MOLECULAR ECOLOGY

A high-density linkage map enables a second-generation collared flycatcher genome assembly and reveals the patterns of avian recombination rate variation and chromosomal evolution

Journal:	Molecular Ecology
Manuscript ID:	Draft
Manuscript Type:	Original Article
Date Submitted by the Author:	n/a
Complete List of Authors:	Kawakami, Takeshi; Uppsala University, Department of Evolutionary Biology Smeds, Linnea; Uppsala University, Department of Evolutionary Biology Backstrom, Niclas; Uppsala University, Department of Evolutionary Biology Husby, Arild; Uppsala University, Department of Animal Ecology Qvarnstrom, Anna; Uppsala University, Department of Animal Ecology Mugal, Carina; Uppsala University, Department of Evolutionary Biology Olason, Pall; Uppsala University, Department of Evolutionary Biology Ellegren, Hans; Uppsala University, Department of Evolutionary Biology;
Keywords:	Birds, Genomics/Proteomics, Molecular Evolution, Speciation

SCHOLARONE[™] Manuscripts

1	
2	
3	
4	A high-density linkage map enables a second-generation collared flycatcher
5	genome assembly and reveals the patterns of avian recombination rate
6	variation and chromosomal evolution
7	
8	Takeshi Kawakami ^{1a} , Linnéa Smeds ^{1a} , Niclas Backström ¹ , Arild Husby ² , Anna
9	Qvarnström ² , Carina F. Mugal ¹ , Pall Olason ^{1,3} and Hans Ellegren ^{1*}
10	
11	¹ Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala
12	University, Norbyvägen 18D, SE-752 36 Uppsala, Sweden
13	² Department of Animal Ecology, Evolutionary Biology Centre (EBC), Uppsala University,
14	Norbyvägen 18D, SE-752 36 Uppsala, Sweden
15	³ Wallenberg Advanced Bioinformatics Infrastructure (WABI), Science for Life Lab, Uppsala
16	University, Husargatan 3, SE-751 23 Uppsala, Sweden
17	
18	^a These authors contributed equally
19	
20	*Correspondence: Hans Ellegren: <u>hans.ellegren@ebc.uu.se</u>
21	
22	Running head: Genome assembly and genetic map of flycatcher
23	
24	Keywords: collared flycatcher, linkage map, recombination rate, SNP array
25	

26 Abstract

27 Detailed linkage and recombination rate maps are necessary to use the full potential of 28 genome sequencing and population genomic analyses. We used a custom collared flycatcher 29 50K SNP array to develop a high-density linkage map with 37,262 markers assigned to 34 30 linkage groups in 33 autosomes and the Z chromosome. The best-order map contained 4,215 31 markers, with a total distance of 3,132 cM and a mean genetic distance between markers of 32 0.12 cM. Facilitated by the array being designed to include markers from most scaffolds, we 33 obtained a second-generation assembly of the flycatcher genome that approaches full 34 chromosome sequences (N50 super-scaffold size 20.2 Mb and with 1.042 Gb (out of 1.116 35 Gb) anchored to and mostly ordered and oriented along chromosomes). We found that 36 flycatcher and zebra finch chromosomes are entirely syntenic but that inversions at mean rates 37 of 1.5-2.0 event (6.6-7.5 Mb) per My have changed the organization within chromosomes, 38 rates high enough for inversions to potentially have been involved with many speciation 39 events during avian evolution. The mean recombination rate was 3.1 cM/Mb and correlated 40 closely with chromosome size, from 2 cM/Mb for chromosomes >100 Mb to >10 cM/Mb for 41 chromosomes <10 Mb. This size-dependence seemed entirely due to an obligate 42 recombination event per chromosome; if 50 cM was subtracted from the genetic lengths of 43 chromosomes, the rate per physical unit DNA was constant across chromosomes. Flycatcher 44 recombination rate showed similar variation along chromosomes as chicken but lacked the 45 large interior recombination desserts characteristic of zebra finch chromosomes.

46

47 Introduction

48

49 At a time when draft genome sequencing and assembly are practicable for most study 50 organisms (Ellegren 2014), other types of critical genetic information may represent limiting 51 steps in population and evolutionary genetic studies. One such factor is detailed linkage maps 52 and the associated inference of how the rate of recombination varies across the genome 53 (Dumont & Payseur 2008). Linkage maps enable anchoring and ordering of scaffolds along 54 chromosomes (Heliconius Genome Consortium 2012; Huang et al. 2013). This is necessary 55 for making full use of the unprecedented power provided by next-generation sequencing 56 technology, which, in the absence of physical mapping approaches (like BAC end sequencing 57 and fingerprinting), does not provide chromosome sequences. Moreover, recombination is a 58 critical parameter in governing the degree and nature of intraspecific diversity as well as 59 interspecific divergence. For example, the rate of recombination is expected to correlate 60 positively with local levels of nucleotide diversity (McGaugh et al. 2012; Cutter & Payseur 61 2013; Campos et al. 2014) and with the rate of adaptive evolution (Presgraves 2005; Campos 62 et al. 2014), and there is an increasing awareness that recombination moulds the evolution of 63 base composition via GC-biased gene conversion (Duret & Arndt 2008; Webster & Hurst 64 2012). Also, recombination may be a critical factor in shaping the genomic landscape of 65 species differentiation (Butlin 2005).

66

67 Large pedigrees are needed for the development of linkage maps and obtaining such samples 68 can be challenging for many non-model species. Species that are difficult to breed in captivity 69 and/or to monitor and sample in natural settings, or which have long generation times and/or 70 small litter sizes, are examples of organisms that may be problematic in this context. 71 Unfortunately, this applies to many natural populations of species of relevance in ecological 72 or evolutionary research. However, in natural populations of birds, acquiring pedigree

material is greatly facilitated in species that readily accept breeding in artificial nest boxes and

74 display high site fidelity. This is the case for our study species, the collared flycatcher 75 (Ficedula albicollis), and it has also made it to be one of the most well-studied avian models 76 for questions such as life history evolution, quantitative genetics and speciation (Ellegren et 77 al. 1996; Gustafsson et al. 1995; Veen et al. 2001; Qvarnstrom et al. 2006; Saether et al. 78 2007; Qvarnström et al. 2010; Sætre & Sæther 2010; Ellegren et al. 2012). 79 80 Available evidence, notably from chicken G. gallus (ICGSC 2004; Groenen et al. 2009) and 81 zebra finch Taeniopygia guttata (Stapley et al. 2008; Backström et al. 2010a), indicates an 82 unusual heterogeneity in the rate of recombination within avian genomes. One determinant of 83 this variation comes from the fact that bird chromosomes differ considerably in size. 84 Moreover, data from zebra finch and to some extent also chicken show a very strong bias for 85 recombination in larger chromosomes to be concentrated to end regions (Groenen et al. 2009; 86 Backström et al. 2010a). It is not yet known what the underlying mechanism or evolutionary 87 force driving such pattern might be, or whether it is in fact a general feature of bird 88 chromosomes. Another characteristic of avian genomes is an unusual stability of the 89 karyotype (Griffin et al. 2007; Ellegren 2010). The majority of species have about 40 pairs of 90 chromosomes and inter-chromosomal rearrangements are rare (Ellegren 2013). For example, 91 only one fusion and one fission event separate the chicken and zebra finch karyotypes despite 92 the fact that these species represent two of the most divergent lineages of contemporary birds 93 (Warren et al. 2010). However, there are indications that intra-chromosomal rearrangements 94 occur more frequently (Skinner & Griffin 2012), although the rate and more precise pattern of 95 this remains to be revealed.

96

73

97 Here we present the development of a high-density genetic linkage map of the collared 98 flycatcher based on genotyping with a 50K (50,000) SNP array in a multi-generation pedigree 99 of >600 birds from a natural population. This effort was motivated from several perspectives. 100 First, having recently generated a draft flycatcher genome assembly (Ellegren et al. 2012), we 101 were keen to confidently be able to place, order and orient scaffolds along chromosomes and 102 thereby arrive at an assembly with essentially continuous chromosome sequences. The 103 strategy for achieving this was based on designing an array with SNPs from the majority of 104 all scaffolds, with the aim to place these onto a linkage map. Second, with the access to an 105 updated genome assembly together with detailed information on recombination fractions 106 between markers, we wanted to investigate the recombination landscape in an avian genome 107 at high resolution. Third, with the access to a short read-based genome assembly with unusual 108 continuity, we sought to reveal the character of avian chromosomal evolution by making a 109 high-resolution comparison of flycatcher genome organisation with the only two avian 110 genomes physically assembled and sequenced with Sanger technology, i.e. chicken (ICGSC 111 2004) and zebra finch (Warren et al. 2010). 112 113 **Material and methods** 114 115 **Specimens**

Blood samples were collected from collared flycatcher (n = 655) families breeding on the

117 Baltic Sea island Öland (56°44′N 16°40′E) from 2002 to 2011. The pedigree consisted of

- 118 four generations; 204 individuals in the parental generation and 451 F₁-F₃ progenies
- 119 (Supplementary Figure 1). DNA was extracted from blood samples using a standard
- 120 proteinase K digestion/phenol-chloroform purification protocol (Sambrook et al. 1989).

121

122 Genotyping with a 50K SNP array

123 A 50K SNP array for collared flycatcher has recently been developed by selecting markers 124 from >10 million SNPs identified in genomic re-sequencing of 10 unrelated collared 125 flycatchers (from our study population) and 10 pied flycatchers Ficedula hypoleuca 126 (Kawakami et al. 2014). The bulk of markers were chosen based on a number of criteria set to 127 maximize the usefulness in collared flycatchers, including polymorphism level in the 128 sequencing sample, even distribution across the genome as judged by comparative map 129 information vis-à-vis the zebra finch linkage map and, if possible, inclusion of at least two 130 SNPs from all scaffolds >25 kb in a preliminary genome assembly version. Five thousand 131 markers on the array were selected to represent potentially fixed differences between the two 132 sister species and were thus generally less informative for intraspecific analyses. 133 Genotyping was done with an Illumina iScan instrument. Markers that failed to pass the 134 135 quality filtering for genotype calling were removed from subsequent analysis. Deviation from 136 Hardy-Weinberg Equilibrium (HWE) was tested for in the parental generation using PLINK 137 version 1.07 (Purcell et al. 2007). After filtering out SNPs deviating from HWE, Mendelian 138 inheritance was inspected for the remaining markers using GenotypeChecker (Paterson & 139 Law 2011). In total, 38,900 markers were polymorphic in the pedigree, of which 37,443 140 segregated with a minor allele frequency (MAF) > 0.05. Among these there were 845 putative 141 Z-linked markers. The low proportion of loci with rare alleles illustrates the value of selecting 142 markers based on prior information of polymorphism levels, in this case from whole-genome 143 re-sequencing, in the same population. 144

145 The inheritance analysis revealed 89 individuals with at least one marker that did not follow

146 Mendelian patterns. Since extra-pair paternity (EPP) is known to occur frequently in the

147	collared flycatcher (Sheldon & Ellegren 1999), individuals with a high proportion of markers
148	deviating from expected Mendelian segregation likely result from EPP. We therefore removed
149	46 individuals in which >100 markers showed inconsistent inheritance. The remaining 43
150	individuals (of the 89 individuals with >1 error) had 1-15 markers with Mendelian
151	inconsistency and were retained, however, the inconsistent markers (181 in total) were
152	removed from the subsequent analysis in all individuals. In the end, we used genotype data
153	from 609 individuals and 37,262 markers for linkage analysis. The average number of
154	informative meioses in the pedigree across all markers was 187.
155	
156	Linkage analysis
157	A genetic linkage map of collared flycatcher was constructed using an improved version of
158	CRI-MAP 2.503 (Green et al. 1990) developed by Ian Evans and Jill Maddox and
159	implementing the CRI-GEN package provided by Xuelu Liu and Michael Grosz (Monsanto,
160	St. Louis, MO, USA). A detailed account for the different steps in the construction of the map
161	is described in the Supplementary Text. These included calculating pair-wise LOD scores
162	using TWOPOINT and the formation of linkage groups using AUTOGROUP. BUILD was
163	used for making best-order linkage maps.
164	
165	An updated genome assembly based on high-density genetic linkage data
166	Markers incorporated in the genetic map were mapped to FicAlb_1.4 with BWA (Li & Durbin
167	2010). Discrepancies in the form of scaffolds including markers from more than one linkage
168	group were indicative of scaffold chimerism in the assembly and were corrected as described
169	in Supplementary Text. The ends of all new scaffolds were scanned for mate pair reads with
170	their mate on a different scaffold end, representing a means for using mate-pair information
171	that the assembler had failed to automatically integrate in the scaffolding process. This was

172 done separately for each mate pair library described in Ellegren *et al.* (2012), which had insert 173 sizes of 2.4, 4.1, 5.1, 18 and 21 kb, respectively, where insert size conservatively was let to 174 define the length of what was considered as the scaffold end. For each end, links were sorted 175 and counted and the paired scaffold with most hits was considered for possible adjacency. To 176 infer a physical connection between two scaffolds we then applied a reciprocal criterion 177 requesting that the number of links to the potential neighbour had to be higher than the 178 number of links to the second and third best hit together. We refer to scaffolds connected in 179 this way as super-scaffolds. The new assembly was named FicAlb1.5 and is deposited in 180 GenBank under the accession number AGTO02000000. 181 182 Avian karyotypes are notoriously difficult to resolve due to the very large number of minute 183 microchromosomes; most birds have $2n \approx 80$ with the size of about half of the chromosomes 184 <10 Mb. Only chicken karyotype well characterized (Masabanda et al. 2004). This, coupled 185 with the observation of a very high degree of synteny conservation among birds (Ellegren 186 2013), has led to a convention in avian genome sequencing efforts of numbering 187 chromosomes according to homologous chicken chromosomes, even if this does not exactly 188 match decreasing physical size in the focal species (Warren et al. 2010). Treatment of fusions 189 or fissions can be illustrated by the nomenclature adopted in the zebra finch genome 190 sequencing project (Warren et al. 2010), the second avian genome to be sequenced. For 191 example, chicken chromosome 4 corresponds to two chromosomes in zebra finch, the result 192 of a fusion in the galliform lineage. In zebra finch these chromosomes are referred to as 4 (the 193 larger) and 4A. We have followed this practice as a useful nomenclature for flycatcher 194 chromosomes and this was not least motivated by the observation that flycatcher and zebra 195 finch chromosomes were completely syntenic, without strong evidence for interchromosomal 196 rearrangements.

