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thesis were experiments where involved, so that he could do some quick tests specifically for me. This was
greatly appreciated!!
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He provided a lot of encouragement as he was almost as interested in this topic as | am, and even though
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Summary

The main goal of this project was to explore the different physical effects that are involved when a ship is
using the technology of wing sails as propulsion. The wing sails can provide a lot of thrust, but they also
create a side force. This side force will force the ship to go with a yaw angle and a heeling angle. The
consequence of these angles on the ship resistance was of interest. That is, what are the negative effects
to be considered when calculating the potential thrust from a wing sail?

Two ship models were selected and they were equipped with wing sails of considerable size. Realistic wind
conditions were assumed. The goal was then to simulate the resulting force on these ships, from both the
air and the water.

In order to do this, a custom Boundary Element Method (BEM) was developed. This code can simulate
the flow around an arbitrary amount of wings, with an arbitrary shape, under the assumption of potential
flow. OpenCL was used to make the code fast, while the open source 3D geometry software Blender was
used for handling the geometry and post processing. The interaction effects for 8 wings in a row, under the
assumption of potential flow, was explored. Some discussion about wing sails in general, along with some
simple experiments involving foil shapes has also been done.

In order to model the flow around a ship hull traveling with a yaw angle, Computational Fluid Dynamics (CFD)
was used, through the commercial software STAR CCM+. The author did some mistakes while using this
software, but was able to at least estimate the effect of yaw on a ship. External experimental data was used
to complement the data from the CFD simulations, so that reliable results could be produced in the end.

It was found that yaw has a significant effect on the resistance of a ship, while heel has almost no effect at
all. The side force generated by a ship hull is non-linear in nature, which is explained by the presence of
cross flow drag.

The results from the BEM code, the CFD simulations and some external experiments were coupled together
to estimate the importance of yaw on a ship. It was discovered that even though a ship hull is a poor lifting
surface, the resulting yaw angle for a ship under the influence of wing sails is not very large. The high density
of water limits the yaw angles considerably. That is, at almost-head-wind conditions, the added resistance
due to yaw is significantly reducing the effective thrust from a wing sail, but there is very little thrust at these
wind conditions to begin with.



Sammendrag

Hovedmalet med dette prosjektet var & utforske de forskjellige fysiske effektene som er involvert nar et skip
bruker vingeseilteknologien til & skape fremdrift. Vingeseil kan gi mye fremdriftskraft, men de skaper ogsa
en sidekraft. Denne sidekraften vil tvinge skipet til & g& med en girvinkel og en krengevinkel. Konsekvensen
av disse vinkleene pé skipsmotstanden var av interesse. Det vil si, hva er de negative effektene av & bruke
vingeseil til & skape fremdrift?

To skipsmodeller ble valgt ut og utstyrt med vingeseil av betydelig sterrelse. Realistiske vindforhold ble
antatt. Méalet var da & simulere de resulterende kreftene pa disse skipene, fra bade luft og vann.

For & gjore dette, ble en spesialutviklet "Boundary Element Method" (BEM) utviklet. Denne koden kan
simulere stramningen rundt en vilkarlig mengde av vinger, med en vilkarlig form, under forutsetning av poten-
sialstremning. OpenCL ble brukt til & gjere koden rask, mens "open source" 3D-geometriprogramvaren
Blender ble brukt for & handtere geometri og gjennomfare etterbehandling. Interaksjonseffekter for 8 vinger
pa rad, under forutsetning av potensialstrem, ble utforsket. En generell diskusjon om vingseil, sammen med
noen enkle forsgk med foilgeometri har ogsé blitt gjort.

Computational Fluid Dynamics (CFD) via en kommersiell programvare, kalt STAR CCM+, ble brukt til &
modellere stramningen rundt et skipsskrog som beveger seg med en girvinkel. Forfatteren gjorde noen feil i
utfarelsen av simuleringene, men var i stand til i det minste & ansla effekten av girvinkel pa et skip. Eksterne
eksperimentelle data ble brukt til & komplettere data fra CFD-simuleringene, slik at pélitelige resultater ble
produsert til slutt.

Girvinkler har en betydelig innvirkning pa motstanden til et skip, mens krengevinkler nesten ikke har noen
effekt i det hele tatt. Sidekraften som genereres av et skipsskrog er ikke-lineger i karakter, noe som kan
forklares ved tilstedeveerelsen av tverrstremningsmotstand.

Resultatene fra BEM koden, CFD-simuleringene og de eksterne eksperimentene ble koblet sammen for
& estimere betydningen av girvinkler pa et skip. Det ble oppdaget at selv om et skipsskrog er en dérlig
loftende flate, s& er den resulterende girvinkel for et skip under pavirkning av vingseil ikke saerlig stor. Den
haye tettheten til vann begrenser sterrelsen pa girvinkelen betraktelig. Unntaket er ved nesten motvind. Her
vil den resulterende motstanden pé grunn av girvinkel gi betydelig reduksjon i den effektive fremdriftskraften,
men siden det er lite fremdriftskraft i utgangspunktet, er ikke det av sé stor betydning.
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Chapter 1

Introduction

This main goal of this project is to figure out the importance of different physical effects when evaluating
the benefits of using wing sails as auxiliary propulsion. Wing sails are a technology that allow a ship to
extract energy from the wind. They work very much like normal sails, except from the fact that they are
rigid structures rather than soft cloth. They work like normal wings, except that for the fact that the lift
they generate can push something foreword, rather than keep something up. Wing sails are an interesting
technology, because they can provide a supplement to fossil fuel based engines. Using wing sails could be
a good way to reduce fuel cost and CO, emissions for ships.

An important challenge with this type of propulsion is that the wings will generate a side force and a heeling
moment on the hull. It is impossible to have thrust from a wing sail, without side force and heeling moment,
unless the wind is coming from directly behind the ship. The side force and heeling moment must be
balanced by the hull. The question is, will the act of balancing the unwanted effects of wing sails have a
large negative effect on the resistance of the ship?

The ship type that will be analyzed is cargo ships. Specifically, a medium sized tank ship and the container
ship model known as Series 60 will be used as a representative hulls in the analysis. An artistic illustration
of how a cargo ship with wing sails could look is shown in figure 1.1

Figure 1.1: Artistic illustration of a ship with wing sails



The wing sails itself will be modeled using a custom Boundary Element Method (BEM) code developed
specifically for this project. This code can quantify the lift, lift induced drag, and some interaction effects
between sails standing in a row. A big part of this project, in terms of time, has been devoted to the devel-
opment of this code. Some novel features has been included, such as coupling with an open source 3D
modeling software called Blender, and a highly flexible parallel code, that can be executed on any compu-
tational device in a modern computer, using Open Computing Language (OpenCL). More specifically, using
OpenCL allows the code to be executed in parallel on both multicore Central Processing Units (CPUs) and
Graphics Processing Units (GPUs)

Viscous effects for the wing sails are treated with integral boundary layer equations, through the open source
software XFOIL. There is some discussion about the physics of wing sails in general along with some pre-
liminary investigation into design options for such sails.

The hydrodynamics effects on the hull, under the influence of a wing sail, is investigated using a combination
of external Experimental Fluid Dynamics Data (EFD Data) along with Computational Fluid Dynamics (CFD),
using the commercial software STAR CCM+. In particular, the effect of letting the hull go with a yaw angle,
and a heel angle is investigated.

With data from several sources, a complete model is built, that aims to quantify the importance of hydrody-
namic effects on the hull when using wing sails. The goal is to determine wether these types of effects are
important when designing a hull to be used with wing sails. For instance, will the fact that the ship must go
with a yaw angle in order to balance the side force from the sail create a large added resistance?

In addition, some investigation is done regarding interaction effects between wing sails standing in a row.
This is done with the BEM code, so viscosity is not modeled, and the interaction effects are therefore not
completely captured. However, the results can be considered as an indication of whether or not interaction
between wing sails are an important effect to model when considering wing sails as propulsion. They are
also interesting in terms of explaining the physics involved.

This project does not try to quantify how much fuel one can save by using wing sail technology. Partly
because this is left for later work, but also because this has, at least to a certain degree, been done before.
Some previous studies regarding wing sails, that investigate this question can be found under the literature
review. When that is said, many of the final results graphs are showing thrust form wing sails, related to the
resistance of the ship, so realistic wind speeds and sails dimensions are assumed.

This project aims to be a pre-study before the author is embarking on a bigger PhD project concerning the
design of wing sail driven cargo ships. The results from this master thesis is expected to give some guidance
on how to proceed in the future. This is also the reason why several types of methods has been used in the
project (BEM, CFD, some experiments). The author was interested in testing some different approaches to
model the physics of a wing sail driven cargo ships.

The BEM code was of interest as this type of simulation can quantify many of the important physical effects
that influences the performance of wing sails, but since it is based on a simplified model of the physics
involved (neglecting viscosity) it can do it much faster than general CFD methods. Short simulation time can
be a benefit in many cases, but perhaps particularly when one wishes to couple the flow simulation with
other types simulations/calculations. The author had some experience with BEM from before, but then only
in 2D. A 3D BEM code is significantly different in many ways, specifically because it needs to model the
potential wake and 3D geometry is more complex than 2D geometry.

The CFD was of interest as this is the only way to model the complete Navier-Stokes equations, and therefore
the method that makes the least amount of physical simplifications. It is known to be possible to model the
flow around a ship using CFD, but much of the purpose of using CFD in this project has been to see if it is
a practical way to do it. That is, can CFD give reasonable result without taking to much time or resources?
The author had some experience with CFD from before this project, but this is the first time the author has
used it for flow around ship hulls, i.e. flow with a free surface. Another important reason for using CFD
was that simpler methods for estimating ship resistance can not modeled the added resistance due to yaw

properly.
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Many of the results in this report will be shown relative to a simpler model that is commonly assumed when
one are discussing wing sails as a propulsion alternative. That is, a ship where the resistance is evaluated
without taking yaw and heel into considerations, and the wings are modeled using theoretical elliptical wings,
without any interaction effects. Considering the difference between this simple model, and a more complex
model with "more physics" involved is used as a way to quantify the importance of the physical effect in
question.

1.1 General Overview of the Test Cases Used in this Project

This section gives an overview of the general environment that is assumed in this project. That is, the ship
hull geometry, the limitations on the design of the wing sail, and the wind conditions assumed. These things
are important, as they influence many of the details presented later in this report. The goal is to assume
realistic boundary conditions, that are representative of how a real ship with wing sails could be designed.
At the same time, the general parameters are evaluated using relative simple considerations, as there are
many practical aspects that this project does not have time to consider.

1.1.1  Ship Models

What type of ship to use was decided based on two factors. For ong, it is assumed that "slow moving" cargo
is a more realistic market for wing sails than "fast moving cargo". This is due to limitation in the available
wind speed, and due to the fact that the resistance of a ship quickly increases with increasing velocity.
Based on this, it was assumed that a tank ship could be a good test case. A medium sized tank ship model
was therefore wanted. The geometry of the ship must also be available, in a format that is understandable.
The ship geometry software "FreeShip" has several built in test ships, where one of them happens to be a
chemical tank ship. FreeShip can export the geometry into many common geometry formats, so this ship
was decided to be a good candidate. The details of the ship can be seen in table 6.1

While working on this project, some experimental data was wanted in order to compare CFD data. A perfect
set of EFD Data was found for the container ship "Series 60". EFD Data data was available for several speeds
and several yaw angles. This data is therefore used, both for comparing CFD results, and used directly in
the final modeling. The detail of the ship can be seen in table 6.1

Table 1.1: Ship models used in this project

FreeShip Chemical Tanker  Series 60 Container Ship

Lo [M] 174 122
Ly, [mM] 170 122
Loy [M] 170 122
By [M] 29.5 16.3
D [m] 10 6.5
V [m3] 38147 7744
A [tonnes] 39135 7938

S [m?] 6862 2526.4
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Figure 1.2: Line drawings of chemical tanker

1.1.2 Wing Sail Size Limitations

Realistic dimensions of the wing sails are important as the forces from the wing sail are proportional to its
size. Many practical aspects could have influence on the design of wing sail. For instance, cargo off- and on-
loading are often done with cranes that operates directly above the ship. This could set severe restrictions
to where the wing sails could be located, and maybe even the height. This problem is not evaluated in this
project. Another big limitations, in terms of height of the wing sails, is bridges. In order to get an overview of
"normal” clearance below a bridge, data for 70 bridges in Norway that are at least 400 m long was collected
from reference [45]. This data can be be viewed as a histogram, with distribution fitting on top, in figure 1.3
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Figure 1.3: Histogram of "clearance below bridge" for bridges in Norway that are at least 400 m long

The mean value of all the bridges are 33.5 m. Not all of the bridges will be a problem. Many bridges are
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located in areas without shipping traffic. This is evident if one considers the fact that there exist quite a few
bridges with less than 10 m clearance. Many normal ships are significantly taller than this. The cruise ship
"Hurtigruta MS Trollfiord", for instance, has a height of 29.9 m, which can cause problems with Norwegian
bridges when there is a very high tide [28]. On the other hand, very few bridges are taller than 50 m.

Based on this, the height of the wing sail is set to be, at maximum, 40 m. This gives a total height that is a
bit more than 40 m (as the lower end of the sail starts a bit above water).

40 m is also the height of the wing sails used on the Americas Cup Catamarans AC-72 [44], which at the
time of writing this project perhaps is the most famous wing sail driven vessels.

In terms of chord length of each sail, and number of sails, the restrictions are set according to ship hull
geometry. The wing sail can not extend outside the ship in either direction. That is, the maximum chord
length can not be larger then the width of the ship. In order to be a bit more limiting, as there are plenty of
practical considerations that this simple analysis does not account for, 50% of the ship width is set to be
the maximum chord length. This gives a chord length of maximum 15 m for the Chemical tanker and 8 m
for the Series 60 Container ship.

The number of sails should probably be as high as possible. More sails, more thrust. But the sum of the
chord lengths can not exceed the total ship length. That is, for the chemical tanker, the absolute maximum
number of sails is 170/15 = 11, while for the the Series 60 container ship, the number is 122/8 ~ 15. That
many sails would off course cover the entire ship length in sails, which is probably not a realistic case. There
needs to be some space between the sails, and it needs to be room for the bridge and other superstructures
on the ship. In keeping with the simple considerations done so far, the number of sails for both ships is set
to be 8. This leaves 50 m of sail-free ship length for the chemical tanker, and 58 m for the Series 60 ship.
If the sails are divided evenly along the ship length, the average sail-free space between each sail will be
approximately 7 m for the chemical tanker and 7.25 for the series 60 ship.

The summary of the parameters that were decided in this simple analysis is shown in table 1.2

Table 1.2: Wing sail numbers

FreeShip Chemical Tanker  Series 60 Container Ship

Height [m] 40 40
Chord length [m] 15 8
Area of each sail [m?] 600 320
Physical Asp, rectangular wing [-] 2.67 5
Number of sails [-] 8 8
Total sail area [m?] 4800 2560

In order to get an overview of what these dimensions mean, relative to the ship hulls, a simple 3D model of
both ships, with wing sails, and correct dimensions was built. This can be seen in figure 1.4
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Figure 1.4: lllustration showing the two ship hulls next to each other, with wing sails on deck and correct
dimensions. The large red hull is the chemical tanker, the small yellow hull is Series 60

1.1.3 Wind

A realistic value for the wind speed is important in order to get an overview of realistic forces on the sail. As
mentioned before, it is not the purpose of this project to figure out the potential energy savings from wing
sails, however, it is important that the forces from the sail is at an order of magnitude that is realistic.

The wind speed varies greatly across the globe, and is also very dependent on the season. For this project,

the oceans around Norway is used, with annual average values. The data is collected from reference [41],
and can also be vied in figure 1.5.
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Figure 1.5: Annual average wind speed at 80 m above sea level, Norway. Source: [41]

The wind speed is significantly higher over the ocean than over land. At 80 m above sea level, the average
values over ocean is 8-10 m/s. When getting closer to the ground, the wind speed will decrease due to
viscosity. A common assumed velocity profile for wind speeds are the wind profile power law, which is given

as follows:
v (ﬁ) (1.1)
Uy Zp

u,. is the reference velocity at the reference height, z,., while z and w are the new height and new velocity. a
is a factor that is set empirically, which depends on the roughness of the ground. Over land, « is often set
tobe 1/7 = 0.143, while over water, « = 0.11 is more appropriate [48]. a = 0.11 is used as a value, and the
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average value of the wind speed at 80 m height above water is assumed to be 9 m/s. The average wind
velocity from z = 0 to z = 40 can then be calculated, which results in a wind speed of 7.5 m/s

Based on this, 7 m/s is used as a representative value for the wind velocity at the oceans outside Norway,

and when calculating the forces from wing sails, this value will usually be used. Some calculations are done
with different wind velocities, but most use the average value.
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Chapter 2

Literature Review

In this chapter, the results from an early literature review will be given. At an early stage of the project,
some investigations were done in order to get an overview of what the likely outcome of this project would
be. The idea of putting wing sails on a cargo ship is not new, and several people have investigated this
idea in the past. However, these projects have mostly focused on the potential fuel savings a wing sail
can provide. The details of hydrodynamic effects seems to be secondary. Literature about more traditional
sailing vessels, such as yachts and small sailboats, have discussions about hydrodynamic effects on the
hull under influence of sails, but the focus seems to be conceptual explanation, written in order to make a
sailor understand whats going on beneath the ocean surface.

No literature has been found that directly investigates the hydrodynamic effects on a cargo ship under the
influence of sails. However, it is known, from general knowledge of lifting surfaces (see for instance reference
[2]), that any generation of side force from the hull will create lift-, or side-force-induced resistance. Since
the hull have a low aspect ratio, this induced resistance is expected to be high, compared to normal lifting
surfaces, such as airplane wings. Experimental data that predicts this resistance due to yaw for a cargo
ship have been found, and will be presented in chapter 5. It will not be covered here as this data is used to
produce the final results in this report, and therefore deserves special attention.

The effect of letting a cargo ship go with a heel angle has not been found at all. This is probably due to the
fact that traveling with a heel angle is a rather uncommon situation for a normal cargo ship. Heel angles
are only investigated from a stability perspective, and any effects of heel angle on the resistance is not of
any concern when designing a normal cargo ship. Literature that focus on yachts, and yacht design, have
discussions about the effects of heel, but the shapes of these boats are rather different than cargo ships,
so that the results might not be completely transferable.

First a few projects that have investigated wing sails as a way of propulsion will be given, in order get some
examples of the potential fuel savings a wing sail can provide. Second, the hydrodynamic effects of heel
and yaw, based on the literature is discussed.

This chapter only contains the result from the literature review that was performed in order to get an overview
of the original task at hand. The literature that has been read in order to answer more "minor" questions
are given as references when it is natural later in the report. For instance, quite a lot of literature has been
read in order to develop the custom Boundary Element Method (BEM) code. A short recap of this literature
review is given in the introduction of chapter 3. Some literature investigations were also done in order to
get a starting point on how to simulate the fluid flow around ship hulls using Computational Fluid Dynamics
(CFD). The result from this literature review can be found in chapter 4.
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2.1 Projects that Investigates Wing Sails

2.1.1 Walker wing sails

In 1986, the company "Walker wingsail systems" sold a wing sail to be used on the 3000-ton freighter called
"MV Ashington". A article about the company written in 1985 can be found in reference [35]. The article
claims that the wing sail could provide 15-25 % fuel savings, however no details are given, as this is not a
scientific article, rather a "Popular Science" article. The company went bankrupt right after this, because of
loss of interest in wing sail technology, due to the fall in oil prices that happened around that time, however
the Walker wing sails are interesting as they seem to be one of the first to use this technology. When they
were unable to sell their wing sails to the cargo ship owners, they tried to enter the pleasure craft market,
without success.

2.1.2 B9 Shipping, Modern Clipper

The company "B9 shipping" is advertising their attempt to develop a sail driven cargo ship, which have
gotten quite a lot of media attention, such as in reference [43]. As far as the author can tell, the ship is not
yet built, and one should remember that this is company that are selling a technology. When that is said,
their claims about the potential fuels savings using wing sails are very good. Based on route analysis and
wind tunnel tests, the company claims that their ship design can accomplish 46-55% reduction in fuel. An
illustration of the ship can be seen in figure 2.1

wmw,

Figure 2.1: An illustratuin of the proposed ship design from B9 Shipping

2.1.3 UTC Wind challenger

The university of Tokyo presents the "Wind Challenger" project in reference [30]. The project investigates
the use of wing sails for a 180 000 Deadweight tonnage (DWT) bulk carrier. The wing sails are 50 m high,
with a chord length of 20 m. They propose to use telescopic wings, so that the wing sails can be lowered
when in harbor. An illustration of the proposed ship with wing sails can be viewed in figure 2.2

18



Figure 2.2: An illustratuin of the UTC wind challenger, at sea. Source: [30]

Reference [30] reports that the wind challenger can achieve a speed of 14 knots when the wind speed
is 12 m/s, and directly from the side, and that the average fuel savings when traveling a specific route
between Tokyo and Seattle could be around 30 %. The performance of the wing sails were investigated
using CFD, and the aerodynamic interaction effects on the wing sails were also studied in reference [27].
These interaction effects will be further discussed in chapter 6.

The wind challenger ship is rather large, and the report of reaching 14 knots in 12 m/s wind directly from
the side is not necessarily a very good result. 12 m/s is rather strong wind, and wind directly from the side
is the best case scenario (at least, almost the best case scenario, the ship speed will influence the optimal
wind angle, but is should be close to direct side wind). However, the specific route simulations shows 30
% reduction in fuel, which is significant. This is however for the "optimal" route, which is longer than the
standard shipping route between the two cities. That is, they have found a route with a lot of wind, and
defines the savings from wing sails as the savings relative to the case when the ship travels at the same route,
only without wing sails. Using the standard shipping route between the two cities only gives fuel savings
of 22 %. The article claims to have included hydrodynamic effects due to leeway of the ship, however no
details bout how this happens are given. They only say that their "energy prediction program" includes the
effect of leeway angle.

2.2 Forces due to Heel and Yaw based on Yacht literature

Yacht literature has been studied in order to get an overview of forces due to heel and yaw for a yacht. A
yacht is a very different vessel than a cargo ship. It is a light, small vessel, where almost all of the weight
is due to the hull construction. The hull shapes of yachts are also considerably different from cargo ships.
They have large transom sterns, and long thin bows, compared to the almost box-shaped cargo ship hulls.
Non the less, the general physics should be similar.

Reference [26] goes through the current fluid dynamics knowledge connected to sailing vessel design. The
author of reference [26] have worked on several America's cup racing class yachts, and much of the material
in refenrece [26] is therefore connected to high performance yachts

Figure 2.3 is taken from source [26], and shows different resistance components relative to the total resis-
tance for "upwind sailing". That is, it should be a situation with relatively high heel and leeway angles. The
figure groups resistance due to heel and side force into one, and based on figure 2.3 it can bee seen that it
is around 10-20% of the total resistance. This must be considered significant.
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Figure 2.3: Different types of resistance taken from "Fluid Mechanics For Sailing Vessel Design”, source:

(26]

The resistance due to heel alone is also discussed in reference [26]. The author discuss result from a model
test where a yacht model was heeled to 20 degrees, with zero side force, and the result is that the resistance
is increased with 4% compared to the resistance without heel. The author of reference [26] concludes that
heel is an important effect to consider when trying to evaluate the resistance of a sailing yacht.

Reference [22] is a general book about yacht design. One of the graphs shows a "typical" sailing situation,
where the boat is going upwind, and the resulting resistance is increased due to heel and leeway angle. This
graph can be seen in figure 2.4, and the result form this situation is that heel causes 5% added resistance,
while yaw causes 8.5%. The author of reference [22] therefore makes the point that one should be carful
about estimating the resistance of a sailing yacht based on straight-line theories alone. The situation is more
complicated for sailing yachts then it is for normal ships.
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Another book about yacht design is reference [3]. This book lists typical values for increase in resistance
due to heel and leeway, together with typical leeway angles. The author of reference [3] concludes that the
effect of heel is not very significant. At 10 degrees heel angle, the increase in resistance is only 2%. The
added resistance at 20 degrees is reported to be 7%, which is higher than the reports from reference [26],
yet the conclusion is still the opposite. While the author of reference [26] states that heel is an important
factor for the resistance based on 4% increase at 20 degrees heel, the author of reference [3] concludes that
it is not important even though the increase in resistance at this angle is 1.75 times the predicted increase
from [26]. The reason for this disagreement must be due to expectations of typical heel angles, and the
purpose of the different yachts. Reference [26] seems to have racing yachts in mind.

They all agree that leeway is an important factor for the resistance though. Reference [3] reports that 2 degree
leeway might cause 14% increase for a typical yacht, while 4 degrees leeway increases the resistance by
34%. Typical leeway angles are also reported, divided into ship type. For small heel angles (less than 20
degrees) the result from reference [3] is as written in table 2.1

Table 2.1: Typical leeway angles for different ship types, based on reference [3]

Ship type Typical leeway angles [deqg]

Normal sailboat pointing exceptionally high
Modern racing yacht

Modern ocean racer

Modern ocean going cruiser

Cruiser of "bad" shape

Squared-rigged training ship
Sixteenth-century caravel

[0 eI @) I SN I OV]

N =
a1 N

2.3 Conclusion from literature review

There is no doubt that yaw angles have an considerable effect on the ship resistance. This is fitting with
general knowledge of lifting surfaces, and the yacht literature agrees. The effect of heel on the other hand is
a bit more uncertain. There seems to be added resistance for large heel angles (>20 degrees) but whether
or not such large heel angles are realistic is a different question. Different sources disagree. For smaller
heel angles (<20 degrees) the added resistance due to heel seems to be small. If table 2.1 are correct, the
leeway/yaw angle of a ship under the influence of sail will be very dependent on the ship shape. However,
"normal" sailboats does not seem to experience large heel angles. The question is, what will the effect be
for a cargo ship?
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Chapter 3

Boundary Element Method for 3D Lifting
Surfaces

A custom Boundary Element Method (BEM), also known as a panel method, was developed for this project.
BEM can simulate the flow around 3D solid objects under the assumption of irrotational, incompressible and
inviscid flow, i.e. potential flow. Lifting surfaces can be modeled by including a potential wake extending
from the trailing edge of the wing (see section 3.1.2). BEM has the benefit of being able to simulate the flow
by only discretizing the boundary of the region of interest, rather than the entire volume, which is necessary
for Finite Volume Methods (FVMs), Finite Element Methods (FEMs) and Finite Different Methods (FDMs). This
reduces the number of unknowns involved in the simulation, and thereby the simulation time.

A potential model of a lifting surface is capable of modeling many of the important effects for a wing salil,
such as finding the 3D lift coefficient, the lift induced drag, and some of the interaction effects between wing
sails standing in a row (see chapter 6 for more on this). BEM has been the traditional work horse of the
aerospace industry when it comes to simulation of lifting surfaces, due to the fact that modeling of the full
set of Navier-Stokes equations is very computationally demanding. Even though this is possible today, it is
still a significant benefit in having fast simulation methods. Since many of the physical effects involved in the
flow around a wing sail can be explained by a potential model, BEM seemed like a good tool.

The specific features of this code is the capability to model an arbitrary number of 3D wings, with thickness,
under the assumption of potential flow. Pressure and velocity values can be found, and forces on the wing
can be calculated, both by integration of surface pressure, or by the use of the Kutta-doukowski theorem on
the trailing edge of the wing (see section 3.1.6 for more on this). The shape of the potential wake extending
from the trailing edge of the wing is calculated with streamline integration. The geoemtry of the wings are
discretized using flat panels, and each panel has a constant value source and doublet strength. Figure 3.1
shows an illustration of a wing model used with the BEM code, along with the calculated wake shape, and
color mapped pressure values on the wing.
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Figure 3.1: lllustration of model used in the custom BEM code, with calculated wake shape, and color
mapped pressure values on the wing

There were several reasons for developing a new code from scratch, rather than using some already existing
software. One reason is that many of the available codes are old, and not very user friendly, which make
them hard to use. Flexibility in how to use the code has also been of importance and has been a focus
area in the development process. For this project it means flexibility in terms of geometry of a single wing
and number of wings used in the same simulation. In case this code can be reused at a later time, flexibility
in terms of coupling this code with other types of simulation codes has also been important. Based on
previous experience with 2D panel codes, it was known that parallel computation would be a great benefit
in terms of simulation time. A lot of effort has been put into making a code that can utilize as much of the
computing power available as possible.

Another important reason was that the author had a personal interest in learning this type of numerical
simulation properly.

