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Background 
Today, there is a growing demand for natural gas/LNG as an energy source, though there is 
considerable uncertainty related to future demand. According to the International Energy 
Agency, the global use of natural gas will increase by more than 50% from 2010, and will account 
for 25% of global fuel consumption by 2035.  
 
Primary Objective  
The overall objective of the thesis is to develop a model that can help decision makers to design a 
profitable supply chain for an uncertain future gas demand, focusing primarily on the facility 
location problem. A part of the objective will also be to examine the value of implementing the 
uncertainty into the model formulation.  
 
Scope of work 
The thesis shall presumably cover the following main points:   

1. A brief presentation of the supply chain for natural gas, with a focus on LNG 
2. Provide relevant literature on both deterministic and stochastic location analysis 
3. Develop a deterministic facility location model. 
4. Develop a stochastic facility location model. 
5. Test the models on relevant data. 
6. Discuss the models and results. 
7. Find the value of the stochastic model 
8. Analyze the sensitivity of the problem specific constraints and parameters 

 
Implementation  
Professor Stein Ove Erikstad will be the main supervisor from NTNU, and Professor Kjetil 
Fagerholt will be the co-supervisor. The work shall follow the guidelines made by NTNU for 
project work. The workload shall correspond to 30 credits, equivalent to one semester.  
 
 
 
 
 
 
 
 
 
Stein Ove Erikstad 
Professor/Main Supervisor  
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

This page is intentionally left blank 



 I 

ABSTRACT 

According to the International Energy Agency, the global use of natural gas will increase 

dramatically in the next two to three decades. Due to factors ranging from national and 

international energy market regulations to availability of energy and economical growth, 

there is a high degree of uncertainty in these predictions concerning how the natural gas 

demand will develop in the future. 

 

This thesis looks specifically at how to optimize the profit of a gas distribution company 

through development of distribution centers along the Norwegian coastline, given 

different scenarios for future demand. Both the amount of distribution centers to be 

constructed, their locations and capacity are considered. The distribution methods are 

limited to shipping between liquefaction plants and distribution centers, and subsequent 

truck transportation to end-customers. A deterministic model with one aggregated 

demand scenario and a stochastic model with three different scenarios are presented, 

implemented and compared.  

 

Due to the high flexibility in the problem, where it is possible to expand and construct 

new distribution centers throughout the lifetime of the project, it is found that the 

difference in achieved profit between the stochastic and deterministic solution is 

insignificant in most cases. Only when the low or high demand scenarios are heavily 

weighted in the probability distribution does the use of a stochastic model become 

valuable in certain cases. Tests show that the usefulness of the stochastic model, 

compared with the deterministic model, increases when the flexibility decreases, and vice 

versa.  
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 II 

SAMMENDRAG  

Prognoser gitt av det internasjonale energibyrået viser at den globale bruken av naturgass 

vil øke dramatisk de neste tretti årene. Det er allikevel flere usikkerhetsmomenter knyttet 

til hvordan denne etterspørselen vil utvikle seg, der økonomisk vekst, tilgjengelige 

energikilder og nasjonale og internasjonale forskrifter innenfor energimarkedet er 

påvirkende faktorer. 

 

Denne masteroppgaven handler om hvordan man kan optimalisere fortjenesten i et 

gassdistribusjonsselskap ved å opprette distribusjonssentere for LNG langs norskekysten, 

gitt ulike scenarier for den fremtidige etterspørselen. Både antall distribusjonssentre som 

skal bygges, geografisk plassering og størrelse er ukjente variabler som skal vurderes. 

Distribusjonsmetoden er begrenset til skipsfrakt mellom LNG-produksjonsanlegg og 

distribusjonssenter, og lastebiltransport fra distribusjonssenter til sluttkunder. Det er 

både utviklet en deterministisk modell med et gjennomsnittlig etterspørselsscenario og en 

stokastisk modell som tar hensyn til tre ulike etterspørselsscenarioer. 

 

Grunnet den høye fleksibiliteten i problemet, i form av muligheten til å opprette og 

utvide distribusjonssentere, viser det seg at forskjellen mellom oppnådd profitt for en 

stokastisk og deterministisk løsning er begrenset i de fleste tilfeller. Tester viser likevel at 

det i enkelte tilfeller, der sannsynligheten er stor for enten et høyt eller lavt 

etterspørselsscenario, er gunstig å bruke en stokastisk modell. 

 

Ved å endre på faktorene som avgjør modellens fleksibilitet, som for eksempel å korte 

ned på lede-tiden for opprettelse av distribusjonssentere, vil også nytteverdien av den 

stokastiske løsningen bli påvirket. En lavere fleksibilitet, i dette eksempelet høyere lede-

tid, gjør den stokastiske løsningen mer verdifull, mens en høyere fleksibilitet gjør den 

mindre verdifull.  
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PREFACE 

This master thesis has been written during spring 2014 at the Department of Marine 

Technology, Norwegian University of Science and Technology (NTNU). The overall 

objective of the thesis is to develop a model that can help decision makers to design a 

profitable supply chain for an uncertain future gas demand, using operational analysis. 

The objective in the thesis is form by me, in cooperation with my supervisors. The work 

is a continuation of my project thesis from the autumn 2013.  

 

Working on this master thesis has been rewarding for both my professional and personal 

development. To work that hard on one single task over a long period of time has given 

me personal insight, where one example is that my gut feeling always has told me when 

something is wrong and needs to be studied further. I have also learned that it is very 

difficult to discover minor errors in a complicated model when working alone. 

 

I would like to thank my supervisor Professor Stein Ove Erikstad and co-supervisor 

Kjetil Fagerholt at the Department of Marine Technology and the Department of 

Industrial Economics and Technology Management respectively for all the guidance and 

valuable discussions throughout the last two semesters. I would also like to thank Morten 

Christophersen at Connect LNG for giving me a better understanding of the natural gas 

market. Lastly, I would like to thank Kristina Marki for providing linguistic guidance 

throughout the thesis.  
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1 INTRODUCTION 

In 2011, The International Energy Agency (IEA) presented something they called "GAS 

Scenario", which states that the global use of natural gas will increase by more than 50% 

from 2010 and will account for 25% of global fuel consumption by 2035. This claim 

depends upon various factors such as international and national regulations in the energy 

market, the availability of energy and the global economical growth (IEA (2011)). Figure 

1.1 show the global natural gas demand by scenarios, where different policies influence 

the demand. The figure below illustrates the global growth in demand, but the trend is 

also applicable for Norway. The demand in Norway has increased with 500% from 2004 

to 2011, and is according to Haugland, Yttredal et al. (2013) expected to raise to over 

1400% in 2016.  

 

 
Figure 1.1 Worlds natural gas demand by scenario, IEA (2010) 

 

There are two important observations to be made from this graph. Firstly, that the 

demand for natural gas could potentially increase a lot. Secondly, that the demand is 

uncertain and varies considerably between scenarios.  

 

The current demand in countries such as Norway is generally satisfied by transporting 

the natural gas as Liquefied Natural Gas (LNG) from production location to the end-

customer. This is probably a good transportation solution as long as the demand is at the 

present level, but this can change if the demand increases sharply. 

180 World Energy Outlook 2010 - GLOBAL ENERGY TRENDS

Demand 

Primary gas demand trends

To say that natural gas is entering a golden age may be an exaggeration, but it is 
certainly set to play a central role in meeting the world’s energy needs for at least 
the next two-and-a-half decades. Global natural gas demand grows across the three 
scenarios, especially after 2015, though the rates of growth are markedly different, 
reflecting the differing impact of government energy and environmental policies. 
Nonetheless, demand is significantly higher in 2035 than in 2008 in each scenario 
(Figure 5.1). In the New Policies Scenario, demand growth slows progressively over 
the Outlook period, total demand reaching 4.5 trillion cubic metres (tcm) in 2035 
(Table 5.1) — an increase of 1.4 tcm, or 44%, over 2008 and an average rate of increase 
of 1.4% per year. Demand grows more quickly — by 1.6% per year — in the Current 
Policies Scenario, attaining 4.9 tcm by 2035, with only a modest slowdown in the rate 
of demand growth towards the end of the projection period. In the 450 Scenario, gas 
demand peaks towards the end of the 2020s and then begins to decline, reaching
3.6 tcm in 2035 — a 15% increase over 2008 but about 5% down on its peak. In fact, gas 
is the only fossil fuel for which demand is higher in 2035 than in 2008 in this scenario. 
The share of gas in overall primary energy demand worldwide rises marginally over 
the projection period in the Current and New Policies Scenarios, but falls slightly after 
2025 in the 450 Scenario, as the market penetration of renewables and nuclear power 
increases.

Figure 5.1 z  World primary natural gas demand by scenario
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There is only a modest difference in gas demand growth rates across the three scenarios 
in the period to 2015, with global demand in every case recovering steadily following 
a drop in demand in 2009 — the biggest since the 1970s. According to preliminary 
data, demand in 2009 plunged by around 2% as a result of the global economic crisis, 
the decline occurring mainly in the OECD (averaging more than 3%). Trends diverged 
more in non-OECD countries, with demand plummeting in Russia, but continuing to 
grow strongly in China, India and the Middle East. In the OECD and Russia, demand 
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An alternative transportation solution, given sharply increased demand, is to expand with 

an additional transportation step. Instead of transporting directly to end-customers, it is 

reasonable to transport large quantities to distribution centers, and then transport it 

further to the end-customer. In this way one can take advantage of economies of scale by 

transporting large quantities in one batch. Distribution centers will herby be referred to 

as import terminals.  

 

In a large market, locating these import terminals represents a major challenge, 

considering the number of different variables that exist in the problem and the cost 

incurred by not locating terminals at the most profitable place. Imagine the complexity of 

this decision: you have a market where you have to decide the location, the quantity and 

capacity of these terminals, in addition to various companies to buy the gas from and 

hundreds of customers. This kind of location problem, with all its variables and 

parameters, can be optimized in an optimization model using proper assumptions and 

constraints. 

 

The main scope in this thesis is to develop a model that can help decision makers to 

design a profitable supply chain for scenarios with an uncertain future gas demand, 

focusing on the location of potential import terminals. The idea is that this model shall 

be able to design a more profitable supply system for the uncertain future, better than 

the human gut feeling or simple spreadsheet calculations are able to design. A part of the 

scope will be to examine the value of implementing the uncertainty into the model 

formulation. 

 

LNG transportation is defined as the transportation method, due to the relatively low 

demand of natural gas in Norway, the rough vegetation and the fact that customers are 

spread over a large geographical area. This will be presented in detail in the background 

chapter.  

 

The thesis is structured concerning the main scope. Chapter 2 gives an understanding of 

the different components of the supply chain, while Chapter 3 provides literature 

relevant to the problem. Chapter 4 limits and defines the problem in written form, while 

Chapter 5 presents both a deterministic and stochastic mathematical formulation of the 
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problem. Chapter 6 analyzes the problem and discusses and validates the model 

developed in Chapter 5. Chapter 7 presents a post analysis of the problem, where the 

sensitivity of problem specific constraints and parameters are tested. The concluding 

remarks are presented in Chapter 8, whilst suggestions for further work are presented in 

Chapter 9. 
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2 BACKGROUND 

It is necessary to understand the supply chain of LNG in order to be able to model it. 

The focus in this chapter is to get the necessary understanding of natural gas, LNG and 

its supply chain. This information will be used to form the problem description, 

mathematical formulations and computation study in later chapters. The process of 

collecting information has been challenging, because of all the secrecy in the industry. 

The information presented in this chapter is therefore considered to be my 

understanding of the LNG supply chain. 

2.1 NATURAL GAS 

Sakmar (2013) describes natural gas as a "Bridge Fuel" which, despite its status as fossil 

fuel, acts as a step towards more usage of renewable energy sources. Natural gas is widely 

considered as a cleaner alternative to oil and coal and was in a official statement from the 

Norwegian Energy Committee (Stortinget (2001)), noted as an important step in the 

transformation of energy production and consumption in Norway. Natural gas consists 

primarily of methane and pollute far less than oil and coal. The numbers in Table 2.1 

below show the emission relative to natural gas and confirm this statement. 

 

Table 2.1 Air pollutants relative to natural gas, modified from Energy Information Administration (1999) 

Pollutant Symbol Natural Gas Oil Coal 

Carbon Dioxide CO2 1 1.4 1.8 

Carbon Monoxide CO 1 0.8 5.2 

Nitric Oxide NOX 1 4.9 5 

Sulfur Dioxide SO2 1 1122 2591 

Particles - 1 12 392 

Mercury Hg 0 0.007 0.016 

 

All natural gas in Norway is retrieved from the Norwegian continental shelf, where 

pipelines export the gas to onshore processing facilities. Figure 2.1 shows the natural gas, 

represented by green lines, which is either re-distributed in pipelines as natural gas to 

end-customers or transformed to LNG. According to Taran Fæhn, Cathrine Hagem et 
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al. (2013), two-thirds of all international gas trade goes via pipelines and is considered as 

the cheapest and safest form of transport for markets with high demand.  

 

 
Figure 2.1 Natural Gas (NG) and LNG supply chain, modified from SINTEF, MARINTEK et al. (2002) 

 

Norwegian gas production started in 1977 and has increased steadily in production 

volume ever since. Unlike oil production in Norway that peaked in 2000, the Norwegian 

gas production is still increasing. Norway produced over 114 millions Sm3 in 2012, 

divided between 63 different fields, according to SSB (2013). This is 28% more than total 

oil production the same year and is equivalent to 717 billion barrels of oil. 

2.2 LIQUEFIED NATURAL GAS  

LNG is natural gas cooled to a temperature below -163°C. When the gas is cooled to this 

temperature the gas condenses into a liquid at atmospheric pressure and reduces its 

volume to 1/625 of the volume of natural gas, making it attractive to use in 

transportation. Several undesirable substances are removed from the gas before it is 

considered as LNG, a process called liquefaction. LNG is a clear, colorless and odorless 

liquid that is neither corrosive nor toxic. 

