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Abstract. Domain Adaptation in Machine Translation means to take a
machine translation system that is restricted to work in a specific context
and to enable the system to translate text from a different domain. The
paper presents a two-step domain adaptation strategy, by first making
use of unlabeled training material through an unsupervised algorithm,
the Self-Organizing Map, to create auxiliary language models, and then
to include these models dynamically in a machine translation pipeline.
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1 Introduction

Intuitively we reply “it depends” when asked to translate a word into our na-
tive language. Indeed the meaning of a word depends, but on what? Research
into Machine Translation (MT) is partially about making these dependencies
tangible and accounted for. The dependencies in “it depends” can be seen as
constraints on an MT system. Kay (1980) formulated these constraints as qual-
ity, automation, general purpose and computational efficiency. While no system
has been even close to solving the unconstrained problem, Machine Translation
is successful in scenarios where some of these requirements are relaxed. Restrict-
ing the system to certain contexts, by only allowing the input text to belong to a
specific domain means relaxing the general purpose constraint. Domain Adapta-
tion (DA) in turn means adapting an MT system catered for a general or specific
purpose into a system capable of translating text from a different domain.

Faced with data from new domains and contexts, MT systems have problems,
to a varying degree. Reasonably so, as some domains are closer than others, even
if it can be hard to specify exactly what separates them: as language is constantly
changing and evolving, it is difficult to draw boundaries between domains. When
the focus of Machine Translation shifted from rule-based to data-driven (and
later hybrid) approaches in the wake of the landmark IBM Models (Brown et al.,
1990), Domain Adaptation received more attention as a particular problem. In
data-driven approaches, training material is a scarce resource; hence all available
data is used, without necessarily being adapted to any specific domain.
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Plank (2011) and Jiang (2008) argued that annotating more data in the
new domain is a theoretical, but not practical strategy, thus stating the goal of
Domain Adaptation as making systems usable in new contexts without needing
to annotate new data or to specifically exploit labeled data from one domain
to train classifiers on a new domain. Jiang (2008) also stressed a major point
when she observed that context and domain adaptation is a general problem,
and that techniques developed for Domain Adaptation are applicable to most
classification tasks where the distributions of the training and the test sets differ.

Here we aim to explore how a Machine Translation system could a) adapt
to multiple domains without knowing the domain of the input document, and
b) choose the appropriate domain on the basis of an entire input document
(and not only one string). This would presuppose a system that can make use
of, in principle, unlimited unsorted data, and furthermore could pre-process the
data in such a way that it could be used online. Building on an idea from
Moore and Lewis (2010), this entails addressing the question of how to segment
a large text corpus into sections that can be used for Domain Adaptation. More
specifically, the present work uses only segments of the total corpus on which a
Self-Organizing Map is drawn, but selects an auxiliary Language Model based
on the perplexity of the input document (i.e., roughly its level of ambiguity).

The rest of the paper is organised as follows: Section 2 discusses the back-
ground and related work on Domain Adaptation; Section 3 then introduces the
methods and data sets used in the present work. In Section 4, Self-Organizing
Maps are used to segment text corpora into smaller portions using various hier-
archical clustering algorithms; these sub-corpora are then utilized in a Machine
Translation pipeline. Section 5 sums up the discussion and concludes.

2 Background and Related Work

The discussions in Theoretical Linguistics on text types have mostly been using
the term sublanguages for specific types of texts within one language. In the
Machine Translation area, the term language domain is more frequent; however,
there is no clear definition of what a domain is. Price (1990) talks about domains
as the specificity of a sub-language. According to Kittredge and Lehrberger
(1982) sublanguages vary in terms of: subject matter; lexical, syntactic and se-
mantic properties; grammar rules; frequency of specific constructions (as idioms);
text structure; and use of special symbols.

Karlgren (1993) pointed out the problematic sides of the mathematical read-
ings of the terms ‘sub’ and ‘super’ in that sublanguages often will exhibit prop-
erties that are not present in the perceived superlanguage, the general language
from which a sublanguage is divided. He instead proposed the term register,
borrowed from Sociolinguistics. Registers are defined as varieties of language
according to use, in contrast to varieties according to speaker or geographical
location. This definition is therefore more process-oriented, to be understood as
properties of the speaker directly.
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In Bungum and Gambäck (2011), we gave an account of domain adaptation
with a special emphasis on shared knowledge with cognitive sciences. There we
observed how much work is relating to an original domain and a new domain,
where a system suited for the former is adapted into fitting the latter. In the
present work we are prototyping a system that will adapt a Machine Translation
system simultaneously to many different domains and contexts. This means that
there is a need to translate on the document level, that is, to adapt a general
MT system according to the document properties.

