Doctoral theses at NTNU, 2016:70

Mohsen Anvaari

A Rule-based Framework for
Enhancing Architectural Decision
Guidance

e
(0]
Q

e

|_
(O
(G
o

-
O
o

()

ISBN 978-82-326-1478-3 (printed version)
ISBN 978-82-326-1479-0 (electronic version)

ISSN 1503-8181

<)
oD 25 Z=c o
a z>087'EC
o 2352 0.2
o Z v Qo900
o q,_:_E.EU)
>UUU3C
- c2l o g8
= Do hE 2 ®
o] c c§5 3¢
g _Qm.:.:sa

[SAO)
& wugt"a
Q EC‘_E—
- QL ocwm o
= o G c
ZnNn£ET o
— Z S v
z 52¢
c bu:’
= = =5 o
N 3 © €
= PES

L

¥ <5
~J o -
© > c
[}
IS
=
[
©
o
[}
[m]

@NTNU @NTNU

Norwegian University of Norwegian University of
Science and Technology Science and Technology

NNIN @

Mohsen Anvaari

A Rule-based Framework for
Enhancing Architectural Decision
Guidance

Thesis for the degree of Philosophiae Doctor

Trondheim, May 2016

Norwegian University of Science and Technology
Faculty of Information Technology,

Mathematics and Electrical Engineering
Department of Computer and Information Science

@NTNU

Norwegian University of
Science and Technology

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Information Technology,
Mathematics and Electrical Engineering
Department of Computer and Information
Science

© Mohsen Anvaari

ISBN 978-82-326-1478-3 (printed version) ISBN
978-82-326-1479-0 (electronic version) ISSN
1503-8181

<% Doctoral theses at NTNU, 2016:70
Y,

7

T printed by Skipnes Kommunikasjon as

TO MY FAMILY

Abstract

Architectural decision-making is a non-trivial process for architects in software develop-
ment projects. In many cases, such a process starts by identifying architectural issues that
an architect should make decisions about. In the second step, the architects explore avail-
able alternatives to solve the architectural issues. In the final step, the architects choose
one of the candidate alternatives for each issue, based on the decision drivers. Notable
progress has been made to assist practitioners in choosing one alternative among the pos-
sible alternatives. Several methods and tools have been developed for documenting the
rationale and the outcome of the decision-making process. There is, nevertheless, lit-
tle research focusing on identifying architectural issues that are eligible for a particular
project. In the absence of systematic methods of identifying architectural issues, prac-
titioners mainly start their architectural decision-making process based on intuition and
prior experience, which may be insufficient due to cognitive biases.

We have investigated the industrial context to understand the attitudes and challenges
of large-scale enterprises in making and reusing architectural decisions. Then, we have
reviewed the literature to identify the gap in developing architectural knowledge about
the past into architectural decision guidance for the future. Afterwards, we have tackled
the problem of enhancing architectural guidance by developing a framework called Semi
Automated Design Guidance Enhancer (SADGE). SADGE extracts architectural issues
from project documents and domain literature by applying natural language processing
(NLP). This encourages practitioners to identify more architectural issues in the early
phases of their projects, making them more prepared for the later phases, when changing
and/or refactoring the architecture is more costly.

Finally, we have evaluated the framework by conducting a case study on project docu-
ments and running experiments with IT students and expert IT architects. The results
of the evaluation show that SADGE extracts architectural issues with a significant recall
while reducing the manual knowledge processing effort notably. The evaluation also re-
veals that the experts believe that the framework can be very helpful for them to either
reduce the amount of text to read, or to identify hot spots in their documents that need
extra attention.

The main contributions of this thesis are:

C1 An overview of the state-of-the-art and state-of-the-practice in making and reusing
architectural decisions.

C2 A rule-based framework for developing architectural knowledge in project docu-
ments and domain literature into architectural decision guidance.

C3 Results of empirical evaluation of developing architectural decision guidance by
employing a rule-based framework.

i

Preface

This dissertation is submitted to the Norwegian University of Science and Technology
(NTNU) in partial fulfillment of the requirements for the degree philosophiae doctor.

The work contained herein has been performed at the Department of Computer and In-
formation Science, NTNU, Trondheim, under supervision of Professor Reidar Conradi,
Doctor Carl-Fredrik Sgrensen and Professor Letizia Jaccheri.

The thesis has been supported by the SmartGrids initative at NTNU. It also included a
25% teaching duty at the department of Computer and Information Science.

iii

v

Acknowledgements

Foremost, I would like to thank Professor Reidar Conradi for his caring supervision dur-
ing my PhD journey. I would also like to express my appreciation to Dr. Carl-Fredrik
Sgrensen, who joined the supervision team during the last and most crucial phase of my
PhD, and helped me with his thoughts and pushes. Besides, I would like to express my
gratitude to Professor Letizia Jaccheri for her support from both the academic and orga-
nizational levels. I would like to thank Dr. Daniela S. Cruzes for enlightening me in the
beginning of my PhD. I also thank my colleagues at IDI, NTNU for their encouragement
and fruitful discussions.

Special thanks to Professor Olaf Zimmermann who inspired me during my stay at the
University of Applied Sciences of Eastern Switzerland. After returning back to NTNU,
he has still supported me by his insightful feedbacks till the end of this PhD. I also thank
companies, who openly gave me data, and the practitioners and students who participated
in my studies.

Many thanks to my friends, especially the Husom family, who have always been a source
of energy and motivation. Special thanks to my dear Ghazal for supporting me during the
final stages of this PhD.

Finally, I would like to thank my family who has been calling for my success as always.
My parents, Fatemeh and Ali, for their continuous love, my siblings, Zohreh, Maryam,
and Ebrahim for their encouragement and my nieces, Setareh and Bahareh for their posi-
tive energy.

vi

Contents

I

Preface | fii
Acknowledgements | v
1 Intl‘I neHe I 1
1.1 PoblemrSttement—————— 1
1.2 ReSeaT oM o o e e e e e 3
13 ResearchrQuestions— oo 3
14 [ResearchMethods . . J. 4
1.5 |Contributions L 4
1.6 Listof Papers 5
1.7 Thesis Structure [« 6
TheI efica | 9
2.1 B HE SIS .~ e e e e e 10
2.2 — . 11
23 SoftwareQuality | 12
24 |ReuseinSeftware Ensineeritg—. 13
25 Software Architecture L 13
2.5.1 LArchitectural Decisions. . . .| 14

252 | Architectural Debto | P 15

2.5.3 [Cognifive Biases in Decision-Making 16

2.5.4 Architectural Decistomr Guidance (Design Guidance) 17
F‘éé—lm S —ATCRICCe ARG ABTHEY]« ~ .~~~ o« e o e e e e e 19

2.6 TInformafion Extraction 20

vii

[2.6.1 Methodsof Extraction 21

[2.6.2" Metrics for Evaluating Information Extraction Systgms 21

2.7 [Researcir Methods im Software|Engineering 23

271 Empirical Methods L. 23

3 27
.

.. 2

4 Results and Analysis | 31

4.1 Architfctural Decision-MakKing in Enterprises: State-oi-Practice | 31

431 Motivating Scenario L 35

432 | SADGE Components 36

| 4.5.5 SADGE Worktlow . . .1 o o 38

4.4 Evalue‘ﬁ'O‘l’le‘SKDG‘E‘Framework 41

— 44

44

443 Experts’ Opinions About Usefulness and Application of SADGE 46

| xpert Agreement | 46

5 Discyssion | 49

5.1 Discusﬁlon of Contributions Relatedto State-of-the-Art 49

52 52
52
53
54
5,24 Conclusion Validity] 54
53 lgrential ImpactonPractice J........... 55
5.4 Strengths and Weaknesses of Solution 56
[|
6 Conclusion 59
[|
7 Future Work 63

Biblm 65

viii

Appendix A" Selected Papers | 75

P1- Architectural Decision-Making in Enterprises 77
FZ2-"Towards Reusing Archifectural Kno_vdege as Design Guides 97
P3- - i i T Tt
123

157

177

179

Appendix C Annotation Rule 183
Appendix D Experiment Material 185

X

List of Tables

I |
1.1 mmmmﬁons vs. papers . . . 6

3.1 Lﬁﬂ;ﬂ@% Lo 29

4.1 [Results of experiment on IT students [42
4.2 Resulftsof expermment om expert archtects — -~ -~ -~~~ - - 42
43 Resuisof K-Stest - - - - - - - - - - - . 43
4.4 Characteristics of documents usedincasestudy 44
4.5 SADGE efficiency on project documents - results of case study 45

xi

Xii

List of Figures

1.1
dDC N 7
[L
2.1 [The research domain of the study bt 9
2.2 Pmoo characteristics domains.+ Tt
4. U wdliT yud Yy U U1V UUct [1ouvulild}f « « « « ¢ « o o .

3.1 |The research evolution and phases 30

l:

—l—turrmthy-nmmmq Norwegian electricity industry . Ry

4.2 t and annotated sentences that
includearchitecturalassue—— . ., 36
43 lA-HﬂQ(-&(—tOH—FH-]-e‘G—m—S-A—DG-E—l R ¥
4.4 |F9taln0119 of Terms (default version) | ... 138
4.5 |Operational stages (processing steps) in SADGE . | 39
4.6 |Construction of low priority catalogue 40

4.7 How much time should SADGE save to encourage practitioners to use it? 45
| |
C.1 SADGE annotation rule written in JAPE foruse in GATE 184

Xiii

CHAPTER 1

Introduction

This chapter presents the problem statement and the research questions of this thesis.
Then it briefly introduces the research methods and the claimed contributions of the thesis.
Finally, it outlines the structure of the thesis.

1.1 Problem Statement

All software systems have fundamental structure known as software architecture. The
software architecture comprises the components and the cohnectors of the software, and
determines where the components are located, how they are connected, and in what way
they communicate with each other [BCKO03]. Designing the architecture requires sev-
eral high- and low-level decisions. Therefore, the software architecture is considered as
a result of architectural decision-making processes. The more complicated the software
system, the more complex its architecture, and consequently the architectural decision-
making process becomes more difficult. Hence, in the companies that are in charge of
developing large and distributed software systems, the architectural decision-making pro-
cess is a crucial and non-trivial endeavor.

In many cases, the decision-making process starts with identifying and recognizing ar-
chitectural issues' that an architect should make decisions about. In the second step, the

ILiterature calls the architectural issues, decision topics [JBAOS] or decisions required [ZM12] too. We
adhere to architectural issues in this thesis.

2 CHAPTER 1. INTRODUCTION

architects explore and recognize available alternatives for solving the architectural issues.
In the last step, for each issue, the architects choose one of the candidate alternatives based
on the decision drivers (mainly quality attributes such as security, performance, reliability,
etc. and business drivers such as time-to-market and cost) [FCKK11].

For example, in designing the presentation layer of a web application, one of the architec-
tural issues to make a decision about, is input and data validation strategy. The alternative
solutions are accept known good, reject known bad, and sanitize [Net09]. A possible de-
cision (outcome of the decision-making process) is choosing accept known good strategy
based on security, reliability, performance, and usability as the main decision drivers.

In the software architecture research community, notabie|progress has been made to as-
sist practitioners in choosing and evaluating one alternative among candidate alternatives
(e.g. Architecture Tradeoff Analysis Method and Cost Benefit Analysis Method). Several
methods and tools have been developed for documenting the rationale and the outcome
of the decision-making process [BDLvV09, TAJ*10]. Little work, nevertheless, have fo-
cused on identifying architectural issues-in-a-specific project. This is the first and very
important step of the decision-making process. Observaticns-shewlthat-architects of-
ten do not identify architectural issues based on literature studies, or systematic reuse of
knowledge already gained [Zim09]. Rather, they mostly rely on their intuitions and prior
experiences to recognize architectural issues [Krul3, Zim09] that may be insufficient due
to cognitive biases [SM95].

There is a promising approach that has been developed to help practitioners in the first step
of their decision-making process. The approach is a decision identification technique that
enhances architectural guidance (a list of architectural issues/decisions topics and their al-
ternative solutions) from decisions made in previous projects, and from knowledge about
a domain that can be found in the literature. Through manual decision identification rules,
this approach tasks a knowledge engineer to study pattern languages and books, technical
reports, industrial standards, and project documentation to identify architectural issues
[Zim09]. The technique advises knowledge engineers to read the natural language texts
of the literature documents and to annotate the texts manually. The intention is to extract
architectural issues from documents and to develop architectural decisjon-guidance from
the extracted information. Such guidance is a reusable asset containing knowledge about
architectural issues recurring in a particular domain [Zim11]._Several case studies have
shown that the developed architectural guidance is promising irassistiig the practitioners
in their decision making, e.g., in SOA design [ZMK12].

The decision identification approach described above is manual; due to the knowledge
engineering effort that has to be invested initially, practitioners still are reluctant to use it.
For instance, in our trial to annotate the sentences that contain architectural issues out of a
500 pages architectural textbook, we spent 50 hours to apply the manual decision identifi-
cation approach. Therefore, developing approaches that extract issues from architecture-
related documents in a more automatic way, would accelerate the architectural guidance

1.2. RESEARCH CONTEXT 3

development, and as a result encourage the practitioners to use such guidance.

This thesis explores the current state of architectural decision making process in compa-
nies that develop large and distributed software (e.g., Smart Grid software applications
or telecommunication systems). By grounding on the advances in information extrac-
tion and natural language processing domains, it develops a rule-based framework called
SADGE that enhances architectural guidance from architecture-related documents in a
rapid way. The thesis evaluates the efficiency and effectiveness of the framework by con-
ducting a case study on documents received from a telecommunication company, and by
performing experiments on both IT students and expert IT/software architects.

1.2 Research Context

This research started as a part of the SmartGrids project at NTNU that was launched in
2011. The initial topic of the research was Improved Management of Software Evolution
for Smart Grid Applications, and the intention was to propose and validate methods for
developing and evolving the related software systems in electrical power grids. After nar-
rowing the topic to the architectural decision making process in electrical power grids, we
found that the electrical grid companies in Norway have not captured many architectural
decisions yet; thus, access to enough documentation to start the study was not feasible.
Therefore, we expanded the case of study to similar software systems such as those in the
telecommunication area. As a result, we consider the target application of this research
any large and distributed software system (what we refer to ultra-large-scale system or
system-of-systems in this thesis) besides Smart Grid software applications.

1.3 Research Questions

The research questions this thesis addresses are:

RQ1 What is the attitude of large-scale enterprises in making and reusing architectural
decisions and how do available tools and research prototypes support them?

RQ2 How can a framework be established to develop architectural decision guidance
from architecture-related documents in a rapid way?

RQ3 How efficient and effective will such a framework be in developing architectural
decision guidance?

4 CHAPTER 1. INTRODUCTION

1.4 Research Methods

Several research methods have been used to answer the research questions:

M1 Qualitative (in-depth) interviews: Several qualitative interviews have been con-
ducted with informants from the software industry to answer a part of RQ1.

M2 Survey: A survey has been conducted on experts to measure their agreement degree
in architectural decision-making process. The findings partially answers RQ1.

M3 Literature review: A literature review has been conducted to answer another part of
RQ1.

M4 Design science: A framework has been developed, based on the design science
approach or engineering method, to answer RQ2.

MS Case study: A case study has been conducted to improve and evaluate the frame-
work.

Mé Experim@ Two experiments have been conducted to evaluate the frameworlg
one with IT students, and one with expert IT/software architects in the industry.

Section 2.7 gives a definition of each of these methods. Chapter 3 clarifies how these
methods contribute to answer the research questions.

1.5 Contributions

The contributions of this thesis can be divided into two main themes:

T1 Exploration and investigation of making and reusing architectural decisions in prac-
tice and in the literature.

T2 Development and evaluation of a framework that accelerates the identification of
architectural issues, and helps architects to make architectural decisions in a more
efficient way.

The main contributions are:

C1 An overview of the state-of-the-art and state-of-the-practice in making and reusing
architectural decisions.

C1.1 The attitude of large-scale enterprises in making and reusing architectural de-
cisions and, the effect of SECO (software ecosystem) relationships on their
decisions.

1.6. LIST OF PAPERS 5

C2

C3

1.6

C1.2 Perspectives of existing tools and research prototypes that facilitate the post-
processing of architectural knowledge from projects and enhancing decision
guidance.

SADGE, a rule-based framework for enhancing architectural decision guidance
from architectural knowledge in project documents and in the domain literature.

C2.1 A Catalogue of Terms (CoT) needed to automate the extraction of architectural
issues from company- or project-specific documents.

Results of empirical evaluation of developing architectural decision guidance by
employing a rule-based framework.

List of Papers

The contribution of this thesis is presented through 5 main papers (P1 to P5) and one
supporting paper (P0). This subsection summarizes the papers. The papers are listed
historically with the oldest first. Appendix A presents the full content of all of the main
papers and Appendix B presents the abstract of the supporting paper.

PO

P1

P2

P3

P4

Smart Grid Software Applications as an Ultra-Large-Scale System - Challenges for
Evolution.

Mohsen Anvaari, Daniela S. Cruzes, Reidar Conradi.

In Proc. Innovative Smart Grid Technologies (ISGT), 2012 IEEE PES.

Architectural Decision-Making in Enterprises - Preliminary Findings From an Ex-
ploratory Study in Norwegian Electricity Industry.

Mohsen Anvaari, Reidar Conradi, Letizia Jaccheri.

In Proc. The 7th European Conference on Software Architecture, ECSA 2013.

Towards Reusing Architectural Knowledge as Design Guides - Functional Require-
ments, Tool Analysis and Research Roadmap.

Mohsen Anvaari, Olaf Zimmermann.

In Proc. The 26th International Conference on Software Engineering and Knowl-
edge Engineering, SEKE 2014.

Semi-automated Design Guidance Enhancer (SADGE): A Framework for Architec-
tural Guidance Development.

Mohsen Anvaari, Olaf Zimmermann.

In Proc. The 8th European Conference on Software Architecture, ECSA 2014.

Rule-based Extraction of Architectural Issues from Software Architecture Docu-
ments.

6 CHAPTER 1. INTRODUCTION

Mohsen Anvaari, Olaf Zimmermann, Carl-Fredrik Sgrensen.
Submitted for publication.

P5 Assocg Architectural Issues with Quality Attributes: A Survey on Expert Agree-
ment.
Mohsen Anvaari, Carl-Fredrik Sgrensen, Olaf Zimmermann.
Submitted for publication.

Table 1.1 presents the relationships between research questions, research methods, con-
tributions, and papers in this thesis.

\ Research Question \ Research Method | Contribution | Paper

RQ1 M1, M2, M3 C1 P1, P2, PS5
RQ2 M4, M5 C2 P3, P4
RQJ M5, M6 C3 P3, P4

Table 1.1: Research questions vs. research methods VD contributions vs. papers

Figure 1.1 positions the research questions and the papers of this thesis in the context of
problem-solution/theory-practice landscape?. This thesis has covered a cyclic path: Step
1) identifying the problem in practice, Step 2) finding the gap in theory, Step 3) developing
a solution on the basis of theory, Step 4) evaluating the solution in practice and Step 5)
ending the path by identifying the problem in practice to be tackled next. Chapter 4 is
accordingly divided into 5 sections covering the summary of results and contributions of
each step.

1.7 Thesis Structure

The thesis is orgnized into seven chapters and three appendixes as following:

Chapter 1 (this chapter) describes the problem statement and context of the thesis, and
outlifies the research questions, research methods, and research contributions. Chapter
2 prﬁnts state-of-the-art and basic theoretiﬁ-‘ concepts relevant to the thesis. Chapter
3 contains the research methods used in this-thesis. In Chapter 4, the thesis results are
presented and analysed. Chapter 5 discusses the research ﬁndij;l: against the state-of-the
art and argues the research limitations. Chapter 6 as the concluding remarks, summarizes
the answers to the research questions. Finally, future work is presented in Chapter 7.
Appendix A contains the five selected papers. Appendix B includes a supporting paper

(P0). Appendix C and Appendix C contain supporting material.

2The figure is inspired by conversations I had with Prof. Olaf Zimmermann during my stay at the
Institute for Software at the University of Applied Sciences (HSR FHO) in Rapperswil, Switzerland.

1.7. THESIS STRUCTURE 7

t Development Evaluation
[72]
g RQ2 ."'.‘I_.l._-.'-.“[”_”""'.. RQ3
g P3.P4 - - == -P3.P4
B 3 =

RQI

=
3 : =
= RQI v .
@ o
@ e RQl
B | (I

v Inception Inception

) Theory Practice ’

Figure 1.1: The research roadmap within the problem-solution/theory-practice landscape

CHAPTER 1. INTRODUCTION

CHAPTER 2

Theoretical Background

[]

This chapter gives an introduction to the basic concepts and theories relevant for this
thesis. Figure 2.1 presents an overview of the goals and context of this study presented
in Chapter 1. This figure rationalizes the presence of the concepts and theories that are
introduced in this chapter.

Software Quality

compromises

accumulates

Agility

ncrease

Increases,

Information
Extraction Methods

employs

have more potential to
create

Architectural Debt

caused by
poor

Architectural

Ultra Large Scale

Systems

require more
systematic

have impact on

Decision-Making

improves speed
and quality of

Architectural

negatively
affect

diminishes

Decision Guidance

enhances

Rule-based Framework
for Ench

develop and

Software Ecosystems

Cognitive Biases

evaluate

Architectural Deciwsion
Guidance

Research Methods in
Software Engineering

Figure 2.1: The research domain of the study

10 CHAPTER 2. THEORETICAL BACKGROUND

2.1 Ultra Large Scale Systems

VA PN QAN

A System-of-Systems—SoS)is a system where its components are large and complex
enough to be considered as systems in their own right [Mai98]. SoS is comprised of
constituent systems that possesses operationally and managerially independent charac-
teristics [Lan07]. An Ultra-Large-Scale System (ULSS) is a complex software-intensive
systemn-that-is-deeply-embedded-in-a-business and social context with many and diverse

cultures and economies in addition to large-scale software intensive systems [GKN™07].
Although many authors believe that ULSS is more complex and challenging than SoS
[MASSO08, Sha08, NFG06], some of them discuss that ULSS inherits characteristics of
SoS, so it has some characteristics in common with today’s SoS [NFG*06, RA10].

Maier considers five main characteristics for SoS that distinguish it from very large and
complex, but monolithic systems: operational independence of the elements, managerial
independence of the elements, evolutionary development rather than fully planned exis-
tence, emergent behavior, and geographic distribution [Mai98].

The report from the Software Engineering Institute on UISS, which is the main reference
in ULSS area, claims that characteristics of ULSS that will arise because of their scale are
much more revealing; Maier’s definitions are not so useful for understanding the underly-
ing technical problems of ULSS [NFG™06]. It considers seven characteristics for ULSS,
where some are common with SoS, and others are particular to ULSS:

1. Decentralization in a variety of ways including decentralized data, development,
evolution, and operational control.

. Inherently conflicting, unknowable, and diverse requirements.

. Continued evolution and deployment rather than staged evolution.

. Heterogeneous, inconsistent, and changing elements rather than uniform parts.
. Erosion of the people/system boundary.

. Normal break-downs rather than excepted ones.

~N O B W N

. New pms for acquisition and policy [NFG™06].

Figure 2.2 demonstrates the domains of characteristics in SoS and ULSS. It shows how
similar or distinct these two system types are as explained by their characteristics. Exam-
ples of ULSS are todays software systems in telecommunication, smart grids, banking,
health care, and military information systems.

One of the characteristics of ULSS is decentralized development. The actors that are
involved in development of an ULSS are distributed. The development and evolution of
an ULSS is the result of interaction between these actors. The actors and their interaction

2.2. SOFTWARE ECOSYSTEM 11

SoS characteristics

geographic distribution,
evolutionary development,
operational and managerial
independence,

E i emergent behavior 3
g1 ; -
g ! : ULSS characteristics
8 _—~— ______) conflicting

. .= I ! and diverse

e ™~ ! .
'’ decentralization, ? \\: requirements,
\ continues evolution, 1 erosion of the
heterogeneous and changing ¥ People/system
. elements + boundary,

. “normal failures,
- -~ new paradigms for
policy

Figure 2.2: SoS and ULSS characteristics domains.

form an ecosystem known as software ecosystem (SECO) in the software engineering
domain. In the next section, the SECO concept is elaborated.

2.2 Software Ecosystem

A software ecosystem (SECO) is “a set of actors functioning as a unit and interacting with
a shared market for software and services, together with the relationships among them”
[JBFO09]. The actor type in a SECO could be a supplier, independent software vendor,
software-consulting company or intermediary, and a customer [BSJ09]. Interaction or
relationship types could be a product flow, service flow, financial flow, or a content flow
[BSJ09]. For example the modern grid utilities as a part of a smart grid, purchase and
integrate various software applications for launching their enterprise system. The actors
in the SECO in this example, are suppliers (e.g. Oracle or Microsoft), independent soft-
ware vendors that develop Smart Grid applications, software consultant companies that
help grid utilities to integrate the applications, and grid utilities as the customers of the
ecosystem.

There are several visualization techniquestomode] and illustrate a software supply net-
work (SSN) within a SECO [LBJH12]. To illustrate the SSN of the case in the first step
of this PhD research, we have used the model by Brinkkemper et al. [BSJ09].

12 CHAPTER 2. THEORETICAL BACKGROUND

2.3 Software Quality

There are many definitions of the term quality in the literature. One of the earliest defini-
tions, pointing to-the-quality of industrial products in general, was given almost a century
ago by Radford:—"The term guality, as applied to the products turned out by industry,
means the characteristic or group or combination of characteristics which distinguishes
one article from another, or the goods of one manufacturer from those of his competitors,
or one grade of product from a certain factory from another grade turned out by the same
factory” [Rad22]. Applying the Radford’s definition, to develop a definition for software
quality, characteristics or group of characteristics that distinguish one software product
from another should be identified. In this regard, different academic institutions, standard
organizations, and researchers have suggested various characteristics for S@Fre qual-
ity. The standard ISO/IEC 25010 (originally ISO/IEC 9126) is one of the mest-adopted
standards in the software community that classifies software quality in a structured set of
8 characteristics, 37 sub-characteristics and their attributes [ISO11a]. The characteristics
and sub-characteristics of this model are shown in Figure 2.3. Other quality models may
include fewer or additional characteristics (such as CISQ [SC13] or McCall [CMRW77]),
or may use other synonyms for some of the characteristics (e.g. usability instead of oper-
ability, or portability instead of transferability).

Software
Product
Quality
[[| | I I I |
Functional | Reliability | Performance | Operability Security ||Compatibility | Maintain- Transferability
Suitability efficiency ability
Appropriateness|| Availability Time- Appropriateness|| Confidentiality || Replaceability Modularity Portability
Accuracy Fault tolerance || behaviour recognisability Integrity Co-existence Reusabillity Adaptability
Compliance || Recoverability || Resource- Learnability || Non-repudiation || Interaperability || Analyzability Installability
Compliance utilisation Ease of use Accountability Compliance || Changeability || Compliance
Compliance Helpfulness Authenticity Modification
Attractivenes Compliance stability
Technical Testability
accessibility Compliance
Comoliance

Figure 2.3: Software quality, ISO/IEC 25010 model [[SO11a]

These quality attributes (characteristics) take various roles in different phases of the soft-
ware development life cycle. In the requirement elicitation phase, they are considered
as non-functional requirements. In the architecture and design phase, they are treated as
decisions drivers; architects and designers analyze trade-offs between quality attributes
when they become conflicting, and satisfying all of them at the same time become impos-
sible. In the test phase, test plans and objectives are developed with regard to the quality
attributes.

2.4. REUSE IN SOFTWARE ENGINEERING |:] 13

Satisfying the quality attributes is the overall goal of the software development life cycle,
besides fulfilling the required functionality of the software product. Nevertheless, the
quality attributes are often compromised due to other stakeholder concerns such as cost
and schedule. This phenomenon is elaborated in Section 2.5.2.

2.4 Reuse in Software Engineering

”Software reuse is the process of creating software systems from existing software rather
than building software gystems jfrom scratch” [Kru92]. The main goal is to reduce cost
and save time of development by replacing creation with recycling [JSS14]. Besides, it
increases development productivity, software reliability, and ease of maintenance. It also
improves the quality of documentation and testing, and increases the speed of replacing
aging systems [Cyb96].

Software reuse, historically, focused on objective assets of software systems and the main
practice was repackaging and reapplying of code modules, libraries or entire applications
in the new software projects. Later, reuse was extended to cover more abstract entities
of software systems too. It is now acknowledged as beneficial to reuse software design,
aspects of project organization and methodology, development processes, and communi-
cation structures [Cyb96]. Software architecture, among the abstract entities of software
systems, has been recognized as an important consideration for software reuse [FKO0S].
More specifically, architectural decisions and architectural patterns are regarded as facili-
tators of reuse in software development process. Next sections cover these concepts.

2.5 Software Architecture

Every software system has a fundamental structure known as software architecture [BCK03,
TMDO09]. Even when the developers intentionally have not designed the structure of the
software, the software has an architectureﬂowever, there is no unified definition of soft-
ware architecture. In the software architecture community, there are at least 100 defini-
tions for software architecture '. One of the most adopted definitions is from the Software
Engineering Institute: “The software architecture of a program or computing system is
the structure or structures of the system, which comprise software elements, the exter-
nally visible properties of those elements, and the relationships among them” [BCKO03].
For example in a simple airline booking website, the elements are the three layers of the
software (user interface, business layer and data base layer) and the components of each
layer (for example the calendar component in the user interface layer). The properties
of those elements are the functional attributes of the elements (what the elements do)

'http://www.sei.cmu.edu/architecture/start/glossary/community.cfm

14 CHAPTER 2. THEORETICAL BACKGROUND

and quality attributes of the elements (how the elements do it). Finally, the relationships
among the elements state how the elements interact and communicate with each other (for
example the HTTP request message between two layers of the the booking website).