 

A lot of the expected increase in consumption of LNG in Norway is due to the new 

emission restrictions for the European Emission Control Area (ECA) that will be 

introduced from 2015. ECA include the North Sea (south of 62 degrees latitude), the 
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English Channel and the Baltic Sea. One of the new emission restrictions applies to the 

maximum sulfur level in the fuel at 0.1%, which in practice corresponds to the purest 

distillate quality of marine diesel. LNG as fuel makes sure that you are below this limit.  

 

In addition to the new emission restrictions, financial support from the NOx-foundation 

is a major reason for the increased consumption of LNG in Norway. Figure 2.2 show 

predicted LNG consumption in Norway until 2017, where the consumption has grown 

to approximately 425,000 ton LNG. The two green areas illustrate the share of 

consumption with financial support from the NOx-foundation. 

 

 
Figure 2.2 LNG consumption in Norway 2004-2017, modified from Haugland, Yttredal et al. (2013) 

 

While reduction in volume is the key benefit for LNG, capital investment in 

infrastructure, distribution cost and energy loss is considered as the biggest challenges in 

the LNG market today. It is difficult to get someone to invest in LNG carriers (sea 

transport) as long as it does not exist import terminals, and vice versa. This problem is 

often illustrated in the industry by the “chicken or egg”-riddle. The distribution cost of 

LNG is more expensive than transporting other fossil fuels. The reason for this is that it 

requires more advanced technology and expertise to process LNG. The energy loss is 

also large when transferring LNG from one storage device to another, so fewer links in 

the supply chain is preferred. 
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According to Haugland, Yttredal et al. (2013), the Norwegian LNG market is organized 

in a way that prevents new operators to arise. New operators need to build their own 

infrastructure to compete in an existing operators area. This requires large extra capital 

cost, which in practice makes it impossible to compete against established operators. 

They are also stating that the LNG prices are confidential between sellers and byers in 

Norway, something that undermines the trust to LNG as an energy alternative. Table 2.2 

presents the average LNG prices in Norwegian industry and mining from 2009 to 2011. 

These prices are higher than European gas prices. The gas prices will also vary between 

end-customers because of the variation in transportation distance and requested volume.  

 

Table 2.2 Average retail price for gas in industry and mining, modified from SSB 2013 

 2009 2010 2011 

Liquefied Natural Gas [NOK/m3] 1,753  2,277  2,233  

 

2.3 THE SUPPLY CHAIN OF LNG 

Christopher (2005) defines supply chain management as “the upstream and downstream 

relationships with suppliers and customers in order to deliver superior customer value at less cost to the 

supply chain as a whole”, where the supply chain represents the different processes of a 

product, from raw material to final delivery at end-customer. 

 

Sakmar (2013) limits the LNG supply chain to involve the processes shown in Figure 2.3, 

where the natural gas arrives from a gas field to a LNG production facility, called 

liquefaction plant. The natural gas that arrives at the plant contains a variety of gases and 

liquids, including propane, water and oil that is removed in a process called gas 

treatment. The process of cooling the gas to LNG, called liquefaction, can start when all 

undesirable gases and liquids are removed. After the liquefaction process, the gas is 

stored and transported as LNG until it arrives at a regasification terminal where the 

LNG is converted back to natural gas. The LNG can either be transported directly to 

end-customers where the LNG is converted back to natural gas, or it can be transported 

via an import terminal where the gas is stored and re-distributed with trucks to end-

customers before the liquid is converted back to gas. 
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Figure 2.3 LNG Supply Chain, GIIGNL (2009) 

 

The process above is a simple description of the LNG supply chain based on Sakmar 

(2013), where the gas is converted to LNG from natural gas and back again. The 

following subsections will go trough the different kinds of infrastructure that is needed 

to facilitate this LNG supply chain. 

2.3.1 LIQUEFACTION PLANTS 

There are currently four liquefaction plants in Norway. Table 2.3 show an overview of 

these facilities, their names, geographic location, owners and production capacity. The 

total LNG production in Norway is approximately 4.6 million tons per year, where 

Statoils plant in Hammerfest accounts for nearly all production. This is a very small 

amount compared to the overall LNG production in the world of approximately 279 

million tons per year. There are 13 countries in the world that produce more LNG than 

Norway, according to Haugland, Yttredal et al. (2013). The table below shows that 

liquefaction plants can be owned by distribution companies such as Gasnor, Skangass 

and oil and gas companies such as Statoil.  

 

Table 2.3 Liquefaction facilities in Norway, Haugland, Yttredal et al. (2013) 

Name  Municipal Owner  Production capacity 
[103 ton/year] 

Snurrevarden  Karmøy Gasnor 20 

Kollsnes Øygarden Gasnor 120 

Stavanger Stavanger Skangass 300 

Melkøya  Hammerfest Statoil et. 4,200 
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The production facility at Melkøya in Hammerfest is at the moment the only large-scale 

production facility in Europe and delivers most of its gas to customers in Spain and 

USA.  

2.3.2 IMPORT TERMINALS 

It is common that the cargo-owner, in this thesis referred to as gas distribution 

companies, is responsible for the capital investment and operation of the import 

terminals. The capital cost is not possible to standardize due to large variation in existing 

infrastructure. Capital cost for an import terminal can vary with 100 million NOK due to 

these variations, according to calculation done by ConnectLNG (2013). The capital cost 

consists of the storage capacity cost and LNG infrastructure cost, where LNG 

infrastructure consists of equipment such as jetty construction and pipelines. The storage 

cost varies with the size of capacity and the LNG infrastructure cost is approximately 

fixed. DMA (2011) points out that studies show a big economy of scale in the LNG 

terminal business, based on the non-linearity of storage capacity cost. A small import 

terminal with 700m3 LNG storage capacity is for instance 1000% more expensive per 

cubic meter than a import terminal with 20,000m3 LNG storage capacity (Lindfeldt 

(2011)). 

 
Figure 2.4 Import terminal capital cost 

 

Figure 2.4 shows a simplification of the total capital cost for import terminals, where b 

represents the fixed LNG infrastructure cost. Economy of scale is clearly illustrates by 

the concave non-linear function.  
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It can take between two to four years to complete construction of an import terminal. 

The reason why this process is so time consuming is because of the variations in existing 

infrastructure and authorizations from the authorities. The lifetime for import terminals 

is estimated to 40 years, according to Lindfeldt (2011).  

2.3.3 CUSTOMER TERMINALS 

It exists more than 50 independent systems adapted to individual customer needs. All 

facilities receive LNG from either LNG carriers or trucks. It was registered four 

refueling facilities for ships along the Norwegian cost in 2011. Three of these were 

exclusively for the oil service bases. (Haugland, Yttredal et al. (2013)) 

 

These terminals are usually located at the end-customer. The customer terminal is in 

some situations shared between two companies. The storage capacity of these terminals 

varies between 100 m3- 2000 m3 and the construction time can take up to one year from 

planning start to finish. The construction cost is not large compared to the rest of the 

supply chain. Every end-user needs a costumer terminal to convert the LNG back to 

natural gas. (Rollefsen (2014)) 

2.3.4 SHIP TRANSPORT 

Ship transport is particularly suitable in a distribution strategy where large volumes of 

LNG is transported from liquefaction plants to import terminals and further to end-

customers with truck transport or for end-customers with significant demands and own 

import terminals that make them independent of further distribution (MARINTEK 

(2005)). Figure 2.5 shows the intersection between when it is profitable to transport 

natural gas in pipelines and as LNG by ship. A simple rule of thumb is that gas is 

transported as natural gas in pipelines when the volume is large and the distance is short 

and that the gas is transported as LNG when the volume is small and the distance is 

long. 
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Figure 2.5 Pipelines versus ship transport, modified from SINTEF, MARINTEK et al. (2002) 

 

Distribution of LNG with ships is a specialized market within ship transport. LNG 

carriers are characterized as ships with advanced tank design and cargo handling systems. 

According to SINTEF, MARINTEK et al. (2002), the market is characterized by few 

stakeholders, economy of scale, long-term freight agreements and a difficult second hand 

market. 

 

SINTEF, MARINTEK et al. (2002) further argues that time chartering is the most 

common type of agreement within this type of shipping. This is an agreement between 

ship-owner and cargo-owner where cargo-owner dispose the ship over a given interval, 

usually long-term in LNG transportation. Time charter implies that cargo-owner 

determines the usage of the ship, while ship-owner provides operation and manning. The 

capital- and operational cost is covered through a fixed time charter rate. The cargo 

owner is in addition to the charter rate cost, paying for the bunker fuel and port costs. 

Strand (2013) has made a cost estimation sheet for cargo owners with the LNG carrier 

Coral Energy as example. This shows that the time charter cost generally is determined in 

advance due to long-term contracts and represents the major expense, while bunker fuel 

and port fees vary with the operation pattern. Simple calculations in the cost estimation 

sheet indicates a cost distribution where time charter rate cost counted for 61% of the 

cost, bunker cost counted for 23% and port cost counted for 16%.  

2.3.5 TRUCK TRANSPORT  

Distribution of LNG by truck is said to be cost efficient for regions with low demand or 

regions close to a liquefaction plant (MARINTEK (2005)). The LNG trucks are typically 

owned and operated by the gas distribution companies. Norways biggest gas distribution 

company, GASNOR, operate with two cost rates for truck distribution. Short round 
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trips up to 150 km are charged with 30 NOK/km and long round trips up to 1000 km 

are charged with 18 NOK/km (Ameln (2014)). These transportation rates include capital 

cost and operational cost for the trucks. The transportation rates above assume fully 

utilization for each truck. The lifetime for a truck is estimated to 10-15 years (Ameln 

(2014)). 
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3 LITERATURE 

This chapter presents contributions within the field of operational analysis, relevant for 

this problem. The problem outlined in the introduction is about locating import 

terminals given an uncertain future LNG demand. This problem can from an 

optimization point of view be considered as a facility location problem/location analysis 

with uncertainty. ReVelle and Eiselt (2005) states that “The term Location Analysis refers to 

the modeling, formulation and solution of a class of problems that can best be described as siting facilities 

in some given space”. The facility location literature can be divided into single-, two- and 

multi-echelon problems. The difference between these problems is depicted in Figure 3.1 

to Figure 3.3, where the distribution flow is illustrated by production facilities (PF), 

distribution-centers (DC) and end-customers (EC). A single-echelon facility location 

problem has one transportation link, a two-echelon facility location problem has two 

transportation links and a multi-echelon facility location problem has more than two 

transportation links.  

 

 
Figure 3.1 Single-echelon 

 
Figure 3.2 Two-echelon 

 
Figure 3.3 Multi-echelon 

 

The chapter is divided into four parts, where the first part is about understanding a 

single-echelon facility location problem, by explaining the model in detail. The second 

part is about relevant deterministic location analysis literature for single-, two and multi-

echelon problems. The third part is focused on how to incorporate the uncertainty into 

the model formulation. The last part is about relevant location analysis for single- and 

multi-echelon problems with uncertainty.  
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3.1 A FACILITY LOCATION PROBLEM 

Lundgren, Rönnquist et al. (2010) formulates a single-echelon facility location problem as 

a problem of choosing a number of facilities ! and from these, support a number of 

costumers ! . Each facility !  has a given capacity !!  and each costumer has a given 

demand !!. Costs that are included in the problem are fixed capital cost !! and a unit 

cost !!" for transportation between facilities ! and customers !. There are defined two 

different variables, y! != 1 if facility ! is constructed, and 0 otherwise. Variable !!" is the 

number of units transported between facility ! and customer !. 
 

Minimize ! !!"!!"
!

!!!

!

!!!
+ ! !!y!

!

!!!
 

(3.1) 

 

Subject to 

  

!!"
!

!!!
≤ !!!! 

! = 1, . . ,!!(!"##$%) (3.2) 

!!"
!

!!!
= !! !! 

! = 1, . . , !!(!"#$%&) (3.3) 

!!" ≥ 0 ! = 1, . . ,!; !! = 1, . . , !! (3.4) 

!! ∈ 0,1  ! = 1, . . ,! (3.5) 

 

Equation (3.1) describes the objective function of the facility problem. The objective 

function minimizes the total cost, where the total cost is divided into transportation cost 

and capital cost. Equation (3.2) is a capacity constraint that ensures that the transported 

quantity from a terminal does not exceed its given capacity. Equation (3.3) ensures that 

every costumer !  receive its demand !! . Equation (3.4) ensures non-negativity for 

variable !!" and equation (3.5) ensures that y! is binary. 

 

Figure 3.4 illustrates the solution of a simple facility location problem, where the circles 

represents customer with a given demand !! and the squares represents the potential 

facilities y!  with the given capacity !! . It is assumed that all seven customers are 

demanding one unit and all potential facilities have a capacity of seven units. The 
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solution in the figure shows that two facilities are constructed, although it is enough to 

construct one. This means that it is cheaper to construct two terminals and shorten the 

transportation distance, than construct one terminal and increase the transportation 

distance. 

 

 
Figure 3.4 Single Echelon Facility Location Problem, example 

 

The facility location problem above is a good example on how to formulate facility 

location problems, where transportation cost, capital cost, facility capacity and customer 

demand are considered. The number of transportation links is one major difference 

between this problem formulation and the problem in the thesis, where it is required 

transportation between liquefaction plants and import terminals and between import 

terminals and end customers.  

3.2 LOCATION ANALYSIS UNDER CERTAINTY 

3.2.1 SINGLE-ECHELON 

Deterministic location analysis is, according to Owen and Daskin (1998), the most basic 

location analysis. With regard to deterministic, they mean problems that take constants 

and known quantities as input to make one single solution at one point in time. One of 

the first studies on location analysis was done by Weber (1909), where he tried to 

minimize the total distance between one single warehouse and several customers. Due to 

lack of computer power it took over fifty years until this field of study got attention 

again.  
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Cooper (1963) splits a general location problem into three known and three unknown 

values. The given values are customer location, demand and transportation cost for a 

given area. The values to be determined are the location, capacity and number of 

facilities. Cooper assumes that the facilities have no capacity limitation and that the 

transportation unit cost is independent of the total amount transported to each facility in 

his model.  