Flexibility in terms of geometry has been achieved by coupling this code with the open source 3D modeling
software called Blender. In order to make the code reusable together with other (future) simulation models,
it is written almost entirely in the flexible and user friendly programming language Python. Open Computing
Language (OpenCL) has been used to access every computational core in parallel, available in any modern
personal computer, no matter whether it is a normal (multicore) Central Processing Unit (CPU) or a Graphics
Processing Unit (GPU). This is an important feature as modern computers are getting faster and faster by
being more and more parallel in nature, and much of the work load in a BEM code is inherently parallel.

Many other versions of BEM codes has been used as reference and inspiration while developing this code.
The well known and very popular 2D panel code XFOIL [7] has been used for finding reference pressure
distributions for 2D foils. The open-source BEM code called XFLR5 [6] has been studied, which in some
sense is a 3D extension of XFOIL. The most important reference has been the theory document for the
VSAERO code [25], which has been very helpful, and the general approach in this custom BEM code is very
similar to the method used in VSAERO. In addition to the VSAERO theory document, the original documents
describing how to evaluate panel integrals (see section 3.1.3) written by Hess and Smith has been of great
importance, as this is the original references all other panel codes originates from (Reference [16] and [15]).
The book Low-Speed Aerodynamics by Katz and Plotkin [18] seems to be a very popular source when

23



developing BEM codes. The author has also had great success in using this book while developing a 2D
panel code at a previous project [20]. The book was extensively used in the beginning of the development
of this code, but certain details about an actual numerical implementation of a full 3D BEM code is a bit
lacking, and caused some confusion for the author. A mix between reference [18] and [25] is believed to
contain the necessary information to develop a BEM code very similar to the one that shall be described
in this chapter. Reference [18] for the overall general theory, in a well written understandable manner, while
reference [25] for the small, but important details.

This chapter will go through the mathematical theory behind this type of simulation, along with some details

about the numerical implementation. There will be some discussion about the more special features, such
as coupling with Blender and the use of OpenCL.

3.1 Mathematical Implementation

The purpose of the BEM code is to find a potential flow solution that describes the lifting flow around wings.
This is achieved by solving the Laplace equation, which describes the continuity of mass in an irrotational,
incompressible, and inviscid fluid:

V20 =0 (3.1)

® is the velocity potential, and the velocity vector is defined as v = V®. The solution must be satisfied in a
fluid domain, with boundary conditions that determines the specific behavior of the solution. The boundary
consist of solid wall boundaries, wake boundaries, and infinity boundaries. The general boundary conditions
for a potential lifting flow problem is that the flow can not go through a solid wall, any disturbances in the
flow must diminish when the distance from the disturbance source are approaching infinity, and the potential
wake must be such that both the Kutta boundary condition, and Kelvin's circulation theorem is fulfilled.

The Laplace equation has a special property which is especially useful in numerical analysis of the equation.
This property can be seen by using two mathematical tricks. The first trick is to use Green's second identity.
Let ¢ and ¢ be two different scalar functions. If one defines a vector function F = ¢)V¢ — ¢V, and uses
the divergence theorem (also known as Gauss's theorem) with this vector function, one obtains Green's
second identity, as follows:

/V | (VV2h — V) dV = / (Vo — ¢Vy) -ndS (3.2)

Surface

If  and ¥ happens to also satisfy the Laplace equation, the term on the left hand side of equation 3.2 will
disappear, which leaves the right hand side equal to zero. Equation 3.2 is only valid if the surface integration
is performed on a closed surface. That is, if the fluid domain of interest are the domain that extends from
the wing, to infinity, with a potential wake included, then the surface of integration must be the "surface"
at infinity, the wing surface, and the wake surface. Refering to figure 3.2, the complete surface must be
S =08+ Sw+SB.
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Fluid domain

Figure 3.2: lllustration of fluid domain, used as a reference for developing the theory for the BEM code

The second trick is to choose ¢ to be the actual velocity potential that is of interest, ®, and let ¢ = 1/r,
where r is the distance from an arbitrary point, P. This expression of ¢ is a known solution to the Laplace
equation, and represents a source located at P. The normal derivative of a source is called a doublet in the
direction of n. If P is located outside the fluid domain, Green's second identity can be used directly, using
S as the surface of integration.

/ Cv«p - @Vi) nds =0 (3.3)
S

However, if P is located inside the fluid domain, then one must exclude P from the the domain by letting a
sphere surround it, with a radius that goes toward zero. This manages the singularity that occurs for 1) when
r — 0. In doing this, one can find an expression for the value of ® at P, as a function of the surface integral.
The details of how to evaluate the limit can be found in reference [18], chapter 3. The result is equation 3.4

o(P) 1 / (1v<1> - <1>v1> n ds (3.4)
S T

“arm s \r

If the point is located inside the boundary Sg, then P is outside the fluid domain, and equation 3.3 holds
true. Since this should give zero contribution to the velocity potential at any point inside the fluid domain,
another form of equation 3.4 can be written as follwos:

:E r r 47 r

o(P) ! /S <1V(q> —P,)— (D — <I>i)V1) ndS + i/S s <1V<I> - @Vi) nds (3.5

®, is called the internal potential. Because the contribution from both sources and doublets disappear
when r — oo, the contribution from the surface at infinity can be expressed as ¢,, which has a value
corresponding to the free stream velocity potential. In addition, if one assumes the wake to be thin, then
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the normal velocity should be continuos across it, in order to make physical sense. The value of — (¢ — ¢;)
can be considered the doublet strength (1), while the value of — (V (¢ — ¢;)n) can be considered the source
strength (o). This gives the following relation for the velocity potential at any point in the fluid domain:

@(P):f% ) Gi—unv (i) ds+$ | unv (i) dS + ¢oo(P) (8:6)
B(P) = 6+ dus 8.7)

That is, the value of the unknown wanted potential at point P can be quantified by distributing sources and
doublets with unknown strengths at the boundaries of the domain. There is no need to use unknown values
inside the domain, as every solution to the Laplace equation can be represented by sources and doublets at
the boundaries of the domain. The challenge is to find the values of the strengths. The values can be found
numerically, by discretizing the boundary surface, and performing the integration numerically. The equations
that determines the values of o and u are based on the boundary conditions for the specific problem. This
generates a linear equation system in the end, with unknown variables representing the strengths. When
the strengths are found by solving the system of equations, the velocity and pressure in the fluid domain
can be found. Velocities are found by taking the derivative of the potential, and the pressure is found using
Bernoulli's principle.

3.1.1 Solid Wall Boundary Conditions and Singularity Mix

In order to know what the strengths at the boundaries should be, boundary conditions must be used.
This is what generates the system of equations. The boundary of the solution domain is discretized, and
boundary conditions are evaluated at discretized points at these boundaries. The most important boundary
conditions is the one for a solid wall. There are two ways to set up the solid wall boundary condition:
Newmann boundary condition, specifying the velocity at the wall, or Dirichlet boundary condition, specifying
the velocity potential at the wall.

The Newmann boundary condition is the one that is easiest to see. It says that the velocity normal to a solid
surface must be zero, because otherwise, the flow would go through the surface, and the surface would
not be a solid wall. Or in mathematics:

8;1) =0atSg (3.8)
on

90 0ds

99 _ _nu. at Sy (3.10)
on

This type of boundary conditions is the one used by Hess and Smith in reference [15] and [16]. For thin
bodies, this would also be the only option. However, for this code, and also many other BEM codes such
as both VSAERO and XFLR5, Dirichlet boundary condition is used.

Dirichlet boundary condition specifies the value of the potential at the boundaries. The value of the potential
is evaluated on the inside of the body surface, so that it is an evaluation of the inner potential. If the potential

inside the body is constant, there is no change in d¢/dn, so that the Newmann boundary condition is set
indirectly. One form of the Dirichlet boundary condition for a closed surface is therefore the following:

¢; = constant (8.11)
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What the constant should be, is not necessarily unique. Different approaches exist, where one is to set the
inner potential to be zero. In this project, a slightly different approach is used, which is the same approach
used in VSAERO (see reference [25]) and also the method recommended by reference [18].

Consider the fact that the source strength represents the jump in the normal derivative of the potential. That
is, o is given as follows:

o<gz%¢§) (3.12)

If the source strength is set to be equal to the normal component of the free stream velocity potential the
following relationship would occur:

—0=-nUy (3.13)

dp  0¢;\
(an_ an) — _nU, (3.14)

Or in other words, the source strength for each panel is set so that each panel enforces the Newmann solid
wall boundary condition, as if there only was a free stream, by itself. However, each panel also induces
velocity potentials on all the other panels as well, which means that this is not entirely correct alone. The
strength of the doublets must then be set in order to balance the error from the source strength, so that the
total velocity potential, induced from both sources and doublets are zero. Or in mathematics:

i unV (1) dS—i/ aldS:() (8.15)
AT S5, 45w r Ar Jg, T

Where the source strength is known, and given by equation 3.13. This approach has the added benefit
of giving a reasonable choice for a singularity mix between sources and doublets as well. That is, there is
no clear boundary condition that determines the relation ship between sources and doublets. Theoretically,
either one of o and p could be set to zero, but this approach is known to generate numerical difficulties (see
reference [18]).

Reference [18] claims that this approach is better than using Neumann boundary conditions without really
specifying why it should be better. Reference [15] suggest that there is very little difference between us-
ing Neumann and Dirichlet boundary conditions, and its a matter of personal preference. Reference [25]
discusses a few different options regarding the exact way of implementing Dirichlet boundary conditions,
concluding that the way it is done in this project has some numerical benefits, which in the end is due to the
fact that the strengths usually end up with values that are not too high or too low, so that rounding errors is
not a problem.

The author is not sure weather or not this type of boundary condition is "the best", however, it does seem
to be a popular choice. Both VSAERO and XFLR5 uses the same approach, and reference [18] claims that
this method is the most popular based on "recent trends".

3.1.2 Potential wake

In order to model a lifting flow, the Kutta-condition for lift must be satisfied. That is, at the trailing edge,
the flow must leave the trailing edge smoothly. This fixes the total circulation around the wing, so that it
models the inherently viscous phenomena of lift, without modeling viscous flow directly. This condition is
satisfied automatically by letting a potential wake, that only contains doublet panels, extend from the trailing
edge. In order to satisfy Kelvin's circulation theorem, the doublet strength in the wake must be set equal to
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the doublet strength at the trailing edge. Kelvin's circulation theorem states that circulation are conserved.
Doublets have circulation, as they are closely connected to vortices. In fact, a constant strength doublet
panel is equivalent to a "vortex ring", or four connected vortex lines making up a quadrilateral, where the
circulation of each vortex line is equal to the strength of the doublet. See reference [18] for more on this.

First, the entire wing, and wake, is divided into strips, where the strips are going in the chordwise direction of
the wing. See figure 3.3 for a visual explanation. Each strip have one value of trailing edge doublet strength.
The trailing edge at each strip is connected to two panels, one on the "upper" side and one on the "lower"
side of the wing. The upper side is defined as the panel that have a hormal that points in the same direction
as the wake panels.

Figure 3.3: The wake and wing divided into strips, where each separate color represents a separate strip

The doublet strength of the trailing edge is defined as the strength of the upper panel, minus the strength of
the lower panel. That is, uw = py — pr. Each wake panel in the same strip have the same strength, uy .
Since there is no source panels in the wake, there is no jumps in the velocity, only jumps in the potential. In
order to satisfy Kelvin's circulation theorem perfectly, the wake should extend to infinity. However, as long
as the wake is extended to a finite length away from the wing that is large enough, the effect of the wake
on the wing will be as if the wake is infinitely long. Around 25 chord lengths are found to be long enough,
based on convergence analysis, of which the results can be seen in the appendix section 11.1.6. This also
matches claims about the same topic in reference [18].

Setting the wake-doublet strength in this manner enforces both the Kutta condition and Kelvin's circulation
theorem. However, in order to make physical sense, the shape of the wake must be correct. That is, as the
wake is not a fixed solid walll, it will not be able to carry any loads. Or in other words, in needs to follow the
stream lines in the flow. In the same way as for a solid wall, there can be no normal velocity component at
the wake surface, but in stead of forcing the flow to follow the wake, one must force the wake to follow the
flow. This will force the wake to have the characteristic roll-up structure.

There exist a few different ways of dealing with the wake shape. One is to simply let the wake follow the free
stream, neglecting the influence from the wing and the wake itself. This is known as a "drag-free" wake, as
it carries loads, but not in the drag direction. XFLR5 uses this approach. This is not correct, but the error
is not large for small angles of attack, and it is considerably simpler to implement. Another approach is to
set a wake shape based on experience. It is known that the wake will shed of the trailing edge in a smooth
manner, but after a while start following the free stream. Manually adjusting the wake shape to "look" right
is possible, and could be better than a drag-free wake, if the user is experienced in wake shapes. A third
way is to use whats called a "wake relaxation" approach. This method is described in reference [18], and
the author tried to implement this approach, only to discover that it was very unstable. It was discovered,
at a later point, that the developers of XFLR5 had discovered the same thing. They had implemented the
method, but deactivated it due to its instability [6]. The way the method works is by calculating the induced
velocity at every wake vertex, and deform the wake by moving each wake vertex with the induced velocity.
However, this easily creates "unphysical" wake roll-up, which means that the wake deforms in to itself, which
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causes problems.

The way the wake is deformed in this code, is by streamline integration. Each line extending from the vertices
at the trailing edge of the wing is treated as a streamline. The lines are defined as the horizontal lines in the
wake mesh. For each horizontal line between to vertices, the velocity is calculated for two points. If vertex
1 is called p; and vertex 2 is called ps, then the first velocity evaluation point is defined as 0.75p1 + 0.25p2
while the second point is defined as 0.25p; + 0.75ps. The average velocity is defined as u = 0.5(u; + u2).
See figure 3.4 for a visual explanation.
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Figure 3.4: lllustration of some integration points in the wake (conceptual illustration)

The local time step, At, is defined as the distance between the two points, divided by the free stream
velocity. A new value of po can then be calculated as follows:

P2,new = P1 + uAt (31 6)

The drag free wake is used as a first approximation for the wake shape, and then the integration procedure
explained here is used to update the wake shape. This can be done several times, and the wake shape
should converge. The overall shape of the wake seems to converge rather quickly, but the roll-up structure
of the wake can end up being "unphysical" even with this approach. The same approach is used in the
VSAERO code, and the theory document there also describes the problem with "unphysical" roll-up [25].
Even if unphysical roll-up can happen with to many iterations, this approach seems to find a good wake
shape. In fact, after the first iteration, there are very small changes in the calculated lift and drag coefficients
(see the appendix section 11.1.6 for more). All the results presented in this report are done with 3 wake
shape iterations. VSAERO uses 2 wake shape iterations as default.

3.1.3 Evaluation of Panel Integrals

The integration of a doublet and source panel with unit strength is needed in order to evaluate the influence
from panels at a point. For a panel with constant strength, the integrals to be solved has the following form:
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d(x,y,2) = // %ds (3.16 Source)
Panel T($7 Y, Z)

d(x,y,2) = // n- V¥d$ (3.16 Doublet)
Panel r(-%'vywz)

The evaluation of these integrals are not a trivial task. Hess and Smith (reference [15] and [16]) solved these
integrals for a flat polygon shaped panel. Their approach can be used no matter how many sides the polygon
has. That is, the general idea works equally well for a triangle as for rectangle, or any other polygon. The
basic idea is to divide the polygon into strips, where each strip correspond to the edges of the polygon. each
strip is then evaluated by it self, by constructing a surface that goes to infinity in one coordinate direction
(it does not matter wether it is the x-axis or y-axis), but is limited by the strip in the other direction. The
strength of this artificial surface is set to be equal to the source/doublet strength divided by two on the side
of the strip where the actual polygon is located, and the same value only negative on the other. This leads
to an integral equation that is possible to solve, and by summing up all the sides of a polygon, the effect on
the area outside the polygon will be canceled, while the effect on the area inside the polygon will sum up to
be the correct value. This is hard to explain in a short manner, but reference [16] explains it well. The result
of this type of integration is taken directly from [15] and [16]. The expressions used in this code is written
below, in a manner that correspond to the way they are written in the actual code. The expression are
valid for one edge of a polygon. As each polygon in the BEM code consist of four edges, the expressions
written below must be executed four times, once for each edge. The nomenclature is shown in figure 3.5.
In particular, p, is the first point of the edge, p, the second point, a and b is vectors from edge points to
the control point, p, while s is the vector from p; to p,. I, m, and n are the local coordinate system vectors.
That is, the vectors corresponding to the direction of the local coordinate system axis, expressed in the
global coordinate system. Each polygon have a local coordinate system, where the normal of the polygon
corresponds to the local z-axis. All the variables are vectors, and for instance a.x is the x-component of the
vector a.

Panel

Figure 3.5: Nomenclature used while expressing the result of the integral equations for a flat polygon
shaped panel
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General variables used in the result:

S=+/s.z2 +s32 +s.22 3.17)
A= \/a.aj2 +a.y? +a.z? (3.18)
B=+b.z2+b.y2+b.22 3.19)
SL=s-I (8.21)
SM=s-m (8.22)
AL=a-l (3.29)
AM=a-m (3.24)
Al=AM-SL — AL - SM (3.25)
PA = PN?SL + Al - AM (3.26)
PB = PA — Al- SM (8.27)
RNUM =SM-PN- (B-PA—A-PB) (3.28)
DNOM = PA . PB + PN?A - B - SM? (3.29)
C = atan2(RNUM, DNOM) (3.30)
1 A+B+S

Source potential:
¢=A-GL-—PN-C (8.32)

Doublet potential:
¢p=C (8.33)

Source velocity:

u=GL-SM-1-GL-SL-m+C-n; (8.34)

Doublet velocity:
axb(A+B) (3.35)

" ABABra b

There are a few situations were these expressions needs special care while evaluating them. First of all, the
inverse tangent function is written as "atan2". This is to clearly express that the inverse tangent function
is a four quadrant function. Without taking all the four quadrants into account, the result will be wrong. In
addition, the inverse tangent function will need special care if p.z — 0. If p.z — 0 and p is on the panel itself,
then C — —x. Otherwise, C — 0, unless p is on the edge of the panel, then C — —=/2. The expression for
the doublet velocity will go towards infinity if it is evaluated on the edge of a panel. A way to deal with this is to
pretend there exist a very small viscosity in the fluid that limits infinite velocities, and set the induced velocity
to zero if it is evaluated on the edge of a panel. This is a necessary step in order to evaluate the velocity
in the wake, as this happens on the horizontal edges of the wake mesh. This is a normal "trick" although
it is not technically mathematically correct, within the potential theory. It simply avoids a problem with this
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method, by assuming it away. The name of this trick is "finite vortex core" (see for instance reference [18],
(25])

3.1.4 Ship Deck Modeling

The wing sails will stand on the deck of a ship, which means that the effect of the deck must be modeled.
This is done by mirroring in the BEM code. The z-axis is used as a mirroring axis, which means that the
mirrored panel have the same coordinates as the original panel, only with the negative z-values. It is not
necessary to transfer the entire panel to the mirrored position. Only the control point needs to be mirrored.
The velocity potential from a panel on a mirrored point is equal to the velocity potential from a mirrored panel
on the original point. When evaluating the induced velocity, the z-component needs to be reversed when
using this approach. Using this type of modeling of the ground plane will simulate an infinite ground plane.
The deck of a ship is not infinite, so this is an approximation. Even though the deck is not infinite, the water
plane is practically infinite and, depending on the ship, the water plane is also close to the wings. Since the
density of water is so much larger than the density of air, the effect of the water plane should be very similar
to the effect of a ground plane.

3.1.5 Analysis of Velocity and Pressure

When the strengths of the sources and the doublets are known, along with the shape of the wake, the
velocity and pressure can be found. If the velocity should be found anywhere that is not on the surface
of the wing, the induced velocities must be calculated by equation 3.34 and 3.35. This is the approach
used when calculating the velocities in the wake, in order to deform the wake. However, this is rather time
consuming, as every panel induces velocities at every point. Luckily, there exist a faster method for the
surface of the wing.

By evaluating the limit of the expressions for induced velocity when approaching a panel, the following can
be found for the local velocity components (see reference [18] and [25] for more):

u =7 (3.36)
__op

Um = _aim (337)

Up =0 (3.38)

Here, w; is the velocity in the direction of the local coordinate axis I, u,, in the direction of the local coordinate
axis m and u,, in the direction of the local coordinate axis n. This means that the velocity can be calculated
much faster on the wing surface than anywhere else in the fluid domain, as the velocity on the wing surface
only depends on the local source and dipole strengths. The derivation must happen numerically, since a
panel have constant values of u and o. This is done with finite difference in the code, using the neighboring
panels. Central difference is used for all panels that have four neighbors, while panels on the edges of
the wing, where neighbors are only available to one side, use either forward or backward differentiation,
depending on where the neighbor is located.

When the velocity is known, the pressure can be found, using Bernoulli's principle. Only the pressure
coefficient is calculated, never the actual pressure. The pressure coefficient is defined, and calculated, as
follows:

(3.39)
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3.1.6 Force Calculation

Two methods of force calculation are implemented in this custom BEM code. First, only pressure integration
was implemented. The force acting on each panel is then defined as the pressure times panel area times
the negative normal vector. That is, the following is done in order to calculate the total force acting on a
wing:

Fung=— Y, p-A-n (3.40)

all wing panels

This method works fine for finding the lift on the wing, but it is very inaccurate for caluclating the induced
drag. This is a known problem with the method, which for instance is discussed in reference [4]. The drag
force is much smaller than the lift force, so that small errors in the pressure can affect the drag force much
more than the lift force. In fact, calculating the force by pressure integration will predict a small drag force
for wings without lift. This is not correct, as there can be no drag without lift in a potential flow.

In order to get accurate values for the induced drag, the Kutta-Joukowksi theorem for forces on a wing with
a known circulation is used. This is the same method as described in reference [4], and the claim is that
this method is the method that are least dependent on both panel density and wake shape. The methods
calculates the velocity induced by the wake, and the free stream, at the trailing edge of the wing. Then,
according to Kutta-Juokowski's theorem for forces on a lifting surface, the force is calulated as follows:

Fung= >, p-UxT (3.41)

all trailing edges

In this equation, U is the velocity at the trailing edge, neglecting the influence of the wing. If the wing is
included in the velocity calculations, there will be no velocity at the trailing edge, as this is a stagnation point.
The argument for using this method is that the trailing edge is the first point "on" the wing where there can be
"down wash", as it is the first point where the solid wall stops. I' is the circulation at the trailing edge, which
is equal to the doublet strength of the wake. The direction of I' is along the trailing edge. The argument is
that total circulation of the wing must be shed into the wake, according to Kelvin's circulation theorem.

Every drag calculation in this report is done with the trailing edge method. See section 3.3 to see verification
experiments performed to test the force values calculated on the wing.

3.2 Numerical Implementation

Based on the theory presented in section 3.1, the BEM is implemented numerically. The main programming
language is Python, except for some parts that are written in C. Python was chosen as a programing
language as this is a simple and user friendly programing language. The parts of the code that are written
in C are the parts that uses OpenCL to execute code in parallel. This is mainly the construction of equation
systems, along with calculation of induced velocities. The custom BEM code is written to be executed in
the open source 3D geometry software called Blender. Blender acts as a geometry "kernel". That is, every
piece of geometry that is used in the simulation is constructed and managed by Blender.

This section will go through the structure of the program, along with some discussion about the connection
to Blender and the use of OpenCL. The complete BEM code can be seen in the appendix section 11.1.
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3.2.1 Overview of the Program

The entire program is written in an object oriented manner. There are two classes: one that works as
an interface between Blender and the rest of the code, called "Geometry", and one that have the actual
computation methods, called "Computation”. The Geometry used in the code is taken directly from Blender.
Vertices, topology, normals, etc. is accessed through the Blender Application Programming Interface (API).
This geometry is used as input for the computation methods. The computation methods calculates influence
matrices, based on the geometry, which finally is used to solve a linear system, using the Numerical Python
(NumPy) package. The "heavy lifting" in the program is done with OpenCL "kernels". Kernels are functions
that can be executed in parallel with OpenCL. See section 3.2.2 for more on this.

The software is written as a set of methods/functions that can be executed independently. That is, the BEM
is divided into separate tasks, where each task gets its own method. In order to simulate anything with the
code, a control script must be written, that runs the necessary methods in the correct order. This approach
was used, because there might be variations in the way one wants to execute the simulation. For instance,
the calculation of velocity and pressure on the wing exist as a separate method. This is is a function that
might not be necessary to execute, since forces can be found without calculating the pressure, using the
trailing edge method. A typical work flow while using the BEM code can be as follows:

1. Create the geometry that should be used in the simulation using Blender. Both wings and wakes
must be constructed. The geometry must have a certain structure, in order to make the software
understand how the wing and the wake is divided into strips. This is accomplished using NURBS in
Blender, as the structure of NURBS objects is very appropriate for this type of simulation. See section
3.2.3 for more on this.

2. For each wake and wing to be used in the simulation, create a geometry instance. The geometry class
consists of methods to transfer data from Blender to OpenCL, methods for dividing the geometry into
strips, and variables and methods to store and calculate velocity and pressure. Post processing
methods, that creates colormaps is also in the geometry class.

3. Send the necessary data to OpenCL by calling the right method. This is a necessary step for using
OpenCL. See section 3.2.2 for more on this.

4. Calculate influence matrices based on wing geometry. Two influence matrices are needed: one for
sources, and one for doublets. Each row in the influence matrix correspond to a certain control point,
while each column corresponds to the influence from a certain panel.

5. Calculate the source strength, based on the free stream values, and equation 3.13.

6. Using the already existing doublet influence matrix for the wings as input, modify it to include the
influence from the wake panels. That is, for each control point on the wing, calculate the influence
from a wake strip, and add it to the location of the two trailing edge panels in the influence matrix.

7. Multiply the source influence matrix with the calculated source strengths to generate a vector, b.

8. If the doublet influence matrix is called A, solve the system A - u = b by using the built in solver in
NumPy. This solves for the values of p, so that the strengths of the doublet panels are known.

9. When the strengths of both the source panels and the doublet panels are known, the wake can be
deformed according to the solution, and the velocity, pressure, and force on the wing can be calculated

10. When everything is known, post processing in Blender can be performed, such as color mapping the
pressure values, updating the wake geometry, etc.

An example of a control script can be found in section 11.1.
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3.2.2 OpenCL

One important feature of this BEM code is the use of OpenCL. OpenCL is a framework for writing code that
can be executed on almost any parallel computation unit in a modern computer. That is, OpenCL can be
executed equally well on a CPU as on a GPU. In particular, the GPU aspect of OpenCL was of a particular
interest for the author. General computation on a GPU is something that is relatively new, and the author
was interested in learning this type of programming. OpenCL is not the only way to write code that can be
executed on a GPU, however, it is the only way to write code that can be executed on both a CPU and
a GPU. OpenCL was initially developed by Apple, but is today open source and managed by the Khronos
Goup [46].

OpenCL works by executing whats called kernels in parallel. The number of threads to be used is auto-
matically managed by OpenCL, which is a nice feature. The kernel code is written in C. In order to execute
OpenCL code, the variables that are to be used in the calculations must be transferred to "OpenCL buffers".
This is necessary as a GPU will have its own memory, and cannot access the normal memory of a com-
puter. In order to make the same code executable on any computational device, the programmer needs to
explicitly tell the software which variables that should be used by the OpenCL kernels. Transferring all the
variables in a code is a bad idea, as the transfer from the normal computer memory to, for instance, the
GPU memory can take quite a lot of time. This transfer time should be considered when deciding on which
computational unit to use.

The communication between OpenCL and Python is done with "PyOpenCL" [19]. In order to test the speed
of PyOpenCL, comapred to normal Python, a numerical experiment were performed. The result of this
experiment can be seen in figure 3.6. The time it takes to build an equation system, based on random
source panels, are tested. PyOpenCL is executed both with the GPU and the CPU on the authors personal
computer.
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Figure 3.6: Time to build an equation system, done with different calculation methods
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Notice that the axis in figure 3.6 are logarithmic. That is, the difference between pure python and PyOpenCL
is several orders of magnitude for a large number of panels. When the number of panels are small, the
difference is also small, which is expected. For the authors personal computer, the CPU is fastest, but this
is not necessarily a general result. The GPU is the slowest for a small number of panels, which is due to
the transfer time of data between the standard computer memory and the GPU memory. That is, the GPU
is clearly not suitable for a small number of panels, but it is comparable to the CPU for a large number of
panels.

The kernels written for this project are responsible for calculating the influence of a panel on a given point.
That is, the influence matrices can be calculated in parallel, along with the induced velocities. The influence
of a single panel on a certain point is completely independent of all the other panels in the simulation, which
makes the tasks of calculating induced velocities and influence matrices inherently parallel. That is, no
modification to the algorithm has to be done in order to execute it in parallel. It can be written in the same
way as for a normal serial execution, only when executed in OpenCL it will happen much faster as it utilizes
every computational core available.