The focus of the mentioned definition is only on the structure of the software product.
Although this definition is still being used in the software architecture community, the
process that leads to-thestructure of the software has also become a part of the concept of
software architecture. The international standard for architecture description defines the
software architecture as the “fundamental concepts or properties of a system in its envi-
ronment embodied in its elements, relationships, and in the principles of its design and
evolution” [ISO11b]. Although this definition keeps the elements, their properties and re-
lationships as a main part of the software architecture concept, it considers the principles
of design and evolution of the software as another part of the concept. These principles
are mainly the design decisions that lead to the structure of the software. These decisions,
known as architectural decisions, will be elaborated in the next subsection. The definition
of software architecture to be used in this thesis is:

Definition - Software Architecture. Software architecture is the structure of a software
system which compromise its components, the properties of those components, and the
relationships among them, alongside the decisions that lead to that structure.

2.5.1 Architectural Decisions

Architectural decisions are considered a first class entity in software engineering [I[SO11h];
researchers define software architecture as a set of architectural design decisions[JBO51:
Architectural decisions are design decisions concerning a software system as a whole, or
one or more of its components and connectors in any given view [Zim09]. They are the
outcome of the architectural decision-making process where architects choose one alter-
native among various alternatives for solving an architectural issue. Therefore the triple of
issue-alternative-outcome is the essence of the decision-making process. For instance, in
the scenario of developing an airline booking website, one architectural issue is choosing
the topology of components in the physical level. The alternatives are a thin client or a
thick client, where in the thin client only the components of the user interface layer will be
located on the client whereas in the thick client the components of user interface and busi-
ness layers will be located on the client. Each of the alternatives have some pros and cons
and the architects choose one alternative based on the drivers of the system (e.g., quality
attributes, time-to-market, etc.). The chosen alternative is regarded as the outcome of the
decision-making process. Other instances of architectural issues for developing a booking
website would be the distribution of databases, data caching strategy, type of API (e.g.,
RESTful) and so on. For each of these architectural issues, the architects should iden-
tify the possible alternatives and choose one alternative based on the requirements of the
system and concerns of the company.

2.5. SOFTWARE ARCHITECTURE IN

When a software system is small and centralized, designing its architecture is not chal-
lenging. The architects can identify the architectural issues in a straightforward man-
ner even if they only rely on their intuition and previous experiences. But when the
system grows in various aspects (size, distribution, number-of stakeholders, etc.), the
decision-making process becomes very challenging. Different parts of the system might
be developed in various development departments and commercial-off-the-shelf (COTS)
or open-source components might be acquired and reused. Such components might be
purchased from various vendors and therefore interoperability and integration becomes
an issue due to architectural mismatch [GAO95]. Besides the technical challenges, or-
ganizational challenges also play an important role in decision-making process when the
developed system is a ULSS. However, how various actors of a SECO affect the architec-
tural decisions that each of them make, has not been focused in the literature so far.

Definition - Architectural Decision. An architectural decision is a choice to be made
or has been made among several alternative options for solving an architectural issue.

Architectural Decisions vs. Architectural Patterns

Architectural patterns are reusable solutions to recurring issues in software architecture
within a given domain [TMDQ9]. Therefore, sometimes architectural decisions are con-
fused with architectural patterns. To make the difference between the two clear, we refer
to the words by Harrison et al.:

"The major difference between architecture patterns and architectural decisions is in the
scope of information each contains. Each architectural decision document describes an
individual decision about the target system. In contrast, patterns describe solutions that
have proven successful in multiple applications. Thus, architectural decisions are specific,
but tentative; patterns are proven, but general. When designing systems, architects con-
sider patterns| as alternative solutions. ... Architectural decisions comprise application-
specific knowledge, whereas architecture patterns comprise application-generic knowl-
edge” [HAZ07].

2.5.2 Architectural Debt

Driven by development costs, time-to-market, and other stakeholder concerns, software
development projects often strive for maximum business functionality as early as pos-
sible with little regard to software quality attributes. This often leads to a phenomenon
that metaphorically has been called technical debt (TD) in the software engineering com-
munity since it was introduced in 1992 by Cunningham [Cun92]. TD refers to technical
compromises that can provide short-term benefit for projeetstakeholders but may hurt the
long-term health of a software system [LAL15]. Originally described by “not quite right

16 CHAPTER 2. THEORETICAL BACKGROUND

code which we postpone making it right” [Cun92], various people hdve used the term to
describe many other kinds of ills in software development: test debt, architectural debt,
requirement debt, documentation debt, etc. [KNO12]. Architectural debt (AD) is a type
of TD which is caused by architecture-deeisions that copseipusly or unconsciously com-
promise software quality attributes [LLATS5]. When short=term business advantages are
the main focus, AD is not necessarily a "bad thing”[LLA14]. However, the invisible na-
ture of AD (like other types of TD), makes it necessary to be managed sooner or later, as it
is accumulated over time and may violate system quality attributes; especially maintain-
ability and evolvability [KNO12]. Figure 2.4 shows the landscape of TD, the invisibility
of TD (and AD) in this landscape, and the issues and challenges that TD may bring into
the future of software development cycles (maintainability and evolvability issues).

GEIIN) T (TN

. architecture code
&
New features = Architectural debt Low internal quality Defects
k]
Additional functionality é’ Structural debt Code complexity Gode smells Low external quality
2
§ Test debt Coding style violations
= Documentation debt
Evolution issues: evolvability Quality issues: maintainability

Figure 2.4: The technical debt landscape [KNO12]

Besides the architectural decisions that consciously produce AD due to short-term busi-
ness related benefits, one of the sources for making unsound architectural decisions (and
consequently AD) are cognitive biases that architects unconsciously encounter. There-
fore, diminishing such biases may increase the quality of architectural decision-making
processes and lead to lower AD in the projects. The next subsection elaborates cognitive
biases in decision-making.

2.5.3 Cognitive Biases in Decision-Making

The knowledge that architects use to make decisions in designing complex systems (such
as ULSS) is very diverse. Like other decision-makers, architects face cognitive biases in
applying the diverse knowledge that is available to them for making decisions [RR9S].
The availability heuristic and affect heuristic are two instances of cognitive biases that
architects encounter.

The availability heuristic, first explained by Tversky and Kahneman [TK73], is a mental
shortcut in decision making process that relies on immediate examples-that come-tomind
and gives too much weight to recent experiences [AB14][Con14]. It occurs when several

2.5. SOFTWARE ARCHITECTURE 17

pieces of information affect a decision, but only some of them are readily available. This
often ends in decisions, based on incorrect and simplified assumptions, which need to be
revised later, managed as technical debt [RR98].

Affect heuristic-refers-to the fact that people make decisions by consulting their feelings.
In many situations, people make choices that directly express their emotions and their
basic tendency to approach or avoid, in most cases without being conscious that they are
doing so. People’s emotional evaluations of decisions, and the approach and avoidance
tendencies associated with them, all play a major role in guiding decision making pro-
cesses [Kah11]. In a survey about technology selection, when people were in favor of a
technology, they evaluated it as offering large advantages and imposing little risk; when
they disfavored a technology, they could think only of its deficiencies, and few benefits
came to mind [Kah11]. This can affect software architects in considering specific quality
attributes as drivers of a specific decision and ignoring other quality attributes that might
be relevant to the decision.

Generally, the cognitive biases in decision-making do not disappear just because software

make architects aware of the likelihood of the biases. Possible remedial actions are re-
quired such as framing problems to highlight relevant information that might otherwise be
ignored [SM95]. Architectural decision guidance that has been proposed in the architec-
tural knowledge research community [Zim11], highlights relevant information required
for architectural decision-making in a specific project. Therefore, it can be used to reduce
the negative effects of cognitive biases that architects face. As a result it helps the archi-
tects to be aware of architectural issues in the earlier phases of the projects when the cost
of refactoring is much less than later phases.

2.5.4 Architectural Decision Guidance (Design Guidance)

An architectural decision guidance (or a design guidance) is a reusable asset containing
knowledge about architectural decisions required when architects design a new system
[Zim11]. The guidance includes various architectural knowledge entities and is enhanced
based on knowledge captured from already-completed projects in a similar context or ap-
plication domain, or knowledge available in literature such as guidance books and pattern
catalogues. Such knowledge entities are supposed to be captured during current decision-
making process or to be included in decision guidance for reuse in future decision-making
processes.

Several scholars have proposed different synonyms for architectural knowledge entities.
Hordijk et. al. have proposed design probierr; sotution option, and quality indicator as
the outline of a design space [HKWO04]. Tyree and Akerman have suggested issue, deci-
sion, and related requirements to be included in architecture decision description [TAO5].

18 CHAPTER 2. THEORETICAL BACKGROUND

Jansen et. al. have proposed problem (decision topic), potential solutions, quality at-
tributes (trade-off), and choice in thgirconceptual model for an architectural design de-
cision [JBAOS]. Zimmermann et. al. have proposed issue, decision drivers, alternatives,
outcome, and ratienale-as the entities of a metamodel for architectural decision capturing
and reuse [ZKL109]. Gu et. al. have developed a template for SOA design decision mak-
ing where design issue, quality attributes, architectural options, and rationale are essential
elements of the template [GLVV10]. ISO/IEC/IEEE 42010 as a standard for architecture
description proposes decision, rationale, and concern to be captured in a decision-making
process [ISO11b].

’) 1 1| Decision Outcome
_—| Atemative Solution (Selected Allernative)

;/Has

) 1.0 ?7

Architectural lssue Affects s

(Positively/Negatively) \|/
L2 Relates

1.n
Decision Driver < Rationale
Is a trade-off
between
Extends Extends
Entfiies In archHectural Quality Attribute Business Factor
decision guidance

Figure 2.5: Entities/relationships in an architectural decision-making process and the
scope of architectural decision guidance

[]

Figure 2.5 shows the entities (and their relationships) that have been selected among the
mentioned proposals, for describing architectural decision-making process in this thesis.
An architectural decision guidance, is essentially a list of potential architectural issues
that architects should consider in new projects. An architectural issue informs the archi-
tect that a particular design problem exists and requires an architectural decision. Issues
relates to decision drivers, namely quality attributes and business factors, and have alter-
native solutions along with their 2dvantages (pros) and disadvantages (cons)[Zim11]. As
a reusable asset [Gro05], an architectural decision guidance has been curated, edited and
quality-assured by a knowledge engineer for readability and reuse.

Figure 2.6 shows a snapshot from an architectural decision guidance for a web develop-
ment project.

2.5. SOFTWARE ARCHITECTURE 19

Architectural Decision Guidance for Project A:
Web Application for Customer X
Architectural Issue 1. What should be the data validation strategy?
Alternative 1 - Accept known good
Alternative 2 — Reject known bad
Alternative 3 — Sanitize
Alternative 4 — No validation

Decision Drivers: Usability, Efficiency, Reliability, Security

Figure 2.6: A snapshot from an architectural decision guidance (design guidance)

2.5.5 Architecture and Agility

Software architecture and agile software development approaches have both shown their
significant impact on software engineering practices and products since emerging their
arrival; both have proponents and opponents in the industry and academia. While soft-
ware architecture has been used as a mean to increase the quality of the products, many in
the agile community consider it as an example of thefanti=pattern of big design up front.
Empirical observations also show that practitioners in the agile projects see the architec-
tural design problematic [PD12]; as a result the crucial role of underlying architecture
in these projects are often overlooked [BNO10]. On the other hand, while agile devel-
opment processes‘have-been adopted to meet the industry demands for rapid delivery of
the products, many of architecture’s advocates see them as lacking sufficient forethought
and rigor [Grul3]. Many practitioners in the domains of ultra large scale systems (e.g.
telecommunications) doubt the scalability of agile development approaches that do not
pay sufficient attention to the architecture of systems [ABK10].

The importance of architeeture-and, agility have made the researchers in the software en-
gineering community to bring the idea of companion and co-existence of the two into
the community [ABK10]. In this regard, to build a bridge between the two domains
and to use the benefits that both offers, researchers in the last five years have proposed
ideas,-approaches-and frameworks to!align-software architecture and agile processes
[BBM13][EKGER][HEK15][Alv13]. Prior to this thesis, several case studies have re-
ported that applying architectural decision guidance improves speed in software design
activities [Zim09]. The solution that this thesis proposes intends to encourage practi-
tioners even more to adopt systematic architecture design in their agile development ap-
proaches through an information extraction framework that accelerates the orientation in
the problem-solution space.

20 CHAPTER 2. THEORETICAL BACKGROUND

2.6 Information Extraction

Natural language processing (NLP) is a range of computational techniques for the auto-
matic analysis of natural language of humans. NLP research has evolved fromrtheera of
punch cards and batch processing to the era of Google and similar solutions. Since its
inception in 1950s, NLP research has been focusing on tasks such as machine transla-
tion, information retrieval, text summarization, question answering, information extrac-
tion, topic modeling, and more recently, opinion mining [CW14].

With roots in the NLP community, Information Extraction (IE) refers to the task of ex-
tracting structured information such as entities, relationships between entities, and at-
tributes describing entities from unstructured sources, mainly text documents [Sar0S§].
The topic of structure extraction now engages many different research communities such
as machine learning, information retrieval, databases, and web analysis [Sar08]. It has
several applications in different domains. Examples are scientifid-applications such as ex-
tracting biological objects from text documents in the bio-informatics domain, enterprise
applications such as tracking events from news sources, and web oriented applications

such as sentiment analysis in opinion databases [Sar08].

As the definition explains, any IE system has unstructured information as input and struc-
tured information as output. Type, granularity and heterogeneity of input and output
information affects the complexity of the extraction task and determines the architecture
of the IE system. The type of the-eutput information can be the extracted entity itself, the
relationship between extracted entities, the adjective describing the entities, or structures
such as ontologies [Sar08].The granularity of the extracted information can vary from
word level level to sentence level, and finally to document level. Heterogéneity of the for-
mat and style of the input information is another important concern that has a huge impact
on the complexity and accuracy of the IE system [Sar08]. On the more homogenized side
of the heterogeneity spectrum the machine generated text are located (e.g., HTML doc-
uments dynamically generated via database backed sites). The less homogenized input
information comes from partially structured domain specific sources (e.g., news articles).
At more heterogenized end of the spectrum open ended sources are situated (e.g. the web
where there is little that can be expected in terms of homogeneity or consistency) [Sar08].

In this thesis, the goal is to design an IE system that receives text of guide books, industrial
standards, and informal documents from companies. The output is a list of sentences that
contain architectural issues. Therefore, the type of extracted information is entity, the
granularity level is sentence, and the input information is very heterogeneous.

2.6. INFORMATION EXTRACTION 21
2.6.1 Methods of Extraction

Several methods have been introduced for extraction of information. Sarawagi has cate-
gorized the extraction methods along two dimensions: hand-coded or learning-based, and
rule-based or statistical [Sar08].

A hand-coded approach requires human experts to develop rules, regular expressions, or
program snippets for performing the extraction task. That person should be a domain
expert and possess linguistic understanding to be able to develop extraction rules. In con-
trast, learning-based approaches require manually labeled unstructured examples to train
machine learning models of extraction. Even in the learning-based approaches, domain
expertise is required in annotating examples that will be represertative of the actual de-
ployment setting. It is also necessary to have an understanding of machine learning to
be able to choose between various model alternatives. The nature of the extraction task
and the amount of noise in the unstructured data are the indicators for deciding between
a hand-coded and a learning-based approach [Sar08].

Rule-based extraction methods are driven by hard predicates (rules), while statistical
learning methods make decisions based on a weighted sum of rule firings. Rule-based
methods are easier to develop, whereas statistical methods are more robust to variation
in the unstructured text. Hence, rule-based methods are more useful in domains where
human involvement is both necessary and available. The statistical methods, on the
other hand, are more appropriate in broad-range domains like opinion mining from blogs
[Sar08].

In the rule-based extraction methods, rules consist of a condition part and an action part.
The condition part of the rule is a pattern of properties which need to be fulfilled by a
position in the text (e.g. a word or a sentence). Such properties may be capitalization,
formatting, or presence in a list of terms. If the condition is met (the pattern matches on a
text position), the action part of the rule is conducted. In most of the cases, the action part
is adding the text position to the list of annotations [Kliil5]. For example, an extraction
application that is run to identify people names in texts may have a rule as follows:

Condition - Wherever there is a "Mr.” or "Mrs.” followed by a noun which starts by a
capital letter,
Action - Annotate the noun as a person name.

2.6.2 Metrics for Evaluating Information Extraction Systems

Recall and precision are the main metrics used in the information extraction domain
to measure how well an infermation extraction system retrieves the relevant entities re-
quested by a user [SW11]. The meftrics are adopted to this thesis as follows:

22 CHAPTER 2. THEORETICAL BACKGROUND

the number of annotated sentences that are relevant

Recall = :
the number of relevant sentences in the reference document

the number of annotated sentences that are relevant

Precision =
the total number of annotated sentences

Besides, we define a third metric to be applied in the evaluation part of the thesis: Effort
Reduction measures how much effort an information extraction system reduces reading of
the architectural documents; by extracting the sentences that contain architectural issues.
It is calculated as:

the number of annotated sentences

Effort Reduction = 1 — -
i the total number of sentences in the document

The number 1 in the right-hand side (RHS) of the equation represenm ffort of reading
the whole document manually. The portion in the RHS represents fort of reading
only sentences that an information extraction framework has extracted from the document.
The effort reduction is therefore the subtraction of this portion from 1. All metrics are
presented in percent. They are visualized in Figure 2.7 2.

Relevant Sentences ~ Non-relevant Sentences
L
o)
o Q
Q
° o ¢
o]
Q
° @
] ® o) ®
Annotated Sentences
Effort Reduction=———— Recall=——— Precision =

Figure 2.7: Metrics to be used in the evaluation section of thesis

2The figure is inspired by http://en.wikipedia.org/wiki/Precision_and_recall

2.7. RESEARCH METHODS IN SOFTWARE ENGINEERING 23

2.7 Research Methods in Software Engineering

As Victor Basili stated in his essay published-in-1993, engineering, empirical and mathe-
matical methods are three of the.main research paradigms that can be applied in software
engineering research projects [Bas93]:The two former methods, engineering and empir-
ical, have been used in this thesis. “The engineering method observe existing solutions,
propose better solutions, build or develop, measure and analyze, repeat until no further
improvements are possible” [Bas93]. Other synonyms of the term might be used such as
development method [Sha02] or design science. The empirical method consists of a broad
range of research types, data collection methods, and data analysis approaches. Therefore,

it is elaborated in more details in the next subsection.

2.7.1 Empirical Methods

In software engineering research in general, without knowing the fundamental mecha-
nisms that derive the costs and benefits of software tools and methods for a certain ap-
plication, researchers can not say whether they are basing their contributions and actions
on faulty assumptions. In fact, unless they understand the specific factors and drivers that
cause tools and methods to be more or less cost-effective, the development and use of a
particular technology will essentially be a random act. Empirical studies are a key way to
get this information and move towards well-founded decisions and actions [PPVO0O]. It is
the same situation in the architecture area. Conducting empirical studies and observations
would be the base for evaluating effective methods, frameworks and tools.

Research takes many forms and it may be challenging to know which research approaches
and r¢search methods to apply in different situations. As a researcher, the different alter-
natives work as a toolbox, and it is far from trivial to choose the right tool in a given study
[WA14]. Therefore, selecting appropriate empirical research method is a challenging
decision;making task. Wohlin and Aurum have developed a conceptual research decision-
makimgstructure for selecting an appropriate research method. It is illustrated in Figure
2.8.

In the following parts, the empirical research methodologies, data collection methods, and
data analysis methods that have been used to @swer the research questions of this thesis,
are briefly introduced. In Chapter 3 the chosen methods for answering each of the research
questions are described. The detailed design of the conducted studies, the characteristics
of each of the methods and the rationale for selecting the methods are presented in the
papers at the Part 2 of this thesis.

Research

O Question

CHAPTER 2. THEORETICAL BACKGROUND

1

l - ! |
I 1 ! 1
I I ! 1
1 1 ! 1
| 1| (5) Research : I
! (1(), Rtesearch || _ Process | (7 Data .
| uicome 1| Quaitative ||1| Collection .
|| Basic (3) Research| | (4) Research| ! : Methods (8) Data |
: Research Purpose Approach : Quantitative : |Interviews | I\I::ta':zzlss :
1 I = 1

- 1 Mixed I :
: Applied | SRR Positivist Approach | R :
1| | Research - Theory ||,
1 Descriptive : : Archival L
: Interpretivist || : Research ;:ZE::;C :
1| (6) Research
!1(2) Research| || Exploratory o Ifngtho dology*l Survey —!
Logi xo Hermeneutii

: ogle Evaluation Critical 1 I - - I
| 1|| Case Study||i | Slmulatlonl Statistical ||y
1 I Inductive | 1 ! Analysis [t
1 || Research 1{| Action ! . I
I : Research : | Experlmenﬂ |
: Deductive 1 1 :
1 || Research ! Design {1 1
: 1 ||_Science : Research :
1 1

1 : :

Findingm
Strategy Phase Operational Phase

Figure 2.8: Research decision-making structure [WA14].

Qualitative Interview

"The qualitative research interview is h constrliction site of knowledge. An interview is
literally an inter view, an interchange of views between two persons conversing about a
theme of mutual interests” [Kav96]. There are three general types of research interviews:
structured interview that is conducted through a structured questionnaire, semi-structured
interview that is conducted on the basis of a 1 cture consisting of open ended
questions, and unstructured interview that is lessmd and usually covers one or two
research problems in great details [Bri9§ f%onsidering the context of interview, more
than one informant (group interviews groups) and interviews by telephone are
another types of interviews [BB11]. In qualitative research, the two main types of inter-
views are semi-structured and unstructured interviews. In the semi-structured interview
the researcher has a list of questions on specific topics to be covered, but the informants
have a great deal of freedom in responding to the questions. Questions may not follow in
the way outlined on the questionnaire. Questions that are not included in the questionnaire
may be asked based on the answers of informants. But all the questions will b@nd
a similar wording will be used from interview to interview [BB11].

2.7. RESEARCH METHODS IN SOFTWARE ENGINEERING 25

Case Study

”Case study is an approach to research that facilitates exploration of a phenomenon within
its context using a variety of data sources. This ensures that the issue is not explored
through one lens, but rather a variety of lenses which allows for multiple facets of the
phenomenon to be revealed and understood” [BJO8]. According to Yin a case study design
should be considered when [Yin14]:

(a) The goal of the study is to answer "how” and ”why” questions,
(b) Researchers cannot manipulate the behavior of those involved in the study,

(c) Researchers want to cover contextual conditions because they believe the conditions
are relevant to the phenomenon under study, or

(d) The boundaries between the phenomenon and context are not clear [Yin14].

Case studies are categorized into single or multiple, explanatory, exploratory or descrip-
tive, and intrinsic, instrumental or collective [BJOS]. Depending on the goals and limita-
tions of the study, researchers decide the type of the case study.

Experiment

In very general terms, an experiment is trying new things and seeing what happens, what
the reception is. However, when experimentation is considered as a research design, it
involves the control and active manipulation of variables by the experimenter. An experi-
ment is a research methodology involving:

o “the assignment of participants to different conditions;

e “manipulation of one or more variables (called independent variables, IVs) by the
experimenter;

o “the measurement of the effects of this manipulation on one or more other variables
(called dependent variables, DVs); and

e “the control of all other variables” [Rob11].

A randomized controlled trial (RCT) is a type of experiment where participants are ran-
domly allocated, either to al group who receive some form of treatment, or to a group
who do not [Rob11]. There are several alternative designs for conducting an RCT. Some
commonly used designs are two-group designs, three- (or more) group designg, factorihl
designs, parametric designs and repeated measures designs [Rob11]. Experimenters take
many considerations in choosing among experimental designs, dependent on the goal and
limitations of the study.

26 CHAPTER 2. THEORETICAL BACKGROUND

Survey

A survey is a data collection method in which respondents answer questions that were
prepared in advance [Kas05]. It should be distinguished from a literature survey where
researchers review and synthesize literature for understanding state-of-the-art in a specific
topic. Survey can be conducted through different approaches: oral survey by telephone,
paper-based survey distributed by mail or conducted face to face, and web-based survey
distributed by email or through posting on social networks. In a survey, both qualitative
information and quantitative data can be gathered. A survey should be conducted on a
sufficient sample size to make the quantitative results generalizable. The proper sample
size depends on factors such as the studied population and margin errors [KHO1].

Thematic Analysis

Thematic analysis or synthesis is a method for analyzing the textual data gathered by
a systematic literature review—or collected by a qualitative interview. It is a stage-by-
stage method and the main goal is to increase the abstraction level of transcribed texts
from the text level to the code and theme level and then create taxonomy of higher-order
themes[Bur91, CD11]. Cruzes and Dybé recommend four steps for thematic analysis of
extracted textual data in software engineering:

1. Identify and annotate interesting concepts, categories, findings, and results as codes
across the entire data set,

2. Merge and translate codes into themes, sub-themes and higher order themes,
3. Explorgassociations between themes and create a model of higher-order themes,

4. Assess the trustworthiness of the interpretations leading up to the thematic analysis
[CDI11].

Applying thematic analysis method creates categorizes of themes from several pages of
unstructured texts. The final groups of themes are usually presented as the answers to the
research questions of the study.

CHAPTER 3

Research Design

L]

This chapter briefly describes the research methods used in this thesis. The definitions
of the research methods were presented in Section 2.7. This chapter also describes the
research evolution of this PhD.

3.1 Research Questions and Research Methods

This section describes which research methods have been employed to address each of
the research questions.

RQ1: What is the attitude of large-scale enterprises in making and reusing architec-
tural decisions and how do available tools and research prototypes support them?

A set of qualitative interviews have been conducted in the industry to explore the state-of-
the-practice regarding making and reusing architectural decisions. Also, an online survey
has been carried out to measure the degree of agreement among experts in architectural
decision-making process. Besides, a literature review has been conducted to investigate
how the current tools and research prototypes support reusing architectural decisions.

Within the exploratory study, eight qualitative interviews were conducted in six large-
scale organizations in the Norwegian electricity industry. They are all actors in the soft-
ware ecosystem (SECO) that delivers the required software applications for the electricity
industry in Norway. Five of the organizations are grid utilities (customers of SECO) and

27

28 CHAPTER 3. RESEARCH DESIGN

one was a software development company (ISV of SECO). The details of the informants,
the organizations, the interview guide, and the thematic analysis used to analyze the in-
terview transcripts, are presented in Paper 1 (see Chapter A).

The survey was conducted at the end of the PhD journey. The goal was to find out whether
experts have agreement when they associate an architectural issue to relevant quality at-
tributes in architectural decision-making process. The findings of the survey are suitable
for addressing RQ1 .Thﬁetails of the survey is presented in Paper 5 (see Chapter A).

The literature review (tool analysis) was conducted to find the latest developed approaches
and tools that assist practitioners in reusing architectural decisions across their projects.
The details of the literature review and the list of the tools analyzed, are presented in Paper
2 (see Chapter A).

Conducting a set of qualitative interviews, a survey, and a literature review addressed the
first research questions and led to initiating the second research question.

RQ2: How can a framework be established to develop architectural decision guid-
ance from architecture-related documents in a rapid way?

A rule-based NLP framework is the main solution of this thesis for enhancing architectural
guidance from architectural related documents in a rapid way. To find out how such a rule-
based framework should be developed, the engineering method (design science) has been
used. To test and improve the framework, a case study has been condycted. Based upon
the results of the case study, the framework was impjoved. The best method of developing
the framework was chosen among all the tested ods in the case study. The details of
the development are available in Paper 3 (see Chapter A) and the details of the case study
is presented in Paper 4 (see Chapter A).

RQ3: How efficient and effective will such a framework be in developing architec-
tural decision guidance?

This research question addresses the evaluation of the rule-based framework developed
during this research. The case study (presented in Paper 4 in Chapter A) was also designed
for finding out how efficient and effective the framework is in enhancing the architectural
guidance from architecture-related documents. Besides, two experiments were conducted
to find out among automatic and semi-automatic information extraction approaches which
one operates more efficient and therefore should be included in the framework. The first
experiment involved 19 students of an IT programme while the second experiment was
conducted on 21 experienced software/IT architects from five Norwegian companies that
develop or integrate ultra-large-scale systems. The details of the design and paniants
of the first experiment are available in Paper 3 (see Chapter A) and the@tails of the
second experiment are presented in Paper 4 (see Chapter A).

The details of each method are presented in the papers availabteqin Part 2 of the thesis. A
summary of the methods are shown in Table 3.1. It only in s the research strategies

3.2. RESEARCH EVOLUTION 29

and data collection methods. The data analysis methods and statistical tests are only
presented in the papers.