 

Feldman, Lehrer et al. (1966) writes about non-convex warehouse location involving 

geographic location and size of facilities in a distribution system. The focus in his paper 

is the non-convexity of facilities due to economies of scale in construction and operation. 

The article develops a heuristic to solve this problem and make use of a concave 

function to represent the economies of scale. One of the important results in the paper is 

that the optimal size and location of the facilities are very sensitive with respect to the 

concave cost function. 

 
ReVelle and Swain (1970) developed a model that designates p of n society as centers 

(facilities) for themselves and other communities. The objective function in the model 

minimizes the average distance each person has to travel to get to the p facility. The 

paper focuses mainly on the location of p number of facilities, but it also discusses ways 

to implement an indefinite number of facilities into the model. This can be done by 

removing the p facilities-restriction and add a binary variable and a cost for each facility 

in the objective function. Hakimi (1964) did something similar when he introduced the 

P-median problem by minimizing the total distance between costumers and their closest 

facility to find the optimum location of a “switching center” in a communication 

network and to locate the best place to build a police station in a highway system. 

 

Current, Min et al. (1990) classifies model formulations in a location problem into 

different categories. Cost minimization is the first category, where the P-median problem 

and set-covering problem represent this category. The P-median problem formulates a 

way to find the location of P facilities by minimizing the demand-weighted 

transportation distance between the demanding nodes and the potential facility sites. 

This problem formulation is used to locate a variety of both public and private facilities. 

The set-covering problem minimizes the cost of locating facilities, given that all nodes 

are within an acceptable distance from minimum one facility. This problem formulation 
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is applicable for problems such as locating fire stations or ambulances. The second 

category is demand-oriented formulations, where the objective is to optimize the demand 

served. The maximal covering problem is an example of this type of problem where the 

objective is maximizing the amount of demand covered. This forces the decision maker 

to prioritize his resources and is best suited as formulation in the public sector, where the 

goal often is to serve as many customers as possible. The third category is well suited for 

the problem in the thesis, where the objective is to maximize profit. A max profit 

objective function will for example consist of income from sale and costs consisting of 

capital and transportation costs. This model formulation has no requirement to fulfill a 

certain demand and serves only the customers that give positive profit.  

3.2.2 TWO- AND MULTI-ECHELON 

Tragantalerngsak, Holt et al. (2000) deals with the development of a branch and bound 

algorithm for the two-echelon, single-source, capacitated facility location problem 

(TSCFLP), where the objective is to serve all customers at minimum cost by locating 

both the potential facilities (production facilities) and potential depots (distribution 

centers). Each potential depot can only be served by one facility and each customer can 

only be served by one depot. The main focus in the paper is to develop a Lagrangian 

relaxation-based branch and bound algorithm to shorten the computational solution 

time. 

 

Hinojosa, Puerto et al. (2000) are using Lagrangean relaxation and heuristic to solve a 

two-echelon multicommodity capacitated plant location problem. The models objective 

is to minimize the total cost for meeting all demand from every customer over a given 

time horizon, by locating both the potential production facilities and potential 

distribution centers. The computational study showed that the developed heuristics 

preformed well in a wide range of problems, measured by solution time and optimality 

gap.  

 

Romeijn, Shu et al. (2007) developed a deterministic two-echelon problem, which 

considers inventory planning and supply chain network design. They treat uncertainty at 

the retailer by including a safety stock at both the retailer and the distribution center to 

achieve suitable service levels. They proposed to use column generation to deal with the 

exponentially large number of variables.  
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3.3 STOCHASTIC PROGRAMMING 

Sensitivity analysis is used in deterministic linear programming models to study the 

robustness for a solution when data change, and can tell you how much data can change 

before the optimal solution change. But what if the data is uncertain and the solution is 

sensitive to changes? Deterministic what-if- and scenario analysis are used to handle 

these kinds of questions. But the solutions for these analysis are still solved with 

deterministic data and do not account for an uncertain future in their models. Stochastic 

programming on the other hand account for these issues in the modeling and is 

according to Midthun (2009) about decision making under uncertainty. King and Wallace 

(2012) states that the core in stochastic programming is about modeling what might 

happen and how to handle each and every situation, while deterministic models do not 

say anything about what to do when parameters are not as expected.  

 

The facility location problem in Figure 3.4 illustrated a solution to a deterministic single-

echelon facility location problem. In the example, we assumed a known customer 

demand. But what if the demand was uncertain? A deterministic way to adapt to this 

uncertainty is to solve for the worst-case scenario. This method will keep the costs down, 

but is a poor solution if a high demand scenario occurs. A stochastic way to adapt to the 

uncertainty is to solve the model with respect to all scenarios. The result will be a 

solution that has facilities well positioned against all scenarios, called a robust solution. 

Mulvey, Vanderbei et al. (1995) defines robust solutions as solutions for a system that is 

“close” to optimal for all scenarios of the input data. 

 

One fundamental assumption in stochastic programming is that we know a probability 

distribution of the uncertain parameters. Midthun (2009) assumes that a joint probability 

distribution can be constructed as a discrete approximation, called scenario approach. 

According to Midthun (2009), this this approach assumes that there is a finite number of 

decisions that nature can make. Vanston Jr, Frisbie et al. (1977) describes a 12-step 

scenario generation technique to obtain scenario sets. 

 

Higle and Wallace (2003) points out the importance of a more thoughtful approach to 

model development when faced with uncertainty in the demand. The model needs to 

capture the relationship between the point in time we make decisions and the times the 
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demand is known. Stochastic programming with a recourse model is appropriate model 

formulation if one has to take a decision before the demand is known (Higle (2005)). The 

term “recourse” is according to Higle (2005) “the opportunity to adapt a solution to the specific 

outcome observed”. A recourse decision will therefor come after new information about the 

uncertain parameters is known. Figure 3.5 below shows a classic sales example where 

stochastic programming and the recourse model are used. Stage 0 is where to decide the 

production quantity of a product. The first stage is where the information about the 

demand is revealed and one of the three demand scenarios is reality. It is important to 

distinguish between time periods and stages. While stages are where it is natural to 

commit decisions because of new information, time periods is a way to monitor the time.  

 

 
Figure 3.5 Scenario tree describing a stage structure, King and Wallace (2012) 

 

Midthun (2009) summarizes the pros and cons for stochastic recourse models with two- 

and multiple stages. The pros for a two-stage structure are that you can add more details 

to the model and use many scenarios, due to the simplicity of the structure. The con is 

the rough representation of the information. The opposite is true for the multi-stage 

structure that represents the information in a good way but have problems with the 

algorithm and the solution time that grows exponentially.  

 
Birge (1982) introduce a method to measure the value of solving stochastic programming 

instead of deterministic programming. The quantity is called value of the stochastic 

solution (!"") and is shown in equation (3.6), where !"" is the value of the stochastic 

solution for a maximization problem, !" is the solution of the stochastic programming 

and !!" is the expected results of using expected value solutions. In a two-stage model 

with three different demand scenarios and equal probability, expected value solutions 

(!" ) are the solution you get when you use the average demand to calculate a 

1.2 The News Mix Example 7

It only makes sense to distinguish two points in time as different
stages if we observe something relevant in between.

“Observing something relevant” must be widely understood. If we hope to
receive some data before Tuesday morning but they do not arrive, then that
is, of course, information: we now know the data did not arrive, and so we
must do without them.

The importance of stages was not so easy to see in the deterministic version
of the news mix model (1.1). However, when we implemented the particular
solution x̄ and saw what happened when demands became known on any given
day, then it became clear that there were in fact two stages, as illustrated by
the event (or scenario) tree in Fig. 1.1.

In stage 0, orders are placed. In stage 1, after the demand for newspapers
has become known, we determine what can be sold. With the two stages in
place, it seems rather clear that letting the same variables represent both
orders and sales is not a very good idea. Because that is what happened: the
variables were interpreted as order ratios, but some of the constraints referred
to sales. In a deterministic setting, you will never order something that cannot
be sold, so using the same variables for orders and sales makes some kind of
sense.

In a deterministic world you will never buy or produce something
you will never need. This often leads to models with structures that

do not even allow meaningful sensitivity analysis.

Prod

demand 1

demand 2 demand 3

Stage 0

Stage 1Sales
3

Sales
2

Sales
1

Fig. 1.1: Event (or scenario) tree describing a stage structure for news mix
example

We have already noted that (1.1) is reasonably well defined in a deter-
ministic environment. We have also noted that it produces rather strange
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deterministic solution, and use this solution in the first stage of the stochastic model as 

fixed parameters and solve it for all demand scenarios in second stage. The !!" is then 

the average of these three solutions. The value of the stochastic solution increases with 

the size of the !"". The deterministic solution is as good as the stochastic solution if the 

!"" reaches zero. 

 

!"" = !" − !!" (3.6) 

 

While the !"" is a measure on how good the stochastic solution is, the value of perfect 

information (!"#$) represent the loss of profit due to the presence of uncertainty (Birge 

and Louveaux (2011)). Equation (3.7) shows the !"#$ where !" is the wait-and-see 

solution where the calculation is done deterministically with perfect information. The 

!"#$ is a good measure when it is possible to reveal more accurate information, whilst 

the !"" is according to Birge (1982) is more pertinent for decision makers when its not 

possible to gather more information about the future. 

 

!"#$ = !" − !" (3.7) 

 

3.4 LOCATION ANALYSIS UNDER UNCERTAINTY 

3.4.1 SINGLE-ECHELON 

Snyder (2006) writes in her review that locations are generally first-stage decisions and 

the assigning of customers to facilities are second-stage, recourse decisions. The author 

points out that if both decisions happen in first stage, the model can be reduced to a 

deterministic model by replacing the uncertain parameter with its mean. 

 

Louveaux (1986) study how to transform deterministic location models into two-stage 

stochastic models with recourse when uncertainty on parameters is introduced, including 

uncertainty on demand. Location and size of facilities are first-stage decisions, while the 

distribution of produced goods to the most profitable demand locations is the second-

stage decision. He introduced a penalty variable in the demand constraints and objective 

function as a “slack” variable to unmet demand. It can be hard to define the penalty cost 
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parameter since the cost of not meeting demand can be a lot more than just the loss in 

profit. 

3.4.2 MULTI-ECHELON 

Tsiakis, Shah et al. (2001) considers the design of a multiproduct and multi-echelon 

supply chain system, using the scenario approach to handle the uncertain demand. The 

warehouses and distribution centers has unknown locations, while the number of 

customer locations is fixed. The model is a mixed integer linear programming 

optimization problem, where the objective is to minimize the total cost of the network, 

taking both infrastructure and operating cost into account. Things to determine are the 

number, location and capacity of warehouses and distribution centers, the transportation 

links that needs to be established and the flow of materials. The authors point out that 

the computational complexity that arises when introducing uncertainty and time periods 

to the model.  

 

Li, Armagan et al. (2011) have developed a stochastic optimization formulation that 

designs a multi-echelon natural gas production network that deals with product quality 

and uncertainty in the system. The uncertainty in the system is considered with a multi-

scenario, two-stage stochastic recourse method. The first stage decision is about 

designing the infrastructure in the problem, while the second stage decision is about 

planning the operation of the system. This is a very complicated model formulation and 

is therefor solved with help from decomposition methods. Tomasgard, Rømo et al. 

(2007) are also studying the natural gas value chain, but are focusing on the uncertainty in 

demands and prices from a production company point of view. They use the scenario 

approach with a two-stage recourse formulation. 

 



 

 22 

4 PROBLEM DESCRIPTION  

This chapter describes the problem in the thesis, based on the information given in the 

background chapter. Necessary assumptions and definitions are presented and the 

objective in the problem is described by words at the end of the chapter. The problem 

description is a necessary step towards model development in the next chapter.  

 

The problem is established from a “Gas Distribution Company” point of view, where 

the company is responsible for purchase, distribution and sale of natural gas. The 

revenue is defined as the difference between LNG purchase cost and selling price. The 

selling price is negotiable and can therefore vary between end-customers. The gas 

demand in the problem is considered uncertain and can vary between time periods and 

end-customers. 

 

The problem for the “Gas Distribution Companies” is to determine whether and where 

to construct import terminals given an uncertain future demand, when the goal is to 

maximize profit. Based on the background chapter, the distribution method in this 

problem is restricted to LNG transportation with ships and trucks. Pipeline distribution 

is therefor excluded from the problem. The problem is further defined as a two-echelon 

distribution problem where the LNG is exclusively transported by ship from liquefaction 

plants to import terminals and re-distributed by truck to end-customers. Figure 4.1 below 

illustrates the stepwise distribution in the problem where liquefaction plants (LP) are the 

first step in the distribution chain that uses ship transportation (ST) to deliver LNG to 

the import terminals (IT). It is possible to expand the capacity of the import terminals if 

necessary, illustrated by terminal expansion (TE). The transportation between IT and 

customer terminals (CT) is done by truck transportation (TT). 

 

Figure 4.1 shows three different kinds of plants/terminals for the problem. Liquefaction 

plants are assumed owned by the production companies and are therefor not considered 

as a cost in the problem. The number, location and production capacity for the 

liquefaction plants are given and the only cost associated with the plant is LNG purchase 
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cost. Import terminals are assumed owned by the “Gas Distribution Companies”. The 

quantity of the import terminals, their location and storage capacity are unidentified, as 

these are the parameters that the “Gas Distribution Company” aims to find. The storage 

capacity for import terminals can vary, where the cost is affected by economy of scale. 