Much more could be said about OpenCL, but this is a bit outside the scope of this project, so the author
stops here.

3.2.3 Blender

Blender is an free open source 3D software, developed by the Blender foundation [39]. It aims at being
a complete tool for everything 3D: modeling, rendering, compositing, animation, special effects, etc. It
also contains many simulation features, such as rigid body simulation, cloth simulation, smoke and fire
simulation, fluid simulations, a complete game engine, and much more. All of which is intended for making
visually realistic images and animations, not provide accurate scientific results. The goal of using Blender in
this project was to see if Blender also could act as a tool to create and manage the necessary geometry for
the simulations and take care of the visual post processing after the simulations are done. The hypothesis is
that many of the necessary features for making visually realistic images can be used in scientific simulation
as well.

The interface of Blender, together with the custom BEM code can be seen in figure 3.7. The author has found
that Blender provided a good way of dealing with the geometry of the simulation. Many geometric values,
such as normals and panel area, is automatically calculated by Blender. Advanced geometry models, such
as Non-uniform rational B-spline (NURBS), can be used to create 3D models were the density of the panels
easily can be changed. This is a practical feature, for instance when doing convergence analysis.
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Figure 3.7: The interface used when running BEM simulations in Blender

The BEM code must be executed inside Blender in order to work. Since there are a certain demand of
structure in the geometry input, due to the "strip nature" of the simulation, there are some demands on
what type of geometry to be used. The author decided that the NURBS objects in Blender was suitable for
this purpose, so that all wings and wakes must be constructed using NURBS as a basis.

3.3 \Verification of BEM code

This section presents some verification experiments performed by the author in order to test whether the
code was simulating flow over wings properly. In particular, the pressure distribution for “infinite" wings and
cylinders are compared to the 2D versions, either based on theoretical values, or calculated by XFOIL. In
addition, the lift and drag calculated by the BEM code is compared to experiments and theory. There is no
way to find the potential lift-induced drag purely from experiments, but the lift from a potential code should
correspond to experiments for small angles of attack. The conclusion form these tests are that the BEM
code is implemented correctly. The pressure distribution around both foils and cylinders seems correct, with
slight errors for large pressure peaks. This behavior is believed to be due to the relatively low order of the
BEM code, rather than an implementation error. Even if there are some problems with large pressure peaks,
the lift and drag seems to fit very well with both experiments and theory. It is particularly important that the
lift values are correct, which seems to be the case.

3.3.1 Near-Infinite Cylinder

The results from the BEM code, used to simulate a near-infinite cylinder is compared to theoretical values
for 2D, or infinitely long, cylinders. The length of the actual cylinder used in the simulation was determined
by increasing the length until there was no visible changes in the pressure values close to the center of the
cylinder. See figure 3.8 for an visual explanation of the geometry used.
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Figure 3.8: Geometry of the cylinder used in the verification test

The pressure was evaluated at the strip in the horizontal plane that is closest to the mirror plane. These

pressure values should be least effected by the finite length of the cylinder. The theoretical values for the
pressure coefficient for a 2D cylinder is given as follows:

C, =1-4sin(6) (3.42)

This equation, compared to the data from the BEM code can be seen in figure 3.9
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Figure 3.9: Pressure coefficient for a near-infinite cylinder. Theoretical and numerical values

3.3.2 Near-Infinite Wing

Same approach as for the "infinite" cylinder were used on wing profiles. One symmetric foil with and angle of
attack, and one cambered foil is tested. The cambered foil, NASA LS - 0417 have two pressure distributions:
one at a strip close to the symmetry plane, strip 0, and one at the end of the wing, strip 36. It is seen that strip
36 have significantly different pressure distribution compared to the 2D values, but this is to be expected.
This is in fact the reason for reduction in lift for a 3D wing. The pressure distribution close to the symmetry
plane fits well with the 2D version from XFOIL
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Figure 3.10: Pressure coefficient for a near-infinite wing with foil profile NASA LS - 0417
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Figure 3.11: Pressure coefficient for a near-infinite wing with foil profile NACA0014 at 10 deg angle of
attack

3.3.3 Validation of Lift by Comparison with Experimental Data

In order to test the lift, experimental data, based on experiments performed by Prandtl, for rectangular wings
with different aspect ratio, were used. The data can be found in reference [32]. The data in reference [32]
were originally for a cambered wing. In order to compare the data in reference [32] with a symmetric wing at
an angle of attack, the lift at zero angle of attack was subtracted from the data. Two aspect ratios are tested,
Asp = 3 and 6. Both aspect ratios seems to fit well with the experimental data, however, in the process of
performing these experiments it was discovered that the wing with Asp = 6 needed more strips to simulate
accurate values than the wing with Asp = 3. This is expected to be due to the fact that the largest change
in spanwise circulation is happening at the end of the wing, so that it is necessary to keep the "strip density"
rather high at the end of the wing. It is possible to have more strips at the end of the wing, then close to the
symmetry plane, but the tests performed in this experiment were done with strips that were equal in size.
The number of strips are 15 for the Asp = 3 wing, while it is 40 for the Asp = 6 wing. The number of panels
in each strip were 36 for both cases.
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Figure 3.12: Lift coefficient for rectangular wings with different Asp. Data from BEM and source [31]

3.3.4 Validation of Lift-Induced Drag

Lift-induced drag can not be tested experimentally, however, reference [34] presents theoretical values for
rectangular wings. The theoretical values are compared to the result from the BEM code and can be seen
in figure 3.13
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Figure 3.13: Induced drag coefficient for rectangular wing with Asp = 6, compared with theoretical values
from source [34]
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Chapter 4
CFD using STAR CCM+

Computational Fluid Dynamics (CFD) was used as a modeling tool in this project in order to capture the
effect of letting a ship go with a yaw angle. This was necessary, as simpler methods for predicting ship
resistance don't include yaw effects. Ship hulls have very low aspect ratio, in addition to being thick bodies,
so that viscous effects may play a significant role for both the added resistance due to lift, and the lift forces
them self. Potential theory is therefore probably not suitable for simulating the lifting properties of a ship hull.

The commercial software STAR CCM+, made by the company CD-Adapco, is used for the simulation. The
goal was to find a setup that allowed relatively fast simulation, but that still captured the important effects of
interest. In an attempt to accomplish this, several articles were studied. In particular, the articles presented
in the "Gothenburg 2010 CFD Workshop" was used extensively, along with tutorials made by CD-Adapco
that specifically give guidance on how to use STAR CCM+ for predicting ship resistance. The Gothenburg
2010 CFD workshop included several institutions and companies doing the same type of CFD simulation on
ships. The predictions from CFD was then compared with Experimental Fluid Dynamics Data (EFD Data).
An overview of the results for ship resistance from the Gothenburg 2010 CFD workshop can be found in
reference [23]. Based on the statistics presented in reference [23], the average error for ship resistance
predictions using CFD was 2% of the EFD Data, with a standard deviation of 1.3 %. Although many of the
simulations performed had quite a high number of grid points (the highest number for simulations using the
same turbulence model as in this project was around 9 million grid points), reference [10] suggest that a
lower number of grid points can achieve accurate results as well, if care is taken regarding where to distribute
the grid points. Reference [10] achieved an error of just 0.48% using "only" 1.2 million cells. However, all of
the simulations performed in the Gothenburg 2010 CFD workshop was for ships going without yaw-angle.

In order to find a specific simulation setup to work with, one of the tutorials regarding marine ship resistance
prediction (no reference for this tutorial, as it is located in a closed "customer portal”, that only is available
for people with license for STAR CCM+, but the tutorial seems to be based on reference [10], as this article
is written by CD-Adapco employees, and covers the exact same topic) from CD-Adapco was used as a
starting point, before certain parameters was changed based on either suggestions from different articles,
or based on convergence analysis done by the author.

In the beginning of the project, only the chemical tanker was considered as a test ship, and this model was
the only one that was simulated with CFD. At the very end of the project, EFD Data, including yaw effects,
was discovered for the Series 60 ship model. This data was useful, not only as a second set of force data
for a ship going with a yaw angle, but as an opportunity to validate the CFD setup agains experimental data.
The same "logic" that had been used to simulate the chemical tanker was applied to the series 60 model.
That is, length and time scales in the simulation setup was scaled from the chemical tanker model to the
scale of the series 60 model, before some test simulations was performed for different speeds and different
yaw angles.

This revealed a problem. For zero yaw angles, the result from the CFD test matches the results from the
EFD Data, but for large yaw angles, the results differs quite a lot. The CFD predicts too high resistance, and
too low side force for a ship going with a yaw angle. As this discovery was made at a rather late point in the
project, it was not possible to fix it due to time issues. Some discussion will be made regarding why this
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error might occur, however, the author has not had the opportunity to test this theory properly. Only some
early theories were tested, such as varying the number of cells, changing the turbulence model, and altering
the time step, but non of these changes affected the result from the CFD simulation. The next step would
be to change the domain size, and the author have a theory of why this might be the error. See section 4.5
for more on this.

Based on the final results, it seems that the forces predicted by CFD does behave somewhat correctly
(non-linear lift from the hull, non-linear lift induced drag), but the result for high yaw angles are probably a bit
off. They are still used in the final model in order to predict the importance of hydrodynamic effects from a
wing sail, but the results should be considered as a rough approximation, not highly accurate force values.
If the potential error in the results for the chemical tanker matches the nature of the error seen for Series
60, the importance of hydrodynamic effects should be overestimated. That is, since the resistance might
be too high, and the lift too low, the result from the final model might overestimate the necessary yaw angle,
and added resistance due to yaw. As can be seen in the final result chapter, chapter 8, this error can be
considered "conservative". Higher lift and lower drag should not alter the final conclusion, only strengthen
it.

This chapter will go through the general theory that the CFD code uses to simulate fluid flow around a ship
hull, give an overview of the simulation setup used, along with the argument behind them, before presenting
the final raw results from the CFD simulation, where the result from the Series 60 model is compared to the
EFD Data.

4.1 Theory

This section will go through the theory behind the CFD simulation done in this project. As STAR CCM+
is a commercial software, using fairly standard CFD methods, and the author had nothing to do with the
development of this code, the theory section will be brief.

STAR CCM+ uses the Finite Volume Method (FVM) to discretize and solve the integral formulation of the
Navier-Stokes equations. That is, the computational domain is divided into many cells, or volumes, and
the integral formulation of the Navier-Stokes equation is approximated over each cell in a discrete manner.
Points on the cell faces is used to approximate surface integrals, while points in the middle of the cell are
used to approximate volume integrals. The unsteady integral formulation for the Navier-Stokes equation,
assuming incompressible, Newtonian-fluid flow, can be written as follows:

//SU~ndS:0 (4.1)
gt//VUdv+//S(U.n)Ud5:_;/[gpnd5+//vng+y/[9VU-ndS (4.2)

U is the velocity vector, n is the normal vector to the surface, g is the acceleration of gravity vector, v is
the kinematic viscosity, p is the density and p is the pressure. These are the equations to be solved by
STAR CCM+. The first one is the conservation of mass equation, while the second one is the momentum
equation. When these equations are discretized, a non-linear, unsteady, system of equations is the result.
The non-linearity and the velocity-pressure coupling must be dealt with, and there exist several methods for
doing this. STAR CCM+ have several options. For this project the following has been used:

The equations are solved using a segregated, or decoupled, flow solver. That is, each equation are solved
separately, and coupled together using whats called a predictor-corrector approach. The predictor-corrector
approach used specifically is the standard method called Semi-Implicit Method for Pressure Linked Equa-
tions (SIMPLE). One of the key general principles of the SIMPLE method is to construct a "pressure correction
equation”. This can be done by taking the divergence of the momentum equation. For more details on this,
see reference [13]. The overall steps for the SIMPLE method is as follows:
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1. Set boundary conditions
2. Compute the gradients of velocity and pressure
3. Solve the discretized momentum equation in order to find a new velocity field
4. Compute mass fluxes at the faces of each cell
5. Solve the pressure correction equation, in order to find p’
6. Update the pressure field, p"*t! = p™ + wp’, where w is an under relaxation factor
7. Update the boundary pressure corrections
8. Correct the mass fluxes
9. Correct the velocity field
10. start over, until solution are found

The number of iterations that are performed for each time step, called the inner iterations, can be adjusted
by the user. For this project, the number was set to 10, based on recommendations from the ship resistance
tutorial to CD-Adapco.

Time stepping must also be performed. This happens with a first order implicit method in this project. The
reason for using an unsteady solver in the first place, rather than a steady solver, is that the simulation
includes a free surface. The shape of the free surface is not known a priori and must be found, and the only
way to do this in STAR CCM+ is by using an unsteady simulation. That is, there is no way to enforce the
radiation condition, the demand that the waves must travel in the correct direction, using a steady solver.
Implicit time-stepping is known to be a good approach when one are actually searching for a steady state
solution, as the final result from an implicit time-stepping method is less sensitive to the size of the time step
[13].

The presence of the free surface is treated with whats called the Volume Of Fluid (VOF) method. The VOF
method is conceptually rather simple. The entire fluid domain is discretized, and each cell is given fluid
properties, such as density and viscosity, based on whats called a volume fraction. If two types of fluids are
simulated in the same domain, the volume fraction is just a number, giving the ratio of how much fluid there
is of one type. For instance, the volume fraction, C, could give the volume ratio of water divided by air. Then
the density of that cell would be p = C' pwater + (1/C) - pair. The viscosity, and any other fluid properties, will
be calculated in the same manner. The initial values of C' must be set in the entire fluid domain. Then, as
the simulation progresses, the change of C in a cell will be calculated according to to a transport equation.
The VOF method is recommended to be used for marine simulations by CD-Adapco. A down side of the
method is that changes from water to air happens somewhat gradually. In order to have a "sharp" interface
between water and air, very small cells has to be used in the region of the free surface. See section 4.2.3
for more on this.

The last thing that needs to be simulated is turbulence. For this project, it is done with Reynolds-Averaged
Navier-Stokes (RANS) equations. The Navier-Stokes equations are averaged over a hypothetical turbulence-
time-scale, which results in an extra term in the Navier-Stokes equation that is known as Reynolds stress.
This Reynolds stress term can be modeled based on physical principles, and some empirical coefficients.
The specific turbulence model used for this project is the "Realizable two-layer k-epsilon model". The k-
epsilon model is perhaps the most famous turbulence model. It was chosen, as this was the most common
turbulence model used for predicting ship resistance in the Gothenburg 2010 CFD workshop, based on
reference [23]. The "realizable" part of the turbulence model is referring to the fact that there is a correction
in the k-epsilon model in order to limit unphysical large growth of turbulent kinetic energy, which are known
to be a problem, according to the STAR CCM+ documentation. The "two-layer" part of the turbulence
model is referring the fact that regions close to a wall is treated a bit differently than regions far away.
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4.2 Parameters Used

This section will go through the parameters used in the simulation setup. In particular, the ship model, the
size of the domain, the mesh design, and the time step will be discussed. A simulation model in STAR CCM+
involves many more parameters than this. The parameters not mentioned was set according to the tutorial
made by CD-Adapco, or just kept at default values. For instance, there are several empirical parameters
that can be specified for the turbulence model. These parameters were not touched by the author, because,
in general, that should not be necessary. STAR CCM+ also include a lot of parameters that affect how the
non-linear solver works. These parameters should mostly affect the speed of the simulation, not the results,
and it is expected that the default values are close to the appropriate values. The parameters presented in
this section is considered to be the most important.

4.2.1 CFD Ship Model

The ship models used in the simulations were in model scale. Theoretically, it is possible to do full scale
tests with CFD, but in general, this would take longer time as there would have to be more cells in the fluid
domain. It is known that small turbulent structures can have an effect on the large scale flow. The smallest
turbulent flow structures is dependent on the Reynolds number of the flow, and the higher the Reynolds
number, the smaller will the smallest turbulent length scale be (see for instance reference [38], chapter 1, for
a discussion about turbulent length scales). Even though RANS is used to model turbulence in this project,
the general tendency will still be that higher Reynolds number demands more cells in order to give accurate
results. So in order to lower the cell count in the simulation, ships in model scale was tested. There exist
methods for scaling the results to full scale from model scale, developed for towing tank test, and the same
methods will be used on the CFD results. See section 5.4 for more on this.

The dimensions of the CFD models can be seen in table 4.1. The Series 60 model was scaled to the same
scale as the model used in the experiments that generated the EFD Data, so that direct comparison of the
result were possible. The chemical tanker was scaled such that the width of the model is 1 m, because this
gave a "normal" model scale, and 1 m is a round nice number.

Table 4.1: Data for the CFD ship models, at model scale

Chemical tanker model  Series 60 model

scale 1:29.5 1:40
L. [m] 5.765 3.048
By [m] 1 0.406
D [m] 0.339 0.163
V [m?] 1.486 0.121

S [m?] 7.885 1.579
U,, [m/s] 1.42 1.22

p [kg/m?® 997.561 997.561
v [m?/s] 8.91E-07 8.91E-07
Re [-] 9.19E+06 4 17E+06

4.2.2 Domain Size

The domain size for the calculation was determined based on average results from the Gothenburg 2010
CFD workshop. This was done as an attempt to reduce the number of convergence tests. The exact mesh
design is often hard to quantify when reading articles about CFD, as the cells might be distributed throughout
the domain in a complex matter. Domain size on the other hand is often very easy to quantify. The external
shape of the simulation domain are usually simple geometries, such as cylinders, cubes or spheres and the
dimensions are usually given. This makes it easy to copy the general domain design used by others, and

45



the author thought this was an excellent opportunity to make a shortcut in finding an appropriate simulation
setup. This was most likely a mistake. The general domain dimensions will be given in this section, and it
is expected that these domain dimensions is suitable for ship simulation without yaw angle. However, it is
most likely not suitable for a simulation that includes yaw angles, at least not large ones. See section 4.5
for more discussion about this.

The articles covering ship resistance prediction from the Gothenburg 2010 CFD workshop were systemat-
ically read through, and simulation domain length-scales were stored, whenever they were given explicitly.
This should give an overview of "normal" domain designs, when it comes to ship resistance prediction. The
result of this analysis can be seen in table 4.2. The external geometry of the domain is assumed to be
box-shaped, as seen in figure 4.1. The final values used in this project is also stored in table 4.2.

Figure 4.1: lllustration of domain dimensions

Table 4.2: Simulation domain length scales, reference values and values used in this project. All values are
divided by the ship length used in the corresponding simulation

Article name [reference number] Liont  Lback Lside Ldown  Lup
Simulation of Flow Around KCS-Hull [10] 247 247 247 247 124
URANS Computations of a DTMB 5415 [17] 1 3 2 1.5 0.75
Verification and Validation for Unsteady Computation [5] 1 2.3 1.8 1.5 0.5
Viscous free surface calculations for the KCS hull [29] 2 3.5 1 1 0.1

CFD Simulation Of KCS Sailing in Regular Head Waves [36] 0.9 2.5 1.5 1.5 -
Prediction of Ship Resistance and Propulsion Performance
Using Multi-Block Structural Grid [49] 1 3 1 0.87 0.028

This project 2 2.5 2 2 1
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4.2.3 Mesh

The number of mesh cells were decided based on convergence analysis. STAR CCM+ have a several built
in mesh generators. For this project, the "trimmed" mesh generator are used along with "prism layers". The
trimmed mesher is a mesh algorithm that generates mostly hexahedral cells (polyhedrons with six faces,
such as a cube, parallelepiped, rhombohedron, etc). The prism layer is a way to generate orthogonal
prismatic cells next to wall surfaces or boundaries. This makes it so that the mesh follows the curvature of
the ship hull closely in layers. The number and thickness of the prism layers can be adjusted by the user.
6 prism layers were used in this project, due to recommendations from the tutorial made by CD-Adapco,
based on reference [10].

The local size of mesh cells can be set by the user, as a percentage of a mesh "base size". That is, there is
a length scale that determines the general size of each mesh cell, but based on local refinement, the local
cell size can vary. Each boundary surface have a custom cell size, along with a few "volumetric controls".
Volumetric controls are a way of teling STAR CCM+ to adjust the cell size locally inside a volume that is
specified by the user. For this project, volumetric controls were used to increase the cell density close to
the free surface, behind the ship in the kelvin-wake, and close to the bow and stern of the ship. These
refinements were based on the authors guess that there would be large changes in the flow in these areas.
In general, areas with large gradients of velocity and pressure should have more cells than areas where the
flow is changing very slowly. The bow and the stern of the ship will create changes in the flow due to large
changes in the ship geometry. The kelvin-wake behind the ship will experience large changes in velocity
due to the ship-generated waves. The free surface must have a high cell density in order to model a sharp
transition from water to air, which is a necessity due to the use of the VOF method.

The convergence analysis were then done in order to find an appropriate value of the base size. Adjusting
the base size will adjust all local cell sizes, as every local refinement is given as a percentage of the base
size. The local refinement, as percentage of the base size, can be viewed in table 4.3. The free surface have
three layers of local refinement, in order to have very fine control over the mesh in this region. The cell size
is only adjusted in the z-direction, as the refinement is only there to give smooth transition between water
and air in the vertical direction.

Table 4.3: Local refinement for special areas in the simulation domain

Area name Local refinement in percentage of base size
External boundaries 1600

Ship hull 25

Ship deck 100

Free surface, fine 12.5 in z-direction only

Free surface, medium 25 in z-direction only

Free surface, coarse 50 in z-direction only

Bow and stern 25

Kelvin wake 100

The convergence analysis where then done for two yaw angles: 0 degrees and 8 degrees. Based on this,
it was determined that the chemical tanker should have a base size of 0.1 m. The base size for the Series
60 is scaled according to the length of the ship, so the base size is 0.05. Figure shows the mesh for the
chemical tanker, with 6 degree yaw angle, from the top, side and front respectively.
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Figure 4.2: The mesh used to simulate the chemical tanker at 6 deg yaw angle, viewed from the top
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Figure 4.3: The mesh used to simulate the chemical tanker at 6 deg yaw angle, viewed from the side
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Figure 4.4: The mesh used to simulate the chemical tanker at 6 deg yaw angle, viewed from the front

The results from the convergence test can be seen in table 4.4 and 4.5. 8 degrees yaw angle were used
as the main convergence test, as this was considered to be the "worst" case, numerically. This was the
highest yaw angle to be simulated. The reason for using time step equal to 0.01 for the mesh convergence
test, was that the importance of the time step was already known at this point. Before performing these
tests, another set of tests were performed with a much higher time step (0.05 s). This clearly led to weird
behaviour, so the time step was revised, and the mesh convergence test were performed all over again. See
section 4.2.4 for more on this. The results presented in this report are from the "usable" convergence test,
as the first one failed to give any insight into the importance of the mesh size, due to time step problems.
The "Medium" mesh gives results that are very close to the "Very Fine" and the "Extremely Fine" mesh for
both 8 degrees yaw and O degrees yaw. The "Medium" drag result is 98.9% of the "Extremely Fine" drag
result for yaw angles equal to 8 degrees, and the side force of the "Medium" result is 97.9%. It might seem
weird that the result for the "Fine" mesh is further from the "Extremely Fine" result than the "Medium" mesh,
but this is normal, according to reference [10]. When local refinements are used in the mesh design, as is
the case for this project, this type of behavior can happen.
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Table 4.4: Results from mesh convergence test with yaw angle equal to 8 degrees

Grid Name Coarse  Medium Fine Very Fine  Extremly Fine
Yaw Angle [deg] 8 8 8 8 8
Speed full scale [knots] 15 15 15 15 15
Speed model scale [m/s] 1.42 1.42 1.42 1.42 1.42
Base size [m] 0.125 0.1 0.08 0.064 0.0512
Number of Cells [-] 709444 1071243 1772343 2905080 5020656
Time step [g] 0.01 0.01 0.01 0.01 0.01
Drag Total [N] 42.837  42.687 44.541 42.861 43.170
Drag Pressure [N] 23.583  23.589 23.621 23.967 24.202
Drag Shear [N] 19.254  19.099 20.921 18.895 18.968
Side Force Total [N] 68.075  69.279 72.738 69.820 69.508
Side Force Pressure [N] 69.674  70.800 73.459 71.214 70,850
Side Force Shear [N] -1.599 -1.521 -0.721 -1.394 -1.342

When simulating a ship without yaw, only half the ship can be simulated. Symmetry boundary condition is
applied at the center line of the ship, which effectively models the entire ship, with half the number of cells.
This is the reason for the small number of cells in table 4.5

Table 4.5: Results from mesh convergence test without yaw angle

Grid Name Coarse  Medium Very Fine
Yaw Angle [deg] 0 0 0
Speed full scale [knots] 15 15 15
Speed model scale [m/s] 1.42 1.42 1.42
Base size [m] 0.125 0.1 0.064
Number of Cells [-] 284013 425703 984217
Time step [g] 0.01 0.01 0.01
Drag Total [N] 36.133 30.552  30.635
Drag Pressure [N] 24.056  22.532 22,813
Drag Shear [N] 12.076 8.021 7,822

4.2.4 Time steping

The time step was discovered to be an important parameter for simulating flow around a ship hull. As
the point of these simulations is to find a steady state solution, the time step might seem like a secondary
parameter. As the author was reading about CFD in articles, this also seemed to be the case. Time steps
were only given, without any convergence tests, while convergence tests for the mesh was always given.
The number of cells seems to be a more important factor. At first, the time step of the simulation was set
to be 0.05, which was decided based on reference [10], where the time step is 0.04. This was for a slightly
larger model, with similar Froude number, so the time step might be correct, but no convergence test for
the time step are presented.

When doing convergence test for the mesh size with the first time step, it was discovered that the waves
on the free surface disappeared for small base sizes. This seemed very unphysical, so a time step test was
initiated, before further mesh testing were done. The result from the time step convergence test can be seen
in figure 4.5. It is done without yaw angle, as the importance of the time step is believed to be connected
to the waves on the free surface, primarily.
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Figure 4.5: Drag force value as a function of time step size for the chemical tanker. Performed with base
size = 0.1, and model scale speed = 1.42 m/s

Based on figure 4.5, a time step of 0.01 seconds were decided to be appropriate. Figure 4.6 and 4.7 show
the importance of the the time step for the wave pattern. The wave pattern shown in figure 4.6 has the
general Kelvin wave structure that is to be expected from a moving ship, while figure 4.7 clearly has a very
unphysical wave pattern. Figure 4.7 looks nothing like the reality. A detailed analysis of the wave pattern
has not been done in this project, but it was discovered that a plot of the wave pattern was a good way of
detecting problematic time steps, as a too low time step generates "unphysical" waves.
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Figure 4.6: Wave pattern for the chemical tanker with time step = 0.01 s

Figure 4.7: Wave pattern for the chemical tanker with time step = 0.1 s
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4.3 Results from CFD

After the simulation parameters were decided, the actual tests were performed. Drag and side force for three
speeds, and five yaw angles were done, on total 15 simulation runs. The three ship speeds corresponds
to a full scale speed of 10, 12.5 and 15 knots, while the yaw angles are 0, 2, 4, 6 and 8 degrees. The raw
result, presented as force acting on the ship hull, calculated by STAR CCM+ can be seen in figure 4.8, 4.9

and 4.10
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Figure 4.8: Resulting forces from CFD experiment at U,,, = 0.95 m/s which corresponds to Ug = 10 knots
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Figure 4.9: Resulting forces from CFD experiment at U,,, = 1.18 m/s which corresponds to Ug = 12.5 knots
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Figure 4.10: Resulting forces from CFD experiment at U,,, = 1.42 m/s which corresponds to Ug = 15 knots

4.4 Comparison With Experiments

At a late point in the project, EFD Data data for the Series 60 geometry were discovered. It was decided
that this was a good opportunity to test the simulation setup that were used in this project. The same "logic"
was applied to the Series 60 model. That is, the domain size, and base size were scaled according to the
length scale of the Series 60 model, which is slightly smaller than the chemical tanker. This resulted in a
base size of 0.05, and simulations for yaw angles equal to 0 and 7.5 degrees were performed. The result of
these experiments can be seen in figure 4.11 and 4.12. See section 4.5 for a discussion about the result.