Research Setting Research | Paper
Method Question
Qualitative Interviewing 8 informants (IT managers and ar- | RQ1 Paper 1
Interviews chitects) from 6 organizations in the Norwe-
gian electricity industry
Survey An inter-rater agreement study on 37 IT experts | RQ1 Paper 5
Literature Analyzing 5 tools and research prototypes RQ1 Paper 2
Review
Design Developing and testing an information extrac- | RQ2 Paper 3 and 4
Science tion framework
Case Study | Using 3 architectural documents from a | RQ2,RQ3 | Paper 4
telecommunication company to test and eval-
uate the framework
Experiment 1 | Evaluating the framework with 19 IT students | RQ3 Paper 3
Experiment 2 | Evaluating the framework with 21 expert archi- | RQ3 Paper 4
tects from 5 Norwegian organizations

Table 3.1: Summary of research methods

3.2 Research Evolution

This PhD was a journey that traversed more topics than those presented in this thesis.
The initial research topic was Improved Management of Software Evolution for Smart
Grid Applications. In the inception phase, we made some preliminary observations in the
electricity industry and in the literature. Two conceptual papers were published reporting
the conducted Titerature reviews. One paper is still slightly connected to this thesis and
is presented as a supporting paper (Paper 0) while the other one is not included in the
thesis [ACC12]. The research topic after 1.5 years shifted from the focus on software
evolution in Smart Grid to architectural decision making for large-scale software systems.
Smart Grid as an instance of large-scale systems is still connected to the research, but the
research also concerns other large-scale systems such as those in telecommunication or

banking areaI:]

Figure 3.1 shows how this PhD research has evolved over the time (it excludes the first 1.5
years of the research where the topic was different). It demonstrates different phases of
the research and different studies that have been conducted in each phase and the papers
that has been delivered during the research. After conducting several qualitative inter-
views, the more specific interest of the research became reusing architectural decisions

30 CHAPTER 3. RESEARCH DESIGN

Inception . Development | Evaluation EDevelnpmenr . Evaluation Inception
P5.
© Survey
P4:
. Experiment 2 *

f '

Case Study

- Design Science -

] . P3:

{]

. Design Science | Experiment 1

P2. !]
1 Tool Analysis |
: P]
* Qualitative Interviews
Oct 12 Apr13 Oct 13 Dec 13 Apr 14 Octl5 Junls Marlé

Figure 3.1: The research evolution and phases

and enhancing architectural decisions guidance from previous decisions. A literature re-
view analyzed the current tools that support reusing architectural decisions and enhancing
decision guidance. Completing the inception phase, accelerating the decision guidance
enhancement became the main focus of the research. Several methods were employed to
develop and evaluate a framework supporting automated decision guidanhancement.
The journey ended by conducting a survey to initiate an inception phase for the future
study. It should be noted that the path shown in Figure 3.1 is a retrospective view on the
journey; the PhD roadmap was not designed prospectively in this manner. It was evolved
over time and the final roadmap is presented here.

CHAPTER 4

Results and Analysis

O

This chapter summarizes the results of this thesis. The subsections are written based on
the results of studies which were introduced in Chapter 3. Each section gives a summary
and contribution of the results of each step of the research. The details of the results are
available in the selected papers presented in Part 2 of the thesis.

4.1 Architectural Decision-Making in Enterprises: State-
of-Practice

The first step of this PhD research was to explore the large scale enterprises to find out
the main processes and issues on making and reusing architectural decisions by consid-
ering the relationships among the-enterprises and other actors of the ecosystem. This
exploratory study partially an d the first research question of this thesis which is
presented in Section 3.1. The full results of this study is published in Paper 1. In the
following, the summary of the results are presented.

4.1.1 Architectural Decision-Making Approaches

The results of our study in line with the literature [vHA11], show that most of the large
scale enterprises are not using systematic approaches such as the architectural trade-off

31

[]

32 CHAPTER 4. RESULTS AND ANALYSIS

analysis method (ATAM) [KKB™98] to make and evaluate their architectural decisions.
Nevertheless, it does ot imp]y that the organizations are making their architectural deci-
sions totally unsystematically. Both the results of our study and findings from literature,
show that the enterprises first identify architecturally significant requirements (architec-
tural analysis), then find different candidate solutions for the requirements (architectural
synthesis), and finally validate the chosen solution against the requirements (architectural
evaluation) [VHA11]. In spite of similarities, different companies of our study have vari-
ous procedures for each of the mentioned processes. For instance, for architectural eval-
uation, some apply proof-of-concept, while some launch industrial prototype to evaluate
the chosen solution.

4.1.2 Effect of Software Ecosystem Relationships on the Architec-
tural Decisi

The case of our study was the software ecosystem (SECO) of the Norwegian electricity
industry. Figure 4.1 visualizes the software supply network in this SECO.

platform to regional

- Supplier §.5: architectural S.4: architectural
decisions regarding decisions regarding
Integration solutions Integration solutions
- Software Vendor i .
$.4: service fees, etc. . $.3: service fees, etc
)
< N
Customer \
I:l Regulator
Product flow P1> |5.1>
---------- >YGrid Utilities

[51> service fiow 1] 63 .

Financial flow P.1: database, . " opx NIS, SCADA,
OIDPE'FHH"Q system, GIS DMS, meter roliout,
platform, etc. billing systems, CRM,

Effect on ERP, CIS, Middleware
Architectural Decisions §.1: services related to technologies (ESB),
IF’ ! ‘;ke sbeatl Regulator etc.
raining, etc.
S5.2: services related to
§.3: selling GIS P.2 like support,

training, etc.

customers

$.2: license fees,

§.1: license fees, service fees, efc.

service fees, etc.

Figure 4.1: Current software supply network in the Norwegian electricity industry

The results of our study show that the relationships among the actors of a SECO could
significantly affect the ar@jctural-decision making process for each of the actors. In this
study, as Figure 4.1 shows, these effects are : 1) effect of regulators on the architectural
decisions of customers, 2) effect of vendors on the architectural decisions of customers,
and 3) effect of customers on the architectural decisions of vendors.

4.2. REUSING ARCHITECTURAL DECISIONS AS DESIGN GUIDES: TOOL ANALYSIS33

4.1.3 Reusing Architectural Decisions across Projects

One of the aims was to find out whether the explored enterprises identify the required
architectural decisions in a new project based on experiences from previous projects. The
results show that some of the enterprises reuse high-level architectural decisions in term of
architectural guidelines and rules set by their IT department. However, when it comes to
the low level architectural decisions, almost none of the explored enterprises are reusing
the decisions across different projects. Although some of the enterprises document impor-
tant architectural decisions, the decisions are not transferred between different projects in
a written sense. Therefore, some of the organizations show interest to become familiar
with reusable architectural decision frameworks. They believe that it would be useful to
learn from history and apply the experiences from previous projects in future projects.

Contribution. The first step of the PhD identified the general attitude of large-scale en-
terprises in making significant architectural decisions and reusing such decisions across
various projects and departments. Besides, it pictured the possible effect of relationships
among various actors in a software ecosystem on the process of making and reusing ar-
chitectural decisions at each actor.

4.2 Reusing Architectural Decisions as Design Guides:
Tool Analysis

The observations from the large scale enterprises (presented in Section 4.1), show that
there is both a gap and an interest in reusing architectural decisions from previous projects
in new projects. Reusing architectural decisions from previous projects as design guides
for new projects gives these decisions a more proactive role and therefore makes decision
management more appealing to practitioners. Although in new projects practitioners may
make different (even contradictory) decisions compared to previous projects, architectural
issues (the topic of previously made decisions), possible alternatives and the decision
drivers are still the highly informative knowledge to be transferred from previous projects
to new projects.

In the second step of the PhD research, we leveraged our industrial experiences, our pre-
vious research work and also the current literature in the architectural knowledge com-
munity to establish functional requirements for future knowledge management tools that
enhance architectural decisions to design guides. With respect to the functional require-
ments, we analyzed representative tools and research prototypes. The full results of the
analysis is published in Paper 2 (P2). P2 reported that the available tools and research pro-
totypes have made significant contributions in the area of architectural knowledge capture,
but still require a number of extensions so that the captured decisions can serve as design
guides in practice. We finalized the paper with a vision for method integration and tool

34 CHAPTER 4. RESULTS AND ANALYSIS

improvement. The literature exploration complements the results of the previous study in
answering the first research question of this thesis.

Contribution. The second step of the PhD specified the requirements for tools that fa-
cilitate the post-processing of architectural knowledge from projects and enhancing such
raw knowledge into design guides for future decision making activities. Furthermore, it
analyzed existing tools and research prototypes with respect to the proposed requirements.

4.3 SemDautomated Design Guidance Enhancer (SADGE)

Chapter 2 explained that architectural decision guidance (design guidance) has been pro-
posed in the software architecture community as a mean for improving the quality and
speed of architectural decision making processes. However, the manual effort and time
that practitioners should spend to enhance architectural decision guidance out of their
project documentations have been a barrier for integrating architectural decision guid-
ance into decision-making processes. An architectural decision guidance would increase
the agility of the project, whereas enhancing the guidance would decrease the agility. To
diminish this contradiction, a rule-based framework was developed in the third step of this
PhD. The framework accelerates developing architectural decision guidance by applying
techniques from the information extraction field. The framework, that is the main con-
tribution of this thesis, extracts architectural issues from architecture-related documents
available in the companies and in the literature. As it was discussed in Section 2.5.4, ar-
chitectural issues are the essence of architectural decision guidance, and assist architects
to reduce the effects of cognitive biases in their architectural decision-making processes.

The framework includes both automatic and manual processes, and therefore it is consid-
ered a semi-automated framework. We have used the synonym of architectural decision
guidance, design guidance, in the name of the framework to make the abbreviation of
the framework more readable: Semi-automated Design Guidance Enhancer (SADGE).
SADGE is the result of conducting the engineering method: it was developed in the third
step of the PhD, and evaluated in the fourth step in an iterative rather than a sequential
manner. This section covers the result of the development step, while Section 4.4 presents
the summarized results of the evaluation step. The detailed results of both development
and evaluation steps are available in Paper 3 and Paper 4 in Part 2.

A motivating scenario is presented in the following to make the application of SADGE in
architectural decision-making process objective and clear. The components of the frame-
work and the workflow of its operation are described afterwards.

4.3. SEMI-AUTOMATED DESIGN GUIDANCE ENHANCER (SADGE) 35

4.3.1 Motivating Scenario

Organization Al is a large grid utility with more than 100.000 customers. Mandated by
the national organization for energy regulation, Al should automate all optimization be-
tween electric supply and demand which requires employing new software systems. Al
is outsourcing the development of software systems to Company A2 which is an indepen-
dent software vendor (ISV) in the electricity industry. Software architect M is involved
in the architectural decision making activity within the development of client-server sys-
tem that automates the demand-response optimization in Al. Company A2 has done a
similar project for another customer before; however, architect M was not involved in the
previous project. Some of the decisions from the previous project were informally doc-
umented (i.e., in documents without a predefined structured template). These documents
include mailing lists, meeting minutes, and a company-internal wiki. The decisions blend
in with other information in the documents, and need to be enhanced into an architec-
tural decision guidance to be consumable for the new project. A new regulation from the
national energy regulator mandates the use of the Open Automated Demand Response
Communications Specification (OpenADR), which have been published on the Web!. As
a requirement from A1, architect M is also supposed to consider this specification when
making and justifying the architectural decisions in the new project.

For enhancing the architectural decision guidance for the project, M intends to highlight
and identify the list of the architectural issues that (s)he should make decisions about. M
will avoid identifying the required architectural issues intuitively (just based on his/her
experience). M is going to apply a manual decision identification technique [Zim09]
to extract architectural issues (decisions required) from documents of previous projects
(wiki, mailing lists, meeting minutes), technical reports, and standards including the Ope-
nADR specification. When the list of architectural issues is ready, M will find available
alternatives to each issue (as well as advantages and disadvantages of these) to generate
the architect ecision guidance for the project. Architect M will be more confident
about the dec making process by having this guidance.

Figure 4.2 contains a snapshot from the text of the OpenADR specification. M wants
to extract some of the architectural issues from this document. The document is a 120-
page text, and M would spent 12 hours to manually annotate the sentences that contain
architectural issues (these numbers are calculated based on our own annotation of one
chapter of the document, extrapolated to the scale of the whole document). Figure 4.2
shows a portion of the document and two of the sentences that M has annotated that
contain architectural issues. Architectural issues (decisions required) in these sentences
are: Model of interaction that DRAS client should support and type of DRAS client to
be developed for customers. 12 hours for covering one of the documents show that the
manual annotation process is very time-consuming. If M needs to manually identify issues
in all relevant documents (i.e., documents related to the previous project and the industrial

! Available at: http://openadr.lbl.gov/pdf/cec-500-2009-063.pdf

36 CHAPTER 4. RESULTS AND ANALYSIS

guidelines), M would have to spend several weeks. This would cost precious time and
increase costs considerably.

The Demand Response Automated Server (DRAS) must support two-way
communications for both the PUSH and the PULL model of interaction, but the
DRAS Client is only required to support one or the other) Typically the PULL model
may be used since the DRAS Client has more control over the communications
including the ability to more easily communicate through firewalls and being

network-friendly.

The DRAS is responsible for tracking the event states for each of the DRAS Clients in
order to send the DR event information to the DRAS Client at the appropriate time.

From the DRAS Client’s point of view there is a so-called DR event state the DRAS
Clients are in which is represented by the EventState entity. Normally a DRAS
Client’s event state is “IDLE” meaning that there are currently no active or pending
DR events. This changes when the utility or ISO initiates a DR event in the DRAS.
The DRAS tracks the DR event state for each DRAS Client and can provide the
current state information at any time for that DRAS Client. [{'can"berindifferent
states, depending upon whether the participant uses a Smart DRAS Client or a Simple
DRAS Client.

Figure 4.2: An example of an architectural related text and annotated sentences that in-
clude architectural issue

SADGE is developed to support company X (and similar companies) in enhancing archi-
tectural decision guidances in a more efficient and effective way.

4.3.2 SADGE Components

Automatic Annotator

Automatic Annotator (AA) is a natural language processing (NLP) tool that receives text
documents and annotates sentences in them. ANNIE (A Nearly-New-Infoermation Ex-
traction System) is used as AA in SADGE. ANNIE is a plug-in for the open source tool
GATE (General Architecture for Text Engineering) [Cun02]. ANNIE has several com-
ponents that run processes that are prerequisite for applying extraction rules on a text.
Tokeniser is one of the components and splits the text into simple tokens such as num-
bers, punctuation and words. Another module is sentence splitter which segments the
text into sentences. Gazetteer is anothetr component which identifies entity names in the
text based on lists of terms [Cun02]. By using ANNIE components, there is no need to
develop basic NLP processes (such as sentence splitter) in SADGE. The customized parts
required to be developed for SADGE are annotation rule and list of terms. These two are
defined as follows.

4.3. SEMI-AUTOMATED DESIGN GUIDANCE ENHANCER (SADGE) 37

Annotation Rule

Information extraction systems such as AA, need domain specific annotation rules for
annotating sentences in text documents. The sentence that matches a defined linguistic
pattern is extracted by the guidance of the annotation rules [KMOS5]. These rules are
inspired by rules used by humans to process natural language texts (e.g., if a word is
made up of capital letters, annotate it as a company name). Different tools formalize the
rules in various ways. ANNIE uses JAPE (Java Annotation Patterns Engine), GATE’s
built-in language for formalizing the rules.

if
(a sentence contains at least one of the terms
1 e catalog of higl 1ority terms . . .
from the catalog of high priority terms) > ammotate it 25 an architsctural issus
ar
(contains at least two terms

from the catalog of low priority terms)

Figure 4.3: Annotation rules in SADGE

The pseudo-code of the annotation rule developed for SADGE is shown in Figure 4.3.
The formal version of the rule written in JAPE is available in Appendix C. According to
this rule, AA should look in a list of predetermined terms to check whether a sentence
in the text contains one (or more) keyword(s) from the list. Some of these terms have
higher indication value for determining a sentence as an architectural issues and forms
the high priority list. The rest of the terms constitute the low priority list. A sentence
should contain at least two of them to be qualified as an architectural issue. More details
about the development of the Annotation Rule of SADGE, and the rationale for assigning
a term low or high priority are available in Paper 3 and Paper 4.

Catalogue of Terms

The list of predefined terms that AA should look in is called the Catalogue of Terms,
abbreviated CoT. SADGE has a default version of CoT. As we will elaborate later, this
version should be extended by adding ad-hoc terms for extracting architectural issues from
each specific document. The default version of CoT is presented in Figure 4.4. The terms
are divided into different categories to make it easier to maintain the catalogue further.

Gutdance Generator

The Guidance Generator is a component of SADGE that assists the knowledge engi
(e.g. Architect M in motivating scenario presented in Section 4.3.1) to categorize the
architectural issues, remove redundancy, and generate the design guidance.

L]

38 CHAPTER 4. RESULTS AND ANALYSIS

Low Priority Terms
General Terms
Verb Noun Adjective
apply investigate case different
approach launch choice several
articulate look into concern various
ascertain make definition
assess measure element
build pick out establishment
construct plan factor
deal provide investigation
define recommend limitation
delimit require philosophy
design select principle
determine set up requirement
discuss specify restriction
employ supply strategy
establish support type
evaluate take
formulate use
facilitate utilize
find
Architectural Terms
Verb Noun
exchange architecture mapping schema
refactor class model service
component profile topology
framework protocol transaction management
High Priority Terms
agree on choose I decide

Figure 4.4: Catalogue of Terms (default version)

433 SADGE Workflow
[]

Figure 4.5 shows the four processing steps of the SADGE framework. Each step Ol to
04 are described below.

O1. Prepare a document for annotation

Input: This step takes text files as the input. The text file can be either a project document
or public literature about software architecture in general or from the technical domain
the project is concerned with. Project documents are often either architecture description
documents or document containing architectural decisions (e.g. meeting minutes, internal
wikis, etc.).

4.3. SEMI-AUTOMATED DESIGN GUIDANCE ENHANCER (SADGE) 39

|:| Artifact
OTQDI:‘Pmcess
Input/ Catalogue
Output Construction
> 15tep Step2
Design
Catalogue of Terms Stend Guidance
Electronic Documents (CoT) Guidance Project A
(PDF, DOC, TXT, etc.) Generator /| |
-
Company Priority || Priort dtend. Issue |1
documents to stepd, AltL
when all documents .
are annotated pros
. Automatic E
Software ‘ Step3 ,
> Annotator Annotated Sentences Alt.2
Architecture Slcp 1
(AA) pros
. — cons
Architectural to stepl, for annotating Drivers
Decisions the next document
Issue 2
Annotation Rules
Domain
literature

Figure 4.5: Operational stages (processing steps) in SADGE

Task: The knowledge engineer edits the text files by removing irrelevant texts (i.e., cover
page, table of contents, etc.). Then, (s)he imports the text files into GATE. GATE removes
any non-text objects (e.g., embedded images) automatically.

Output: This step produces batch (corpus) of pure text files.
02. Construct Catalogue of Terms (CoT)

The knowledge engineer prepares thin this step. CoT is divided into fwo cata-
logues of high priority terms and low priority terms, based on the SADGE Annotation
Rule (presented in Section 4.3.2). As shown in Section 4.3.2, the high priority catalogue
contains only three terms (agree on, choose, and decide) and these are universal for an-
notating any document. Whereas the low priority catalogue is an ad-hoc catalogue to be
developed based on the input document. The knowledge engineer should construct this
catalogue in a hybrid method combining an ad-hoc manual bootstrapping method with a
lexical database assistance approach. |:|

In the hybrid construction method as shown in Figure 4.6, the knowledge engineer first
looks at the first 10 percent of the pre-processed text file (output of O1). The text in this
portion of the document reveals the language style of the document and may introduce
new clue terms| that are not in the default version of CoT. In the next step (s)he uses
WordNet? to find relevant synonyms of the new terms. New terms and their relevant

2WordNet is a public lexical database for the English language [Mil95]. Using lexical databases such as
WordNet to look for synonyms of a term, is common in the information extraction field [GVCC98].

40 CHAPTER 4. RESULTS AND ANALYSIS

O Task

I:I Work Product Default
Catalog of

Terms

—» Input/Output

2- Find
synonym of
each term
in WordNet

Add new terms

Ad-hoc
Catalog of Terms

1- Manually find
clue terms from

New Clue
Terms

Target
Documents

10% of document

Figure 4.6: Construction of low priority catalogue

synonyms are added to the default CoT. The result is the ad-hoc CoT.

The summary of step O2 is as follows:

Input: The high-priority CoT that is fixed and universal, is the input of this step.
Task: Constructing a low-priority CoT based on each input document.

Output: This step generates the complete CoT (high priority and low priority).
03. Automatically annotate the documents

Input: Batch of text files (output of Stepl), CoT (output of Step2), and the Annotation
Rules are the input of this step.

Task: AA applies the rules and annotates the architectural issues in the text file.

Output: A list of sentences that AA suggests as architectural issues is the output of this
step.

04. Generate the design guidance

Input: A list of sentences including architectural issues from all input text files is the input
of this step.

Task: Since the CoT is constructed in an ad-hoc manner based on a portion of each docu-
ment, steps O1 to O3 should be iterated on all documents. When the annotated sentences
from all of the text files are finalized (Step2 and Step3 executed on all input documents),
the Guidance Generator merges them and produces a design guidance for the project. It
includes all the potential architectural issues in the project. The knowledge engineer can
shorten the sentences, classify issues into groups, and add alternatives (including pros and
cons for each alternative) to each issue. (S)he can also remove redundant issues. AA just
extracts knowledge; it does not guarantee the correctness of the gathered knowledge. The
knowledge engineer is encouraged to edit extracted issues or add her (his) own issues.

Output: The design guidance for the project is the output of this step and the final output

4.4. EVALUATION OF SADGE FRAMEWORK 41

of SADGE.

Contribution. The third step of the PhD delivered a framework for obtaining architectural
decision guidance from architectural knowledge in project documents and the domain
literature. The Catalogue of Terms (CoT) as the essence of the framework, and the method
of constructing CoT are two other contributions of this step.

4.4 Evaluation of SADGE Framework

The fourth step of this PhD research was to evaluate the SADGE framework. We ran two
experiments and one case study for evaluating the framework. The first version of the
framework included a manual post-processing step after step O3 (automatic annotation
step), where a knowledge engineer would accept/reject the sentences that AA annotated.
The intention of the first experiments (conducted on IT students) was to compare three
approaches to extract architectural issues from documents: 1) the manual approach (with-
out using the framework), 2) automatic approach (using the framework containing only
the automatic step), and 3) semi-automatic approach (using the framework containing the
automatic step and manual post-processing step). We executed the second round of the
development iteration after the experiment with students, and improved the operation of
SADGE framework by conducting a case study. Then, we ran the second experiment, this
time with expert architects, to evaluate the improved version of the framework. We had a
discussion with architects to preliminary investigate experts’ opinion about the framework
at the end of the experiment.

Two metrics were used in the experiments for comparing manual, automatic and semi-
automatic approaches: processing time and recall. To calculate the recall a reference doc-
ument is needed. The reference documents (of two experiment groups) were constructed
based on the opinion of the only one of researchers involved in the first experiment. This
way of developing a reference document would cause a threat to the validity of the exper-
iment results. Thus, in the second experiment, the reference documents were developed
based on opinions of three experts in the software architecture domain through several
sessions of discussions. More details about the rationale for selecting the metrics and also
the stages of developing the reference document is available in Paper 4 (P4).

4.4.1 The More Efficient and Effective Approach for Extracting Ar-
chitectural Issues

We conducted two experiments to find out the more efficient approach for extracting ar-
chitectural issues among manual, automatic and semi-automatic approaches; the results

42 CHAPTER 4. RESULTS AND ANALYSIS

would indicate the nominated approach, among automatic and semi-automatic to be in-
cluded in SADGE. Besides, the experiment results would evaluate the efficiency and ef-
fectiveness of the automatic approach against the completely manual approach. In both
experiments (with IT students and expert architects), the participants were, in the first
stage, asked to manually annotate a sample text from architectural documents. The out-
come of this step is representative for the manual approach. Prior to the experiment
sessions, the sample text was annotated by the Automatic Annotator (AA) to be represen-
tative for the automatic approach. In the second stage of both experiments, the annotated
sentences b were given to the participants for accepting/rejecting AA annotations.
The outco this step was representative for the semi-automatic approach. Details
about the preparation, sessions, materials, participants and stages of experiments are pub-
lished in Paper 3 (P3) and Paper 4 (P4).

Table 4.1 shows the results of the experiment with 19 IT students. Lower processing time
of the automatic approach compared to the manual and semi-automatic approaches is not
a surprising result. But when it comes to the recall, we did not expect that the automatic
approach gives a higher result. The lower recall in the semi-automatic approach compared
to the automatic approach, reveals that the participants have rejected some of the true
positive results of the automatic part (AA annotations). We speculated the expertise level
of the participants as the reason, as it is reported in Paper 3.

Approach Time (min) | Recall (%)
Manual 9 38
Automatic 0.03 86
Semi-automatic 3 55

Table 4.1: Results of experiment on IT students

We conducted a new experiment to test this hypothesir improving the framework.
This time the participants were 21 expert software/IT architects and the material were
different from the first experiment. Table 4.2 shows the results.

Approach Time (min) | Recall (%)
Manual 14 34
Automatic 0.03 53.5
Semi-automatic 7 32

Table 4.2: Results of experiment on expert architects

Although the numbers are different from the previous experiment, the same pattern has
occurred again: Besides processing time that is much lower in the automatic approach
compared to the other two approaches, recall is shown to be higher in the automatic
approach. However, a statistic test needs to be run to find out whether this difference
of recall is significant or not. To test data normality, the data was analyzed applying

4.4. EVALUATION OF SADGE FRAMEWORK 43

Shapiro-Wilks test. Since the data was shown to have a normal distribution, a two-sample
Kolmogorov-Smirnov (K-S) test was applied to compare the recall in the automatic, man-
ual, and semi-automatic approaches.

Comparison p-value
Automatic vs. Manual 0.001774
I:] Automatic vs. Semi-automatic | 0.0001581

Table 4.3: Results of K-S test

As Table 4.3 shows, the recall of the automatic approach is significantly higher than the
manual and semi-automatic approaches, setting p-value threshold at a=0.01. A signifi-
cantly lower recall of semi-the automatic approach compared to the automatic approach
in the experiment with expert architects rejects the assumption about the expertise level
being the reason for rejecting some of the correct suggestion of AA by participants.

In the search for justification of the lower recall of semi-automatic approach, we found
that researchers in the field of psychology of decision-making have an empirical explana-
tion: ”Several studies have shown that human decision makers are inferior to a prediction
formula even when they are given the score suggested by the formula. They feel that they
can overrule the formula because they have additional informétion about the case, but
they are wrong more often than not” [Kah11]. Therefore, the research in the psychology
field suggests “to maximize predictive accuracy, final decisions should be left to formulas,
especially in low-validity environments” [Kah11]. Low-validity environments are the do-
mains that involve a substantial degree of uncertainty and unpredictability [Kah11]. The
task of annotating architectural issues in a document has a significant degree of uncer-
tainty. Hence, it can be considered as a low-validity context, and the lower recall of the
semi-automatic approach compared to the automatic approach, is not a surprising result.
We should note that final decision here is not the architectural decision, but the deci-
sion about annotating or not annotating a sentence as an architectural issue, to avoid any
misunderstanding. SADGE is not an expert system replacing humans with artificial in-
telligence for decision-making. Rather, as a support (recommender) system it highlights
recurring issues, thus empowering architects in making more comprehensive decisions.

In summary, considering the metrics of evaluation, processing time and recall, the au-
tomatic approach has shown to be more efficient than the semi-automatic approach for
extracting architectural issues. In the initial version of the framework presented in Paper
3, we considered the manual fine-tune stage as a part of the framework. After the exper-
iment with the experts, we conclude that this stage can be excluded. However, based on
the results of the case study presented in Paper 4, we selected the hybrid method as the
proper method for construction of the CoT. The hybrid method includes the manual boot-
strapping and therefore the framework can be considered semi-automated, and its name
Semi-Automated Design Guidance Enhancer (SADGE) is still justified.

44 CHAPTER 4. RESULTS AND ANALYSIS

4.4.2 Efficiency and Effectiveness of SADGE in Extracting Architec-
tural Issues from Project Documents

The Catalogue of Terms (CoT) is the essential component of SADGE, as the annotation
rule of SADGE attests. Therefore, the efficiency and effectiveness of the framework di-
rectly depends on it. The first version of CoT was developed by training CoT on seven
sample documents we found in the software architecture literature (i.e., two industrial
standards for software integration, three software design guidelines and two academic pa-
pers). Hence, SADGE may not perform with the same efficiency and effectiveness on new
documents, especially on documents from companies where the writing language is more
ad-hoc. We tested SADGE on three architectural description documents from a telecom-
munication company in Norway and on average, the recall declined 25% c@ared to the
seven sample documents from the literature.

Three alternative methods for constructing CoT was proposed to overcome this limita-
tion. The hybrid construction method (shown in Figure 4.6) was nominated as the most
efficient method among them. The proposed methods and the results of the evaluation of
their efficiency are presented in Paper 4 (P4). In this section, the efficiency of SADGE
operating with the hybrid construction method is presented.

SADGE was applied on three architecture-related documents from a Norwegian om-
munication company, to measure its efficiency and effectiveness in extracting architectural
issues from project documents. The original language of the documents was English.
Other characteristics of the documents are presented in Table 4.4.

Document Project Number of Pages | Authors ID
Doc 1 4G 44 AB,C
Doc 2 Network Infrastructure 25 D
Doc 3 Broadband 29 D

Table 4.4: Characteristics of documents used in case study

One of the researchers spent 18 hours to manually annotate and double check the sen-
tences that contain an architectural issue;[;i;%the evaluation documents. The annotated
documents were used as reference to evaluate the SADGE efficiency. The results of the

evaluation are shown in Table 4.5.