197

Molecular Ecology

198	Analyses of chromosomal rearrangements
199	Ordered and oriented flycatcher scaffolds were concatenated into chromosome sequences
200	with an arbitrary gap size of 5 kb. Repeat masked flycatcher, zebra finch (TaeGut3.2.4) and
201	chicken (WASHUC2) assemblies were aligned with progressiveMauve (Darling et al. 2010)
202	with default settings, one chromosome at the time. Anchors including all three species were
203	extracted from the backbone file and given as input to GRIMM (Tesler 2002), to be grouped
204	in syntenic blocks with the minimum block size set to 50 kb, unless otherwise stated. MGR
205	(Bourque & Pevzner 2002) was then used for inferring rearrangement events between species,
206	which was essentially only in the form of inversions (see Supplementary Text).
207	
208	Flycatcher chromosome sequences were also aligned to zebra finch only with LASTZ.
209	Anchors that overlapped in either of the genomes were filtered, saving the longest one only if
210	the alignment score was more than 1.5 times higher than for the anchors it overlapped with.
211	Regions with several ambiguous overlapping anchors with similar length and alignment score
212	were removed completely. The filtered unique anchors were grouped into syntenic blocks
213	with GRIMM as described above. Unaligned regions between syntenic blocks were
214	considered as breakpoints. To narrow down these regions further we used CASSIS (Baudet et
215	al. 2010), which attempts to find the precise breakpoint location by a local realignment
216	strategy. In this way most breakpoints decreased in size, however, for a few that CASSIS
217	failed to narrow down we kept the original breakpoint positions. IntersectBed from BEDTools
218	(Quinlan & Hall 2010) was used for extracting overlaps with known repeats and genes. For
219	all rearrangement analyses we only included flycatcher scaffolds that were confidently both
220	oriented and ordered based on direct evidence from linkage or mate-pair data.
221	

222 **Recombination rate analysis**

223 We estimated recombination rates in 200 kb windows across the flycatcher genome using the 224 updated assembly version as reference. This was done by calculating recombination fractions 225 between all adjacent markers in the best-order linkage map and assigning window-specific 226 estimates based on the weighted average recombination rate for all marker pairs present 227 within, or flanking, a window. We calculated each window's distance to nearest chromosome 228 end, as well as its gene-density (proportion of exonic sequence), GC-content, repeat content 229 separated into the two classes 'interspersed repeats' and 'microsatellites' (RepeatMasker; 230 Smit, Hubley, and Green; http://repeatmasker.org), and the presence of previously identified 231 (CCNCCNTNNCCNC and CCTCCCT; Myers et al. 2010) and de novo discovered (see 232 below) sequence motifs associated with high recombination regions. We subsequently omitted 233 all windows spanning a scaffold gap in the genome assembly. This resulted in a set of 4,749 234 windows for which estimates of both recombination rate and the listed genomic parameters 235 were available.

236

237 The variables were transformed to reduce skewness in their distributions; recombination rate 238 was log-transformed to base 10 after adding a constant of 1 to preserve zero rate values, 239 chromosome size was log-transformed to base 10, distance to chromosome end was 240 standardized by chromosome size giving values ranging between 0 and 1, and microsatellite 241 density, repeat density, motif density, gene density and GC content were square-root-242 transformed. For each parameter we calculated the raw correlation with the recombination 243 rate using the Pearson correlation statistic. We subsequently fitted a multiple linear regression 244 (MLR) model using recombination rate as the response variable to investigate if the variation 245 could be explained by variation in the candidate explanatory variables. As an initial step we 246 investigated the relationship among the candidate explanatory variables by cluster analysis

247	based on the pair-wise correlations. This revealed that all of the considered genomic features
248	were highly interrelated with each other (Supplementary Figure 2). In particular,
249	microsatellite and motif density both correlated strongly with chromosome size ($r = -0.45$ and
250	-0.43, respectively). Since small chromosomes only showed limited variation in some of
251	explanatory variables, we focused the analysis on chromosomes larger than 20 Mb.
252	
253	Correlations between explanatory variables can create biases in regression-like analysis and
254	inference about causal relationships based on MLR analysis thus needs to be made carefully.
255	Beside standard MLR and pair-wise correlation analysis, we thus performed a principal
256	component regression (PCR) analysis using recombination rate as the response variable and
257	the six genomic features as candidate explanatory variables. All regression analyses were
258	performed after Z-transformation of the explanatory variables, which means standardization
259	of the mean value to 0 and of the standard deviation to 1. We also ran MLR and PCR using
260	GC-content as response variable as a proxy for the long-term recombination rate.
261	
262	In a specific test of the relationship between recombination rate and distance to chromosome
263	end, we performed a locally-weighted polynomial regression (lowess regression) with a
264	smoothing parameter value of 0.5. Based on the lowess regression we classified 'end regions'
265	as regions <5.5 Mb from the chromosome end, and 'centric regions' as regions >5.5 Mb from
266	the chromosome ends (Supplementary Figure 3). The mean recombination rate was then
267	compared between regions.
268	
269	To investigate sequence context effects on the recombination rate we divided the data into
270	'hot' and 'cold' recombination regions. The hot regions consisted of the 2.5% (n=112) marker

271 intervals with highest recombination rate and the cold regions consisted of the 2.5% (n=112)

marker intervals with lowest recombination rate (effectively, the latter translates to the subset of marker pairs with the longest physical distance between markers without any evidence for recombination in the pedigree). We used these categories and searched for 6-10 bp sequence motif enrichment in hot regions using the homer2 denovo option in Homer 4.2 (Heinz *et al.* 2010). As suggested by Heinz *et al.* (2010) we applied a stringent significance threshold for enrichment of (10^{-20}) , and removed complete redundancies.

- 278
- 279 **Results**
- 280

281 A high-density linkage map of the collared flycatcher genome

282 Linkage analysis first mapped 731 markers to unique positions on 31 linkage groups in a pre-283 framework map with the stringent threshold of LOD >5. The iterative addition of markers by 284 pair-wise linkage scoring between pre-framework markers and the remaining 36,531 markers 285 subsequently assigned a total of 33,627 markers to 34 different linkage groups, including the 286 three new linkage groups Fal34-Fal36. We then ordered markers within linkage groups and 287 the resulting framework map (marker order supported by LOD > 3.0) was composed of 2,456 288 ordered markers with a total genetic distance of 3,256 cM and a mean genetic distance 289 between adjacent markers of 1.37 cM (± 1.68 SD) (Table 1). We included additional SNPs in 290 this map by step-wise lowering the LOD threshold down to LOD >0.1 (see Supplementary 291 Text), providing a best-order map containing 4,302 markers and spanning 3,256 cM in 292 autosomes and 161 cM in the Z chromosome (Table 1, Figure 1, Supplementary Figure 4). 293 The mean genetic distance between adjacent markers in the best-order map was 0.69 cM (± 294 1.10 SD). Finally, there were 33,627 markers at this stage that were assigned to one of the 295 linkage groups but not placed on the best-order map. Of these, 31,867 unmapped markers 296 were located in scaffolds containing best-order markers and, therefore, their physical

locations could be inferred. When these markers were forced to be included in the map based on their physical position in the respective scaffolds, 76% of markers (24,231) had zero genetic distance with already mapped best-order markers. The total genetic distance of the forced order map was inflated with 13% (3,690 cM), likely at least in part due to small errors in marker order (Table 1). The mean genetic distance between adjacent markers in this forced map was $0.12 \text{ cM} (\pm 0.73 \text{ SD})$.

303

304 A second-generation assembly of the flycatcher genome

305 The draft assembly of the collared flycatcher genome (version FicAlb_1.4; Ellegren et al. 306 2012) lacks unambiguous information on the order and orientation of scaffolds along most 307 chromosomes. For example, since the draft assembly was based on a coarse linkage map, 308 scaffold ordering had in many cases to be based on indirect information from the assumption 309 of conserved synteny relative to the zebra finch genome. In addition, 55% of the scaffolds 310 remained unanchored to linkage groups/chromosomes. With the aid of the new linkage map 311 we were able to anchor, order and orient scaffolds corresponding to 95.7% (1.013 Gb) out of 312 the final 1.058 Gb assigned to chromosomes (Table 2). We then constructed super-scaffolds 313 by scanning scaffold ends for mate-pair links to all other scaffolds, assigned as well as 314 unassigned, resulting in the incorporation of 43 previously unassigned and mostly small 315 scaffolds (mean size of 68.2 kb, a total of 2.9 Mb) into the assembly. For another 40 scaffolds 316 (mean size 660 kb, 26.4 Mb in total) that had only been indirectly placed in the assembly 317 based on information on the location of homologous sequence in zebra finch, we could 318 confirm ordering and confirm or establish orientation. Finally, and importantly, links were 319 established between adjacent scaffolds for 210 out of the 394 gaps in the assembly (285 out of 320 a total of 437 gaps after the inclusion of the 43 previously unassigned short scaffolds). Since 321 the mate-pair libraries from which these links were established had insert sizes of 2-20 kb,

Page 14 of 62

322	this indicates the maximum size of the gaps. In no case did we find evidence for links
323	between scaffolds that were not placed immediately adjacent to each other, strongly validating
324	the overall accuracy of the assembly.
325	
326	The new assembly (FicAlb1.5) has an N50 super-scaffold size of 20.2 Mb (17.4 Mb if
327	including singleton scaffolds) and covers 33 autosomes and the Z chromosome (Table 2,
328	Supplementary Figure 5). The great majority of chromosomes are nearly fully covered by 1-5
329	super-scaffolds, i.e. not far from continuous chromosome sequences; four chromosomes do in
330	fact correspond to a single super-scaffold and one to a single scaffold (Table 2). The assembly
331	includes sequence data for four microchromosomes that are not represented by defined
332	chromosomes in the chicken assembly (which has sequence data from chromosomes 1-28 and
333	32). One of these, including 2.1 Mb of flycatcher sequence and covering a genetic distance of
334	53 cM, has sequence homology to chicken linkage group LGE22. The other three (Fal34 with
335	16 cM, Fal35 with 37 cM and Fal36 with 10 cM) show no sequence homology to assembled
336	sequence from the chicken genome. The linkage map did not have the same high degree of
337	resolution for the Z chromosome as for autosomes due to the fact that only male meioses were
338	informative. This led to a higher proportion of scaffolds that were not ordered and/or oriented
339	and since such scaffolds were not included in our final assembly, this likely explains why the
340	flycatcher Z chromosome assembly was shorter (59.7 Mb) than that of chicken (74.6 Mb) and
341	zebra finch (72.9 Mb).
342	

In the end, after addition of new scaffolds and scaffold orientation by linkage data and matepair linking, the ordered and oriented sequences constitute 98.6% (1.042 Gb) of the scaffolds
assigned to chromosomes. Of the total assembly also including unassigned scaffolds (1.116
Gb), 93.4% of the sequence was anchored, ordered and oriented along chromosomes. This

- represents a considerable improvement compared to the previous assembly (596 Mb or 56.5%anchored; Table 3).
- 349

350 Highly conserved DNA content of avian chromosomes

351 The high degree of genome coverage coupled with the unusual continuity in scaffolded 352 sequence along each chromosome give unprecedented power and resolution to study the rate 353 and pattern of chromosomal rearrangements during avian evolution. We made whole-genome 354 alignments of flycatcher, chicken and zebra finch, inferred syntenic blocks >50 kb in size and 355 identified chromosomal rearrangements. Despite the two lineages split ≈ 40 million years 356 (My) ago (Nabholz et al. 2011), flycatcher and zebra finch chromosomes are entirely syntenic 357 without clear-cut evidence of interchromosomal rearrangements (see Supplementary Figure 6 358 for a comment on the tentative chromosome 1B in zebra finch), witnessing on the rather 359 extreme karyotypic stability of birds. The flycatcher assembly confirms the only two clear 360 cases of interchromosomal rearrangement distinguishing the chicken and zebra finch 361 karyotypes. First, flycatcher and zebra finch have two chromosomes, chromosomes 1 (≈ 120 362 Mb) and 1A (\approx 75 Mb), which correspond to the single chromosome 1 of chicken (201 Mb), a 363 result of a fission in the passeriform lineage. Second, chicken chromosome 4 (94 Mb) 364 corresponds in both flycatcher and zebra finch to two chromosomes, chromosomes 4 (≈ 70 365 Mb) and 4A (≈ 21 Mb), resulting from a fusion in the galliform lineage. 366 367 The assembly sizes of individual chromosomes were remarkably similar among chicken, 368 zebra finch and flycatcher (Table 2), and did not differ by more than 2.5 Mb in size for 26 out

- 369 29 autosomes. As a consequence, the total amount of sequence assigned to chromosomes was
- 370 nearly identical in the three bird species (1.02-1.04 Gb), again testifying on an overall

371	evolutionary stasis of avian chromosomes. We note that, exactly like for chicken and zebra
372	finch, flycatcher chromosome 16 was difficult to sequence and assemble.
373	
374	Frequent intrachromosomal rearrangements during avian evolution
375	The evolutionary stability in the size and content of avian chromosomes stands in sharp
376	contrast to frequent changes in the genomic organisation within chromosomes
377	(intrachromosomal rearrangements). We found a total of 343 inversions, which can explain
378	the current organization of chromosomal segments in chicken, zebra finch and flycatcher
379	(Table 4). As expected, most of these (203) can be traced back to the long lineage connecting
380	chicken and the common ancestor of flycatcher and zebra finch in an unrooted tree. The
381	number of rearrangements in the flycatcher and zebra finch lineages was 61 and 79,
382	respectively, and can be readily seen in circular visualization of sequence homologies
383	between the two species (Figure 2). Based on these numbers, we estimate the rate of inversion
384	at 1.5 (flycatcher lineage), 2.0 (zebra finch) and 1.7 (chicken-passeriform ancestor) events per
385	My. This corresponds to rates of 0.0014-0.0019 per My per Mb. We note that all three genome
386	assemblies used for making this inference are based on genetic linkage data.
387	
388	The size of inversions was biased towards the lower end of detectable events (Supplementary
389	Figure 7), with median size of 3.34 Mb (chicken), 2.62 Mb (zebra finch), and 0.78 Mb
390	(flycatcher). With the propensity for inversions to be short, it was clear that many events

391 would have been missed with lower assembly continuity and at higher thresholds for

392 minimum size of syntenic blocks. This was confirmed when we increased block size to 100

- 393 kb, 250 kb or 1 Mb to make inference about the number of rearrangements (Supplementary
- Table 1); the total number of rearrangements decreased from 343 at the resolution of 50 kb to
- 395 87 at the resolution of 1 Mb. Accordingly, the estimated rates of inversion decreased from 1.5-

396 2.0 to 0.2-0.5 per My. This highlights the importance of the level of resolution for

397 characterization of chromosome rearrangements.