The graphs show the forces as coefficients, where Cr is the drag coefficient and Cg is the side force
coefficient.
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Figure 4.11: Validation test of drag force on Series 60, for different yaw angles, compared to EFD data
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Figure 4.12: Validation test of lift force on Series 60, for different yaw angles, compared to EFD data

4.5 Discussion Regarding the Accuracy of the Results

For the yaw angle equal to 7.5 degrees, the result from the Series 60 tests clearly differ from the EFD Data.
The drag is too high, and the lift is too low. The result for O degree yaw angle fits much better. This is
problematic, as the main point of these tests were to see the effect of having a yaw angle on a ship. A
few tests were performed in order to find the error. The number of cells in the mesh were increased, the
turbulence model was changes, from k-epsilon to the so called k-omega model, the number of prism layers
were increased, from 6 to 10, and the time step were decreased from 0.01 to 0.001. Nothing had any

55



significant effect on the result, and after doing all these tests, there were no time left, so the author had to
give up. Also, some tests were done for a smaller yaw angle, in order to see the magnitude of the error
for a "milder" case, but unfortunately, the simulation failed. That is, sometimes, there seems to be errors
in the execution of the simulations, which makes the result "blow up". The force values never converge,
even after many time steps, and the waves on the free surface are clearly wrong. This has happened a few
times during this project (exclusively while running STAR CCM+ on an "old" supercomputer called "kongull*,
which might have something to do with the error, but the author is very uncertain off why this happens, and
hesitates to speculate on this), and normally, the solution is to run the exact same simulation all over again,
in order to get a completely different result. But again, due to time issues, this was impossible to complete
before the delivery of this report.

There is therefore an error in the simulation, of which the importance at smaller angles of attack is uncertain,
but it is clearly there for large yaw angles. The authors theory is that this has to do with the size of the
simulation domain. The size of the simulation domain were decided based on a literature review, however,
all the articles that were used to find an appropriate simulation domain simulated a ship without yaw angle.
The result without yaw angle fits well with the EFD Data, so the result from the literature review is not "wrong"
it is just for a simulation case that is not exactly as performed in this project.

The simulation domain for a lifting surface is something that should have been investigated better before
performing these experiments. For instance, the company that makes STAR CCM+, CD-Adapco, has a
section in their online "user portal" were they have recommendations for different simulation cases. The
recommended simulation domain for a wing is "around 8-10 body lengths or wing spans, whichever is
larger, from the body". This is quite a lot more than 2.5 ship lengths which is the case used in this project. It
is known that the wake of a lifting surface is important for the lifting characteristics. For instance, the result
from the Boundary Element Method (BEM) simulations clearly shows that a long wake is necessary. The
author was aware of the importance of the potential wake throughout the project, but failed to realize that
this should have been done for the the ship simulations as well. The authors guess is therefore that the too
short simulation domain affects the lifting properties of the ship hull, which makes the result inaccurate. It
should be less important for smaller angles of attack. After all, the lift force will be smaller, which means that
less vorticity is shed from the ship hull, which again should die out faster in a viscous fluid. This theory is
also based on the fact that the side force for 2 degrees seems to be a bit different than the rest fo the yaw
angles. That is, if one looks at the CFD result figures, and imagines a smooth line fitted to the data, the side
force for 2 degrees seems to be a bit too high. Since it is known that the side force at high angles actually
are too low, the case might be that the side force for 2 degrees are more or less correct, but at 4 degrees,
the effect of the too short simulation domain can be seen. This is just a guess. The author needs to explore
this at a later point.

Luckily, the available EFD Data can be used directly to calculate the final results, and the errors from the CFD
simulation seems to point in the "right" direction in terms of the final conclusion. That is, the fact that the CFD
predicts higher drag and less lift means that the importance of hydrodynamic effects will be overestimated,
not underestimated.
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Chapter 5
Other Methods

This chapter contains a brief explanation of the methods used in this project that were not large enough
to get a separate chapter. In particular, all the external experiments which produced data that have been
used in this project will be referenced and shortly explained. In addition, a short explanation of the software
XFOIL will be given, as this software is the source of all the viscous drag coefficients used in the final wing
sail model. The mathematical theory behind initial stability will be given, along with stability parameters for
the two different ship models, as this is used to quantify the importance of stability in the final results. The
scaling of resistance data fromm model scale to full scale is described. Lastly, the way everything is connected
into a final model that simulates a ship moving with wing sails are explained.

5.1 External Experiments

In total, three sources of external EFD Data were used in this project. Two of them were used to check the
effect of heel on ship resistance, while the third was used to check the effect of yaw. The result from these
experiments are presented here, while the discussion of the consequence of these results is presented in
chapter 7

5.1.1 EFD Data from the University of lowa

The "lIHR—Hydroscience and Engineering at the University of lowa" have an excellent web site, providing
EFD Data completely for free, along with documentation of how this EFD Data were acquired. EFD Data for
several different types of tests, along with two different types of ship geometries are provided. The intention
is that this data can be used by researchers working with CFD in order to compare their results against
experiments. The web site can be found in reference [40]. Unfortunately, this data were discovered a bit late
in the project, so the data were only used for comparison with CFD after the simulations were supposed
to be finished. A better use of this data would be to use it directly while looking for a suitable simulation
setup. See chapter 4 for more on this. However, as the data is on the exact same form as the result from
the CFD experiments performed in this project, the author has decided to use the raw data from these
experiments when calculating the final results as well. As the Series 60 geometry is significantly different
from the chemical tanker geometry, this could potentially provide and insight into the importance of ship hull
geometry.

The EFD Data is collected for the series 60 geometry in a towing tank for a range of Froude numbers and

several yaw angles, namely 0, 2.5, 5, 7.5 and 10 degrees. The article documenting the experiments can be
found in reference [24]. The ship model has the dimensions as seen in table 5.1
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Table 5.1: Model scale data, Series 60

Series 60 model

Scale [] 1:40
Ly [M] 3.048
By [M] 0.406
D [m] 0.163
V [m3] 0.121
S [m?] 1.579

The results used in this report is given in figure 5.1 and 5.2. Only the drag (expressed by the drag coefficient,
Cr) and side force (expressed by the side force coefficient, Cs) are used from the EFD Data, even though
more data is available, such as sinkage and trim. As can be seen in the figures, there are some "kinks" and
"bumps" in the data. Reference [24] reports of an uncertainty of 0.5% for C and 0.1% for Cg, based on
repeated test performed for Froude number equal to 0.316.

7.5 I T
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—6— Yaw angle 10 deg

0.1 0.15 0.2 0.25 0.3 0.35
Froude number

Figure 5.1: Drag coefficient, Cr, for Series 60 based on experimental results, for different yaw angles
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Figure 5.2: Side force coefficient, Cg, for Series 60 based on experimental results, for different yaw angles

5.1.2 Cargo Ship Heel Experiments

A class mate of the author, Steffen Hasfjord, were nice enough to perform a few experiments at The Norwe-
gian Marine Technology Research Institute (MARINTEK) towing tank facilities in order to answer the authors
question about the importance of heel for a cargo ship. Hasfjord was already performing towing tank test
for a ship hull that is similar to the chemical tanker used in this project. The specific hull geometry were
a Rolls-Royce 8000 Deadweight tonnage (DWT) chemical tanker that Rolls-Royce frequently uses for re-
search purposes. Hasfjord's master thesis, explaining his use of the experiments, along with details about
the experimental setup, can be found in reference [14]. In addition to his own experiments, which included
finding the ship resistance, he performed a few extra test with a heel angles, specifically for this project. The
ship model data can be seen in table 5.2

Table 5.2: Ship model data for Rolls-Royce chemical tanker, used to find the importance of heel for a
cargo ship

Full scale Model scale

Scale [] 1 1:16.570
L, [m  116.918 7.142
Ly, [m] 113.2 7.056
By [M] 19 1.147
D [m] 7.2 0.435

vim’  11521.2 2.532
S[m?]  3227.27 11.754

The heel angle of the ship was created by adding weights to one side of the ship, so that a heeling moment
were created, and then measuring the resulting heel angle. Four tests where performed: one first test
without heel angle, one with a "large" heel angle, one with a "small* heel angle, and then one extra test
without heel angle after the three first ones in order to test for any changes in the experimental setup that
might create uncertainties in the resulting force measurements. The result for these experiments can be
seen in table 5.3
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Table 5.3: Result of heel experiments, done by Steffen Hasfjord, performed with Rolls-Royce chemical

tanker
Experiment number 1 2 3 4
Carriage speed [m/s] 1.7671 1.7674 1.7675 1.7672
Heel angle [deg] 0 8.8 5.3 0

Measured Resistance [N] 74.5169 74.9897 74.7708 75.0483

5.1.3 Geitbat Experiments

While doing this project, there was a project at the department of marine technology, at Norwegian University
of Science and Technology (NTNU), investigating two different traditional Norwegian sailing boats, made with
different construction techniques. The two boats are called "Geitbat" and "Meringbat" in Norwegian. The
goal was to determine whether or not the boat with a more advanced construction technique (Geitbéat)
provided better sailing performance than the boat constructed with a more simple construction teghnuique.
As a part of this project, the boats were towed in the towing tank facilities at MARINTEK, with different heel
and yaw angles. As the boats are relativly small, they were tested at full scale. The sailing performance of
the two boats were then determined by constructing a Velocity Prediction Program (VPP), with the use of
the model test data. As this was happening at the same time as this project, and many of the same test
were performed for the two traditional boats, the author asked to get access to the heel data in order to
check the effect of heel on a traditional sailing boat. The results of this test is not yet published at the time of
writing this report, but reference [33] contains the title and author of the article. The data for the two boats,
at different heel angles are given, with permission, in table 5.4 and 5.5.

Table 5.4: Full scale resistance [N] for "Geitbat", for different speeds and heeling angles

Boat speed [knots] Heel angle [deq]

0 5 10 15
4 59.1 60.73 61.2 59.2
5 108.2 107.3 1081 1134
6 226.4 232.8 233.8 239.9

Table 5.5: Full scale resistance [N] for "Meringbét", for different speeds and heeling angles

Boat speed [knots] Heel angle [deg]

0 5 10 15
4 67.09 67.27 67.88 70.19
5 135.8 134.7 141.4 143.2
6 297 294.5 300.2 306.2

5.2 Viscous Modeling of Wing Profiles using XFaill

XFOIL is a 2D open source panel method that includes integral boundary layer theory in order to predict
viscous effects on 2D wing profiles. The original version of XFOIL was released in 1986 by professor Mark
Drela, however, some improvements have been implemented in the software since then. An article describ-
ing the theory behind XFOIL can be found in reference [7]. Mark Drela has developed XFOIL specifically for
"low-speed" airfoils. In particular, XFOIL is supposed to have a robust and accurate method for predicting
the viscous effect on airfoils in the Reynolds number range where the flow is switching between laminar and
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turbulent flows. An article discussing the details about the integral boundary layer implementation developed
by Mark Drela, and implemented in XFOIL, can be found in reference [8].

In order to test the viscous formulation, an experiment were performed by the author, originally for a different
project, presented in reference [20]. There exist different friction lines for a flat plate. The analytical Blasius
friction line for laminar flow, and the empirical ITTC-57 friction line for turbulent flow are compared to the
viscous drag from XFOIL in figure 5.3. The foil in question is NACA 0012, and an empirical shape factor is
used along with the friction line in order to model the form drag of the foil. That is, the increase in drag for
the foil due to the fact that it is not a flat plate, but a relatively thick solid body. The shape factor is given in
reference [12], as follows:

k=2(1+(t/c)+60(t/c)!) (5.1)

In this equation, ¢ is the thickness of the foil, and c is the chord length. This shape factor is used along with
the friction factor, C'y, from each of the friction lines in order to estimate the viscous drag coefficient, Cp.,,
as follows:

] 1 T 1
0.04g .
ITTC-57 friction line with empirical shape factor
0.035 1
Blasius friction line with empirical shape factor
L Xfoil data
0.03F PY
0.025
0
&)
0.02F
0.015F
0.01F
0.005
O L 1 1
10" 10° 10° 10’ 10° 10°

Re

Figure 5.3: Viscous drag predicted by XFOIL compared to empiric shape factor for foils, and different
friction lines. Performed with NACA 0012 as geoemtry

Based on this experiment, and the articles from Mark Drela, the author has concluded that XFOIL probably
predicts accurate viscous drag for two-dimensional airfoils.
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5.3 Stability Calculations

Stability is calculated by assuming initial stability theory. That is, relatively small angles of attack are assumed.
Initial stability is, according to reference [1], usually valid for heeling angles up to around 10 degrees. Stability
of a ship is not only dependent on the ship hull geometry, it is also dependent on how the weight of the
ship is distributed. That is, the center of gravity have a large influence on the stability of the ship. As the
center of gravity will be highly dependent on how the ship is loaded with cargo, what type of cargo the ship
is transporting, and how the hull and machinery is constructed and placed, it was decided to quantify the
importance of stability by calculating the required distance from the keel of the ship to the center of gravity,
KG. This is a length scale that is understandable. By comparing the value KG to the draft of the ship, is is
possible to make a judgement on how difficult it is to achieve the required value of KG. In this section, the
mathematical theory of initial stability will be given, which is based on reference [1]. The required value of
KG is calculated by finding the value of KG that creates a restoring moment for the ship that is equal to the
heeling moment from the wing. The stability parameter data for the two ships will also be given.

The required value of KG is dependent on the maximum allowable heeling angle. What this angle should
be, is a hard question to answer. Stability is a big topic, where safety considerations are a big part. This is
a bit outside the scope of the project, which is mainly focused on resistance. Based on the literature review
(chapter 2) and the heel experiments performed in this project, it seems that heeling angles that are less then
10 degrees are non-problematic from a resistance point of view. In order to be somewhat conservative, a
maximum allowable heeling angle is set to be 5 degrees. The maximum required value of KG is calculated
based on this. The value of KG will not take into account any safety considerations, only the demand that
the heeling moment from the wing sail shall not create larger heeling angles than 5 degrees.

5.3.1 Mathematical Theory of Stability

Initial stability stability gives a relation ship between geometric variables for a ship hull and the distance from
the center of gravity, to the rotation axis, known as the metacenter. This value is known as GM. Based
on the value of GM, the restoring moment arm, GZ, can be calculated. When GZ is known, the restoring
moment is calculated by taking the weight if the ship multiplied with the restoring moment arm. The initial
stability equations, taken directly from reference [1], is as follows:

GM = KB + BM — KG (5.3)
_ Ly

BM = 3 (5.4)

GZ = GMsin(6) (5.5)

M, = gpVGZ (5.6)

The requirement for KG is that the heeling moment from the wing must not exceed the restoring moment
from the ship. The side force from the wing is named Fy, and it is assumed that the force is acting at the
middle of the wing. That is, the height of the wings is 40 m, so the distance from the deck to the attack pint
of the force is 20 m. Since the moment balance is taken around the center of gravity, the total arm of the
side force from the wing will be equal to H/2 + D — KG. The resulting requirement for the value of KG can
be seen below:
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Static restoring moment > Heeling moment from wing (5.7)

gpVGZ > F, <H +D - KG) (5.8)

H
gpVGMsing > F, ( 2 ) (5.9

H
gpV (KB + BM — KG)sind > F, <2 +D- KG.> (5.10)

. H .
gpV (KB + BM)siné — F, <2+D) > KG (gpVsind — Fy) (6.11)
KB+ BM)sing — F, (£ + D

kG < 2V (B +BMsing - F, (5 + D) (5.12)

(gpVsin® — Fy)

5.3.2 Ship stability data

The ship stability data is presented in table 5.6. The values for the chemical tanker is taken from the software
FreeShip, since the geometry of the chemical tanker originates from this software, and FreeShip have func-
tions that calculates initial stability parameters. The values for Series 60 is calculated with the 3D modeling
software Rhino 3D, as this software contains methods to calculate the necessary values based on CAD
models.

Table 5.6: Stability data for the ship models used in this project

FreeShip Chemical Tanker  Series 60 Container Ship

D [m] 10 6.5
v [m?] 38147 7744
KB [m] 5.215 3.5
I,, [m*] 266172 23191
BM [m] 6.978 2.995

5.4 Going from Model Scale to Full Scale

All the resistance values in this project are originally from model scale ships. Since the resistance in full
scale is different from the resistance in model scale, some scaling must be applied. The scaling is done
by assuming the ITTC57 friction line, and only friction resistance is scaled. Air resistance and appendage
resistance is neglected, and non of the ship models have any transom stern so this is not modeled. The
friction coefficient based on the ITTC57 friction line is given as follows:

0.075

(logyo Re — 2)2 5.18)

F =

As the ship is not a flat plate, a form factor is needed. For the Series 60, MARINTEK's empirical formula for
a form factor is used, taken from reference [37]

k=0.6®+ 7503 (5.14)
o= %\/QB T (5.15)
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This gives the result & = 0.0705 for Series 60. The friction resistance for the chemical tanker is calculated
by assuming a constant relation ship between viscous and friction line.

In order to model roughness on a full scale ship hull, a roughness factor is used. This is based on empirical
formula, taken from reference [37]:

ACE = [110(H - U,)**" — 403] €} (5.16)
H =150 (5.17)

The residual drag coefficient, C'r, is assumed to be equal to the pressure drag coefficient for the CFD data,
while C is calculated by subtracting frictional resistance from the total resistance from the EFD Data. The
total resistance is then calculated as follows:

Cr=Cr+ (1+k) (Cr + ACF) (5.18)

The side force is not scaled. That is, the side force coefficient, C's is assumed to be the same in both model
scale and full scale. This is based on the fact that the side force is mainly from pressure, and for yaw angles
well below stall, viscous effects are known to have little effect on lifting surfaces.

5.5 Final Coupled Model

When the resistance is found as a function of speed and yaw angle, either from CFD or from EFD Data, and
the wing model is constructed (see chapter 6), then everything must be put together, in order to produce
the final results, seen in chapter 8. Three things are plotted for both ships: effective thrust from wing sails,
with and without taking into account the hydrodynamic effects of yaw, the yaw angles experienced by the
ships, under the influence of the wing sails, and finally, the required values of KG in order to not exceed 5
degrees heeling angle. Resistance is only considered to be a function of speed and yaw angle, not heeling
angle (see chapter 7 for more on this), as heeling angles seems to have little effect on the resistance. The
final results are really just a balance between side force from the wings and side force from the hull. Two
different approaches are used while looking at the thrust from the wing sails: thrust at constant speed and
constant wind velocity, for different true wind directions, and speed as a function of wind direction and wind
speed.

All the Matlab scripts that are used to generated the plots shown in chapter 8 can be seen in section 11.2

5.5.1 Effective Thrust Prediction

The effective thrust is found by first finding the angle of attack for the wing model, that produces the highest
amount of thrust. This is done by finding the highest possible thrust coefficient, as a function of apparent
wind direction. For a given speed, and a given true wind direction, the apparent wind direction is found, and
the corresponding maximum thrust coefficient is used to calculate the thrust from the sails. The side force
from the sails are found by using the side force coefficient that corresponds to the maximum thrust, and the
balance between the sails and the hull are found by numerically solving for the yaw angle that produces the
necessary side force. This is done by using built in interpolation functions in Matlab

The added resistance due to yaw is defined as the resistance at the yaw angle the generates enough side
force to balance the side force from the wing sails, minus the resistance at zero yaw angle. The effective
thrust is then defined as the thrust from the wing sail, minus the added resistance. The effective thrust,
divided by the resistance for zero yaw angle will then be a way to measure the effect of the wing sails. If this
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value is one, the wing sails will provide enough thrust to push the ship forward at the given speed alone. If
the value is less than one, an engine has to help.

The yaw angle that creates enough side force to balance the wing sail is stored for plotting. This will be a
function of wind direction, in the same way that as the thrust. The necessary value of KG is also calculated
and stored for plotting. This is a function of the side force, and thereby also a function of wind direction.

5.5.2 Velocity Prediction

The prediction of ship velocity, with a given wind speed, is slightly more computational demanding, as more
iterations has to be performed in order to find a balance. As a first guess of the speed of the ship, the
resistance and thrust at zero yaw angle, and zero ship speed is calculated. This value for the ship speed is
wrong, which makes the value for the apparent wind direction wrong, which makes the thrust wrong. The
resistance is off course also wrong, as yaw angles are not yet considered. However, this works as a good
first guess. The balance is found by simply iterating until the change in predicted ship velocity form one
iteration to the next is small (less than 0.1% for the specific plots used in chapter 8). An updated value of
the ship velocity makes for a better guess for the apparent wind direction, which makes for a better guess
for the thrust, etc. In the end, this approach gives convergence for the ship velocity, and a ship velocity
corresponding to balance in wing thrust and ship resistance, and side force from ship and wing is found.
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Chapter 6

The Physics of Wing Sails and How to
Model it

Wing sails are, as the name suggest, very similar to normal wings. They are both lifting surfaces, which
is defined as a body that can create a force normal to the incoming flow direction, i.e. liff. They are also
similar to normal sails, as they create useful force from the wind when some component of the total force
points in the ships direction of travel, i.e. thrust. The thrust is dependent on the speed and direction of the
apparent wind. The apparent wind is defined as the sum of the true wind velocity and the incoming velocity
due to the motion of the ship. The apparent wind hits the sail at an angle relative to the direction of travel,
and lift will be generated normal to the apparent wind, while drag is generated parallel to the apparent wind.
The nomenaclure used to describe wing sails are the same as the one used to describe normal wings. An
overview of some expressions are given in figure 6.1.

Wing tip

Trailing edge

Height, H,
or span
of wing

Planform of wing Leading edge

Planform area = A

Wing profile

Figure 6.1: Nomenaclure used to describe wing sails
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In this chapter, there will first be a brief overview of the forces that act on a wing sail, and how these forces
are modeled in this project. Then there will be a discussion about the differences between normal airplane
wings and wing sails. Although the similarities between airplane wings and wing sails are striking, there are
at least one fundamental difference, that should have some effect on the design of the wing sail. After this
discussion section, some simple numerical experiments are performed in order to pick a foil profile to use
in the wing sail simulation in this project. This will not be an extensive study of the shape of the foil profile,
but a few candidates are tested. In addition to finding a foil profile, the 3D effects on the wings must be
determined, as this is known to be of great importance. Quantifying the reduction in lift, and increase in drag
due to 3D effects are done with the custom Boundary Element Method (BEM) code for both rectangular
wings alone, and 8 wings in a row. The wings for both the chemical tanker and Series 60 are tested. The
dimensions of the wings were determined in the introduction, and can be seen in table 1.2.

6.1 Forces from a wing sail

When air flows over a wing, forces are created. The conventional way of looking at these forces are to
divide them in two, namely /ift and drag. Drag acts in the same direction as the incoming flow, while lift acts
perpendicular to the incoming flow. This is the most natural way of looking at wing forces when one are
talking about airplanes: lift is the useful force that keeps the plane from falling to the ground, while drag is
the negative force, that creates the need for big jet engines. For a wing sall, it is more natural to divide the
forces into thrust and side force. Thrust pushes the ship forward, while the side force tries to push to ship
sideways. Thrust and side force consists of both lift and drag, where the relationship between lift, drag,
thrust and side force are dependent on the apparent wind direction.

6.1.1 Lift

Lift, although inherently a phenomenon that only exist due to viscosity, is modeled pretty accurately by
potential theory, at least for small angles of attack (a fact that is covered in many text books, for instance
reference [2]). By enforcing the Kutta condition at the trailing edge of a wing, the viscous effect that creates
lift can be captured in an accurate way. The Kutta condition says that the flow must leave the trailing edge
of a wing smoothly. Or, to say it in a an equivalent way, the rear stagnation point must be at the trailing
edge. This is the only solution to a potential flow around a body with a sharp trailing edge, that does not
produce infinite velocities at the trailing edge. Although there is no mechanism for stopping infinite velocities
in potential theory alone, viscosity in the real world will always make sure this does not happen (even though
very large velocities can happen for short periods of time, such as in the startup period of flow around wings

[2).

For small angles of attack, the flow around a wing will be linearly proportional to the angle of attack. That is,
as long as the flow is attached to the wing, and separation happens at, or very close to, the trailing edge,
potential theory predicts accurate lift, which is linear as a function of angle of attack. For large angles of
attack, separation occurs a different place than the trailing edge, and the linear behavior stops.

Three-dimensional effects have large impact on the lift forces from a wing. The lift force happens because
one side of the wing have low pressure, while the other have high pressure. At the tip of the wing, the flow
from the high pressure side will flow around the tip to the low pressure side. This lowers the pressure on
the high pressure side, and increases the pressure on the low pressure side, which in effect reduces the lift.
Another way of looking at it is by considering the fact that this flow around the wing tip will create vortices.
In potential theory, a vortex will induce velocities, which happens to be such that they reduce the effective
angle of attack for the wing.

Lift is quantified with lift coefficients, Cp. Viscous effects on lift can be approximated by looking at the
viscous effect on the two dimensional lift coefficient, C', 2p. Neglecting viscous effects will predict a two-
dimensional lift coefficient equal to 2w«, where « is the angle of attack for the wing. In this project, viscous
effects on lift will be predicted on the two-dimensional foil profile of the wing, using XFOIL, while the BEM
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code will be used to predict three-dimensional effects. That is, the following expressions apply:

Lift CL BEM
C(L = = CL,2D,viscous . Y

1pAU? 2

6.1.2 Drag

Drag on a wing can be divided in two: viscous drag and potential drag. As with everything existing in a
moving fluid, viscosity will create drag forces on a wing, with or without lift. Since a wing is a slender body,
where the flow is attached, this viscous drag force will mainly be due to friction between the flow of air and
the wing surface.

Three-dimensional potential theory also predicts drag, however, only for a wing that creates lift. This is often
called lift-induced drag or vortex drag as the drag forces stems from the induced velocities that are created
by the vortices that are shed from wing in the process of creating lift. The act of creating lift, creates vortices
at the wing tips, which alters the velocity field at the wing itself, which again has the effect of "tilting" the lift
in the direction of the incoming velocity. This has the effect that the 3D force vector has a component in the
direction of the incoming flow, i.e. drag.

A common model for lift-induced drag is to assume that it is proportional to the lift coefficient squared. This
is based on theoretical results for an elliptic wing, the planar wing shape that gives the least amount of
lift-induced drag. For an elliptic wing, the lift induced drag coefficient can be written as follows:

Drag from potential theory Cc?
i,elliptic = = 6.2
Cpi,eliipt %pAUz TAsp 6.2)

For a non-elliptic wing, the general behavior will be the same, i.e. proportional to the lift coefficient squared,
but slightly higher. This is often expressed as follows:

_ 01 _ G
CDz,nonfellzptzc - m = WASp(l + 6) (63)

The value of ¢ is often small. For instance, for a rectangular wing, with Asp = 10, § = 0.08, based on data
from reference [34]. The factor e is known as the span efficiency factor. The span efficiency factor is only
including potential effects. The viscous nature of drag is also such that it is approximately proportional to
the lift coefficient squared. If viscous effects are included in e, it is often called the Oswald efficiency number
[47].

For this project, viscous effects are modeled with XFOIL by using integral boundary layer theory, and the
data for a certain wing profile, for a certain angle of attack, is found by interpolating the raw data from XFOIL,
rather than finding a viscous value of e. § is found by using the BEM code. As ¢ is rather small, the exact
value for § is not very important. Accurate values for the lift coefficient have a much bigger influence on the
drag values than accurate values of ¢ (see chapter 3 for validation of the lift values calculated by the BEM
code). The complete drag model for wings in this project can be written as follows:

Drag . C?
— = Cp,(f foil L
Cp AU C'py(from xfoil, o) + oy

(1 + 5from BEM) (6-4)

Here, Cp, is the viscous drag coefficient, and « is the angle of attack for the wing.
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6.1.3 Thrust and Side Force

The thrust and side force are given when the lift and drag is known. Thrust and side force are only a
transformation of lift and drag into a new coordinate system. When talking about lift and drag, the coordinate
system has the x-axis parallel with the incoming flow, and the y-axis normal to the incoming flow. When
talking about thrust and side force, the x-axis is pointed in the direction of travel for the ship. That is, towards
the bow. The y-axis is pointed to the port/left side of the ship. See figure 6.2 for a visual explanation.

M side force y Apparent wind
M Thrust

W Lift
Drag

Ship

Figure 6.2: lllustration of the relationship between the different forces acting on a wing sail

In mathematics, the relationship between lift, drag, thrust and side force will be as follows:

Thrust = Lift - sin@® — Drag - cos 6 6.5)
Side Force = —Lift - cosf — Drag - sind (6.6)

The thrust is symmetric about the x-axis, while the side force is anti-symmetric, so in this report, thrust and
side force are only calculated for 0 values between 0 and 180 degrees.

In order to make the thrust and side force non-dimensional, coefficients are used. C,, are the thrust coeffi-
cient, while C,, is the side force coefficient. They are defined as follows:

Thrust
=——>" =Crsing—C 0 6.7
T, AU? 1 sin b COS 6.7)
Side force
= ———— =-Crcosf—Cpsind 6.8
6.9)

The thrust from a wing sail will be dependent on the angle of the apparent wind. The relationship between
apparent wind and true wind can be seen in figure 6.3.
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U, = Incoming velocity due to ship movement
U,, = True wind
U,,» = Apparent wind

Ship />

Figure 6.3: Relationship between wind, ship velocity and apparent wind

The velocity components, and angle, of apparent wind, referring to figure 6.3, are given as follows:

Uw, A = —Uw cosf —Ug (610)

Uy,a = —Upw sing 6.11)

9 = tan~? (”“’A> 6.12)
Uw, A

6.2 Wing Sails vs Conventional Wings

While the purpose of a normal wing is to use the lift to counter the pull of earths gravity on an airplane, the
purpose of a wing salil is to push the ship forward as fast as possible. This creates one important difference,
which has a consequence when it comes to the design of the wing.

