EMF models. The use of containment and
cross references is mixed. The Ecore metamodel is
of particular importance in EMF, and virtually all
EMF users are familiar with it.

• A family model, with parent-children relations. [35]
This model is structurally similar to the Library
model, but with a greater amount of cross references.
It is used in the official Sirius starter tutorial. [35]

• A model of a quiz domain. This model predominantly
uses containment references. It is used in a course on
model-based development at our department.

18

When evaluating the models, we start by opening the
Ecore model for the relevant domain, e.g. library.ecore, in
the editor. The editor will then generate a blank model
instance and a default mapping model. Next, we inspect
the generated blocks as found in the palette and compile a
list of obvious problems that can be fixed in the mapping
model. Finally, we edit the mapping model and present
the result. The problems that we face underway are used
as feedback into the design of the editor (Figure 36).

Fig. 36: Some problems encountered during model evalua-
tion cannot be solved by editing the mapping model. This
is used as feedback into the design and development of the
editor.

A. Library model evaluation

The Library model is a very simple model which defines a
library object that contains books and authors. The books
and authors can be associated using a bidirectional cross
reference. Thus, only the root object has containment ref-
erences. The complete model is shown in Figure 37.

Fig. 37: UML diagram of the library model displayed using
the EcoreTools [5] graphical editor.

Figure 38 shows the prototype blocks which are au-
tomatically generated into the palette for the Library
model.

Fig. 38: The blocks from the generated Library palette.
The blocks are expanded, displaying the property sheets.

Because the number of unique tab shapes is very low, the
automatically generated shapes are easily distinguishable.
There is little to gain by editing them.

The bidirectional writer-books association has been auto-
matically collapsed to a single slot on the Writer object.
The automatically chosen direction is based on arbitrary
data, but in this case it is an acceptable default.

The model is rooted in a single object (Figure 39), making
the entire model clumped up in a single block cluster.
This is undesirable. In addition, the default layout of the
slots may lead to blocks being stretched in an unflattering
way. When we first evaluated the editor with this model,
representing an object as a work area was not possible.
However, the problems made it apparent that this would
be an important feature.

Fig. 39: An example Library model instance. The model
is rooted in a single Library block. The Book blocks are
stretched to fit the height of the left column, making them
larger than necessary.

Figure 40 shows the result of replacing the Library block
mapping with a work area mapping. This fixes the afore-
mentioned problems.

19

Fig. 40: The same example Library model instance as
in Figure 39, with the customized mapping model. The
pointer arrow is shown for the focused pointer block only.

B. Ecore metamodel evaluation

The Ecore metamodel is the model used to create Ecore
models. The use of cross references and containment ref-
erences is mixed, with a slight majority of containment.
Figure 41 shows the prototype blocks which are generated
into the palette when using the Ecore metamodel without
any manual configuration.

Fig. 41: The automatically generated Ecore blocks.

Modeling using Ecore depends on access to the data type
literals from the Ecore package, since they are required to
assign standard types to EAttributes. This showed that
it is necessary to be able to create pointers to objects in
other models, leading to the creation of the EProxyPoint-
erBlock. Figure 42 shows the list of pointer blocks into
the Ecore package. This list is automatically added into
the palette, and includes all of the built-in EClasses and
EDataTypes.

Fig. 42: All of the pointer blocks to the Ecore literals.

When first testing the editor with Ecore, we found that
the generated slot and tab shapes were unsatisfactory,
so we edited them to be more easily identifiable. Since
these shapes would be routinely reused in other models,
we decided to implement special support for importing
them automatically. Thus, the editor uses these shapes
by default, and there is no need to edit them for this
domain.

Figure 43 shows the size of an expanded EAttribute block.
In the early prototypes, it was not possible to collapse

20

the property sheet. The Ecore metamodel showed that it
is an essential feature due to the large size in expanded
form.

Fig. 43: When expanded, many of the blocks become very
tall due to the number of attributes.

Yet, using the editor with the generated mapping model
for this domain is problematic for several reasons. Be-
cause Ecore models are rooted in a single EPackage, the
model becomes a single block cluster, which is undesirable.
Also, the default layout of the slots makes several of
the blocks very wide. These symptoms can be seen in
Figure 44.

Fig. 44: Using the default mapping model, the blocks
become very wide and clumped up in a single EPackage
block.

Because the default mapping model displays all informa-
tion about the model, it appears very verbose. An example
of this can be seen in Figure 45.

Fig. 45: When setting the eType of an EReference, the
eGenericType gets automatically assigned, and vica versa.
This is necessary to create generic models, but in most
cases it is a waste of space: It adds to the perceived
complexity without adding any value.

To make the editor more usable, some modifications are
necessary. We change the EPackage representation to a
work area, which is done by replacing its mapping model
element with a work area mapping. Next, we make some
simplifications, based on general assumptions about how
often different functionality is used. We hide the blocks and
slots related to generic types, factories and annotations.
We also remove the EStringToStringMapEntry block, the
EObject block and the eKeys slot.
In the initial prototypes, mapping model elements would
reappear if we removed them, because the editor is de-
signed to fill in missing elements in the mapping model.
This proved that the ability to mark elements as hidden
was necessary, as this allows the editor to identify elements
that the modeler has explicitly hidden.
Finally, we change the orientations and locations of some
of the slots in order to improve the block layouts. Fig-
ure 46 shows the Library model after the mapping model
customizations.

Fig. 46: The Library metamodel, represented using the
customized mapping model for Ecore.

Although we have hidden some information, the cus-

21

tomizations make the editor use the screen space more
efficiently, as well as making the models easier to under-
stand.

C. Family model evaluation

The Family model is a simplified model of a family tree.
As in the Library model, only the root object uses contain-
ment, but this model has more cross references. A diagram
of the model is shown in Figure 47.

Fig. 47: An UML diagram of the Family model. Note that
the father and mother relations can be derived from the
parents relation, since they repeat the same information.

Figure 48) shows the prototype blocks which are automat-
ically generated for the Family model.

Fig. 48: The blocks from the generated Family palette.

The tab shapes are easily distinguishable. The Family
object is a good candidate for being a work area. The bidi-
rectional parents-children association has been collapsed to
a single slot on the Man and Woman blocks. However, in
this case, it seems more reasonable to flip the direction. We

do this by setting the children reference to dominant in the
mapping model. Figure 49 illustrates the result.

Fig. 49: An example Family model instance. Pointer arrows
are enabled, showing the high amount of cross referencing.

D. Quiz model evaluation

The Quiz model defines different types of questions and
answers. Most of the relations are containment references,
which leads us to believe it is a good candidate. A simpli-
fied diagram of the model is shown in Figure 50.

Fig. 50: A simplified UML diagram of the quiz model. The
XML data structure is not shown.

Figure 51) shows the prototype blocks which are automat-
ically generated for the Quiz model.

22

Fig. 51: The blocks from the generated Quiz palette.

This model was originally created for a textual DSL. There
are a few things to explain about it.

• The Quiz object contains QuizParts, but sometimes
it can be useful to cross reference QuizParts from
other models. The QuizPartRef object facilitates
this: It holds a cross reference to another QuizPart,
and is able to serve as a placeholder for that object
in a containment relationship. This is directly anal-
ogous to how pointer blocks are implemented in the
Jigsaw Toolkit! The technique is useful in cases where
the DSL provides incentives to favor containment
over cross referencing. This is obviously the case
in jigsaw-based DSLs, but also in textual DSLs: In
textual DSLs, cross references must be created using
a textual identifier, while the actual object is defined
elsewhere. This kind of fragmentation constitutes a
loss of source code locality, which can have detrimen-
tal effects on productivity. [23] The QARef object
fulfills an identical role.

• The abstract SimpleAnswer class is parameterized,
and its implementations StringAnswer, NumberAn-
swer and BooleanAnswer introduce the type argu-
ments String, Double and Boolean, respectively. The
editor renders type arguments where it finds them,
but in reality, the type arguments for this domain
are only an implementation detail. There are no
references that expect a particular type argument,
and nor is it possible to reassign any type arguments
in the model instance.

• The XMLQuestion and XMLAnswer Blocks can be
used to embed XHTML [14] fragments, for example
to include images. XHTML is a separate, XML-based
DSL. In a textual DSL, it makes sense to embed
XML support directly in the metamodel instead
of storing the XML text as a string. However, in
a graphical editor such as ours, the XML objects

are not useful. Attempting to construct an XHTML
document using raw XML blocks would only be
extremely cumbersome.