398

399	Another way of quantifying the inversion rate is to also take the amount of inverted sequence
400	into account. The total length of all inversions was 476.1 Mb (49.1% of the aligned
401	sequence), 299.2 Mb (30.2%), and 265.4 Mb (26.3%) in the chicken-passeriform ancestor,
402	zebra finch and flycatcher lineage, respectively. This gives inversion rates of 4.0, 7.5, and 6.6
403	Mb inverted DNA per My, respectively. Note that these numbers are based on the amount of
404	unique sequence involved in rearrangements; the sequence of nested inversions was only
405	considered once. Also note that the rate estimates cannot be expected to increase linearly with
406	time since, with a constant rate of rearrangement, the amount of sequence not yet inverted
407	will decrease over time. This may explain the lower rate estimate for the long chicken-
408	passeriform ancestor branch.
409	
410	We next examined chromosomal breakpoints and sought to elucidate their characteristics.
411	Here we used pair-wise alignments between flycatcher and zebra finch to get higher
412	resolution (due to the shorter evolutionary distance). One hundred sixty-five breakpoint
44.0	

413 regions were identified, with a median size of 2.4 kb for measurable regions (see below;

414 Supplementary Figure 8). Of these, 28 regions were re-used twice (17%). There was a very

415 strong association between the location of scaffold junctions in the flycatcher assembly and

416 chromosomal breakpoints. If the 165 breakpoints would have been randomly distributed in

- 417 the genome, we should have expected to find <1 to coincide with the location of scaffold
- 418 junctions. However, we observed 42 scaffold junctions inside breakpoints, clearly showing
- 419 that some regions of the genome are both resistant to sequence assembly and prone to
- 420 chromosomal mutation.

421

422	The distribution of breakpoints across the genome was non-random with clusters of multiple
423	inversion events interspersed with large chromosomal regions of structural stasis (Figure 3).
424	There was a propensity for breakpoints to be located toward the ends of chromosomes, with a
425	significant deviation from a uniform distribution along chromosomes (Supplementary Figure
426	9; Goodness-of-fit test, chi-square = 22.46, d.f. = 9, $p < 0.05$). Moreover, there was a negative
427	correlation between chromosome size and the rate of inversion per Mb (Wilcoxon's test,
428	z=6.06, $p < 0.001$). Furthermore, several genomic parameters differed significantly between
429	breakpoint regions and the rest of genome, including recombination rate (mean 5.83 vs. 3.25
430	cM/Mb, $z = 5.74$, $p = 4.8 \times 10^{-9}$), GC content (mean 0.513 vs. 0.416, $z = 11.28$, $p = 1.6 \times 10^{-29}$),
431	and repeat density (mean 0.221 vs. 0.096, $z = 4.79$, $p = 8.4 \times 10^{-7}$).
432	
433	Recombination rate variation
434	With a high-density linkage map and a genome assembly with a high degree of sequence

435 continuity along chromosomes it is possible to obtain detailed recombination rate estimates 436 across the flycatcher genome. We divided the genome into 200 kb windows and observed a 437 mean sex-averaged recombination rate of 3.1±4.1 cM/Mb across windows. The genomic 438 landscape of recombination was highly heterogeneous, with two major, large-scale trends of 439 recombination rate variation. First, the mean recombination rate per chromosome was 440 considerably higher for small chromosomes than for large chromosomes (Table 5, Figure 4). 441 The rate was in excess of 10 cM/Mb for chromosomes < 10 Mb; for the new linkage group 442 Fal35, with only 230 kb of assembled sequence (and a genetic distance of 36.8 cM), 443 recombination reached an extreme estimated rate of 160 cM/Mb. For the three chromosomes 444 >100 Mb, the rate was uniformly ≈ 2.0 cM/Mb while for chromosome size classes in the range

445	of 10-100 Mb, recombination rate was intermediate and increased with decreasing
446	chromosome size.

447

448	It is interesting to note that the effect of chromosome size on rate of recombination gradually
449	diminished with increasing chromosome size. In fact, if subtracting 50 cM from the length of
450	each linkage group (reflecting one obligate inter-chromatid crossing-over per chromosome,
451	see Discussion) before calculating the chromosome-average recombination rate as map length
452	divided by physical size, the rate of recombination seemed largely independent of
453	chromosome size (Table 5) and increased with 1.5-2.0 cM for every Mb of increased physical
454	size. In addition, it could also be noted from Figure 4 that the mean recombination rate of the
455	Z chromosome (2.7 cM/Mb over 60 Mb) as measured in male meiosis was very similar to that
456	of similarly sized autosomes (chromosomes 1A, 4 and 5, sized 65-75 Mb, have a mean
457	recombination rate of 2.7 cM/Mb).
458	
459	Second, there was a significant increase in recombination rate towards chromosome ends, a
460	pattern consistent irrespective of chromosome size (Figure 5). For instance, the average
461	recombination rate in the ends, defined as the distal 5.5 Mb of each chromosome end (see
461 462	recombination rate in the ends, defined as the distal 5.5 Mb of each chromosome end (see Material and Methods and Supplementary Figure 3 for motivation) of chromosomes 1-6 was
462	Material and Methods and Supplementary Figure 3 for motivation) of chromosomes 1-6 was
462 463	Material and Methods and Supplementary Figure 3 for motivation) of chromosomes 1-6 was 5.7 cM/Mb while the internal regions of these chromosomes had a mean rate of 2.3 cM/Mb.
462 463 464	Material and Methods and Supplementary Figure 3 for motivation) of chromosomes 1-6 was 5.7 cM/Mb while the internal regions of these chromosomes had a mean rate of 2.3 cM/Mb. Similarly, the average recombination rate at chromosome ends and interior regions of smaller

467 The total map length was on average 10% longer in males than females (3,300 cM and 2,997

- 468 cM in the best-order autosomal map, respectively; Wilcoxon's test for matched pair of
- 469 windows, V = 104, p = 0.002). There was limited regional variation in sex-specific

470	recombination rates (Supplementary Figure 10); however, chromosome 17 and 27 made
471	exceptions by showing marked differences between the sexes in 2-3 Mb regions (Figure 6;
472	Table 1). To test if these differences were repeatable we divided the pedigree into six subsets
473	of individuals (n=100 each) and estimated sex-specific recombination rates in each subset. In
474	chromosome 27, all six subsets showed larger total genetic distance in males (total genetic
475	distance = $34.2 \sim 76.4$ cM in females and $81.0 \sim 129.0$ cM in males), and in chromosome 17,
476	five out of six subsets showed larger total genetic distance in males (total genetic distance =
477	59.1 ~ 85.5 cM in females and 76.4 ~ 89.9 cM in males). This suggests that there is a true
478	signal of sex differences in recombination rate in these chromosomes.
479	
480	In order to search for sequence motifs potentially associated with high recombination rates we
481	partitioned the rate between all marker pairs into two extreme classes, representing the
482	regions with the 2.5% highest ('hot regions') and 2.5% lowest ('cold regions') rates. The
483	previously described (Myers et al. 2008; Winckler et al. 2005) sequence motifs
484	CCNCCNTNNCCNC and CCTCCCT associated with high recombination were both present
485	at higher density (2.1 and 1.6 times, respectively) in the hot regions than in the cold regions,
486	although this was not statistically significant. We also searched for enrichment of previously
487	unidentified sequence motifs in hot regions and, after correcting for redundancy and multiple
488	testing, we found evidence for enrichment of six different sequence motifs 6-9 bp long:
489	GATGAGATG, AATCAATC, GAAGGAGA, CCATATC, GGATCC and TCGAGG;
490	Supplementary Table 2).
491	
492	Several genomic parameters have previously been shown to be associated with recombination
493	rate variation in other organisms (Coop & Przeworski 2007; Webster & Hurst 2012; Cutter &

494 Payseur 2013). Focusing on chromosomes >20 Mb, we found significant pair-wise

495	correlations between recombination rate and chromosome size, distance to chromosome end
496	(as shown for all chromosomes, described above), microsatellite density, sequence motif
497	density and gene density (Table 6). To disentangle the relative effect of each of these
498	parameters we performed multiple linear regression (MLR) analysis and principal component
499	regression (PCR) analysis using recombination rate as response variable. This showed that
500	microsatellite density, motif density and distance to chromosome end explained most of the
501	variation in recombination rate, while the impact of chromosome size, gene density and
502	interspersed repeat density was of minor importance (Table 6). The relative limited effect of
503	chromosome size was probably related to the fact that we only analysed chromosomes >20Mb
504	(see Discussion). The PCR further allowed us to disentangle two independent effects (PC I
505	and PC II), which contributed separately to the variation in recombination rate (Table 6,
506	Figure 7). Distance to chromosome end clustered together with microsatellite and motif
507	density in PC I. Chromosome size built the main contribution to PC II, which points towards
508	an independent effect of chromosome size on the recombination rate.
509	
510	Recombination rate conservation
511	A broad-scale overview of the recombination landscape in flycatcher compared to zebra finch

and chicken is given in Figure 8, which depicts the relationship between physical position and cumulative genetic map length for each chromosome. Clearly, the flycatcher landscape is more similar to that in chicken than to that in zebra finch. Although all three species show an increased recombination rate towards chromosome ends, this trend is much more pronounced in the zebra finch than in the other two species. This difference is reinforced by the very low rate of recombination in the interior regions of zebra finch chromosomes.

518

519	As recombination impacts the patterns of local base composition in avian genomes via GC-
520	biased gene conversion (Mugal et al. 2013), GC content might be a good indicator of long-
521	term global recombination rate variation. A correlation between GC content and current
522	recombination rate might thus be indicative of long-term conservation in recombination rate
523	variation across the genome. This was indeed observed ($r = 0.47, p < 10^{-15}$; Supplementary
524	Figure 11). In light of this we repeated the calculations of pair-wise correlation, MLR and
525	PCR using GC content as the response variable. MLR showed that motif density and
526	microsatellite density explained most of the variation in GC content, followed by distance to
527	chromosome end and chromosome size (Table 6). PCR showed that variation in GC content
528	was explained by two major principal components, PC I was composed primarily of motif
529	density, microsatellite density, and distance to chromosome end while PC II was composed of
530	chromosome size, repeat density and gene density (Table 6). This trend was thus consistent
531	with the variation in pedigree-based recombination rate estimates. In fact, when
532	recombination rate and GC content were used as a combined response variable, more than a
533	half of the variation was explained by these variables.
534	
535	Discussion
50.6	

536

We have capitalized on the power of contemporary DNA sequencing technology to develop a high-resolution genetic map of the collared flycatcher genome. This allowed the construction of an improved genome assembly and downstream analyses of recombination rate variation and chromosomal evolution at high resolution. High-throughput sequencing was critical in the process of map construction for at least two reasons. First, markers for the map were well distributed across the genome. This owes to the fact that we had a draft assembly of the flycatcher genome, constructed using high-throughput sequencing but without physical

544	mapping tools such as BAC or fosmid clones, from which suitably distributed markers could
545	be selected. Second, the availability of polymorphism data from whole-genome re-sequencing
546	of population samples meant that we could select highly variable markers. We also capitalized
547	on new technology for the development of a genetic map with unusually high marker density
548	in a non-model organism by performing array-based SNP genotyping using a custom 50K
549	SNP array, purposely developed for this endeavour (Kawakami et al. 2014).
550	
551	By integrating high-density linkage map data with scaffold sequences from the draft genome
552	assembly we obtained a significantly improved assembly of the collared flycatcher genome.
553	The assembly has 98.5% of the anchored sequence ordered and oriented along chromosomes
554	and a super-scaffold N50 size of 20.2 Mb. It covers 33 autosomes and the Z chromosome,
555	which compares well with the two Sanger-sequenced avian genomes (chicken: 28 autosomes
556	with >0.1Mb of assembled sequence (ICGSC 2004); zebra finch: 31 autosomes with >0.1Mb
557	of assembled sequence (Warren et al. 2010)).
558	
559	The karyotype of collared flycatcher has not been characterized. For 25 other bird species of
560	the order Passeriformes, chromosome number is in the range of $2n = 72-84$, with 19 species
561	showing $2n = 78-80$ (which is also the most common number across the whole class of Aves;
562	Gregory 2011). This could suggest that there are at most 5-6 minute chromosomes for which
563	we still have not anchored scaffolds to linkage groups. Compared to a random process of
564	marker selection for genotyping, an informed strategy of using SNPs from the vast majority
565	of all scaffolds was of obvious benefit for linkage-based scaffold ordering and orientation.
566	Together, this illustrates that it is feasible to obtain a <i>de novo</i> assembly of a vertebrate genome

567 with nearly continuous chromosome sequences, without additional genomic resources or

568	molecular tools. The latter represents the default situation for essentially all non-model
569	organisms.

570

571 **A 'core' avian genome**

572 It is known that birds show less variation in genome size than other amniote lineages (Griffin 573 et al. 2007; Ellegren 2010). However, it is remarkable that with flycatcher now added to the 574 avian genomes so far sequenced at high sequence continuity all have assemblies of ≈ 1.10 Gb, 575 with 1.02-1.04 Gb assigned to chromosomes (ICGSC 2004; Dalloul et al. 2010; Warren et al. 576 2010; Huang et al. 2013; Shapiro et al. 2013). Moreover, the amount of sequence assigned to 577 syntenic chromosomes showed very limited variation among species (Table 2). This indicates 578 that the overall DNA content of birds is highly conserved across divergent lineages, although 579 there may be occasional genome size expansions from increased transposon activity in certain 580 lineages (Dyke & Kaiser 2011). Cytometric estimates of total DNA content of birds vary 581 more, between 1-2 pg and with the majority in the range 1.2-1.5 pg (1 pg ≈ 0.98 Gb; Gregory 582 2011). However, these estimates have been obtained by several different methods and are 583 sensitive to calibration, experimental error and gender. For chicken, recent estimates tend to 584 converge at 1.20-1.25 pg (Mendonca et al. 2010). It thus remains to be seen from other 585 species how much genome size actually vary across birds; it may very well be that the 586 variation is even more limited than previously indicated by cytometry. 587

588 The rate of chromosomal evolution in birds

589 It is clear that the avian karyotype has remained largely stable during the evolution of modern

- 590 birds (Griffin et al. 2007; Ellegren 2010), which is in sharp contrast to frequent
- 591 interchromosomal rearrangements occurring during, for example, mammalian evolution
- 592 (Murphy et al. 2005). However, it is less clear whether the rate of intrachromosomal

593	rearrangements also varies among vertebrate lineages and if avian chromosomes are slowly
594	evolving also in this respect. Quantitative analyses have largely been lacking and comparisons
595	among taxa are sensitive to methodology and resolution. Our data demonstrate that the rate of
596	inversion in the sampled avian lineages (1.5-2.0 inversion per My) is similar to many
597	mammalian lineages analysed with the same algorithms and resolution (Supplementary Table
598	3). In fact, if one takes into account that the DNA content of avian genomes is generally
599	<50% of that of mammalian genomes, the rate of inversions per Mb is higher in the sampled
600	avian lineages than in many mammals, like primates (Zhao & Bourque 2009). Thus, a stable
601	avian karyotype does not translate into an overall stability of the organisation within bird
602	chromosomes.
603	
604	Variation in the rate of inversion from 1.5 events per My (flycatcher lineage) to 2.0 events per
605	My (zebra finch) gives some indication that there is rate variation among avian lineages for
606	intrachromosomal rearrangements, just as there is substitution rate variation; for example, for
607	the two avian orders in focus here, the substitution rate in Passeriformes is higher than in
608	Galliformes (Nam et al. 2010; Nabholz et al. 2011). There are rare examples of avian
609	species/families with unusually small (2n=40-50) or large (2n=130-140) number of
610	chromosomes (Gregory 2011) and it will be interesting to see if the dynamic karyotype
611	evolution (with fusions and fissions) in these lineages are associated with a high rate of
612	intrachromosomal rearrangements.
613	
614	Birds have less repetitive DNA than other amniotes, with a repeat content of the avian
615	genomes so far sequenced of ≈10% (ICGSC 2004; Dalloul et al. 2010; Warren et al. 2010;
616	Ellegren et al. 2012). It has been tempting to associate the karyotypic stability of birds with