A normal airplane wing must be designed in such a way that in can create enough lift to keep the airplane
flying. Drag is purely a negative effect that increases the required propulsive power. This means that an
optimal design of a normal airplane wing could be defined as the wing that creates enough lift, with the
minimum amount of drag (This might not be true for more special airplanes, such as fighter jets, acrobatic
planes etc, but is fitting for a passenger/cargo airplane). The amount of lift that can be considered enough
is off course dependent on the weight of the airplane, which also is dependent on the size off the wing,
but it will be a finite amount. There exist a limit to how much lift there is necessary to create for a normal
airplane wing. Since the nature of lift is such that the very act of lifting also creates drag, it's not necessarily
beneficial to use high-lift-coefficient wings. Doubling the lift coefficient reduces the necessary wing area
to half its original value, which also, roughly speaking, reduces the viscous drag to half its original value.
However, since the lift-induced drag is proportional to the lift coefficient squared, doubling the lift coefficient
will actually multiply the lift-induced drag coefficient by four. The wing area is cut in half, but this only makes
it so that the lift induced drag will be doubled, instead of multiplied by four. Because of this, there exist an
optimal wing area, and thereby an optimal lift coefficient, for a certain wing design at a certain speed. Often
this results in an optimal lift coefficient that is rather low. This can for instance be seen if one studies the
mid-span foil profile for the passenger airplane Boeing 737, which can seen in figure 6.4.

70



<

(a) Boeing 737 midspan airfoil, b737b-il (b) High lift airfoil, Eppler E420

Figure 6.4: Example of airplane wing profiles. source: [42]

Compared to the high-lift foil profile Eppler E420, this foil profile has very little camber, and thereby, very low
lift coefficient (0.1391 according to XFOIL). If the lift coefficient was higher, there could be a smaller wing
area, and thereby lower viscous drag, but a higher lift coefficient would also increase the induced drag, and
overall there is probably no benefit in doing this (since Boeing has decided to use this specific foil). So the
goal is just to create enough lift with minimum amount of drag, and there is a limit to how much lift that needs
to be created. As high lift coefficients creates high lift-induced drag, foil profiles for airplanes will many times
have low lift coefficients. That is, they are NOT high lift-wings.

For a wing sail, the story will be quite different. This has to do with the fact that drag itself has very little
negative effect. For instance, if the apparent wind direction, 6, is 90 degrees, which means that the apparent
wind is coming directly from the side of the ship, the drag will not have any negative effect on the thrust at
all. If 8 is larger than 90 degrees, the drag actually gives positive thrust. The only time drag gives negative
thrust is when —90 < 0 < 90, that is, when the apparent wind is coming from slightly ahead of the ship.

But even in this range, there are areas where drag have little to say. For |f| > 45, cos@ < sind, which
means that lift is given more weight than drag in the thrust coefficient equation, equation 6.7. In addition,
lift is in generally higher than drag, and gives more contribution anyway. All in all, this gives a situation
where very high angles of attack is favorable for many of the apparent wind directions. In order to test
this, viscous data from XFOIL was collected, for the foil profile NACA 0014, at Reynolds number equal to
6 million (see section 6.3 for more on this). This data was then used, together with elliptic wing theory for
three-dimensional lift and lift-induced drag, to build a wing model where the optimal angle of attack can
be calculated. The optimization is done with brute force in Matlab. That is, many angles are tested, with
resolution of 0.1 degrees, and the angle of attack with the highest thrust coefficient is stored as the optimal
angle of attack for a given apparent wind direction. The result, for different aspect ratios can be seen in
figure 6.5
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Figure 6.5: Optimal angle of attack for a wing sail, calculated based on elliptic wing theory, using viscous
data from XFOIL and different aspect ratios
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The result is that angle of attack at around 20 degrees is optimal for almost all apparent wind directions,
except for 6 < 20. For very small values of 6 the optimal angle of attack drops quickly, which also means
that there is little thrust to be gained from a wing sail in these apparent wind directions. In general, it seems
that if one wishes to increase the thrust coefficient, one should try to increase the lift of the sail, rather than
decrease the drag. High lift devices, such as flaps and leading edge slots are probably a good idea. High
lift devices are not tested in this project, but based on the arguments made so far, it seems that this should
be investigated at a later time.

[t is also worth nothing that operating at such high angles of attack means that the wing are operating very
close to stall. It is known that stall can lead to drastic change in both drag and lift. If the wind direction for
some reason suddenly change, the actual angel of attack for the wing might be pushed into a stalling angle.
If the stalling characteristics of the wing is "bad", i.e. stall causes sudden large drop in lift, and large increase
in drag, it could be a large practical problem. The speed of the ship might suddenly drop, or alternatively,
the engine must suddenly increase the power output in order to compensate for the loss of thrust from the
wing sail. Stalling characteristics of a wing is therefore also something that should be investigated at a later
time.

6.3 Foil Profile

The purpose of this project is not to find an optimal design of a wing sail, but in order to have a wing model
that is realistic, some design choices have to be made. This section goes through some simple experiments,
performed with the computer software XFOIL, that are meant to give an idea of how the foil profile for a wing
sail should look. 2D lift and drag data is extracted from XFOIL, using the viscous integral boundary layer
theory in order to predict the effect of viscosity on lift and viscous drag. The 2D data are then used along
with elliptic wing theory in order to predict 3D effects, such as reduction in lift, and lift-induced drag.

The forces from the complete wing model is then transformed into thrust and side force, according to
equation 6.5. The thrust is evaluated for all angles of attack below the stalling angle of the profile, and the
optimal angle of attack for a given wind direction is stored.

In order to keep the experiment simple, most of the variables influencing the problem is set to be constant,
except for the actual foil geometry. The variables are meant to be realistic values, and changing them is not
expected to give large variations in the results. The necessary variables, used to build the complete wing
model, is shown in table

Table 6.1: Non-geometry variables used in the foil experiment

Variable name Value

Wing effective aspect ratio 10
Reynolds number 6-10°

These numbers are based on the dimensions of the wing sail given in table 1.2. An effective aspect ratio of
10 corresponds to a physical aspect ratio of 5, using symmetry to model the deck of the ship. The Reynolds
number is based on an apparent wind velocity of 10 m/s.

6.3.1 4-Digit NACA Profile with Varying Thickness

First, the classical symmetric NACA 4-digit profiles where tested with varying thickness. The thinnest foil
tested have a chord to thickness ratio of 0.1, while the thickest foil have a ratio of 0.2. The difference in
thickness can be observed in figure 6.6. The geometry of the foils where generated with XFOIL's built in
NACA profile generator.
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(a) NACA 0010 (b) NACA 0020

Figure 6.6: Thinnest and thickest NACA 4-digit foils used

Two-dimensional lift and drag data for NACA 4-digit foil profiles with varying thickness can be observed in
figure 6.7. NACA 0012 and 0014 have the highest lift coefficient, with NACA 0012 being slightly higher,
but NACA 0014 have a more gradual stall characteristic (the lift drops more slowly after the maximum lift
coefficient is reached).

1.8 - 0.35 :
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Figure 6.7: Lift and drag coefficients for different NACA 4-digit foil profiles

The thrust coefficient for different wind directions are then calculated based on the data, and plotted in figure
6.8
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Figure 6.8: Thrust coefficient for different NACA 4-digit foil profiles

The result is that thickness have very little effect, but the two foil profiles with highest lift gives the highest
thrust coefficient as well. Based on figure 6.8, NACA 0014 is picked as the best NACA fail.

6.3.2 Other Foil Profiles

Some other foils where also tested. In particular, a few low-reynolds foils where collected from reference
[42]. They were picked based on personal interest from the author, while looking through all the symmetrical
foils in the foil database in reference [42]. For one, Eppler, Joukowski and Wortmann are rather famous
names when it comes to foil design. They all have many foils available in foil databases such as reference
[42]. Another interesting feature is that they all have a slightly cusped trailing edge, which the NACA profiles
do not have. The Atlantis foil is of particular interest as it is a foil specifically designed in order to be used for
a wing sail. Details about the Atlantis project can be found in reference [9]. It must be mentioned that the
Atlantis foil is specifically designed in order to be optimal for a much lower Reynolds number than 6 million
(200 000 - 250 000), and low Reynolds number effects was a particular topic of interest for the authors.
The bad results seen in figure 6.10 and 6.11 should therefore be considered with this fact in mind. That is,
the Atlantis foil seems to be very bad at Re = 6 million, but based on results from reference [9], the results
for lower Reynolds numbers are quite different.

A o —

(a) Eppler 169, Low Reynoldsnumber airfoil (b) Joukowski 12% symmetric airfoil
(c) Wortmann FX LIlI-142 K 25 Airfoil (d) Foil from the Atlantis project [9]

Figure 6.9: Non-NACA foils tested
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Figure 6.11: Thrust coefficient for different foil profiles

The results for this test was that non of the more special foils were able to achive better results than the
NACA 0014 profile. Based on this, NACA 0014 has been used as a test foil in the rest of this project.

6.4 3D Effects

Three-dimensional effects are known to be very important for wing sails. Three-dimensional lift is significantly
lower than Two-dimensional lift, and three-dimensional lift generates lift-induced drag. Two thing were tested
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while using the custom BEM code developed for this project: The effect of having a rectangular wing, rather
than having an elliptic wing, and interactions effects between 8 wing sails standing in a row.

6.4.1 Rectangular Wing

A rectangular wing is known to be worse than an elliptic wing. The lift is reduced, and the lift-induced drag is
increased compared to en elliptic wing. The custom BEM code was used, together with viscous data from
XFOIL for the NACA 0014 profile, in order to generate the plots shown in figure 6.13. The BEM simulation
was performed with 36 panels in each chord-strip, 10 strips for the chemical tanker wings, and 20 strips for
the Series 60 wing. The dimensions of the wings are given in table 1.2. The effective aspect ratio is twice
the physical aspect ratio of the wings, in order to model the presence of the deck. Figure 6.12 shows the
discretized panels for the Series 60 wing, along with the deformed wake.

Figure 6.12: lllustration of the model used in the BEM simulation for single rectangular wing with physical
aspect ratio = 5. The wake is deformed according to the final solution, and the colors on the wing
corresponds to pressure values

The result of these simulations can be seen in figure 6.13. The lift for the chemical tanker wing are 65 % of
2D lift, while the lift for Series 60 are 78 %. ¢ values for the two wings are 0.05 and 0.08 for the two wings
respectively. The Series 60 wing show better performance than the chemical tanker wing, as expected.
This is explained by the higher aspect ratio for the chemical tanker wing. figure 6.13 also shows the raw
data from XFOIL for the two-dimensional foil profile, and values calculated as if the wing where elliptic. This
is done for comparison. Although the difference in induced drag is small when one is comparing an elliptic
wing with a rectangular wing, the difference in lift is significant. As lift is the most important property for a
wing sail, this will also affect the thrust coefficient in a significant way.
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Figure 6.13: Lift and drag data for single wing, calculated with different methods

6.4.2 Interaction Between Wing Sails in a Row

Interaction effects for wings standing in a row are important. In the same way that a single wing will expe-
rience induced velocities due to its own wake, several wings standing close to each other will experience
induced velocities due to each others wakes. Before starting this project, it was suspected that this inter-
action effect could potentially be positive. This was because of a slightly confusing way interaction effects
for biplanes (that is, planes with two wings on top of each other), often are described. For instance, refer-
ence [21] discusses different non-planar wing concepts (such as winglets, box wings, wing-tip fences, etc)
that are intended to reduce the lift-induced drag. The general message of reference [21] is that non-planar
wings are a good thing, as the non-planar wing concepts generally increases the span efficiency. A biplane
is reported to have a span efficiency of 1.36, if the wings are located 0.2 span lengths away from each other.
This sounds like a good thing. However, as reference [21] are talking about planes, and not wing sails, they
can look at the interaction effects a bit differently: in reference [21], all the non-planar wings tested have the
same span, and the same amount of lift. That is, the area of the non-planar wing is adjusted so that the
amount of lift is constant. The span efficiency is then defined as the amount of lift-induced drag generated
for a planar wing, divided by the lift-induced drag for a non-planar wing.

But if the total area of a biplane is at a similar size as for the planar wing (which it should be, depending on
how much the lift is affected by interaction effects), the physical aspect ratio of each wing in the biplane, will
be roughly twice the physical aspect ratio of the planar wing, as the chord length for two wings can be half
the chord length of one wing, without changing the total wing area. So when reference [21] are reporting
an effective aspect ratio of 1.36, it would correspond to each wing in the biplane only having an effective
aspect ratio of 1/1.36 = 0.74, if one is using the model in this report. That is, the interaction effect is actually
negative for a biplane. The lift-induced drag coefficient for each wing is higher than it would be if each wing
was standing alone, but from an airplanes perspective, the goal is to minimize the total drag, while keeping
the lift constant, so that a biplane configuration actually could be positive after all.

Other reports, discussing interaction effects for actual wing sails, agree with this. The interaction effect is,
in general, negative. For instance, reference [27] have tested wings experimentally and with Computational
Fluid Dynamics (CFD). If the wings are kept at a constant angle of attack, three wings standing together will
in general have a reduced thrust coefficient.

However, reference [27] also reports on another interaction effect that actually is positive. When several
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wings are standing together, it seems that the stall angle increases. The optimal angle of attack for several
wings are higher than the optimal angle of attack for just one wing. For instance, the optimal angle of attack
for a single wing, based on experiments in reference [27], is 17 degrees. But if the wind is coming at an
angle of 90 degrees, straight from the side, the optimal angle of attack for three wings are 18, 24, and 26 for
the three wings respectively. That is, the optimal angle of attack increases, and it increases differently for the
different wings. The total effect of this is that the thrust coefficient for wings standing together is only reduced
by 4 %. For certain wind directions, such as # = 120 the total interaction effect is positive, increasing the
thrust coefficient with 15 %. The total interaction effect, including viscous effects, are therefore dependent
on the wind direction.

The effect of increase in stall angle is not modeled in this project, due to limitations in the simulation software
used. The custom BEM code cannot model the viscous phenomena that makes it so that higher stall angles
are achieved. However, it can model the negative effect where the induced velocities are affecting the lift
and drag of the wings. This was done for 8 wings in a row, for different wind directions. Both the chemical
tanker wings and the Series 60 wings where modeled. The result of this can be seen in figure 6.15 and
6.16. An illustration, showing the simulation model used in the BEM code can be seen in figure 6.14

Figure 6.14: lllustration of the simulation model used in the BEM code in order to estimate interaction
effects between wing sails standing in a row. The ship hull is included in the illustration, but was not
directly a part of the simulation

The different wind directions where simulated by rotating the entire row of wings together, while keeping
them facing the incoming velocity at a constant angle of attack. The effect of a different wind direction is to
shift the wings relative to each other. The distance between the wings where kept constant, by assuming
that the rotational axis is at 25% of the chord length from the nose of the wing.
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Figure 6.15: Interaction effects on lift for 8 sails in a row
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Figure 6.16: Interaction effects on drag for 8 sails in a row

As can be seen in figure 6.15 and 6.16, the predicted interaction effects by the BEM code is strong. The
figures shows the forces calculated for wings in a row divided by the forces from a single wing alone. The
lift is significantly reduced, and the drag is in general increased. This will reduce the thrust from the wings.
The effect seems to be somewhat dependent on the angle of attack, but not very dependent.
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6.5 Complete Wing Sail Model

Even though the viscous effect of higher stall angle has not been modeled properly in this project, the
potential interaction effects is included in the final results, as a way of showing the importance of this physical
phenomena. The viscous drag and lift is modeled using XFOIL, for the 2D foil profile NACA 0014,

In short, the complete wing model is the 2D data from XFOIL, where the lift is reduced due to the fact that
it is a rectangular wing, and lift induced drag is included. The interaction effects are included as a function
of wind direction. The interaction effect between the data points in figure 6.15 and 6.16 are found by spline
interpolation in Matlab. This wing model is used to calculate the maximum thrust, and corresponding side
force as a function of apparent wind direction and speed.
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Chapter 7

Hydrodynamic Effects

When the wing sails are pushing the boat forward, there is also a significant side force and heeling moment.
These effects from the sails must be balanced by the hull in order to have a steady motion in one direction.
In this chapter, the scaled resistance results are presented, as a function of speed and yaw angle. Based on
the literature review in chapter 2 and the experimental data that are available, the effect of heel is discussed.

7.1 Calm Water Resistance without Yaw

The scaled resistance without yaw for the two test ships are presented in this section. This resistance is
used as a reference resistance later in this report. The result can be seen in figure 7.1. It is seen that the
chemical tanker have significantly higher resistance, but this is also expected, since it is a larger ship.

600

—@— Chemical tanker, scaled CFD results
Series 60, scaled EFD Data

500

400

300

200

Full scale ship resistance [kN]

100

0 1 1 1 1 1 1 1 J
6 8 10 12 14 16 18 20 22
Ship speed [knots]

Figure 7.1: Full scale calm water resistance, at 0 deg yaw, for the two test ships, as a function of ship
speed in knots
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7.2 Effect of Heel

The effect of heel was one of the first things the author tried to test with CFD, as the exact effect of heeling
a cargo ship was completely unknown. The result from one of these early CFD tests predicted that the
resistance of the chemical tanker, at 10 degree heel was equal to 33.67 N. This simulation was done at
such an early stage, that the times step in this simulation was too high, and it therefore predicts too high
resistance as well, but a simulation performed without heel, with the same (wrong) time step predicted a
resistance of 33.54 N. Thats a difference of less than 1%, so the author was worried that the simulation was
executed wrong (which it actually was, but this is also beside the point for this discussion). Steffen Hasfjord
was therefore asked to perform a few extra experiments while doing his own tests in the towing tank at
The Norwegian Marine Technology Research Institute (MARINTEK), too which he kindly agreed. The result
from these tests can be seen in section 5.1.2. The difference between 0 degree heel and 8.8 degrees is
also here less than 1%, and in fact, the difference is smaller than the difference between the first test at O
degrees and the second. Based on this, it was concluded that heel actually have very little effect on the
resistance of a cargo ship, at least for heel angles that are roughly less than 10 degrees. This conclusion
was further supported by the "Geitbat" experiments, in section 5.1.3, which shows the same tendency for
the traditional boat design.

However, this is not completely fitting with the statements in the yacht literature, discussed in chapter 2. The
yacht literature claims that the resistance due to heel is somewhere between 2% and 7%. Yachts have not
been tested in this project, but it is possible that yachts have significant added resistance due to heel, even if
cargo ships and traditional sailing boats have practically no increase in the resistance. Modern yachts have
significantly different hull forms compared to both cargo ships and the "Geitbat", often having wide transom
sterns. If this wide transom stern are heeled into the water, it might create added resistance. This theory
has not been tested, but there are at least reasons to believe that there is a difference between sail yachts
and cargo ships, based on the results seen so far.

The effect of heel is not modeled in the final result, because it is considered to be of very little importance,
based on both CFD and experiments.

7.3 Effect of Yaw

The yaw was expected to create a lot of added resistance. In order to visualize this, the resistance at a given
yaw angle was divided by the resistance without yaw. The result can be seen in figure 7.2. At the highest
yaw angles, 8 and 10 degrees for the chemical tanker and the series 60 respectively, the added resistance
is as high as 70% of the resistance without yaw, which is a lot. The added resistance for the chemical
tanker must be considered with the knowledge that the CFD setup used in this project might predict too
high resistance due to yaw, but since the Series 60 Experimental Fluid Dynamics Data (EFD Data) shows the
same tendency, it is safe to conclude that yaw angles have an significant effect on the resistance. The data
for the series 60 shows some bumps and kinks, which is believed to be explained by the fact that the EFD
Data have some uncertainty. The increase in resistance due to yaw should be a smooth function, although
the non-linear behavior is fitting with the general behavior of lift-induced drag for lifting surfaces.
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Figure 7.2: Resistance due to yaw, as a function of yaw angle

The side force on the two ships are very different in magnitude. The side force relative to the ship resistance
without yaw is almost twice as high for the Series 60 as for the chemical tanker. Although the predicted lift
from CFD is expected to be a bit too low, this is a very large difference, which might be due to the difference
in geometry as well. The Series 60 hull seems to be a more efficient lifting surface. The side force for
both ships are definitively non-linear, which is different from traditional wings. In general, wings have a linear
behavior for small angles of attack, but both CFD and EFD Data shows non-linear behavior at relatively small
yaw angles.

This can be explained by "cross flow drag”. The flow around the bottom of the ship hull can separate, and
create side force due to drag effects, rather than normal lift. A model for cross flow drag can be written as
follows:

Fy = %p (/L CD(m)D(x)dm) |U|?sin B|sin B| (7.1)

This model is taken from reference [11]. U is the ship velocity, £ is the yaw angle, D is the draft of the
ship, while Cp(z) is a drag coefficient. The basic idea is to use the part of the incoming flow velocity that
is normal to the longitudinal axis of the ship as a reference velocity. If this model is correct, there is clearly
a non linear behavior in cross flow drag. This can be seen easily if one considers small yaw angles. Then,
sin 8 = /3, so that the expression for cross flow drag can be considered to be oc 82. The side force at very
small yaw angles (less than 5 degrees) seems to be almost linear for the EFD Data. The question of how
important the effect of yaw is, does depend on how large the yaw angle due to a wing sail will be. If the yaw
angles are small enough, the added resistance due to yaw might not be so important after all. See chapter
8 for more on this.
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Figure 7.3: Side force due to yaw, as a function of yaw angle
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Chapter 8

Results

This chapter contains the overall final results, based on the methods developed, and the data collected, in
previous chapters. First, the forces from the wings are calculated, with a model that assumes rectangular
wings, viscous data from XFOIL and includes interaction effects for 8 wing sails in a row, as a function of
angle of attack. These force coefficients are then used to calculate the thrust and the side force on the ship
for different speeds and wind directions. The yaw angle necessary for balancing the side force from the
wings are found, and the added resistance due to yaw is calculated, and subtracted from the wing thrust
in order to find the effective thrust. Maximum KG values are calculated based on the requirement that the
hydrostatic restoring moment from the ship must balance the heeling moment from the wings. The velocity
while using wings as the only thrust generator is predicted, and lastly there is a plot showing the lift to drag
ratio for the hulls compared to a "normal" wing. The last graph are used for the discussion in chapter 9.

8.1 Forces From Wing Sails, including Interaction Effects

This section shows the thrust and side force coefficient for the two different wing sail setups, calculated
with different methods. The force coefficients predicted by taking the rectangular shape of the wing, and
the interaction effects, into account are much lower than the lift coefficient predicted by elliptic wing theory.
This illustrates that elliptic wing theory might be too optimistic when modeling wing sails. Real wings must
be modeled.
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Figure 8.1: Maximum thrust coefficient for the wing sails for the different ships, calculated with different
methods. The chemical tanker wings have physical Asp = 2.67 while the Series 60 wings have physical
Asp=5
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Figure 8.2: Side force coefficient for the wing sails for the different ships, calculated with different methods.
The chemical tanker wings have physical Asp = 2.67 while the Series 60 wings have physical Asp = 5

8.2 Using Wing Sails as Auxilarary Propulsion

This section shows the final predicted values for effective thrust, predicted yaw angles and maximum value
of KG for the two ships.
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8.2.1 Chemical Tanker
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Figure 8.3: Effective thrust from wing sails on the chemical tanker, with and without hydrodynamic effects
from yaw. Uy is the ship speed, and the wind speed is set to be 7 m/s
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Figure 8.4: Required yaw angle of the chemical tanker, in order to balance the side forces from the wing
sails. Uy is the ship speed, and the wind speed is set to be 7 m/s
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Figure 8.5: Maximum value of KG for the chemical tanker in order to withstand the heeling moment
generated by the sails, at 10 deg heeling angle. Us is the ship speed, and the wind speed is set to be 7 m/s
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Figure 8.6: Effective thrust from wing sails on Series 60, with and without hydrodynamic effects from yaw.

U, is the ship speed, and the wind speed is set to be 7 m/s
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Figure 8.7: Required yaw angle of Series 60, in order to balance the side forces from the wing sails. Uy is
the ship speed, and the wind speed is set to be 7 m/s
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Figure 8.8: Maximum value of KG for Series 60 in order to withstand the heeling moment generated by the
sails, at 10 deg heeling angle. U is the ship speed, and the wind speed is set to be 7 m/s

8.3 Using Wing Sails as the Only Propulsion

This section shows the predicted velocity for the Series 60 hull using wing sails as the only form of propulsion.
Since resistance data for the series 60 hull is not available for speeds lower than roughly 6 knots, not all wind
directions were possible to test. It is expected that the speed will drop rather quickly for near-head-wind
conditions.
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8.4 Comparing Hulls to Wing

As a final result graph, the lift to drag ratio is plotted for the two hulls, and compared to a "normal” elliptic
wing with aspect ratio equal to 5. This is to illustrate that the ship hulls are indeed "bad" lifting surfaces. The
lift to drag ratio is much smaller for the two ship hull than for the wing
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Figure 8.10: Lift force divided by drag force, for the two test hulls, and a theoretical elliptic wing, with
viscous effects modeled by XFOIL

90



Chapter 9

Final Discussion and Conclusion

The main objective of this project was to get an overview of the important physical effects involved when
using wing sails on a ship. Several physical effects have been explored. Everything has not been covered
in its entirety, however, the results from this project gives an idea of the effects that were in question before
starting this project. The project has also given the author experience in several modeling methods. Both
Boundary Element Method (BEM) and Computational Fluid Dynamics (CFD) have been used, together with
Experimental Fluid Dynamics Data (EFD Data) from external sources. Data from these different sources has
been put together, in order to model a ship, using wing sails as propulsion.

Two test ships were chosen, namely a chemical tanker, and the Series 60 container ship. Many, and large
wing sails have been used. Specifically, eight wing sails in a row, that nearly covers the entire ship in sails.
This probably gives an optimistic value of the total sail area, but this was done in order to give large forces
from the sails, so that potential hydrodynamic effects should be large as well. Realistic wind speeds were
assumed, based on wind maps covering the coast of Norway (figure 1.5). For the Series 60 ship, the sail
setup was enough to drive it at realistic cargo ship speeds. More than 10 knots could be reached, with a
wind speed equal to 7 m/s (figure 8.9). Keeping the ship speed constant at 12.5 knots, the wing sails could
give effective thrust equal to 78% of the total resistance of the ship (figure 8.6). The story for the chemical
tanker is a bit different. At 12.5 knots, the wing sails give an effective thrust equal to 40 % of the resistance
(figure 8.3.

One reason for the large difference between the two ships can probably be due to difference in resistance.
The Series 60 ship is a slender small ship, while the chemical tanker is a wide, large ship. However, another
important difference is the difference in thrust coefficient for the different sail setups. The Series 60 wings,
having higher aspect ratio, gives significantly higher thrust coefficients (figure 8.1). The thrust coefficient
is very dependent on the the lift coefficient, which again is very dependent on aspect ratio. The drag is
also dependent on the aspect ratio, but drag is less important for the thrust coefficient, as the drag force
is much smaller in value. Potential modeling of lift, done with the custom BEM code developed for this
project, predicts strong interaction effects between wing sails standing in a row. In fact, the interaction
effect predicted by BEM is purely negative. It decreases the lift, with as much as 45%, and increases the
drag, which as much as 80% (figure 6.15 and 6.16), which again decreases the thrust (figure 8.1). It seems
that some of the negative interaction effects can be countered by the fact that higher angles of attack can
be reached without stalling for the sails standing in a row, compared to sails standing alone, however this
effect has not been investigated properly in this project.

A wing sail that creates thrust will also, depending on the wind direction, create side force and heeling
moment. This side force must be balanced by the hull. Before starting this project, it was expected that this
would be a challenge. Creating lift from any lifting surface has the negative effect of also creating lift-induced
drag. As a normal ship hull has a very low aspect ratio and a high width, compared to wings, it was expected
that the added resistance due to yaw would lower the effective thrust from the wing sails considerably. This
was found to not be entirely correct. Side force from the wings will not create large yaw angles, at least not
for most wind directions.

Both Series 60 and the chemical tanker experiences a maximum yaw angle at around 3 degrees (figure 8.4
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and 8.7) in the test cases used in this project, but only when going high up against the wind (almost head
wind). For most wind directions the yaw angle is much smaller. For such small yaw angles there will not be
much added resistance on the ship (figure 7.2). This suggests that typical sailboat devices such as keels
have little influence on the effective thrust from the wing sail, and these devices were therefore not modeled
in this project.