Considering SD, the mean of effort reduction and recall are more reliable than precision.l]
While 78 percent recall for extracting architectural issue is significant’, we were skeptical
about the significance of effort reduction which is 60 percent. It means that the knowledge

3In literature, there is no baseline for a recall of extracting architectural issues to which the recall of
SADGE be compared. However, one way to estimate an acceptable range for recall of SADGE is exploring
rule-based systems for sentence extraction in other gomains:|Subjectivity classifiers in opinion mining
domain is an instance of such systems [RWP05]

4.4. EVALUATION OF SADGE FRAMEWORK 45

Document | Effort Reduction (%) | Recall (%) | Precision (%)
Doc 1 66 89 10
Doc 2 51 72 28
Doc 3 63 73 14
Mean 60 78 17.33
SD 7.93 9.53 9.45

Table 4.5: SADGE efficiency on project documents - results of case study

engineer should still read 40 percent of the document for enhancing a decision guidance
out of the document. Our assumption was that practitioners might be reluctant to use
SADGE with this effi ducation. If that would be the case, we should employ one of
the other proposed construction methods where the effort reduction is higher, even though
the recall is lower. We asked the participants a question at the end of the experiment with
expert architects: How much time should SADGE save to encourage practitioners to use
it? As Figure 4.7 shows, 70% of practitioners were eager to use SADGE if it reduces the
extraction effort by at most 60%. As the case study shows, 60% is the effort reduction of
the hybrid method. Hence, the hybrid method has potential in practice to be selected for
construction of the CoT before the other three methods.

20-40 40-60 60-80 80or
more

Number of Respondants
== =" BRI~ T = N R

Desired Range (%)

Figure 4.7: How much time should SADGE save to encourage practitioners to use it?

A question is the size of the portion of the target document that the hybrid methods are
trained on (referring to Section 2.2, all of the following discussions are about the size
of prepared texts that are output of Stagel; they do not include non-text objects such as
figures). Is our suggestion, the first 10%, enough, too little, or too much? 10% worked
well for the evaluation cases of this study that were 44, 25 and 29 pages texts. If a

46 CHAPTER 4. RESULTS AND ANALYSIS

document has more than 100 pages, then 10% would be too much. In that case, we
suggest that practitioners only read the first ten pages of the text because we assume that
ten pages of a text is enough to understand the common vocabularies used in that text
since even three pages worked well in the case study. However, we have to repeat the
study on documents of bigger size to test our assumption and find a more reliable answer.

4.4.3 Experts’ Opinions About Usefulness and Application of SADGE

We had an oral discussion with the participants, after conducting the experiment on expert
architects. The general feedback of the participants about the usefulness of the framework
was positive. Some of them would read many documents in their daily tasks, and they
believe that the framework can be very helpful for them to either reduce the amount of
the text to read, or to determine the hot spots of their documents they need to pay extra
attention to. Some of the participants also found the framework very useful for the early
phases of their projects where they would find possible architectural related risks and
decide about proper mitigation solutions ahead.

Contribution. The fourth step of the PhD evaluated the rule-based framework for enhanc-
ing architectural decision guidance by expert architects and IT students. It compared the
automatic extraction of architectural issues to semi-automatic and manual extraction. Be-
sides, it evaluated the efficiency of the framework in extracting architectural issues from
project documents. Also, it identified the general feedback of expert architects about the
usefulness and application of automatic decision guidance enhancement in their projects.

4.5 Expert Agreement on Associating Architectural Is-
sues with Quality Attributes

The Automatic Annotator in SADGE identifies architectural issues from the input docu-
ments in an automated (rule-based) manner. Then, it is the task of the knowledge engineer
to manually add alternatives (including pros and cons for each alternative) to each issue, in
the last step of processing steps of SADGE. Pros and cons of each alternative are defined
based on the decision drivers in the decision-making process, namely business drivers
(i.e. cost, time-to-market, etc.) and software quality attributes (i.e. security, reliability,
etc.). Therefore, the knowledge engineer should identify relevant quality attributes for
each architectural issue to make her(him) able to position each alternative related to the
identified quality attributes.

Miguel et. al. had reviewed available quality models in software engineering and identi-
fied 48 possible quality attributes (characteristics) for a software system [MMR14]. As-
sociating an architectural issue with relevant quality attributes among 48 attributes is not

4.5. A SURVEY ON EXPERT AGREEMENT 47

a trivial task. Conducting a survey to examines whether there is agreement or consistency
among experts on associating an architectural issue with relevant quality attributes was
the last step of this PhD,. If the results supported the hypothesis that there is poor agree-
ment among experts, it would imply that task of associating is very subjective. Thus,
systematic, rather than intuitive, associating each architectural issue with relevant quality
attributes might be more sought in academia and more emphasized in industry.

The survey received 37 valid responses from various IT experts around the world in-
cluding software/IT/enterprise architects, developers and managers. The respondents an-
swered to five scenarios in which an architectural issues was given along seven quality
attributes. The task was to give relevance score between each architectural issue and each
quality attributes (O=irrelevant, 7=most relevant). Two methods were applied to measure
the inter-rater agreement/reliability: Intra class correlation (ICC) and Krippendorft’s al-
pha (Kalpha). While ICC measures observed and expected agreement,Kalpha measures
observed and expected disagreement. The value of both coefficients can range from U to
1. When raters agree perfectly, the value of ICC and Kalpha becomes 1, which indicates
perfect reliability. When raters agree as if chance had produced the results, the value
becomes 0, which indicates the absence of reliability [Bar66, Kri07].

ICC became 0.12 and Kalpha 0.09 when they applied@ all scenarios. The methods were
also applied on each scenario and each quality attribute separately to find out whether
there are specific scenarios or quality attributes on which experts have agreement. The
results (presented in Paper 5 at Chapter A) show poor agreement in those categories too.

48

CHAPTER 4. RESULTS AND ANALYSIS

CHAPTER 5

Discussion

This chapter discusses the contributions of this PhD against the state-of-the-art. It also
presents the potential threats to validity of the findings in this research. Besides, it argues
the potential impact of this research on architectural decision making activities in the
industry. Finally, it mentions the strengths and weaknesses of the solution this research
proposes.

5.1 Discussion of Contributions Related to State-of-the-
Art

This section discusses how each of the research contributions are related to the state-of-
the-art in the software architecture domain.

Contribution 1-1: Identifying the attitude of large-scale enterprises in making and
reusing architectural decisions and the effect of SECO relationships on their deci-
sions

Until 2005, there were little empirical evidence |about architectural decisions and how
practitioners treat them in practice [TBGHO0S]. The motivations and insights for devel-
oping frameworks, techniques, and tools that support the architectural decision-making
process in the industry have been collected mostly from researchers’ personal experi-
ences rather than empirical observation. Nevertheless, recently some empirical studies

49

50 CHAPTER 5. DISCUSSION

have been conducted in this area that are discussed below.

Tang et al. conducted a survey on the use and documentation of architecture design ra-
tionale in 2005 [TBGHO5]. Their main focus-was-to-understand how practitioners think
about decision rationale, how they use and document them, and what factors prevent them
from documenting decision rationale. Making the decisions were not the focus of their
investigations. Hoorn et al. were interested in the same direction and corjducted a sur-
vey to better understand what architects really do and what kind of support they need for
sharing architectural knowledge [HFLVV11].

Ivanovic and America has conducted a study to gain knowledge on information needed for
architecture decisions made by architects and managers [IA10]. The reuse aspect of the
decisions is not in their work. Also they have conducted their study only in one industrial
organization and therefore considering the ecosystem relationships that we are interested
in is not in their research.

van Heesch and Avgeriou have in their study investigated how experienced architects
reason in the context of industrial projects, how they prioritize the problem space, how
they propose solutions for the problem and how they choose among solutions [VHAT1].
Their work is relevant to our research but still lacks the reuse aspect and does not consider
software-ecosystem relationships.

There is very little work in the domain of software architecture investigating agreement
among experts on associating architectural issues with quality attributes. Tofan et. al.
[TGL"16] have recently proposed a process, called GADGET, for increasing agreement
in group architectural decision-making. They have studied the level of agreement among
experts in group decision-making to show that there is a practical need for GADGET, as
their first research step. The task given to the participants involves associating architec-
tural decision topics (what we call architectural issues) with decision concerns (what we
call decision drivers and include quality attributes). The researchers have studied whether
conflicting perspectives occur in group architectural decision making, through a qualita-
tive study. The participants, students and experts organized in groups of 3 or 4 members,
have often reported conflicts among them when the number of decision makers has in-
creased. This is in line with the poor level of agreement among experts reported by our
quantitative study. However, our quantitative findings are gathered from larger number
of experts participating from all over the world, and therefore complement the in-depth
qualitative observatjons of GADGET in term of reliability and external validity.

Svahnberg [Sva04] has reported an industrial study where a company faces the task of
identifying which among a set of architecture candidates that have the most potential for
fulfilling the quality requirements of a system to build. His quantitative results shows
poor agreement among 13 participants in the ranking of quality attributes within each
architecture candidate and in the ranking of architecture candidates for fulfilling each
quality attribute. Although we studied the agreement on associating quality attributes
with architectural issues, which is more general than architecture candidates for building

5.1. DISCUSSION OF CONTRIBUTIONS RELATED TO STATE-OF-THE-ART 51

a system, our study can be considered a replication of Svahnberg’s work on larger number
of participants.

Contribution 1-2: Perspective of existing tools and research prototypes that facilitate
the post-processing of architectural knowledge from prdjects and enhancihg decision
guidance

Paper 2 is not the first survey in the software architecture domain for analyzing and eval-
uating the architectural knowledge management tools. At least four preceding research
papers have been published [TAJ* 10, Bie10, SLK09, LA09]. Although some papers have
considered knowledge-sharing as a functional requirement in their evaluation framework,
their focus is not on knowledge post-processing and enhancing the knowledge into ar-
chitectural decision guidance, which has been the focus in our work. Furthermore, the
last survey was published in 2010, while in the last years more tools and research proto-
types have been developed or are under development. Paper 2 covers these new tools as
well. Anyhow, the mentioned research papers were valuable for our work; for instance,
we reused some of their functional requirements to establish the functional requirements
presented in Paper 2.

Contribution 2: A framework for enhancing architectural decision guidance from

architectural knowledge it project documents and domain literature

Sentence extraction has been used for automated requirement elicitation in the software
engineering field [MBM13]. While the nature and subjectivity of a sentence that con-
tains a software architectural issue is different from a sentence thatincludes-a-software
requirement, identifying any of them in a text document may follow some common Iogic.
Automated requirement elicitation has already been solved in the requirement engineer-
ing domain, mainly based on machine learning [MBM13, CGC10]. Therefore, machine
learning can be recognized as the first option for solving architectural issue identification.
However, employing machine learning to solve the architectural issue identification has
some limitations:

Learning systems must be trained on large text collections before they can operate on
broad and comprehensive documents in a domain [RW03]. There are large collections
of publicly available online documents (e.g. open source requirement specifications doc-
uments) for training requirement elicitation methods. Whereas for training architectural
issue identification methods, researchers have limited access to documents containing
architectural issues. Such documents are either in-house and not accessible due to confi-
dentiality concerns, or if available, many are not written in English. Open source projects
rarely document architectural decisions. Due to these limitations, machine learning meth-
ods cannot be applied to architectural issue identification as they are applied to automated
requirement elicitation. Alternatively, a rule-based NLP approach is required for enhanc-
ing architectural guidance from architecture-related documents.

Figueiredo et al. tackle similar research problems as done in SADGE; they have devel-

52 CHAPTER 5. DISCUSSION

oped a rule-based NLP approach to search architectural knowledge entities in documents
[FdRR12]. TREXx is another approach that annotates architectural related documents by
applying NLP to extract architectural knowledge entities (including architectural issue,
drivers, and decision rationale) [LCAC12]. Although the operation stages of both ap-
proaches are similar to SADGE, the CoTs and the method of constructing CoTs are not
presented in the referenced papers and not publicly accessible (e.g., on a project web-
site). Therefore, it is not possible to replicate these two approaches, and as a result, a
competitive quantitative comparison/evaluation or use on industry projects, is not feasi-
ble. The SADGE CoT and the methods of constructing CoT form two of our research
contributions, in response to these limitations.

Contribution 3: Results of empirical evaluation of developing architectural decision
guidance by employing a rule-based framework

Astudillo et al. [AVB12] has conducted an empirical study evaluating the TREx approach.
The experiment presented in that study has been conducted on 21 students and only 2
experts, while this thesis presented results of an experiment with 21 experts from five
different organizations besides 19 IT students. Furthermore, the authors of the mentioned
paper have not presented the material of the experiment nor the development of reference
document, and therefore replication is not possible.

3.2 Threats to Validity of Research Findings

This sections discusses the potential threats to the validity of the research results presented
in this thesis. The section is grouped into internal validity and external validity.

5.2.1 Internal Validity

Exploratory Study. The researcher was the data collection instrument in the exploratory
study (qualitative interviews). Therefore, one potential threat to internal validity of the
explorartory study is the researcher’s bias and his potentially various behaviors in dif-
ferent interview sessions. The researcher used an interview guideline including a list of
important questions to be asked during all interview sessions, to undermine the effect of
this threat.

Case Study. One shortcoming of the case study is that just one of the authors has an-
notated the reference documents, more than one opinion would be helpful to ensure the
internal validity. The same author has annotated the reference documents in a second
path, to decrease a possibly negative effect of this shortcoming.

Experiments. In both experiments, the potential threat to the internal validity is the

5.2. THREATS TO VALIDITY OF RESEARCH FINDINGS 53

testing effect [CSG63]. To avoid the issue, the participants were divided into two groups
and the two documents were swapped between the groups. As a result, group 1 in the
second stage examined the sentences from the document that group 2 had in the first stage
and vice versa.

Survey. The demographic questions in the beginning of the survey are designed to iden-
tify invalid answers so that these answers can be excluded from the analysis. Also a man-
ual checking over the answers, with the focus on qualitative written answers is applied
to find the possible spam answers. However, the chance that some irrelevant participants
have given answers or that some participants have become careless in their response in
the last scenarios of survey is not zero; which is a potential threat to internal validity.

5.2.2 [External Validity

Exploratory Study. Generalization of results to all large-scale enterprise based on the
enterprises from one industrial domain, is arguable. Although large-scale enterprises from
other domains like telecommunication, finance, or health-care also have challenges on
making architectural decisions for enterprise application development, our study shows
that the software integration in the electricity industry is more immature than other areas
due to lack of standardization and it can affect the architectural decision issues. So we are
aware of the threat to external validity. Conducting the same interviews with enterprises
from other domains would make the results more reliable.

Case Study. External validity is a goal that is more difficult to attain in a single case
study [Tel97]. However, to increase the statistical generalizability of the results [Yin14],
we chose three large and architecturally significant documents among six documents we
received from the telecommunication company. The three documents belong to three dif-
ferent projects, and the authors of the first document are different from the authors of the
other two documents. These selections ensured that the reference documents contained
a sufficient amount of architectural issues, and have various language styles. Receiving
more architecture-related documents from more companies would definitely increase the
external validity of the case study. We requested documents from more companies (inside
and outside Norway). Either they did not have available architecture-related documents in
English, or it was not possible for them to share it with us due to confidentiality concerns.

Experiments. In both experiments, the potential threat to the external validity is the
selection of the material (number, size and domain) for the experiment. We were aware
of this issue, and therefore in the second experiment we tried to select text from two
documents of different types (one is domain literature from Smart Grids, and the other
is a document from a telecommunication company). The portions of the documents are
selected in a way that all positive, negative, false positive, and false negative sentences
are present in the text, as explained in Paper 4. We would need to ask the experts to spend

54 CHAPTER 5. DISCUSSION

much more time on the experiment, to evaluate the framework by applying it on larger
documents from more diverse domains, which was not feasible.

Survey. Small number of respondents is often a potential threat to external validity of
surveys. However, the required number of raters in inter-rater agreement studies has been
suggested differently, to ensure an adequate precision in the results [Gwe10, LS07]. Even
when coefficient of variation for percent agreement is anticipated to be 5%, 40 raters are
enough to participate in the study, according to Gwet [Gwe10].

5.2.3 Construct Validity

Experiments. One potential threat to construct validity of the experiments is that partic-
ipants might interpret an “architectural issue” differently from researchers. In that case,
what the participants annotated as architectural issues in the experiment material might
not be what the researchers meant by architectural issue. To undermine this threat, an in-
troduction stage was included in both experiments to define an “architectural issue” with
some concrete examples.

Survey. Similarly, a potential threat to construct validity of the survey is possibly in-
consistence interpretations of “architectural issue” and quality attribute” between re-
searchers and participants. The quality attributes were defined in the introduction of the
survey based on a well-known standard quality model. Architectural issue was also de-
fined and explained in the introduction of the survey. Besides, the survey was first con-
ducted on some experts and their feedbacks were applied in designing the final version of
the survey questionnaire to undermine the threat to construct validity.

5.2.4 Conclusion Validity

Experiments. The results of the experiment with students was not analyzed by any sta-
tistical methods and therefore the conclusion we draw from the first experiment has a
potential threat to validity. To diminish this threat in the second experiment, we applied
statistical methods to test both the normality of data distribution and the reliability of the
comparison between results of the three extraction methods.

Survey. The survey could have a threat to conclusion validity if no reliability test was
conducted on the data. ICC and Krippendorft’s alpha tests take the reliability into account
besides measuring the agreement, to increase the conclusion validity.

5.3. POTENTIAL IMPACT ON PRACTICE 55

5.3 Potential Impact on Practice

The discussion with practitioners at the end of the second experiment, shows that the
potential value of semi-automatic architectural issue extraction generally is appreciated-
Besides, during the design and evaluation of the SADGE framework, we received interest
from companies in two European countries. Even though, projects employing agile prac-
tices might not see the need for systematic knowledge extraction/processing and decision
making; they might assess the effort to overshadow the potential gains and follow!the
lean principle to “defer decisions to the last responsible moment” [PP03]. However, even
extremely agile projects will not want the last responsible moment for decision making
to morph into the least responsible moment. Hence, thought leaders and architects nowa-
days see architecture and agility as natural companions [ABK10, BNO10]. Rule-based
issue extraction as in SADGE, can be leveraged in architectural spikes and early sprints
to scope the fundamental design work that is required to mitigate technical risk. Thus,
the project team can iterate often and sprint through the project once the baseline archi-
tecture is stable enough. This was pointed out by the experts participated in the second
experiment.

A discussion that may be raised is the usefulness of reusing architectural decisions. Soft-
ware development and architecture design methods such as Attribute-Driven Design and
the Unified Process (UP), put requirements first, quality attributes in particular (rightfully
so). Hence, it might not be obvious that decisions identified, made, and documented
on previous projects should be considered at all. However, the study of reference archi-
tectures, patterns, and other reusable assets certainly has its place in the practitioner’s
toolbox; some methods used in industry even make this activity explicit. Finding a doc-
umented architectural decision in a project document does not mean (by any means) that
this decision has to be followed blindly on the current project. However, the need for
architectural issues, and the chosen and neglected design alternatives as well as the ratio-
nale for their inclusion to or exclusion from the architecture, are still highly informative,
even if the context, requirements, and constraints of the current project differ from those
of the first project. Hence, architectural decision reuse as supported by SADGE, can be
seen as a natural extension of (and contribution to) such methods.

The findings of the survey show a poor agreement among experts in associating architec-
tural issues with quality attributes. This informs the practitioners that the quality attributes
they consider irrelevant or less relevant for an architectural issue, might be very relevant
in the opinion of other practitioners. Hence, their favorite solution might have proven
disadvantages connected to disregarded quality attributes. Exploring the decisions have
been made for the same architectural issues by other practitioners in the same domain is
one possible preventive solution, as it is facilitated by SADGE. Besides, group dedision-
making (GDM) and approaches and tools that support GDM [RM14, TGL*16] can be
employed, especially for critical architectural issues. GDM brings more than one opinion
into account and therefore the possible ignored yet relevant quality attributes by individ-

56 CHAPTER 5. DISCUSSION

ual decision makers can be identified. Another solution is employing systematic mapping
of architectural issues and quality attributes [GCSY08, KTS™09] or quantitative quality
evaluation techniques [Koz12].

5.4 Strengths and Weaknesses of Solution

The rule-based framework presented in this thesis, like any other solution, has strengths
and weaknesses. The strengths may encourage practitioners to use the framework and the
researchers to extend the framework. The weaknesses, on the other hand, may make the
potential users aware of the limitations of the framework and the researchers interested to
improve the framework.

Strengths. Agile and lean software development are gaining more adoption in the indus-
try. Software and enterprise architecture, in the meanwhile, are also finding their position
as necessary properties of projects and organizations. While agility and architecture-
aware development might sometime be perceived contradictory, SADGE has the poten-
tial to bring them into alignment. The framework treats recurring architectural issues as
first class entities and rapidly recovers them from documentation of previous projects and
related literature. Such a treatment gives the recurring architectural issues an active role
in the decision-making process, and reduces the chance of occurring cognitive biases in
decision makers.

Another strength of SADGE lies in its ad-hoc construction method for developing the
Catalogue of Terms (CoT). This ability makes the framework adoptable for extracting
architectural issues from documents in any company, within any context (telecommuni-
cation, banking, military, public sector, etc.). Besides, the default version of CoT contains
some general terms and some software architectural terms. The general terms might be
reusable for developing rule-based frameworks for extracting issues (decision topics) in
other domains besides software architecture (e.g. management, economy, politics, etc.)

Weaknesses. The major strength of SADGE, extracting architectural issues from doc-
uments in a rapid way, comprises a potential weakness: eliminating the context. The
Automatic Annotator in SADGE (which is built based on GATE) has a user interface
where practitioners can see the whole text and the annotated sentences in the text. This
feature enables the practitioners to see the context around each annotated sentence too.
However, if the practitioners read the whole context surrounding a sentence, it is against
the agility of the framework. On the other hand, if they focus only on annotated sentences
they may miss some knowledge in the context, which is implicitly related to the annotated
sentence. Therefore, users of SADGE should be aware of this trade-off.

Another weakness of SADGE is that it treats all architectural issues with a general atti-
tude. Architectural issues can be divided into different categorizes based on decision lev-

5.4. STRENGTHS AND WEAKNESSES OF SOLUTION 57

els (conceptual, technology, or vendor asset), or can be associated with different decision
drivers (security, performance, reliability, usability, etc.). For example, if a practitioner is
a security architect concerned with only security-related decisions, applying SADGE on
documents extracts all kinds of architectural issues besides security related ones, which
(s)he might not be interested in.

58

CHAPTER 5. DISCUSSION

CHAPTER O

Conclusion

This thesis presents the results of several studies in support of improving architectural
decision making processes: The first study has explored the general attitude of large-scale
enterprises in architectural decision-making. The second study has investigated available
tools and research prototypes that supports enhancing architectural decision guidance.
The third and fourth studies have iteratively proposed and evaluated a rule-based frame-
work for enhancing architectural decision guidance and presented the preliminary opinion
of expert architects about the framework. The last study has investigated the inter-rater
agreement among experts in associating architectural issues to quality attributes. This
chapter revisits the research questions of the thesis and summarizes the key research find-
ings that inform each research question.

RQ1: What is the attitude of large-scale enterprises in making and reusing architec-
tural decisions and how do available tools and research prototypes support them?

In line with a few previous empirical studies, our exploratory study shows that most of the
enterprises are not using well-known approaches such as ATAM. They are rather using
their own structured procedures. The study also revealed that the relationships among
the actors of a software ecosystem could significantly affect their architectural-decision
making processes, for example by limiting their alternative solutions. This factor should
also be considered as an influencing factor on architectural decision making process, in
addition to the factors previous studies have extracted from the industry. The exploratory
study also shows that there is a high potential among enterprises to reuse architectural
decisions across various projects, or across different companies within a software ecosys-
tem.

59

60 CHAPTER 6. CONCLUSION

The results of the survey show that there is a poor agreement among experts on associ-
ating architectural issues with quality attributes. The study, therefore, suggests that prac-
titioners pay more attention to systematic association of relevant quality attributes with
an architectural issue, when they make decisions for solving the issue. Such systematic
approaches already exist in the literature, yet are not widely adopted by the agile software
development processes due to time related concerns.

The literature review we conducted, reports that the available tools and research proto-
types have made significant contributions in the area of capturing architectural knowledge
, but still require a number of extensions so that the captured knowledge can be enhanced
to architectural decision guidance in practice.

RQ 2: How can a framework be established to develop architectural decision guid-
ance from architecture-related documents in a rapid way?

Automatically extracting architectural issues from architectural documents (project doc-
uments and domain literature) reduces the effort of manually creating architectural guid-
ance. Machine learning can be recognized as the first option, but it is not applicable in the
architectural knowledge domain due to limited access to architecture-relaed documents
written in natural language text. Alternatively, by employing natural language processing
(NLP) approaches, we show that a rule-based framework can be employed for enhancing
architectural guidance from architecture-related documents in a rapid way.

Applying the engineering method, we developed a framework called Semi-Automated
Design Guidance Enhancer (SADGE). SADGE contains a rule-based information extrac-
tor that automatically extracts architectural issues from architecture-related documents. It
uses a Catalogue of Terms (CoT) to realize which sentences of a document have certain
terms. These terms are clues to discriminate a sentence as an architectural issue. We
proposed an ad-hoc manual bootstrapping method for constructing catalogue-of-terms
combined with a lexical database assistance approach. We developed a default version of
CoT which should be adopted to the context of each document before launching SADGE
on the document. Automatic extractor combined with manual CoT constructor, make the
framework semi-automatic.

RQ 3: How efficient and effective will such a framework be in developing architec-
tural decision guidance?

The results of the case study showed that SADGE extracts architectural issues with a
significant recall, while keeping the effort reduction within an acceptable range. The
results of the experiments with both students and expert architects show that the auto-
matic extraction of architectural issues has higher recall and effort reduction compared
with the semi-automatic approach. Therefore, considering the two evaluation metrics, the
automatic approach is shown to be more efficient and effective than the semi-automatic
approach for extracting architectural issues.

The general feedback from experiment participants show that the experts believe that

61

the framework can be very helpful for them to either reduce the amount of the text to
read, or to determine the hot spots of their documents they need to pay extra attention to.
Therefore, practitioners can use SADGE especially in the first stage of their architectural
decision making process to rapidly identify architectural issues (decisions required) that
are relevant to their project. This helps them accelerate the orientation into the problem-
solution space, and consequently, to make architectural decisions in a more confident way
and to be more prepared for mitigating the risks that occur during the development and
evolution stages.

62

CHAPTER 6. CONCLUSION

CHAPTER 7

Future Work

This chapter outlines different avenues of future research:

Supporting more natural languages. At the present, SADGE only works for docu-
ments written in English (no difference is made between American and British English).
However, many projects around the world document their architectures in other languages
(sometimes this is a conscious decision, but oftentimes it is a constraint imposed by cer-
tain stakeholders, e.g. corporate guidelines). Not only the Catalogue of Terms (CoT) will
have to be adopted in this case, but also language grammars and character sets (e.g., in
Asian languages) might have an impact on the framework implementation and configura-
tion.

Developing domain-specific Catalogues of Terms. As our exploratory study show, the
required software systems for large-scale enterprises are developed within a software
ecosystem (SECO) rather than through a traditional isolated development fashion. Actors
of a SECO, in spite of differences, may share some common concerns and requirements.
Therefore, there would be recurring architectural issues in their software development or
integration projects. For example, several electricity grid utilities in Norway should make
similar architectural decisions in the direction of evolving their grids into Smart Grids. On
the other hands, several software consultancy companies in Norway should make similar
decisions for grid utilities as their customers. Therefore, one possible direction for future
research is to give the current version of SADGE (as an open source package) to actors
of a SECO and see how their ad-hoc CoT would evolve during a time slot (e.g. one year).
Although, as we have faced it already, companies probably would not desire to share their
architectural text with others (including researchers), the terms each company or organi-

63

64 CHAPTER 7. FUTURE WORK

zation adds to CoT for extracting architectural issues from their documents, can be asked
to be accessible for researchers. In that case, common indicator terms for identifying
architectural issues within a domain can be identified and new versions of CoT can be
delivered for each domain (e.g. CoT for telecommunication, CoT for Smart Grids, CoT
for finance, etc.).

Creating data sets for training and testing information extraction frameworks. As
we showed in this thesis, one of the limitations that researchers face in developing infor-
mation extraction frameworks in the architectural knowledge domain, is lack of data sets
that include instances of architectural knowledge entities (architectural issues in our case).
One direction for future study is creating and enriching a data set for training and evaluat-
ing frameworks that extract architectural knowledge entities from architectural documents
written in natural language text.

Deeper investigation of architects’ rationale for making architectural decisions. Poor
inter-agreement between experts in associating architectural issues with quality attributes,
made us interested to find out why different expert architects have different opinions in
making architectural decisions. However, deeper investigation was out of the agenda of
our research. So, a possible direction for future study is to conduct more exploratory
studies (both qualitative and quantitative) to find answers.

Bibliography

[AB14]
[ABK10]

[ACC12]

[Alv13]

[AVB12]

[Bar66]

[Bas93]

[BB11]

Steve Abelman and Randy Bass. Observed heuristics and biases in air traffic
management decision making using convective weather uncertainty. 2014.

Pekka Abrahamsson, Muhammad Ali Babar, and Philippe Kruchten. Agility
and architecture: Can they coexist? Software, IEEE, 27(2):16-22, 2010.

Mohsen Anvaari, Daniela S Cruzes, and Reidar Conradi. Challenges on
software defect analysis in smart grid applications. In Proceedings of the
First International Workshop on Software Engineering Challenges for the
Smart Grid, pages 19-22. IEEE Press, 2012.

Carlos Garcia Alvarez. Overcoming the limitations of agile software devel-
opment and software architecture. 2013.

Hernan Astudillo, Gonzalo Valdes, and Carlos Becerra. Empirical measure-
ment of automated recovery of design decisions and structure. In Andean
Region International Conference (ANDESCON), 2012 VI, pages 105-108.
IEEE, 2012.

John J Bartko. The intraclass correlation coefficient as a measure of relia-
bility. Psychological reports, 19(1):3—11, 1966.

Victor R Basili. The experimental paradigm in software engineering. In
Experimental Software Engineering Issues: Critical Assessment and Future
Directions, pages 1-12. Springer, 1993.

Alan Bryman and Emma Bell. Business Research Methods 3e. Oxford
university press, 2011.