617 the low repeat content under the scenario that fewer (transposable) repeats provides less

618	opportunity for nonallelic homologous recombination (Burt et al. 1999). However, why then
619	would the rate of inversion be at least as high in birds as in repeat-rich mammalian genomes?
620	One explanation could be that the role of repeats in mediating chromosomal mutations differs
621	between inversions and interchromosomal rearrangements, such as translocations or
622	fusions/fissions. However, there is strong evidence for the involvement of transposable
623	elements in generating inversions, consistent with our observation of increased repeat density
624	in avian intrachromosomal breakpoints (Kidd et al. 2008; Lee et al. 2008; Zhao & Bourque
625	2009). Moreover, repetitive sequences such as gene duplicates, gene clusters or other forms of
626	segmental duplications (Armengol et al. 2003; Bailey et al. 2004; Zhao & Bourque 2009) are
627	frequently found at sites of breakpoints, including in birds (Dalloul et al. 2010; Völker et al.
628	2010). This would suggests that repeat density is in fact unrelated to karyotypic stability and
629	that the conserved chromosome structure so characteristic for birds owes to other factors.
630	Perhaps the mechanisms of chromosome replication, recombination or segregation at avian
631	meiosis are less prone to interchromosomal rearrangements in the first place. Alternatively,
632	the negative fitness effects of such mutations could be more severe than in other vertebrate
633	lineages, meaning that they are to a larger extent removed by selection in birds.
634	
635	It is interesting to note that despite a stable karyotype, there has been a dynamic process of
636	sequences changing their relative position within chromosomes during avian evolution. For
637	example, since the split of flycatcher and zebra finch lineages 40 My ago, 25-30% of all
638	sequence has been repositioned by inversions. This provides an unusual opportunity to
639	compare molecular evolutionary parameters between sequences that have remained in the
640	same chromosomal position for a long time and sequences that have become integrated into

641 another context of the genomic landscape, yet remaining on the same chromosome. This

- 642 includes aspects such as the evolution of base composition, substitution rates and
- 643 recombination rates.
- 644

645 Characteristics of chromosomal breakpoints

- 646 Previous work has suggested that chromosomal breakpoints are re-used during evolution,
- 647 representing hot-spot regions for chromosome instability (Pevzner & Tesler 2003; Larkin et
- 648 *al.* 2009; Skinner & Griffin 2012). However, the case for evolutionary re-use of breakpoints is
- an issue of discussion (Sankoff & Trinh 2005; Peng *et al.* 2006; Alekseyev & Pevzner 2007)
- and may in the end be a matter of resolution (Becker & Lenhard 2007; Larkin *et al.* 2009;
- Attie *et al.* 2011). Still, our results demonstrate a concentration of breakpoints to certain
- regions of the avian genome with 17% of breakpoint regions being re-used. Observations of

653 independently occurring rearrangements at approximately the same chromosomal position in

- different avian lineages have generally been made with much lower resolution than applied
- herein (Griffin et al. 2007; Kemkemer et al. 2009; Dalloul et al. 2010; Völker et al. 2010;
- 656 Skinner & Griffin 2012), and cannot unambiguously distinguish between re-use of sites or
- regions. Our data point at the former since the observed breakpoints were generally small

658 (median size 2.4 kb).

659

Molecular evolutionary analyses often reveal that several genomic parameters are interrelated.
Similarly, we found several parameters to correlate with the location of chromosomal
breakpoints in the flycatcher-zebra finch comparison, including recombination rate, distance
to chromosome end, chromosome size, repeat density and GC content. Although it is difficult
to dissect the causal relationships between these correlations, we note that recombination
events as well as chromosome rearrangements are initiated by the formation of double-strand
breaks (DBS; Baudat *et al.* 2013). An association between recombination rate and

667 chromosomal breakpoints has been independently demonstrated in a comparison of the

668 chicken and turkey genomes (Völker et al. 2010).

669

670 The role of chromosome rearrangements during avian evolution

671 Chromosomal speciation models posit that rearrangements distinguishing diverging

672 populations will promote speciation via underdominance (due to fitness reduction of

673 unbalanced gametes in heterozygotes; White 1973) or by reducing interspecific recombination

674 in the rearranged regions hindering gene flow and facilitating the build up of genetic

675 incompatibilities (Noor *et al.* 2001; Navarro & Barton 2003; Coyne & Orr 2004; Kirkpatrick

676 & Barton 2006). Empirical evidence that suppressed recombination in regions of inversions

are associated with speciation is accumulating in both animals and plants (Hoffmann &

678 Rieseberg 2008; Nachman & Payseur 2012). However, there are so far only few, if any, well-

documented examples of inversions contributing to speciation in birds. On the other hand,

680 inversion polymorphisms associated with distinct phenotypic differences have been detected,

681 like a nearly 100 Mb inversion in one of the macrochromosomes of the white-throated

682 sparrow (Zonotrichia albicollis) associated with a suite of traits including behavioural

683 phenotypes (Thorneycroft 1966; Thomas *et al.* 2008).

684

685 Diversification rates are likely to differ over time and estimating speciation rates is

notoriously difficult, even for the most recent divergences. Speciation durations in both

mammals and birds may entail at least two million years on average (Avise *et al.* 1998; Coyne

688 & Orr 2004) and the loss of hybrid fertility in birds may be of the order of millions of years

689 (Price & Bouvier 2002; Fitzpatrick 2004). We thus note that the observed rate of

690 intrachromosomal rearrangements (1.5-2.0 per My) has been sufficiently high for inversions

691 to potentially play a significant role in the build up of reproductive incompatibility in birds.

692	We encourage further research on the genetics of speciation in birds that specifically seek to
693	address this question.

694

695 **Recombination rates in the flycatcher genome**

- 696 The considerable variation in chromosome size in avian genomes is associated with
- 697 systematic variation in chromosome-specific recombination rates: recombination rate shows a

698 clear increase with decreasing chromosome size (ICGSC 2004; Stapley *et al.* 2008;

699 Backström et al. 2010a). There is evidence from several organisms of one obligate crossing-

700 over per chromosome, often thought to be necessary for proper segregation of chromosomes

at meiosis (Fledel-Alon et al. 2009; Wang et al. 2012). The observation that the intercept of a

102 linear correlation between flycatcher chromosome size and genetic length was at ≈ 50 cM

703 (Figure 4a) shows that a genetic distance of 50 cM applies regardless of the size of

rotation chromosomes and leads to very high rates of recombination per physical unit of DNA. This is

r05 entirely consistent with our observations: both MLR and PCR showed that chromosome size

had a strong impact on the rate of recombination. When 50 cM was subtracted from the

707 genetic length of each chromosome (reflecting the genetic length accrued by one crossing-

708 over), we found that recombination rate was nearly constant across chromosomes and thus

independent of chromosome size. This would suggest that the number of additional

recombination events per chromosome solely reflects variation in chromosome size and need

- 711 not be related to inherent differences among chromosomes in the rate of recombination per
- 712 physical unit of DNA.

713

714 Many species across different groups of organisms are heterochiasmic; that is, they show

715 genome-wide differences in the sex-specific rates of recombination (Burt *et al.* 1991;

716 Lenormand 2003; Lenormand & Dutheil 2005). The observation of on average 10% higher

717	recombination in flycatcher males than in females is in line with the idea that suppressed sex
718	chromosome recombination in the heterogametic sex somehow 'spill over' on autosomes, to
719	reduce the genome-wide rate of recombination in that sex (Burt et al. 1991). However, there
720	are exceptions to this and there are also several alternative explanations to why sex
721	differences in recombination evolve (Otto & Lenormand 2002; Lenormand 2003; Hansson et
722	al. 2005). One interesting possibility is that epistatic interactions between loci can favour the
723	spread of sexually antagonistic alleles when recombination differs between males and females
724	(Mank 2009; Connallon & Clark 2010; Wyman & Wyman 2013). Under this scenario one
725	could potentially expect localized regions with pronounced sex-differences in the rate of
726	recombination, such as on flycatcher chromosomes 17 and 27 in collared flycatcher and as
727	chromosomes 9 and 19 in humans (Kong et al. 2010), as candidate regions under sexually
728	antagonistic selection.

729

730 The recombination rate of the Z chromosome (2.7 cM/Mb) was essentially identical to that of 731 similarly sized autosomes. Birds have female heterogamety (males ZZ, females ZW) so the Z 732 chromosome does not recombine in females, with exception of the pseudoautosomal region, 733 and the estimated rate comes from male meiosis only. The effective recombination rate of the 734 Z chromosome is thus $2/3 \ge 2.7 = 1.8 \text{ cM/Mb}$ (not $\frac{1}{2} \ge 2.7 \text{ since two of the three potentially}$ 735 transmitted Z chromosome per breeding pair will recombine, Lohmueller et al. 2010). 736 Moreover, this is independent of any difference in the effective population size of males and 737 females, and of the female-to-male breeding ratio. Sex chromosomes are often considered as 738 hot-spots for speciation, i.e. the large-X effect (Coyne & Orr 2004) or Coyne's rule (Turelli & 739 Moyle 2007). One of several explanations for this is that the rate of recombination of the X/Z740 chromosome is lower than of autosomes due to reduced recombination in the heterogametic 741 sex, thereby facilitating the maintenance of combinations of diverged gene variants (see

742	Qvarnstrom & Bailey 2008). However, our quantitative analysis shows that the effective
743	recombination rate of the Z chromosome is not much different from the sex-averaged rate of
744	the three largest chromosomes (2.0 cM/Mb), which encompass more than 35% of the
745	flycatcher genome. If generally applicable, this would suggest that the large-X effect mainly
746	attributes to other factors, such as dominance (Coyne & Orr 2004).
747	
748	The unusual heterogeneity in the rate of recombination in avian genomes, in particular the
749	high rate of recombination in microchromosomes, will impact on several aspects of molecular
750	ecological and molecular evolutionary analyses. For example, higher marker densities will be
751	required for detection of linkage in regions with high recombination rate in QTL mapping and
752	genome-wide association studies. However, when this is done, causative loci are likely to be
753	in closer physical vicinity in those high recombination rate regions than in low recombination
754	rate regions. Another aspect is that a heterogeneous recombination landscape can provide
755	increased power in detecting correlations between the rate of recombination and genomic
756	parameters potentially associated with recombination. For example, recombination rate is
757	expected to correlate with both nucleotide diversity and the rate of protein evolution, in the
758	latter case related to the efficacy of selection (Webster & Hurst 2012). Much focus is
759	currently put on the question if Hill-Robertson interference - the counteracting effect on
760	genetic variation at linked sites by selection - is mainly caused by selective sweeps for
761	advantageous alleles or background selection against slightly deleterious mutations (Campos
762	et al. 2014). Avian genomic data may be useful in resolving this issue, by comparing
763	sequence evolution in regions with markedly different recombination rates.
764	

765 **Conservation of rates and patterns of recombination**

Page 32 of 62

766	Comparative studies provide evidence for a phylogenetic signal in recombination rate
767	variation among species (i.e., conservation of recombination rates; Dumont & Payseur 2008;
768	Dumont & Payseur 2011; Smukowski & Noor 2011; Segura et al. 2013). In line with this, we
769	previously found that the rate of recombination in orthologous regions of the chicken and
770	zebra finch genomes was correlated (Backström et al. 2010a). The strong correlation between
771	GC content and flycatcher recombination rate seen in the present study is consistent with
772	long-term conservation of the recombination landscape in birds, with GC-biased gene
773	conversion driving GC content in regions of high recombination. However, there is also
774	evidence from other studies that the total amount of recombination can vary among related
775	species, or even subspecies (Dumont et al. 2011). For example, the length of the human
776	genetic map is more than two times longer than that of mouse and rat (Jacob et al. 1995;
777	Dietrich et al. 1996; Cox et al. 2009), although genome size is only 10% larger in humans
778	than in rodents. With one obligate crossing-over per chromosome or chromosome arm (Pardo-
779	Manuel de Villena & Sapienza 2001), variation in number of chromosomes or number of
780	chromosome arms can explain at least part of the variation in total amount of recombination
781	among species, as is the case in the comparison of primates and rodents. We found that the
782	total amount of recombination in flycatcher was 200% of that of zebra finch despite both
783	species belonging to the same order of birds and their karyotypes probably being very similar.
784	In contrast, the amount of recombination in flycatcher was similar to that in the more distantly
785	related chicken (Groenen et al. 2009); chicken and flycatcher lineages diverged about 80 My
786	ago (Nabholz et al. 2011). Our data thus point both at long-term conservation in the amount
787	of avian recombination and that there can be relatively short-term changes.
788	
700	Demostication many close for increased many historian by forwards the state of the

789 Domestication may select for increased recombination by favouring the generation of new

haplotypes and new gene combinations in the face of drastically changed selection pressures

791	(Burt & Bell 1987; Ross-Ibarra 2004). It has been hypothesized that this could explain the
792	higher total amount of recombination in chicken (and turkey, which appears similar to chicken
793	with respect to recombination, Aslam et al. 2010) than in zebra finch (Backström et al. 2010a;
794	van Oers et al. 2014). However, with similar recombination rates in chicken and flycatcher,
795	our data do not support this hypothesis. If anything, the fact that zebra finch linkage map data
796	comes from birds held in captivity for many generations does not support increased
797	recombination as a response to artificial selection. It has also been suggested that passerine
798	birds would have lower recombination rates than galliforms (van Oers et al. 2014), a view
799	tentatively supported by low-density linkage map data from some species (Åkesson et al.
800	2007; Hansson et al. 2009; Jaari et al. 2009; van Oers et al. 2014). This might be true
801	although it was not supported by our data as both flycatcher and zebra finch belong to the
802	order Passeriformes. In general, we caution against taking interpretations from low-density
803	linkage maps of species without an assembled genome sequence too far. With increased
804	recombination rate towards chromosome ends, which might not necessarily be covered in
805	linkage maps based on random markers, and by an additional 50 cM added to the total map
806	length for every inclusion of another microchromosome, low-density linkage maps may
807	grossly underestimate the total amount of recombination.
808	grossiy underestimate the total amount of recombination.