The largest side forces from the wings are slightly larger than the the largest thrust (figure7.3), and comparing
lift to drag ratios for the two test hulls to a normal wing (figure 8.10) suggests that this would be a problem.
But then again, water is almost a thousand times denser than air, which means that even an inefficient lifting
surface can create much lift force without having a large yaw angle. In addition, the induced resistance due
to side force/lift is roughly proportional to the yaw angle squared. A small yaw angle will therefore mean a
small added resistance due to yaw. The added resistance due to yaw will not be a problem without large
yaw angles. The difference in effective thrust at wind directions close to head wind is however relatively
large. The problem is that the wing sails can not produce large amounts of thrust at these wind directions
anyway, so the consequence of yaw seems small. If one wishes to improve the performance of a sail boat
while going high up against the wind, yaw will definitely be a problem. If for instance the thrust from the
wing sail is considerably increased, by using some form of high-lift device on the wing (flaps, leading edge
slots, etc), the side force will quickly become a problem. The higher the thrust at these wind directions, the
higher the side force. It is also seen that the effect of yaw seems to be larger for the Series 60 hull than the
chemical tanker. This is explained by the fact that a larger amount of thrust is produced for the Series 60
hull, compared to the resistance of the ship. The Series 60 hull has more wing power, so the problem of
yaw becomes larger.

Based on this, there seems to be two things one can do in order to improve the wing sail technology: focus
on increasing the thrust from the wing sails, and reducing the resistance of the hull. Having a hull with low
resistance and a lot of wing sail power would be great. However, this would lead to a situation where the
effect of yaw could more severe, so that devices such as keels could be necessary. In other words, even if
the yaw effects are not severe for the ship hulls in this project, the effects should be much more important if
one tries to take advantage of the wind power at almost-head-wind conditions, as this would demand more
powerful wings, which would create larger side forces.

The heeling moment from the wing must be countered with a restoring moment from the ship hull. In this
project, only simple stability calculations are done, using initial stability theory, and neglecting many practical
considerations, regarding traveling with a heeling angle. The necessary maximum distance from the keel to
the center of gravity in order to counter the heeling moment from the wings, at 5 deg heel angle, is calculated
(figure 8.5 and 8.8). These calculations suggest that stability is not a big problem for the chemical tanker,
however slightly problematic for the Series 60 ship. The chemical tanker can have the center of gravity
above deck for all wind directions, while Series 60 must have the center of gravity below deck for all wind
directions in order to maximize the thrust from the wing sails. Stability can be increased by having a wider
hull, however, this will also increase the resistance. As the power of the wind, extracted by wing sails, are a
scarce resource, high stability could come with a large negative consequence as well. In addition to this it
is important to consider that wing sails will raise the center of gravity as they are structures that necessarily
must exist above the deck. This could lead to stability problems.

The hydrodynamic effect of going with a heel angle is found to not be negative. Both model tests, and
CFD results suggest that there is practically no increase in resistance when going with a heel angle alone
(section 7.2). This is slightly contrary to the yacht literature. It might be the case that normal sailing boats,
having a wide transom stern, create more resistance while going at a heel angle than a cargo ship. However,
normal sailboats probably have the wide transom stern for a reason. It should for instance help with the
stability of the ship in an effective manner. It could be the case that increasing the stability will increase the
consequence of heel.

A large portion of the time spent on this project was used on developing the custom BEM code. This
BEM code can model lifting surfaces using constant value potential panels and a potential wake. Through
comparison with experimental data for lift, and theoretical values for lift induced drag, the code was validated
to predict accurate results for a single wing. The pressure distributions around wings and cylinders are
compared to theoretical and other numerical results, and they show good agreement. The speed of the code
was significantly increased through the use of Open Computing Language (OpenCL), which can execute
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the same code on any parallel computational device in a modern computer. The open source software
Blender was used to create and manage 3D models. It works as both 3D kernel while running a code, and
a platform for post processing. This approach made it easier to deal with the 3D geometry in general, all
the way from building it, working with it, to making the results visible in an understandable way after the
simulation was complete.
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Chapter 10
Further Work

As this project is supposed to be continued in a PhD project, this section will actually be of great importance
for the author. Many things have not been explored, and the author sees possibilities for many interesting
research opportunities on the topic of wing sail driven cargo ships. A better understanding of the wing
sail interaction effects seems to be an important step. The interaction effects are seen to be strong in this
project, but there is a viscous aspect to the interaction that has not been modeled. In addition, increasing
the lift from the wing sails is believed to be a very good way to increase the thrust. High lift devices, such as
flaps, leading edge slots, and non-planar wing concepts, such as winglets, all seem like interesting research
topics. The general design of a wing sail is not very much explored.

It was a bit disappointing, from a research point of view, that there seemed to be such a small effect on the
effective thrust when heel and yaw were included in the modeling. Researching elegant ways of reducing
the yaw angles of cargo ship would be an interesting topic. However, the author does believe that effects
of yaw will be more important if the wing sail technology is pushed to its limits. In particular, increasing the
effect of the wing sails at small wind angles would push the ship harder to the side, and the added resistance
due to yaw will quickly rise with increasing yaw angles, due to its non-linear nature.

Another way of making a wing sail more effective is to reduce the resistance of the ship in general. however,
a slender, low resistance ship hull might have problems with stability. Finding a design with low resistance,
enough stability and good lifting properties could be very interesting. The mix between high lift wing sails,
and low resistance ship hulls is believed to not only be the key to making the wing sail technology viable, it
also makes the physics of the problem much more exciting. It would require more interesting solutions for
reducing the yaw and heel angle.

The modeling of a sailing ship is completely possible with today's fast computers, but it does take quite
a lot of time. Finding a fast, but reliable, way of modeling the forces that acts on a ship that moves with
arbitrary angles is an interesting challenge. The author has worked quite a lot with both CFD and BEM in
this project, and it seems that one possible way of achieving this could be by coupling a lifting BEM code to
a CFD code. There exists some software that already couples CFD with BEM, but the author has not seen
anybody coupling a lifting BEM code to CFD for a marine purpose. That is, lifting BEM that models a full free
surface, were the interaction between the potential wake and the free surface must be an important feature,
and where viscous effects, such as cross flow drag, can be modeled properly by having a CFD code that
only models viscosity where viscosity has an effect (i.e. the boundary layer).

Optimization of a wing sail driven cargo ship is also a big topic. Many design choices must be made in
order to create the perfect wing sail driven cargo ship. Finding the perfect balance between stability and
resistance, the optimal wing sail shape, and perhaps most importantly, finding the optimal routes for such a
vessel are all interesting and important topics.

The author feels that there is a lot to do, and is very happy that this project is not yet over.

to be continued....
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Chapter 11

Appendix

11.1 BEM code

11.1.1  Example control script

import bpy

import sys

import imp

import time

import numpy as np
from os import system

np.set_printoptions (threshold=np.nan)
print ('starting simulation')

import Geometry
imp.reload(Geometry)
import Computation
imp.reload(Computation)

# Generate mesh data

wing = Geometry.MeshData('wing')
wing.findStrips (2%¥30-1)

wake = Geometry.MeshData('wake')
wake.findStrips (2%30-1)

wingList = [wing]
wakeList = [wake]

# Set up OpenCL

opencl = Computation.Computation(workPath)
wing.setOpenCL (opencl.cntxt)
wake.setOpenCL (opencl.cntxt)

# External velocity vector
U = np.array([1.0, 0, 01)

# System to be solved
for i in range(3):
print ('Iteration:', i)
B = opencl.influenceMatrixSourceDirichlet (wingList)
A = opencl.influenceMatrixDoubletDirichlet (wingList)
opencl.influenceFromStripsDirichlet (A, wingList, wakeList)

sigma = opencl.rightSideSigma(winglList, U)
b = -np.dot(B, sigma)

gamma = np.linalg.solve(A, b)

# Set strengths

wing.setGamma (gamma, opencl.cntxt)
wing.setSigma(sigma, opencl.cntxt)
wake.setGammaWake (wing, opencl.cntxt)

opencl.deformWake (wake, wingList, wakeList, U)

wing.postProcessingDirichlet (U)
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print ('Pressure Force:', wing.Force[0], wing.Force[1], wing.Forcel[2])

F =

opencl.forceCalculation(wake, wing, wakeList, wingList, U)

print ('Wing Kutta-joukowski, Force:', F[0], F[1], F[2])

wak
win

wing.ve
wing.pr

print ('
print ('

11.1.2

import
import
import
import
import
import

e.updateData(opencl.cntxt)
g.Force = np.zeros(3)

locityColorMap ()
essureColorMap ()

endingsimulation')

\n')

Geometry.py

bpy

numpy as np
mathutils
ColorMaps
pyopencl as cl
os

class MeshData:

def

__init__(self, objectName):
''"'" Class that contains the blender data, and data formatet to be sent to computations'''

''"'" Blender data '''
self.object = bpy.data.objects[objectName]

# Create rotation matrix for transforming normals to global coordinate system

euler_x = self.object.rotation_euler [0]
euler_y = self.object.rotation_euler[1]
euler_z = self.object.rotation_euler[2]

Rx = mathutils.Matrix.Rotation(euler_x, 4, 'X')
Ry = mathutils.Matrix.Rotation(euler_y, 4, 'Y')
Rz = mathutils.Matrix.Rotation(euler_z, 4, 'Z')

self .matrix_rotation = Rz * Ry * Rx
self .matrix_world = self.object.matrix_world

self.polygons = self.object.data.polygons

''"'" OpenCL formatet data ''"
self.nrPoly = len(self.polygons)

self.nrVert = len(self.object.data.vertices)

self.vertices = np.zeros((self.nrVert, 4), dtype = np.float32) # Global coordinates
self.ctrlPoints = np.zeros((self.nrPoly, 4), dtype = np.float32) # Global coordinates
self.topology = np.zeros((self.nrPoly, 4), dtype = np.int32 ) # Topology in opencl formate

# Local coordinate system

self.1l = np.zeros((self.nrPoly, 4), dtype = np.float32)
self.m = np.zeros((self.nrPoly, 4), dtype = np.float32)
self.n = np.zeros((self.nrPoly, 4), dtype = np.float32)

# Go through all vertices
for i in range(self.nrVert):
p = self.matrix_world * self.object.data.vertices[il.co # Transform to global coordinates

self.vertices[i][0] = np.float32(p[0])
self.vertices[i] [1] np.float32(p[1])
self.vertices[i] [2] = np.float32(p[2])

# Go through all polygons

for i in range(self.nrPoly):
n = self.matrix_rotation * self.polygons[i].normal # Transform to global coordinates
p = self.matrix_world * self.polygons[i].center

il = self.polygons[il].vertices[0]
i2 = self.polygons[i].vertices[1]
i3 = self.polygons[i].vertices[2]
i4 = self.polygons[il.vertices[3]

pl = self.vertices[il]
p2 = self.vertices[i2]
p3 = self.vertices[i3]
p4 = self.vertices[i4]

1 = (pl + p2 - p3 - p4d)
1/np.sqrt( 1[0]*%2 + 1[1]%%2 + 1[2]%x2 )

=
[

np.zeros (3)

8
n
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def

def

[

self.
self.
self.

self.
self.

self.
self.

m[0
m[1
m[2

m =

for

for

1 = n[1]1%1[2] - 1[11=*n[2]
] = 1[0]*n[2] - n[0]x*1[2]
] = n[0]1*1[1] - 1[0]1*n[1]

m/np.sqrt( m[0]**2 + m[1]*%*2 + m[2]%*2 )

j in range(3):
self.ctrlPoints[i

self.1[i][j] = np.float32(1[jl)
self.m[i][j] = np.float32(m[jl)
self .n[i][j] = np.float32(nljl)

j in range(4):
self.topologyl[i][

1031 = np.float32(p[jl)

jl = np.int32(self.polygons[i].vertices[j])

Initialize variables for later use
locity = np.zeros( (self.nrPoly, 4) )

ve

pr
Fo

ve
ve

nr
nr

essure = np.zeros(
rce = np.zeros(

self .nrPoly
3)

[

)

rtVelocity = np.zeros( (self.nrVert, 4) )
ros( self.nrVert )

rtPressure = np.ze

Strips = 0
PolyPrStrip = 0

findStrips(self, nrStrips, nrPolyPrStrip

[

Divide mesh into strips,

self .nrStrips = nrStrips

if nrPolyPrStrip ==

else

self.polyInStrips = np.zeros( (self.nrStrips,

sel

sel

po

f.nrPolyPrStrip =

f.nrPolyPrStrip =

lygons in strips

0):

np.int(self.nrPoly/nrStrips)

nrPolyPrStrip

based on assumption that it os from NURBS object in blender'''

self.stripForPoly = np.zeros(self.nrPoly) # Which strip each polygon belongs to

iPol

y =

0

for i in range(nrStrips):

for j in range(self.nrPolyPrStrip):

self.polyInStrips
self.stripForPoly

iPoly += 1

[i1[j] = np.int32(iPoly)

[iPoly] = i

# Creating colormap to seperate out the strips

colorMaps = self.object.data.vertex_colors
createColorMap = True
colorMapName = 'strips'

for i in range(len(colorMaps)):
if colorMaps[i].name == colorMapName:

createColorMap =

if createColorMap:
colorMaps.new(colorMapName)

iColor

for iPoly

str
rgb

for

=0

ip = self.stripFor

False

in range(self.nrPoly):

Poly[iPolyl

= ColorMaps. jet(strip, nrStrips-1, 0)

iTop in range(4):

colorMaps [colorMapName].data[iColor].color

iColor += 1

setOpenCL(self, cntxt):

self

self.

self.

self.

self.

self

.to

ve

1B

mB

nB

.ct

pologyBuff = cl.
self.topology)
rticesBuff = cl.
self.vertices)

uff = cl
self.1)

uff = cl
self.m)

uff = cl.
self.n)
rlPointsBuff = cl.

Buffer (cntxt,

Buffer (cntxt,

.Buffer (cntxt,

.Buffer (cntxt,

Buffer (cntxt,

Buffer (cntxt,

cl.

cl.

cl

cl

cl.

cl.

mem_flags.
mem_flags.
.mem_flags.
.mem_flags.
mem_flags.

mem_flags.
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= rgb

READ_ONLY
READ_ONLY
READ_ONLY
READ_ONLY
READ_ONLY

READ_ONLY

cl.

cl.

cl

cl

cl.

cl.

mem_flags.
mem_flags.
.mem_flags.
.mem_flags.
mem_flags.

mem_flags.

COPY_HOST_PTR,
COPY_HOST_PTR,
COPY_HOST_PTR,
COPY_HOST_PTR,
COPY_HOST_PTR,

COPY_HOST_PTR,

self .nrPolyPrStrip), dtype = np.int32 ) # Indices of

hostbuf

hostbuf

hostbuf

hostbuf

hostbuf

hostbuf



= self.ctrlPoints)

def updateData(self, cntxt):
# Go through all vertices
for i in range(self.nrVert):
p = self.matrix_world * self.object.data.vertices[i]l.co # Transform to global coordinates

self.vertices[i] [0] np.float32(p[0])
self.vertices[i][1] np.float32(p[1])
self .vertices[i][2] = np.float32(p[2])

# Go through all polygons

for i in range(self.nrPoly):
n = self.matrix_rotation * self.polygons[i].normal # Transform to global coordinates
p = self.matrix_world * self.polygons[i].center

il = self.polygons[i].vertices[0]
i2 = self.polygons[il.vertices[1]
i3 = self.polygons[il.vertices[2]
i4 = self.polygons[il].vertices[3]

pl = self.vertices[il]
p2 = self.vertices[i2]
p3 = self.vertices[i3]
p4 = self.vertices[i4]

-
I

(pl + p2 - p3 - p4)
1/np.sqrt( 1[0]**2 + 1[1]1*%2 + 1[2]**2 )

—
n

m = np.zeros(3)

m[0] = n[1]1*1[2] - 1[1]=*n[2]
m[1] = 1[0]*n[2] - n[0]*1[2]
m[2] = n[0]*1[1] - 1[0]*n[1]

m = m/np.sqrt( m[0]*x2 + m[1]**2 + m[2]**2 )

for j in range(3):
self.ctrlPoints[i][j] = np.float32(p[jl)

self.1[i][j] np.float32(1[jl)
self .m[i] [j] np.float32(m[j])
self.n[il[j] = np.float32(nljl)

# Update buffers

self.verticesBuff = cl.Buffer(cntxt, cl.mem_flags.READ_ONLY | cl.mem_flags.COPY_HOST_PTR, hostbuf
= self.vertices)

self.1Buff = cl.Buffer(cntxt, cl.mem_flags.READ_ONLY | cl.mem_flags.COPY_HOST_PTR, hostbuf
= self.l)

self .mBuff = cl.Buffer(cntxt, cl.mem_flags.READ_ONLY | cl.mem_flags.COPY_HOST_PTR, hostbuf
= self.m)

self.nBuff = cl.Buffer(cntxt, cl.mem_flags.READ_ONLY | cl.mem_flags.COPY_HOST_PTR, hostbuf
= self.n)

self.ctrlPointsBuff = cl.Buffer(cntxt, cl.mem_flags.READ_ONLY | cl.mem_flags.COPY_HOST_PTR, hostbuf

= self.ctrlPoints)

def setGamma(self, gamma, cntxt):
self.gamma = np.float32(gamma)

self.gammaBuff = cl.Buffer(cntxt, cl.mem_flags.READ_ONLY | cl.mem_flags.COPY_HOST_PTR, hostbuf

self.gamma)

def setSigma(self, sigma, cntxt):
self.sigma = np.float32(sigma)

self.sigmaBuff = cl.Buffer(cntxt, cl.mem_flags.READ_ONLY | cl.mem_flags.COPY_HOST_PTR, hostbuf

self.sigma)

def setGammaWake (self, wingData, cntxt):
self.gamma = np.zeros(self.nrPoly, dtype = np.float32)

for i in range(self.nrStrips):
trailingIndexl = wingData.polyInStrips[i][0]
trailingIndex2 = wingData.polyInStrips[i][-1]

g = wingData.gamma[trailingIndexl] - wingData.gamma[trailingIndex2]
for j in range(self.nrPolyPrStrip):

index = self.polyInStrips[il[j]
self.gamma[index] = g

self.gammaBuff = cl.Buffer(cntxt, cl.mem_flags.READ_ONLY | cl.mem_flags.COPY_HOST_PTR, hostbuf

self.gamma)
def postProcessingDirichlet(self, U):

Uinf = UL0]**2 + U[1]**2 + U[2]**2
# Go through all polygons once
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for i in range(self.nrStrips):
for j in range(self.nrPolyPrStrip):

# Current polygon
i0 = self.polyInStrips[i][j]
p0 = self.ctrlPoints[iO]

if (i==0):
iN = self.polyInStrips[i+1][j]

pN = self.ctrlPoints[iN]

gamma_N2 self.gamma[iN]
gamma_N1 = self.gammal[iO]

L_m = np.sqrt( (pN[0] - pO[0])**2 + (pN[1] - pO[1])**2 + (pN[2] - pO[2])=**2 )
elif (i == self.nrStrips - 1):
iS = self.polyInStrips[i-1]1[j]

pS = self.ctrlPoints[iS]

gamma_N2 = self.gammal[iO]
gamma_N1 = self.gammal[iS]

L_m = np.sqrt( (pO0[0] - pS[0])**2 + (pO[1] - pS[11)**2 + (pO[2] - pS[2])=**2 )
else:

iN = self.polyInStrips[i+1]1[j]

iS = self.polyInStrips[i-1][j]

pN = self.ctrlPoints[iN]
pS = self.ctrlPoints[iS]

gamma_N2 = self.gammal[iN]
gamma_N1 = self.gammal[iS]

L_m = np.sqrt( (pN[0] - pO[0])**2 + (pN[1] - pO[1])**2 + (pN[2] - pO[2])**2 ) + np.sqrt(
(p0[0] - pS[0]1)**2 + (pO[1] - pS[1]1)**2 + (pO[2] - pS[2])**2 )

if (j==0):
iE = self.polyInStrips[i][j+1]

PE = self.ctrlPoints[iE]

gamma_E2 = self.gammal[iE]
gamma_0 = self.gammal[iO]

SA = np.sqrt( (pE[0] - pO[0])**2 + (pE[1] - pO[1])**2 + (pE[2] - pO[2])**2 )
SB = 0

DA (gamma_E2 - gamma_0)/SA
DB =0

L_1 = np.sqrt( (pE[0] - p0[0])**2 + (pE[1] - pO[1])**2 + (pE[2] - pO[2])**2 )
elif (j==self.nrPolyPrStrip-1):
iW = self.polyInStrips[i][j-1]

pW = self.ctrlPoints[iW]

gamma_0 = self.gammal[iO]
gamma_E1 = self.gamma[iW]

SA =0

SB = np.sqrt( (pW[0] - pO[0])**2 + (pW[1] - pO[1])**2 + (pW[2] - pO[2])**2 )
DA =0

DB = (gamma_El1 - gamma_0)/SB

iE = self.polyInStrips[i][j+1]
iW = self.polyInStrips[i][j-1]

PE = self.ctrlPoints[iE]
pW = self.ctrlPoints[iW]

gamma_E2 = self.gammal[iE]
gamma_E1 = self.gamma[iW]
gamma_0 self.gamma[i0]

SA = np.sqrt( (pEL0] - p0[0]1)*%2 + (pE[1] - pO[1]1)**2 + (PE[2] - pO[2])**2 )
SB = np.sqrt( (pW[0] - pO[0])**2 + (pW[1] - pO[1])**2 + (pW[2] - pO[2])**2 )

DA = (gamma_E2 - gamma_0)/SA
DB = (gamma_El1 - gamma_0)/SB

u_l = -4*np.pi*( DA*SA - DB*SB )/(SA + SB)
u_m = -4*np.pi*x( gamma_N2 - gamma_N1 )/L_m
u_n = 4xnp.pi*self.sigmal[iO]
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def

def

def

def

# Transformation to global coordinate system
u = u_l*self.1[i0] + u_m*self.m[i0] + u_n*self.n[i0]

self.velocity[i0][0] = U[0] + u[0]
self.velocity[i0][1] = U[1] + u[1]
self.velocity[i0][2] = U[2] + ul[2]

self.velocity[i0]1[3] = np.sqrt( self.velocity[i0][0]**2 + self.velocity[i0][1]**2 + self.
velocity [10] [2]**2 )

self .pressure[i0] = 1 - (self.velocity[i0][3]#*%2)/Uinf
force = -self.pressure[iO]*self.n[i0O]*self.object.data.polygons[i0].area

self .Force[0] += force[0]
self.Force[1] += forcel[1]
self .Force[2] += forcel[2]

velocityMagnitude (self):
for i in range(self.nrPoly):
self.velocity[i][3] = np.sqrt( self.velocity[i][0]**2 + self.velocity[i][1]**2 + self.velocityl[i
J[2]*%2 )

vertVelocityMagnitude (self):
for i in range(self.nrVert):
self.vertVelocity[i][3] = np.sqrt( self.vertVelocity[i][0]**2 + self.vertVelocity[i][1]**2 +
self.vertVelocity[i] [2]**2 )

velocityColorMap (self):

colorMaps = self.object.data.vertex_colors
createColorMap = True
colorMapName = 'velocity'

for i in range(len(colorMaps)):
if colorMaps[il].name == colorMapName:
createColorMap = False

if createColorMap:
colorMaps.new(colorMapName)

uMax = self.velocity[0][3]
uMin = self.velocity[0][3]

for i in range(self.nrPoly):
if uMax < self.velocity[i][3]:
uMax = self.velocityl[i][3]
if uMin > self.velocity[i][3]:
uMin = self.velocity[i][3]

print ('Min velcoity_ magnitude:', uMin)
print ('Max_velcoity magnitude:', uMax)
iColor = 0

for iPoly in range(self.nrPoly):
u = self.velocity[iPoly] [3]

rgb = ColorMaps.jet(u, uMax, uMin)

for iTop in range(4):
colorMaps [colorMapName].data[iColor].color = rgb

iColor += 1

vertVelocityColorMap (self):

colorMaps = self.object.data.vertex_colors
createColorMap = True
colorMapName = 'vertVelocity'

for i in range(len(colorMaps)):
if colorMaps[i].name == colorMapName:
createColorMap = False

if createColorMap:
colorMaps.new(colorMapName)

uMax self.vertVelocity [0] [3]
uMin = self.vertVelocity[0][3]

for i in range(self.nrVert):
if uMax < self.vertVelocity[i][3]:
uMax = self.vertVelocity[i][3]
if uMin > self.vertVelocity[i][3]:
uMin = self.vertVelocity[i][3]
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print ('Min vertVelcoity magnitude:', uMin)
print ('Max vertVelcoity magnitude:', uMax)

iColor = 0
for iPoly in range(self.nrPoly):

for iTop in range (4):
iVert = self.polygons[iPolyl.vertices[iTop]

u = self.vertVelocity[iVert][3]

rgb = ColorMaps.jet(u, uMax, uMin)

colorMaps [colorMapName].data[iColor].color = rgb
iColor += 1

def pressureColorMap(self):

colorMaps = self.object.data.vertex_colors
createColorMap = True
colorMapName = 'pressure'

for i in range(len(colorMaps)):
if colorMaps[i].name == colorMapName:
createColorMap = False

if createColorMap:
colorMaps.new(colorMapName)

pMax = self.pressure[0]
pMin = self.pressure[0]

for i in range(self.nrPoly):
if pMax < self.pressure[i]:
pMax = self.pressurel[i]
if pMin > self.pressurel[il:
pMin = self.pressure[i]

print ('Min_ pressurecoefficient:', pMin)
print ('Max pressure coefficient:', pMax)

iColor = 0
for iPoly in range(self.nrPoly):
p = self.pressure[iPoly]

rgb = ColorMaps.jet(p, pMax, pMin)

for iTop in range(4):
colorMaps [colorMapName].data[iColor].color = rgb

iColor += 1

11.1.3 Computation.py

''"' Class containing OpenCL variables, such as context and que, along with methods that perform operations
that are dependent on
OpenCL. Input to the methods are geometry data'''

import numpy as np
import pyopencl as cl
import os

class Computation:
def __init__(self, workPath):
platforms = cl.get_platforms()

my_CPU_devices = platforms[0].get_devices(device_type = cl.device_type.CPU)
my_GPU_devices = platforms[0].get_devices(device_type = cl.device_type.GPU)
os.environ['PYOPENCL_COMPILER_OUTPUT'] = '1'

self.cntxt cl.Context (devices=my_CPU_devices)
self.queue = cl.CommandQueue(self.cntxt)

# Load kernel file

kernelFile = open(workPath+'kernels.cl',6 'r')
kernelStr = "".join(kernelFile.readlines())
kernelFile.close()

# build kernel programs

self .kernels = cl.Program(self.cntxt, kernelStr).build()

def influenceMatrixSourceNewmann(self, meshData):
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def

def

A = np.zeros( (meshData.nrPoly, meshData.nrPoly) )

a = np.zeros(meshData.nrPoly, dtype = np.float32)
aBuff = cl.Buffer(self.cntxt, cl.mem_flags.WRITE_ONLY, a.nbytes)

for i in range(meshData.nrPoly):
p = meshData.ctrlPoints[i]
n = meshData.n[i]

launch = self.kernels.sourceInfluenceNewmann(self.queue,
(meshData.nrPoly,),
1),
P>
n,
meshData.verticesBuff,
meshData.ctrlPointsBuff,
meshData.lBuff,
meshData.mBuff,
meshData.nBuff,
meshData.topologyBuff,
aBuff)

launch.wait ()

cl.enqueue_read_buffer(self.queue, aBuff, a).wait()
A[i]l = a
return A

influenceMatrixSourceDirichlet (self, meshDatalList):
nrObjects = len(meshDatalist)

# Get overview of system size
systemSize = 0
for i in range(nrObjects):
systemSize += meshDataList[i].nrPoly

# Initialize influence matrix
A = np.zeros( (systemSize, systemSize) )

iRow = 0 # Row counter

for objectNrRow in range(nrObjects):

meshDataRow = meshDatalist[objectNrRow] # The object where the control point is evaluated

for i in range (meshDataRow.nrPoly):
p = meshDataRow.ctrlPoints[i]
aRow = np.array ([])

for objectNrCol in range(nrObjects):
meshDataCol = meshDataList[objectNrColl]

a np.zeros (meshDataCol.nrPoly, dtype = np.float32)
aBuff = cl.Buffer(self.cntxt, cl.mem_flags.WRITE_ONLY, a.nbytes)

launch = self.kernels.sourceInfluenceDirichlet(self.queue,
(meshDataCol.nrPoly,),
1,),
P
meshDataCol.verticesBuff,
meshDataCol.ctrlPointsBuff,
meshDataCol.1lBuff,
meshDataCol . .mBuff,
meshDataCol.nBuff,
meshDataCol.topologyBuff,
aBuff)

launch.wait ()

cl.enqueue_read_buffer(self.queue, aBuff, a).wait()
aRow = np.append(aRow, a) # Add result to end of list
A[iRow] = aRow
iRow += 1
return A

influenceMatrixDoubletNewmann (self, meshData):
A = np.zeros( (meshData.nrPoly, meshData.nrPoly) )

»
[

= np.zeros(meshData.nrPoly, dtype = np.float32)
aBuff = cl.Buffer(self.cntxt, cl.mem_flags.WRITE_ONLY, a.nbytes)

for i in range(meshData.nrPoly):

p = meshData.ctrlPoints[i]
n = meshData.n[i]
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def

def

launch = self.kernels.doubletInfluenceNewmann(self.queue,
(meshData.nrPoly,),
(1,),
P
n,
meshData.verticesBuff,
meshData.ctrlPointsBuff,
meshData.1lBuff,
meshData.mBuff,
meshData.nBuff,
meshData.topologyBuff,
aBuff)

launch.wait ()

cl.enqueue_read_buffer(self.queue, aBuff, a).wait()
A[i] = a
return A

influenceMatrixDoubletDirichlet (self, meshDatalist):
nrObjects = len(meshDatalList)

# Get overview of system size
systemSize = 0
for i in range(nrObjects):
systemSize += meshDataList[i].nrPoly

# Initialize influence matrix
A = np.zeros( (systemSize, systemSize) )

iRow = 0 # Row counter

for objectNrRow in range(nrObjects):
meshDataRow = meshDatalist[objectNrRow] # The object where the control point is evaluated

for i in range (meshDataRow.nrPoly):
p = meshDataRow.ctrlPoints[i]
aRow = np.array([])

for objectNrCol in range(nrObjects):
meshDataCol = meshDataList[objectNrColl]

a = np.zeros (meshDataCol.nrPoly, dtype = np.float32)

aBuff = cl.Buffer(self.cntxt, cl.mem_flags.WRITE_ONLY, a.nbytes)

launch = self.kernels.doubletInfluenceDirichlet (self.queue,
(meshDataCol.nrPoly,),
1,),
P

meshDataCol.verticesBuff,
meshDataCol.ctrlPointsBuff,
meshDataCol.1lBuff,
meshDataCol.mBuff,
meshDataCol.nBuff,
meshDataCol.topologyBuff,
aBuff)
launch.wait ()
cl.enqueue_read_buffer(self.queue, aBuff, a).wait()
aRow = np.append(aRow, a) # Add result to end of list
A[iRow] = aRow
iRow += 1
return A
influenceFromStripsDirichlet(self, A, wingDatalist, wakeDataList):
nrObjects = len(wingDatalist)
iRow = 0
for objectNrRow in range(nrObjects):
wingDataRow = wingDatalList [objectNrRow]

wakeDataRow = wakeDataList[objectNrRow]

for i in range(wingDataRow.nrPoly):
p = wingDataRow.ctrlPoints[i]

indexAdjust = 0

for objectNrStrip in range(nrObjects):
wingDataStrip = wingDatalList[objectNrStrip]
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wakeDataStrip = wakeDataList[objectNrStrip]

a = np.zeros( wakeDataStrip.nrPolyPrStrip, dtype = np.float32 )
aBuff = cl.Buffer(self.cntxt, cl.mem_flags.WRITE_ONLY, a.nbytes)

for j in range(wakeDataStrip.nrStrips):

polyInStripBuff = cl.Buffer(self.cntxt, cl.mem_flags.READ_ONLY | cl.mem_flags.