65

66

[BBM13]

[BCKO3]

[BDLvV09]

[Biel0]

[BJOS]

[BNO10]

[Bri95]

[BSJ09]

[Bur91]

[CD11]

[CGC10]

[CMRW77]

BIBLIOGRAPHY

Muhammad Ali Babar, Alan W Brown, and Ivan Mistrik. Agile Software Ar-
chitecture: Aligning Agile Processes and Software Architectures. Newnes,
2013.

Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Prac-
tice. Addison-Wesley Longman Publishing Co., Inc., 2003.

Muhammad Ali Babar, Torgeir Dingsgyr, Patricia Lago, and Hans van Vliet.
Software architecture knowledge management. Springer, 2009.

Matthias Biehl. Literature study on design rationale and design decision
documentation for architecture descriptions. Technical report, Technical
Report ISRN/KTH/MMK, 2010.

Pamela Baxter and Susan Jack. Qualitative case study methodology: Study
design and implementation for novice researchers. The qualitative report,
13(4):544-559, 2008.

Nanette Brown, Robert Nord, and Ipek Ozkaya. Enabling agility through
architecture. Technical report, DTIC Document, 2010.

Nicky Britten. Qualitative research: qualitative interviews in medical re-
search. Bmj, 311(6999):251-253, 1995.

Sjaak Brinkkemper, Ivo van Soest, and Slinger Jansen. Modeling of prod-
uct software businesses: Investigation into industry product and channel ty-
pologies. In Wita Wojtkowski, Gregory Wojtkowski, Michael Lang, Kieran
Conboy, and Chris Barry, editors, Information Systems Development, pages
307-325. Springer US, 2009.

Philip Burnard. A method of analysing interview transcripts in qualitative
research. Nurse education today, 11(6):461-466, 1991.

Daniela S Cruzes and Tore Dyba. Recommended steps for thematic synthe-
sis in software engineering. In Empirical Software Engineering and Mea-
surement (ESEM), 2011 International Symposium on, pages 275-284. IEEE,
2011.

Agustin Casamayor, Daniela Godoy, and Marcelo Campo. Identification
of non-functional requirements in textual specifications: A semi-supervised
learning approach. Information and Software Technology, 52(4):436-445,
2010.

General Electric Company, Jim A McCall, Paul K Richards, and Gene F
Walters. Factors in Software Quality: Final Report. Information Systems
Programs, General Electric Company, 1977.

BIBLIOGRAPHY 67

[Conl4]

[CSG63]

[Cun92]

[Cun02]

[CW14]

[Cyb96]
[EKGER]

[FCKK11]

[FdRR12]

[FKO5]

[GAO9S]

[GCSYO08]

[GKNT07]

Thomas E Conine. Estimating the probability of meeting financial com-
mitments: A behavioral finance perspective based on business simulations.
Global Business and Organizational Excellence, 33(2):6-13, 2014.

Donald Thomas Campbell, Julian C Stanley, and Nathaniel Lees Gage. Ex-
perimental and quasi-experimental designs for research. Technical report,
Houghton Mifflin Boston, 1963.

Ward Cunningham. The wycash portfolio management system, addendum
to the proceedings on object-oriented programming systems, languages, and
applications (addendum), 1992.

Hamish Cunningham. Gate, a general architecture for text engineering.
Computers and the Humanities, 36(2):223-254, 2002.

Erik Cambria and Bebo White. Jumping nlp curves: A review of natural
language processing research. IEEE Computational Intelligence Magazine,
9(2):48-57, 2014.

Jacob L Cybulski. Introduction to software reuse. 1996.

GH El-Khawaga, Galal Hassan Galal-Edeen, and AM Riad. Architecting in
the context of agile software development: fragility versus flexibility.

Davide Falessi, Giovanni Cantone, Rick Kazman, and Philippe Kruchten.
Decision-making techniques for software architecture design: A compara-
tive survey. ACM Computing Surveys (CSUR), 43(4):33, 2011.

Adriana Maria Figueiredo, Julio C dos Reis, and Marcos A Rodrigues. Im-
proving access to software architecture knowledge an ontology-based search
approach. International Journal Multimedia and Image Processing (IJMIP),
2(1/2), 2012.

William B Frakes and Kyo Kang. Software reuse research: Status and fu-
ture. IEEE transactions on Software Engineering, (7):529-536, 2005.

D Garlan, R Allen, and J Ockerbloom. Architectural mismatch: why reuse
is so hard. Software, IEEE, 12(6):17-26, 1995.

Gokhan Gokyer, Semih Cetin, Cevat Sener, and Meltem T Yondem. Non-
functional requirements to architectural concerns: Ml and nlp at crossroads.
In Software Engineering Advances, 2008. ICSEA’08. The Third Interna-
tional Conference on, pages 400-406. IEEE, 2008.

Richard Gabriel, R. Kazman, Linda Northrop, D. Schmidt, and K. Sulli-
van. Workshop on software technologies for ultra-large scale systems. In
Software Engineering - Companion, 2007. ICSE 2007 Companion. 29th In-
ternational Conference on, pages 140-141, May 2007.

68

[GLVV10]

[Gro05]

[Grul3]
[GVC(C98]

[Gwel0]

[HAZO07]

[HEK15]

[HFLVV11]

[HKW04]

[IA10]

[ISO11a]

[ISO11b]

[JBO5]

BIBLIOGRAPHY

Qing Gu, Patricia Lago, and Hans Van Vliet. A template for soa design
decision making in an educational setting. In Software Engineering and
Advanced Applications (SEAA), 2010 36th EUROMICRO Conference on,
pages 175-182. IEEE, 2010.

Object Management Group. Reusable Asset Specification (RAS) Version 2.2.
2005.

John Grundy. Architecture vs agile: competition or cooperation?, 2013.

Julio Gonzalo, Felisa Verdejo, Irina Chugur, and Juan Cigarran. Index-
ing with wordnet synsets can improve text retrieval. arXiv preprint cmp-
1g/9808002, 1998.

Kilem L Gwet. The definitive guide to measuring extent of agreement
among multiple raters, 2010.

Neil B Harrison, Paris Avgeriou, and Uwe Zdun. Using patterns to capture
architectural decisions. Software, IEEE, 24(4):38-45, 2007.

Sebastian Hanschke, Jan Ernsting, and Herbert Kuchen. Integrating agile
software development and enterprise architecture management. In System
Sciences (HICSS), 2015 48th Hawaii International Conference on, pages
4099-4108. IEEE, 2015.

Johan F Hoorn, Rik Farenhorst, Patricia Lago, and Hans Van Vliet. The
lonesome architect. Journal of Systems and Software, 84(9):1424-1435,
2011.

Wiebe Hordijk, Dennis Krukkert, and Roel Wieringa. The impact of archi-
tectural decisions on quality attributes of enterprise information systems: a
survey of the design space. 2004.

Ana Ivanovi¢ and Pierre America. Information needed for architecture de-
cision making. In Proceedings of the 2010 ICSE Workshop on Product Line
Approaches in Software Engineering, pages 54-57. ACM, 2010.

ISO ISO. IEC25010: 2011 systems and software engineering—systems and
software quality requirements and evaluation (square)—system and software
quality models. International Organization for Standardization, 2011.

ISO/IEC/IEEE. ISO/IEC/IEEE systems and software engineering — archi-
tecture description. ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC
42010:2007 and IEEE Std 1471-2000), pages 1-46, Dec 2011.

A. Jansen and J. Bosch. Software architecture as a set of architectural de-
sign decisions. In Software Architecture, 2005. WICSA 2005. 5th Working
IEEE/IFIP Conference on, pages 109-120, 2005.

BIBLIOGRAPHY 69

[JBAOS]

[JBF09]

[JSS14]

[Kahl1]

[Kas05]

[Kav96]

[KHOI]

[KKB198]

[Klii15]

[KMO5]
[KNO12]

[Koz12]

[Kri07]

[Kru92]

[Krul3]

Anton Jansen, Jan Bosch, and Paris Avgeriou. Documenting after the fact:
Recovering architectural design decisions. Journal of Systems and Software,
81(4):536-557, 2008.

Slinger Jansen, Sjaak Brinkkemper, and Anthony Finkelstein. Business net-
work management as a survival strategy: A tale of two software ecosystems.
2009.

R Jayasudha, S Subramanian, and L Sivakumar. A novel software reuse
method-an ontological approach. International Journal of Scientific and
Engineering Research, 2014.

Daniel Kahneman. Thinking, fast and slow. Macmillan, 2011.

Mark Kasunic. Designing an effective survey. Technical report, DTIC Doc-
ument, 2005.

Steinar Kavle. Interviews. an introduction to qualitative research interview-
ing. Interviews: an introduction to qualitative research interviewing, 1996.

JWKIW Kotrlik and CCHCC Higgins. Organizational research: Determin-
ing appropriate sample size in survey research appropriate sample size in

survey research. Information technology, learning, and performance jour-
nal, 19(1):43, 2001.

Rick Kazman, Mark Klein, Mario Barbacci, Tom Longstaff, Howard Lip-
son, and Jeromy Carriere. The architecture tradeoff analysis method. In
Engineering of Complex Computer Systems, 1998. ICECCS’98. Proceed-
ings. Fourth IEEE International Conference on, pages 68-78. IEEE, 1998.

Peter Kliigl. Context-specific Consistencies in Information Extraction:
Rule-based and Probabilistic Approaches. BoD-Books on Demand, 2015.

Katharina Kaiser and Silvia Miksch. Information extraction. 2005.

Philippe Kruchten, Robert L Nord, and Ipek Ozkaya. Technical debt: from
metaphor to theory and practice. IEEE Software, (6):18-21, 2012.

Anne Koziolek. Research preview: Prioritizing quality requirements based
on software architecture evaluation feedback. In Requirements Engineering:
Foundation for Software Quality, pages 52-58. Springer, 2012.

Klaus Krippendorff. Computing krippendorff’s alpha reliability. Depart-
mental Papers (ASC), page 43, 2007.

Charles W Krueger. Software reuse. ACM Computing Surveys (CSUR),
24(2):131-183, 1992.

Philippe Kruchten. Games software architects play. 2013.

70

[KTS*09]

[LAQ9]

[LALIS]

[Lan07]

[LBJHI2]

[LCAC12]

[LLA14]

[LLAIS]

[LSO7]

[Mai9s]

[MASSO08]

[MBM13]

BIBLIOGRAPHY

Haruhiko Kaiya, Masaaki Tanigawa, Shunichi Suzuki, Tomonori Sato, and
Kenji Kaijiri. Spectrum analysis for quality requirements by using a term-
characteristics map. In Advanced Information Systems Engineering, pages
546-560. Springer, 2009.

Peng Liang and Paris Avgeriou. Tools and technologies for architecture
knowledge management. In Software Architecture Knowledge Management,
pages 91-111. Springer, 2009.

Zengyang Li, Paris Avgeriou, and Peng Liang. A systematic mapping study
on technical debt and its management. Journal of Systems and Software,
101:193-220, 2015.

Jo Ann Lane. Understanding differences between system of systems engi-
neering and traditional systems engineering. Technical report, 2007.

Garm Lucassen, Sjaak Brinkkemper, Slinger Jansen, and Eko Handoyo.
Comparison of visual business modeling techniques for software compa-
nies. In Software Business, pages 79-93. Springer, 2012.

Claudia Lopez, Victor Codocedo, Herndn Astudillo, and Luiz Marcio Cys-
neiros. Bridging the gap between software architecture rationale formalisms
and actual architecture documents: An ontology-driven approach. Science
of Computer Programming, 77(1):66-80, 2012.

Zengyang Li, Peng Liang, and Paris Avgeriou. Architectural debt manage-
ment in value-oriented architecting. Economics-Driven Software Architec-
ture, Elsevier, pages 183-204, 2014.

Zengyang Li, Peng Liang, and Paris Avgeriou. Architectural technical debt
identification based on architecture decisions and change scenarios. In /2th
Working IEEE/IFIP Conference on Software Architecture, 2015.

James M LeBreton and Jenell L Senter. Answers to 20 questions about inter-
rater reliability and interrater agreement. Organizational Research Methods,
2007.

Mark W. Maier. Architecting principles for systems-of-systems. Systems
Engineering, 1(4):267-284, 1998.

Mehdi Mirakhorli, Amir Azim Sharifloo, and Fereidoon Shams. Architec-
tural challenges of ultra large scale systems. In Proceedings of the 2Nd

International Workshop on Ultra-large-scale Software-intensive Systems,
ULSSIS °08, pages 45-48, New York, NY, USA, 2008. ACM.

Hendrik Meth, Manuel Brhel, and Alexander Maedche. The state of the art
in automated requirements elicitation. Information and Software Technol-
0gy, 55(10):1695-1709, 2013.

BIBLIOGRAPHY 71

[Mil95]

[MMR 14]

[Net09]

[NFG106]

[PD12]

[PPO3]

[PPV00]

[RA10]

[Rad22]

[RM14]

[Robl1]

[RR98]

[RWO03]

George A Miller. Wordnet: a lexical database for english. Communications
of the ACM, 38(11):39-41, 1995.

José P Miguel, David Mauricio, and Glen Rodriguez. A review of soft-
ware quality models tor the evaluation of software products. arXiv preprint
arXiv:1412.2977,2014.

Microsoft Developer Network. Microsoft application architecture guide,
2nd edition. http://msdn.microsoft.com/en-us/library/
f£650706.aspx, 2009.

L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough, R. Linger, T. Longstaff,
R. Kazman, M. Klein, D. Schmidtd, K. Sullivan, and K. Wallnau. Ultra-
Large-Scale Systems: The Software Challenge of the Future. Technical
report, Sofwtare Engineering Institute, Carnegie-Mellon, 2006.

Christian R Prause and Zoya Durdik. Architectural design and documenta-
tion: Waste in agile development? In Software and System Process (ICSSP),
2012 International Conference on, pages 130-134. IEEE, 2012.

Mary Poppendieck and Tom Poppendieck. Lean software development: an
agile toolkit. Addison-Wesley Professional, 2003.

Dewayne E Perry, Adam A Porter, and Lawrence G Votta. Empirical studies
of software engineering: a roadmap. In Proceedings of the conference on
The future of Software engineering, pages 345-355. ACM, 2000.

B.R.Rad and E.S. Aliee. Computational grid as an appropriate infrastructure
for ultra large scale software intensive systems. In Complex, Intelligent
and Software Intensive Systems (CISIS), 2010 International Conference on,
pages 469—474, Feb 2010.

George Stanley Radford. The control of quality in manufacturing. Ronald
Press Company, 1922.

Smrithi Rekha and Henry Muccini. Suitability of software architecture de-
cision making methods for group decisions. In Software Architecture, pages
17-32. Springer, 2014.

Colin Robson. Real world research: a resource for users of social research
methods in applied settings. Wiley Chichester, 2011.

Jason E Robbins and David F Redmiles. Software architecture critics in the
argo design environment. Knowledge-Based Systems, 11(1):47-60, 1998.

Ellen Riloff and Janyce Wiebe. Learning extraction patterns for subjective
expressions. In Proceedings of the 2003 conference on Empirical Methods

http://msdn.microsoft.com/en-us/library/ff650706.aspx
http://msdn.microsoft.com/en-us/library/ff650706.aspx

72

[RWPO5]

[Sar08]

[SC13]

[Sha02]

[Sha08]

[SLK09]

[SM95]

[Sva04]

[SW11]

[TAOS]

[TAJ"10]

[TBGHO5]

BIBLIOGRAPHY

in Natural Language Processing, pages 105-112. Association for Compu-
tational Linguistics, 2003.

Ellen Riloff, Janyce Wiebe, and William Phillips. Exploiting subjectivity
classification to improve information extraction. In Proceedings of the Na-
tional Conference On Artificial Intelligence, volume 20, page 1106. Menlo
Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2005.

Sunita Sarawagi. Information extraction. Foundations and trends in
databases, 1(3):261-377, 2008.

Richard Mark Soley and Bill Curtis. The consortium for IT software quality
(CISQ). In Software Quality. Increasing Value in Software and Systems
Development, pages 3-9. Springer, 2013.

Mary Shaw. What makes good research in software engineering? Interna-
tional Journal on Software Tools for Technology Transfer, 4(1):1-7, 2002.

Mary Shaw. Empirical challenges in ultra large scale systems. In Pro-
ceedings of the Second ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, ESEM *08, pages 110-110, New
York, NY, USA, 2008. ACM.

Mojtaba Shahin, Peng Liang, and Mohammad Reza Khayyambashi. Archi-
tectural design decision: Existing models and tools. In Software Architec-
ture, 2009 & European Conference on Software Architecture. WICSA/ECSA
2009. Joint Working IEEE/IFIP Conference on, pages 293-296. IEEE, 2009.

Webb Stacy and Jean MacMillan. Cognitive bias in software engineering.
Communications of the ACM, 38(6):57-63, 1995.

Mikael Svahnberg. An industrial study on building consensus around soft-
ware architectures and quality attributes. Information and Software Tech-
nology, 46(12):805-818, 2004.

Claude Sammut and Geoffrey I Webb. Encyclopedia of machine learning.
Springer Science & Business Media, 2011.

Jeff Tyree and Art Akerman. Architecture decisions: Demystifying archi-
tecture. IEEE software, (2):19-27, 2005.

Antony Tang, Paris Avgeriou, Anton Jansen, Rafael Capilla, and Muham-
mad Ali Babar. A comparative study of architecture knowledge management
tools. Journal of Systems and Software, 83(3):352-370, 2010.

Antony Tang, Muhammad Ali Babar, Ian Gorton, and Jun Han. A survey
of the use and documentation of architecture design rationale. In Software

BIBLIOGRAPHY 73

[Tel97]

[TGL*16]

[TK73]

[TMDO09]

[VHA11]

[WAL4]

[Yin14]

[Zim(9]

[Zim11]

[ZKL09]

[ZM12]

Architecture, 2005. WICSA 2005. 5th Working IEEE/IFIP Conference on,
pages 89-98. IEEE, 2005.

Winston M Tellis. Application of a case study methodology. The qualitative
report, 3(3):1-19, 1997.

Dan Tofan, Matthias Galster, loanna Lytra, Paris Avgeriou, Uwe Zdun,
Mark-Anthony Fouche, Remco de Boer, and Fritz Solms. Empirical eval-
uation of a process to increase consensus in group architectural decision
making. Information and Software Technology, 72:31-47, 2016.

Amos Tversky and Daniel Kahneman. Availability: A heuristic for judging
frequency and probability. Cognitive psychology, 5(2):207-232, 1973.

Richard N Taylor, Nenad Medvidovic, and Eric M Dashofy. Software archi-
tecture: foundations, theory, and practice. Wiley Publishing, 2009.

Uwe van Heesch and Paris Avgeriou. Mature architecting-a survey about
the reasoning process of professional architects. In Software Architecture
(WICSA), 2011 9th Working IEEE/IFIP Conference on, pages 260-269.
IEEE, 2011.

Claes Wohlin and Aybiike Aurum. Towards a decision-making structure for
selecting a research design in empirical software engineering. Empirical
Software Engineering, pages 1-29, 2014.

Robert K Yin. Case study research: Design and methods. Sage publications,
2014.

Olaf Zimmermann. An architectural decision modeling framework for ser-
vice oriented architecture design. Doctoral thesis, University of Stuttgart,
Faculty of Computer Science, Electrical Engineering, and Information Tech-
nology, Germany, March 2009.

Olaf Zimmermann. Architectural decisions as reusable design assets. Soft-
ware, IEEE, 28(1):64-69, Jan 2011.

Olaf Zimmermann, Jana Koehler, Frank Leymann, Ronny Polley, and Nelly
Schuster. Managing architectural decision models with dependency rela-
tions, integrity constraints, and production rules. Journal of Systems and
Software, 82(8):1249-1267, 2009.

Olaf Zimmermann and Christoph Miksovic. Decisions required vs. deci-
sions made: Connecting enterprise architects and solution architects via
guidance models. Aligning Enterprise, System, and Software Architectures,
page 176, 2012.

74

[ZMK12]

BIBLIOGRAPHY

Olaf Zimmermann, Christoph Miksovic, and Jochen M Kiister. Reference
architecture, metamodel, and modeling principles for architectural knowl-
edge management in information technology services. Journal of Systems
and Software, 85(9):2014-2033, 2012.

APPENDIX A

Selected Papers

75

76

APPENDIX A. SELECTED PAPERS

PI- ARCHITECTURAL DECISION-MAKING IN ENTERPRISES 77
P1- Architectural Decision-Making in Enterprises

Published: In Proc. The 7th European Conference on Software Architecture, ECSA
2013.

78

APPENDIX A. SELECTED PAPERS

P1- ARCHITECTURAL DECISION-MAKING IN ENTERPRISES 79

Architectural Decision-Making in Enterprises:
Preliminary Findings from an Exploratory Study in Norwegian
Electricity Industry

Mohsen Anvaari, Reidar Conradi, Letizia Jaccheri

Norwegian University of Science and Technology, Trondheim, Norway
{mohsena,conradi,letizia} @idi.ntnu.no

Abstract. Motivation: The current literature in the architectural knowledge domain has made a
significant contribution related to documenting software architectural decisions. However, not many
studies have been conducted to assess the architectural decision-making and decision reuse processes
through empirical investigations. Besides, the effect of the relationships among the actors in a software
ecosystem on the architectural decisions-making process of each actor is not well studied. Goal: The
objective of this paper is to identify the main processes and issues on the architectural decision-making in
large-scale enterprises by considering the relationships among the enterprises and other actors of the
ecosystem. Method: We conducted semi-structured interviews with six Norwegian companies in the
software ecosystem of electricity industry. Results: Regarding the architectural decision-making process,
the findings are in line with previous empirical studies, showing that most of the companies are not using
well-known academic approaches such as ATAM, they are rather using their own procedures. The study
also shows that the relationships among the actors of a software ecosystem could significantly affect the
architectural-decision making process in each of the actors, for example, by limiting their alternative
solutions. Finally, the results confirm that it is advantageous for the enterprises to reuse the architectural
decisions across their various projects or for cooperative companies to reuse the decisions across their
similar projects. Conclusion: Improving the reusable architectural decision frameworks by considering
the relationships among the actors in a software ecosystem would be beneficial for the industry.

Keywords: Architectural decision making, enterprise applications, empirical study, software ecosystem,
electricity industry

1 Introduction

In the current industrial environments, enterprises ' employ various software
applications to automate their daily business processes and activities. They buy the
applications from different vendors and use them either separately or as an integrated
system based on a high level structure (architecture). Therefore the concepts such as
enterprise application * | enterprise application development (EAD), enterprise
application integration (EAI), enterprise architecture and similar terms have been
developed and used for many years in the both academia and industry.

' “An enterprise is one or more organizations sharing a definite mission, goals and objectives to offer an
output such as a product or a service” (Chen et al., 2008).

? An enterprise application is a distributed, software-intensive system that automates business processes
and activities in an enterprise (Zimmermann, 2009).

80 APPENDIX A. SELECTED PAPERS

By evolving and expanding the usage of such systems, the amount of transactional data
between different applications have been dramatically increased and as a result many
enterprises automate the data transfer between their applications. Therefore a movement
from software as an island to software as a systems-of-systems has been emerged for
many years (Maier, 1998). A classical challenge in this landscape is integration and
interoperability issue (Chen et al., 2008)(Fisher, 2006) because the applications are
developed based on different platforms (programming languages, operating systems,
network protocols, etc.). Many approaches, trends and standardizations have been
introduced to decrease the interoperability challenges (Chen et al., 2008) but still
interoperability is one of the main concerns in EAD.

One of the most successful approaches for solving the interoperability issue is service-
oriented development and many enterprises are using service-oriented architecture
(SOA) as their architectural style. Although SOA is shown to be highly successful to
alleviate the interoperability problem, implementing a SOA in an enterprise is not easy
and has to meet domain-specific non-functional requirements with explicit software
quality criteria (Zimmermann et al., 2007). There are many ways of implementing a
SOA and no single SOA fits all purposes and constraints of an organization. Therefore
many architectural design issues and tradeoffs arise (ibid), and architects have hard time
to make “right” architectural decisions. Such decisions would include strategic concerns
about technology and product selection, finding the right service interface granularity,
and numerous decisions that deal with non-functional aspects (ibid). Zimmermann et al.
have captured 130 such SOA decisions till 2007. This shows how challenging is to
choose between different decisions (ibid).

How do enterprises deal with complex integration and how do they make efficient
architectural decisions? What are their main challenges (technical and organizational) to
make the right decisions? Do the enterprises reuse their architectural decisions in their
different but similar projects? What about software consultant companies, do they reuse
architectural decisions in different enterprises in the same domain? How the
relationships between different companies and organizations in an industrial domain
would affect their architectural decisions?

Even though the architectural decision concept (and the broader concept, architectural
knowledge’) has gained increasing attention in the software architecture community in
the last decade, still there are some deficiencies in answering to the mentioned
questions:

* Based on our literature review, existing works in the architectural knowledge are
more theoretical frameworks and tools developed in the academia and very few
empirical researches exist in the area. Even though the theoretical works have
been often evaluated by industrial case studies, the assumptions and claims
about architectural decision-making in enterprises are seldom obtained through

3 Architectural knowledge = architectural decisions + architectural design (Kruchten et al., 2006).

P1- ARCHITECTURAL DECISION-MAKING IN ENTERPRISES 81

empirical studies. The motivations for developing such frameworks and tools are
mostly gained from either previous literature or authors’ personal experiences in
the industry. There is a lack on getting insights from the industry in a more
systematic way.

* Even those few empirical studies in the area (we will try to cover them in the
related work section) are mostly focused on the decision documentation and
representing. The decision-making process in the industry has not been often
studied empirically.

* Despite all these, still there are some empirical studies and surveys to understand
the decision-making and reasoning process of architects in the industry. But first
of all they are not discussing the reusable architectural decisions in EAD
(Zimmermann, 2009). Furthermore they don’t consider the effect of companies
relationships on the decision-making process.

Considering the above issues, the goal of this paper is to get insights for answering to
the mentioned questions by observing the current situation of software development and
integration in the Norwegian electricity industry. The remainder of the papers is
organized as follows: In the section 2 the related work will be discussed. Section 3
presents the design of the research including the research goal and questions and the
research method. Section 4 presents the results of the study and section 5 analysis the
resutls. Finally section 6 remarks the conclusions and also discusses the future work.

2 Related Work

To find out the related areas to this research, we consider three dimensions: topic of
interest, research method and research context. The topic of our research is generally
related to the architectural knowledge and more specifically the architectural decision
area. If we divide the works in this dimension to the making the decisions and
documenting the decisions, our work is focused more in the making the decisions.
Concerning the research method, if we consider theoretical-based researches and
empirical investigations, this research is related to the empirical investigations.
Regarding the context, we split the current work into the research that studies the
architectural decisions in a company regardless of its position in the software ecosystem
(SECO), and research that considers the company position in SECO. Our work focus is
on the latter.

2.1 Making Architectural Decisions
Making architectural decision is the process of selecting one alternative among

different alternatives for solving a design issue in a software system (Falessi et al.,
2011). As we mentioned earlier, this concept is a part of architectural knowledge and

82 APPENDIX A. SELECTED PAPERS

has become increasingly important in the software architecture community since the
beginning of 2000s. Many researchers have worked in this area and have discussed the
importance of the decisions and the rationale behind the decisions. Many tools and
frameworks have been developed by the researchers to support the practitioners in the
activities around the architectural decisions. Babar et al. in their book that published in
2009 have reviewed and gathered many of the works that have been done in this area in
the last decade (Babar et al., 2009). Tang et al. have also covered some of the existing
architectural knowledge management tools (Tang et al., 2010).

Although the existing work in architectural knowledge area focuses more on
documenting and representing the decisions, still there is some work that supports the
decision-making process. For example Falessi et al. have reviewed and compared the
available techniques and tools for making architectural decisions in their comparative
survey (Faless et al., 2011). However, most of the existing frameworks and tools have a
general approach and are not specified for the enterprise application development and
integration (Zimmermann, 2009) that is the interest of this research. Furthermore,
seldom they consider reusing the architectural decisions in the similar projects or
domains while many issues recur in the enterprise projects and reusing the architectural
decisions from previous projects would be helpful (Zimmermann, 2009). Although
Falessi et al. have mentioned that reuse can help to simplify the architecting (Falessi et
al., 2011) they have not considered it in their analysis. Zimmermann’s work
(Zimmermann, 2009) is actually a reusable architectural decision model in enterprise
application development and integration and therefore is a source of inspiration for our
work. Even though, he has not considered the effect of companies relationships on their
architectural decisions.

Finally, as discussed earlier, the motivations and insights for developing frameworks,
techniques and tools that support the decision making process in the industry have been
gained mostly from researchers’ personal experiences and not through a systematic
empirical observation. Nevertheless, recently some few empirical studies have been
conducted in this area that we will discuss them in the next part.

2.2 Empirical Studies

In software engineering research in general, without knowing the fundamental
mechanisms that derive the costs and benefits of software tools and methods for a
certain application, “we can’t say whether we are basing our actions on faulty
assumptions, evaluating new methods properly, and inadvertently focusing on low-
payoff improvements. In fact, unless we understand the specific factors that cause tools
and methods to be more or less cost-effective, the development and use of a particular
technology will essentially be a random act. Empirical studies are a key way to get this

P1- ARCHITECTURAL DECISION-MAKING IN ENTERPRISES 83

information and move towards well-founded decisions” (Perry et al., 2000). It is the
same situation in the architectural decisions area and conducting empirical studies and
observations would be the base for developing effective methods, frameworks and tools.
Till 2005, there were little empirical evidence about architectural decisions and how
practitioners treat them in the practice (Tang et al., 2005). Tang et al. conducted a
survey on the use and documentation of architecture design rationale in 2005. Even
though, their main focus was to understand how practitioners think about decision
rationale, how they use and document them, and what factors prevent them from
documenting decision rationale (ibid). Making the decisions were not the focus of their
investigations. Hoorn et al. were interested in the same direction and did a broad survey
to better understand what architects really do and what kind of support they need for
sharing architectural knowledge (Hoorn et al., 2011).