Although homologous chromosomes of flycatcher and chicken are differently organised due to inversions, the broad-scale recombination landscape in these two distantly related birds was similar (Figure 8). This stands in sharp contrast to the recombination landscape in zebra finch. Large zebra finch chromosomes are characterized by the presence of extensive recombination desserts spanning the most of the interior parts of these chromosomes, not seen in flycatcher (Stapley *et al.* 2008; Backström *et al.* 2010a). As much as 80% of the total amount of recombination is concentrated on the 20% distal parts of several large chromosomes.

Although there is an increase in recombination rate towards the ends of chromosomes in
flycatcher and chicken, this effect is far from as dramatic as in zebra finch (Supplementary
Table 4). As far as we aware of, it is not known what factors may affect differences in the
distribution of crossing-over events along vertebrate chromosomes.

820

- 821 Perspectives and conclusions
- 822

823 Developments in the use of genetic approaches for addressing ecological and evolutionary 824 questions in *Ficedula* flycatchers well illustrate the overall developments in the field of 825 molecular ecology and provides a timeline for its progress. For the *Ficedula* system, this 826 began about 25 years ago with the analysis of allozymes and restriction fragment length 827 polymorphisms of pied flycatcher mtDNA (Gelter et al. 1989; Tegelstrom & Gelter 1990), 828 and was soon followed by the introduction of microsatellite (Ellegren 1991, 1992) and DNA 829 fingerprinting markers (Gelter & Tegelstrom 1992; Ratti et al. 1995). Questions at this time 830 were mainly related to behavioural ecology, like the fitness return of extra-pair paternity, but 831 also focused on speciation and hybridization. It also included tests of sex allocation theory, 832 using PCR-based approaches for molecular sexing (Ellegren et al. 1996; Sheldon & Ellegren 833 1996). DNA sequencing of flycatcher mtDNA came into use around year 2000 (Saetre et al. 834 2001) and provided phylogenetic perspectives and increased resolution for the detection of 835 hybridization between flycatcher species. This was subsequently augmented with the use of 836 nuclear single nucleotide polymorphisms, SNPs (Primmer et al. 2002) and opened a venue for 837 studying gene flow, introgression and population structure in further detail (Saetre et al. 2003; 838 Borge et al. 2005; Lehtonen et al. 2009). In the mid of the last decade, genetic mapping 839 efforts of flycatchers began and introduced a genomic perspective, although the genome itself 840 was considered only far away in the horizon (Backström et al. 2006; Backström et al. 2008;

841 Backström *et al.* 2010b). However, the tremendous power offered by next-generation 842 sequencing technology meant that a draft sequence of the collared flycatcher genome could be 843 presented in 2012 (Ellegren et al. 2012), providing novel insights into genomic divergence 844 during lineage splitting. Moreover, this provided a platform for genome-wide studies of gene 845 expression (Uebbing et al. 2013) and flycatcher population history (Nadachowska-Brzyska et 846 al. 2013). Furthermore, recent proteomic analysis suggests that functional genomic studies are 847 on their way (Leskinen *et al.* 2012). All in all, this makes *Ficedula* flycatcher a prime model 848 organism in molecular ecology.

849

850 This study provides a genome assembly with nearly continuous chromosome sequences and a 851 detailed genetic map of the flycatcher genome. Together, this information allowed us to 852 conclude that the highly conserved nature of the avian karyotype stands in sharp contrast to 853 the observation of frequent intrachromosomal rearrangements during avian evolution. The 854 rate of these rearrangements is high enough for inversions to potentially have been involved 855 with many events of speciation. We envision that this idea could be tested by mapping 856 inversion events onto a phylogeny of closely related species of birds. Moreover, we found 857 significant variation in the rate of recombination across the genome and concluded that the 858 large effect of chromosome size could mainly be explained by obligate recombination events 859 per chromosome. Surprisingly the overall level and patterns of flycatcher recombination was 860 more similar to chicken than to the more closely related zebra finch.

861

862 We recently showed that the genomic landscape of divergence between pied and collared

863 flycatchers is characterized by the presence on numerous 'differentiation islands', with

864 markedly higher F_{ST} than in the genomic background (Ellegren *et al.* 2012). This observation

865 was based on data from whole-genome re-sequencing of a relatively limited number of

866	individuals of each species. A direction that now should be taken is to sequence multiple
867	sympatric and allopatric populations of both species and with these data integrate information
868	on recombination rate variation across the genome. This would allow addressing if
869	differentiation islands in multiple population comparisons coincide with recombination cold-
870	spot regions. Such association would be compatible with a scenario of incidental islands
871	where selection at linked sites locally reduces the effective population size and thereby
872	enhance the rate of lineage sorting. Essentially, this means distinguishing a scenario of
873	genomic islands of speciation from a scenario of genomic islands and speciation, quoting
874	(Turner & Hahn 2010).
875	
876	Acknowledgements
877	
878	Financial support was obtained from the European Research Council, a Knut and Alice
879	Wallenberg Scholar Grant and the Swedish Research Council. Genotyping was performed by
880	the SNP&SEQ Technology Platform, Science for Life Laboratory at Uppsala University, a
881	national infrastructure supported by the Swedish Research Council (VR-RFI) and the Knut
882	and Alice Wallenberg Foundation.
883	
884	Author Contributions
885	
886	TK constructed the linkage map, with input from NB. LS constructed the updated assembly,
887	with input from TK, and performed the analyses of genome evolution. TK, NB, and CFM
888	performed recombination rate analysis. AH provided the samples. AQ organized the long-
889	term flycatcher study on Öland. PO contributed to marker development. TK, LS, NB and HE

890 wrote the manuscript with input from the other authors. HE contributed to data analysis, and

891 conceived of and led the study.

892

893

894 **References**

- Alekseyev MA, Pevzner PA (2007) Are there rearrangement hotspots in the human genome?
 PLoS Computational Biology 3, e209.
- Armengol Ls, Pujana MA, Cheung J, Scherer SW, Estivill X (2003) Enrichment of segmental
 duplications in regions of breaks of synteny between the human and mouse genomes
 suggest their involvement in evolutionary rearrangements. *Human Molecular Genetics* 12, 2201-2208.
- Aslam M, Bastiaansen J, Crooijmans R, *et al.* (2010) A SNP based linkage map of the turkey
 genome reveals multiple intrachromosomal rearrangements between the turkey and
 chicken genomes. *BMC Genomics* 11, 647.
- Attie O, Darling A, Yancopoulos S (2011) The rise and fall of breakpoint reuse depending on
 genome resolution. *BMC Bioinformatics* 12, S1.
- Avise JC, Walker D, Johns GC (1998) Speciation durations and Pleistocene effects on
 vertebrate phylogeography. *Proceedings of the Royal Society of London. Series B: Biological Sciences* 265, 1707-1712.
- Backström N, Brandstrom M, Gustafsson L, *et al.* (2006) Genetic mapping in a natural
 population of collared flycatchers (*Ficedula albicollis*): Conserved syntemy but gene
 order rearrangements on the avian Z chromosome. *Genetics* 174, 377-386.
- Backström N, Forstmeier W, Schielzeth H, *et al.* (2010a) The recombination landscape of the
 zebra finch *Taeniopygia guttata* genome. *Genome Research* 20, 485-495.
- Backström N, Karaiskou N, Leder EH, *et al.* (2008) A gene-based genetic linkage map of the
 collared flycatcher (*Ficedula albicollis*) reveals extensive synteny and gene-order
 conservation during 100 million years of avian evolution. *Genetics* 179, 1479-1495.
- Backström N, Palkopoulou E, Qvarnstrom A, Ellegren H (2010b) No evidence for Zchromosome rearrangements between the pied flycatcher and the collared flycatcher
 as judged by gene-based comparative genetic maps. *Molecular Ecology* 19, 33943405.
- Bailey J, Baertsch R, Kent W, Haussler D, Eichler E (2004) Hotspots of mammalian
 chromosomal evolution. *Genome Biology* 5, R23.
- Baudat F, Imai Y, de Massy B (2013) Meiotic recombination in mammals: localization and
 regulation. *Nature Reviews Genetics* 14, 794-806.
- Baudet C, Lemaitre C, Dias Z, *et al.* (2010) Cassis: detection of genomic rearrangement
 breakpoints. *Bioinformatics* 26, 1897-1898.
- Becker T, Lenhard B (2007) The random versus fragile breakage models of chromosome
 evolution: a matter of resolution. *Molecular Genetics and Genomics* 278, 487-491.
- Borge T, Lindroos K, Nadvornik P, Syvänen AC, Saetre GP (2005) Amount of introgression in
 flycatcher hybrid zones reflects regional differences in pre and post-zygotic barriers to
 gene exchange. *Journal of Evolutionary Biology* 18, 1416-1424.
- Bourque G, Pevzner PA (2002) Genome-scale evolution: reconstructing gene orders in the
 ancestral species. *Genome Research* 12, 26-36.
- Burt A, Bell G (1987) Mammalian chiasma frequencies as a test of two theories of
 recombination. *Nature* 326, 803-805.

936	Burt A, Bell G, Harvey PH (1991) Sex-differences in recombination. <i>Journal of Evolutionary</i>
937	Biology 4, 259-277.
938	Burt DW, Bruley C, Dunn IC, <i>et al.</i> (1999) The dynamics of chromosome evolution in birds
939	and mammals. <i>Nature</i> 402 , 411-413.
940	Butlin RK (2005) Recombination and speciation. <i>Molecular Ecology</i> 14 , 2621-2635.
941	Campos JL, Halligan DL, Haddrill PR, Charlesworth B (2014) The relation between
942	recombination rate and patterns of molecular evolution and variation in <i>Drosophila</i>
943	melanogaster. Molecular Biology and Evolution.
944 945	Connallon T, Clark AG (2010) Sex linkage, sex-specific selection, and the role of
945 946	recombination in the evolution of sexually dimorphic gene expression. <i>Evolution</i> 64 , 3417-3442.
940 947	Consortium HG (2012) Butterfly genome reveals promiscuous exchange of mimicry
947 948	adaptations among species. <i>Nature</i> 487 , 94-98.
948 949	Coop G, Przeworski M (2007) An evolutionary view of human recombination. <i>Nature</i>
9 4 9 950	Reviews Genetics 8, 23-34.
950 951	Cox A, Ackert-Bicknell CL, Dumont BL, <i>et al.</i> (2009) A new standard genetic map for the
951 952	laboratory mouse. <i>Genetics</i> 182 , 1335-1344.
952 953	Coyne JA, Orr HA (2004) <i>Speciation</i> Sinauer Associates, Inc., Sunderland, MA.
955 954	Cutter AD, Payseur BA (2013) Genomic signatures of selection at linked sites: unifying the
95 4 955	disparity among species. <i>Nature Reviews Genetics</i> 14, 262-274.
955 956	Dalloul RA, Long JA, Zimin AV, <i>et al.</i> (2010) Multi-platform next-generation sequencing of
957	the domestic turkey <i>Meleagris gallopavo</i> : genome assembly and analysis. <i>PLoS</i>
958	Biology 8, e1000475.
959	Darling AE, Mau B, Perna NT (2010) progressiveMauve: Multiple genome alignment with
960	gene gain, loss and rearrangement. <i>PLoS ONE</i> 5, e11147.
961	Dietrich WF, Miller J, Steen R, <i>et al.</i> (1996) A comprehensive genetic map of the mouse
962	genome. <i>Nature</i> 380, 149-152.
963	Dumont BL, Payseur BA (2008) Evolution of the genomic rate of recombination in mammals.
964	Evolution 62, 276-294.
965	Dumont BL, Payseur BA (2011) Evolution of the genomic recombination rate in murid
966	rodents. <i>Genetics</i> 187, 643-657.
967	Dumont BL, White MA, Steffy B, Wiltshire T, Payseur BA (2011) Extensive recombination
968	rate variation in the house mouse species complex inferred from genetic linkage maps.
969	Genome Research 21, 114-125.
970	Duret L, Arndt PF (2008) The impact of recombination on nucleotide substitutions in the
971	human genome. PLoS Genetics 4, e1000071.
972	Dyke G, Kaiser G (2011) Major Events in Avian Genome Evolution. In: Living Dinosaurs:
973	The Evolutionary History of Modern Birds (eds. Dyke G, Kaiser G, Organ C, Edwards
974	S). John Wiley & Sons Ltd, Chichester, UK.
975	Ellegren H (1991) DNA typing of museum birds. Nature 354, 113.
976	Ellegren H (1992) Polymerase chain reaction (PCR) analysis of microsatellites - a new
977	approach to studies of genetic relationships in birds. Auk 109, 886-895.
978	Ellegren H (2010) Evolutionary stasis: the stable chromosomes of birds. Trends in Ecology &
979	Evolution 25 , 283-291.
980	Ellegren H (2013) The evolutionary genomics of birds. Annual Review of Ecology, Evolution,
981	and Systematics 44, 239-259.
982	Ellegren H (2014) Genome sequencing and population genomics in non-model organisms.
983	Trends in Ecology & Evolution 29, 51-63.