COPY_HOST_PTR, hostbuf = wakeDataStrip.polyInStrips[jl)

launch = self.kernels.stripInfluenceDirichlet (self.queue,
(wakeDataStrip.nrPolyPrStrip,),
1,),
130
wakeDataStrip.verticesBuff,
wakeDataStrip.ctrlPointsBuff,
wakeDataStrip.1Buff,
wakeDataStrip.mBuff,
wakeDataStrip.nBuff,
wakeDataStrip.topologyBuff,
polyInStripBuff,
aBuff)

launch.wait ()

cl.enqueue_read_buffer(self.queue, aBuff, a).wait()

trailingIndexl = indexAdjust + wingDataStrip.polyInStrips[j][0]
trailingIndex2 = indexAdjust + wingDataStrip.polyInStrips([j][-1]

asum = a.sum()

A[iRow] [trailingIndex1] += asum
A[iRow] [trailingIndex2] -= asum

indexAdjust += wingDataStrip.nrPoly

iRow += 1

def velocityAtPoint(self, p, wingDatalist, wakeDatalist, U):
nrObjects = len(wingDatalist)

np.zeros(3) # Return value

for i in range(nrObjects):

wingData = wingDataList[i]
wakeData = wakeDataList[i]

aWing = np.zeros( (wingData.nrPoly, 4), dtype = np.float32 ) # Store values from wing

aWingBuff = cl.Buffer(self.cntxt, cl.mem_flags.WRITE_ONLY, aWing.nbytes)

aWake = np.zeros( (wakeData.nrPoly, 4), dtype = np.float32 ) # Store values from wake

aWakeBuff = cl.Buffer(self.cntxt, cl.mem_flags.WRITE_ONLY, aWake.nbytes)

# Find contribution from wing sources

launch = self.kernels.velocitySource(self.queue,
[wingData.nrPoly,],
None,
P>

wingData.verticesBuff,
wingData.ctrlPointsBuff,
wingData.lBuff,
wingData.mBuff,
wingData.nBuff,
wingData.topologyBuff,
wingData.sigmaBuff,
aWingBuff)

launch.wait ()

cl.enqueue_read_buffer(self.queue, aWingBuff, aWing).wait()
asum = aWing.sum(axis=0)

ul[0] += asum[0]

ul1] += asum[1]

ul[2] += asum[2]

# Find contribution from wing doublets

launch = self.kernels.velocityDoublet (self.queue,
[wingData.nrPoly,],
None,
130

wingData.verticesBuff,
wingData.ctrlPointsBuff,
wingData.lBuff,
wingData.mBuff,
wingData.nBuff,
wingData.topologyBuff,
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wingData.gammaBuff,
aWingBuff)
launch.wait ()
cl.enqueue_read_buffer(self.queue, aWingBuff, aWing).wait()
asum = aWing.sum(axis=0)
ul[0] += asum[0]
ul1] += asum[1]

ul[2] += asum[2]

# Find contribution from wake

launch = self.kernels.velocityDoublet (self.queue,
[wakeData.nrPoly,],
None,
P

wakeData.verticesBuff,
wakeData.ctrlPointsBuff,
wakeData.1lBuff,
wakeData.mBuff,
wakeData.nBuff,
wakeData.topologyBuff,
wakeData.gammaBuff,
aWakeBuff)

launch.wait ()

cl.enqueue_read_buffer (self.queue, aWakeBuff, aWake).wait ()
asum = aWake.sum(axis=0)
u[0] += asum[0]
ul1] += asum[1]
ul[2] += asum[2]
# Free stream velocity
ul0] += U[0]
ul1] += U[1]
ul2] += U[2]

return u

inducedVelocityAtPoint (self, p, wakeDatalist, wingDatalist, wing):
nrObjects = len(wakeDataList)

u = np.zeros(3) # Return value

for i in range(nrObjects):
wakeData = wakeDataList[i]

aWake = np.zeros( (wakeData.nrPoly, 4), dtype = np.float32 ) # Store values from wake
aWakeBuff = cl.Buffer(self.cntxt, cl.mem_flags.WRITE_ONLY, aWake.nbytes)

wingData = wingDataList[i]
if wingData != wing:

aWing = np.zeros( (wingData.nrPoly, 4), dtype = np.float32 ) # Store values from wing
aWingBuff = cl.Buffer(self.cntxt, cl.mem_flags.WRITE_ONLY, aWing.nbytes)

# Find contribution from wing sources

launch = self.kernels.velocitySource(self.queue,
[wingData.nrPoly,],
None,
P

wingData.verticesBuff,
wingData.ctrlPointsBuff,
wingData.lBuff,
wingData.mBuff,
wingData.nBuff,
wingData.topologyBuff,
wingData.sigmaBuff,
aWingBuff)

launch.wait ()

cl.enqueue_read_buffer(self.queue, aWingBuff, aWing).wait()
asum = aWing.sum(axis=0)

ul0] += asum[0]

ul1] += asum[1]

ul[2] += asum[2]

# Find contribution from wing doublets

launch = self.kernels.velocityDoublet (self.queue,
[wingData.nrPoly,],
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None,
P
wingData.verticesBuff,
wingData.ctrlPointsBuff,
wingData.lBuff,
wingData.mBuff,
wingData.nBuff,
wingData.topologyBuff,
wingData.gammaBuff,
aWingBuff)
launch.wait ()

cl.enqueue_read_buffer(self.queue, aWingBuff, aWing).wait ()
asum = aWing.sum(axis=0)

ul[0] += asum[0]

ul1] += asum[1]

ul2] += asum[2]

# Find contribution from wake

launch = self.kernels.velocityDoublet (self.queue,
[wakeData.nrPoly,],
None,
P

wakeData.verticesBuff,
wakeData.ctrlPointsBuff,
wakeData.lBuff,
wakeData.mBuff,
wakeData.nBuff,
wakeData.topologyBuff,
wakeData.gammaBuff,
aWakeBuff)

launch.wait ()

cl.enqueue_read_buffer(self.queue, aWakeBuff, aWake).wait ()
asum = aWake.sum(axis=0)
ul[0] += asum[0]
ul1] += asum[1]
ul2] += asum[2]
return u
rightSideSigma (self, meshDatalList, U):
nrObjects = len(meshDatalList)
systemSize = 0

for objectNr in range(nrObjects):
systemSize += meshDatalList[objectNr].nrPoly

sigma = np.zeros(systemSize)
iRow = 0

for objectNr in range(nrObjects):
meshData = meshDataList[objectNr]

for i in range(meshData.nrPoly):
n = meshData.n[i]

sigma[iRow] = -(n[0]*U[0] + n[1]1*U[1] + n[2]*U[2])/(4*np.pi)
iRow += 1
return sigma
deformWake (self, wake, wingDatalist, wakeDataList, U):
Uinf = np.sqrt( U[0]**2 + U[1]**2 + U[2]**2 )
for i in range(wake.nrPolyPrStrip):
for j in range(wake.nrStrips+1):

vertIndexl = (wake.nrPolyPrStrip+1)*(1 + j) - i - 1
vertIndex2 = (wake.nrPolyPrStrip+1)*(1 + j) - i - 2

pl = wake.vertices[vertIndex1]
p2 = wake.vertices[vertIndex2]
pll = 0.75%pl + 0.25%p2

P22 = 0.25%pl + 0.75%p2

dist = p2 - pi
dx = np.sqrt( dist[0]**2 + dist[1]**2 + dist[2]*x2 )
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dt dx/Uinf

ul = self.velocityAtPoint(pll, wingDatalist, wakeDatalList, U)
u2 self.velocityAtPoint (p22, wingDatalist, wakeDataList, U)

u = 0.5%(ul + u2)

dp = np.zeros(3)
dp[0] = ul[0]l*dt
dp[1] = ul1lxdt
dp[2] = ul2]*dt

wake.object.data.vertices[vertIndex2].co[0] = wake.object.data.vertices[vertIndexl].co[0] +
dp [0]

wake.object.data.vertices[vertIndex2].co[1] = wake.object.data.vertices[vertIndex1].co[1] +
dp[1]

wake.object.data.vertices[vertIndex2].co[2] = wake.object.data.vertices[vertIndex1].co[2] +
dp[2]

wake.object.data.update ()
wake.updateData(self.cntxt)

def forceCalculation(self, wake, wing, wakeDatalist, wingDataList, U):
Uinf = np.sqrt( U[0]**2 + U[1]**2 + U[2]**2 )

Force = np.zeros(3)

for i in range(wake.nrStrips):
polyIndex = wake.polyInStrips[i][-1]

vertIndexl = (wake.nrPolyPrStrip+1)*(1 + i) - 1
vertIndex2 = (wake.nrPolyPrStrip+1)*(2 + i) - 1

pl = wake.vertices[vertIndex1]
p2 = wake.vertices[vertIndex2]

dist = np.sqrt( (p2[0] - p1[01)**2 + (p2[1] - p1[1]1)**2 + (p2[2] - p1[2])**2)
gammaVec = (p2 - pl)/dist

p = 0.5x(pl + p2)

u self.inducedVelocityAtPoint (p, wakeDatalList, wingDataList, wing)

gamma = wake.gamma[polyIndex]*gammaVec
forceFactor = 4*np.pi*dist*2/Uinf**2

Force[0] += forceFactor*((U[1] + ul[l1])*gamma[2] - (U[2] + ul[2])*gammal[1])
Force[1] += forceFactor*((U[2] + ul[2])*gamma[0] - (U[0] + u[0])*gammal[2])
Force[2] += forceFactor*((U[1] + u[1])*gamma[0] - (U[0] + u[0])*gamma[1])

return Force

11.1.4 Kernels.cl

// Prototypes
#define error 0.000000001

float4 multiplyMatrix(float4 p, float4 X, float4 Y, floatd Z);

float4 sourcelineVelocity(float4 p, float4 pl, float4 p2, float4 1, float4 m, float4 n);
float4 doubletLineVelocity(float4 p, float4 pl, float4d p2);

float sourcelLinePotential(float4 p, float4 pl, float4 p2, float4 1, float4 m, float4d n);
float doubletLinePotential(float4 p, float4 pl, float4 p2, float4 1, float4 m, float4d n);

float calcC(float PN, float RNUM, float DNOM);

float4 unitSourceVelocity(int i,
float4 p,
__global float4 *vertices,
__global float4 *ctrlPoints,
__global float4 *1,
__global float4 *m,
__global float4 *n,
__global int4  *topology);

float4 unitDoubletVelocity(int i,
float4 p,
__global float4 *vertices,
__global float4 *ctrlPoints,
__global float4 *1,
__global float4 *m,
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__global float4 *n,
__global int4 *topology);
float unitSourcePotential (int i,
float4 p,
__global float4 x*vertices,
__global float4 *ctrlPoints,
__global float4 x*1,
__global float4 *m,
__global float4 *n,
__global int4 xtopology) ;
float unitDoubletPotential(int i,
float4 p,
__global float4 *vertices,
__global float4 *ctrlPoints,
__global float4 *1,
__global float4 *m,
__global float4 *n,
__global int4 *topology) ;
// Implementation
float4 multiplyMatrix(float4 p, float4 X, float4 Y, float4 Z) {
float4 pOut;
pOut.x = p.x*X.x + p.y*X.y + p.z*X.z;
pOut.y = p.x*Y.x + p.yxY.y + p.z*Y.z;
pOut.z = p.x*Z.x + p.y*Z.y + p.z*Z.z;
return pOut;
}
float calcC(float PN, float RNUM, float DNOM) {
float C;
if (PN == 0 && DNOM < 0) {
C = -M_PI;
}
else if (PN == 0 && DNOM == 0) {
C = -0.5%xM_PI;
}
else if (PN == 0 && DNOM > 0) {
C =0.0;
}
else {
C = atan2(RNUM, DNOM);
}
return C;
}
float4 sourceLineVelocity(float4 p, float4 pl, float4 p2, floatd4 1, float4 m, float4d n)
float4 u; // Return variable
float4 s = p2 - pl;
float4 a = p - pl;
float4 b = p - p2;
float S = sqrt(s.x*s.x + s.y*s.y + s.z*s.z);
if (S > error) {
float A = sqrt(a.x*a.x + a.y*a.y + a.z*a.z);
float B = sqrt(b.x*b.x + b.y*b.y + b.z*xb.z);
float PN = p.x*n.x + p.y*n.y + p.z*n.z;
float SL = s.x*1.x + s.y*l.y + s.zxl.z;
float SM = s.x*m.Xx + s.y*m.y + s.z*m.z;
float AL = a.x*1l.x + a.y*l.y + a.z*l.z;
float AM = a.x*m.x + a.y*m.y + a.z*m.z;
float Al = AM*SL - AL*SM;
float PA = PN*PN*SL + Al*AM;
float PB = PA - Al*SM;
float RNUM = SM*PNx*(B*PA - A*PB);
float DNOM = PA*PB + PN*PN*AxB*xSM*SM;
float GL = (1/S)*log( fabs((A+B+S)/(A+B-S)) );
float C = calcC(PN, RNUM, DNOM);

u =

GL*SM*1 - GL*SL*m + C*n;
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else {

u.x 0;
u.y = 0;
u.z 0;
}
return u;

}

float4 doubletLineVelocity(float4 p, float4 pl, float4d p2) {
float4 u; // Return variable

float4 a p - pil;
float4 b P - P2;
float4 s = p2 - pl;

float AVBx = a.y*b.z - a.z*b.y;
float AVBy = a.z*b.x - a.x*b.z;
float AVBz = a.x*b.y - a.y*b.x;

float AVB = AVBx*AVBx + AVBy*AVBy + AVBz*AVBz;

float A = sqrt( a.x*a.x + a.y*a.y + a.z*a.z );
float B = sqrt( b.x*b.x + b.y*b.y + b.z*b.z );
float 8 = sqrt( s.x*s.x + s.y*s.y + s.z*s.z );
if (A < error || B < error || AVB < error) {
u.x 0;
u.y 0;
u.z = 0;
}
else if (S < error) {
u.x = 0;
u.y 0;
u.z = 0;
}
else {

float ADB = a.x*b.x + a.y*b.y + a.z*b.z;

float K = (A+B)/( A*Bx(A*B + ADB) );

u.x = K*AVBx;
u.y = K*AVBy;
u.z = KxAVBz;

}

return u;

}

float sourcelinePotential(float4 p, float4 pl, float4 p2, float4 1, float4 m, float4 n)
float4 s = p2 - pl;
float4d a = p - pil;
float4 b = p - p2;

float S = sqrt(s.x*s.x + s.y*s.y + s.z*s.z);
float phi;
if (8 > error) {

float A = sqrt(a.x*a.x
float B = sqrt(b.x*b.x

.z¥a.z);
.z¥b.z);

.y*a.y

+ a
+ b.y*b.y

+ o+
o

float PN = p.x*n.x + p.y*n.y + p.z*n.z;

float SL = s.x*1l.x + s.y*l.y .zxl.z;
float SM = s.x*m.xX + s.y*m.y + s.z*m.z;

+
n

float AL = a.x*1.x + a.y*l.y + a.z*xl.z;
float AM = a.x*m.Xx + a.y*m.y + a.z*m.z;

float Al = AM*SL - AL%*SM;

float PA = PN*PN*SL + Al*AM;
float PB = PA - Al*SM;

float RNUM = SM*PN*(B*PA - A*PB);
float DNOM = PA*PB + PN*PN*A*BxSM*SM;

float C = calcC(PN, RNUM, DNOM);
float GL = (1/8)*log( fabs( (A+B+S)/(A+B-S) ) );

phi = A1*GL - PNxC;

}
else {

phi = 0;
}
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return phi;

}

float doubletLinePotential(float4 p, float4
float4 s = p2 - pil;

float4 a = p - pl;
float4 b = p - p2;
float 8 = sqrt(s.x*s.x + s.y*s.y + s.z*s
float phij;
if (S > error) {
float A = sqrt(a.x*a.x + a.y*a.y + a
float B = sqrt(b.x*b.x + b.y*b.y + b
float PN = p.x*n.x + p.y*n.y + p.z*n.
float SL = s.x*l.x + s.y*l.y + s.zx*l.
float SM = s.x*m.x + s.y*m.y + s.z*m.
float AL = a.x*xl.x + a.y*l.y + a.z*l
float AM = a.x*m.x + a.y*m.y + a.z*m
float Al = AM*SL - AL*SM;
float PA = PN*PN*SL + AlxAM;
float PB = PA - AlxSM;
float RNUM = SM*PN*(B*PA - A*PB);
float DNOM = PA*PB + PN*PN*A*B*xSM*SM
phi = calcC(PN, RNUM, DNOM);
}
else {
phi = 0;
}
return phij;
}
float4 unitSourceVelocity(int i,
float4 p,
__global float4 *v
__global float4 *c
__global float4 x*1
__global float4 *m
__global float4 *n
__global int4 *t
floatd u;
float4 pO = ctrlPoints[i]; //Center of p
p =p - p0; // Translate point into new

// Corner points

int il = topologyl[i][0];

int i2 = topology[il[1];

int i3 = topology[il[2];

int i4 = topologyl[il[3];

float4 pl = vertices[il] - pO;

float4 p2 = vertices[i2] - pO;

float4 p3 = vertices[i3] - pO;

float4 p4 = vertices[i4] - pO;

// Find transformation matrices between

float4 X = 1[il;

float4 Y = m[il;

float4 Z = nl[il;

float PL = p.x*X.x + p.y*X.y + p.z*xX.z;

float PM = p.x*Y.x + p.y*Y.y + p.zxY.z;

float PN = p.x*Z.x + p.y*Z.y + p.z*xZ.z;

float4 ul = sourcelLineVelocity(p, pl, p2
float4 u2 = sourcelLineVelocity(p, p2, p3
float4 u3 = sourcelLineVelocity(p, p3, péd
float4 u4 = sourcelineVelocity(p, p4, pl
u = ul + u2 + u3 + u4;

if (fabs(PN) < error) {
if ( fabs(PL) < error && fabs(PM) <

pl, float4 p2, float4 1, float4 m, floatd

.z);

.z*a.z);
.z¥b.z);

z;
z;

.z
.z;

ertices,
trlPoints,
s

s

B

opology) {

anel

panel centerd coordinate system

global and local panel coordinate system

, 1[il, m[il, nlil);
, 1[i], m[il, nl[il);
, 1[i], m[il, n[il);
, 1[il, m[il, nl[il);

error ) {
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}

u.z = 2xM_PI;
u.x = 0;
u.y = 0;
}
else {
u.z = 0;
}
}
return u;

float4 unitDoubletVelocity(int i,

}

float4 p,

__global float4 *vertices,
__global float4 *ctrlPoints,
__global float4 *1,

__global float4 *m,

__global float4 *n,

__global int4 *topology) {

float4 pO = ctrlPoints[i]; //Center of panel
p =p - p0; // Translate point into new panel centerd coordinate

// Cormer points

int il = topologyl[i][0];
int i2 = topology[il[1];
int i3 = topology[il[2];
int i4 = topology[il[3];

float4 pl = vertices[il] - pO;
float4 p2 = vertices[i2] - pO;
float4 p3 = vertices[i3] - pO;
float4 p4 = vertices[i4] - pO;

// Calculate contribution from every line

float4 ul = doubletLineVelocity(p, pl, p2);
float4 u2 doubletLineVelocity(p, p2, p3);
float4 u3 doubletLineVelocity(p, p3, p4);
float4 u4 = doubletLineVelocity(p, p4, pl);

float4d u = ul + u2 + u3 + u4;

return u;

float unitSourcePotential (int i,

}

float4 p,

__global float4 *vertices,
__global float4 *ctrlPoints,
__global float4 *1,

__global float4 *m,

__global float4 *n,

__global int4 *topology) {

float4 p0 = ctrlPoints[il; //Center of panel
p =p - p0; // Translate point into new panel centerd coordinate

// Cormer points

int il = topology[i][0];
int i2 = topologyl[il[1];
int i3 = topologyl[il[2];
int i4 = topology[i][3];

float4 pl = vertices[il] - pO;
float4 p2 = vertices[i2] - pO;
float4 p3 = vertices[i3] - pO;
float4 p4 = vertices[i4] - pO;

float phil = sourcelinePotential(p, pl, p2, 1[il, m[il, n[il);
float phi2 = sourcelinePotential(p, p2, p3, 1[il, m[il, n[il);
float phi3 = sourcelinePotential(p, p3, p4, 1[il, m[i]l, n[il);
float phi4 = sourcelinePotential(p, p4, pl, 1[il], m[i], n[il);

return phil + phi2 + phi3 + phié4;

float unitDoubletPotential(int i,

float4 p,

__global float4 *vertices,
__global float4 *ctrlPoints,
__global float4 *1,

__global float4 *m,

__global float4 *n,

__global int4 *topology) {
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float4 p0 = ctrlPoints[i]; //Center of pane

float phij;

1

p =p - p0; // Translate point into new panel centerd coordinate system

// Corner points

int il = topology[i][0];
int i2 = topology[il[1];
int i3 = topologyl[il[2];
int i4 = topology[i][3];

float4 pl = vertices[il] - pO;
float4 p2 = vertices[i2] - pO;
float4 p3 = vertices[i3] - pO;
float4 p4 = vertices[i4] - pO;

// Find transformation matrices between glo
float4 X = 1[i];
float4 Y = m[i];
float4 Z = n[i];

float phil = doubletLinePotential(p, pl, p2
float phi2 = doubletLinePotential(p, p2, p3
float phi3 = doubletLinePotential(p, p3, p4
float phi4 = doubletLinePotential(p, p4, pl

phi = phil + phi2 + phi3 + phi4;

return phij;

__kernel void sourceInfluenceNewmann(float4 p,
float4 n_p
__global £
__global £
__global £
__global f
__global f
__global i
__global £

int i = get_global_id(0);
float4 u = unitSourceVelocity(i, p, vertice

float4 pm = p;
pm.z = -p.z;

float4 um = unitSourceVelocity(i, pm, verti

bal and

Lol ]
<o

loat4 x*
loat4 =*
loat4 =*

local panel coordinate system

Z);
Z);
Z);
Z);

vertices,
ctrlPoints,
1,

loat4 *m,
loat4 *n,

nté *
loat *

topology,
a) {

s, ctrlPoints, 1, m, n, topology);

ces, ct

rlPoints, 1, m, n, topology);

ali] = n_p.x*(u.x + um.x) + n_p.y*(u.y + um.y) + n_p.z*(u.z - um.z);

__kernel void doubletInfluenceNewmann(float4d P>
float4 n_
__global
__global
__global
__global
__global
__global
__global
int i = get_global_id(0);

float4 u = unitDoubletVelocity(i, p, vertic

float4 pm = p;
pm.z = -p.z;

P>
float4
float4
float4
float4
float4
int4
float

es, ctr

*vertices,
*ctrlPoints,
*1,

*m,

*n,
*topology,
*a) {

1Points, 1, m, n, topology);

float4 um = unitDoubletVelocity (i, pm, vertices, ctrlPoints, 1, m, n, topology);

alil = n_p.x*(u.x + um.x) + n_p.y*(u.y + um.y) + n_p.z*(u.z - um.z);

__kernel void sourceInfluenceDirichlet(float4 p
__global
__global
__global
__global
__global
__global
__global
int i = get_global_id(0);

float4
float4d
float4d
float4d
float4
int4
float

*vertices,
*ctrlPoints,
*1,

*m,

*n,
*topology,
*a) {
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float phi = unitSourcePotential(i, p, vertices, ctrlPoints, 1, m, n, topology);
float4 pm = p;
pm.zZ = -p.Z;
float phim = unitSourcePotential(i, pm, vertices, ctrlPoints, 1, m, n, topology);
al[i] = phi + phim;
__kernel void doubletInfluenceDirichlet(float4 p,
__global float4 *vertices,
__global float4 *ctrlPoints,
__global float4 *1,
__global float4 *m,
__global float4 *n,
__global int4 *topology,
__global float *a){
int i = get_global_id(0);
float phi = unitDoubletPotential(i, p, vertices, ctrlPoints, 1, m, n, topology);
float4 pm = p;
pm.z = -p.z;
float phim = unitDoubletPotential (i, pm, vertices, ctrlPoints, 1, m, n, topology);
ali]l = phi + phim;