The Quiz object seems to be a good candidate for being a
work area, so we change this in the mapping model. Next,
we hide the XML-related objects from the palette. Finally,
the Quiz domain has many unique tab shapes, which leads
to the generated shapes being difficult to read. We improve
them by altering them in the Cut Editor.

The customization of the shapes of slots and tabs is a time
consuming part of the mapping model customization, but
it is a very important step. For models with more than
four unique shapes, the generated shapes begin to become
somewhat difficult to read.

To design good shapes as a modeler, there are two needs to
consider. Firstly, and most importantly, the shapes should
be easily distinguishable when they need to be. If two types
can never be substituted for one another, then they should
appear completely different so that there is no doubt that
they will never fit. Secondly, specialization should be easy
to identify. This is more tricky, and is best illustrated
with an example. Consider the QuizPart and QA classes,
illustrated in Figure 52.

Fig. 52: The partition of the quiz domain that concerns
QuizParts and QAs.

There is no reference that accepts both QuizPart and QA,
so their shapes may be completely different. However, the
sibling classes QuizPartRef and QARef also need to be
considered.

The important thing to note is that QARef can only
reference a QA, not an AbstractQA. This means that QA
is a specialization that requires an unique shape. QARef,
however, does not require an unique shape, because it
can always be substituted for an AbstractQA. The same
argument holds true for QuizPartRef.

Thus, the QA shape needs to be different from Abstrac-
tQA: It must be possible to tell that only a QA reference
can be referenced by the QARef object. In the other
hand, it must also be possible to tell that QA can still
be contained in the QuizPart object.

23

We start by drawing a unique shape for AbstractQA in the
Cut Editor. Since this type has a subtype which needs a
unique shape, we take special care to reserve enough space
to accommodate the cuts for the subtype. In general, it is
important to consider how many times the shape needs to
be modified further down the inheritance graph.

Then, we go to the QA class and add a couple of cuts that
help distinguish it. These cuts should not distort the cuts
inherited from AbstractQA: The goal is to help the user
identify the subtype as a modified version of the parent
class, not a completely distinct type (Figure 53).

Fig. 53: The QA shape is differentiated from the Abstrac-
tQA shape by adding the black internal cuts. The gray
cuts are automatically inherited from AbstractQA; this is
handled automatically by the Jigsaw Toolkit.

The result is a set of shapes that hopefully allow the user
to identify what connections can and cannot be made
(Figure 54), even in a static image of a model. In prac-
tice, reading the subtype relationships likely requires some
training. For this reason, the Jigsaw Toolkit also highlights
valid drop targets when the user drags a block.

Fig. 54: The QA-related shapes are designed to communi-
cate what connections can and cannot be made.

In some cases, we have opted to embed little symbols into
the shapes. This is not necessary, but the use of familiar

symbols may be helpful in producing shapes that are easy
to distinguish.
Figure 55 illustrates the result.

Fig. 55: An example Quiz model instance.

E. Survey results

The survey is intended to cover multiple aspects of the
project.
Firstly, the survey acts as a usability test. The respondents
are asked to run a prototype of the editor and complete
a sequence of tasks. The prototype is configured to run as
an Ecore editor. Since virtually all EMF users are familiar
with Ecore, this allows the respondents to complete the
tasks without the need for understanding an unfamiliar
domain. After completing the tasks, they are asked to pro-
vide feedback on usability problems. The survey includes a
download link for the prototype and a walkthrough video
in case some users cannot figure out how to complete some
of the tasks.
Secondly, the survey provides guidance on how to improve
the editor. The respondents are asked for their opinion on
various features that we are considering to implement, as
well as their expectations for an editor such as ours.
Thirdly, the survey provides information on whether the
editor’s features are useful. In particular, we are interested
in what users think of the features that are unique to the

24

jigsaw-based concrete syntax. The users are asked for their
opinion on these features, and whether they would be likely
to use our editor in the future.
It would be possible to let the usability test be executed
separately from the rest of the survey. However, we chose to
combine them. The rationale for this was that by running
a prototype of the editor first, the respondents would get a
stronger impression of what the project is about, and thus
provide more accurate responses.
The survey was created using Google Forms [9]. It was
open to respondents during the last two months of the
project. Before making the survey public, we had one per-
son evaluate it and provide suggestions for improvements
to the survey itself. It was then published on the Eclipse
community forums, [8] where we hoped it would gain some
attention. This was unsuccessful, so we started recruiting
respondents more actively, by contacting colleagues and
other acquaintances. A reward was also offered to students
who had past experience with modeling.
A total of 5 people delivered a survey response. This
is a low number, but it is enough to gain a general
impression of where to focus development and what users
think of the editor’s features. In particular, it helps uncover
many usability problems. The respondents had mixed
levels of experience with EMF and other jigsaw-based
languages.
The full survey is included in Appendix B, and the
complete survey response data set is included in Ap-
pendix C.

1) Testing the editor: In this part of the survey, the re-
spondents were asked to run a prototype of the editor and
complete a set of tasks.
The majority of the respondents were able to complete
most of the tasks without problems. The reported prob-
lems were concentrated around a few features.
The survey requires users to create an EPackage as a new
work area. This is done using a dedicated Add button.
Three respondents reported not discovering how to create
the work area until they had already created the blocks.
One respondent reported that they attempted to move the
blocks into the new work area after creating it, but that
their attempt was unsuccessful. It is possible to open the
two work areas next to each other by double-clicking on
one of the tabs (Figure 28), thus allowing the user to move
blocks between them. The respondent did not discover this
feature.
Several tasks require the use of Ecore data type literals.
These blocks are in a palette tab that is separate from
the ordinary blocks. Three respondents reported problems
finding these blocks.
Multiple tasks require the use of pointer blocks. This can
be done using either a keyboard shortcut or through a con-
text menu which is accessed by right-clicking on a block.

Four respondents reported problems with discovering how
to create pointer blocks. One of them did not appear to
discover how to use them at all.
One respondent reported initially having problems with
understanding how to assemble blocks. They appear to
have attempted to place a slot on top of a tab in order
to connect them. This is currently not possible, and does
nothing. The slot also required a pointer block, while the
tab belonged to an ordinary block, so this would not work
even when done the other way around. However, they did
figure it out eventually.
One respondent reported that they did not like the colors
of the blocks, in particular the red ones. They noted that
red is often associated with errors or warnings. In response
to this, we changed the editor to never generate red hues
as the block color.
2) Current functionality of the editor: In this part of
the survey, the respondents were asked to rank the use-
fulness of various features that are implemented in the
editor.
Three of the respondents were positive on all points. One
was neutral on several points, and another was negative
to how the type system is visualized using tabs and
slots.
3) Potential functionality of the editor: In this part of
the survey, the respondents were asked to rank the im-
portance of various features that we were considering to
implement.
Support for model validation was ranked the highest by
a wide margin. Response towards the other proposed
features was more mixed.
Note that we opted to implemented support for generics
shortly after publishing the survey, before we received more
than one response.
4) Qualitative expectations for the editor: In this part
of the survey, the respondents were asked to rank the
importance of various qualitative propositions regarding
the editor.
The respondents expressed that the stability and perfor-
mance of the editor are very important.
When asked if it is important that the editor supports all
EMF functionality, or that the mapping model is highly
flexible, the response was mixed.
The amount of flexibility the editor allows for in terms of
deployment was met with overall positive responses. Some
users expressed more interest in the Eclipse integration,
while others expressed more interest in use independently
from the Eclipse platform.
When asked whether they would be likely to use our editor
instead of the EMF tree editor, or as a replacement for an
established DSL framework such as Sirius, the response
was mixed.

25

VIII. Discussion

In the previous section, we evaluated the editor against a
number of test domains, and presented the survey results.
In this section, we discuss the results.

A. Usability of the editor

We discovered several usability problems through both
the model evaluation and the survey. However, we believe
that the vast majority of the usability problems can be
eliminated by making the correct adjustments.
As we saw in Section VII-E, the majority of the respon-
dents were able to understand and complete most of the
tasks on their own. Most of the problems were centered
around work areas, pointer blocks, and the use of multiple
palette tabs.
Several respondents had a hard time discovering the Ecore
data types (Figure 42), because they were in a separate
palette tab. While we could fix this by simply moving
all blocks into a single palette tab, this is not a good
solution. It inevitably results in a highly cluttered palette
which is inefficient for more experienced users. Also, the
use of multiple palette tabs is not something that is new
in our editor. Most or all existing jigsaw-based languages
use multiple palette tabs. In Scratch, the palette tabs are
color coded, and a significant amount of screen space is
dedicated to them (Figure 14). By copying this design,
users may be able to discover them more easily in our
editor.
The Ecore data type blocks also share the same color,
possibly making them difficult to distinguish. Other blocks
are colored based the color attribute of the associated block
mapping in the jigsaw mapping model. While we could cer-
tainly do something similar for EProxyPointerBlocks, this
might be insufficient because many of them share the same
class. An alternative would be to augment the palette and
layout models with color information, effectively allowing
different instances to have different colors. However, it is
somewhat uncertain if this will improve the readability of
models or simply make them more confusing.
The way work areas are created is inconsistent with how
blocks are created, since work areas are not in the palette.
As a result, the respondents did not immediately discover
how to create them. One possible solution to this is to cre-
ate a new type of block, the work area block, which serves
as a secondary representation of a work area (Figure 56).
This is an interesting idea for several reasons.