Early attempts at adapting Statistical Machine Translation (SMT) models
went into adapting the Language Model (LM), inspired by language model adap-
tation work in speech recognition (Iyer et al., 1997; Rosenfeld, 1996). Bellegarda
(2004) gave a review of the work on Statistical Language Model Adaptation from
the perspectives of Automatic Speech Recognition (ASR) at the beginning of the
Big Data era, poignantly making the case for Domain Adaptation by pointing
to both that Language Models are very brittle across domains (Rosenfeld, 2000)
and that a small (2 million words) corpus can be better in perplexity terms than
a large (140 million words) for a specific ASR task.

Building on Information Retrieval (IR) methods, Mahajan et al. (1999) used
cosine similarity between document vectors to interpolate a general LM to a do-
main specific model computed on the retrieved documents, in what they called a
Dynamic Language Model, where an auxiliary LM is built depending on the doc-
uments similar to the input document. Eck et al. (2004) also used IR techniques,
retrieving the most similar documents and sentences from a large collection. They
explored two aspects of adaptation: the best amount of documents to retrieve
and the best unit of retrieval, noting that sentence level retrieval performed best
in terms of perplexity reduction, but with a weak correlation between improve-
ment of the LM and the overall SMT task. While this was not strictly speaking
Domain Adaptation, as all the test data was of the same kind, the ideas and
methods would still be applicable to different text types. IR-inspired strategies
have also been applied by others, although with limited success: Wang et al.
(2014) took an edit-distance approach based on normalized Levenshtein (1966)
similarity, while Lu et al. (2007) added a log-linear interpolation of sub-models,
i. e., models built on data from each of the domains.

Moore and Lewis (2010) proposed a method of selecting relevant sentences
from an out-domain corpus to build an auxiliary Language Model. They ex-
perimented on the Europarl and Gigaword corpora, with the former defined as
in-domain text. The method selected sentences from the Gigaword corpus by
comparing the difference in Cross-Entropy of an LM built on the English-French
part of Europarl to one based on a random selection of sentences from Giga-
word. The Gigaword sentences were then split into eight equal portions, ranked
after this difference, from which new LMs were built. The method was compared
to other selection criteria, such as ranking the sentences only on the perplexity
score from Europarl or scoring each Gigaword sentence on the log-likelihood of
testing the Europarl corpus on unigram models built with and without this sen-
tence, as well as a random selection of Gigaword sentences. The method based
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on Cross-Entropy difference had a lower Perplexity than all the other meth-
ods until all data was added, but more importantly, using a only small portion
of the data gave a lower perplexity than adding the whole corpus. Axelrod et
al. (2011) performed similar extraction of pseudo-in-domain sentences based on
Cross-Entropy measures; pseudo because they are similar, but not identical to
the in-domain data. These extracted corpora were used to train smaller domain-
adapted translation models that performed better for the target context than
a model built on the entire material, and improved even more in combination.
Discarding as much as 99% of an original, general-purpose corpus, Axelrod et
al. (2011) achieved better results with the pseudo-in-domain model.

There have been some notable efforts of injecting Domain Adaptation in a
full Statistical Machine Translation pipeline. Carpuat et al. (2012) performed
experiments on Phrase-Sense Disambiguation, a discriminative approach to MT
where the correct Phrase is chosen according to a number of criteria at decode-
time. Carpuat and Wu (2007) discuss how the method can be integrated into
an SMT framework by means of dynamic phrase tables. However, the approach
yielded no improvements in their experiments. The Moses SMT toolkit (Hoang
et al., 2007) was used by Louis and Webber (2014) with cached language models
to store domain specific information, and by Sennrich (2011) to build “dynamic”
phrase tables, after an addition to a limited in-domain parallel corpus, and to
combine these with Moses’ log-linear decoding procedure. Going further, Sen-
nrich et al. (2013) investigated the idea of using unsupervised methods to classify
text, combining them with mixture models to perform Domain Adaptation.