__kernel void stripInfluenceDirichlet(float4 p,

__global float4 *vertices,
__global float4 *ctrlPoints,
__global float4 x*1,
__global float4 *m,
__global float4 *n,
__global int4 *topology,
__global int *polyInStrip,
__global float *a) {
int i = get_global_id(0);
int iPoly = polyInStripl[il; // index of current wake polygon
float phi = unitDoubletPotential (iPoly, p, vertices, ctrlPoints, 1, m, n, topology);
float4 pm = p;
pm.z = -p.zZ;
float phim = unitDoubletPotential(iPoly, pm, vertices, ctrlPoints, 1, m, n, topology);
a[i] = phi + phim;
__kernel void stripInfluenceNewmann(float4 p,
float4 n_p,
__global float4 *vertices,
__global float4 *ctrlPoints,
__global float4 x*1,
__global float4 *m,
__global float4 *n,
__global int4 *topology,
__global int *polyInStrip,
__global float *a) {
int i = get_global_id(0);
int iPoly = polyInStripl[il; // index of current wake polygon
float4 u = unitDoubletVelocity(iPoly, p, vertices, ctrlPoints, 1, m, n, topology);
float4 pm = p;
pm.z = -p.z;
oat4 um = unitDoubletVelocity(iPoly, pm, vertices, ctrlPoints, 1, m, n, topolo H
f1 4 itDoubletVelocity (iPoly, p i 1Poi 1 pology)
ali]l] = n_p.x*(u.x + um.x) + n_p.y*(u.y + um.y) + n_p.z*(u.z - um.z);
__kernel void velocitySource(float4 p,
__global float4 *vertices,
__global float4 *ctrlPoints,
__global float4 x*1,
__global float4 *m,
__global float4 *n,
__global int4 *topology,
__global float *sigma,
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__global float4 *u) {
int i = get_global_id(0);

float4 uOut = unitSourceVelocity(i, p, vertices, ctrlPoints, 1, m, n, topology);

float4 pm = p;

pm.z = -p.z;
float4 ulut_m = unitSourceVelocity(i, pm, vertices, ctrlPoints, 1, m, n, topology);
ulil.x = sigma[il*(uOut.x + ulut_m.x);
ulil.y = sigmal[il*(uOut.y + uOut_m.y);
ulil.z = sigmal[i]l*(uOut.z - ulut_m.z);
}
__kernel void velocityDoublet(float4 p,
__global float4 *vertices,
__global float4 *ctrlPoints,
__global float4 *1,
__global float4 x*m,
__global float4 *n,
__global int4 *topology,
__global float *gamma,
__global float4d *u) {
int i = get_global_id(0);
float4 uOut = unitDoubletVelocity(i, p, vertices, ctrlPoints, 1, m, n, topology);
float4 pm = p;
pm.z = -p.z;
float4 uOut_m = unitDoubletVelocity(i, pm, vertices, ctrlPoints, 1, m, n, topology);
ulil.x = gamma[il*(uOut.x + uOut_m.x);
ulil.y = gamma[il*(uOut.y + uOut_m.y);
ulil.z = gamma[i]l*(uOut.z - ulut_m.z);
}

11.1.5 Example Control Script

11.1.6 Convergence Analysis

Number of Iterations in Order to Find a Wake Shape
Vsaero: 2

Physical aspect ratio: 2

Number of strips: 39

Number of panels pr strip: 89

Angle of attack 5
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Figure 11.1: Iteration test to see the influence of wake shape on lift coefficient

Number of Panels pr Strip
Number of strips: 39
Physical aspect ratio: 5
Angle of attack: 5

Number of wake shape iterations: 2
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Figure 11.2: Lift and drag coefficient as a function of number of panels pr strip
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Number of Strips

Number of panels pr strip: 161
Physical aspect ratio: 5

Angle of attack: 5

Number of wake shape iterations: 2
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Figure 11.3: Lift and drag coefficient as a function of number of strips

Wake Length

number of strips: 39

number of panels pr strip 161
physical aspect ratio: 5

angle of attack: 5
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Figure 11.4: Lift and drag coefficient as a function of wake length

11.2 Final Results - Matlab scripts

11.2.1 wingCoefficientsChemicalTanker.m
close all

clear all

load('NACA0O014_Data.mat')

% Script that calculates thrust and side force coefficients for different
% wind directions and angles of attack

% Wind directions are Apparent wind directions
%% Initialize variables

windAngles = 1:1:150;

nrWind = length(windAngles);

wingAngles = 0:0.1:24;
nrWing = length(wingAngles);

Cx = zeros(nrWind, nrWing);
Cy zeros (nrWind, nrWing);

Cx_elliptic = zeros(nrWind, nrWing);
Cy_elliptic = zeros(nrWind, nrWing);

Cx_rectangular = zeros(nrWind, nrWing);
Cy_rectangular = zeros (nrWind, aning);

%% Wing factors

1iftRec = 0.65;

interAng = [30, 60, 90, 120, 150];

liftInter = [0.6243, 0.6850, 0.6647, 0.6210, 0.5499];
dragInter = [1.5704, 1.2985, 1.0230, 0.9123, 0.8958];
Asp = 2.67%2;

delta = 0.054;

parfor i = 1:nrWind
liftInterCurrent = interpl(interAng, liftInter, windAngles(i), 'spline');
dragInterCurrent = interpl(interAng, draglnter, windAngles (i), 'spline');

s = sind(windAngles(i));
¢ = cosd(windAngles(i));
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for j = 1l:nrWing
CL2D_current = interpl(angleFoil, CL2D, wingAngles(j), 'spline');
CDv_Current = interpl(angleFoil, CDv, wingAngles(j), 'spline');

CL_elliptic = CL2D_current/(1+2/Asp);
CL_rectangular = CL2D_current*liftRec;
CL = CL2D_current*liftRec*liftInterCurrent;

CDi_elliptic = CL_elliptic~2/(pixAsp);
CDi_rectangular = (1+delta)*CL_rectangular~2/(pix*Asp);
CDi = dragInterCurrent*(l1+delta)*CL"~2/(pi*Asp);

CD_elliptic = CDi_elliptic + CDv_Current;
CD_rectangular = CDi_rectangular + CDv_Current;
CD = CDi + CDv_Current;

Cx(i, j) = CL*s - CDxc;

Cy(i, j) = -CL*c - CDxs;

Cx_elliptic(i, j) = CL_elliptic*s - CD_elliptic*c;
Cy_elliptic(i, j) = -CL_elliptic*c - CD_ellipticx*s;
Cx_rectangular(i, j) = CL_rectangular*s - CD_rectangularx*c;

Cy_rectangular (i, j)
end

-CL_rectangular*c - CD_rectangularx*s;
end

[CxMax, index] = max(Cx, [], 2);

[CxMax_rectangular, index_rectangular] = max(Cx_rectangular, [], 2);
[CxMax_elliptic, index_elliptic] = max(Cx_elliptic, [1, 2);

CyMax = zeros(1l, nrWind);

CyMax_rectangular = zeros(l, nrWind);

CyMax_elliptic = zeros(1, nrWind) ;

testAngle = zeros(1l, nrWind);

parfor i = 1:nrWind
CyMax (i) = Cy(i, index(i));
CyMax_rectangular (i) = Cy_rectangular (i, index_rectangular(i));

CyMax_elliptic(i) = Cy_elliptic(i, index_elliptic(i));

testAngle (i) = wingAngles(index(i))

end

figure (1)

plot (windAngles, CxMax, 'color', 'blue')

hold on

plot(windAngles, CxMax_rectangular, 'color', [0, 0.6, 0])
plot(windAngles, CxMax_elliptic, 'color', 'red')

xlabel ('Apparentywind direction, [deg]l"')

ylabel ('thrustcoefficient, C_x"')

legend ('Rectangular wings with interaction', 'Rectangular,wing without interaction',
interaction', 4)

axis ([0, 180, 0, 1.5])

figure (2)

plot(windAngles, CyMax, 'color', 'blue')

hold on

plot (windAngles, CyMax_rectangular, 'color', [0, 0.6, 0])
plot (windAngles, CyMax_elliptic, 'color', 'red')

axis ([0, 180, -1.4, 1.4])

xlabel ('Apparentywind direction, [deg]"')
ylabel ('Sideyforce coefficient, C_y"')

legend ('Rectangularwings, with,interaction', 'Rectangular, wing without,interaction',
interaction', 4)

11.2.2 wingCoefficientsSeries60.m

close all

clear all

load ('NACAOO14_Data.mat')

% Script that calculates thrust and side force coefficients for different
% wind directions and angles of attack

% Wind directions are Apparent wind directions

figure (1)
hold on

figure (2)
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hold on

%% Series 60
windAngles = 5:1:150;
nrWind = length(windAngles);

wingAngles = 0:0.1:24;
nrWing = length(wingAngles);

Cx = zeros(nrWind, nrWing);

Cy = zeros(nrWind, nrWing);

Cx_elliptic = zeros(nrWind, nrWing);
Cy_elliptic = zeros(nrWind, nrWing);
Cx_rectangular = zeros (nrWind, aning);
Cy_rectangular = zeros(nrWind, nrWing);

% Wing factors

liftRec = 0.776;

interAng = [30, 60, 90, 120, 150];

liftInter = [0.6862, 0.7429, 0.7168, 0.6818, 0.6232];
dragInter = [2.0098, 1.7330, 1.4302, 1.3254, 1.3814];
Asp = b5x2;

delta = 0.076;

parfor i = 1:nrWind
liftInterCurrent = interpl(interAng, liftInter, windAngles(i), 'spline');
dragInterCurrent = interpl(interAng, draglnter, windAngles(i), 'spline');
s = sind(windAngles(i));
¢ = cosd(windAngles(i));
for j = 1l:nrWing
CL2D_current = interpl(angleFoil, CL2D, wingAngles(j), 'spline');
CDv_Current = interpl(angleFoil, CDv, wingAngles(j), 'spline');

CL_elliptic = CL2D_current/(1+2/Asp);
CL_rectangular = CL2D_current*liftRec;
CL = CL2D_current*liftRec*liftInterCurrent;

CDi_elliptic = CL_elliptic”™2/(pi*Asp);
CDi_rectangular = (1+delta)*CL_rectangular~2/(pi*Asp);
CDi = dragInterCurrent*(1+delta)*CL"~2/(pi*Asp);

CD_elliptic = CDi_elliptic + CDv_Current;
CD_rectangular = CDi_rectangular + CDv_Current;

CD = CDi + CDv_Current;

Cx(i, j) = CLx*s - CDxc;
Cy(i, j) = -CL*c - CDxs;
Cx_elliptic(i, j) = CL_elliptic*s - CD_ellipticx*c;
Cy_elliptic(i, j) = -CL_elliptic*c - CD_ellipticx*s;
Cx_rectangular(i, j) = CL_rectangular*s - CD_rectangularx*c;
Cy_rectangular(i, j) = -CL_rectangular*c - CD_rectangular*s;
end
end
[CxMax, index] = max(Cx, [], 2);

[CxMax_rectangular, index_rectangular] = max(Cx_rectangular, [1, 2);
[CxMax_elliptic, index_elliptic] = max(Cx_elliptic, [1, 2);

CyMax = zeros(1l, nrWind);
CyMax_rectangular = zeros(l, nrWind);

CyMax_elliptic = zeros(1l, nrWind);

testAngle = zeros(1l, nrWind);

parfor i = 1:nrWind
CyMax (i) = Cy(i, index(i));
CyMax_rectangular (i) = Cy_rectangular (i, index_rectangular(i));

CyMax_elliptic(i) = Cy_elliptic(i, index_elliptic(i));

testAngle (i) = wingAngles(index(i))
end

figure (1)

plot (windAngles, CxMax, 'color',
plot(windAngles, CxMax_rectangular,
plot(windAngles, CxMax_elliptic, 'color',

'blue')
'color', [0, 0.6, 0])
'red')

xlabel ('Apparentywind direction, [deg]l"')

ylabel ('thrust coefficient, C_x"')

legend ('8urectangular wings', 'Singleyrectangular wing',
axis ([0, 180, 0, 1.5])
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title('Series ;60 ,Wings"')

figure (2)

plot (windAngles,
plot(windAngles,
plot(windAngles,

axis ([0, 180, -1.

CyMax, 'color', 'blue')

CyMax_rectangular,
CyMax_elliptic,

5, 1.51)

xlabel ('Apparentwind, direction  [deg]l"')
ylabel('Sideforcecoefficient, C_y"')

legend ('8, rectangular wings',
title('Series 60,

11.2.3 finalResultsChemicalTanker.m

clear all
close all

Wings')

load('wingDataChemicalTanker.mat ')
load('ShipForcesChemicalTanker.mat')

%% Plot Settings

color = zeros(3);
color (1, :) = [0,
color(2, :) = [0,
color(3, :) = [1.

figure(1);
hold on
figure (2);
hold on
figure(3);
hold on

0, 1.0];
0.6, 01;
0

0, 0, 01;

%% Environment data

rho_m = 997.561;
rho_s = 1025.9;

nu_m = 1.19E-06;
nu_s = 8.91E-07;
rho_air = 1.225;

Uwind = 7; %m/s

%% Sail data
nrSails = 8;

heightSails = 40;

chord = 15; %m

%kg/m~3
%kg/m"3
%m~2/s
%m~2/s
%kg/m~3

%m

areaSail = heightSails*chord; %m~2
totalAreaSail = nrSails*areaSail; %m~2

sailFactor = 0.5*xrho_air*totalAreaSail;

%% Ship data

shipAngles = 0:2:

%% Stability data

D = 10;
B = 29.5;
nabla = 38147;

KB = 5.215;
Ixx = 266172;
BM = Ixx/nabla;

8;

stabSin = sind(5);

%% Different wind directions

windAngles2 = 15:

1:150;

nrWind2 = length(windAngles2);

for k = 1:3

% Initialize variables denpendent on wind
KG = zeros (1,

Thrust = zeros(1,

nrWind?2)

3

nrWind?2) ;

SideForce_wing = zeros(1l, nrWind2);

yawAngle = zeros(1,

nrWind2) ;

ResistanceWind = zeros (1, nrWind2);
AddedResistance = zeros(1l, nrWind2);

RealThrust =

zeros (1,

nrWind2) ;

% Go through each wind direction
for i = 1:nrWind2

'color',
'color',

0.6,

'Singleyrectangular wing',

direction
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% Calculate apparent wind

u_apparent = Uwind*cosd(windAngles2(i)) + U_s(k);
v_apparent = Uwind*sind(windAngles2(i));

theta = atan2(v_apparent,u_apparent)*180/pi;

Uapparent = sqrt(u_apparent”™2 + v_apparent”2);

% Thrust and side force coefficients

Cx_current = interpl(windAngles, CxMax, theta, 'spline');

Cy_current = interpl(windAngles, CyMax, theta, 'spline');

Thrust (i) = Cx_current*sailFactor*Uapparent”2;
SideForce_wing(i) = Cy_current*sailFactor*Uapparent~2;

yawAngle (i) = interpil(SideForce(k, :), shipAngles, abs(SideForce_wing(i)), 'spline');
ResistanceWind (i) = interpl(shipAngles, Resistance(k, :), yawAngle(i), 'spline');
AddedResistance(i) = ResistanceWind(i) - Resistance(k, 1);

RealThrust (i) = Thrust(i) - AddedResistance(i);

KG(i) = (9.81xrho_s*nabla*(KB + BM)*stabSin - abs(SideForce_wing(i))*(heightSails/2 + D))/(9.81%

rho_s*nabla*stabSin - abs(SideForce_wing(i)));
end
figure(1);
plot (windAngles2, Thrust/Resistance(k, 1), '--','color', color(k, :))

plot(windAngles2, RealThrust/Resistance(k, 1), 'color', color(k, :))

figure(2);
plot(windAngles2, yawAngle, 'color', color(k, :))

figure (3);
plot(windAngles2, KG, 'color', color(k, :))

end

% Thrust plotting

figure(1);
legend('U_s,=,10 knots, without yawyangle', 'U_sy=,10 knots, with yaw angle', 'U_s_,=_12.5 knots, without yaw
pangle', 'U_s,=,12.5_knots,ywithyyawyangle', 'U_s =415 knots, without,yaw,angle', 'U_s =15 knots, with

uyawangle')
xlabel ('Trueywind direction, [deg]"')
ylabel (' (Thrusty-yadded resistance)/Reference resistance')
axis ([0, 180, 0, 11)

% Yaw angle plotting

figure(2);

legend('U_s,=,10 knots"', 'U_sy=412.5 knots"', 'U_s,=,15 knots"', 1)
xlabel ('Trueywind direction, [deg]"')

ylabel ('Required,Yaw,angle of ship [deg]l"')

axis ([0, 180, 0, 3])

% KG plotting

figure (3)
ylabel ('Maximum, value_ of KG,[m]"')
legend('U_s,=,10 knots', 'U_s,=_12.5_ knots', 'U_s,=,15 knots', 2)

xlabel ('Trueywind,direction,[deg]l')
axis ([0, 180, 12, 12.2])

11.2.4 finalResultsSeries60.m

%clear all
close all
clear all

load('wingDataSeries60.mat"')
load ('ShipForcesSeries60.mat')

%% Plot Settings
color = zeros(3);
color (1, :) = [0, O, 1.0];
color(2, :) = [0, O

color(3, :) = [1.0,

figure(1);
hold on
figure (2);
hold on
figure (3);
hold on
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%% Environment data
rho_m = 997.561; %kg/m"3
rho_s = 1025.9; Jkg/m~3
nu_m = 1.19E-06; %m~2/s
nu_s = 8.91E-07; %m~2/s
rho_air = 1.225; %kg/m”3

Uwind = 7; %m/s

%% Sail data

nrSails = 8;

heightSails = 40; %m

chord = 8; %m

areaSail = heightSails*chord; /m~2

totalAreaSail = nrSails*areaSail; %m~2
sailFactor = 0.5*xrho_air*totalAreaSail;
AspPhys = 5;

Asp = 2xAspPhys;

%% Ship data
shipAngles = 0:2.5:10;

%% Stability data
D = 6.5;

B = 16.3;

nabla = 7744;

KB = 3.5;

Ixx = 23191;

BM = Ixx/nabla;
stabSin = sind(5);

%% Different wind directions

windAngles2 = 15:1:150;
nrWind2 = length(windAngles2);

for k = 1:3
% Initialize variables denpendent on wind direction

KG = zeros(l, nrWind2);

Thrust = zeros(1, nrWind2);

SideForce_wing = zeros(1l, nrWind2);
yawAngle = zeros(1l, nrWind2);

ResistanceWind = zeros (1, nrWind2);
AddedResistance = zeros(l, nrWind2);

RealThrust = zeros(l, nrWind2);
% Go through each wind direction
for i = 1:nrWind2
% Calculate apparent wind
u_apparent = Uwind*cosd(windAngles2(i)) + U_s(k);
v_apparent = Uwind*sind(windAngles2(i));
theta = atan2(v_apparent, u_apparent);
Uapparent = sqrt(u_apparent”™2 + v_apparent”2);
% Thrust and side force coefficients
Cx_current = interpl(windAngles, CxMax, theta*180/pi, 'spline');
Cy_current = interpl(windAngles, CyMax, theta*180/pi, 'spline');

Thrust (i) = Cx_current*sailFactor*Uapparent”2;
SideForce_wing(i) = Cy_current*sailFactor*Uapparent”2;

yawAngle (i) = interpl(SideForce(k, :), shipAngles, abs(SideForce_wing(i)), 'spline');
ResistanceWind (i) = interpil(shipAngles, Resistance(k, :), yawAngle(i), 'spline');
AddedResistance(i) = ResistanceWind(i) - Resistance(k, 1);

RealThrust (i) = Thrust(i) - AddedResistance(i);

KG(i) = (9.81xrho_s*nabla*(KB + BM)*stabSin - abs(SideForce_wing(i))*(heightSails/2 + D))/(9.81%

rho_s#*nabla*stabSin - abs(SideForce_wing(i)));
end
figure(1);
plot(windAngles2, Thrust/Resistance(k, 1), '--','color', color(k, :))

plot (windAngles2, RealThrust/Resistance(k, 1), 'color', color(k, :))

figure(2);
plot (windAngles2, yawAngle, 'color', color(k, :))
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figure(3);
plot(windAngles2, KG, 'color', color(k, :))

end

% Thrust plotting

figure (1);
legend('U_s,=,10 knots, without yawyangle', 'U_sy =410 knots, with, yaw angle', 'U_s,=_12.5 knots, without yaw
pangle', 'U_sy,=,12.5_ knots, with yaw,angle', 'U_s_ =,15 knots, withoutyyaw angle', 'U_s_ =,15 knots, with

uyaw,angle')
xlabel (' Trueywind direction, [degl"')
ylabel (' (Thrusty-padded resistance)/Reference resistance')
axis ([0, 180, 0, 1.71)

% Yaw angle plotting

figure(2);

legend('U_s,=,10 knots"', 'U_sy=412.5 knots', 'U_s,=,15 knots"', 1)
xlabel ('Trueywind,direction, [deg]"')

ylabel ('Required,Yaw,angle of ship [deg]l"')

axis ([0, 180, 0, 3.5])

% KG plotting

figure (3)
ylabel ('Maximumgvalue of KG,[m]"')
legend('U_s,=,10 knots"', 'U_s,=,12.5 knots', 'U_s,=,15 knots"', 2)

xlabel ('True wind direction[degl')

11.2.5 SailsOnlySeries60.m

close all
clear all

% Script that calculates the speed of series 60 for different wind
% idrections and widn speeds, using wing sails as the only propulsion

load ('ShipForcesSailsOnlySeries60.mat"')
load('FittedValues.mat')
load('wingDataSeries60.mat')

nrlterations = 60;
error = 0.001;

% Environment data

rho_m = 997.561; Jkg/m"3
rho_s = 1025.9; Jkg/m”3
nu_m = 1.19E-06; %m~2/s
nu_s = 8.91E-07; %m~2/s
rho_air = 1.225; %kg/m”3

% Sail data

nrSails = 8;

heightSails = 40; ’m

chord = 8; ’m

areaSail = heightSails*chord; %m~2
totalAreaSail = nrSails*areaSail; ’%m~2

sailFactor = 0.5*xrho_air*totalAreaSail;

%% Wind Speed 7
U_wind = 7;

windAngles2 = 25:1:150;
nrWind2 = length(windAngles2);

U_noYaw = zeros(l, nrWind2);
U_Yaw = zeros(l, nrWind2);

theta = zeros(l, nrWind2);

[shipAngles2D, U_s2D] = meshgrid(0:2.5:10, U_s) ;
shipAngles = 0:2.5:10;

for i = 1:nrWind2
% No yaw effects on resistance
U_ship = 0;
u_wind = U_wind*cosd(windAngles2(i));
v_apparent = U_wind*sind(windAngles2(i));
lookingForU = 1;
n = 1;

while lookingForU
U_test = U_ship;
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u_apparent = u_wind + U_ship;
U_apparent = u_apparent”™2 + v_apparent”2;

theta = atan2(v_apparent, u_apparent)*180/pi; ’%deg

Cx_current = interpl(windAngles, CxMax, theta, 'spline');

Thrust = Cx_current*sailFactor*U_apparent;
U_ship = Ufit (0, Thrust);
if abs(U_test - U_ship)/U_ship < error
lookingForU = 0;
elseif n > nrlterations
lookingForU = 0;
disp('convergenceynot reached')

end

n = n+l;
end

U_noYaw(i) = U_ship;
% Include yaw effects on resistance
U_ship = min(U_s);
yaw_ship = 0;
lookingForU = 1;
n = 1;
while lookingForU
U_test = U_ship;
u_apparent = u_wind + U_ship;

U_apparent = u_apparent”™2 + v_apparent”2;

theta = atan2(v_apparent, u_apparent)*180/pi; ’%deg

Cx_current

interpl(windAngles, CxMax, theta, 'spline');

Cy_current = interpl(windAngles, CyMax, theta, 'spline');

Side = Cy_current*sailFactor*U_apparent;
Thrust = Cx_current*sailFactor*U_apparent;

yaw_ship = angFit(U_ship, abs(Side));
U_ship = Ufit(yaw_ship, Thrust);

if abs(U_test - U_ship)/U_ship < error
lookingForU = 0;

elseif n > nrlIterations
lookingForU = 0;
disp('convergenceynot reached')

end

n = n+l;
end

U_Yaw(i) = U_ship;
theta(i) = yaw_ship;

end

plot (windAngles2, U_noYaw/0.51444444, '--', 'color', 'blue')
hold on

plot (windAngles2, U_Yaw/0.51444444, 'color', 'blue')

%% Wind speed 10
U_wind = 10;

windAngles2 = 25:1:150;
nrWind2 = length(windAngles2);

U_noYaw = zeros(l, nrWind2);
U_Yaw = zeros(l, nrWind2);

theta = zeros(l, nrWind2);

[shipAngles2D, U_s2D] = meshgrid(0:2.5:10, U_s) ;
shipAngles = 0:2.5:10;

for i = 1:nrWind2
% No yaw effects on resistance

U_ship = 0;

u_wind = U_wind*cosd(windAngles2(i));
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v_apparent = U_wind*sind(windAngles2(i));
lookingForU = 1;
n = 1;
while lookingForU
U_test = U_ship;
u_apparent = u_wind + U_ship;
U_apparent = u_apparent”2 + v_apparent”2;

theta = atan2(v_apparent, u_apparent)*180/pi; Jdeg

Cx_current = interpl(windAngles, CxMax, theta, 'spline');
Thrust = Cx_current*sailFactor*U_apparent;

U_ship = Ufit (0, Thrust);

if abs(U_test - U_ship)/U_ship < error
lookingForU = 0;

elseif n > nrlIterations
lookingForU = 0;
disp('convergencenot reached')

end

n = n+l;
end

U_noYaw(i) = U_ship;
% Include yaw effects on resistance
U_ship = min(U_s);
yaw_ship = 0;
lookingForU = 1;
n = 1;
while lookingForU
U_test = U_ship;
u_apparent = u_wind + U_ship;
U_apparent = u_apparent”2 + v_apparent”2;

theta = atan2(v_apparent, u_apparent)*180/pi; Jdeg

Cx_current = interpl(windAngles, CxMax, theta, 'spline');
Cy_current = interpl(windAngles, CyMax, theta, 'spline');

Side = Cy_current*sailFactor*U_apparent;
Thrust = Cx_current*sailFactor*U_apparent;

yaw_ship = angFit(U_ship, abs(Side));
U_ship = Ufit(yaw_ship, Thrust);

if abs(U_test - U_ship)/U_ship < error
lookingForU = 0;
elseif n > nrlIterations
lookingForU = 0;
disp('convergence not,reached')
end

n = n+l;
end

U_Yaw(i) = U_ship;
theta(i) = yaw_ship;
end

plot (windAngles2, U_noYaw/0.51444444, '--', 'color', [0, 0.6, 0])
plot(windAngles2, U_Yaw/0.51444444, 'color', [0, 0.6, 0I)

%% Wind speed 5
U_wind = 5;

windAngles2 = 25:1:150;
nrWind2 = length(windAngles2);

U_noYaw = zeros(l, nrWind2);
U_Yaw = zeros(l, nrWind2);

theta = zeros(l, nrWind2);

[shipAngles2D, U_s2D] = meshgrid(0:2.5:10, U_s) ;
shipAngles = 0:2.5:10;
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for i = 1:nrWind2
% No yaw effects on resistance
U_ship = 0;
u_wind = U_wind*cosd(windAngles2(i));
v_apparent = U_wind*sind(windAngles2(i));
lookingForU = 1;
n = 1;
while lookingForU
U_test = U_ship;
u_apparent = u_wind + U_ship;

U_apparent = u_apparent”™2 + v_apparent”2;

theta = atan2(v_apparent, u_apparent)*180/pi; ’%deg

Cx_current = interpl(windAngles, CxMax, theta, 'spline');

Thrust = Cx_current*sailFactor*U_apparent;
U_ship = Ufit (0, Thrust);
if abs(U_test - U_ship)/U_ship < error
lookingForU = 0;
elseif n > nrlIterations
lookingForU = 0;
disp('convergenceynot reached')

end

n = n+l;
end

U_noYaw(i) = U_ship;
% Include yaw effects on resistance
U_ship = min(U_s);
yaw_ship = 0;
lookingForU = 1;
n = 1;
while lookingForU
U_test = U_ship;
u_apparent = u_wind + U_ship;

U_apparent = u_apparent”™2 + v_apparent”2;

theta = atan2(v_apparent, u_apparent)*180/pi; ’deg

Cx_current

Side = Cy_current*sailFactor*U_apparent;
Thrust = Cx_current*sailFactor*U_apparent;

yaw_ship = angFit(U_ship, abs(Side));
U_ship = Ufit(yaw_ship, Thrust);

if abs(U_test - U_ship)/U_ship < error
lookingForU = 0;

elseif n > nrlIterations
lookingForU = 0;
disp('convergenceynot reached')

end

n = n+1;
end

U_Yaw(i) = U_ship;
theta(i) = yaw_ship;
end

plot (windAngles2, U_noYaw/0.51444444, '--', 'color',
plot (windAngles2, U_Yaw/0.51444444, 'color', 'red')

'red')

legend( 'Windyspeed,=_7, m/s, without yaw',

interpl(windAngles, CxMax, theta, 'spline');
Cy_current = interpl(windAngles, CyMax, theta, 'spline');

'Windspeed = 7.m/s",

'Windspeed =,10_m/s, without yaw',

speed,,=,10,m/s"', 'Wind,speed, =, 5 m/s, without,yaw', 'Wind,speed, =, 5. m/s', 4)

axis ([0, 180, 0, 171)
xlabel ('Trueywind,direction, [deg]l"')
ylabel ('Shipspeed, [knots]"')
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