Ivanovic and America has conducted a study to gain knowledge on information needed
for architecture decisions made by architects and managers (Ivanovic and America,
2010). The reuse aspect of the decisions is not in their work. Also they have conducted
their study only in one industrial organization and therefore considering the ecosystem
relationships that we are interested in is not in their research.

Finally, van Heesch and Avgeriou in their study have investigated how experienced
architects reason in the context of industrial projects, how they prioritize the problem
space, how they propose solutions for the problem and how they choose among
solutions (van Heesch and Avgeriou, 2011). Their work is relevant to our research topic
but still lacks the reuse aspect and also has not considered software ecosystem
relationships. In the next part we will explain the software ecosystem concept and what
we mean by a software ecosystem relationship and how we want to illustrate the
software ecosystem of our research context.

2.3 Software Ecosystem

A software ecosystem (SECO) is “a set of actors functioning as a unit and interacting
with a shared market for software and services, together with the relationships among
them” (Jansen et al., 2009). The actor type in a SECO could be supplier, independent
software vendor, software consulting company or intermediary, and customer
(Brinkkemper et al., 2009). Interaction or relationship type could be product flow,
service flow, financial flow and content flow (ibid). There are several ways to model
and illustrate a software supply network (SSN) within a SECO (Lucassen et al., 2012).
In the section 3.2, to illustrate the SSN of our research context that is Norwegian
electricity industry, we have created a figure that is based on the model by
(Brinkkemper et al., 2009). Since we are interested to see how the SECO relationships
would affect the architectural decisions, some customizations have been made to the
model to fit to our context and intentions. To our best knowledge there is no empirical

84 APPENDIX A. SELECTED PAPERS

study that has considered the effect of SECO relationships on the architectural decision
processes.

3 Research Design

Our investigation is an exploratory study (Robson, 2011) which aims to identify the
situation in a real world context. Qualitative data is collected by interviews and
analyzed using thematic synthesis. In the following sections we explain the research
questions, the context of the study, data collection and analysis methods and threats to
results validity.

3.1 Goal

The goal of this research is to identify the main processes and issues on making and
reusing architectural decisions in large-scale enterprises by considering the relationships
among the enterprises and other actors of the ecosystem. To reach to the goal we are
interested to find out:

RQI1. How do industrial companies make architectural decisions for enterprise
application development with respect to decision-making methodology?

RQ2. How do the companies reuse the architectural decisions in various projects?

RQ3. How do the software ecosystem relationships affect the decision making process?

By RQI we aim to explore the general attitude of companies in making their significant
architectural decisions. Such decisions would include the high-level blueprint of their
software and information systems to the detailed technical decisions such as choice of
integration platform. Although the previous research studies had explored this aspect
(van Heesch and Avgeriou, 2011), we investigate the answer to RQ1 by the means of
qualitative observations to find out the possible uncover aspects of decision-making
process in companies.

The aim of RQ2 is to discover whether companies reuse their architectural decisions in
different projects and if the answer is no to investigate if it is possible to do so or not.
RQ3 considers the relationships among various actors in the software ecosystem and its
possible effect on the process of making and reusing architectural decisions in each
actor.

3.2 Context

Since this research is contextualized in a larger research project on software engineering
support for Smart Grid, our main case of the study is the Norwegian electricity industry.

P1- ARCHITECTURAL DECISION-MAKING IN ENTERPRISES 85

S.4: architectural
decisions regarding
integration solutions

$.5: architectural
Supplier

. PP decisions regarding
integration solutions

Software Vendor)
- $.4: service fees, etc. $.3: service fees, etc.

Regulator

D> s>

.......... >XGrid Utilities

Product flow
s>

Service flow @

Financial flow P.1: database, N L " op2 NIS, SCADA,
operating system, GIS ' " DMS, meter rollout,
platform, etc. ' R billing systems, CRM,

» Effecton * e ERP, CIS, Middleware

Architectural Decisions S.1: services related to L technologies (ESB),
P.1 like support, Regulator | etc.
training, etc.

S.2: services related to
$.3: selling GIS P.2 like support,
platform to regional training, etc.
customers

$.2: license fees,
$.1: license fees, service fees, etc.

service fees, etc.

Fig. 1 Current software supply network in the Norwegian electricity industry

The software market in this industry, the same as other domains, has become a software
ecosystem including different actors and various relationships between them. The actors
make a software supply network to develop and integrate the required software
products. Fig. 1. shows the current state of software supply network in the Norwegian
electricity industry. It is based on the result of a previous interview that we conducted
with an expert in the Norwegian electricity industry and later confirmed by some other
experts. The chain of supply network could differ among various customers based on
their size and organizational policies, but a typical path can be described as follows: A
grid utility (customer) needs different software products to run its daily business
activities. The utility negotiates with different national and international independent
software vendors (ISV). The ISVs themselves should buy some of their fundamental
software components and packages (OS, DB, etc.) from their suppliers and develop
their products based on the provided components. Grid utilities later on integrate
various software products themselves or ask software consultant companies (SCC) to do
it for them. Sometimes ISVs also ask SCCs to help them regarding the software
development to produce more interoperable solutions. There is also a national regulator
that although doesn’t deliver software product or service to the customers but affect the
software development in ISVs and software integration in grid utilities by the rules and
regulations. So we have added “regulator” as a new actor to the model from
(Brinkkemper et al., 2009). Also to show how the SECO relationships would affect the
architectural decisions (see sections 4.4 and 5.2), we have added a new object to the
model (the dashed arrow).

86 APPENDIX A. SELECTED PAPERS

3.3 Data Collection and Analysis Methods

To answer to the research questions (see section 3.1) the semi-structured interview has
been chosen as the main data collection method of this research. As it was discussed in
the context part, our target companies lie in four categories based on their role in the
software ecosystem of Norwegian electricity industry: grid utilities, software vendors,
software consultant companies and regulator. Our initial plan was to select different
samples from each of these categories. Currently there are almost 150 grid utilities in
Norway, but the software vendors and also the software consultant companies that are
delivering products and service to them are very few and it makes the sample selection
challenging. For this stage of our research we conducted interview with 5 grid utilities
(all of them have more than 75.000 grid customers) and one software vendor that have
80 percent of market share in Norway. We couldn’t convince either the regulator or any
software consultant companies that have experiences with software for electricity
industry to participate in our study within out time frame.

To prepare the questionnaire, initially we selected 10 questions regarding the decision
making process that applies to all categories of companies regardless of their role in the
SECO. Some of the questions were inspired by the questionnaire van Heesch and
Avgeriou have used in their survey (van Heesch and Avgeriou, 2011). The preliminary
set of questions were written as follows:

1. A brief summary of ICT in your organization, your software related activities
and roles, your business model, and your software integration approach.

2. What is your typical process for making architectural decisions?

What are your challenges (technical and social) in making the decisions?

4. How do you identify architecturally significant requirements from a set of
architectural concerns and business context?

5. Who are involved in the analysis process and how do they collaborate?

6. Do you search for alternative solutions for your requirements when you make
decisions? Even if you already had a solution in mind?

7. How do you select among alternative solutions? Do you consider and reuse
architectural patterns, styles, reference architectures, industrial standards, etc.?

8. Do you reuse the already made decisions between your various projects?

9. How do you validate your final solution? Do you use some approaches like
ATAM, CBAM, etc.?

10. Do you validate your architectural solution only in design stage or even later
when the whole system is launched?

w

As it is clear in the above list, the RQ3 is not covered by any of the questions. After
doing the first interview, we realized that the effect of SECO relationships is an

P1- ARCHITECTURAL DECISION-MAKING IN ENTERPRISES 87

important influencing factor on the decision-making process and we had not considered
it. So we added it to the questionnaire for the next interviews. To this end, we added
specific questions for each category to explore the subject from each category aspect.
For example we were interested to see whether the decisions in the software vendors are
made mainly by them or it is more customer-driven. The similar question was asked
from the customers but from the opposite direction to see whether their decisions are
affected by vendors or consultant companies.

After finalizing the questionnaire and making appointments with interviewees, the
interviews were conducted. Since the data collection method was semi-structured
interview, we considered some flexibility in asking the questions based on the answers
we got from the interviewees. It means the above set of questions was more an
interview guide; some questions would be skipped (for example if the interviewee
didn’t have any idea about the question) and some new questions would be added
during the interview.

To conduct the interview with grid utilities, in some cases the interview had two parts:
more general questions were answered by a project manager or head of ICT and the
more detailed questions by a software architect or developer. So totally 8 interviews
were conducted of which 4 were face-to-face and 4 were through Skype. Among 8
interviewees, 4 were heads of ICT, 2 were software architects, one was software
developer and one was project manager. The interviews were captured by a voice
recorder and lately were transcribed.

For analyzing the interview data, the step-by-step thematic synthesis proposed by
Cruzes and Dybé was applied. It is mainly proposed for a systematic literature review,
but is applicable for analyzing the qualitative interview transcripts similar to stage-by-
stage method by (Burnard, 1991). The essential aim of these methods is to increase the
abstraction level of transcribed texts from the text level to the code and theme level and
create taxonomy of higher-order themes (Cruzes and Dyba, 2011). We did the same to
reach from the interview results to the answer of our research questions.

4 Results
By thematic synthesis we extracted 18 codes from interview transcripts and those 18
codes were categorized into 4 themes that are described in the following sections.
Section 4.1 and 4.2 correspond to RQ1, section 4.3 is related to RQ2 and section 4.4
refers to RQ3.

4.1 Making Architectural Decisions for Enterprise Application Development

In all of the energy companies we interviewed, there is an IT section either as a
department (if the organization composes of only one company) or a company within

88 APPENDIX A. SELECTED PAPERS

the whole group (if the organization consists of many companies). IT section has a
general roadmap or high level strategy for making architectural decisions regarding
software enterprise application integration. For instance in some grid utilities the rules
from IT sections imply that new products should have proper interfaces or adaptors to
be integrated through ESB (enterprise service bus). Or they are emphasizing on
reducing information redundancy by engaging SOA-based development. Some of the
grid utilities have developed their guidelines based on some international frameworks
for developing enterprise architecture. Later on when every department wants to make
architectural decisions for their projects, they should make their decisions in alignment
with guidelines and principles from IT section of the organization.

The lower level architectural decisions are made at project level in different
departments. So each department has either its own software architects or they hire
architects from IT department. Then the decisions are made by several meeting among
the software architects and project manager (or product owner). If there is a decision
about a common solution like ESB, it is rather made at the IT department.

Most of the grid utilities are not familiar with the terms and concepts like ATAM. In
practice they are conducting some structured procedure which could be more informal
than approaches like ATAM but still they are satisfied with the results. They have
several meetings among related stakeholders, define possible alternatives and look at
their possible advantages and disadvantage, consider the important non-functional
requirements, also look at their organizational limitations and project schedule, and
select a solution among alternatives. Some of them do the proof of concept for the
selected solution to check whether the solution supports their business requirements.

4.2 Using Standards for Making Architectural Decisions

Although there have been some standards for software integration in Smart Grid for
several years (for example IEC 61970 which is also called CIM), almost none of the
grid companies have done their integration based on those standards and this makes
their architectural decisions more challenging. They are now becoming more aware of
the need to apply standards to reduce the interoperability challenges, so they are
exploring the standards and are going to use them. Also some of the software vendors
are starting to deliver their products based on those standards. So the future of the Smart
Grid in Norway would be standard based but currently is not.

4.3 Documenting and Reusing the Architectural Decisions
Some of the companies document important architectural decisions. To this end, they

either keep the meeting minutes or use an internal wiki for documentation rather than a
specific tool. One of the documentation issues they often have with these approaches is

P1- ARCHITECTURAL DECISION-MAKING IN ENTERPRISES 89

the maintenance of the documentations, especially when it comes to the decisions about
software integration, which these days is very dynamic in these companies. So it is hard
for them to always update the latest version of the documents.

The situation of reusing the decisions depends on the level of decisions. In high level
decisions, 4 out of 6 companies are reusing their high level software integration
processes across different projects. The reuse happens in an ad-hoc manner and as it
was explained earlier, it is mainly done by setting some high level rules or guidelines by
IT departments and different projects should apply them in their integration. One of the
companies is composed of both energy and telecommunication parts and is an
interesting case in this aspect because overall processes which have been developed in
telecommunication is reused in the smart grid initiatives too.

When it comes to the low level architectural decisions almost none of the companies are
reusing the decisions across different projects and the decisions are not transferring
between different projects in a written sense. The decisions are rather kept in the head of
the decision makers even if they are participating in different projects. So some of the
companies showed their interest to be familiar with reusable architectural decision
frameworks and believe that it would be useful to learn from history and apply the
experiences from previous projects in the future projects. One of the companies has a
successful experience where for choosing ESB they have reused the requirements and
available alternatives from other companies and they were satisfied with the results.

4.4 Effect of Software Ecosystem Relationships on the Architectural Decisions

Most of the grid utilities (customers) believe that the market is vendor driven while the
software vendor believes that the market is customer driven. The examples from both
sides confirm both claims. So it essentially means that as an actor of an ecosystem each
of them affect the other one. From customers point of view they are limited to what
vendors deliver and from the vendors side they limit their development to what the
customer require. Besides, there are some regulating organizations that also affect the
choices of software integration in grid utilities. So in general the interviews showed that
the relationship among different actors of the software ecosystem affects the
architectural decisions in each actor. The effect of these relationships is described as
follows.

Effect of Regulators on the Architectural Decisions of Grid Utilities

One obvious example to show the effect of regulators on the architectural decisions in
the grid utilities is SCADA (supervisory control and data acquisition) system. The grid
utilities want to have a fully integrated system and therefore desire to add SCADA to
their SOA-based integrated system as well, but the security regulations from Norwegian

90 APPENDIX A. SELECTED PAPERS

electricity regulator, which in opinion of grid utilities are old-fashion, have limited
them. So they should treat SCADA as a silo system and do all the interactions and
information exchange manually.

Effect of Vendors on the Architectural Decisions of Grid Ultilities

An interesting example that shows the effect of vendors on the architectural decisions is
a situation in one of the grid utilities where they wanted to decide choosing between
IPv6 and the lower versions. For launching AMS (advanced metering system) project,
they will install more than 200,000 IP-based devices in their municipality, so technically
they preferred IPv6. But their challenge was that most of current vendors don’t deliver
products that support [Pv6. Now some more professional vendors like Cisco are joining
the Smart Grid market and that grid utility has finally decided to use IPv6. Another
example by the same grid utility is a decision about separating the database of DMS
(distribution management system) from other systems. The reason for the decision also
relates to what the vendors deliver. The DMS should use a NIS (network information
system) and a NIS itself is based on a GIS (geographical information system). The
problem is that the current GIS suppliers don’t have a electric schematic layer. What is
now on the GIS is a general network of nodes and edges. So the DMS the grid utility
has bought should have a separate database to include electric schematic layer.

Effect of Customers on the Architectural Decisions of Vendors

The interviewed software vendor with an example showed how their architectural
decisions depend on what the customers require. The vendor has two alternatives for
deliver their products based on SOA: WS or REST-based services. Although they are
aware of some advantages of REST-based services they are still stick to the WS and the
reason is that none of their customers have asked for REST-based services in their
request for proposal.

5 Discussion

In this part we discuss our findings in position with the previous findings from related
literature. The part is organized based on our three research questions. In addition,
section 5.4 discusses the possible threats to validity.

5.1 Architectural Decision-Making for Enterprise Application Development

As we discussed in the related work, the study by van Heesch and Avgeriou is a
relevant empirical research about architectural decision-making in industrial companies

P1- ARCHITECTURAL DECISION-MAKING IN ENTERPRISES 91

that is actually the aim of our RQI too. One of the results of their study is that the
greatest part of architects doesn’t follow particular architecture approaches from the
literature (such as ATAM, SAAM, goal-oriented paradigm, etc.), they rather adopt
architecture activities to define their own customized approach to making architectural
decisions (van Heesch and Avgeriou, 2011). The result of our study also in line with
their finding showed that most of the companies are not using systematic approaches
such as ATAM to make and evaluate their architectural decisions. Even thought, it
doesn’t mean that the companies are making their architectural decisions in a totally
intuitive way. Both our results and findings from van Heesch and Avgeriou’s survey
show that the companies identify architecturally significant requirements (architectural
analysis), find different candidate solutions for the requirements consider advantages
and disadvantages for candidate solutions (architectural synthesis) and validate the
chosen solution against the requirements (architectural evaluation) (van Heesch and
Avgeriou, 2011). In spite of similarities, different companies of our study have different
procedures for each of mentioned processes. For example for architectural evaluation
some use proof of concept while some launch real industrial prototype to evaluate the
chosen solution.

5.2 Reusing Architectural Decisions

Zimmermann has done a significant work on reusing the architectural decisions for
enterprise application development. Before that not many researches have been
conducted on this topic (Zimmermann, 2009). One of our aims was to find out whether
the interviewed enterprises predict the required architectural decisions in a new project
based on experiences from previous projects that have been done in either their
department of other departments of the same organization. As results show, some of
them reuse high-level architectural decisions in term of architectural guidelines or rules
but none of them reuse the low-level architectural decisions across various projects.

Reusable architectural decision model (RADM) developed by Zimmermann has been
evaluated by several case studies and the results show how efficient it would be to reuse
the architectural decisions in similar projects (Zimmermann, 2009). Zimmermann has
employed his model in different industrial cases, from software vendors to software
consultant companies and large-scale enterprises like telecommunication companies.
But he has mainly applied his model on several projects within each company. What we
observed through the interviews was the potential to also reuse the architectural
decisions across different companies within a software ecosystem. Some of the
companies have had collaboration on either writing requirement specification for an
enterprise solution (e.g. ESB) or developing reference architecture for smart grid.
Applying reusable architectural decisions frameworks like RADM would be very
promising for these collaborations and through that the new requirements and

92 APPENDIX A. SELECTED PAPERS

justifications to improve RADM would be gained.
5.3 Effect of Software Ecosystem Relationships on the Architectural Decisions

The results of our study show that the relationships among the actors of a software
ecosystem could significantly affect the architectural-decision making process in each
of the actors. Some previous studies have also discussed the non-technical influences on
the architectural decisions. Van Heesch et al. have defined architectural decision forces
as any aspect of an architectural problem arising in the system or its environment to be
considered when choosing among the available decision alternatives (van Heesch et al.,
2012). The non-technical forces they have talked about are personal preferences or
experience of the architects, business goals such as quick-time-to-market, low price, or
strategic orientations towards specific technologies (ibid). Their reference for
considering the influence factors on software architecture is an empirical study by
Mustapic et al. that have been conducted to investigate the possible real world
influences of software architecture (Mustapic et al., 2004). What they have gained as the
influence factors are relationships of system, computer hardware and software
architecture, reuse and legacy in architectural design, business and application domain
factors, choice of technologies, organizational factors, process related factors and
resources used for architectural design (ibid). The most relevant factors to our results
are business and application domain factors and organizational factors. The more
specific factors they have investigated for these categories are standards, type of
customers, production volume, product lifetime, non-functional requirements,
distributed development, outsourcing, size and maturity of organization (ibid). So the
SECO relationships have not been explicitly covered by the mentioned studies and the
results of our study can be considered as a decision factor in addition to what they have
extracted before.

5.4 Threats to Validity

Internal. One potential threat to internal validity of our research is that there were too
few interviews to make reliable results. However, all of the companies were the largest
enterprises and software vendor in the same software ecosystem. It means that there
were few differentiations between the characteristics of the companies (type, size,
products, business processes, structure, etc.). Also there is little disagreement among the
interviewees from different companies. Therefore we do not assume that interviewing
more companies will result to different conclusions. Even though, interviewing with
software consultant companies and regulating organizations in the same software
ecosystem would increase the reliability of the results. As we mentioned earlier, we
couldn’t convince them to participate in our study within the time schedule we had.

External. The generalization of the results to all large-scale enterprise based on the

P1- ARCHITECTURAL DECISION-MAKING IN ENTERPRISES 93

enterprises from one industrial domain is arguable. Although large-scale enterprises
from other domains like telecommunication, finance or health-care have also challenges
on making architectural decisions for enterprise application development, our study
shows that the software integration in the electricity industry is more immature than
other areas due to lack of standardization and it can affect the architectural decision
issues. So we are aware of the threat to external validity and conducting the same
interviews with enterprises from other domains would make the results more reliable.

6 Conclusions and Future Work

In this paper we presented the result of interviews with six companies within software
ecosystem of Norwegian electricity industry being five grid utilities and one software
vendor. Our main goal was to empirically investigate the architectural decision making
and reusing situation in the large-scale enterprises to enrich the state of practice in the
architectural decisions area. We gained three explicit results:

1) In line with few previous empirical studies, our study show that most of the
companies are not using well-known academic approaches such as ATAM, they
are rather using their own structured procedures.

2) The relationships among the actors of a software ecosystem could significantly
affect their architectural-decision making processes for example by limiting their
alternative solutions. This factor should be also considered as an influencing
factor on architectural decision making process in addition to the factors
previous studies have extracted from the industry.

3) There is a high potential among enterprises to reuse the architectural decisions
across their various projects or across different companies within a software
ecosystem. The previous reusable architectural decision frameworks have been
applied mainly in various projects within one company while our study shows
that such frameworks can be applied also in different companies within a
software ecosystem that have some kind of collaboration.

In the next step, we are going to apply reusable architectural decision frameworks (such
as RADM by Zimmermann or decision forces viewpoint by van Heesch et al.) on some
of the large-scale enterprises or software consultant companies in the Norwegian
electricity industry. By doing such case studies we are going to investigate how these
frameworks can be improved and customized for the electricity industry based on the
feedbacks we get from the case studies.

Acknowledgements. The authors would like to thank all interviewees for their
participation and their valuable responses.

94

7

10.

11.

12.

13.

14.

APPENDIX A. SELECTED PAPERS

References

. Babar, M. A., Dingseyr, T., Lago, P. and van Vliet, H.: Software Architecture

Knowledge Management, Springer (2009).

Brinkkemper, S., Soest, I.V. and Jansen, S.: Modeling of Product Software
Businesses: Investigation into Industry Product and Channel Typologies, in: C.
Barry et al. (eds.), Information Systems Development: Challenges in Practice,
Theory, and Education, Vol.1, pp 307-325 (2009).

Burnard, P.: A Method of Analysing Interview Transcripts in Qualitative Research,
Nurse Education Today 11: 461-466 (1991).

Chen, D., Doumeingts, G. and Vernadat, F.: Architectures for Enterprise
Integration and Interoperability: Past, Present and Future, Computers in Industry,
59 (2008): 647-659.

Cruzes, D. S. and Dybd, T.: Recommended Steps for Thematic Synthesis in
Software Engineering, In the Proceedings of the 5th International Symposium on
Empirical Software Engineering and Measurement, ESEM 2011, Banff, AB,
Canada, (2011).

Falessi, D., Cantone, C., Kazman, R., and Kruchten, P.: Decision-Making
Techniques for Software Architecture Design: a Comparative Survey, ACM
Computing Surveys 43 (4) (2011).

Fisher, D. A.: An Emergent Perspective on Interoperation in Systems of Systems,
Software Engineering Institute, Technical Report, CMU (2006).

Hoom, J. F., Farenhorst, R., Lago, P. and van Vliet, H.: The Lonesome Architect,
The Journal of Systems and Software 84 (2011), pp. 1424-1435.

Ivanovic, A. and America, P.: Information Needed for Architecture Decision
Making, Proceedings of the 2010 ICSE Workshop on Product Line Approaches in
Software Engineering, pp. 54-57 (2010).

Jansen, S., Finkelstein, A., and Brinkkemper, S.: Business Network Management as
a Survival Strategy: A Tale of Two Software Ecosystems. In Proceedings of the
First Workshop on Software Ecosystems. CEUR-WS, vol. 505 (2009).

Kruchten, P., Lago, P., van Vliet, H.: Building up and Reasoning about
Architectural Knowledge. In: C. Hofmeister, I. Crnkovic, R. Reussner (eds.)
Quality of Software Architectures, Proceedings 2nd International Conference,
LNCS, vol. 4214, pp. 43-58. Springer, Berlin (2006).

Lucassen, G., Brinkkemper, S., Jansen, S. and Handoyo, E.: Comparison of Visual
Business Modeling Techniques for Software Companies, Software Business
(2012): pp. 79-93.

Maier, M. W.: Architecting Principles for Systems-of-Systems, Systems
Engineering, 1, 4 (1998): 267-284.

Mustapic, G., Wall, A., Norstrom, C., Crnkovic, L., Sandstrom, K., Froberg, J. and

P1- ARCHITECTURAL DECISION-MAKING IN ENTERPRISES 95

15.

16.

17.

18.

19.

20.

21.

22.

Andersson, J.: Real World Influences on Software Architecture — Interviews with
Industrial System Experts, Proceedings of the Fourth Working IEEE/IFIP
Conference on Software Architecture (WICSA) (2004).

Perry, D. E., Porter, A. A. and Votta, L. G.: Empirical Studies of Software
Engineering: A Roadmap, Proceedings of the Conference on The Future of
Software Engineering, p.345-355, Limerick, Ireland (2000).

Robson, C.: Real World Research: A Resource for Users of Social Research
Methods in Applied Settings. 3rd ed. Chichester: Wiley; (2011)

Tang, A., Babar, M. A., Gorton, I. and Han, J.: A Survey of the Use and
Documentation of Architecture Design Rationale, 5th Working IEEE/IFIP
Conference on Software Architecture (WICSA), pp.89-98, (2005).

Tang, A., Avgeriou, P., Jansen, A., Capilla, R. and Babar, M. A.: A Comparative
Study of Architecture Knowledge Management Tools. Journal of Systems and
Software. 83, 3, pp.352-370 (2010).

van Heesch, U. and Avgeriou, P.: Mature Architecting — A Survey about the
Reasoning Process of Professional Architects, 9th Working IEEE/IFIP Conference
on Software Architecture (WICSA), pp.260-269 (2011).

van Heesch, U., Avgeriou, P. and Hilliard, R.: Forces on Architecture Decisions —
A Viewpoint, Proceeding of Joint Working Conference on Software Architecture
and 6™ European Conference on Software Architecture, pp. 101-110 (2012).
Zimmermann, O., Koehler, J. and Leymann. F.: Architectural Decision Models as
Micro-Methodology for Service-Oriented Analysis and Design. In SEMSOA
Workshop, Hannover, Germany, (2007).

Zimmermann, O.: An Architectural Decision Modeling Framework for Service-
Oriented Architecture Design. PhD Dissertation, University of Stuttgart (2009).

96

APPENDIX A. SELECTED PAPERS

P2- TOWARDS REUSING ARCHITECTURAL KNOWLEDGE AS DESIGN GUIDES97

P2- Towards Reusing Architectural Knowledge as Design
Guides

Published: In Proc. The 26th International Conference on Software Engineering and
Knowledge Engineering, SEKE 2014.

98

APPENDIX A. SELECTED PAPERS

P2- TOWARDS REUSING ARCHITECTURAL KNOWLEDGE AS DESIGN GUIDES99

Towards Reusing Architectural Knowledge as Design Guides

Functional Requirements, Tool Analysis and Research Roadmap

N . 2
Mohsen Anvaari', Olaf Zimmermann

"Norwegian University of Science and Technology, Trondheim, Norway
mohsena@idi.ntnu.no

ZUniversity of Applied Sciences of Eastern Switzerland, Rapperswil, Switzerland
ozimmerm@hsr.ch

Abstract. In recent years, architectural knowledge management has demonstrated its potential to improve
software development and evolution practices; various tools and research prototypes now exist for
documenting architectural knowledge. However, capturing such knowledge is not enough: according to
practitioners’ feedback, a certain amount of knowledge post-processing is required to make the captured
knowledge consumable and stimulate reuse. In our previous work, we created a method for enhancing
knowledge about the past (decisions made) into architectural guidance for the future (decisions required).
However, additional concepts are required to let our method benefits from recent advances in
architectural knowledge management tool engineering. In this paper we establish requirements for post-
processing architectural knowledge captured on projects and enhancing the knowledge into architectural
guidance. The requirements are derived from literature and industrial experiences. Next, we analyze
existing tools with respect to these requirements. Finally, we establish a vision for an integrated method
and tooling for architectural guidance modeling and outline a roadmap for future research and tool
development towards this vision.

Keywords. Architectural knowledge; decision reuse; architectural synthesis; design guide; knowledge
management tool

1. INTRODUCTION

Architectural decisions are considered a first class entity in software engineering now 0;
researchers define software architecture as a set of architectural design decisions 0.
Various tools and research prototypes exist (or are under development) for documenting
the architectural knowledge. Although most practitioners are still reluctant to use formal
templates and tools that academic researchers have developed 0, our observations show
that many organizations have started to capture their architectural decisions 0. This is
often done in light and pragmatic ways, e.g., using simple wikis or chronological
meeting minutes 0.

According to studies on inhibitors for knowledge reuse, documenting the knowledge is
not enough; post-processing is required to stimulate the reuse and make the knowledge
consumable 0. Hence, we created a method for enhancing knowledge about the past
(decisions made) into architectural guidance for the future (decisions required) 0.
However, additional concepts are required to let our method benefits from recent
advances in architectural knowledge management tool engineering. Therefore, the goals
of this paper are:

100 APPENDIX A. SELECTED PAPERS

1. To specify the requirements for tools that facilitate the post-processing of
captured architectural knowledge from projects and enhancing such raw
knowledge into design guides for future decision making activities.