Storage capacities, capital- and operational costs for the import terminals are given 

values. The capital cost can vary a lot with the location due to existing infrastructure and 

is therefore unique for all potential locations. Construction/lead-time for an import 

terminal is assumed to be equal for all potential locations. It should also be possible to 

expand the storage capacity at already constructed import terminals if the demand 

requires this, where the lead-time is assumed equal to the construction time for an 

import terminal. The customer terminals presented at the bottom of Figure 4.1 exist at 

every end-customer. The capital- and operational cost can therefore be included in the 

last transportation step. 

 

 
Figure 4.1 Problem description, LNG supply chain 
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The problem is about locating import terminals, which according to Meyr, Wagner et al. 

(2008) defines the problem as a long-term planning problem. By modeling this kind of 

planning problem, problems such as distribution planning and scheduling needs to be 

simplified in some aggregated level in order to make good decisions. The distribution 

methods in this problem is already mentioned and illustrated in Figure 4.1 where large 

volumes of LNG is distributed from the liquefaction terminal to import terminals and re-

distributed in smaller volumes to the end-customers. Ship transport represents the first 

distribution step, where ships are chartered inn on long-term contracts over the whole 

period. Truck transport represents the second step, these vehicles are owned by the “Gas 

Distribution Company”. It is assumed that ship transportation cost consists of time 

charter cost, fuel cost and port cost. Charter and fuel cost is both assumed linearly 

dependent on the distance, while port cost is fixed. The ship transportation cost is in 

addition affected by economy of scale, which corresponds to lower unit transportation 

cost by transporting large quantities. All costs associated with truck transportation are 

assumed included in the unit cost and there is no economy of scale in this transportation 

form, due to the small amount each truck is able to carry.  

 

Almost every link in the supply chain is depending on a high capacity utilization to be 

profitable. Since the problem in this thesis is considered to be a long-term planning 

problem, capacity utilization is assumed optimal.  

 

There exist several problem specific limitations and restrictions in addition to the 

definitions and assumption above. Firstly, in accordance to how the market works, the 

“Gas Distribution Company” can decide how much they are able to supply the end-

customers. Secondly, it is determined that there not shall remain any LNG at the import 

terminal at the end of a time period, implying that the distribution flow must be equal 

within each time period. This is a fair assumption because each time period is sufficiently 

long.  

 

The objective is to determine how many import terminals to construct, where these 

terminals should be located, how large they should be and when to start the construction. 

The construction of these terminals enables transportation of large volumes of LNG to 

lower the distribution cost. The revenue in the objective is, as already mentioned above, 
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the difference between LNG purchase costs and selling price. The total cost of the 

system includes capital- and operational cost for import terminals, ship transportation 

costs, truck transportation costs and potential import terminal expansion costs.  
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5 MATHEMATICAL FORMULATIONS 

This chapter will go trough both the deterministic and the stochastic mathematical 

formulation of the problem described in the previous chapter. The deterministic 

representation of the problem is modeled with the uncertain future demand for LNG as 

a given parameter. The stochastic formulation is modeled with the future demand as an 

uncertain parameter. The uncertainty is assumed discrete with a scenario planning 

approach, where each scenario represents a different demand situation. The model 

formulations are presented in compact form in appendix A and appendix B. 

 

Both models are formulated as mixed integer programming models (MILP) and have a 

predefined discrete set of alternatives to locate the import terminals. This is a realistic 

assumption since there usually are a limited number of possible locations for the import 

terminals. Both models are also formulated with time periods. This is included in the 

formulation due to the nature of the problem, where assets in the distribution system 

have different lifetimes and the demand for LNG changes every year.  

 

The models are based on Lundgren, Rönnquist et al. (2010) model formulation of the 

single-echelon facility location problem, presented in the literature chapter, with the 

necessary adjustments and extensions. One of the fundamental differences between our 

problem and Lundgren, Rönnquist et al. (2010) is the numbers of distribution steps. The 

problem in this thesis is a two-echelon facility location problem, with the first 

distribution step from liquefaction plant to the import terminal and the second 

distribution step from the import terminal to the end-customer.  

5.1 DETERMINISTIC LOCATION MODEL 

In this section, the deterministic formulation of the problem is presented. Sets, indices, 

decision variables and parameters are presented before the objective function and 

constraints are developed. Figure 5.1 illustrates an example with a given liquefaction 

plant capacity and given end-customer demand. Two out of three import terminals are 

constructed, and six out of eight end-customers are served. 
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Figure 5.1 Decision variables and parameters with random values, deterministic formulation 

 

Let ! be the set of liquefaction plants, indexed by !, ℐ be the set of import terminals, 

indexed by ! and ! be the set of end-customers, indexed by !. These three sets represent 

the three different locations where the LNG is distributed between in the system. The 

number of different sizes of import terminals is discretized, let ! be the set of different 

import terminal storage capacities, indexed by ! and ! be the equivalent set of different 

storage expansion capacities, indexed by ! . Let ℱ  be the set of transportation fares 

representing the economies of scale for ship transportation, indexed by !. Let ! be the 

set of time periods, indexed by !. The distribution of LNG can start after ! ∈ !:!! > !!, 
where !! is the lead-time for new import terminals and import terminal expansions.  
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With respect to the variables in the problem, the model consists of two continuous 

decision variables, two binary decision variables and one auxiliary binary variable. 

Decision variables are variables that are included in the objective function, while the 

auxiliary variable is a model technical variable. The two continuous variables are as 

follows; let !!"#$ be the amount of LNG distributed with fare ! from liquefaction plant ! 

to import terminal ! for the time period ! and !!"# be the amount of LNG distributed 

from import terminal ! to end-costumer ! for the time period !. The two binary decision 

variables is defined as δ!"# that get value 1 if import terminal ! with storage capacity 

alternative ! is constructed in time period !, elsewhere 0, and !!"# that gets value 1 if 

import terminal !  expands its storage capacity with alternative !  in time period ! , 

elsewhere 0. Let !!"#$ be the auxiliary binary variable that gets value 1 if shipping fare ! is 

chosen from liquefaction plant ! to import terminal ! for the time period !. 
 

The deterministic location model is hence: 

!max ! = ! !!"!!"#
!∈ℐ!∈!!∈!

 (5.0a) 

!!!!!!!!!!!!!!!!!!− !!"#δ!"#
!∈ℐ!∈!!∈!

 (5.0b) 

!!!!!!!!!!!!!!!!!!− !!"#$!" !!"#$
!∈ℱ!∈!!∈ℐ!∈!

 (5.0c) 

!!!!!!!!!!!!!!!!!!− !!"#!" !!"#
!∈ℐ!∈!!∈!

 (5.0d) 

!!!!!!!!!!!!!!!!!!− !!"#! !!"#
!∈ℐ!∈!!∈!

 (5.0e) 

 

The objective function (5.0a) to (5.0e) represents a maximization of potential profit for a 

“Gas Distribution Company” given a deterministic demand of LNG. Expression (5.0a) 

represents the total revenue (sales price minus purchase price) in the distribution system 

where !!" is the unit revenue of LNG transported to end-customer ! in time period !. 
Expression (5.0b) represents expected cost for constructing and operating import 

terminals where !!"# is the total capital- and operational cost for the entire evaluation 

period for an import terminal constructed in area ! with capacity alternative ! in time 

period ! , the economy of scale for the import terminal is pre-defined in the cost 

parameter. Expression (5.0c) represents expected transportation cost from the 
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liquefaction plants to the import terminals, where !!"#$!"  is the ship unit transportation 

cost with fare alternative ! from liquefaction plant ! to import terminal ! in time period 

!. It should be noticed that the fare index ! only applies for the transportation between 

liquefaction plant and import terminal due to economy of scale in ship transportation. 

The unit transportation cost is piecewise linearized in order to keep the model linear, 

where the different discrete fares lower the unit transportation cost per distance as the 

freight volume increases, illustrated in Figure 5.2. Expression (5.0d) represents expected 

transportation cost from the import terminals to the end-customers, where !!"#!"  is the 

truck unit transportation cost from import terminal ! to end-customer ! in time period !. 
The two different truck transportation fares, discussed in the previous chapter, is pre-

defined in the cost parameter, based on the distance between import terminal and end-

customer. Finally, expression (5.0e) represents expected cost for the expansion of an 

import terminal, where !!"#!  is the total capital- and extra operational cost for the entire 

evaluation period when expanding capacity at import terminal ! with storage capacity 

alternative ! in time period !. The economy of scale for the different expansion options 

is pre-defined in the cost parameter.  

 

 
Figure 5.2 Ship transport fares 
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The problem is subjected to constraints (5.1) to (5.13): 

 

!!"#$!
!∈ℐ!∈ℱ

!≤ !!!"!  ! ∈ !,!! ∈ !:!! > !! (5.1) 

!!"# ≤ !!"!
!∈ℐ

 ! ∈ !,!! ∈ ! (5.2) 

!!"#$!
!∈!!∈ℱ

= !!"#
!∈!

 ! ∈ ℐ, ! ∈ !:!! > !! (5.3) 

 

Constraints (5.1) to (5.3) are the transportation constraints in the problem. Constraints 

(5.1) ensure that it is not transported more LNG than produced from the different 

liquefaction plants to the different import terminals, where !!"!  is the maximal 

production capacity for liquefaction plant ! in time period !. Constraints (5.2) ensure 

that it is not transported more LNG to the end-customer than demanded, where !!" is 
the demand for end-customer ! in time period !. Both constraints make it possible to 

transport less than the maximum limit. Constraints (5.3) make sure that the amount of 

LNG transported from the liquefaction plants to the different import terminals equals 

the amount of LNG transported from the import terminal to the end-customers. 

 

!!"#$!
!∈!!∈ℱ

!≤ ! !!δ!,!,!´!!!
!∈!

!

!´!!!
+ !!

!∈!
!!,!,!´!!!

!

!´!!!
!

! ∈ ℐ,!! ∈ !! (5.4) 

!!δ!,!,!´!!!
!∈!

!

!´!!!!
≥ !!

!∈!
!!,!,!´!!!

!

!´!!!
!

! ∈ ℐ, ! ∈ !! (5.5) 

 

Constraints (5.4) to (5.5) are the storage capacity constraints. Constraints (5.4) enable 

distribution of LNG only to the areas that have constructed an import terminal. The 

allowable distribution amount is determined by the capacity alternative chosen and 

possible capacity gained by expanding the import terminal, where !!  is the storage 

capacity in one period for storage capacity alternative !  and !!  is the extra storage 

capacity in each period if the import terminal is extended with storage expansion 

alternative !. Constraints (5.5) make it impossible to extend a terminal if it is not already 

constructed. 
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!!!!!!"#$ ≤ !!"#$ ≤ !!!!"#$! ! ∈ ℱ\ 1 , ! ∈ !, ! ∈ ℐ,!! ∈ !:!! > !! ! (5.6) 

0 ≤ !!"#$ ≤ !!!!"#$! ! = 1, ! ∈ !, ! ∈ ℐ, ! ∈ !:!! > !! ! (5.7) 

!!"#$
!∈ℱ

≤ 1! ! ∈ !, ! ∈ ℐ,!! ∈ !:!! > !! ! (5.8) 

 

Constraints (5.6) to (5.8) are the restrictions that make the economy of scale for the ship 

transport possible. Constraints (5.6) provide the transportation between liquefaction 

plant and import terminal with the right fare in each time period based on the amount of 

transported LNG, where !! is the threshold alternative ! for different economy of scale 

alternatives. These constraints apply to all fare alternatives except alternative 1, where 

! ∈ ℱ\ 1  ensures this. Constraints (5.7) work in the same way as the previous 

constraints, but only for fare alternative 1, where ! = 1 ensures this. Constraints (5.8) 

ensure that one fare at the most is chosen between a given liquefaction plant and import 

terminal in each time period. 

 

!!!"# ∈ ℤ! ! ∈ ℱ, ! ∈ !, ! ∈ ℐ,!! ∈ !:!! > !! ! (5.9) 

!!"# ∈ ℤ! ! ∈ ℐ, ! ∈ !, ! ∈ !:!! > !! (5.10) 

!!"#$ ∈ 0,1  ! ∈ ℱ, ! ∈ !, ! ∈ ℐ,!! ∈ !: ! > !! ! (5.11) 

δ!"# ∈ 0,1  ! ∈ ℐ!, ! ∈!, ! ∈ ! (5.12) 

!!"# ∈ 0,1  ! ∈ ℐ,!! ∈ !,!! ∈ ! (5.13) 

 

Constraints (5.9) to (5.10) impose non-negativity and integrality to the respective 

variables, while constraints (5.11) to (5.13) impose the variables to binarity. 
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5.2 STOCHASTIC LOCATION MODEL 

The stochastic model formulation is presented in this section, where the future LNG 

demands for end-costumers are considered as the only uncertain parameter. Since the 

lead-time for constructing new import terminals is long and new information regarding 

the LNG demand will be revealed by the time the constructed import terminals is ready 

for use, stochastic modeling with a recourse model is used. The recourse model is 

included to capture the revealing of new information about the demand situation after 

construction of import terminals is completed. The uncertain demand is dealt with by 

dividing the probability for different demand situations into discrete scenarios, using the 

scenario approach described in the literature chapter. Figure 5.3 shows an example of a 

situation with two different scenarios, where the size of the circles illustrates the quantity 

of the demand. Demand scenario 2 is consistently larger than scenario one. 

 

 
Figure 5.3 Demand scenario example 

 

The formulation is a two-stage recourse model with time periods where both stages are 

about strategical decision-making. The first stage decision is whether and where to 

construct import terminals with given probabilities for different demand scenarios. It is 
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assumed that new information about the demand is revealed after the lead-time for the 

constructed terminals in the first stage. It is now possible to make second stage decision 

on the basis of the new information about the demand. The second stage decisions can 

be to construct new import terminals, expand already existing terminals, do both or 

nothing. Figure 5.4 illustrates the scenario tree for the stochastic formulation with two 

stages, n possible scenarios and an undefined number of time periods, where the time 

periods between first and second stages are defined as the lead-time. Each scenario 

represents a demand situation for the end-customers. There is no need for 

nonanticipative constraints in the two-stage model because all the decision variables in 

first stage are without scenario index and are similar for all scenarios in second stage. 