Fig. 56: A special block could be created which serves as a
secondary representation of a work area. The user would
be able to click on the block to open the work area.

Firstly, by including these blocks in the palette, we make
them more easily discoverable, and creating them becomes
consistent with how other blocks are created.

Secondly, this would allow any object to be opened as a
work area, not just root objects. This effectively enables
models to have multiple abstraction layers, similar to the
concept of submodels in GEM or subpatches in the Pure
Data visual programming language. [21] This would be
useful in, for example, the Quiz model:

The containment structure in the QuizPart objects can
be quite deep. As a result, QuizPart exhibits some of the
same problems as a model with a single block cluster. Some
of the blocks become unduly stretched (Figure 55), and
it might be better to use the editor if it was possible to
position the QA blocks freely. Thus, it is possible that it
would be better if the QuizPart objects were represented
as work areas instead of the Quiz object. This is cur-
rently not possible because QuizPart is not a root object.
However, the use of work area blocks would make this
possible.

The survey respondents did not discover how to open two
work areas next to each other. By extension, they were
unable to move blocks between the two work areas. One
user reported trying to drag the blocks onto the work area
tab near the top of the editor. This is not implemented,
but it is a good idea. This would solve many of the same
problems as opening work areas next to each other. In
addition, we would like to make it easier to discover how
to use the existing functionality. Adding context menus on
the work area tabs would be a step in the right direction.
Support for dragging and dropping the work area tabs in
order to put them next to each other would also be an
improvement.

Most of the respondents reported issues with discovering
how to create pointer blocks. One respondent indicated
that better error messages would help alleviate this. When
the user attempts to use an ordinary block as a pointer
block, the editor currently displays an error message.
Adding instructions for how to create a pointer block
to this message might help. In addition, we propose to
add an alternative method of creating pointer blocks,
wherein a pointer block can be created by dragging a
distinctively marked, dedicated area of an ordinary block
(Figure 57).

26

Fig. 57: A pointer block could be created by dragging the
corner of a block. The corner would be marked and provide
feedback when the user hovers the cursor over it.

The explicit management of work areas and the use of
pointer blocks are novel techniques that do not exist
in established jigsaw-based languages. As such, it is not
surprising that they are somewhat problematic. The re-
spondents appear to have had less problems with the
other novel features, such as the use of collapsible property
sheets and the more flexible use of tabs and slots compared
to established jigsaw-based languages.

B. Suitability of the jigsaw-based syntax

We do not expect the jigsaw-based concrete syntax to be
suitable for all models. In particular, established jigsaw-
based languages only support containment references. Our
editor uses pointer blocks to get around this limitation,
but we do expect that overuse of pointer blocks may be
problematic.

Both the library model and the family model are domi-
nated by cross references; all the containment references
are on the root objects.

For the library model, the jigsaw-based concrete syntax
performs no worse than a graph-based syntax. Indeed,
it is possible to merely treat the editor as a somewhat
strange graph-based editor, where the first anchor-point
of an edge happens to be a pointer block. One interesting
thing to note is that the use of pointer blocks allows users
to impose an explicit order in reference lists, something
that is normally not possible in graph-based editors. In
graph-based editors, defining a clear order in a many-
element relation is a more difficult problem.

Since each book object can only have one author, an
obvious way to reorganize this model would be to let the
writer object contain the books. This would allow the user
to drop the book objects directly on the writer objects,
with no need for pointer blocks at all. With Sirius, this type
of structural modification could probably be implemented
in the mapping model, but it is not possible with our
editor.

For the family model, the number of cross references grows
much faster. Furthermore, the children-parents association
is many-to-two, meaning there would be no way to model
it using a containment tree.

The large number of pointer arrows quickly make the fam-
ily model instances unreadable. This could be alleviated
to some extent by improving the edge routing. Currently,
only straight lines are supported. Allowing the user to add
bend points to the arrows would allow for improvements.
However, unlike in a graph-based editor, the pointer arrows
cannot emerge from any edge of the block; they must be
attached to a pointer block, which must be attached to the
relevant slot. Thus, it cannot perform as well as a graph-
based editor, because the pointer arrows are inevitably
more difficult to trace.

The pointer arrows can be turned off, but this is not a
very good idea either. A family model where the familial
relations have to be read through textual labels is just
inconvenient.

The Ecore metamodel uses an even combination of cross
references and containment references. Like in the family
model, the pointer arrows can lead to a significant amount
of clutter. However, hiding them is a much better idea
for this model. Most of the pointer blocks reference data
types or classes, and we expect that users should be able
to memorize their names and significance without much
trouble.

In the other hand, the Quiz model uses containment
references almost exclusively. As such, we would expect
it to be more suitable for our editor. Indeed, it seems very
easy to understand how the blocks fit together, and reading
a model is very straightforward.

As expected, the editor performs well for models that
predominantly use containment references, and less well
for models where cross references are more important. Al-
though the editor can be treated like a graph-based editor
when dealing with cross references, the way the pointer
arrows are organized is a problem. Although better edge
routing would be an improvement, it is not a definitive
solution.

The editor allows the user to toggle the pointer arrows off
to decrease clutter. This is helpful if the number of pointer
blocks is relatively low, and it is easy to identify what they
are referencing based on the label. However, in cases where
it is very important to be able to trace the links visually,
such as in the Family model, turning them off is not very
helpful.

Thus, the editor is less suited to models that are inherently
graph-like, with heavy cross referencing.

Our editor provides incentives to use containment refer-
ences rather than cross references. An interesting thing
to note is that this is also true for textual editors, as we
explained in Section VII-D. Thus, the editor might serve
as a more user friendly alternative to textual editors, and
not so much as an alternative to graph-based editors. To
help back up this claim, we might add that the jigsaw-
based visual syntax is traditionally used as a user friendly
alternative to textual programming languages.

27

Several classes in the Ecore metamodel, including ERef-
erence and EAttribute, inherit from the abstract EType-
dElement class. This class defines a changeable reference
named type, which has the type EClassifier. This suggests
to the user that they can use any EClassifier with any
typed element. However, this is wrong! The type slot on the
EReference block should not accept an EDataType block,
and similarly the type slot on the EAttribute block should
not accept an EClass block. This is a problem because it
suggests to the user that it is valid to connect the blocks
in a way that is, in reality, never valid.
In general, the editor works best with metamodels where
the types of references are precisely defined. If the types are
imprecise, as in Ecore, then this communicates the wrong
ideas to the user. We can obviously not patch this in the
Ecore metamodel itself, but we could augment the jigsaw
mapping model to allow the type of a slot to be different
from the actual type defined in the abstract model.
Models displayed in our editor become rather huge. In
its current state, our editor is not well suited to handle
models with much more than 100 objects in a work area.
This is a key problem which limits the applicability of our
editor.
We do our best to manage space efficiently, for example by
allowing the user to collapse property sheets and adjust the
zoom in a work area, but there does not appear to be any
definitive solution. While some space is certainly wasted
due to the way blocks are laid out, much of the space is
simply required to visualize all the information that our
editor provides.
Indeed, one of the biggest strengths of jigsaw-based lan-
guages is that they show a lot of information to the user,
in a way that is simple to understand. For example, the
shapes of the tabs and slots allow the user to see the
types of both objects and references at all times, as well as
the relationships between them. This is an unique feature
when compared to other EMF editors. Our editor also
offers better locality than many other graphical editors, by
placing the property sheets inside the blocks rather than
in a separate panel. Furthermore, the available blocks are
very easy to discover and use through the palette.
However, this necessarily means that the jigsaw-based
concrete syntax is generally less compact than alterna-
tive syntaxes. The Google Blockly framework attempts
to get around this by allowing blocks to be completely
collapsed, in a way that also hides the slots. This hides
a lot of information, but it might be a good idea. For
our editor, we could even imagine that a block could be
collapsed into a work area block, which we described in
Section VIII-A. This would allow the user to manage how
to divide the model into work areas in order to better
manage space.
In the Ecore metamodel, we chose to hide some func-
tionality in order to make the editor more convenient
to use. In particular, everything related to generic types

and annotations was completely hidden. If it becomes
necessary to show this functionality on the jigsaw objects,
then the mapping model needs to be edited. This is a poor
solution. An alternative solution is to provide users with a
more convenient way to show or hide slots, perhaps similar
to how property sheets can be collapsed.