984	Ellegren H, Gustafsson L, Sheldon BC (1996) Sex ratio adjustment in relation to paternal
985	attractiveness in a wild bird population. Proceedings of the National Academy of
986	Sciences of the United States of America 93, 11723-11728.
987	Ellegren H, Sméds L, Burri R, et al. (2012) The genomic landscape of species divergence in
988	Ficedula flycatchers. Nature 491, 756-760.
989	Fitzpatrick BM (2004) Rates of evolution of hybrid inviability in birds and mammals.
990	<i>Evolution</i> 58 , 1865-1870.
991	Fledel-Alon A, Wilson DJ, Broman K, et al. (2009) Broad-scale recombination patterns
992	underlying proper disjunction in humans. <i>PLoS Genetics</i> 5, e1000658.
993	Gelter HP, Tegelstrom H (1992) High-frequency of extra-pair paternity in Swedish pied
994	flycatchers revealed by allozyme electrophoresis and DNA fingerpringting.
995	Behavioral Ecology and Sociobiology 31 , 1-7.
996	Gelter HP, Tegelstrom H, Stahl G (1989) Alloyme similarity between the pied and collared
997	flycatchers (Aves, <i>Ficedula-hypoleuca</i> and <i>Ficedula-albicollis</i>). <i>Hereditas</i> 111 , 65-72.
998	Green P, Falls K, Crook S (1990) Documentation for CRIMAP, version 2.4 Washington
999	Univ. School of Medicine, St. Louis, MO.
1000	Gregory TR (2011) Animal Genome Size Database. http://www.genomesize.com
1001	Griffin DK, Robertson LBW, Tempest HG, Skinner BM (2007) The evolution of the avian
1002	genome as revealed by comparative molecular cytogenetics. <i>Cytogenetic and Genome</i>
1003	Research 117, 64-77.
1004	Groenen MAM, Wahlberg P, Foglio M, et al. (2009) A high-density SNP-based linkage map
1005	of the chicken genome reveals sequence features correlated with recombination rate.
1006	Genome Research 19 , 510-519.
1007	Gustafsson L, Qvarnström A, Sheldon BC (1995) Trade-offs between life-history traits and a
1008	secondary sexual character in male collared flycatchers. <i>Nature</i> 375 , 311-313.
1009	Hansson B, \sqrt{O} kesson M, Slate J, Pemberton JM (2005) Linkage mapping reveals sex-
1010	dimorphic map distances in a passerine bird. <i>Proceedings of the Royal Society B:</i>
1011	Biological Sciences 272, 2289-2298.
1012	Hansson B, Ljungqvist M, Dawson DA, et al. (2009) Avian genome evolution: insights from a
1013	linkage map of the blue tit (<i>Cyanistes caeruleus</i>). <i>Heredity</i> 104 , 67-78.
1014	Heinz S, Benner C, Spann N, et al. (2010) Simple combinations of lineage-determining
1015	transcription factors prime cis-regulatory elements required for macrophage and B cell
1016	identities. Molecular Cell 38, 576-589.
1017	Hoffmann AA, Rieseberg LH (2008) Revisiting the impact of inversions in evolution: from
1018	population genetic markers to drivers of adaptive shifts and speciation? Annual
1019	Review of Ecology Evolution and Systematics 39 , 21-42.
1020	Huang Y, Li Y, Burt DW, et al. (2013) The duck genome and transcriptome provide insight
1021	into an avian influenza virus reservoir species. Nat Genet 45, 776-783.
1022	ICGSC (2004) Sequence and comparative analysis of the chicken genome provide unique
1023	perspectives on vertebrate evolution. <i>Nature</i> 432 , 695-716.
1024	Jaari S, Li M-H, Merila J (2009) A first-generation microsatellite-based genetic linkage map
1025	of the Siberian jay (Perisoreus infaustus): insights into avian genome evolution. BMC
1026	Genomics 10, 1.
1027	Jacob HJ, Brown DM, Bunker RK, et al. (1995) A genetic linkage map of the laboratory rat,
1028	Rattus norvegicus. Nature Genetics 9, 63-69.
1029	Kawakami T, Backström N, Burri R, et al. (2014) Estimation of linkage disequilibrium and
1030	interspecific gene flow in <i>Ficedula</i> flycatchers by a newly developed 50K SNP array.
1031	Molecular Ecology Resources in revision.

1022	
1032 1033	Kemkemer C, Kohn M, Cooper D, <i>et al.</i> (2009) Gene synteny comparisons between different vertebrates provide new insights into breakage and fusion events during mammalian
1035	karyotype evolution. <i>BMC Evolutionary Biology</i> 9 , 84.
1034	Kidd JM, Cooper GM, Donahue WF, <i>et al.</i> (2008) Mapping and sequencing of structural
1035	variation from eight human genomes. <i>Nature</i> 453 , 56-64.
1030	Kirkpatrick M, Barton N (2006) Chromosome inversions, local adaptation and speciation.
1037	<i>Genetics</i> 173 , 419-434.
1038	Kong A, Thorleifsson G, Gudbjartsson DF, <i>et al.</i> (2010) Fine-scale recombination rate
1039	differences between sexes, populations and individuals. <i>Nature</i> 467 , 1099-1103.
1040	Larkin DM, Pape G, Donthu R, <i>et al.</i> (2009) Breakpoint regions and homologous synteny
1042	blocks in chromosomes have different evolutionary histories. <i>Genome Research</i> 19,
1042	770-777.
1045	Lee J, Han K, Meyer TJ, Kim H-S, Batzer MA (2008) Chromosomal inversions between
1044	human and chimpanzee lineages caused by retrotransposons. <i>PLoS ONE</i> 3 , e4047.
1045	Lehtonen PK, Laaksonen T, Artemyev AV, <i>et al.</i> (2009) Geographic patterns of genetic
1040	differentiation and plumage colour variation are different in the pied flycatcher
1047	(<i>Ficedula hypoleuca</i>). <i>Molecular Ecology</i> 18 , 4463-4476.
1040	Lenormand T (2003) The evolution of sex dimorphism in recombination. <i>Genetics</i> 163 , 811-
1049	822.
1050	Lenormand T, Dutheil J (2005) Recombination difference between sexes: A role for haploid
1051	selection. <i>PLoS Biol</i> 3 , e63.
1052	Leskinen PK, Laaksonen T, Ruuskanen S, Primmer CR, Leder EH (2012) The proteomics of
1055	feather development in pied flycatchers (<i>Ficedula hypoleuca</i>) with different plumage
1055	coloration. <i>Molecular Ecology</i> 21 , 5762-5777.
1055	Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler
1050	transform. <i>Bioinformatics</i> 26 , 589-595.
1058	Lohmueller KE, Degenhardt JD, Keinan A (2010) Sex-averaged recombination and mutation
1059	rates on the X chromosome: A comment on Labuda et al. <i>The American Journal of</i>
1060	Human Genetics 86, 978-980.
1061	Mank JE (2009) The evolution of heterochiasmy: the role of sexual selection and sperm
1062	competition in determining sex-specific recombination rates in eutherian mammals.
1063	Genetical Research 91, 355-363.
1064	Masabanda JS, Burt DW, O'Brien PCM, et al. (2004) Molecular cytogenetic definition of the
1065	chicken genome: The first complete avian karyotype. Genetics 166, 1367-1373.
1066	McGaugh SE, Heil CSS, Manzano-Winkler B, et al. (2012) Recombination modulates how
1067	selection affects linked sites in <i>Drosophila</i> . <i>PLoS Biol</i> 10 , e1001422.
1068	Mendonca MAC, Carvalho CR, Clarindo WR (2010) DNA content differences between male
1069	and female chicken (Gallus gallus domesticus) nuclei and Z and W chromosomes
1070	resolved by image cytometry. Journal of Histochemistry & Cytochemistry 58, 229-
1071	235.
1072	Mugal CF, Arndt PF, Ellegren H (2013) Twisted signatures of GC-biased gene conversion
1073	embedded in an evolutionary stable karyotype. <i>Molecular Biology and Evolution</i> 30 ,
1074	1700-1712.
1075	Murphy WJ, Larkin DM, van der Wind AE, et al. (2005) Dynamics of mammalian
1076	chromosome evolution inferred from multispecies comparative maps. <i>Science</i> 309 ,
1077	613-617.
1078	Myers S, Bowden R, Tumian A, et al. (2010) Drive against hotspot motifs in primates
1079	implicates the PRDM9 gene in meiotic recombination. Science 327, 876-879.

1080	Myers S, Freeman C, Auton A, Donnelly P, McVean G (2008) A common sequence motif
1081	associated with recombination hot spots and genome instability in humans. Nature
1082	<i>Genetics</i> 40 , 1124-1129.
1083	Nabholz B, Künstner A, Wang R, Jarvis E, Ellegren H (2011) Dynamic evolution of base
1084	composition: causes and consequences in avian phylogenomics. Molecular Biology
1085	and Evolution 28 , 2197-2210.
1086	Nachman MW, Payseur BA (2012) Recombination rate variation and speciation: theoretical
1087	predictions and empirical results from rabbits and mice. Philosophical Transactions of
1088	the Royal Society B-Biological Sciences 367 , 409-421.
1089	Nadachowska-Brzyska K, Burri R, Olason PI, et al. (2013) Demographic divergence history
1090	of pied flycatcher and collared flycatcher inferred from whole-genome re-sequencing
1091	data. PLoS Genetics 9.
1092	Nam K, Mugal C, Nabholz B, et al. (2010) Molecular evolution of genes in avian genomes.
1093	Genome Biology 11, R68.
1094	Navarro A, Barton NH (2003) Chromosomal speciation and molecular divergence
1095	accelerated evolution in rearranged chromosomes. Science 300, 321-324.
1096	Noor MAF, Grams KL, Bertucci LA, Reiland J (2001) Chromosomal inversions and the
1097	reproductive isolation of species. Proceedings of the National Academy of Sciences of
1098	the United States of America 98 , 12084-12088.
1099	Otto SP, Lenormand T (2002) Resolving the paradox of sex and recombination. <i>Nature</i>
1100	Reviews Genetics 3, 252-261.
1101	Pardo-Manuel de Villena F, Sapienza C (2001) Recombination is proportional to the number
1102	of chromosome arms in mammals. <i>Mammalian Genome</i> 12 , 318-322.
1103	Paterson T, Law A (2011) Genotypechecker: an interactive tool for checking the inheritance
1104	consistency of genotyped pedigrees. Animal Genetics 42, 560-562.
1105	Peng Q, Pevzner PA, Tesler G (2006) The fragile breakage versus random breakage models of
1106	chromosome evolution. <i>PLoS Computational Biology</i> 2 , e14.
1107	Pevzner P, Tesler G (2003) Human and mouse genomic sequences reveal extensive breakpoint
1108	reuse in mammalian evolution. Proceedings of the National Academy of Sciences of
1109	the United States of America 100, 7672-7677.
1110	Presgraves DC (2005) Recombination enhances protein adaptation in <i>Drosophila</i>
1111	melanogaster. Current Biology 15 , 1651-1656.
1112	Price TD, Bouvier MM (2002) The evolution of F1 postzygotic incompatibilities in birds.
1113	Evolution 56 , 2083-2089.
1114	Primmer CR, Borge T, Lindell J, Saetre GP (2002) Single-nucleotide polymorphism
1115	characterization in species with limited available sequence information: high
1116	nucleotide diversity revealed in the avian genome. <i>Molecular Ecology</i> 11 , 603-612.
1117	Purcell S, Neale B, Todd-Brown K, <i>et al.</i> (2007) PLINK: A tool set for whole-genome
1118	association and population-based linkage analyses. <i>American Journal of Human</i>
1119	Genetics 81, 559-575. Ovision AB, Hall IM (2010) REDTagles a flavible suite of utilities for comparing genemic
1120	Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic
1121	features. <i>Bioinformatics</i> 26 , 841-842.
1122	Qvarnstrom A, Bailey RI (2008) Speciation through evolution of sex-linked genes. <i>Heredity</i>
1123 1124	102 , 4-15. Qvarnstrom A, Brommer JE, Gustafsson L (2006) Testing the genetics underlying the co-
1125	evolution of mate choice and ornament in the wild. <i>Nature</i> 441 , 84-86.
1126	Qvarnström A, Rice AM, Ellegren H (2010) Speciation in <i>Ficedula</i> flycatchers. <i>Philosophical</i>
1127	Transactions of the Royal Society B-Biological Sciences 365 , 1841-1852.

1128	Ratti O, Hovi M, Lundberg A, Tegelstrom H, Alatalo RV (1995) Extra-pair paternity and male
1129	characteristics in the pied flycatcher. Behavioral Ecology and Sociobiology 37, 419-
1130	425.
1131	Ross-Ibarra J (2004) The evolution of recombination under domestication: A test of two
1132	hypotheses. The American Naturalist 163, 105-112.
1133	Saether SA, Saetre G-P, Borge T, et al. (2007) Sex chromosome-linked species recognition
1134	and evolution of reproductive isolation in flycatchers. Science 318, 95-97.
1135	Saetre GP, Borge T, Lindell J, et al. (2001) Speciation, introgressive hybridization and
1136	nonlinear rate of molecular evolution in flycatchers. Molecular Ecology 10, 737-749.
1137	Saetre GP, Borge T, Lindroos K, et al. (2003) Sex chromosome evolution and speciation in
1138	Ficedula flycatchers. Proceedings of the Royal Society B-Biological Sciences 270, 53-
1139	59.
1140	Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: a Laboratory Manual, 2nd
1141	edn. Cold Spring Harbour Laboratory Press, New York.
1142	Sankoff D, Trinh P (2005) Chromosomal breakpoint reuse in genome sequence
1143	rearrangement. Journal of Computational Biology 12, 812-821.
1144	Segura J, Ferretti L, Ramos-Onsins S, et al. (2013) Evolution of recombination in eutherian
1145	mammals: insights into mechanisms that affect recombination rates and crossover
1146	interference. Proceedings of the Royal Society B-Biological Sciences 280.
1147	Shapiro MD, Kronenberg Z, Li C, et al. (2013) Genomic diversity and evolution of the head
1148	crest in the rock pigeon. Science 339, 1063-1067.
1149	Sheldon B, Ellegren H (1999) Sexual selection resulting from extrapair paternity in collared
1150	flycatchers. Animal Behaviour 57, 285-298.
1151	Sheldon BC, Ellegren H (1996) Offspring sex and paternity in the collared flycatcher.
1152	Proceedings of the Royal Society B-Biological Sciences 263, 1017-1021.
1153	Skinner BM, Griffin DK (2012) Intrachromosomal rearrangements in avian genome
1154	evolution: evidence for regions prone to breakpoints. <i>Heredity</i> 108 , 37-41.
1155	Smukowski CS, Noor MAF (2011) Recombination rate variation in closely related species.
1156	<i>Heredity</i> 107 , 496-508.
1157	Stapley J, Birhead TR, Burke T, Slate J (2008) A linkage map of the zebra finch <i>Taeniopygia</i>
1158	guttata provides new insights into avian genome evolution. Genetics 179 , 651-667.
1159	Sætre GP, Sæther SA (2010) Ecology and genetics of speciation in <i>Ficedula</i>
1160	flycatchers. <i>Molecular Ecology</i> 19 , 1091-1106.
1161	Tegelstrom H, Gelter HP (1990) Haldane rule and sex biased gene flow between 2 hybridizing
1162	flycatcher species (<i>Ficedula-albicollis and F-hypoleuca</i> , Aves, Muscicapidae).
1163	<i>Evolution</i> 44 , 2012-2021.
1164	Tesler G (2002) GRIMM: genome rearrangements web server. <i>Bioinformatics</i> 18 , 492-493.
1165	Thomas JW, Cáceres M, Lowman JJ, <i>et al.</i> (2008) The chromosomal polymorphism linked to
1166	variation in social behavior in the white-throated sparrow (<i>Zonotrichia albicollis</i>) is a
1167	complex rearrangement and suppressor of recombination. <i>Genetics</i> 179 , 1455-1468.
1168	Thorneycroft HB (1966) Chromosomal polymorphism in white-throated sparrow Zonotrichia
1169	albicollis (Gmelin). Science 154 , 1571-1572.
1170	Turelli M, Moyle LC (2007) Asymmetric postmating isolation: Darwin's corollary to
1171	Haldane's rule. <i>Genetics</i> 176 , 1059-1088. Turner TL, Hahn MW (2010) Genomic islands of speciation or genomic islands and
1172 1173	speciation? <i>Molecular Ecology</i> 19 , 848-850.
1175	Uebbing S, Kunstner A, Makinen H, Ellegren H (2013) Transcriptome sequencing reveals the
1174	character of incomplete dosage compensation across multiple tissues in flycatchers.
1175	Genome Biology and Evolution 5, 1555-1566.
11/0	Genome Biology and Evolution 3, 1555-1500.