3 Methods and Data

We have formulated a Domain Adaptation problem that requires two steps.
First an outward-looking approach making use of additional, unlabelled training
material, and second a way to include this dynamically in a Machine Transla-
tion pipeline. An unsupervised algorithm, the Self-Organizing Map (SOM) is
employed to induce structure from an unstructured body of text and to create
auxiliary Language Models for SMT decoding. The number of clusters to be
created from the SOM is decided through bottom-up hierarchical agglomerative
clustering. The method provides n separate clusters of text, from which stan-
dard n-gram Language Models are built to be used as auxiliary LMs in Domain
Adaptation. In this way, the number of auxiliary text corpora (and later LMs)
are determined by the clustering algorithm, enabling Domain Adaptation into
the available domains, which is why an unsupervised method was chosen.

3.1 Data

Two data collections have been used in this work. The first, the SdeWac corpus
(Faa and Eckart, 2013) consists of 10,830 unorganized German web documents,
9,056 of which were included here, comprising 8.1G of text. Unstructured text
corpora with distinct features were extracted from SdeWac to create clusters for
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later use in Domain Adaptation. Each document in the collection was vector-
ized with Scikit-learn (Pedregosa et al., 2011), which includes several different
vectorizers, on word and character level. A unigram TF-IDF (term frequency-
inverse document frequency) vectorizer was mostly used in these experiments.
Some tests were also run combining it with n-gram frequencies and on bigrams.

The second data collection was created from standard Statistical Machine
Translation training and test corpora. A baseline SMT model was trained on
Europarl version 7 (Koehn, 2005) and News Commentary (Tiedemann, 2012),
containing news text and commentaries from the Project Syndicate. Two datasets
were used for development (for tuning weights), the EMEA and Subtitles cor-
pora, while a held-out Newstest corpus was used for testing (evaluation).

3.2 Self-Organizing Map as Clustering Device

Self-Organizing Maps are created with an unsupervised algorithm that effec-
tively visualizes underlying structure of complex data in a 2D environment, in
that respect a dimensionality reduction. Pioneering research into computer sim-
ulations of self-organizing systems was conducted at the Helsinki University of
Technology (Kohonen, 1982) with Kohonen et al. (1996) employing it to self-
organize usenet (newsgroup) data, Kohonen et al. (2000) to cluster patent data,
and Lagus et al. (2004) the Encyclopedia Britannica.

The underlying idea has its basis in neuroscience and assumes that unordered
inputs can be mapped to a “topological order” through a self-organzing process.
The process starts with an array of randomly initialized nodes according to some
topology, each node represented by a vector of the same dimension as the training
data. During training, input samples are compared to the vectors, and the node
whose vector is closest to the input is considered winner (Best-Matching Unit).
The winner’s weights, as well as those of the neighboring nodes, are updated
to be more similar to the input sample. The degree to which the weights are
updated, both for the winning node and its neighborhood, is parameterized.
The process is repeated for a (often pre-defined) number of iterations. As the
iterations progress, the learning rate (the degree at which the nodes update)
diminishes according to a parameterized function. The resulting Self-Organizing
Map gives insights into the relations between the input samples: similar samples
should attach to adjacent nodes, hence self-organizing into the same area.

The areas in the Self-Organizing Map are not delimited. In order to transform
them into actual clusters, it is necessary to perform clustering on the map,
represented as a grid of vectors. To cluster these vectors, a metric to determine
similarity between clusters is chosen, alongside a method to select which data
points the distances are measured between. According to these two facilities, the
nodes are merged successively from the bottom up. Some clustering methods
compute distances between nodes based on raw observations (node vectors), but
more commonly a distance metrics, such as Euclidean or Chebychev distance, is
used to construe a Distance Matrix containing the distances between nodes in
the grid. Based on these distances, a Linkage Matrix is computed, that contains
the binary links between nodes. This can be represented with a dendrogram.
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Clustering Methods Hierarchical agglomerative clustering algorithms are al-
gorithms that successively merge clusters. Whereas a top-down approach needs
metrics to split clusters, a bottom-up approach needs criteria to merge clusters.
The number of clusters that come out as a result from the whole clustering pro-
cedure is determined by choosing the height of the tree. At its minimum it is
only one cluster, and the maximum is the number of nodes in the tree; in our
experiments the number of nodes in the Self-Organizing Map.