 

 
Figure 5.4 Scenario tree 

 

The formulation of the stochastic model is based on the formulation of the deterministic 

model, and differs from the deterministic model by introducing scenarios and the 

opportunity to make recourse decisions. To make it easier to read the model, both the 

part of the model that has not changed and the new part of the model will be presented 

in the following sections. 
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Let ! be the set of liquefaction plants, indexed by !, ℐ be the set of import terminals, 

indexed by ! and ! be the set of end-customers, indexed by !. These three sets represent 

the three different locations where the LNG is distributed between in the system. The 

number of different sizes of import terminals is discretized, let ! be the set of different 

import terminal sizes, indexed by ! and ! be the equivalent set of different storage 

expansion capacities, indexed by !. Let ℱ be the set of transportation fares representing 

the economies of scale for ship transportation, indexed by !. Let ! be the set of time 

periods, indexed by !. The distribution of LNG can start after ! ∈ !:!! > !!, where !! is 
the number of periods of lead-time for new import terminals and import terminal 

expansions. The number of import terminals is restricted to the once constructed in the 

first stage until ! ∈ !:!! ≤ ! (!!+ !!) is broken, where !! is the number of periods in first 

stage. The first time period where more import terminals can be ready to use are after 

! ∈ !!: ! > (!! + !!), where !! ⊆ ! is a subset of time periods in second stage. In 

addition to the already existing sets and indices, let ! be the set of different discrete 

demand scenarios, indexed by !. 
 

The number of variables has increased by one, and all variables, except one, are given the 

scenario index !. The problem still consist of two continuous decision variables, where 

!!"#$% is the amount of LNG distributed with fare ! from liquefaction plant ! to import 

terminal !  for the time period !  and scenario ! , and !!"#$  is the amount of LNG 

distributed from import terminal ! to end-customer ! in time period ! and scenario !. 

The delta-variables that represented the import terminals in the deterministic model are 

now divided into two delta-variables that represent import terminals in first and second 

stage of the model. Let !!"!! be a first stage binary decision variable, that get value 1 if 

import terminal ! with storage capacity alternative ! is constructed, elsewhere 0, and !!"#$!!  

be a second stage binary decision variable that get value 1 if import terminal ! with 

storage capacity alternative ! is constructed in time period ! and scenario !, elsewhere 0. 

The binary decision variable !!"#$ gets value 1 if import terminal ! expands its storage 

capacity with alternative ! in time period ! and scenario !, elsewhere 0. The last binary 

variable is the auxiliary binary variable !!"#$% that gets value 1 if shipping fare ! is chosen 

from liquefaction plant ! to import terminal ! for the time period ! and scenario !. 
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The stochastic location model is hence: 

max !!! = − !!"!!!!"!!
!∈ℐ!∈!

 (5.14a) 

!!!!!!!!!!!!!!!!!!+ !!
!∈!

!!"!!"#$
!∈ℐ!∈!!∈!

 
(5.14b) 

!!!!!!!!!!!!!!!!!!− !!"#$!" !!"#$!
!∈!!∈ℐ!∈!!∈ℱ

  (5.14c) 

!!!!!!!!!!!!!!!!!!− !!"#!" !!"#$
!∈ℐ!∈!!∈!

 (5.14d) 

!!!!!!!!!!!!!!!!!!− !!"#!! !!"#$!!

!∈ℐ!∈!!∈!
 (5.14e) 

!!!!!!!!!!!!!!!!!!− !!"#! !!"#$
!∈ℐ!∈!!∈!

 
(5.14f) 

 

The objective function (5.14a) to (5.14f) represents a maximization of potential profit for 

a “Gas Distribution Company” given an uncertain future demand of LNG, where !! is 
the probability that scenario ! occurs. Expression (5.14a) represents expected cost for 

constructing and operating import terminals in first stage, where !!"!! is the total capital- 

and operational cost for the entire evaluation period for an import terminal constructed 

in area ! with capacity alternative ! in first stage, the economy of scale for the import 

terminal is pre-defined in the cost parameter. Expression (5.14b) represents the total 

revenue (sales price minus purchase price) in the distribution system where !!" is the unit 

revenue of LNG transported to end-customer ! in time period !. Expression (5.14c) 

represents expected transportation cost from the liquefaction plants to the import 

terminals, where !!"#$!"  is the ship unit transportation cost with fare alternative ! from 

liquefaction plant ! to import terminal ! in time period !. It should be noticed that the 

fare index ! only applies for the transportation between liquefaction plant and import 

terminal due to economy of scale in ship transportation. The unit transportation cost is 

piecewise linearized in order to keep the model linear, where the different discrete fares 

lower the unit transportation cost per distance as the freight volume increases, illustrated 

in Figure 5.2. Expression (5.14d) represents expected transportation cost from the 

import terminals to the end-customers, where !!"#!" is the truck unit transportation cost 

from import terminal !  to end-customer !  in time period !.  The two different truck 
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transportation fares, discussed in the previous chapter, is pre-defined in the cost 

parameter, based on the distance between import terminal and end-customer. Expression 

(5.14e) represents expected cost for constructing and operating import terminals in 

second stage, where !!"#!! is the total capital- and operational cost for the entire evaluation 

period for an import terminal constructed in area ! with capacity alternative ! in time 

period ! and second stage, where the economy of scale for the import terminal is pre-

defined in the cost parameter. Finally, expression (5.14f) represents expected cost for the 

expansion of an import terminal, where !!"#!  is the total capital- and extra operational 

cost for the entire evaluation period when expanding capacity at import terminal ! for 

storage capacity alternative ! in time period !. The economy of scale for the different 

expansion options is pre-defined in the cost parameter.  

 
The problem is subjected to constraints (5.15) to (5.30): 

 

!!"#$%!
!∈ℐ!∈ℱ

!≤ !!!"!  ! ∈ !,!! ∈ !:!! > !! ,!! ∈ ! (5.15) 

!!"#$ ≤ !!"#!
!∈ℐ

 ! ∈ !,!! ∈ !:!! > !! , ! ∈ ! (5.16) 

!!"#$%!
!∈!!∈ℱ

= !!"#$
!∈!

! ! ∈ ℐ,!! ∈ !:!! > !! ,!! ∈ ! (5.17) 

 
Constraints (5.15) to (5.17) are the key transportation constraints in the problem. 

Constraints (5.15) ensure that it is not transported more LNG from the different 

liquefaction plants to the different import terminals than produced, where !!"!  is the 

maximal production capacity for liquefaction plant ! in time period !. Constraints (5.16) 

ensure that it is not transported more LNG to the end-customer than demanded, where 

!!"# is the demand at end-customer ! in time period ! and scenario !. Both constraints 

make it possible to transport less than the maximum limit. Constraints (5.17) make sure 

that the amount of LNG transported from the liquefaction plants to the different import 

terminals equals the amount of LNG transported from the import terminal to the end-

customers. 

 

 



 MATHEMATICAL1FORMULATIONS 

 

 37 

!!"#$%!
!∈!!∈ℱ

!≤ ! !!!!"!!
!∈!

! ! ∈ ℐ,  

! ∈ !:!! ≤ (!!+ !!), 

! ∈ !!

(5.18) 

!!"#$%!
!∈!!∈ℱ

≤ !! !!"!! + !!,!,!´!!!,!!!
!

!´!(!!!!!)!∈!

+ !!
!∈!

!!,!,!´!!!,!
!

!´!(!!!!!)
 

! ∈ ℐ, 

! ∈ !!: ! > (!! + !!), 
!! ∈ ! 

(5.19) 

!!"!! + !!"#$!!

!∈!!∈!
≤ 1!

! ∈ ℐ,!! ∈ !! (5.20) 

!!"!! + !!,!,!´!!!,!!!
!

!´!(!!!!!)!∈!
≥ !!,!,!´!!!,!

!∈!

!

!´!(!!!!!)
 

! ∈ ℐ,!!

! ∈ !!: ! > (!! + !!),!
! ∈ !!

(5.21) 

 
Constraints (5.18) to (5.21) are considered as the storage capacity constraints. Constraints 

(5.18) ensure distribution of LNG only to the areas that have constructed an import 

terminal in first stage. The allowable distribution amount is determined by the storage 

capacity chosen, where !! is the storage capacity in each period for storage alternative 

!. Constraints (5.19) acquire the function of the latter constraint, for second stage, 

where it is possible to construct new import terminals and expand already existing 

terminals. The constraints ensure that the lead-time is included in the calculations. !! 

represents the extra storage capacity in each time period if the import terminal is 

extended with storage expansion alternative !. Constraints (5.20) make it impossible to 

construct more than one import terminal in an area. Constraints (5.21) make it 

impossible to extend a terminal if it is not already constructed. 

 

!!!!!!"#$% ≤ !!"#$% ≤ !!!!"#$% ! ∈ ℱ/{1}, ! ∈ !, ! ∈ ℐ,!! ∈ !:!! > !! ,!! ∈ !! (5.22) 

0 ≤ !!"#$% ≤ !!!!"#$%! ! = 1, ! ∈ !, ! ∈ ℐ,!!! ∈ !:!! > !! , ! ∈ !! (5.23) 

!!"#$%
!∈ℱ

≤ 1! ! ∈ !, ! ∈ ℐ, ! ∈ !:!! > !! ,!! ∈ !! (5.24) 
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Constraints (5.22) to (5.24) are the restrictions that make the economy of scale for the 

ship transport possible. Constraints (5.22) provide the transportation between 

liquefaction plant and import terminal with the right fare in each time period based on 

the amount of transported LNG, where !! is the threshold alternative ! for different 

economy of scale alternatives. This constraint applies to all fare alternatives except 

alternative 1, where ! ∈ ℱ\ 1  ensures this. Constraints (5.23) work in the same way as 

the latter constraints, but only for fare alternative 1, where ! ∈ ℱ:!! = 1 ensures this. 

Constraints (5.24) ensure that one fare at the most is chosen between a given liquefaction 

plant and import terminal in each time period. 

 

!!"#$% ∈ ℤ!! ! ∈ ℱ, ! ∈ !, ! ∈ ℐ,!! ∈ !:!! > !! ,!! ∈ !! (5.25) 

!!"#$ ∈ ℤ! ! ∈ ℐ, ! ∈ !, ! ∈ !:!! > !! , ! ∈ ! (5.26) 

!!"!! ∈ {0,1} ! ∈ ℐ,! ∈! (5.27) 

!!"#$!! ∈ {0,1} ! ∈ ℐ,!! ∈!,!! ∈ !!,!! ∈ ! (5.28) 

!!"#$ ∈ {0,1}! ! ∈ ℐ,!! ∈ !,!! ∈ !!,!! ∈ ! (5.29) 

!!"#$% ∈ {0,1}! ! ∈ ℱ, ! ∈ !, ! ∈ ℐ, ! ∈ !: ! > !! ,!! ∈ !! (5.30) 

 

Constraints (5.25) to (5.26) impose non-negativity and integrality to the respective 

variables, while constraints (5.27) to (5.30) impose the variables to binarity. 
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6 COMPUTATIONAL STUDY 

Both the mathematical models derived in chapter 5 are implemented in commercial 

software for operation analysis, presented in appendix D and appendix E. Xpress-IVE 

version 1.22.04 is used, where Xpress-Mosel was used as modeling language. This 

language makes it possible to formulate the software model close to the original model 

formulation, with only few changes. The solution method in Xpress-IVE is based on 

calculation techniques such as Simplex, “Branch and Bound” and valid inequalities. All 

optimization is solved on a HP computer with Intel(R) Xeon(R) 3.33GHz processor and 

32 GB memory.  

 

Figure 6.1 illustrates the different steps in the workflow where the data is calculated in 

excel before it is copied into a text-file that serves as input file to Xpress-IVE. The 

results are written to an output text-file after the problem is solved in Xpress-IVE.  

 

 
Calculation of data 

 

 
Input data 

 

 
Optimization tool 

 

 
Output results 

 

Figure 6.1 Workflow 

 

The main scope in this chapter is to test the two models and examine the value of the 

stochastic solution. Assumptions and data gathering are described in section 6.1. The 

deterministic solution is presented in section 6.2 and the stochastic solution is presented 

in section 6.3. The value of stochastic solution is calculated in section 6.4 and the 

expected value of perfect information is calculated in section 6.5. Discussion of the 

results and the model are presented in section 6.6. 
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6.1 ASSUMPTIONS AND DATA GATHERING 

Assumptions and data gathering for both the deterministic and stochastic model is 

presented in this section, where the differences between the models are clearly noted. 

Data presented in this section is provided by various sources and is gathered to validate 

the models in the best way possible. Where possible, assumptions have been made in an 

effort to minimize the computational time. All costs and revenues are calculated with a 

discount rate of 10% per year, which includes inflation and interest rate.  

6.1.1 TIME PERIODS 

The time periods in this problem is divided into years, due to the long lifetime of the 

problem. This means that all model parameters are given in annual sizes, such as 

demand, storage capacity and lead-time, where the currency is NOK and SI-units are 

used. The planning period is set to 13 periods, corresponding to 13 years. The number of 

planning periods is based on the desire to shorten the model running time in Xpress-

IVE, the fact that value of money in the future is lower and the demand uncertainty one 

will meet in the future. 

 

Alvarez, Tsilingiris et al. (2011) are considering how to include the residual value of ships 

that live beyond the finite planning horizon. One way to do this is to assign the residual 

value, called sunset-value to each ship. This value will, according to the authors, 

correspond to the estimated revenues that can be derived from the vessel throughout its 

remaining lifetime. The sunset-value in this problem is included using the method 

described above.  