1177	van Oers K, Santure AW, De Cauwer I, et al. (2014) Replicated high-density genetic maps of
1178	two great tit populations reveal fine-scale genomic departures from sex-equal
1179	recombination rates. <i>Heredity</i> 112 , 307-316.
1180	Veen T, Borge T, Griffith SC, et al. (2001) Hybridization and adaptive mate choice in
1181	flycatchers. Nature 411, 45-50.
1182	Völker M, Backström N, Skinner BM, et al. (2010) Copy number variation, chromosome
1183	rearrangement, and their association with recombination during avian evolution.
1184	Genome Research 20, 503-511.
1185	Wang J, Fan HC, Behr B, Quake SR (2012) Genome-wide single-cell analysis of
1186	recombination activity and <i>de novo</i> mutation rates in human sperm. <i>Cell</i> 150, 402-412.
1187	Warren WC, Clayton DF, Ellegren H, et al. (2010) The genome of a songbird. Nature 464,
1188	757-762.
1189	Webster MT, Hurst LD (2012) Direct and indirect consequences of meiotic recombination:
1190	implications for genome evolution. Trends in Genetics 28, 101-109.
1191	White MJD (1973) Animal Cytology and Evolution Cambridge University Press.
1192	Winckler W, Myers SR, Richter DJ, et al. (2005) Comparison of fine-scale recombination
1193	rates in humans and chimpanzees. Science 308, 107-111.
1194	Wyman MJ, Wyman MC (2013) specific recombination rates and allele frequencies affect the
1195	invasion of sexually antagonistic variation on autosomes. Journal of Evolutionary
1196	<i>Biology</i> 26 , 2428-2437.
1197	Zhao H, Bourque G (2009) Recovering genome rearrangements in the mammalian phylogeny.
1198	Genome Research 19, 934-942.
1199	Åkesson M, Hansson B, Hasselquist D, Bensch S (2007) Linkage mapping of AFLP markers
1200	in a wild population of great reed warblers: importance of heterozygosity and number
1201	of genotyped individuals. <i>Molecular Ecology</i> 16 , 2189-2202.
1202	
1.0.0	

1204 Figure legends

1205

1206	Figure 1. A genetic linkage map of the collared flycatcher genome. The horizontal bars on
1207	each chromosome or linkage group represent mapped SNP markers based on best-order map.
1208	The scale bar to the left shows the lengths of linkage groups as measured in Kosambi cM. A
1209	more detailed map with marker names is presented as Supplementary Figure 4.
1210	
1211	Figure 2. Comparative circular visualization of the organization of homologous chromosomes
1212	in collared flycatcher and zebra finch. Collared flycatcher is shown to the left, zebra finch to
1213	the right. Scale is indicated on the zebra finch side of plots, in Mb.
1214	
1215	Figure 3. Genomic distribution of breakpoint regions. Resolution is 50 kb synteny blocks in
1216	pairwise whole-genome alignments of flycatcher and zebra finch.
1217	
1218	Figure 4. The relationship a) between the genetic distance (cM) and the chromosome size
1219	(Mb) and b) between recombination rate (cM/Mb) and the chromosome size (Mb) in the best-
1220	order map of the collared flycatcher genome. Red is the Z chromosome.
1221	
1222	Figure 5. Scatter plot showing the recombination rate as a function of distance to
1223	chromosome end for a) chromosomes >20 Mb and b) chromsomes < 20 Mb. Values > 45
1224	cM/Mb are omitted from the graph to increase detail.
1225	
1226	Figure 6. Sex-specific relationships between the genetic (cM) and the physical (Mb) distance
1227	in the best-order map of collared flycatcher chromosomes 17 and 27. Red and blue circles
1228	indicate the female- and male-specific genetic map, respectively.

1229	
1230	Figure 7. Barplot showing the fractions explained by each parameter in the Principal
1231	Component Regression analysis with a) recombination and b) GC-content as response
1232	variables. In each analysis the proportional contribution of each explanatory variable was very
1233	similar but the total amount of the variance explained was higher when using the GC-content
1234	as a response variable (notice the difference in scaling of the y-axis).
1235	
1236	Figure 8. The relationship between the genetic (cM) and the physical (Mb) distance in the
1237	best-order map of the collared flycatcher genome (blue circle, this study), zebra finch (orange
1238	square, Backström et al. 2010) and chicken (black cross, Groenen et al. 2009). For
1239	comparison purposes, chromosomes 1 and 4 in chicken were split into two chromosomes,
1240	corresponding respectively to chromosomes 1 and 1A, and chromosomes 4 and 4A, based on
1241	the zebra finch genome. Data were not available for chromosomes 2, 21, 22, 24, 26, 27, and
1242	28 in zebra finch.
1243	

 Table 1. Number of mapped SNP markers and total genetic distance of each chromosomes of the collared flycatcher.

2

	Number of markers			Frame	Framework map (cM)		Best-o	Best-order map (cM)			Forced map (cM)		
	Frame-	Best-order	Forced										
Chrom.	work map	map	map	Average	Female	Male	Average	Female	Male	Average	Female	Male	
1	147	341	2,247	252.8	238.5	266.9	246.2	231.1	261.6	261.9	248.4	276.5	
1A	166	317	1,976	204.9	188.8	220.4	206.1	189.3	224.2	227.5	202.8	256.5	
2	172	301	1,608	325.9	314.4	335.1	316.1	307.8	323.4	364.7	343.4	391.7	
3	123	180	1,518	232.5	224.7	240.8	225.9	214.4	237.0	243.4	236.1	252.0	
4	58	102	363	168.6	166.7	170.4	167.2	164.3	169.9	151.2	146.4	155.1	
4A	100	158	1,498	81.7	74.0	89.5	80.3	73.2	88.2	117.4	109.6	127.1	
5	95	199	1,389	168.4	157.3	181.3	170.4	156.6	185.1	199.5	175.3	226.2	
6	87	138	1,022	125.4	119.1	131.9	121.3	115.9	126.5	121.7	115.8	128.1	
7	101	203	1,209	122.0	118.4	125.7	122.5	119.1	128.9	214.4	141.3	299.5	
8	91	116	752	95.7	94.4	98.7	96.0	93.1	99.3	126.2	122.4	131.3	
9	104	184	1,207	96.8	90.0	103.8	96.6	90.0	103.5	116.2	110.0	123.4	
10	97	160	1,529	93.2	93.7	93.3	94.0	91.2	97.5	106.7	106.9	106.8	
11	95	160	1,593	84.0	72.6	95.2	81.0	68.9	93.6	101.8	106.2	99.9	
12	79	138	1,072	83.5	70.1	97.0	84.7	71.2	99.6	90.8	82.6	100.4	
13	39	65	451	85.5	86.3	84.5	87.8	87.0	86.1	86.6	90.9	81.8	
14	95	132	1,227	88.1	83.3	92.1	87.6	82.5	92.3	95.3	90.1	101.2	
15	88	146	1,149	60.6	55.9	65.6	59.3	54.1	65.2	64.2	56.7	72.7	
17	108	146	1,169	74.8	58.3	93.1	73.8	58.1	90.4	77.5	60.3	96.7	
18	70	128	1,115	79.2	76.3	81.5	79.7	78.9	79.6	88.8	82.9	95.6	

19	66	126	1,163	55.8	59.9	51.3	58.0	59.5	56.6	57.8	59.3	56.5
20			-									
	75	129	1,257	52.5	55.5	48.6	53.7	56.1	51.1	54.4	57.4	51.0
21	39	64	695	46.6	46.0	46.8	48.3	48.6	47.9	48.8	48.7	49.0
22	15	32	44	51.0	60.2	42.3	53.2	56.0	50.5	51.0	53.8	48.6
23	45	96	929	47.1	51.7	41.8	49.1	53.2	44.7	50.2	52.6	47.6
24	71	98	1,149	50.6	49.2	52.0	50.5	51.3	50.2	54.7	51.3	58.6
25	12	22	60	46.2	43.7	51.0	47.9	45.6	53.0	50.0	48.5	54.0
26	48	81	950	46.7	50.7	41.6	46.3	48.1	43.2	88.5	98.0	79.6
27	42	73	534	74.9	69.4	83.6	73.5	68.0	82.2	85.1	80.6	97.7
28	24	39	188	48.9	49.9	49.2	48.2	49.3	49.5	66.2	72.3	60.4
LGE22	16	32	38	52.3	52.1	51.6	53.3	53.0	53.6	49.8	43.5	55.8
Fal34	2	94	10	12.1	31.0	6.9	16.3	20.7	11.9	15.4	19.1	11.5
Fal35	5	8	8	36.8	35.5	39.3	37.2	34.7	39.6	36.6	34.7	39.0
Fal36	2	5	5	2.9	0	5.6	9.7	6.5	13.8	9.7	6.5	13.8
Total ^a	2,377	4,213	31,124	3,148	3,038	3,278	3,142	2,997	3,300	3,574	3,354	3,846
Z	79	89	743	107.7 ^b	-	161.6	107.5 ^b	-	161.2	115.9 ^b	-	173.9
Total ^c	2,456	4,302	31,867	3,256	3,038	3,440	3,249	2,997	3,461	3,690	3,354	4,020

a Autosomes.

b Sex-average genetic distance for chromosome Z calculated as male genetic distance * 2/3. 5

c Autosomes plus Z chromosome. 6

- 7 **Table 2**. Number of ordered and oriented scaffolds assigned to each collared flycatcher
- 8 chromosome in the FicAlb1.5 assembly version. Also shown are assembly size of
- 9 homologous chromosomes of flycatcher, zebra finch and chicken.
- 10

				Not		Zebra	Chicken
		Super-	Singleton	oriented	Size	finch	(Mb)
Chromosome	Scaffolds	scaffolds	scaffolds ^a	scaffolds	(Mb)	(Mb)	(1120)
1	43	6	3	1	119.8	119.6 ^b	201.0
1A	38	8	6	2	74.8	73.7	-
2	35	8	3	1	157.4	156.4	154.9
3	28	6	5	1	115.7	112.6	113.7
4A	5	2	1	1	21.2	69.8	94.2
4	26	4	4	1	70.3	20.7	-
5	22	5	5	0	64.6	62.4	62.2
6	11	2	1	0	37.2	36.3	37.4
7	14	3	0	0	39.3	39.8	38.4
8	12	3	0	0	32.0	28.0	30.7
9	7	3	0	0	26.8	27.2	25.6
10	11	2	0		21.3	20.8	22.6
11	5	2	1	0	21.7	21.4	21.9
12	11	2	1	0	21.9	21.6	20.5
13	6	2	2	0	18.6	17.0	18.9
14	2	1	0	0	17.4	16.4	15.8
15	1	0	1	0	14.9	14.4	13.0
16	0	0	0	0	-	< 0.01	0.43
17	4	2	0	0	12.4	11.6	11.2
18	13	1	1	1	13.1	11.2	10.9
19	6	2	0	0	11.9	11.6	9.9
20	8	2	1	0	15.6	15.7	14.0
21	5	1	2	1	8.1	6.0	7.0
22	8	3	1	3	5.7	3.4	3.9

23	5	1	0	0	7.9	6.2	6.0
24	4	1	0	0	8.0	8.0	6.4
25	19	3	2	1	2.7	1.3	2.0
26	6	1	2	1	7.6	4.9	5.1
27	19	4	2	7	5.5	4.6	4.8
28	12	3	0	3	6.1	5.0	4.5
LGE22 ^c	10	3	3	4	2.1	0.9	0.9
Fal34	4	1	1	4	0.11 ^d	-	-
Fal35	0	0	0	7	$0^{\rm e}$	-	-
Fal36	1	0	1	3	0.18 ^f		
Z	32	8	5	7	59.7	74.6	72.9
Total					1042	1023	1031

^a scaffolds which could not be joined to other scaffolds in the super-scaffolding process.

^b 1.1 Mb from the tentative chromosome 1B in zebra finch has been added to 1A of this
 species.

15

^c In the most recent chicken genome assembly (Galgal4), the full name of this linkage group is
 LGE22C19W28 E50C23.

18

^d Fal34 has an assembly size of 0.29 Mb when including un-oriented scaffolds.

20

^e Fal35 has an assembly size of 0.32 Mb when including un-oriented scaffolds.

¹²³ ^f Fal36 has an assembly size of 0.46 Mb when including un-oriented scaffolds.

Table 3. Summary assembly statistics for the second-generation assembly version of the collared flycatcher genome (FicAlb1.5; present study) and the previous FicAlb_1.4 version (Ellegren *et al.* 2012). All data from scaffolds >200 bp are included, which explains the large number of unassigned scaffolds and the large total number of scaffolds. Data for scaffolds >100 kb are shown in parentheses; note that excluding scaffolds <100 kb has little influence on total assembly size. 'Inferred' means scaffolds indirectly assigned to chromosomes based on conserved synteny with zebra finch.</p>

31

	FicA	lb_1.4	FicAlb1.5		
	# Scaffolds	Size (Mb)	# Scaffolds	Size (Mb)	
Ordered and oriented	67	596	441	1042	
Ordered	67	224	46	15	
Inferred	164	182	2	0	
Unassigned	21,467 (109)	114 (73)	21,354 (73)	59 (23)	
Total	21,765 (404)	1,116 (1076)	21,843 (451)	1,116 (1075)	

32

- 34 **Table 4**. Number of intrachromosomal rearrangements (inversions) per chromosome in three
- 35 avian lineages detected with a resolution of 50 kb synteny blocks.
- 36

Chromosome	Chicken	Zebra finch	Flycatcher
1+1A	29	11	18
2	9	10	6
3	18	6	4
4+4A	33	5	2
5	11	3	3
6	8	1	0
7	4	5	1
8	6	1	1
9	5	1	0
10	2	0	1
11	8	4	0
12	6	1	0
13	3	0	0
14	6	1	1
15	4	1	0
17	0	1	0
18	4	2	0
19	2	1	0
20	5	1	2
21	4	2	0
22	3	0	0
23	5	2	0
24	5	2	0
25	0	0	4
26	4	2	3
27	2	2	3

	28	7	2	1
	Ζ	10	12	6
	Total	203	79	61
37				

- 39 Table 5. Mean (and standard deviation, S.D.) sex-average recombination rate per
- 40 chromosome for different autosomal size categories. Also shown are recombination rates after
- 41 50 cM (corresponding to one obligate recombination event per chromosome) has been
- 42 subtracted from the genetic length of each chromosome.
- 43

n	Recombination rate		Recombination rate (cM/Mb)		
	(cM/Mb)		after subtrac	cting 50 cM	
	Mean	S.D.	Mean	S.D.	
3	2.0	0.0	1.6	0.1	
3	2.7	0.3	2.0	0.3	
4	3.2	0.2	1.7	0.2	
11	4.5	0.9	1.5	0.7	
9	11.1	6.9	_a	_a	
	3 3 4 11	(cM/) Mean 3 2.0 3 2.7 4 3.2 11 4.5	(cM/Mb) Mean S.D. 3 2.0 0.0 3 2.7 0.3 4 3.2 0.2 11 4.5 0.9	(cM/Mb) after subtraction Mean S.D. Mean 3 2.0 0.0 1.6 3 2.7 0.3 2.0 4 3.2 0.2 1.7 11 4.5 0.9 1.5	

44

^a Most of these chromosomes have a genetic distance of less than 50 cM.