2. To analyze existing tools and research prototypes with respect to the proposed
requirements.

3. To establish a vision for an integrated method and tooling for architectural
guidance modeling.

The rest of the paper is organized as follows: In Section 2, we present related work.
Section 3 describes our research method. Section 4 specifies the functional requirements
for tools that support enhancing architectural raw knowledge into reusable design
guided. These requirements are derived from the authors’ industrial experience as well as
a review of research prototypes and tools. Section 5 reports on the results of our analysis
of existing tools and research prototypes with respect to the functional requirements from
Section 4. Section 6 analyzes our results and establishes an architectural vision for a tool
that supports architectural knowledge reuse. Section 7 summarizes the paper with
conclusions.

2. RELATED WORK

The concept of architectural knowledge — defined as the integrated representation of the
software architecture, the architectural decisions, and the external context/environment 0
— has been investigated by researchers since they started to consider the architectural
decisions as important entities of a software system just like the architecture itself. In the
last decade, the research community has elaborated the concept, clarified its definitions,
terminologies and boundaries, established the ways of presenting the knowledge, and
developed the approaches to manage the knowledge 0.

Applying general knowledge management principles 0 to the software engineering
domain, two activities become essential for architectural knowledge management:
creating (or capturing or documenting) knowledge and consuming (or reusing or
applying) knowledge. However, as we have shown in our previous work, the main focus
of the software architecture community so far has been on knowledge capturing, not on
knowledge reuse 0. One may argue that when the knowledge is captured and made
available to the others it is reusable; therefore any approach and tool that supports
knowledge capturing also supports knowledge sharing and reusing automatically. But,
according to practitioners’ feedback, capturing the knowledge is not enough: a certain
amount of knowledge post-processing is required to make the captured knowledge
consumable 0. Examples of knowledge post-processing are anonymizing the knowledge
(e.g., remove sensitive personal information such as names of actual people, or replace
them with role definitions such as “application architect” or “integration architect”),
connecting the related knowledge entities (e.g., a decision about a message exchange
pattern with a decision about a messaging provider software product), and removing the
project-specific knowledge (chosen alternative) to make the knowledge reusable for
other projects.

P2- TOWARDS REUSING ARCHITECTURAL KNOWLEDGE AS DESIGN GUIDES101

While the method we have created in our previous work for reusing architectural
knowledge and enhancing the captured architectural knowledge into design guides' has
demonstrated to be useful in the industry 0, better tool support is required to make the
application of the method more efficient. As the first step, this paper explores the
available architectural knowledge management tools and research prototypes to analyze
how much they provide the required functionalities for architectural knowledge reuse
and guidance development.

This paper is not the first survey in the software architecture domain to analyze and
evaluate the architectural knowledge management tools. At least four preceding research
papers have been published 0000. Although some papers have considered knowledge
sharing as a functional requirement in their evaluation framework, their focus is not on
knowledge post-processing and enhancing the knowledge into design guidance, which is
the focus of our work. Furthermore, the last survey has been published in 2010 while in
the last three years more tools and research prototypes have been developed or are under
development. This paper covers these new tools as well. The mentioned research papers
are valuable for our work; for instance, we have reused some of their functional
requirements to establish the functional requirements in the section 4. In the next section,
the method of the research will be explained.

3. RESEARCH METHOD

As Fig. 1 shows, we started the research by creating functional requirements. To do so
we explored three sources: 1) industrial experiences that originate in the authors’
contribution in industrial projects and also their observations from various industrial
domains (software development projects for Smart Grid, financial applications, etc.) 2)
the tools and research prototypes that are not accessible but are specified in the literature
3) the tools that are accessible publicly on the internet. The main way to reach to the
second source was exploring the literature that has reviewed and compared the
architectural knowledge management tools. As we mentioned earlier, the last
comparative study of the architectural knowledge management tools was conducted in
2010 [2]. It still is a valuable source to explore the tools that had been developed until
then. We discovered the newer tools either through the literature that tool developers
have published or by contacting the researchers that we were informed are developing a
tool.

The second step of the research was to analyze the tools and research prototypes with
respect to the functional requirements we proposed in the first step. The tools that are
publicly accessible (the third source) were a more valuable source for us, because we
could actually use them and test their functionalities against the list of requirements.

" A design guide is a reusable asset containing knowledge about architectural decisions required in a
particular domain 0. As a reusable asset 0, a design guide has been curated, edited and quality assured for
readability and reuse. We refer to this curation and editing as knowledge post-processing.

102

APPENDIX A. SELECTED PAPERS

Industrial
experiences

Inaccessible tools
(specified in the
literature)

Publicly accessible
tools

Nominated tools
for analysis

RN
~fe.
-4,
e

1- create

""""""""" > Functional requirements

3.
T "'-:-qf'_cl'lde

I

Vision for improvement

Figure. 1 Research activities and contributions

Some of the inaccessible tools were also valid for analysis since their functionalities have
been described concretely in the literature. We finalized the list of tools for analysis
using the following criteria:

The tool should be publicly accessible. For example, ADkwik 0 that is covered
by previous tool evaluation studies 0 would be a candidate for our analysis, but it
is not accessible anymore. However, there are some tools that are under
development and therefore are not released yet, but their functional requirements
are concretely described in literature; such tools do meet the criterion. One such
tool is analyzed in Section 5.
The installation and usage of the tools should be straightforward.

The tool should be representative for its domain. For example if tool A and B
exist for capturing the decisions, and tool B covers all features of tool A, we just
choose tool B.

The third and last step was to summarize the tool analysis results. Based on the analysis
results, we establish a vision for developing a tool that supports post-processing the
captured architectural knowledge and developing a design guide.

4. FUNCTIONAL REQUIREMENTS

This section describes functional requirements for developing an architecture guidance
modeling tool. We will use the functional requirements to analyze the existing tools later
(in Section 5). In the following, we will define some terms that are essential for
describing the functional requirements first. Next, we will describe the actual functional

requirements.

P2- TOWARDS REUSING ARCHITECTURAL KNOWLEDGE AS DESIGN GUIDES103

4. Definitions

The required tool for supporting architecture guidance modeling should create and
maintain a knowledge base (KB) that contains architectural entities. The tool should be
able to post-process the entities (see Section 2 for examples) and enhance them into a
design guide. Inspired by our previous work 0, we define the following entities that can
be added to a KB:

* Issue: Any design issue that may occur in a software development project. It includes
different properties mainly name, problem description, decision drivers and solution
alternatives. Each alternative includes pros and cons, known uses and related
background. For example in an enterprise architecture, an issue can be “enterprise
integration pattern for designing the message channel between system A and system B”.
The alternatives of the issue are “point-to-point-channel” and “publish-subscribe-
channel”.

* Decision: A decision inherits its properties from an issue, but adds the outcome of the
decision (chosen alternative and the rationale behind that). Therefore an issue can be
converted to a decision by adding the outcome and vice versa. In the example we
provided, the outcome may include “the publish-subscribe-channel” as the chosen
alternative and “high number and change rate of the data sinks” as the rationale of the
decision.

* Group: A group entity is an aggregation (or assembly) of other entities. An example
for the usage of this container concept is a software project that includes some sub-
projects and each sub-project includes issues and decisions.

This structure is not the only way of modeling the architectural entities. Tools can apply
other metamodels such as those presented in 0 or 0.

B. Functional Requirements

We categorize the functional requirements in two groups: 1) create and maintain
knowledge and 2) consume knowledge. However, these categories have some overlaps
and some requirements can belong to more than one category.

1) Create and Maintain Knowledge

* AddE - Add an entity 000: Insert an entity to KB. The following features are
required:

Rich text editor

A tag field (or a semantic-based approach) to make search easier
Entity identification

Entity name

Entity description

Entity stakeholders

Entity version

Entity confidentiality

O O O O O O O O

104 APPENDIX A. SELECTED PAPERS

o Issue level (e.g. conceptual, technology, vendor asset 0)

Before the tool inserts an entity to KB, it should first search for available related entities
and if there are some, it should suggest them to the user. If the user finds that the entity is
already available in KB, (s)he can decide to cancel the procedure. This helps to reduce
the redundancy. Sometimes the entity is not already available, but the search brings some
related entities and the user can connect the new entity to the related ones (CnctE).

* UpdE — Update an entity 00: Update an available entity. The features that are required
for AddE apply here as well.

* RmvE — Remove an entity 0: Remove an entity from KB. It should clean up all of the
relations of the entity to the other entities.

* MovE — Move an entity 0: Move an entity from one group to another group.

* CnctE — Connect (Relate) to an entity: Connect an entity to other entities (examples
are issue to issue, issue to decision, issue to group).

* UlnkE — Unlink an entity: Unlink an entity from its parent or from its related entities
without deleting the entity.

* RevE — Review an entity 00: If an entity is supposed to be reviewed before inserting
to KB, it should be sent to the reviewers. The reviewers should validate the entity before
a specific time. Then based on the rates or opinions the reviewers give to the entity, the
entity can be rejected, inserted (or edited and inserted) to KB.

* ImpE — Import an entity 0: Import an entity from a file (for example a XML or JSON
file) or a URL.

* AnmE — Anonymize an entity 0: Sometimes an entity can be reused or shared or
exported, but the project-specific information should not be shared with the others. This
feature replaces the project-specific terms with a pseudonym.

* MkeD — Make a decision (convert an issue to a decision) 0: When a decision on an
issue is made, the decision should be inserted to KB. This functionality adds an outcome
part to the issue and converts it into a decision.

* Gnrl — Generate an issue from a decision: Sometimes a decision is made, but the
related issue is not in KB. This functionality generates an issue from a decision by
removing the outcome part of the decision entity (and adding a possible
recommendation). This feature is essential for upgrading decisions to guides (UpgG).

* UplD — Upload documents 0: An entity may include background information either as
a link or as a document. This feature uploads a document to the entity.

* NtfS — Notify stakeholders 0: Sometimes an entity would have more than one owner
(stakeholder). This feature reports any changes to the entity to all stakeholders.
Stakeholders should be able to disable/enable this feature. The implementation examples
of this requirement are RSS (Rich Site Summary) and Atom 0.

P2- TOWARDS REUSING ARCHITECTURAL KNOWLEDGE AS DESIGN GUIDES105

* Conf - Configure the tool: The metamodel (default profile) that are required to insert
an entity (such as entity version, entity stakeholders, entity confidentiality, issue level
and so on; check AddE for more details), should not be fixed and unchangeable. This
functionality customizes the attributes based on the project or organization needs.

2) Consume Knowledge

* SrhE — Search an entity 00: Search KB for a group, an issue or a decision. The search
can be done based on an entered text or by choosing an entity to find the relevant
entities. Advanced search to limit the search results based on level, confidentiality,
project, etc. should be supported.

* LstE — List entities: Make a list of all entities of a group.

* NKB — Navigate the knowledge base 0: The user should be able to navigate between
the groups, their sub-groups and their issues and decisions.

* ViwE — View an entity 000: When the user finds the list of entities by searching them,
or navigating KB, (s)he should be able to view each entity and its properties.

* RuseE — Reuse an entity 00: Choose an entity in group A and copy it into group B.
The confidentiality (access permission) of the entity should be checked first. The owner
of group B might be able to view the entity of group A, but not to reuse it.

* ExpE — Export an entity 0: Export an entity to a file. The confidentiality of the entity
should be checked first: if export is not allowed by the owner of the entity, the export
procedure should be rejected. If anonymized export is allowed, the entity should be
anonymized first and then be exported. If export is allowed unconditionally, the entity
can be exported without any pre-processing.

* ShrE 00 — Share an entity: Send the link of an entity to other stakeholders by email
notification. First the confidentiality of the entity should be checked. Sharing is possible
only if the entity is public or other stakeholders have access to the group.

* UpgG — Upgrade to guide: Convert past architectural knowledge into guidance for the
future. First, the tool will ask about anonymization. If the user requests anonymization,
the feature will anonymize all entities of the group (AnmE), otherwise leave them
unchanged. The next step is to look up each decision and its related issue. If both a
decision and its related issue are available, the feature will remove the decision (RmvE).
If only the decision is available, it will generate an issue from the decision (Gnrl) and
remove the decision (RmvE) afterwards. The final result is a group and all of its sub-
groups and each sub-group includes a list of design issues and each issue has some
alternatives. This can be shared (ShrE) or exported (ExpE) as a design guide. Assume
that a software developing firm has a project for developing a system for customer A.
They have captured the decisions in a group called project A. The group includes various
sub-groups (Al, A2, A3, etc.). Now by using this feature, they will have a list of issues
and alternatives for each of the sub-groups and they can use it as a guide for making
decisions in a similar project for developing a system for customer B. The architects and

106 APPENDIX A. SELECTED PAPERS

designers involved in the new project could be different, but the knowledge from
previous project is reused in a structured manner.

* DAPI — Documented application programming interface: The tool should provide a
public documented API to make it possible to be integrated with other architectural
knowledge management or design modeling tools.

In the next section, we present the results of analysis of existing tools with respect to the
mentioned functional requirements.

5. ANALYSIS RESULTS

This section reports on the results of our analysis of existing tools and research
prototypes with respect to the functional requirements from Section 4. First, we briefly
introduce the five tools that are nominated for the analysis, and then we present the
functional requirements that are satisfied by these tools.

1) SAW. Software Architecture Warehouse (SAW) is a Web-based tool to capture,
manage and analyze architectural knowledge. It is implemented to help the entire
software architecture design team achieve situational awareness about architectural
decisions 0.

2) Decision Viewpoints. Decision Viewpoints is a documentation framework for
architecture decisions. It uses the conventions of ISO/IEC/IEEE 42010 0. A tool is
developed supporting the framework as an add-in for Sparx Systems’ Enterprise
Architect 0.

3) AREL. Architecture Rationale and Elements Linkage (AREL) is a Sparx Systems’
Enterprise Architect plug-in that creates architectural design with a focus on design
rationale 0.

4) SEURAT. Software Engineering Using RATionale system (SEURAT) is an Eclipse
plug-in that aims to manage architectural knowledge from requirements to source
code 0.

5) Eclipse Process Framework (EPF)’. EPF is an Eclipse-based method creation tool. In
EPF, knowledge creation takes place in the tool; knowledge consumption, on the
other hand, can be done in a Web browser.

Table I. shows which functional requirements are supported and which are not supported
or partially supported by the introduced tools.

2 http://projects.eclipse.org/projects/technology.epf

P2- TOWARDS REUSING ARCHITECTURAL KNOWLEDGE AS DESIGN GUIDES107

TABLE L. ANALYSIS OF TOOLS IN A NUTSHELL?

FR SAW Def/i;i““ AREL | SEURAT | EPF
AddE Partially Partially | Partially Partially Partially
UpdE Yes Yes Yes Yes Yes
RemE Yes Yes Yes Yes Yes
MovE No Yes No Yes Yes
UInkE Yes Yes Partially No Yes
CnctE Yes Yes Yes No Yes
RevE No No No No Partially
ImpE Partially Partially No No Yes
AnmE No No No No No
MkeD Yes Yes Yes Yes No

Genl No No No No No

UplD No Yes Yes No Yes
NtfS Partially No No No No

Conf No No No Partially No

SrhE No Yes Yes No Yes
LstE Yes No No No Yes
NKB Yes Yes Yes Yes Yes
ViwE Yes Yes Yes Yes Yes
RuseE Partially Yes Yes No Yes
ExpE Partially Partially No No Yes
ShrE Partially No No No Yes
UpgG Partially No No No No
DAPI No No No No Yes

6. VISION FOR FUTURE RESEARCH

In the previous section, we presented the results of our analysis. It showed the functional
requirements that are supported by the available tools and research prototypes. Based on
the data Table I. provides (the functionalities that are not focused by the available tools),
we establish some directions for the next steps towards tool developing for architectural
knowledge reuse and architecture guidance modeling:

1) Separating issue (decision required) from decision (decision made): A design guide is
mainly a list of design issues (decisions required) and their possible solutions
(alternatives). To create a guide from captured decisions (decisions made), issue and

3 Detailed evaluation results omitted due to space constraints, but are available upon request.

108 APPENDIX A. SELECTED PAPERS

decision should be separated and the tool should provide the possibility to generate an
issue from a decision (Gnrl). This will also make organizations less reluctant to share
their knowledge with a community; because it guarantees that only the issue and its
alternatives will be shared with the community and others will not be informed about
their decision (chosen alternative).

2) Providing default profile: One of the main reasons architects state for their
unwillingness to use architectural capturing tools is the time limitations 0. To overcome
this, tools should make capturing knowledge less time consuming. One of the solutions is
providing a default profile for adding entities to the knowledge base.

3) Providing knowledge confidentiality: As we mentioned earlier, organizations are not
eager to share all of their architectural knowledge with the community. There can be
even a situation that in one organization, the knowledge of one project should not be
shared with other projects. Therefore the confidentiality level of an entity should be
defined for adding the entity to the knowledge base. The tool should always consider the
confidentiality and intellectual property rights level of an entity before sharing, reusing

or exporting the entity or creating architecture guidance (e.g., “open”, “copyright
protected”, “company-internal”, and “confidential”).

4) Configuring metadata: Users should be able to customize the metadata (attributes
profile) based on their organizational policies and concerns. IEC/IEEE/ISO 42010 is one,
but not the only template to be supported (many more have been defined, e.g. 0).

5) Considering semantic tags: The architectural knowledge base can grow very fast.
Navigating a large knowledge base can be painful, e.g. if it takes a long time to find a
knowledge entity. Providing semantic tags will make searching the knowledge base
easier and more precise.

6) Searching the knowledge base before inserting new knowledge: To create a useful yet
concise architecture guidance it is essential to reduce the redundancy of knowledge. To
reach that, the tool should search the knowledge base in advance to inserting any new
knowledge. It is also useful for finding relevant knowledge and connecting them
together.

7) Being consistent with real world situation: In reality, large organizations develop
software within various projects and sub-projects. The design guide would be more
usable if it was categorized into projects and sub-projects. Therefore grouping the
entities of knowledge base to projects and sub-projects should be provided.

8) Anonymizing the knowledge: Rather than separating issues from decisions,
anonymizing the knowledge also makes organizations more eager to share their
knowledge with the community (see Section 2 for an example of a required
anonymization).

9) Providing programming interface: The activities related to architectural knowledge
management are very wide and it is not possible to have a holistic tool that supports all
activities. The focus of the proposed tool in this research is on reusing architectural
knowledge and enhancing a design guide. The tool should therefore provide an interface

P2- TOWARDS REUSING ARCHITECTURAL KNOWLEDGE AS DESIGN GUIDES109

(API) to make it possible to be integrated with other architectural knowledge
management or design modeling tools such as general-purpose wiki engines and Unified
Modeling Language (UML) tools.

7. CONCLUSIONS

Reusing architectural decisions as design guides gives these decisions a more proactive
role and therefore makes decision management more appealing and relevant to
practitioners. In this paper, we leveraged our industrial experiences, our previous
research work and also the current literature in the architectural knowledge community
to establish functional requirements for future knowledge management tools that
enhance architectural decisions to design guides. With respect to the functional
requirements, we analyze representative tools and research prototypes. We reported that
the available tools and research prototypes have made significant contributions in the
area of architectural knowledge capturing, but still require a number of extensions so that
the captured decision can serve as design guides in practice. We finalized the paper with
a vision for method integration and tool improvement.

In the next step, we are going to evolve our design guidance enhancing framework to
decrease the time and effort of design guidance generating by applying automatic
information extraction approaches. The extracted architectural entities will feed the
knowledge base (KB) in a more efficient way. We also intend to extend and integrate our
method into existing and emerging tools (our own tools and those developed in the
research community) — applying the vision we established in this paper.

REFERENCES

[1] A. Jansen, and J. Bosch, “Software architecture as a set of architectural design decisions”, WICSA

2005, pp. 109-120, 2005.

LZ] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and M. A. Babar, “A comparative study of architecture
nowledge management tools”, JSS 83(3), pp. 352-370, 2010.

[3] A. Tang, Y. Jin, and J. Han, “A rationale-based architecture model for design traceability and

reasoning”, JSS 80(6), pp. 918-934, 2007.

[4] B. Hammersley, “Developing feeds with RSS and Atom", O'Reilly Media, Inc.", 2005.

[5] C. Manteuffel, D. Tofan, H. Koziolek, T. Goldschmidt, and P. Avgeriou. “Industrial implementation

of a documentation framework for architectural decisions”. In Proc. 11th Working IEEE/IFIP Conference

on Software Architecture (WICSA'14), pp. 225-234. IEEE, April 2014.

[6] H. C. Tan, P. M. Carrillo, C. J. Anumba, M. Asce, N. D. Bouchlaghem, J. M. Kamara, and C. E.

Udeaja, “Development of a methodology for live capture and reuse of project knowledge in

construction”, Journal of Management in Engineering 23(1), pp. 18-26, 2007.

[7] ISO, “ISO/IEC 42010: Systems and software engineering - Recommended practice for architectural

description of software-intensive systems”, 2007.

[8] J. Bur%e and D. Brown, “SEURAT: Integrated rationale management”, ICSE 2008, pp. 835-838.

ACM, 2008.

g%]}]. l;O Hoorn, R. Farenhorst, P. Lago, and H. van Vliet, “The lonesome architect”, JSS 84(9), pp. 1424—

5,2011.

101 1. Tvree. and A, Akerman, “Architecture decisions: demystifying architecture”, IEEE Software

22(2), pp. 19-27,2005.

[11] L. Aggestam, and P. Backlund, “Strategic knowledge management issues when designing knowledge

repositories”, ECIS 2007, pp. 528-539, 2007.

[12] M. A. Babar, T. Dingseyr, P. Lago and H. van Vliet, “Software architecture knowledge management:

theory and practice”, Springer, 2009.

110 APPENDIX A. SELECTED PAPERS

13] M. Anvaari, R. Conradi, and L. Jaccheri, “Architectural decision-making in enterprises : preliminary
indings from an exploratory study in Norwegian electricity industry”, ECSA 2013, pp. 162-175, 2013.
[14] M. Biehl, “Literature study on design rationale and design decision documentation for architecture
descriptions”, 2010.
[15] M. Nowak and C. Pautasso, “Team situational awareness and architectural decision making with the
software architecture warehouse”, ECSA 2013, 2013.
[16} M. Shahin, P. Liang, and M. R. Khayyambashi, “Architectural design decision: existing models and
tools”, 2009 Joint WICSA/ECSA, pp. 293-296, 2009.
[17] N. Schuster, “ADkwik — A collaborative system for architectural decision modeling and decision
process support based on Web 2.0 technologies”, Stuttgart Media University, 2007.
[18] N. Schuster, O. Zimmermann, C. Pautasso, “ADkwik: Web 2.0 Collaboration System for
Architectural Decision Engineering”, Proceedings of the Nineteenth International Conference on
Software Engineering & Knowledge Engineering (SEKE 2007), Knowledge Systems Institute Graduate
School, 2007. Pages 255-260.
[19] O. Zimmermann, “Architectural decisions as reusable design assets”, IEEE Software 28(1), pp. 64-
69, 2011.
[20] O. Zimmermann, T. Gschwind, J. Kiister, F. Leymann, and N. Schuster, “Reusable architectural
decision models for enterprise application development”, QoSA 2007, pp. 157-166, 2007.
[21] O. Zimmermann, U. Zdun, T. Gschwind, and F. Leymann, “Combining pattern languages and
architectural decision models into a comprehensive and comprehensible design method”, WICSA 2008,
pp. 157-166, 2008.
L22] Object Management Group, “Reusable Asset Specification (RAS) Version 2.2.”, Available online at:
ttp://www.omg.org/spec/RAS/2.2, 2005.
[23] P. Avgeriou, P. Kruchten, P. Lago, P. Grisham and D. Perry, "Architectural knowledge and rationale:
issues, trends, challenges." ACM SIGSOFT Software Engineering Notes 32.4, pp. 41-46. 2007.
[24] P. Kruchten, “An ontology of architectural design decisions in software intensive systems”, In 2nd
Groningen Workshop on Software Variability, pp. 54-61, 2004.
[25] P. Liang, and P. Avgeriou, “Tools and technologies for architecture knowledge management. (M. Ali
Babar, T. Dingseyr, P. Lago, & H. van Vliet, Eds.), pp. 91-111, 2009.
[26] U. van Heesch, P. Avgeriou, and R. Hilliard, “A documentation framework for architecture
decisions”, JSS 85(4): pp. 795-820. 2012.
[2711]). van Heesch. P. Aveeriou. and R. Hilliard, (2012). “Forces on architecture decisions: a viewpoint”,
2012 Joint WICSA/ECSA, pp. 101-110, 2012.

P3- SEMI-AUTOMATED DESIGN GUIDANCE ENHANCER (SADGE) 111

P3- Semi-automated Design Guidance Enhancer (SADGE)

Published: In Proc. The 8th European Conference on Software Architecture, ECSA
2014.

112 APPENDIX A. SELECTED PAPERS

P3- SEMI-AUTOMATED DESIGN GUIDANCE ENHANCER (SADGE) 113

Semi-Automated Design Guidance Enhancer (SADGE):
A Framework for Architectural Guidance Development

Mohsen Anvaari', Olaf Zimmermann®

'Norwegian University of Science and Technology, Trondheim, Norway
mohsena@idi.ntnu.no

2University of Applied Sciences of Eastern Switzerland, Rapperswil, Switzerland
ozimmerm@hsr.ch

Abstract. Architectural decision making is a non-trivial task for architects in the software development
projects. Researchers have developed several concepts, methods and tools to assist practitioners in their
decision making and decision capturing activities. One of these approaches is a decision identification
technique that creates architectural guidance models from decisions made in previous projects and from
knowledge about a domain found in the literature. To apply this technique, significant manual knowledge
engineering effort has to be invested initially. In this paper, we introduce a framework that automatically
extracts architectural knowledge entities from architectural related documents by applying natural
language processing. A knowledge engineer then manually post processes and fine-tunes the extracted
knowledge entities. We applied evaluation techniques from the information retrieval community to
measure the sensitivity and accuracy of the framework. Our results show that the automatic approach has
the highest recall and shortest processing time while the semi-automatic approach has the highest
precision.

Keywords: Architectural decision making, design guidance, information extraction, natural language
processing, automatic annotation

1 Introduction

Architectural decision making is a non-trivial task for architects in software
development projects. Since 2000, researchers have developed several concepts,
methods, frameworks and tools to assist practitioners in their decision making and
decision capturing procedures [2][6][11]. However, a recent study shows practitioners
still have difficulties to make and manage decisions [13].

One of the difficulties the practitioners have in making decisions is recognizing and
highlighting architectural issues in a specific project to make decisions about them (we
call these issues architectural issues or decisions required). Our previous study shows
that architects mostly rely on their intuitions to recognize architectural issues [1]. One of
the promising approaches to help practitioners in their decision making is a decision
identification technique that enhances architectural guidance (decisions required) from
decisions made in previous projects and from knowledge about a domain that can be
found in the literature. Through decision identification rules, this approach tasks a
knowledge engineer to study pattern languages, genre- and style-specific extensions to
software engineering methods, technical papers, industrial standards and project
documentation to identify architectural issues [15]. To do so, the technique advises
knowledge engineers to read the natural language texts of the documents and to
annotate the texts manually. The intention is to extract architectural knowledge entities

114 APPENDIX A. SELECTED PAPERS

(i.e., issues, alternatives, outcomes') from documents and to develop an architectural
guidance model from the extracted information. Such architectural guidance model is a
reusable asset containing knowledge about architectural decisions recurring in a
particular domain [16]. Several case studies have shown that the developed architectural
guidance is promising in assisting the practitioners in their decision making, e.g. in
SOA design and cloud computing [15]. However, this decision identification approach
is manual; significant knowledge engineering effort that has to be invested initially
before benefits can be realized.
In this paper, we introduce a framework called Semi Automated Design Guidance
Enhancer (SADGE) that automatically extracts architectural issues (decisions required)
from architecture documents by applying natural language processing (NLP) first (we
refer to this automated step as automatic approach). In a second step, a knowledge
engineer manually post processes and fine-tunes the extracted knowledge entities to
increase the accuracy of the framework (we refer to the first automated and the second
manual step together as semi-automatic approach). We validated and evaluated the
SADGE framework in an experiment with students. The intention of this evaluation was
to compare the effort, sensitivity and accuracy of architectural entities extraction
process between manual, automatic and semi-automatic approaches. More specifically,
by conducting the experiment we were going to find out:
* Research Question (RQ) 1: Which approach does have the shortest processing
time for extracting the architectural entities?
* RQ 2: Which approach does have the highest sensitivity in extracting the
architectural entities?
* RQ 3: Which approach does have the highest accuracy in extracting the
architectural entities?
The contribution of this paper is twofold: 1) It applies NLP-based knowledge extraction
to the architectural knowledge area and proposes a novel framework architecture and
process model for doing so. 2) It demonstrates the efficiency, sensitivity and accuracy
of this framework in enhancing architectural guidance from architectural related
documents.
The rest of the paper is organized as follows. In the Section 2 we introduce the
framework by describing how we have developed the framework and how users should
operate and maintain the framework. Section 3 presents the design of the experiment
and analyses and discusses the result of the experiment. Section 4 describes the related
work in the software architecture domain. Finally, Section 5 concludes the paper and
outlines future work.

! Architectural issue represents any design concern or problem that a decision should be made about;
alternative presents a solution to the problem and outcome is the chosen solution among different
alternatives [14].

P3- SEMI-AUTOMATED DESIGN GUIDANCE ENHANCER (SADGE) 115

2 SADGE - Framework for Semi-Automatic Architectural Knowledge
Extraction

In this section, we explain how we developed the framework and how the framework
operates.