6.1.2 GEOGRAPHICAL DATA 

The geographical area in the computational study is limited to Norway, illustrated in 

Figure 6.2. The blue squares in the figure represent the discrete locations of three 

liquefaction plants, where the locations is similar to three of the liquefaction plants 

presented in Table 2.3. The 16 yellow triangles represent potential discrete locations for 

import terminals. It is assumed that all potential import terminal locations are located in 

an area where there is an end-customer. The 24 end-customers are located at the red 

dots, representing an aggregated demand for each region. The merging of end-customers 

is done both to simplify the gathering of data and shorten runtime in Xpress-IVE.  
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Distance matrixes between liquefaction plants, import terminals and end-customers, 

attached in appendix C, are later used in the variable reduction and to calculate the unit 

transportation cost. It is worth noting that the topography varies and that the path is not 

necessarily a straight line between two points. The distance between almost every 

liquefaction plant and import terminal is provided by Voyage-calculator (2013). The 

ports that did not exist in database were measured using map. The distance between 

import terminals and end-customers are measured using Maps (2013). The fact that it can 

be shorter to travel across the country rather than along the coast is taken into account in 

the calculations. 

 

 
Figure 6.2 Geographical area 

 

6.1.3 REVENUE 

The revenue is defined as the difference between selling price and purchase price and is 

assumed to be equal for all end-customers. The selling price is obtained from SSB (2013), 

set to 2326 NOK/m3, adjusted for the consumer price index. The purchase price is 

assumed to be 775 NOK/m3, one third of the selling price, which corresponds to a 

revenue of 1551 NOK/m3. 
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6.1.4 PLANTS AND TERMINALS 

The end-customer terminals are neglected in the computational study, due to its low cost 

compared to all other elements in the calculation.  

 

The production capacity for the liquefaction plants in Norway, presented in table 2.3, is 

insufficient to cover the future demand estimated in this thesis. It is hard to predict 

where the capacity will expand when the demand escalates, so all liquefaction plants are 

assumed to have a LNG production of 100 million m3/year, which in practical terms 

means that there are no capacity restrictions for the liquefaction plants.  

 

The import terminal cost consists of capital- and operational costs, where both costs are 

based on estimates from Lindfeldt (2011). The number of different import terminal sizes 

has been set to three. The size, capital cost, lifetime and lead-time are presented in Table 

6.1, where one can see a significant economy of scale when the size of the terminal 

increases. The operational cost is set to 5% of the capital cost based on assumptions 

from MARINTEK (2005) .The cost distribution, lifetime and lead-time are assumed 

equal for all potential import terminals. It is estimated that the terminals are filled with 

LNG every second week, representing an annual capacity of 260,000 m3/year, 520,000 

m3/year and 1,300,000 m3/year, respectively. 

 

Table 6.1 Import terminal data 

Size  
(m3) 

Capital cost  
(MNOK) 

Lifetime  
(Year) 

Lead-time 
 (Year) 

10,000 375 40 3 
20,000 440 40 3 
50,000 640 40 3 

 

The two different expansion opportunities for import terminals are presented in Table 

6.2, where the extra operational cost per year is set to 5% of the capital cost. It is 

emphasized that expanding an import terminal at a later stage is approximately 30% 

more expensive than to make a larger terminal from construction start. The capital cost 

is still larger in Table 6.1, due to extra capital cost in infrastructure such as jetty 

construction. The size of the import terminal expansion represents an annual capacity of 

130,000 m3/year and 260,000 m3/year, respectively.  

 



 COMPUTATIONAL1STUDY 

 

 43 

Table 6.2 Import terminal expansion data 

Size  
(m3) 

Capital cost  
(MNOK) 

Lifetime  
(Year) 

Lead-time  
(Year) 

5,000 220 40 3 
10,000 255 40 3 

 

Both the import terminal cost and the import terminal expansion cost is presented in 

appendix C. Each cost element in the matrix represents the total capital- and operational 

cost for the entire evaluation period. One can notice from the matrix that the cost 

decreases with time, due to the discount rate and the decreasing number of years in 

operation. The sunset-value is included in the way described in section 6.1.1, where the 

residual value is included. An import terminal constructed in time period 6 has for 

instance a greater residual value than an import terminal constructed in time period 1. 

6.1.5 TRANSPORTATION 

Sea transportation unit cost is based on calculations done by SINTEF, MARINTEK et 

al. (2002), where the unit transportation cost from Hammerfest to Stavanger was 

calculated. All other sea transportation unit costs are calculated assuming a linear 

relationship between price and distance, with a minimum unit transportation cost of 10% 

of the cost from Hammerfest to Stavanger. A cost matrix with calculation assumptions is 

presented in appendix C, where the transportation unit cost from a liquefaction plant to 

a potential import terminal in the same region is assumed to be zero. Economy of scale 

is taken into account for ship transport by multiplying the unit transportation cost with a 

factor of 0.9 when transporting over 200,000 m3/year and a factor of 0.8 when 

transporting over 400,000 m3/year, to one single import terminal.  

 

The distance between import terminals and end-customers determines truck 

transportation unit cost, based on Ameln (2014). It has been assumed that a truck with a 

capacity of 50 m3 has a cost of 30 NOK per km travelled if the distance is lower than 75 

km and 18 NOK per km if the distance is higher than 500 km. A linear price reduction is 

set up between these two distances, presented in Figure 6.3.  The unit cost matrix is 

presented in appendix C. The sunset-value for truck transport investment is neglected 

because of its low present value after the planning horizon. 
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Figure 6.3 Unit cost distribution, truck transport 

 

6.1.6 DEMAND 

The demand in the deterministic part of the computational study is set to the weighted 

average of the different demand scenarios in the stochastic part of the study, where the 

demand is divided into three scenarios; low, normal and high. The high scenario is based 

on estimates done by MARINTEK (2005), where the demand is identified in different 

regions along the Norwegian cost in 2025. This scenario is highly uncertain and is a 

positive prediction of the future. This is the reason why the other two scenarios are 

lower. The lead-time for the import terminals ensures that no end-customers are served 

before time period 4. Due to this, the differences between each scenario are introduced 

at this time. At this initial time, scenario low is set to 40% of the high scenario and 

scenario normal is set to 70% of the high scenario. In later time periods, the low demand 

scenario becomes lower, while the demand grows slowly in the normal and high 

scenarios. The three scenarios and the weighted average are illustrated in Figure 6.4, 

where each time period represents the total demand for the different scenarios. The 

trend in demand is inspired by the demand predictions from Figure 1.1 in the 

introduction. Appendix C shows the demand for each end-customer for the different 

scenarios. The probabilities for the different scenarios are all set to one third.  

 

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

To
ta

l i
nv

es
tm

en
t c

os
t 

Tank volume 

U
ni

t c
os

t p
er

 k
ilo

m
et

er
 

Transportation distance 

b 



 COMPUTATIONAL1STUDY 

 

 45 

 
Figure 6.4 Demand scenarios 

 

Figure 6.5 illustrates the different stages, scenarios and time periods in this 

implementation of the stochastic model, where information about the demand is 

revealed after three time periods, equivalent to !! (lead-time). Step 1 is about locating 

import terminals under the uncertainty of three different scenarios. The demand is 

revealed in step 2, so this step is about designing the most optimal supply chain for each 

scenario with step 1 decisions as basis. The solution for the various scenarios is 

presented in the next subsections. It is important to emphasize that it is the location of 

import terminals in first stage that is the most important decisions in the stochastic 

solution, because this is the decision that needs to be taken first.  
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Figure 6.5 Stochastic model illustration for the computational study 

 

6.1.7 VARIABLE REDUCTION  

The variable reduction is implemented in the model to exclude unnecessary variables in 

the solution space, which may lower the solution time. Firstly, a large number of ship 

transportation variables !!"#$  can be eliminated on the basis of the distance from 

liquefaction plant. The large capacity on the liquefaction plants makes it possible to 

eliminate all sea transportation variables (!!"#$) with a distance longer than 800 nautical 

miles (nmi). Secondly is it not necessary to construct import terminals that are not 

completed before the planning period is over, which means that all delta-variables with 

time index after time period 10 can be eliminated. Table 6.3 presents the difference 

between the numbers of variables before and after implementing the variable reduction. 

With this reduction, the numbers of constraints are reduced with approximately 30% for 

both the deterministic model and the stochastic model, which most likely will reduce the 

solution time.  

Table 6.3 Variable reduction in the deterministic/stochastic model 

Variable Without variable reduction With variable reduction 
!!"#$/!!"#$% 1440/4320 960/2880 
δ!"#/!!"#$!"  624/1440 480/1008 
!!"#/!!"#$ 416/960 320/672 
Total 2480/6720 1760/4560 
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6.2 DETERMINISTIC SOLUTION 

The deterministic data gathered and justified in the previous section is run as input data 

in this section. The optimal solution was obtained after one minute, with a total profit of 

8.94 billion NOK. The establishment of import terminals is presented in Figure 6.6 and 

Table 6.4, where the yellow triangles represent import terminals constructed in time 

period 1. The deterministic solution is to construct two import terminals in time period 

1. The two import terminals are fully utilized in time period 13, something that makes 

the import terminals not able to serve all end-customers in time period 13.  

 

 
Figure 6.6 Deterministic solution 

 

Table 6.4 Deterministic solution 

Constructed import 
terminals (region) 

Capacity 
(103m3/year) 

Construction 
start (time) 

End-customers served  
(time periods) 

3 1,300 1 1-14(4-13), 15(10-13), 16(8-13), 17(9-13), 
18(12,13) 

19 520 1 15(4-11), 16(4-8), 17(4-9,11), 18-24(4-13) 
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6.3 STOCHASTIC SOLUTION 

This section presents the solutions obtained from the stochastic model. The input data is 

based on the same assumptions as the deterministic input, but differ due to the 

introduction of recourse opportunity and demand scenarios. The optimal solution was 

obtained after 22 minutes, with a total profit of 8.83 billion NOK. 

6.3.1 SCENARIO 1 

The establishment of import terminals is presented in Figure 6.7 and Table 6.5, where 

the yellow triangles represent import terminals constructed in first stage. The solution in 

scenario 1 is to not construct any new import terminals in addition to the three terminals 

constructed in first stage, due to the low demand in scenario 1. All end-customers from 

1-24 are served 100% of their demand and no import terminals are fully utilized. 

 

 
Figure 6.7 Stochastic solution, scenario 1 

 

Table 6.5 Stochastic solution, scenario 1 

Constructed import 
terminals (region) 

Capacity 
(103m3/year) 

Construction 
start (time) 

End-customers served  
(time periods) 

3 (Stage 1) 1,300 1 1-13(4-13), 14(6-13) 
19 (Stage 1) 520 1 13(4-5), 14(4-5), 15-20(4-13) 
23 (Stage 1) 260 1 21-24(4-13) 
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6.3.2 SCENARIO 2 

The establishment of import terminals is presented in Figure 6.8 and Table 6.6, where 

the yellow triangles represent import terminals constructed in first stage. The solution in 

scenario 2 is the same as the solution in scenario 1, where no import terminals are 

constructed in second stage. All end-customers from 1-24 are served 100% of their 

demand and import terminal 1 is fully utilized in time period 13. 

 

 
Figure 6.8 Stochastic solution, scenario 2 

 

Table 6.6 Stochastic solution, scenario 2 

Constructed import 
terminals (region) 

Capacity 
(103m3/year) 

Construction 
start (time) 

End-customers served  
(time periods) 

3 (Stage 1) 1,300 1 1-13(4-13), 14(4,5,8-13) 
19 (Stage 1) 520 1 13(6,7), 14(6-8,13), 15-20(4-13) 
23 (Stage 1) 260 1 20(11-13), 21-24(4-13) 
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6.3.3 SCENARIO 3 

The establishment of import terminals is presented in Figure 6.9 and Table 6.7, where 

the yellow triangles represent import terminals constructed in first stage, the pink triangle 

represent the import terminal constructed in second stage, time period 4 and the outline 

pink triangle represents import terminal expansion. The solution in scenario 3 is to 

construct one new import terminal in second stage, time period 4 and expand it further 

in time period 8. All import terminals are fully utilized in time period 13, something that 

makes the import terminals not able to serve all end-customers in time period 13. 

 

  
Figure 6.9 Stochastic solution, scenario 3 

 

Table 6.7 Stochastic solution, scenario 3 

Constructed import 
terminals (region) 

Capacity 
(103m3/year) 

Construction 
start (time) 

End-customers served  
(time periods) 

3 (Stage 1) 1,300 1 1-6(4-13), 7(4-6,9,10), 8(4-6,10), 9(4-6), 
10(4,5), 11(4,5), 12(4-6), 13(4,5), 14(4) 

19 (Stage 1) 520 1 13(5,6), 14(5,6), 15(4-6), 16(4-6,9,10), 17(4-
6), 18-20(4-13), 21(12) 

23 (Stage 1) 260 1 20(4-6,10), 21-24(4-13) 
12 (Stage 2) 520+260 4+8 6(7,8,11-13), 7(7-9,11-13), 8-18(7-13) 
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6.4 VALUE OF STOCHASTIC SOLUTION  

You need both the value of the stochastic solution and the expected value for the three 

scenarios to calculate the value of stochastic solution (VSS), described in the literature 

chapter. The stochastic solution is summarized in Table 6.8 and the expected values are 

presented in Table 6.9. In addition to the overall profit, the number of constructed 

import terminals and expanded import terminals are displayed in the tables.  

 

Table 6.8 Stochastic (SP) solution, overall profit: 8.83 billion NOK 

  Constructed import  
terminals 

Expanded import  
terminals 

Stage 1  3 - 
 ! = 1 

Low 
 
0 

 
0 

Stage 2 ! = 2 
Normal 

 
0 

 
0 

 ! = 3 
High 

 
1 

 
1 

 

 

The overall profit for the different demands in Table 6.9 are calculated using the method 

described in the literature chapter, where the decisions in the deterministic solution for 

the first time period is used as first stage decisions in the stochastic model. The three 

different solutions below represent how good the deterministic solution (choice of 

import terminals) is for the various scenarios.  