The number of clusters can either be specified directly, or chosen according to
some criteria. There is no analytical way to determine the best number of clusters
(ultimately it depends on the task clustering for). Salvador and Chan (2004)
present several methods to determine the number of clusters automatically, such
as information theoretic methods that quantify the fit of cluster members to
their centroids and optimize the number of clusters on this, or the elbow/knee
method, that finds the point before merging two clusters that will add the most to
the distance between clusters (i. e., the point where the marginal gain of adding
another cluster is the lowest). Determining the second derivative of the points is
one way to find the knee, and we have used this method in our experiments.

The clustering method, that is, the algorithm that measures the distance
between two clusters, is a choice of what points to compare distances between.
The methods that have been explored in this work are single-linkage, average
distance, complete linkage, weighted linkage, Ward clustering, centroid clustering,
and median. In single-linkage clustering, the distance between two clusters is
determined as the distance between the two points in the clusters that are closest.
On the other extreme, complete linkage uses the maximum distance between two
points in the clusters, and the average method the average distance between the
points in the two clusters. The weighted method takes into account the children
of a cluster as well, using the average of the distance between the two clusters
that formed cluster A and B as the distance between the two.

Evaluation Evaluating the unsupervised clustering process is two-fold; first the
clustering can be evaluated intrinsically according to properties of the mathe-
matical relation between the nodes, or extrinsically according to the performance
gain or loss on the task for which the clustering was done. For extrinsic evalu-
ation, we applied the corpora resulting from the above clustering method and
created Language Models from them; models that were then used as auxiliary
LMs in a Statistical Machine Translation system.

For intrinsic evaluation we have used the Silhouette Coefficient, which is a
measure of the clusters’ separation and how compact they are. Following Han
(2005, pp 489-490), the Silhouette is calculated by first determining a(o), the
average distance between an object o [o ∈ Ci(1 ≤ i ≤ k)] and all other objects
in the cluster C to which o belongs: a(o) =

∑
o′∈Ci,o6=o′ dist(o, o′)/(|Ci|−1), and

then b(o), the minimum average distance from the object to all other clusters to
which it does not belong: b(o) = minCj :1≤j≤k;j 6=i

∑
o′∈Cj

dist(o, o′)/|Cj |. Then
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the Silhouette Coefficient is determined by

s(o) =
b(o)− a(o)

max{a(o), b(o)}
(1)

The value of the Silhouette Coefficient will range between [0, 1]. A higher num-
ber indicates a better clustering. The term a(o) is an indication of compactness.
A lower value indicates a more compact cluster, i. e., low distance between the
members inside a cluster, whereas b(o) describes the separation from other clus-
ters. The larger it is, the more separated the cluster is from the others. This
means that when the Silhouette Coefficient reaches 1, the clusters are compact
[low a(o)] and far away from the other clusters [high b(o)]. It would also be
possible to optimize the number of clusters based on this score.

4 Domain Adapted Machine Translation

The strategy chosen for domain adapted Machine Translation is to first segment
large corpora with a Self-Organizing Map and then utilize language models built
on the basis of these corpus segments in a Statistical Machine Translation system.
The first phase is conducted off-line, whereas the employment of the language
models is done on-line, while decoding an SMT model given input sentences.

When a document is input for translation, it is matched against the n created
Language Models, ranked after perplexity. The Moses SMT system (Koehn et
al., 2007) allows for the use of user-defined features in its log-linear model. The
LM with the lowest perplexity is selected by a new Moses feature providing
additional information for the decoder. This setup creates a platform in which
a system can do adaption to multiple domains, as the additional feature in the
SMT decoding phase can select the most appropriate auxiliary LM on-the-fly.
The Language Models where built with the KENLM toolkit (Heafield, 2011),
which was also used to read the LMs when decoding the SMT models.

4.1 Clustering Experiments

A quadratic layout of nodes in a Self-Organizing Map was used in the experi-
ments, and for each sample the comparisons to all the different vectors in the
node were done in parallel, as was the updating of the nodes in the next stage.
Each SOM was configured with a separate configuration file, where the number
of iterations, the initial size of the neighborhood (given as a radius in Euclidean
space), and the initial learning rate were specified. In this file, details about the
vectorization of the document collections could also be entered.