2.1 SADGE Framework Development

SADGE has to be set up first (by a researcher) before practitioners in the projects can
use it. As we mentioned earlier, the framework applies natural language processing
(NLP) to extract architectural knowledge entities from a document. There are two main
approaches in NLP to do so, machine learning approach and rule-based approach [5].
We tried both approaches, but due to the lack of enough training data, the machine
learning approach did not work well; therefore in the current version of the framework
we only use the rule-based approach. The stages of framework development will be
described in the following subsections.

D1. Initializing the annotation rule. For developing the annotation rules we started
with the simplest rule that an expert in the software architecture intuitively applies to
manually annotate a sentence: If a sentence contains at least one of the terms from
catalog of terms (a list of predefined keywords) annotate it as an architectural issue.
For example, an architect would annotate the sentence “determine your validation
strategy” in a document as an architectural issue (decision required) because of
keywords “determine” and “strategy”. Therefore, to apply the rule, the keywords (i.e.,
the catalog of terms) should be developed as well.

D2. Initializing the catalog of terms. To develop the catalog, we first interviewed an
expert in the software architecture domain and identified terms that the expert considers
as indicator to annotate a sentence as an architectural issue. When the first versions of
the rule and the catalog of terms became ready, we applied them on some sample texts.
We started by automatically annotating one document. To evaluate the result, we
compared the automatic annotated entities against the entities that had been annotated
manually by the expert. The evaluator presents the precision, recall, f-measure” and also
shows those entities that have positively or negatively annotated.

D3. Evolving the annotation rule. When we applied the first version of the rule, the
average recall of automatic annotation was high but the precision was very low. Hence,
we decided to change the rule to reduce the amount of negatively annotated sentences
and increase the precision. We divided the catalog of terms into two catalogs: high
priority terms and low priority terms. Then the new rule is presented in Fig. 1.

zPrecz’sion, Recall and F-measure are the measures used in the information retrieval domain to measure
how well an information retrieval system retrieves the relevant entities requested by a user. See [12] for
definitions.

116 APPENDIX A. SELECTED PAPERS

if

(a sentence contains at least one of the terms

from the catalog of high priority terms) >
or

(contains at least two terms

from the catalog of low priority terms)

annotate it as an architectural issue

Fig. 1. The rule for annotating “architectural issues”

This rule resulted in a higher f-measure, so we replaced the first rule with the newer
version. To decide whether a term is a low priority term or high priority term, we put
the term in either category to see which one results to a higher f-measure.

D4. Evolving the catalog of terms. By looking at the sentences that should be
annotated (according to the manually annotated text) but had not been annotated by the
automated annotator, we found new terms to add to the catalog of terms. This resulted
to higher f-measure. We added other sample texts one by one and did the same
procedure for each text to develop the catalog of terms further. We finished the iterative
procedure when the improvement of f-measure was not significant anymore. In total, we
annotated seven documents that contained architecture related text. We selected the
sample texts from various types of documents to make them representative in the
software architecture domain. The texts were two industrial standards for software
integration, three software design guidelines and two academic papers.

D5. Refining the catalog of terms. There is a possibility that some of the terms have
positive impact on annotating one document whereas have negative effect on annotating
some other documents. So in this stage of the framework development we decided to
measure the impact of each of the terms on the average f-measure of all of sample
documents. To do so, we removed each term from the catalog of terms and calculate the
f-measure and then put the term back to check how the presence of a term affects the
average f-measure. Those terms that their presence had negative effect on the average of
f-measure were removed from the catalog of terms permanently. We call this stage of
the development sensitivity test. The final version of catalog of terms after conducting
the sensitivity test is presented in Fig. 2. We should mention that we use stemming for
applying the annotation rule. Stemming is the process of reducing a word to its root.
Therefore the terms in Fig. 2 are the roots of the terms and in the case another form of
the word appears in a sentence the automated annotator considers it as an instance of the
term. When both annotation rules and catalog of terms are developed, the framework is
ready to be used.

High Priority Terms
agree on, choose
Low Priority Terms
approach, articulate, class, component, construct, concern, define, design, determine,
different, employ, establish, evaluate, exchange, facilitate, framework, investigate,
limitation, make, philosophy, principle, profile, provide, protocol, recommend, refactor,
require, schema, select, service, several, strategy, support, topology, transaction
management, type, various

Fig. 2. Catalog of terms for annotating “architectural issues”

P3- SEMI-AUTOMATED DESIGN GUIDANCE ENHANCER (SADGE) 117

2.2 SADGE Framework Operation and Maintenance

The steps of framework operation and maintenance are described as follows. Note that
in sections 1 and 3 by automatic approach we mean step 02 of the framework while 02
and O3 together make the semi-automatic part of the framework.

Ol. Preparing documents for annotation. The input of the framework comprises text
files that can be either project documents or domain literature. The knowledge engineer
edits the text files in a way that the file doesn’t include non-text objects (for example
images) or non-relevant texts (cover page, table of contents, etc.). Then (s)he converts
the text files to the types that automated annotator accepts.

02. Automatically annotate the documents. The knowledge engineer loads the
annotation rules, the catalog of terms, and the batch of text files to the automated
annotator. The automated annotator applies the rules and annotate the architectural
issues in the text files. The output of this step is a list of sentences that automated
annotator suggests as architectural issues. Besides, the knowledge engineer also receives
a list of sentences that automated annotator doesn’t consider as architectural issues.

03. Manually fine-tune the results. The knowledge engineer in this stage looks
through the list of tool suggestions and reject the sentences that (s)he doesn’t consider
as architectural entities.

04. Generate the design guide out of annotated text. Now that the annotated
sentences from all of the text files are finalized, guidance generator merges them and
produce design guide for a specific project. It includes all of the potential issues
(decisions required) in the project. The knowledge engineer can shorten the sentences,
classify issues into sub-projects and add alternatives (including pros and cons for each
alternative) to each issue. (S)he can also remove the redundant issues.

MI1. Suggest new terms for catalog of terms. In step O3, the knowledge engineer may
find some terms that would be an indicator for annotating architectural issues. In that
case (s)he can suggest them to catalog enhancer.

M2. Add new terms to the catalog of terms: The catalog enhancer conducts the
sensitivity test for the suggested term and if the average f-measure is positive, the term
will be added to the catalog of terms. So the framework evolves during projects.

3 Framework Evaluation

The main purpose of developing SADGE is to reduce the efforts that manual approach
of decision identification technique demands. However, the accuracy and sensitivity of
the framework should not be too lower than manual approach; otherwise the framework
will not be effective. Therefore these three quality attributes of the framework should be
evaluated: processing time (effort), sensitivity and accuracy. The metrics we use for
evaluating the effort is time and for evaluating the other two attributes we use the
classical metrics in information retrieval domain, recall and precision. In the current
stage of the research, we preliminary evaluate the framework by conducting an
experiment with students. In the following sections, we first describe the design of the
experiment, then we present the results of the experiment and in the discussion section

118 APPENDIX A. SELECTED PAPERS

we interpret and discuss the results and describe the potential threats to validity.
3.1 Evaluation Design (Setup)

Participants: We asked students of a bachelor’s program in information technology to
participate the experiment. They are familiar with the software architecture. However,
they were not familiar with the concept of architectural knowledge (including
architectural issues). 19 students (randomly selected) participated in the experiment. We
divided them into two groups of ten and nine students. Before the experiment, an
introduction about the task and the concept of architectural issue were presented to the
students.

Stages: In the first stage, students were supposed to read a text carefully and annotate
the sentences they think are architectural issues. In the second stage, the list of
automatically annotated sentences from the text given to group 1 in the first stage was
given to the students of group 2 and vice versa to avoid the testing effects. They were
asked to reject the sentences they disagreed with automated annotator to fine-tune the
results.

Material: In the first stage of the experiment each group received two pages of a text
from a book chapter on web application design guidance. The texts of two groups are
not identical. The book chapter is one of the documents we had used to evaluate the
automated annotator (automatic part of the framework). The reason we chose this
document among all of the tested documents was that this document had the smallest
deviation from the mean of precision and recall of annotating all of the documents and
therefore can be considered as a representative of the tested documents.

3.2 Evaluation Results

Table 1 summarizes the results of the experiment. In the manual approach, the students
spent nine minutes on average to annotate the architectural issues. The automated
annotator ran the annotation procedure in two sec. In the semi-automated approach, the
students spent 3 minutes on average to reject those sentences they didn’t agree is an
architectural issue (we neglect the two second that automated annotator ran the

procedure).
Table 1. Results of experiment

Approach Time Recall | Precision
(min) (%) (%)
Manual 9 38 25
Automatic 0.03 86 57
Semi-automatic 3 55 62

To calculate the recall and precision we needed reference texts. Two experts in the
software architecture domain annotated the two texts and the annotated texts were used
as the reference text. The recall and precision for all three approaches are presented in
Table 1. In the next section, we analyse the results and discuss about their validity.

P3- SEMI-AUTOMATED DESIGN GUIDANCE ENHANCER (SADGE) 119

3.3 Discussion

As Table 1 shows, automated annotator has the highest effort reduction (lowest
annotation time) and the highest recall while semi-automatic approach has the highest
precision. The effort reduction results are in correspondence to our expectation.
Regarding the precision and recall, in the real projects we expect that when those
practitioners who are experts in the software architecture domain annotate a text
manually, both precision and recall should be near to 100 percent, because the
practitioners’ knowledge are almost the same as our reference experts’ knowledge.
Whereas here the results show that the recall and precision of student annotations are
very low (38 and 25 respectively). The results for automated annotator are relatively
high (86 and 57) and these show that if the people in charge of enhancing architectural
guidance are not expert enough, automated approach will perform more accurate and
more sensitive by spending much less time. We expected that the semi-automatic
approach has the highest precision rate that is in line with the experiment results; but we
expected higher precision rate.

The other result that doesn’t meet our expectation is the recall rate of semi-automatic
approach. Although it cannot be higher than the automatic approach (because some of
the positive results have been already neglected by the automated annotator) we
expected that the recall would not be lower than the automatic approach. But the results
show that some of the positive results are rejected by the participants. This might be
caused by the expertise level of the participants. Our expectation is that if the
participants were expert enough in the domain, the semi-automatic approach would
have almost the same recall rate as the automatic approach and much higher precision
rate than the automatic approach. However, this hypothesis needs to be investigated
with subject matter experts.

Threats to validity: The potential threat to the internal validity of the evaluation is the
testing effect [4]. To avoid the issue, as we explained we divided the participants into
two groups and swapped the two documents between the groups. As a result the group 1
in the second stage examined the sentences that group 2 had in the first stage and vice
versa.

The potential threat to the external validity of the research is the selection of the
material for the experiment because one document cannot be enough for generalizing
the evaluation of the framework. We were aware of this issue but to evaluate the
framework by applying it on diverse documents we would need to ask students to stay
much longer for the experiment that was not feasible. Also as we explained before this
document has the smallest deviation from the mean of accuracy and sensitivity of
annotating several documents that we tested the automated annotator on.

4 Related Work
Using NLP for knowledge extraction is not novel in software engineering. For instance

several researchers have developed tools and methods for generating object oriented
models from natural language texts by applying NLP [3][9][10]. However, most of

120 APPENDIX A. SELECTED PAPERS

these methods and tools are applied on specific software documents such as design
documents and requirements specifications while more general or informal texts such as
meeting minutes, wikis and industrial standards are not considered. Besides, the
majority of work has been done to extract the object oriented data from the documents
whereas extraction of architectural knowledge (specifically architectural decisions) is
not mainly in focus. Even though, there is still few work focusing on architectural
knowledge extraction. Figueiredo et al. have developed a rule-based NLP approach to
search architectural knowledge entities in documents [7]. TREx is another approach that
annotates architectural related documents by applying NLP to retrieve architectural
knowledge entities (including issues, drivers, rationale) [8]. Although the development
and operation stages of both approaches are very similar to SADGE, the catalog of
terms and annotation rules are not presented in the papers nor publicly accessible.
Therefore, it is not possible to replicate the approaches and as a result the comparison is
not feasible. So the catalog of terms and annotation rules presented in this paper are the
contribution of our research to extracting architectural issues from documents and
generating architectural guidance.

5 Conclusion and Future Work

In this paper we introduced Semi-Automated Design Guidance Enhancer (SADGE), a
framework for obtaining design guidance from architectural knowledge in project
documents and domain literature. SADGE applies Natural Language Processing (NLP)
to the architectural knowledge domain to reduce the efforts of manually creating
architectural guidance from architecture documentation. More specifically, SADGE
automatically annotates (highlight) the architectural issues to reduce the knowledge
engineering effort that has to be invested initially to identify architectural knowledge
from the documents.

We presented the five development stages of SADGE, D1 initializing the annotation
rule, D2 initializing the catalog of terms, D3 evolving the annotation rule, D4 evolving
the catalog of terms, and D5 refining the catalog of terms. This makes the design of the
framework replicable for researchers.

The four operation steps of the SADGE are preparing documents for annotation (O1),
automatically annotate the documents (0O2), manually fine-tune the results (O3),
generate the design guide out of annotated text (O4). The two maintenance steps of the
framework are (M1) suggest new terms for catalog of terms and (M2) add new terms to
the catalog of terms. This makes the application of the framework understandable for
practitioners.

The results of the framework evaluation are: the automatic approach has the shortest
processing time (research question RQ1) and the highest sensitivity (RQ2) while the
semi-automatic approach has the highest accuracy (RQ3). In summary, using NLP in
the architectural knowledge domain reduces the amount of manual decision
identification work and has the potential to improve existing decision identification
techniques.

Practitioners can use SADGE in the first stages of their architectural decision making

P3- SEMI-AUTOMATED DESIGN GUIDANCE ENHANCER (SADGE) 121

process to rapidly identify architectural issues (decisions required) that are relevant to
their project. This helps them accelerate the orientation in the problem-solution space
and, consequently, to make architectural decisions in a more confident way.

In the next stage of our research, we plan to improve the sensitivity and accuracy of the
automated annotator by applying machine learning algorithms (so far, we were missing
adequate training data, but we expect to receive more architectural related documents
from real projects in the industry). Furthermore, we plan to evaluate the framework by
conducting case studies that involve expert architects and also include more real-world
project documents.

References

1. Anvaari, M., Conradi, R., and Jaccheri, L.: Architectural Decision-Making in
Enterprises: Preliminary Findings from an Exploratory Study in Norwegian
Electricity Industry. European Conference on Software Architecture (ECSA 2013),
pp. 162-175, Springer Berlin Heidelberg, (2013).

2. Babar, M. A., Dingseyr, T., Lago, P. and van Vliet, H.: Software Architecture
Knowledge Management, Springer (2009).

3. Bajwa, Imran Sarwar, Ali Samad, and Shahzad Mumtaz.: Object Oriented Software
Modeling Using NLP Based Knowledge Extraction." European Journal of Scientific
Research 35.01: 22-33 (2009).

4. Campbell D.T. and Stanley J.C.: Experimental and Quasi-experimental Designs for
Research. Boston: Houghton Mifflin; (1963).

5. Crowston, K., Liu, X., and Allen, E. E.: Machine Learning and Rule-based
Automated Coding of Qualitative Data. Proceedings of the American Society for
Information Science and Technology, 47(1), 1-2 (2010).

6. Falessi, D., Cantone, C., Kazman, R., and Kruchten, P.: Decision-Making
Techniques for Software Architecture Design: a Comparative Survey, ACM
Computing Surveys 43 (4) (2011).

7. Figueiredo, A. M., dos Reis, J. C., and Rodrigues, M. A.: Improving Access to
Software Architecture Knowledge: An Ontology-based Search Approach.
International Journal Multimedia and Image Processing (IJMIP), 2(1/2) (2012).

8. Lopez, C., Codocedo, V., Astudillo, H., & Cysneiros, L. M. (2012). Bridging the
Gap between Software Architecture Rationale Formalisms and Actual Architecture
Documents: An Ontology-Driven Approach. Science of Computer Programming,
77(1), 66-80 (2012).

9. Perez-Gonzalez, H. G.: Automatically Generating Object Models from Natural
Language Analysis, 17th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, ACM New York, USA, pp: 86 —
87 (2002).

10. Soeken, M., Wille, R., and Drechsler, R.: Assisted Behavior Driven Development
Using Natural Language Processing. In Objects, Models, Components, Patterns (pp.
269-287). Springer Berlin Heidelberg (2012).

11. Tang, A., Avgeriou, P., Jansen, A., Capilla, R. and Babar, M. A.: A Comparative

122 APPENDIX A. SELECTED PAPERS

Study of Architecture Knowledge Management Tools. Journal of Systems and
Software. 83, 3, pp.352-370 (2010).

12. Ting, K. M. : Precision and Recall, Encyclopedia of Machine Learning. Springer US,
(2010).

13. Tofan, D., Galster, M., and Avgeriou, P.: Difficulty of Architectural Decisions—A
Survey with Professional Architects. European Conference on Software Architecture
(ECSA 2013), pp. 192-199, Springer Berlin Heidelberg (2013).

14. Zimmermann, O., Koehler, J., Leymann, F., Polley, R., and Schuster, N.: Managing
Architectural Decision Models with Dependency Relations, Integrity Constraints,
and Production Rules. Journal of Systems and Software, 82(8), 1249-1267 (2009).

15. Zimmermann, O.: An Architectural Decision Modeling Framework for Service-
Oriented Architecture Design. PhD Dissertation, University of Stuttgart (2009).

16. Zimmermann, O.: Architectural Decisions as Reusable Design Assets, IEEE
Software 28(1), pp. 64-69, (2011).

P4- RULE-BASED EXTRACTION OF ARCHITECTURAL ISSUES 123
P4- Rule-based Extraction of Architectural Issues

Submitted for publication

Is not included due to copyright

124 APPENDIX A. SELECTED PAPERS

P5- ASSOCIATING ARCHITECTURAL ISSUES WITH QUALITY ATTRIBUTES157
P5- Associating Architectural Issues with Quality Attributes

Submitted for publication

Is not included due to copyright

158 APPENDIX A. SELECTED PAPERS

APPENDIX B

Supporting Paper

177

178 APPENDIX B. SUPPORTING PAPER

PO- SMART GRID SOFTWARE APPLICATIONS AS AN ULTRA-LARGE-SCALE SYSTEM179

P0- Smart Grid Software Applications as an Ultra-Large-
Scale System

Published: In Proc. Innovative Smart Grid Technologies (ISGT), 2012 IEEE PES.

180 APPENDIX B. SUPPORTING PAPER

PO- SMART GRID SOFTWARE APPLICATIONS AS AN ULTRA-LARGE-SCALE SYSTEM181

Smart Grid Software Applications as an Ultra-Large-Scale System:
Challenges for Evolution

Published: In Proc. Innovative Smart Grid Technologies (ISGT), 2012 IEEE PES.

M. Anvaari, D. S. Cruzes, R. Conradi
Norwegian University of Science and Technology

Abstract. Software applications play a major role to provide the “smartness” in Smart Grid. Such
applications are in a never-ending state of flux due to rapidly changing expectations from the users and
stakeholders. Hence, managing the evolution is important for development of Smart Grid software
applications, and the challenging factors of software evolution in Smart Grid should be identified. This
position paper presents a discussion on the Smart Grid software applications as an ultra-large-scale
system, focusing on the possible challenges that need to be addressed for an effective and efficient
evolution of the area.

Keywords. Smart Grid, software applications, software evolution, systems of systems, ultra-large-scale
system.

182 APPENDIX B. SUPPORTING PAPER

APPENDIX C

Annotation Rule

The pseudo-code of the annotation rule developed for SADGE was shown in Figure 4.3.
The formal version of the rule written in JAPE is presented in this appendix.

183

184 APPENDIX C. ANNOTATION RULE

Phase: Temp
Input: Lookup Sentence Split
Options: control = appelt

Rule: Issue
(
{Sentence contains {Lookup.majorType == lowissuel}
|
[Sentence contains {Lookup.majorType == highissue}}
Jiss
-
{
AnnotationSet annSet = bindings.get("iss");
Annotation ann = annSet.iterator().next();

FeatureMap constraintsl = Factory.newFeatureMap();
constraints 1.put("majorType","lowissue");

FeatureMap constraints2 = Factory.newFeatureMap();
constraints2.put("majorType","highissue");

if (inputAS.get(ann.getStartNode().getOffset(),
ann.getEndNode().getOffset()).get("Lookup”,constraints 1).sizel) > 1)

FeatureMap features1 = Factory.newFeatureMapi);

features L.put("rule", "Issue");
outputAS.add(annSet.firstNode(),annSet.lastNode(),"Issue" features 1);

| else if (inputAS.get(ann.getStartNode().getOffset(),
ann.getEndNode().getOffset()).get("Lookup”,constraints 2).sizel) > 0)f

FeatureMap features2 = Factory.newFeatureMapi);

features2.put("rule", "Issue");
outputAS.addiannSet.firstMode(),annSet.lastNode(),"Issue",features2);

]

Figure C.1: SADGE annotation rule written in JAPE for use in GATE

APPENDIX D

Experiment Material

The text we used for both groups in the experiment with expert architects are presented in
this appendix.

185

186 APPENDIX D. EXPERIMENT MATERIAL

Group 1
Start time (hh-mm): End time (hh-mm):

Text 1 (from a company documentation):

From a product perspective, no differentiation is done between the three packet data
networks (2G, 3G and LTE). We only talk about packet data access and give access to
all networks - or none. There is however, one exception to this rule. A LTE capable
USIM card is required to be able to connect to the LTE network. These cards will be
distributed from Q3 or Q4 2011. S212 will only provision LTE access for LTE capable
SIMs.

Data volumes are currently increasing steadily and the introduction of LTE will further
accelerate the growth. The number of data CDRs created indicates growth of 500%
over the next 5 years.

Our target is that roaming agreement and settlement shall be technology neutral.
Assumption is therefore that no changes in TAP formats will be required to handle LTE
roaming. CDRs coming from the LTE network shall be handled as 'normal’ packet-
data CDRs. This means that the mediation systems shall produce the same packed data
CDRs independent of source network.

IP address fields in CDRs shall support both [Pv4 and IPv6 addresses. TAP standards
for IPv6 have not yet been defined. When they get defined, LTE and IPv6 project must
agree on who should be responsible for implementing the required changes.

There are no big architectural changes in the OSS architecture, but quite a lot of 'LTE
upgrades’. The upgrades are mainly triggered by new elements and SW upgrades in the
mobile network.

MXX should be master when turing on LTE cells. This is the same as 2G/3G today
after swap. The reason is that there will be tuning of the cells for KPI optimization, and
this will probably be done in MXX by AMN, thus MI must accept these changes. This
subject must be discussed with AXX Corp. and IS architects to view the details and the
dates of changes of mastering.

Potential issue related to HLR/HSS migration:

Current assumption is to use IMT series to define the ‘migration bulks’. How to handle
call set-up during migration (i.e. how to determine in which HLR a subscriber with a
given MSIC resides) might be an issue (still no requirements to IS). One resolution to
this might be to start provisioning FNR with IIB-DIC mapping. This is not a current
requirement. In case IS have to start provisioning IMTs to FNR this will have
significant impact on Instant link. This scenario will be analyzed if and when a change
request is raised by the migration team. LTE will also migrate the remaining core nodes
from OSS-RC 2G and 3G, allowing these two ‘old’ OSS nodes to be phased out.

Performance management:
Brain OSS will introduce basic Performance Management functionality and support for

187

RAN and PS core in 22H2. LTE project will make necessary adjustments required
when element managers SW are upgraded after Brain OSS is closed down.

Text 2 (from a standard):

For those requiring interoperability with BACnet, this OpenADR specification may
optionally use the BACnet Web Services (BWS) specification (ANSI/ASHRAE
Addendum C to Standard 135 - 2004) to communicate with BACnet - based systems.
The generic BWS data model allows interoperability with DRAS - issued DR event
information and to schedule response strategies using Smart and Simple DRAS clients.
The DRAS - BACnet Server and supporting DRAS Client should exchange EventState
information using two different modes of interaction—PUSH and PULL-as described
earlier in “Section 6.5.3.1, Modes of Interaction (PUSH versus PULL).”

While BWS has many services that support various aspects of control systems
specifications, most of them are not relevant to the DRAS - BACnet server and
getValue and setValue services are being used. The other two services
getDefaultLocale and getSupportedLocals are required as per BWS specifications and
must also be supported by the DRAS to exchange DR event data with the DRAS -
BAChnet server.

In general there are many modes of attacks upon any sort of IT infrastructure ranging
from intruders gaining physical access to the servers to remotely accessing the servers
through open communication channels. This OpenADR specification only covers the
communication protocols used to interact with the DRAS and the DRAS Clients. It is
therefore only intended to cover modes of attack that would be perpetrated by using one
of the communications channels that are used to implement the interface to the DRAS
as described in the analysis section of Appendix C. Any other certainly necessary
security measures (firewalls, intrusion detection, etc.) are not covered.

There are a number of types of users that require access to the DRAS. Each user may
have different requirements on the type of functions they can perform and data they
may access. To support limiting the access of the DRAS users based on their
requirements, the DRAS must support the security roles outlined in Section 6.3.1.
These security roles are designed to limit access to the various methods in each of the
Web service interfaces. Table 5 describes how each of the security roles is limited
within each of the Interfaces.

An implementation chooses the security measures for the non - API interfaces
according to the usage scenario, threat levels, protected values, etc. The minimum
level, given in this document, might (Client A) or might not (Client B and C) be right
for a particular implementation as examples shown in Figure 45. Higher security
measures can easily be integrated into the DRAS if necessary (Client C) as long as they
are based on open standards. Communication partners with lower security levels (Client
B) have to use a security proxy.

188 APPENDIX D. EXPERIMENT MATERIAL

Group 2
Start time (hh-mm): End time (hh-mm):

Text 1 (from a company document):

There is no ‘prioritization’ functionality in the provisioning gateway. This means that
any prioritization strategy must be implemented in the provisioning system.

Both IL and EMA have the option to define the maximum allowed number of parallel
connections to PG. This feature can be used to prevent one of the systems (most likely
IL) to consume all the capacity at PG. Combined with setting priority on different
orders in IL and EMA it should be possible to ensure that critical orders are processed
quickly also at peak traffic.

Only data is in scope for LTE initially. CDRs coming from the LTE network shall be
handled as ’normal’ packet-data CDRs. This means that the mediation systems shall
produce the same packed data CDRs independent of source network (2G, 3G or LTE).

It must be discussed how the top-up components can identify both the top-up service
and the corresponding CAN/FQP-service in a way which is available for NIRRC. One
very simple possibility is to use the prefixed system-component-id of the CAN/FQP
component as the system-component-id of the top-up component.

The additional quota value will be available as a configuration which is set when
defining the product. The component will have configurations which indicate the end-
date to be used when activated is the last day of the current month.

There have to different solutions for handling this optimization for products in the old
(Subscriptions) and new (Add-on products) Product Catalog. The optimization for the
old PK is basically handled in S212 while the optimization for the new PK spans
several systems.

Maximum uplink and downlink speed must be present in all CDRs (Billing Gateway).
SGTTN and GGTRSN addresses are used for charging purposes today. The
introduction of SGW and PGW node will impact this regime. Correct mapping of SGW
and PGW addresses must be implemented by Billing Gateway or EPP.

The implementation of new MBB products for SP will increase the number of orders in
the mobile value chain. Estimate from wholesale is that approx 15% of the SP
customers will have a MBB product. This should result in an increase of 5000 orders
per month.

The optimization of PCRF orders will decrease the number of tasks towards PCRF with
65 000 per month.

Migration of all subscribers from current (classic) HLR to new UDR is described in the
LTE Technical AO. The migration will be done in bulks of approximately 3 mill
subscribers — indicating that 4-8 bulks will be required to migrate all our subscribers.

189

The LTE component (or EPS as the service is named in HSS/CUDB) will be added
after migration of all subscribers. This is done to minimze the risk of the 2G/3G
migration. Instant link will be the only system in IS Mobile value chain that ‘see’ the
migration.

Text 2 (from a standard):

The DRAS must support two-way communications for both the PUSH and the PULL
model of interaction, but the DRAS Client is only required to support one or the other.
Typically the PULL model may be used since the DRAS Client has more control over
the communications including the ability to more easily communicate through firewalls

and being network-friendly.

When a program is defined within the DRAS there are specifications associated with
the program that define what type of information may be associated with a DR event
when one is issued for that program. Each type specification for an EventInfolnstance
is referred to as an EventInfoType. A program may be defined that allows for multiple
different types to be associated with a program.

The Operation Mode variable takes on values according to a schedule during the event
that is defined by the participant or the utility or ISO. This schedule is specified by
using a set of rules that determine how the EventInfolnstance of the UtilityDREvent is
translated into one of the simple values of the operation mode. Since the participant is
free to schedule how the Operation Mode variable changes, this defines a so called
“Response Schedule” for how that participant responds to DR events. The response
schedule is represented by the ResponseSchedule entity.

The DRAS is responsible for tracking the event states for each of the DRAS Clients in
order to send the DR event information to the DRAS Client at the appropriate time.

From the DRAS Client’s point of view there is a so-called DR event state the DRAS
Clients are in which is represented by the EventState entity. Normally a DRAS Client’s
event state is “IDLE” meaning that there are currently no active or pending DR events.
This changes when the utility or ISO initiates a DR event in the DRAS. The DRAS
tracks the DR event state for each DRAS Client and can provide the current state
information at any time for that DRAS Client. It can be in different states, depending
upon whether the participant uses a Smart DRAS Client or a Simple DRAS Client.

This subsystem is responsible for notifications to facility operators using various
existing technologies such as phone, pages, email, fax. The purpose of showing this as
a separate component is to highlight the fact that certain types of notifications (such as
voice mail) will not be part of the specification and may be provided by third party
systems. The systems may be part of the utility infrastructure, but in the most general
case they are a standalone service as depicted in the diagrams. At a minimum, the
DRAS must support direct email notification to the facility that includes exception
handling and bidding information.