 

Table 6.9 Expected value (EV) solution 

  Constructed import 
terminals 

Expanded import 
terminals 

Overall profit 
[billion NOK] 

Stage 1  2 - - 
 ! = 1 

Low 
 
0 

 
0 

 
3.53 

Stage 2 ! = 2 
Normal 

 
1 

 
0 

 
9.35 

 ! = 3 
High 

 
2 

 
0 

 
13.43 

 

Using the overall profit listed in Table 6.9 the EEV is calculated to be 8.77 billion NOK. 

In comparison, the SP overall profit from Table 6.8 is 8.83 billion NOK. This gives a 

VVS of 0.06 billion NOK, which corresponds to a 0.68% increase. 
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6.5 EXPECTED VALUE OF PERFECT INFORMATION  

The expected value of perfect information (EVPI) is the amount of money one would be 

willing to pay for absolutely correct information about the uncertain parameters. This 

information is of little value when it is not possible to obtain 100% correct information. 

There is nobody that can predict the future LNG demand with certainty, but the 

information can nevertheless tell something about what one would be willing to pay for 

better predictions. 

 

The overall profit for the different demands in Table 6.10 are calculated using the 

method described in the literature chapter, where the wait-and-see solutions is calculated 

by using the three different scenarios as input in the deterministic model. 

 

Table 6.10 Wait-and-see (WS) solution 

 Constructed 
import terminals 

Expanded 
import terminals 

Overall profit 
[billion NOK] 

! = 1 
Low 

 
2 

 
0 

 
3.76 

! = 2 
Normal 

 
3 

 
0 

 
9.37 

! = 3 
High 

 
4 

 
1 

 
13.89 

 

 

Using the overall profit listed in Table 6.10 the WS is calculated to be 9.00 billion NOK. 

In comparison, the SP overall profit from Table 6.8 is 8.83 billion NOK. This gives a 

EVPI of 0.16 billion NOK, which corresponds to a 1.88 % increase. 

6.6 DISCUSSION 

The discussion is divided into two parts, where the solution from the computational 

study, VSS and EVPI are discussed in the first part. The second part concerns the model 

formulations.  

6.6.1 RESULTS 

From the comparison of the deterministic and stochastic solution one can observe that 

the deterministic solution gives higher profit than the stochastic solution. This makes 

sense considering that the stochastic solution is the optimal solution for three different 

scenarios, while the deterministic solution is the optimal solution for the average of these 

scenarios. The most important difference between the deterministic and the stochastic 
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solution is the number of import terminals commenced in time period 1, because this is 

the decision you have to take in the first time period. The deterministic solution suggests 

starting construction of two import terminals while according to the stochastic solution, 

it is recommended to start construction of three import terminals in time period 1. The 

stochastic model suggests to construct three import terminals because the extra profit 

you achieve if the normal or high scenario occurs is greater than the loss if the low 

scenario occurs. The total capacity of the three import terminals constructed in time 

period 1 in the stochastic solution is 12,5% larger than the two terminals constructed in 

the deterministic solution.  

 

It is worth mentioning that it seems like the solutions attempt to achieve economy of 

scale by transporting more than 200,000 m3 or 400,000 m3 per time period, which are 10 

and 20 present cheaper per unit transported respectively. This is often the reason why 

the end-customers change the selection of import terminal throughout the time periods.  

It is difficult to determine whether this affects the location of the import terminals or 

not, but the phenomena where goods are being transported from one location to another 

in large scale and almost back again as smaller deliveries is common in the supply chain 

industry. The post analysis tests the impact of the economy of scale on first stage 

decisions by removing the fare-alternatives.  

 

A closer examination of scenario 3 in the stochastic solution shows that the two import 

terminals serve the same end-customers at the same time. The reason is simple: import 

terminal 3 is the preferred import terminal for end-customer 13, by means of unit truck 

transportation cost. The problem is that the utilization of import terminal 3 is 100% in 

time period 5. With an increasing demand, end-customer 13 needs to get the demand 

from import terminal 19 instead. Both import terminals serves end-customer 13 in time 

period 5, while the entire demand is served by import terminal 19 in time period 6. This 

argument applies in the same way to all the solutions. 

 

The number of potential import terminals was limited to 16 different locations to 

decrease the computational solution time. The potential locations were located in areas 

with significant demands, which led to a distance of 257 nmi between potential locations 

19 and 20. In a real world situation, it would be more accurate to evaluate possible 
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import terminal locations and perhaps include potential locations without any demand, 

for example located a potential import terminal between 19 and 20. 

 

A positive VSS means in theory that it is profitable to use a stochastic formulation when 

locating import terminals under uncertainty. But when the value is as low as 0.68%, you 

can consider this as equal to zero because of all the uncertainties in choice of parameters. 

This will in practice mean that the deterministic solution is as good as the stochastic 

solution in this case. But I will still describe the reason behind the positive VSS in the 

computational study. By only locating 2 import terminals in first stage in the 

deterministic solution, you are missing a lot of potential income if the high scenario 

occurs, due to lack of capacity at the import terminals. It will take three time periods 

(lead-time) before one has adapted the supply system to the large demand, and therefor 

missed potential profit. This gives the stochastic solution is a slightly better value. 

 

The EVPI is low because the number of import terminals constructed in the first stage 

does not change much with different demand. While the stochastic solution suggests 

constructing three terminals in first stage, the deterministic wait-and-see solutions 

suggest constructing two, three and four terminals in first stage respectively. This makes 

the wait-and-see solutions slightly better in the low and high scenario, where there is a 

difference between the numbers of import terminals constructed. 

6.6.2 MODEL 

King and Wallace (2012) describe robustness as something that can withstand random 

events and flexibility as something that can accommodate those events. Both the 

deterministic and stochastic model formulations possess flexible characteristics in the 

way they can expand and construct new terminals if the demand changes. But the ability 

to withstand random events is more descriptive for the stochastic formulation because it 

optimizes its supply chain on the basis of several possible scenarios. The results from the 

computational study showed, however, that both models located their terminals at the 

same places, something that makes both models robust considering the different 

scenarios. Although this occurred in the computational study, this might differ in other 

situations. The difference between the deterministic and stochastic models will be 

examined further in the post analysis. 
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It seems like the flexibility keeps the difference between the deterministic and stochastic 

solution small. A test showed that the VSS increases to 8.94% by removing the 

opportunity to construct or expand terminals after time period 1. The example is not 

very applicable, but it shows that the VSS increases when the flexibility goes down, by 

means of freedom to choose when to construct. 

 

The model formulation assumes that the lead-time for constructing import terminals is 

equal to the time it takes to expand an import terminal. In reality, it may be faster to 

expand than to construct new import terminals. Shorter lead-time for the expansion 

option would increase the flexibility in the model even more, and probably cause the VSS 

to decrease. 

 



 

 56 

7 POST ANALYSIS 

The post analysis is carried out to examine the sensitivity of various parameters, 

investigate the influence of the problem-specific constraints and test the computational 

time with respect to number of potential import terminals. The stochastic model is used 

as model formulation for the test instance.  

7.1 INFLUENCE OF PROBLEM-SPECIFIC CONSTRAINT 

The problem-specific constraints and indices differ from the simple facility location 

formulation presented in the literature chapter, and are therefor interesting to examine. 

These constraints and indices are included in the problem formulation in an attempt to 

make the model more accurate. The question is whether they do so or not.  

7.1.1 FARES 

Several end-customers became affected by economy of scale in ship transportation, 

according to the discussion in the computation study. An interesting question is whether 

it affects the location of the import terminals. Table 7.1 presents the comparison of the 

solution between stochastic model formulation with and without economy of scale in 

ship transport in first stage. Overall profit and solution time in Xpress decreased due to 

respectively more expensive ship transport and fewer variables. The number of 

constructed import terminals did not change, but the location of the three import 

terminals changed. Import terminal 19 is moved to location 12, which reduces the total 

ship transportation distance per time period with 433 nmi. A closer examination shows 

that the model with economy of scale are transporting more units to import terminal 3 to 

achieve economy of scale on that route. This forces import terminal 3 to serve more end-

customers, which again causes the distance to the next import terminal to increase. 

 

Table 7.1 Influence of economy of scale 

 With economy of scale Without economy of scale 
Constructed import terminals in scenario 1 3, 19, 23 2, 12, 23 
Overall profit [billion NOK] 8.83 8.77 
Solution time to optimality [Sec.] 1270 938 
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It is realistic to assume that the relocation of import terminal 3 to location 2 is because of 

the relocation of import terminal 19 to 12. Import terminal 12 is now serving a lot of the 

end-customers import terminal 3 previously served. Import terminal 3 can now move 

closer to the big end-customers 1 and 2. 

7.1.2 EXPANSION OPTION 

The opportunity to expand the capacity of constructed import terminals is something 

that gives the model more flexibility in the way that you can accommodate increasing 

demand by expanding import terminals.  

 

Table 7.2 presents the comparison between the stochastic solution with and without 

expansion options for scenario 3. The results show that the first stage decisions do not 

change if one removes the expansion option. The only difference is that import terminal 

9 is constructed instead of expanding import terminal 12. The solution time has almost 

tripled without the expansion option, although the number of variables has decreased. 

The decrease in number of variables usually reduces the solution time for each node in 

the branch and bound tree and therefore also the total solution time, but the removal of 

the expansion option has obviously made the solution space bigger.  

 

Table 7.2 Influence of expansion option 

 With expansion option Without expansion option 
Constructed import terminals, stage 1 3, 19, 23 3, 19, 23 
Constructed import terminals, stage 2 12 9, 12 
Scenario 3, Expansion option  12 - 
Overall profit [billion NOK] 8.829 8.828 
Solution time to optimality [Sec.] 1270 3455 

 

Although the elimination of the expansion option did not change the solution in first 

stage in this example, one cannot preclude that this cannot happen in another case with 

other parameters. 

7.2 COST AND REVENUE  

A sensitivity analysis has been carried out on the cost and revenue parameters in the 

computational study, where the goal is to examine how sensitive the construction of 

import terminals in first stage is for changes in these parameters. The analysis will 
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examine the parameters from 50% to 150% of their original value with an increase of 

25% for each step. 

7.2.1 SHIP TRANSPORTATION 

Figure 7.1 shows the stochastic solution of constructed import terminals in first stage 

with varying ship transportation unit cost, where all solutions suggest constructing three 

import terminals. All solution was solved to optimality. 

 

The solutions in first stage show that the location of terminals changes with the level of 

ship transportation unit cost. The locations tend to increase the ship transportation 

distance when the cost is low, and decrease the distance when the cost is high. 

 

 
Figure 7.1 Ship transportation, cost sensitivity 

 

By further examination of the ship transportation unit cost one can observe that the 

number of import terminals constructed in first stage do not change when the cost is set 

to 10% of the initial cost. It is realistic to assume that this is caused by the major capital 

cost that occurs when constructing new import terminals. Even when the unit cost is 

increased to 200%, the number of constructed terminals does not change. This is 

because the ship transportation is still cost efficient compared to truck transportation. 
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The result shows that the number of constructed terminals in stage is not sensitive for 

changes in ship transportation unit cost. The locations of the import terminals, on the 

other hand, are.  

7.2.2 TRUCK TRANSPORTATION 

Figure 7.2 shows the stochastic solution of constructed import terminals in first stage 

with varying truck transportation unit cost. The solutions with 50% and 125 % truck 

transportation unit cost were not solved to optimality, with an optimality gap on 0.33% 

and 0.27% respectively after 10,000 seconds. The “50% truck transportation unit cost”-

solution constructed only two import terminals in first stage. The low truck 

transportation unit cost favors truck transportation over ship transportation and is 

therefor limiting the number of import terminals. From the “125% solution” to the 

“150% solution”, the number of constructed import terminals increases by eight. This 

result is a consequence of too big truck transportation unit costs, where it is more cost 

efficient to transport the demanding units on ships and invest in import terminals.  

 

 
Figure 7.2 Truck transportation, cost sensitivity 

 

The results show that the number of constructed terminals in first stage is sensitive for 

large changes in truck transportation unit cost. The number of constructed import 

terminals increases sharply when truck transportation unit cost exceeds a certain limit.  
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7.2.3 CONSTRUCTION AND EXPANSION OF IMPORT TERMINALS 

Figure 7.3 shows the stochastic solution of constructed import terminals in first stage 

with varying import terminal cost and as a result also expansion cost. All solution where 

solved to optimality, except for the solution with 150% increase in costs, which had an 

optimality gap of 0.86% after 10,000 seconds. According to the solution with 50% costs 

it would be optimal to construct four import terminals. The solutions with 75% - 150% 

costs suggest constructing three import terminals and the solution with 150% costs 

suggests two import terminals in first stage. 

 

The solution implies that it is more cost efficient to construct one extra import terminal 

and increase the ship transportation when the import terminal cost is 50%. The opposite 

is true for the 150% increase in import terminal cost. 

 

 
Figure 7.3 Construction and expansion of import terminals, cost sensitivity 

 

The results show that the number of constructed import terminals in first stage is 

sensitive for large changes in import terminal/expand option cost, where number of 

constructed terminals increases when the price goes down and decreases when the price 

goes up.   
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7.2.4 REVENUE 

Figure 7.4 show the stochastic solution of constructed import terminals in first stage with 

varying revenue. All solutions where solved to optimality. 

 

It is interesting to note that the number of constructed import terminals in first stage 

stabilizes at three, independent of how large the revenue is. The solution is however 

more sensitive to a decrease in revenue. This is shown at 75% and 50% revenue where 

the solutions suggest to only constructing two import terminals. Further tests show that 

zero import terminals are constructed when the revenue is set to 20%, implying that the 

supply chain no longer is profitable. When the revenue is set to 200% of the original 

revenue, the solution still suggests constructing three import terminals. 