However, another way to handle this is to use a secondary
view of the model, like a tree editor, to manage rarely-
used functionality. Thus, the associated model elements
may remain hidden in the jigsaw editor. We believe that
in most cases, this is an acceptable solution.

In the Ecore model, the EPackage object is represented as
a work area. A limitation of this is that it is impossible to
create nested EPackages, because a work area cannot be
contained in a work area. Although nested packages are
rarely used in EMF, this limitation matters on a general
basis.

The use of work area blocks, as described in Sec-
tion VIII-A, would solve this problem, since the work area
block could be contained in a work area with no problems.
Furthermore, it would allow users to create pointer blocks
to work areas. Thus, it would be an important feature
in that it would add to the the expressiveness of the
syntax.

In the Quiz model, we configured the editor to represent
the Quiz object as a work area. There is a problem with
this; the work area has no sense of order, so the order of the
QuizParts in the abstract model is rather arbitrary. Order
matters in many models, so this is a noteworthy problem.
It would be vastly preferable if it could be fixed without
altering the abstract model. As a solution, we propose that
it should be possible to allow a work area to be sorted,
for example top-to-bottom. A general sorting mechanism
could be implemented by allowing the modeler to specify
a comparator function in the work area mapping.

The Quiz model also exposes a set of XML-related objects.
For the reasons we described in Section VII-D, these make
sense when the model is used with a textual syntax, but
they would be very inconvenient to use and difficult to
understand with our syntax. In order to make these objects
useful in our editor, the best solution would be to embed
a textual editor such as XText into a block. This would
be a somewhat ambitious project, however. Changing the
Quiz model to hold the XML as a string would obviously
be much easier in the short term.

C. Limitations of our evaluation

We have done our best to select evaluation models ac-
cording to reasonable criteria, as explained in Section VII.
However, we are far from a complete understanding of
when our syntax is applicable. In the future, we would
like to use the editor with more models in order to gain a
better understanding.

28

The number of respondents was lower than we had hoped
to achieve. In hindsight, it would have been wiser to split
the survey into a usability test and a conceptual survey.
The conceptual survey could have been published earlier
in the project, and respondents might have been less put
off by its complexity.
The survey does function as a usability test, and it does
provide pointers to how to improve the editor. However, we
cannot form a clear conclusion on whether a jigsaw-based
modeling editor will be likely to attract users.
It is certain that our editor does require improvements
before it can be put to serious use, but we hope that it
will be seen as a serious alternative in the future.
The use of Ecore as the domain model in the prototype
allowed the respondents to complete the tasks without the
need for understanding an unfamiliar domain. The idea
behind this was to let the usability test be more about
understanding the editor and less about understanding the
domain. However, some of the respondents appear to have
carried over incompatible expectations from other Ecore
editors. It would also be interesting to see if the editor
aids users in understanding unfamiliar domains. Indeed, it
is possible that this would be one of its greatest strengths.
In the future, we hope to learn more about this.
In addition, we have not had anyone test the editor from
the modeler’s perspective. We can configure the editor for a
new domain in minutes, but we do not yet know if learning
to work with the mapping model is an easy task for other
modelers.

IX. Conclusion

We have developed a new framework for creating jigsaw-
based DSLs, and provided some initial research into when
the jigsaw-based concrete syntax is appropriate.
Several Jigsaw-based DSLs already exist, most of which are
used to create computer programs. However, because our
editor uses the Jigsaw Toolkit, it offers more expressiveness
than existing jigsaw-based DSLs. In particular it is able to
visualize cross references between blocks and much more
complex type systems.
Furthermore, unlike the existing frameworks for creating
jigsaw-based GUIs, our editor can be used to create DSLs
using structured modeling techniques, without the need to
write any code.
We evaluated a number of existing metamodels against
our editor, and found several interesting strengths and
weaknesses. Most importantly, our editor is not a drop-
in replacement for graph-based editors. It is more likely
to perform well as a user-friendly editor in domains where
graph-based editors do not perform so well; in particular
where textual editors are traditionally preferred.
We also collected data through a survey. This revealed sev-
eral usability problems, but also suggested that the editor

has the potential to be useful. Although the respondents
were not assured that our editor is a good replacement
for established editors, they were generally positive to its
concept and unique features.
There is still much room for improvement in our editor. At
least some further work is necessary before the editor can
be considered a finished product. In Section VIII, we laid
out a number of suggestions for possible future improve-
ments based on the results from the model evaluations and
the feedback from the survey. In particular, we need to
work on resolving the usability problems.
The survey respondents expressed interest in both Eclipse
integration and use separately from Eclipse. As such,
Eclipse integration should be a priority, but we should
avoid making changes that irrevocably bind the editor to
the Eclipse platform.
There was also a great deal of interest in model validation,
which we have not implemented. EMF includes support for
model validation, and it generates a set of markers. These
markers can be displayed on the blocks as error or warning
symbols, which provide additional information when the
user hovers over them with the cursor.
Stability and performance were also ranked with overall
high importance. This is not surprising, but it is worth
taking into account. Currently, the performance is limited.
Filling the screen with blocks can lead to the editor
lagging. In the future, we should look into how to improve
the rendering performance of the editor.
The latest version of the Jigsaw EMF Editor can be found
at the Bitbucket repository. [2] At least Java version 8
update 40 is required to run the editor.

References

[1] Hungnes, Oddvar, and Hallvard Trætteberg. ”Jigsaw Language
Toolkit.” Norsk Informatikkonferanse (NIK) (2015).

[2] Hungnes, Oddvar. Retrieved 04. February 2016. ”Jigsaw EMF
Editor - Overview.” Available: https://bitbucket.org/Oddwarg/
jigsaw-emf-editor/overview

[3] Preece, J., Rogers, Y., Sharp, H. ”Interaction Design: Beyond
Human-Computer Interaction”, New York: Wiley, (2002) p.21

[4] Steinberg, Dave, et al. ”EMF: eclipse modeling framework.”
Pearson Education, 2008.

[5] The Eclipse Foundation. Retrieved 05. January 2016. ”Ecore-
Tools - Graphical Modeling for Ecore.” Available: www.eclipse.
org/ecoretools/

[6] Catherine Griffin, IBM. Retrieved 04. December 2016.
”Using EMF.” Available: https://eclipse.org/articles/
Article-UsingEMF/using-emf.html

[7] The Eclipse Foundation. Retrieved 07. January 2016.
”Generating an EMF Model” Available: https://www.eclipse.
org/modeling/emf/docs/2.x/tutorials/clibmod/clibmod emf2.
0.html

29

[8] The Eclipse Foundation. Retrieved 01. February 2016. ”Eclipse
Community Forums.” Available: https://www.eclipse.org/
forums/index.php?t=thread&frm id=108

[9] Google. Retrieved 01. February 2016. ”Google Forms.” Available:
https://www.google.com/forms/about/

[10] The Eclipse Foundation. Retrieved 15. December 2015. ”Eclipse
Modeling Project.” Available: https://eclipse.org/modeling/

[11] IBM. Retrieved 15. December 2015. ”Build metamod-
els with dynamic EMF” Available: http://www.ibm.com/
developerworks/library/os-eclipse-dynamicemf/

[12] Object Management Group. Retrieved 15. December 2015.
”OMG Meta-Object Facility (MOF) Core Specification, Version
2.4.1.” Available: http://www.omg.org/spec/MOF/2.4.1/PDF

[13] Object Management Group. Retrieved 15. December 2015.
”XML Metadata Interchange (XMI)” Available: http://www.
omg.org/spec/XMI/

[14] W3C. Retrieved 19. January 2016. ”XHTMLTM 1.0 The Exten-
sible HyperText Markup Language (Second Edition)” Available:
https://www.w3.org/TR/xhtml1/

[15] Object Management Group. Retrieved 09. January 2016. ”Ob-
ject Control Language (OCL)” Available: http://www.omg.org/
spec/OCL/

[16] Microsoft. Retrieved 09. January 2016. ”SQL Server 2014.”
Available: https://www.microsoft.com/en-us/server-cloud/
products/sql-server/

[17] Boutell, Thomas. ”PNG (Portable Network Graphics) Specifi-
cation Version 1.0.” (1997).