After a pre-defined maximum number of iterations was reached, the last
run of the input samples was kept, which left similar samples with the same
winning node. An agglomerative clustering algorithm was then run on the nodes
to cluster them by similarity. The algorithm chose a cut-off point in the clustering
according to the relative change in the similarity measure, as described above.
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Fig. 1: Hierarchical clustering (centroid and Ward) for a 64x64 SOM.

In Figure 1, the detailed clustering of the SdeWac corpus using the first and
second knee-points is shown. The knee-points are in the first column, the result-
ing clusterings in the 2nd and 3rd columns, and the corresponding dendrogram in
the 4th. The two methods centroid and Ward exemplified here illustrate the dif-
ferences in results between methods. Ward’s method generally resulted in more
evenly sized clusters and was used as a basis for the further experiments. The
color codings come from Principal Component Analysis (PCA) decomposition
of the node vectors into four dimensions. These plots do not, however, show the
size of the clusters as some nodes will contain more samples than others. This
can be illustrated with heat maps, but those are left out here for space reasons.

The creation of Self-Organizing Maps is subject to many variables, such as
grid size, vectorization methods, and distance metrics. We conducted several
clustering experiments on the SdeWac corpus with different SOM sizes, summa-
rized in Table 1. The table shows the Silhouette Coefficients for the partitionings,
with the number of clusters in each in parentheses. The two sets of experiments
come from two different vectorizations of the SdeWac data. In the first experi-
ments, the TF-IDF for the n-grams up to 7 were computed with a fixed vocabu-
lary from the entire corpus, but on a subset of 1,000 documents (dimensionality
157,053). In the second set of experiments, the vectorization process had the
same cut-off points, but the n-grams were computed only from that part of the
corpus (dimensionality 53,016).

We then went on to use one of these experiments for Domain Adaptation,
presented in the next section.
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Table 1: Silhouette scores for corpora clustered with SOM.

Grid size 8x8 16x16 32x32 64x64

1st Part. (#) 0.33 (2) 0.46 (2) 0.35 (2) 0.31 (2)
2nd Part. (#) 0.23 (4) 0.31 (10) 0.31 (4) 0.29 (4)

1st Part. (#) 0.39 (2) 0.41 (7) 0.37 (3) 0.33 (2)
2nd Part. (#) 0.30 (3) 0.34 (11) 0.32 (8) 0.32 (4)

4.2 Using Self-Organized Clusters for Domain Adaptation

A Statistical Machine Translation model consists of a Translation Model and
a Language Model, that are decoded to provide the optimal Target Language
string given the input. The term auxiliary Language Model denotes an additional
LM used to aid this decoding. We have shown above how the text collections are
divided into sub-corpora, through a Self-Organizing Map and an Agglomerative
Clustering procedure. A selection method among the sub-corpora is necessary
in order to test our hypothesis that building an Language Model over the most
relevant sub-corpus will give nearly as good results as using the entire text.

With training data available in the target domain, the perplexity of the
Target Language version of the development set can be used to rank the auxiliary
LMs. In the absence of such data, a two-pass solution is possible, i. e., that a
document is translated with the baseline Machine Translation first, and the
perplexity of this translation is used to rank the LMs. This is the method we
have applied in this work. Other possible selection criteria include matching a
vectorization of the input document against the Self-Organizing Map used as a
basis for clustering, using the cluster to whose SOM node it matched at closest.
Such matching can be done on sentence, document or collection level.

An extra Language Model can be included in a Machine Translation system
in a number of ways; concatenating the text corpus with the original LM, using
an additional LM in Moses’ configuration file or interpolating Language Models
directly. When using such features, their individual weights can be optimized us-
ing the Minimum Error Rate Training (Bertoldi et al., 2009) training procedure.
When using prepared datasets for Domain Adaptation research, it is reasonable
to treat the entire sub-part of the corpus belonging to the same text type as one,
a given premise in how they are developed. Then all sentences can be tested in
the SMT system against the auxiliary LM found most relevant. However, we also
developed a separate Moses feature that uses a specific LM for each input sen-
tence, depending on which of them was closest according the selection criterion
mentioned above. Concretely, this information was looked up in a file that was
compiled from labeling individual sentences with the most relevant sub-corpus
(chosen as described in the previous paragraph).