47 **Table 6.** Estimates (Est) and statistical significance (*p*-value) of multi-linear regression

48 (MLR) analysis for six candidate explanatory variables of variation in recombination rate and

49 GC-content, respectively. Included in the table is also the raw Pearson's pair-wise correlation

50 coefficient (r^2) between each explanatory variable and recombination rate, and the amount of

51 variation explained by each explanatory variable according to the principal component

52 regression (PCR). Data are from chromosomes >20 Mb.

53

	Recombination				GC-content			
Parameter	Est	<i>p</i> -value	r^2	PCR (%)	Est	<i>p</i> -value	r^2	PCR (%)
Distance to end	-0.069	< 10 ⁻¹⁵	-0.37	5.37	-0.048	< 10 ⁻¹⁵	-0.42	12.21
Chromosome size	-0.036	< 10 ⁻¹⁵	-0.21	1.89	-0.037	< 10 ⁻¹⁵	-0.37	9.34
Microsatellites	0.002	0.67	0.23	5.75	0.107	< 10 ⁻¹⁵	0.58	13.21
Repeat density	-0.001	0.81	0.01	2.60	-0.059	< 10 ⁻¹⁵	-0.11	10.24
Motif density	0.061	< 10 ⁻¹⁵	0.38	5.78	0.133	< 10 ⁻¹⁵	0.65	15.40
Gene density	0.022	9.0·10 ⁻⁹	0.09	0.78	0.073	< 10 ⁻¹⁵	0.29	5.52
Total				22.2				65.5

54

55

	Г
	_
<u>ک</u>	_
e (ch	_
ance	
Genetic distance	_
etic (
ene	
G	

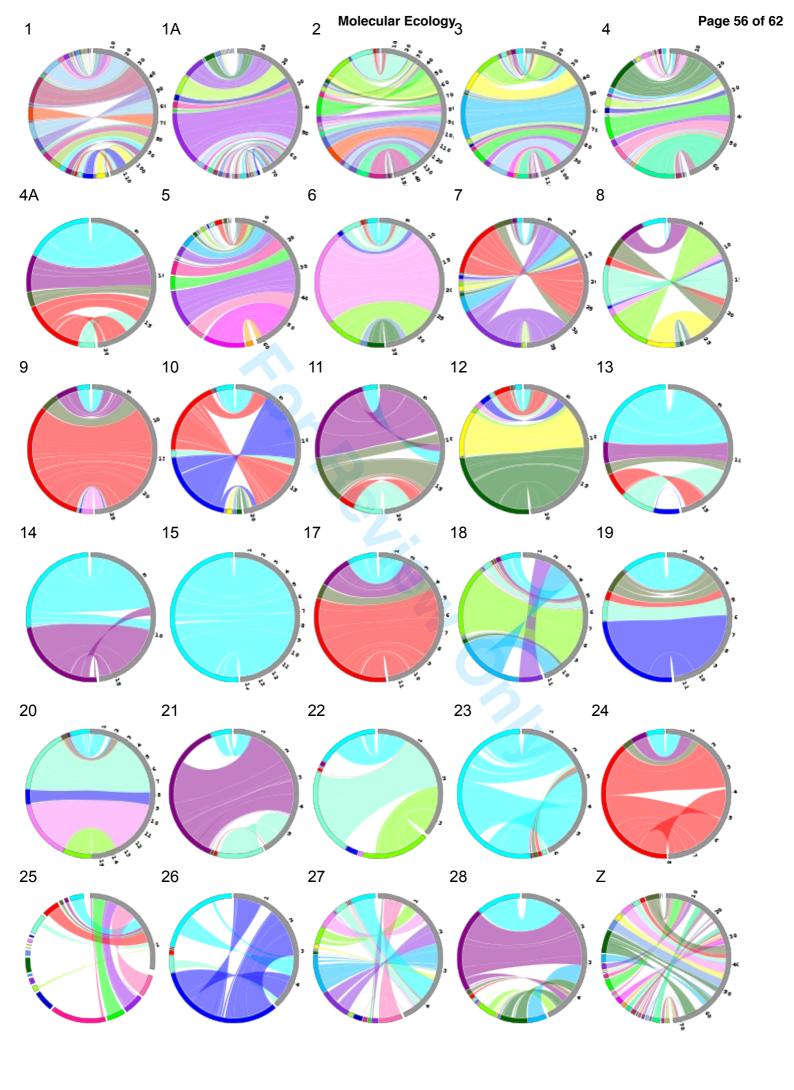
	1
C o cM	
- 20	
- 40	
- 60	
- 80	
- 100	
- 	
- 	
- 	
- 180	
- 200	
- 220	
- 240	
- 260	U
- 280	
- — 300	
- 	

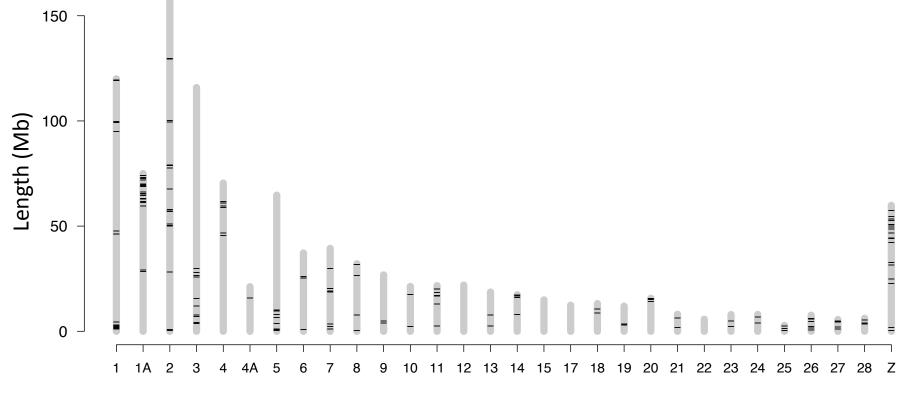
1A

Ħ

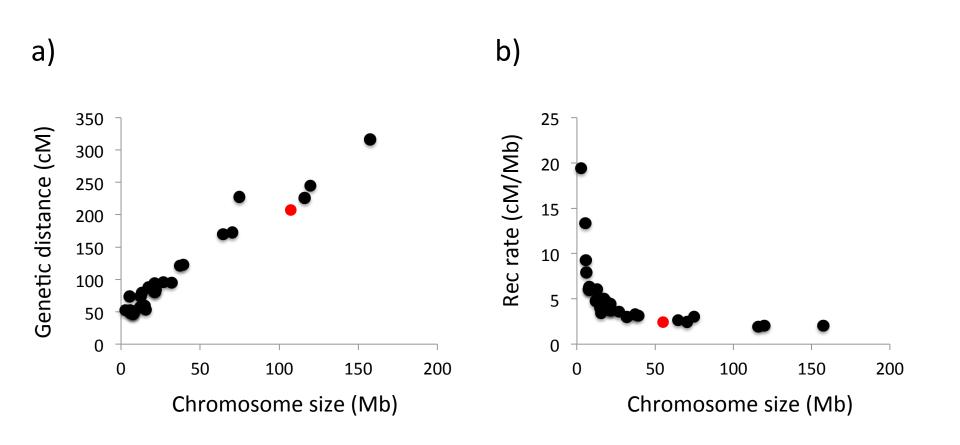
4A

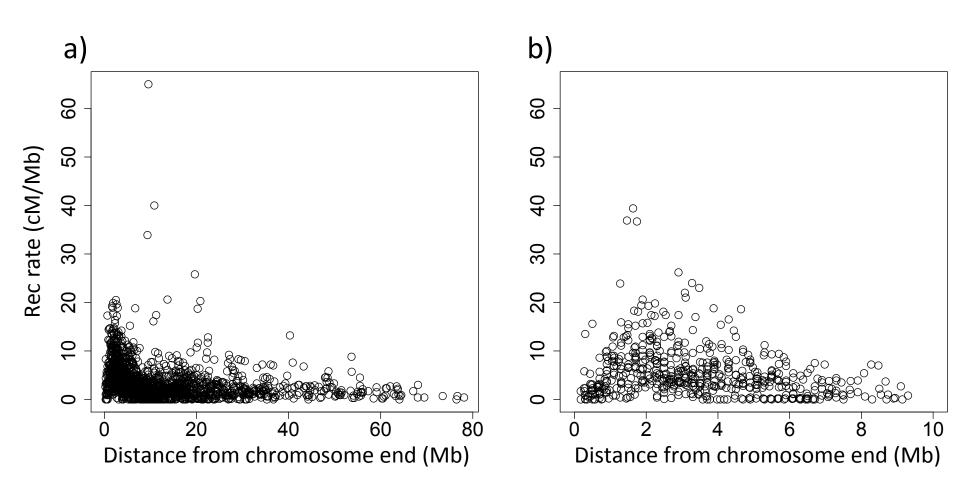
 Molecular Ecology Chromosome

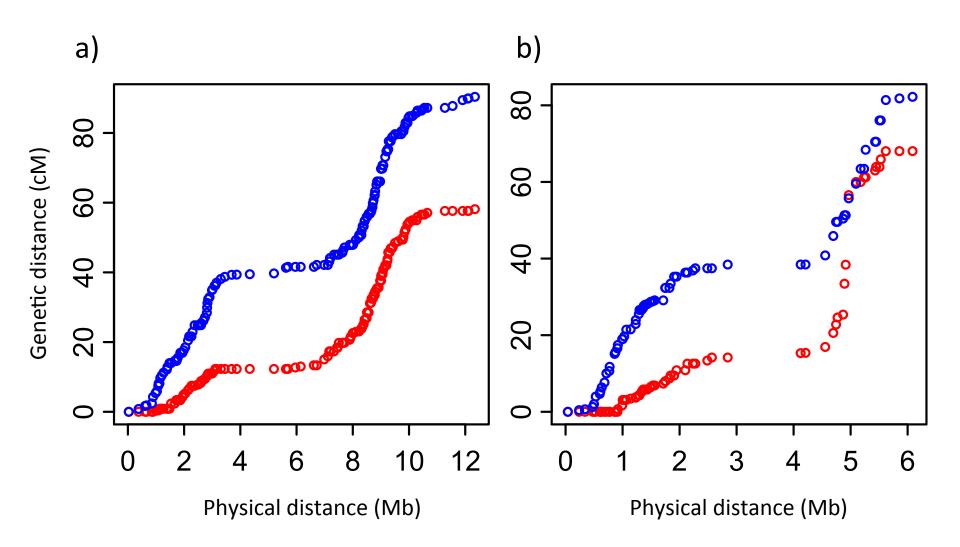

LGE Fal Fal Fal 22 34 35 36 A Ħ

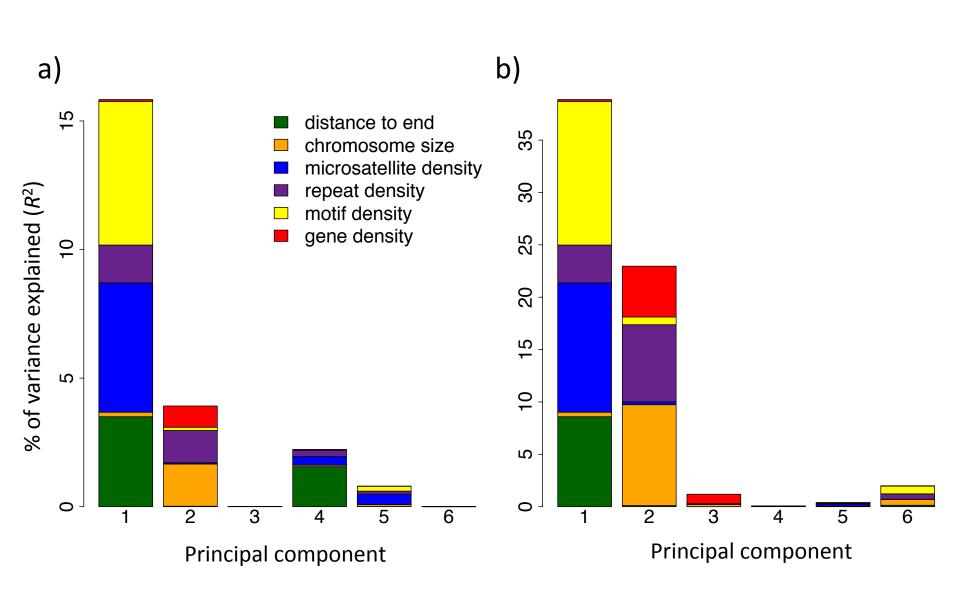

Ζ

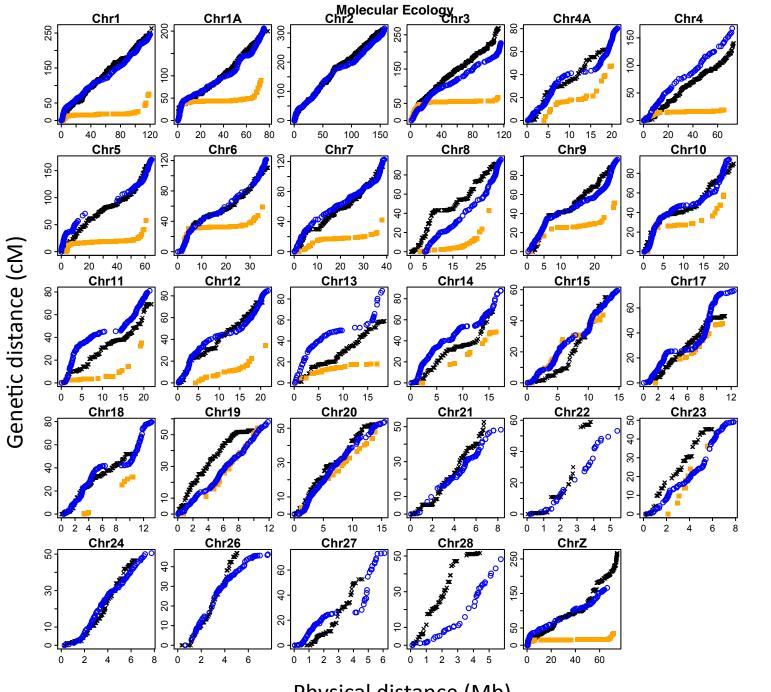
₿


22 23


Page 55 of 62






Chromosome

Page 62 of 62

Physical distance (Mb)