[18] Wikipedia. Retrieved 15. January 2016. ”printf format string.”
Available: https://en.wikipedia.org/wiki/Printf format string

[19] Wikipedia. Retrieved 25. January 2016. ”Inheritance (object-
oriented programming).” Available: https://en.wikipedia.org/
wiki/Inheritance (object-oriented programming)

[20] JetBrains s.r.o. Retrieved 25. January 2016. ”IntelliJ IDEA the
Java IDE.” Available: https://www.jetbrains.com/idea/

[21] Pd-community. ”Pure Data Documentation chapter 2: theory of
operation” Available: https://puredata.info/docs/manuals/pd/
x2.htm

[22] Wikipedia. Retrieved 18. January 2016. ”Switched-mode
power supply.” Available: https://en.wikipedia.org/wiki/
Switched-mode power supply

[23] Sillito, Jonathan. ”Improving Source Code Locality.” (2004).

[24] The Eclipse Foundation. Retrieved 22. Dec 2015.
”Dynamic Browsing and Instantiation Capabilities in EMF.”
Available: http://wiki.eclipse.org/Dynamic Browsing and
Instantiation Capabilites in EMF

[25] Weilkiens, Time et al. Model-Based System Architecture. John
Wiley & Sons, 2015.

[26] Heidenreich, Florian, et al. ”Model-Based Language Engineer-
ing with EMFText.” Generative and Transformational Tech-
niques in Software Engineering IV. Springer Berlin Heidelberg,
2013. 322-345.

[27] EMFText Core Development Team. Retrieved 17. January
2016. ”EMFText Concrete Syntax Zoo.” Available: http://www.
emftext.org/index.php/EMFText Concrete Syntax Zoo

[28] EMFText Core Development Team. Retrieved 04. Jan-
uary 2016. ”EMFText Getting Started Screencast.” Avail-
able: http://www.emftext.org/index.php/EMFText Getting
Started Screencast

[29] Scowen, Roger S. Extended BNF-a generic base standard.
Technical report, ISO/IEC 14977. http://www. cl. cam. ac.
uk/mgk25/iso-14977. pdf, 1998.

[30] Efftinge, Sven, and Markus Völter. ”oAW xText: A framework
for textual DSLs.” Workshop on Modeling Symposium at Eclipse
Summit. Vol. 32. 2006.

[31] The Eclipse Foundation. Retrieved 03. January 2016. ”Graph-
ical Modeling Project(GMP).” Available: http://www.eclipse.
org/modeling/gmp/

[32] The Eclipse Foundation. Retrieved 03. January 2016. ”GEF
(Graphical Editing Framework).” Available: https://eclipse.org/
gef/

[33] Van Wyk, Eric, and Mats Per Erik Heimdahl. ”Flexibility in
modeling languages and tools: A call to arms.” International
journal on software tools for technology transfer 11, no. 3 (2009):
203-215.

[34] Vujović, Vladimir, Mirjana Maksimović, and Branko Perǐsić.
”Comparative analysis of DSM Graphical Editor frameworks:
Graphiti vs. Sirius.” 23nd International Electrotechnical and
Computer Science Conference. 2014.

[35] The Eclipse Foundation. Retrieved 03. January 2016. ”Sirius/-
Tutorials/StarterTutorial).” Available: https://wiki.eclipse.org/
Sirius/Tutorials/StarterTutorial

[36] Musset, Jonathan, et al. ”Acceleo user guide.” (2006).

[37] Oracle America, Inc. Retrieved 12. Dec 2015, ”The Java Lan-
guage Specification, Java SE 8 Edition.” Available: https://docs.
oracle.com/javase/specs/jls/se8/html/

[38] Oracle America, Inc. Retrieved 14. January 2016, ”Non-
Reifiable Types.” Available: https://docs.oracle.com/javase/
tutorial/java/generics/nonReifiableVarargsType.html

[39] Oracle America, Inc. Retrieved 13. January 2016,
”JavaFX Interoperability with SWT.” Available:
https://docs.oracle.com/javafx/2/swt interoperability/
jfxpub-swt interoperability.htm

[40] BestSolution.at. Retrieved 13. January 2016, ”e(fx)clipse -
JavaFX Tooling and Runtime for Eclipse and OSGi.” Available:
https://www.eclipse.org/efxclipse/index.html

[41] Tom Schindl. ”EMF-Edit-Support is coming to JavaFX via
e(fx)clipse.” Available: http://tomsondev.bestsolution.at/2012/
12/13/emf-edit-support-is-coming-to-javafx-via-efxclipse/

[42] Bank, Joseph A., Andrew C. Myers, and Barbara Liskov.
”Parameterized types for Java.” Proceedings of the 24th ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages. ACM, 1997.

[43] Lifelong Kindergarten Group, MIT Media Lab. Retrieved 02.
December 2015. ”Scratch.” Available https://scratch.mit.edu/

30

[44] Malan, David J., and Henry H. Leitner. ”Scratch for budding
computer scientists.” ACM SIGCSE Bulletin. Vol. 39. No. 1.
ACM, 2007.

[45] MIT STEP. Retrieved 04. Jun 2015. ”StarLogo TNG.” Avail-
able: http://education.mit.edu/projects/starlogo-tng

[46] Lifelong Kindergarten Group, MIT Media Lab. Retrieved 08.
Dec 2015. ”List of Scratch Modifications - Scratch Wiki.”
Available: http://wiki.scratch.mit.edu/wiki/List of Scratch
Modifications

[47] Lifelong Kindergarten Group, MIT Media Lab. Retrieved 08.
Dec 2015. ”Blocks - Scratch Wiki.” Available: http://wiki.
scratch.mit.edu/wiki/Blocks#Block Shapes

[48] Lifelong Kindergarten Group, MIT Media Lab. Retrieved
08. Dec 2015. ”Web Blox (Scratch Modification) - Scratch
Wiki.” Available: http://wiki.scratch.mit.edu/wiki/Web Blox
(Scratch Modification)

[49] Massachusetts Institute of Technology. Retrieved 07. January
2016. ”MIT App Inventor.” Available: http://appinventor.mit.
edu/

[50] Einstein’s Workshop. Retrieved 10. May 2015. ”BlocksCAD.”
Available: http://www.einsteinsworkshop.com/blockscad

[51] Booch, Grady. ”The unified modeling language.” Unix Review
14.13 (1996): 5.

[52] Bray, Tim, et al. ”Extensible markup language (XML).” World
Wide Web Consortium Recommendation REC-xml-19980210.
http://www. w3. org/TR/1998/REC-xml-19980210 16 (1998).

[53] Fowler, Martin. ”Domain-specific languages.” Pearson Educa-
tion, 2010.

[54] Fondement, Frédéric. ”Concrete syntax definition for modeling
languages.” Diss. ÉCOLE POLYTECHNIQUE FÉDÉRALE DE
LAUSANNE, 2007.

[55] Ranta, Aarne. ”Implementing Programming Languages.” Col-
lege Publications, London, 2012.

[56] Ehrig, Karsten, et al. ”Generation of visual editors as eclipse
plug-ins.” Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering. ACM, 2005.

[57] Guzak, Christopher J., et al. ”Tree view control.” U.S. Patent
No. 5,977,971. 2 Nov. 1999.

[58] Rothermel, Gregg, et al. ”What you see is what you test: A
methodology for testing form-based visual programs.” Proceed-
ings of the 20th international conference on Software engineer-
ing. IEEE Computer Society, 1998.

[59] Ráth, István, András Ökrös, and Dániel Varró. ”Synchroniza-
tion of abstract and concrete syntax in domain-specific modeling
languages.” Software & Systems Modeling 9.4 (2010): 453-471.

[60] Aho, Alfred V. Compilers: Principles, Techniques and Tools (for
Anna University), 2/e. Pearson Education India, 2003.

[61] Smolander, Kari, et al. ”MetaEdit—a flexible graphical en-
vironment for methodology modelling.” Advanced Information
Systems Engineering. Springer Berlin Heidelberg, 1991.

[62] Ledeczi, Akos, et al. ”The generic modeling environment.”
Workshop on Intelligent Signal Processing, Budapest, Hungary.
Vol. 17. 2001.