10 Bungum & Gambäck

LM EMEA Subs News

1 25,269 281 893
2 41,386 374 1030
3 25,494 261 744
4 30,320 556 1030

(a) including

LM EMEA Subs News

1 12,501 182 470
2 13,764 242 510
3 12,566 167 406
4 11,260 331 494

(b) excluding

Table 2: Perplexity scores including and excluding OOV words. Low scores in bold.

LM BLEU Meteor

LM1 19.28 0.3492
LM2 17.97 0.3358
LM3 18.55 0.3418
LM4 18.43 0.3420
No Aux. 16.82 0.3347
Total 19.29 0.3479

(a) EMEA

LM BLEU Meteor

LM1 12.85 0.3332
LM2 12.47 0.3366
LM3 13.05 0.3367
LM4 12.14 0.3304
No Aux. 11.29 0.3236
Total 13.09 0.3366

(b) News

LM BLEU Meteor

LM1 10.53 0.2704
LM2 9.93 0.2646
LM3 10.01 0.2670
LM4 8.88 0.2551
No Aux. 8.48 0.2563
Total 10.47 0.2668

(c) Subtitles

Table 3: Domain Adaptation results on English-German text across different LM con-
figurations. Highest score in bold, LM with lowest perplexity in italics.

4.3 Domain Adaptation Experiments

As a baseline system, we used the data presented in Section 3. An SMT model
was created from parliamentary text, and three domain specific corpora were
used for testing: medical text (EMEA), TV subtitles text, and a news corpus.
The auxiliary LMs came from building a SOM trained on the SdeWac corpus that
after Hierarchical Agglomerative Clustering with the Ward method resulted in
four corpora, from which Language Models were built. In order to test which LM
was the most relevant for each of the input documents, perplexity was measured
on a) the translation of each test corpus provided by the parallel corpora and
b) the translation of the test set provided by the generic SMT model.

The Ward clustering, that is, the number of clusters from the dendrogram,
from the first partitioning (knee-point) was used in further experiments into
Domain Adaptation. This meant three clusters for this data, and accordingly
three text corpora and Language Models. The next step was to measure the
perplexity of the three in-domain corpora, to determine which auxiliary LM was
closest. The results are presented in Table 2. The EMEA corpus selected LM1,
whereas the Subs and the News corpora selected LM3 according to this criterion.

In Table 3 the results from using these Language Models in the full Machine
Translation pipeline are shown, using BLEU and Meteor evaluation. For the
EMEA and News corpora, the LM with the lowest perplexity also gave the
highest gain in MT performance of the auxiliary LMs, for the Subtitles corpus it
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came second. The results are also compared to not using any auxiliary LM and
using all the text to build one large Language Model.

5 Discussion and Conclusion

The work presented here introduces a solution to the Domain Adaptation prob-
lem that looks for external sources to increase the available training data rather
than exploiting some limited source of in-domain data in refined ways.

The purpose of the Language Model in a Machine Translation pipeline is
to provide fluency, by selecting translation candidates that are likely members
of the target language. The famous Firthian truism “You shall know a word
by the company it keeps” speaks to understanding a word from its context. By
mapping input documents to close-matching Language Models, we try to provide
this context for arbitrary input documents.

However, it is not always obvious how to distinguish text domains from each
other, where to draw the line between them and according to what dimensions
(such as writing style, topic, author or target age groups) to separate them.
An unsupervised approach to segmentation of a vast data source is a way of
enabling a Machine Translation system to respond to various input domains
also along such dimensions. The proposed Domain Adaptation method includes a
step to establish which of the auxiliary Language Models is the most relevant for
the given input document, and thereby enabling context adapted simultaneous
translation of documents of different types.

The strategy builds on a Self-Organizing Map (SOM) approach to finding
relations within unorganized data, a strategy which has also been successfully
utilized in other application areas. Results indicate that it is possible to attain
improvements equal to — or even better than — those stemming from adding
the whole available text collection by using the most relevant part, also by un-
supervised methods.

More research is necessary to establish the feasibility of the Self-Organizing
Map to extracting relations useful for extra training material for Statistical Ma-
chine Translation models, notably into self-organizing parallel corpora.
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