[63] Tolvanen, Juha-Pekka, and Steven Kelly. ”MetaEdit+: defin-
ing and using integrated domain-specific modeling languages.”
Proceedings of the 24th ACM SIGPLAN conference companion
on Object oriented programming systems languages and appli-
cations. ACM, 2009.

[64] Wachsmuth, Guido. ”Metamodel adaptation and model
co-adaptation.” ECOOP 2007–Object-Oriented Programming.
Springer Berlin Heidelberg, 2007. 600-624.

[65] Heiko Kern, Service and Integration Technology. Retrieved
15. December 2015. ”Processing of MetaEdit+ Models with
oAW” Available: http://www.integration-engineering.de/2009/
08/processing-of-metaedit-models-with-oaw

[66] De Smedt, Philip. ”Comparing three graphical DSL editors:
AToM3, MetaEdit+ and Poseidon for DSLs.” University of
Antwerp (2011).

[67] Box, Don, et al. ”Simple object access protocol (SOAP) 1.1.”
(2000).

31

Appendix A
EMF models used by the editor

Fig. 58: The EMF model that the editor uses to store
layout information.

Fig. 59: The EMF model which is used as the editor’s
mapping model

Fig. 60: The EMF model which is used to represent
palettes in the editor.

Jigsaw EMF Editor
We are designing an editor for the Eclipse Modeling Framework (EMF) with a visual syntax

based on the jigsaw puzzle metaphor, similar to Scratch (https://scratch.mit.edu/). To aid in our

research, we would like you to test the editor and provide feedback.

The survey consists of 8 pages and is estimated to take about 30 minutes, maybe a little more

depending on your speed.

A test build can be downloaded here:

http://folk.ntnu.no/oddvahu/jigsawemfeditor.zip

The test build requires at least Java 8 update 40! If it does not work, please update your Java

version.

First, we would like to know a little bit about your previous experience.

* Required

How familiar are you with the Eclipse Modeling Framework (EMF)? *

Mark only one oval.

Not at all familiar

Slightly familiar

Somewhat familiar

Familiar

Very familiar

1.

How familiar are you with Ecore? *

Ecore is the metamodel employed by EMF for describing domains.

Mark only one oval.

Not at all familiar

Slightly familiar

Somewhat familiar

Familiar

Very familiar

2.

How often do you use text-based model editors? *

These editors represent the model using a textual language. Example: The Xcore notation

for Ecore (https://wiki.eclipse.org/Xcore)

Mark only one oval.

Never

Almost never

Sometimes

Fairly often

Very often

3.

Jigsaw EMF Editor https://docs.google.com/forms/d/1E18PKat5ilCcU81aVztz5rA5FlYIbp...

1 av 15 03.02.2016 13:00

How often do you use graph-based model editors? *

These editors represent the model using nodes and edges. Example: UML (http://tinyurl.com

/o2l5v9t)

Mark only one oval.

Never

Almost never

Sometimes

Fairly often

Very often

4.

How often do you use form-based model editors? *

These editors represent the model using trees, lists and/or tables. Example: Ecore tree

editor (http://tinyurl.com/pndnkpo)

Mark only one oval.

Never

Almost never

Sometimes

Fairly often

Very often

5.

Have you ever used a visual language based on the jigsaw puzzle metaphor? *

These languages have blocks that snap together. Example: Scratch (https://scratch.mit.edu/)

Mark only one oval.

No

Yes

6.

Testing the editor (Part 1)
On this page, we would like to investigate how easy it is to learn to use the editor. If you haven't

already, please download the test build from http://folk.ntnu.no/oddvahu/jigsawemfeditor.zip. The

test build is preconfigured as an Ecore editor.

The test build requires at least Java 8 update 40! If it does not work, please update your Java

version.

The following UML diagram describes the library model: http://help.eclipse.org/mars/topic

/org.eclipse.emf.doc/tutorials/clibmod/images/model.gif

The library model is a simplified model of a library. We would like you to reproduce this model

using our editor.

--

The classes that you define should be in a package called "library".

The library model comprises the following classes:

 - Library:

A library has a name (a string), and it contains writers and books.

 - Writer:

A writer has a name (a string), and a list of the books they have written.

 - Book:

A book has a name (a string), a page count (an integer), a category, and one author(a writer).

The category of a book should use an enum type with Mystery, Science Fiction and Biography

Jigsaw EMF Editor https://docs.google.com/forms/d/1E18PKat5ilCcU81aVztz5rA5FlYIbp...

2 av 15 03.02.2016 13:00

32

Appendix B
Jigsaw EMF Editor Survey

,

as possible values.

The books of a writer and the author of a book should be "opposites", constituting a bidirectional

association: If a book has a given author, then this is the same as stating that that writer has

written the book.

Please try to complete these modelling tasks, before proceeding to the next page to answer

questions about the tasks.

Testing the editor (part 2)
For reference, the completed model should look something like this:

https://drive.google.com/file/d/0B1WFkELkcR6XOThHcTh6QW1HcW8/view?usp=sharing

A walkthrough video is posted here: https://www.youtube.com/watch?v=-n9bKVM7BSo

If you needed to look at the walkthrough to complete a task, please write down why you couldn't

do it on your own.

I was able to create a package for my classes.

Your model should contain a tab for the library package.

Mark only one oval.

Yes

Partially

No

I don't know

7.

If you had any problems with the above step, please describe them.8.

I was able to create classes.

Your model should contain EClass blocks.

Mark only one oval.

Yes

Partially

No

I don't know

9.

If you had any problems with the above step, please describe them.10.

Jigsaw EMF Editor https://docs.google.com/forms/d/1E18PKat5ilCcU81aVztz5rA5FlYIbp...

3 av 15 03.02.2016 13:00

I was able to assign names to my classes.

Your EClass blocks should be named Library, Book, and Writer.

Mark only one oval.

Yes

Partially

No

I don't know

11.

If you had any problems with the above step, please describe them.12.

I was able to add attributes to my classes.

Your EClass blocks should contain EAttribute blocks.

Mark only one oval.

Yes

Partially

No

I don't know

13.

If you had any problems with the above step, please describe them.14.

I was able to assign standard types to my attributes.

Your 'name' attribute blocks should have an EString block attached. The 'pages' attribute

block should have an EInt or EIntegerObject attached.

Mark only one oval.

Yes

Partially

No

I don't know

15.

Jigsaw EMF Editor https://docs.google.com/forms/d/1E18PKat5ilCcU81aVztz5rA5FlYIbp...

4 av 15 03.02.2016 13:00

33

If you had any problems with the above step, please describe them.16.

I was able to create the BookCategory enum.

Your model should contain an EEnum block containing three EEnumLiteral blocks.

Mark only one oval.

Yes

Partially

No

I don't know

17.

If you had any problems with the above step, please describe them.18.

I was able to assign the 'BookCategory' type to the 'category' attribute

A pointer block to the 'BookCategory' enum block should be attached to your 'category'

attribute block.

Mark only one oval.

Yes

Partially

No

I don't know

19.

If you had any problems with the above step, please describe them.20.

Jigsaw EMF Editor https://docs.google.com/forms/d/1E18PKat5ilCcU81aVztz5rA5FlYIbp...

5 av 15 03.02.2016 13:00

I was able to add references to my classes.

Your EClass blocks should contain EReference blocks.

Mark only one oval.

Yes

Partially

No

I don't know

21.

If you had any problems with the above step, please describe them.22.

I was able to assign types to my references.

Pointer blocks to your EClass blocks should be attached to your EReference blocks.

Mark only one oval.

Yes

Partially

No

I don't know

23.

If you had any problems with the above step, please describe them.24.

I was able to assign opposites to my references.

Your 'books' reference block should have a pointer to the 'writer' reference block and vica

versa.

Mark only one oval.

Yes

Partially

No

I don't know

25.

Jigsaw EMF Editor https://docs.google.com/forms/d/1E18PKat5ilCcU81aVztz5rA5FlYIbp...

6 av 15 03.02.2016 13:00

34

If you had any problems with the above step, please describe them.26.

Comments

If you have any further comments on the test case, please enter them here.

27.

Current functionality of the editor
On this page, we would like to know your opinion of the functionality that is already implemented

in the editor.

It is useful to visualize the types of objects and references using the shapes of tabs

and slots.

The shape of the tabs in the upper-left corner of a block represent the type of its object. The

shape of a slot represent the type of the reference. Example: https://drive.google.com

/open?id=0B1WFkELkcR6XY0pPajAwMlAyZVk

Mark only one oval.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

I don't know

28.

It is useful to visualize the relationships between types using the shapes of tabs and

slots.

Example: https://drive.google.com/file/d/0B1WFkELkcR6XNUxKdFBjczVNelk

/view?usp=sharing - Both EAttribute and EReference 'fit' into the eStructuralFeatures slot

without colliding with it, implying they are both subtypes thereof. However, only an

EReference pointer can fit into the eOpposite slot. Visually, it can't accommodate an

EAttribute, implying the type is incompatible.

Mark only one oval.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

I don't know

29.

Jigsaw EMF Editor https://docs.google.com/forms/d/1E18PKat5ilCcU81aVztz5rA5FlYIbp...

7 av 15 03.02.2016 13:00

Visualizing the possible drop targets when dragging a block is useful.

When dragging a block, the editor highlights the slots where it can be dropped.

Mark only one oval.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

I don't know

30.

It is useful to be able to collapse and expand the block contents.

The blocks contain forms for editing the attributes of the underlying objects. These forms can

be collapsed to save space and expanded when necessary.

Mark only one oval.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

I don't know

31.

It is useful to display the domain objects in a palette.

By default, the editor contains a palette with one block for of each type of object that the

user can create.

Mark only one oval.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

I don't know

32.

It is useful to be able to have predefined prototype objects in the palette.

The palette can contain objects configured so that they function as presets. For example, the

Ecore editor palette contains two EReference blocks, one of which is preconfigured as a

containment reference: https://drive.google.com/file/d

/0B1WFkELkcR6XRmtuazZQaVNUNTQ/view?usp=sharing

Mark only one oval.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

I don't know

33.

Jigsaw EMF Editor https://docs.google.com/forms/d/1E18PKat5ilCcU81aVztz5rA5FlYIbp...

8 av 15 03.02.2016 13:00

35

Functionality as a general purpose editor for domain specific

languages
The editor you have used is configured as an Ecore editor, meaning it uses Ecore.ecore as the

domain model.

However, it is designed to be easily adapted to other domains, by loading a different Ecore

model. For example, by loading the library metamodel from earlier, the following editor is

automatically generated: https://drive.google.com/file/d/0B1WFkELkcR6XWldoVlRsMFhQaXM

/view?usp=sharing

On this page, we would like you to evaluate some of the editor's functionality as a general

purpose editor for a domain specific language (DSL).

It is useful to be able to create a domain specific editor by loading an Ecore model

directly.

The editor is designed to be able to work with models created using dynamic EMF as well

as models with generated Java code. For example, it is possible to add a feature to a class

in the Ecore file, then reload it in the editor. This is as opposed to for example the Sirius

framework, where it is required that the edited Ecore model is first loaded into a new

Eclipse workbench instance.

Mark only one oval.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

I don't know

34.

It is useful to be able to reload the mapping model in a running editor.

The editor is designed to be able to reload the mapping model on the fly. For example, it is

possible to change where a slot should appear on a block, or what a tab should look like,

without requiring a restart of the editor. This is as opposed to for example the Graphical

Modeling Framework (GMF), where it is required that Java code for the editor is first

generated, then loaded into a new Eclipse workbench instance.

Mark only one oval.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

I don't know

35.

Jigsaw EMF Editor https://docs.google.com/forms/d/1E18PKat5ilCcU81aVztz5rA5FlYIbp...

9 av 15 03.02.2016 13:00

It is useful that the editor generates a default mapping model.

When loading a new domain specification, the editor attempts to generate a default mapping

model, which can then be edited by the developer. This is as opposed to for example the

Sirius framework, where the developer is expected to build the mapping model from scratch.

Mark only one oval.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

I don't know

36.

Comments

If you have any other comments on the current features of the editor, please enter them

here.

37.

Potential functionality of the editor
On this page, we would like you to evaluate functionality that we are currently considering to

implement.

The editor should be able provide additional feedback about which blocks can be

placed on a particular slot.

When interacting with a slot, the blocks that can be dropped on it should be highlighted in the

palette.

Mark only one oval.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

I don't know

38.

Jigsaw EMF Editor https://docs.google.com/forms/d/1E18PKat5ilCcU81aVztz5rA5FlYIbp...

10 av 15 03.02.2016 13:00

36

Support for generics is important.

The types of slots and tabs should be able to represent parameterized types. This would be

implemented as described in the Jigsaw Language Toolkit paper: http://ojs.bibsys.no

/index.php/NIK/article/download/254/217

Mark only one oval.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

I don't know

39.

Support for model validation is important.

The editor should be able to display validation errors and warnings on the blocks.

Mark only one oval.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

I don't know

40.

Being able to load multiple model resources into the same editor is important.

The editor should support loading multiple model instances, so that it is possible to create

cross references between the models.

Mark only one oval.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

I don't know

41.

Comments

If you have any comments on the features described on this page, or requests for features

that have not been mentioned, please enter them here.

42.

Qualitative expectations for the editor
On this page, we would like to know what your expectations are for the qualitative aspects of an

editor like ours.

Jigsaw EMF Editor https://docs.google.com/forms/d/1E18PKat5ilCcU81aVztz5rA5FlYIbp...

11 av 15 03.02.2016 13:00

It is important that the editor is stable and bug-free.

The editor must never crash, behave erratically or otherwise produce incorrect or

unintentional results.

Mark only one oval.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

I don't know

43.

It is important that the editor is optimized for demanding conditions.

The editor must not suffer from poor performance due to slower hardware or big data sets.

Mark only one oval.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

I don't know

44.

It is important that the editor maintains its usability with large or complex models.

The editor's user interface must not become unwieldy or otherwise unusable when the scale

of the model increases.

Mark only one oval.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

I don't know

45.

On average, approximately how many classes do you have in your Ecore models?

Please provide a rough estimate of how many classes there might be in a domain that you

normally work with using EMF.

Mark only one oval.

1-10 classes

11-50 classes

51-200 classes

201-1000 classes

More than 1000 classes

I don't know

46.

Jigsaw EMF Editor https://docs.google.com/forms/d/1E18PKat5ilCcU81aVztz5rA5FlYIbp...

12 av 15 03.02.2016 13:00

37

On average, approximately how many features do the classes have in your Ecore

models?

How many attributes, references and operations do you typically have in each of your

EClasses?

Mark only one oval.

1-5 features

6-10 features

10-20 features

21-50 features

More than 50 features

I don't know

47.

On average, what is the average number of top-level objects (number of root objects

or number of children if there is only one root object) in your domain-specific model

instances?

Mark only one oval.

1-10 objects

11-50 objects

51-200 objects

201-1000 objects

More than 1000 objects

I don't know

48.

On average, what is the average depth of the containment tree (the length of the

longest parent chain) in your domain-specific model instances?

Mark only one oval.

1-10 objects

11-50 objects

51-200 objects

201-1000 objects

More than 1000 objects

I don't know

49.

It is important that the editor is suitable for most kinds of models.

The editor's visual syntax must be able to serve as a good representation of as many kinds

of models as possible.

Mark only one oval.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

I don't know

50.

Jigsaw EMF Editor https://docs.google.com/forms/d/1E18PKat5ilCcU81aVztz5rA5FlYIbp...

13 av 15 03.02.2016 13:00

It is important that the editor supports all EMF functionality.

The editor must have complete coverage, including generics, unsettability, proxies, etc.

Mark only one oval.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

I don't know

51.

It is important that the editor's mapping model is highly flexible.

The editor's mapping model must allow the visual representation to significantly deviate from

the actual structure of the model.

Mark only one oval.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

I don't know

52.

It is important that the editor integrates tightly with the Eclipse platform.

The editor must feel like an extension of Eclipse, reusing the existing toolbars, menu items,

etc.

Mark only one oval.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

I don't know

53.

It is important that the editor can be used independently of the Eclipse platform.

The editor must be able to run in a different context than Eclipse.

Mark only one oval.

Strongly disagree

Disagree

Neutral

Agree

Strongly agree

I don't know

54.

Jigsaw EMF Editor https://docs.google.com/forms/d/1E18PKat5ilCcU81aVztz5rA5FlYIbp...

14 av 15 03.02.2016 13:00

38

Powered by

Comments

If you have any other comments on the qualities that you expect from the editor, please enter

them here.

55.

In conclusion

Would you be likely to use our editor instead of the sample reflective model editor in

Eclipse?

Mark only one oval.

Not probable

Somewhat improbable

Neutral

Somewhat probable

Very probable

I don't know

56.

Would you be likely to use our editor instead of a framework such as Sirius?

Mark only one oval.

Not probable

Somewhat improbable

Neutral

Somewhat probable

Very probable

I don't know

57.

Comments

If you have any comments about the suitability of jigsaw-based languages for modeling,

please enter them here.

58.

Jigsaw EMF Editor https://docs.google.com/forms/d/1E18PKat5ilCcU81aVztz5rA5FlYIbp...

15 av 15 03.02.2016 13:00

39

Timestamp 12/5/2015 9:17:24 1/21/2016 16:22:09
1/24/2016

20:04:33 1/26/2016 16:42:33 2/2/2016 9:56:20
How familiar are
you with the
Eclipse Modeling
Framework
(EMF)? Moderately familiar Somewhat familiar

Somewhat
familiar Familiar Familiar

How familiar are
you with Ecore? Moderately familiar Somewhat familiar

Somewhat
familiar Familiar Familiar

How often do you
use text-based
model editors? Fairly often Never Never Fairly often Never
How often do you
use graph-based
model editors? Very often Sometimes Never Never Sometimes
How often do you
use form-based
model editors? Fairly often Sometimes Never Almost never Very often
Have you ever
used a visual
language based on
the jigsaw puzzle
metaphor? Yes No Yes No No
I was able to
create a package
for my classes. Yes Yes I don't know Yes No

If you had any
problems with the
above step, please
describe them.

I was able to create the
package, but I didn't know
how to move pre-existing
blocks into the package (I
tried click-dragging them
onto the package tab).

I placed the
entirety of my
objects in the
Resource
space.

I forgot to think about
packages. Created
Classes directly.

I was able to
create classes. Yes Yes Yes Yes Yes
If you had any
problems with the
above step, please
describe them.
I was able to
assign names to
my classes. Yes Yes Yes Yes Yes
If you had any
problems with the
above step, please
describe them.
I was able to add
attributes to my
classes. Yes Yes Yes Yes Yes
If you had any
problems with the
above step, please
describe them.
I was able to
assign standard
types to my
attributes. Partially Yes Yes Yes No

If you had any
problems with the
above step, please
describe them.

It took a while before I
found them. I was looking
in the classes' properties
for a "button". Then I
found it in the palette.

It also took me some time
to assign them -> drop the
block behind the attribute.
I would have been more
"scratchy" to have a
placeholder "inside" the
attribute block.

Took a while for me
to find the tab
"Other types".
Instead I tried to
make EDataType
fit the eType hook.

Could not find a way of
specifying type

I was able to
create the
BookCategory
enum. Yes Yes Yes Yes Yes
If you had any
problems with the
above step, please
describe them.
I was able to
assign the
'BookCategory'
type to the
'category' attribute Yes Yes Yes Yes No

If you had any
problems with the
above step, please
describe them.

Took me a while to
figure out how to
do this (aprox. 5
min). Right-clicked
the enum and
clicked "Create
pointer block".

Could not find an intiutive
way of adding type. I have
added the attribute, but
struggle with adding the
type.

I was able to add
references to my
classes. Partially Yes Yes Yes Partially

If you had any
problems with the
above step, please
describe them.

It was ok, but I was not
sure if the reference block
should be standalone or
part of the class block.
The shape of the class
(upper left corner)
indicates that you can
create some kind of
puzzle with the blocks.
This is not possible as
they should be "inside" the
block.

Same problem as
the previous step.

I was able to
assign types to my
references. Partially Yes Yes Yes No

If you had any
problems with the
above step, please
describe them.

Right-Clicking was not
obvious. Drag-drop was
the concept all the way
and I had to try several
gestures to find the
pointer block.

Highlighting of connector
points should be even
more visible.

I was unsure at first how
to assign pointers for the
types (the error message
was cut off) but eventually
figured it out.

By now I realized
how this worked.

I was able to
assign opposites to
my references. Yes Yes Yes Yes No

If you had any
problems with the
above step, please
describe them.

When I found the pointer
blocks it as ok

I wanted to create the
same references as in the
uml diagram. I could add
references to the classes
but I could not find to
specify the references
such that they map both a
source and a target. For
instance, I wanted to
create a ref between book
and writer. I could add a
reference to either book or
writer, but I could not fint
our how to map it to the
other endpoint.

40

Appendix C
Jigsaw EMF Editor Survey Responses

,

Comments

Interesting concept. As a
modeler with experience
from RSM, RSA, TGA,
Papyrus, EA etc, it is hard
to change the way of
thinking wrt references.

Color scheme should be
changed. Red indicates
errors/warnings. Look at
color.adobe.com

It is useful to
visualize the types
of objects and
references using
the shapes of tabs
and slots. Neutral Agree Agree Agree Agree
It is useful to
visualize the
relationships
between types
using the shapes
of tabs and slots. Disagree Agree Agree Agree Agree
Visualizing the
possible drop
targets when
dragging a block is
useful. Strongly agree Strongly agree Strongly agree Strongly agree Neutral
It is useful to be
able to collapse
and expand the
block contents. Strongly agree Agree Strongly agree Agree Neutral
It is useful to
display the domain
objects in a
palette. Strongly agree Strongly agree Strongly agree Agree Agree
It is useful to be
able to have
predefined
prototype objects
in the palette. Agree Agree Agree Agree Neutral
It is useful to be
able to create a
domain specific
editor by loading
an Ecore model
directly. Agree Agree Agree Agree Neutral
It is useful to be
able to reload the
mapping model in
a running editor. Strongly agree Strongly agree Agree Agree Strongly agree
It is useful that the
editor generates a
default mapping
model. Strongly agree Agree Strongly agree Agree Neutral

Comments
The editor should
be able provide
additional
feedback about
which blocks can
be placed on a
particular slot. Strongly agree Strongly agree Agree Neutral Strongly agree
Support for
generics is
important. Agree Strongly agree I don't know I don't know Agree
Support for model
validation is
important. Strongly agree Strongly agree Agree Agree Agree

Being able to load
multiple model
resources into the
same editor is
important. Strongly agree Agree I don't know I don't know Agree

Comments

In real life situations,
validation is extremely
important. When the users
invest lots of energy and
time in creating a formal
and detailed model the
would like to have
feedback (RoI) before
code generation. Early
validation can be the key
selling point for DSML .

It is important that
the editor is stable
and bug-free. Strongly agree Strongly agree Strongly agree Agree Strongly agree
It is important that
the editor is
optimized for
demanding
conditions. Strongly agree Strongly agree Strongly agree Agree Agree
It is important that
the editor
maintains its
usability with large
or complex
models. Strongly agree Strongly agree Strongly agree Agree Agree
It is important that
the editor is
suitable for most
kinds of models. Agree Strongly agree Strongly agree Disagree Disagree
It is important that
the editor supports
all EMF
functionality. Neutral Strongly agree I don't know Neutral Neutral
It is important that
the editor's
mapping model is
highly flexible. Neutral Agree I don't know Disagree Neutral
It is important that
the editor
integrates tightly
with the Eclipse
platform. Agree Strongly agree Disagree Agree Disagree
It is important that
the editor can be
used
independently of
the Eclipse
platform. Neutral Strongly agree Strongly agree Disagree Agree

Comments

For industri, stability is of
utmost importance. As
modeling deals with
complexity, most real-life
models are complex - and
large. So, scalability is
important.

Sirius uses a benchmark
with 1 million elements in
a model.

Would you be
likely to use our
editor instead of
the sample
reflective model
editor in Eclipse? Somewhat probable Somewhat probable

Somewhat
improbable

Somewhat
improbable I don't know

41

Would you be
likely to use our
editor instead of a
framework such as
Sirius? Somewhat improbable Neutral

Somewhat
probable

Somewhat
probable I don't know

Comments

It is important to
investigate these kinds of
concepts. From the top of
my head I think it would
be even more important to
investigate how an editor
could better support a
hierarchical design -
allowing the designer to
zoom in and out of details
- not only through expand-
collapse and layering
(sirius) - but a more
streamlined way of looking
into packages, classes,
interfaces, attributes.
Many users would like to
double click to see the
details "inside" an
element. This must be
explicitly design in sirius
and most other uml tools
(composite). emf4life

On average,
approximately how
many classes do
you have in your
Ecore models? 11-50 classes I don't know 1-10 classes I don't know
On average,
approximately how
many features do
the classes have in
your Ecore
models? 10-20 features I don't know 1-5 features I don't know
On average, what
is the average
number of top-level
objects (number of
root objects or
number of children
if there is only one
root object) in your
domain-specific
model instances? I don't know I don't know 1-10 objects 1-10 objects
On average, what
is the average
depth of the
containment tree
(the length of the
longest parent
chain) in your
domain-specific
model instances? 1-10 objects I don't know 1-10 objects 1-10 objects

42