 

 
Figure 7.4 Revenue sensitivity 

 

These results show that the number of constructed import terminals only is sensitive to a 

decrease in revenue. 

7.3 PROBABILITY DISTRIBUTION 

The computational study assumed an even probability distribution for the three different 

scenarios. Table 7.3 presents a solution summary with respect to various probability 

distributions, where both the deterministic and stochastic solution is presented with 

related solution time, optimality gap and VSS. All other parameters, except for the 
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probability distribution, are equal to the ones presented in the computational study. The 

test instances are divided into four groups from 1-4, where all groups consist of three 

different instances. Capital letters L, N and H symbolize situations where the low, 

normal and high scenarios are weighted in the probability distribution. Maximal runtime 

is set to 10,000 seconds. 

 

All test instances, except 2L show the general trend in the solutions, where the VSS is 

below 1.75%. For reasons similar to those given in section 6.6, these values can be 

considered equal to zero and thus equate stochastic and deterministic solution. Test 

instances 1L and 3H are examples of solutions where the deterministic and stochastic 

model are equal in the first time period, resulting in a 0% VSS. The test instances with a 

VSS between 0.06% and 1.68% has typically close to identical solutions for the 

deterministic and stochastic solutions, with only small differences such as different 

location of one of the constructed import terminals.  

 

Table 7.3 Solution summary with respect to weighted probability distributions 

Instance Probability distribution 

(low, normal, high) 

VSS [%] Solution time [s] Optimality gap [%] 

Det. Stoch. Det. Stoch. 

1L 0.8, 0.1, 0.1 0.00 47 1,683 0 0 

1N 0.1, 0.8, 0.1 0.59 543 5,189 0 0 

1H 0.1, 0.1, 0.8 0.93 547 10,000 0 0.41 

2L 0.7, 0.2, 0.1 5.59 186 3,974 0 0 

2N 0.2, 0.7, 0.1 0.06 57 10,000 0 0.49 

2H 0.1, 0.2, 0.7 0.17 663 1,349 0 0 

3L 0.6, 0.2, 0.2 1.35 426 6,437 0 0 

3N 0.2, 0.6, 0.2 0.64 404 1,546 0 0 

3H 0.2, 0.2, 0.6 0.00 435 1,099 0 0 

4L 0.5, 0.25, 0.25 1.68 186 10,000 0 0.98 

4N 0.25, 0.5, 0.25 0.45 242 10,000 0 0.03 

4H 0.25, 0.25, 0.5 1.46 140 1,586 0 0 
  

 

Test instance 2L, however, differs from the other solutions with a VSS equal to 5.59%, 

which indicates that the stochastic model formulation is better to use than the 

deterministic model formulation in this case. The reason behind this result is that the 

import terminals constructed in the deterministic and stochastic solutions have different 
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locations and capacities. Whilst the deterministic solution optimizes its supply chain on 

the basis of the weighted average of the scenarios, the stochastic solution optimizes its 

supply chain with 70% respect to the low scenario and 20% and 10% to the normal and 

high scenarios, respectively. This causes the stochastic solution to adjust its solution to 

the possibility of a normal and high scenario, making it more robust than the 

deterministic.  

 

Figure 7.5 illustrates the VSS presented in Table 7.3 for the different test instances. 

Although the majority of the test instances have a low VSS, one can notice a trend in the 

solutions. The N-line, represented by the test instance where the normal scenarios are 

weighted in the probability distribution, shows a steady and low VSS. The H-line shows 

some tendencies to suggest that the results are to more than just noise, with a VSS at 

almost 1.5%. The L-line, in comparison, is far more unstable, with a VSS ranging 

between 0% and 5.59%.  

 

 
Figure 7.5 VSS with respect to weighted probability distribution 
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By changing the lead-time to 2 time periods, tests showed that the VSS decreased to 

0.14%. The reason why the VSS is decreases when the lead-time does the same is 

because the importance of designing a solution that works well in various scenarios 

decreases when the time it takes to adapt to the different scenarios declines. It is 

reasonable to assume that the opposite is true when the lead-time increases, where one is 

dependent on the solution in first stage for a longer time, before one can adapt to the 

new information.  

 

The arguments above show that the need of a robust solution changes with the degree of 

flexibility, where the flexibility increases when the lead-time decreases.  

7.5 SOLUTION TIME 

The computational solution time is tested with respect to the number of potential import 

terminals included. The results are illustrated in Figure 7.6. The solution time was 

examined from 5 to 23 potential import terminal locations with an increase of 2 locations 

for each step. The results showed a steady increase in solution time from 5 (19 seconds) 

to 21 (48 minutes) potential locations. It is interesting to notice the major increase in 

solution time for 23 potential locations, where the model run was stopped after 24 hours 

with an optimality gap of 3.9%. This shows that the problem starts to get really 

complicated to solve with the computer used in the analysis. It is difficult to say whether 

the computer would manage to solve the problem, if given enough time, or if it simply 

has run out of memory.  

 

It is realistic to assume that this analysis also can be related to increases in number of 

liquefaction plants or end-customers, where an increase in variables will make it difficult 

to solve the problem. 
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Figure 7.6 Solution time with respect to import terminals 
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8 CONCLUDING REMARKS  

The primary objective in this master thesis was to develop a location model that can help 

decision makers to design a profitable supply chain for an uncertain future gas demand. 

Both a deterministic and stochastic model was developed and the results were compared 

by calculating the value of stochastic solution (VSS). Both models produce sensible 

results that correspond logically to expected solutions for the problem. Still, there are 

room for improvements both in the system size, test amount and information gathering. 

 

The problem has proven to be flexible in the way that it can adapt to different situations 

by constructing and expanding import terminals throughout the project lifetime. This is 

the reason why the deterministic and stochastic solutions are close to each other through 

the computational study and the post analysis.  

 

The VSS gives information about how valuable the stochastic solution is, compared to 

the deterministic one. Various tests have shown that the VSS is sensitive to changes in 

flexibility, such as changes in lead-time. A decrease in lead-time decreases the 

requirement for a robust supply chain and lowers the VSS, and vice versa for an increase 

in lead-time.  

 

A lead-time of 3 time periods has proven to be one of the parameters that have kept the 

VSS low in the computational study and the post-analysis. More realistic model choices 

such as shorter lead-time for import terminal expansion options would contribute to an 

even lower VSS.  

 

While the computational study assumed an even probability distribution and achieved a 

low VSS, the post analysis tested the model with a various number of uneven probability 

distributions. Based one these analysis, one can observe that the VSS tends to zero 

percent in situations where the normal scenario is weighted in the probability 

distribution, like in the computational study. The trend is less consistent in cases where a 

low or high scenario is weighted in the probability distribution, especially low. This 
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implies that the stochastic model formulation can be of greater value when the 

probability distribution is weighted on the minimum or maximum scenarios. 

 

Other observations from the post analysis show that cost parameters are not sensitive to 

changes in the number of import terminals constructed in first stage within the range of 

a 25% change in cost. Within this limit, only the location of the import terminals 

changes, where logical mechanisms such as more expensive truck transportation increase 

the sea transportation distance. The post analysis also showed that the first stage solution 

changed when the problem specific economy of scale constraints were removed. The 

elimination of the import terminal expansion option did not affect the first stage solution 

in the computational study, but this can be different in other cases.  
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9 FURTHER WORK  

Stange (2008) points out that industry-specific challenges for distribution of LNG are 

high operational costs, big capital investment costs and high distribution costs. These 

kinds of conditions are forcing a streamlined supply chain and high utilization to secure 

profit. This thesis has focused on facilitating good supply chains by selecting the best 

locations for import terminals. A good next step would be to implement and use these 

strategic decisions to develop a model that can optimize the tactical and operational part 

of the planning process. Problem types such as fleet size and mix, in addition to 

inventory planning, are methods to streamline the supply chain and achieve high 

utilization. Fagerholt (1999) presents a solution method for deciding an optimal fleet in a 

liner-shipping problem with multiple trips per ship. Christiansen and Nygreen (1998) 

present a solution method for a ship-planning problem by combining a multi-pickup 

problem with time windows and an inventory model.  

 

It could also be interesting to expand the model developed in this thesis to deal with 

both facility location and inventory planning. This would make the problem more 

complex and would require a lot more background research on the supply chain. The 

complexity would also require a heuristic algorithm to limit the solution space. The paper 

by Tsiakis, Shah et al. (2001), discussed in the literature chapter, combines inventory 

planning with facility location and develops such an algorithm.  

 

The whole coastline of Norway was used as geographical area in the computational 

study, where 16 regions along the coast represent the end-customers. The demand was 

different in all regions, but varied in the same degree for the three different scenarios. It 

would be interesting to investigate the value of the stochastic solution in a study on a 

smaller geographical area with scenarios that had different variations for each end-

customer.  

 

The problem complexity in the thesis sat limitations to the number of variables in the 

computational study. As it emerges from the literature study, where the majority of 
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multi-echelon papers used heuristic algorithms to solve the problem, it could be an 

interesting next step to implement this into the problem. This would help to solve the 

problem faster and enable the computational study to use more variables. 

 

In addition to the possible next steps for my problem, there are a number of changes 

that can be done to the model or parameters to increase the value of the results. Firstly, 

one could introduce uncertainty to other parameters, such as the revenue. This would 

make the model more realistic, but probably also increase the solution time. 

 

Secondly, one could decrease the number of time periods and extend the model to a 

three-stage model. A three-stage model would be an even more realistic approach to the 

real world as new information about the demand appears all the time, but the drawback 

is the major increase in solution time. 

 

Thirdly, the amount of runs with different demand scenarios could be increased, to be 

able to draw more reliable conclusions.  

 

Lastly, I will recommend others who are going to work with facility location to use 

coordinates to locate all kinds of potential and fixed facilities and customer. By using 

coordinates, Xpress-IVE will provide a graph, based on the coordinates, which show the 

results of the facility location. 
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APPENDIX A                                                             

DETERMINISTIC MODEL IN COMPACT FORM 
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!% Set%of%liquefaction%plants,%indexed%by%!%
ℐ% Set%of%import%terminals,%indexed%by!!%
!% Set%of%end7costumers,%indexed%by%!%
!% Set%of%import%terminal%capacities%indexed%by%!%
!% Set%of%import%terminal%expansion%capacities%indexed%by%!%
ℱ% Set%of%transportation%fares%indexed%by%!%
!% Set%of%time%periods%indexed%by%!%
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!!"% Unit%profit%of%LNG%transported%to%end7customer%!%in%time%period%!%
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APPENDIX B                                                                      

STOCHASTIC MODEL IN COMPACT FORM 

 



Sets% !
!% Set%of%production%terminals,%indexed%by%!%
ℐ% Set%of%distribution%terminals,%indexed%by!!%
!% Set%of%consumers,%indexed%by%!%
!% Set%of%demand%scenarios%indexed%by%!%
!% Set%of%Capacity%indexed%by%!%
!% Set%of%expanded%storage%capacity%indexed%by%!%
ℱ% Set%of%fares%indexed%by%!%
!% Set%of%time/periods%indexed%with%!%
!! ⊆ !% Subset%of%!%in%first%stage%
Parameters% %
!!"% Unit%revenue%of%total%volume%sold%to%consumer%%
!!"#$!" % Unit%transportation%cost%!%from%production%terminal%!%to%distribution%terminal%

!,%in%time%!%
!!"#!" % Unit%transportation%cost%from%distribution%terminal%!%to%consumer%!,%in%time%!%
!!"!!% Total% CAPEX% and% OPEX% for% all% periods% for% terminals% built% in% stage% 1% with%

capacity%alternative%!%
!!"#!! % Total% CAPEX% and%OPEX% for% terminals% built% in% time%!%in% stage% 2%with% capacity%

alternative%!%
!!"#! % Total%CAPEX%and%OPEX%for%capacity%expand%alternative%!%in%stage%2%and%time%!%
!!% Threshold%!%for%different%economy%of%scale%alternatives%
!!"#% Consumer%demand%!,%in%stage%2,%time%!%and%scenario%!%
!!% Storage%capacity%alternative%!%
!!% Storage%capacity%expand%alternative%!%
!!!% Production%capacity%for%production%terminal%p%
!!% Probability%that%scenario%!%occur%in%stage%2%
!!% Number%of%periods%in%stage%1%
!!% Number%of%periods%of%lead%time%for%new%terminals%
Variables% %
!!"#$%% Quantity%delivered%with%fare%!%from%production%terminal%!%to%distribution%

terminal%!%in%time%!%and%scenario%!%
!!"#$% Quantity%delivered%from%distribution%terminal%!%to%consumer%!%in%in%time%!%and%

scenario%!%
!!"!!% Get%value%1%if%distribution%terminal"!"with%capacity%alternative%!%is%build%in%

stage%1,%else%0%%
!!"#$!! % Get%value%1%if%distribution%terminal"!"with%capacity%alternative%!%is%build%in%

scenario%!%in%stage%2%and%time%!,%else%0%%
!!"#$% Get%value%1%if%terminal%!%expand%its%capacity%with%alternative%!%in%stage%2,%time%!%

and%scenario%!,%else%o%
!!"#$%% Get%value%1%if%shipping%fare%!%is%chosen%from%production%terminal%!%to%

distribution%terminal%!%in%time%!%and%scenario%!%
%
%
%
%
%
%
%
%
%
%
%
%
%
%



max !!! = − !!"!!!!"!!
!∈ℐ!∈!

%

!!!!!!!!!!!!!!!!!!+ !!
!∈!

!!"!!"#$
!∈ℐ!∈!!∈!

%

!!!!!!!!!!!!!!!!!!− !!"#$!" !!"#$%
!∈!!∈ℐ!∈!!∈ℱ

%

!!!!!!!!!!!!!!!!!!− !!"#!" !!"#$
!∈ℐ!∈!!∈!

%

!!!!!!!!!!!!!!!!!!− !!"!!!!"#$!!

!∈ℐ!∈!!∈!
%

!!!!!!!!!!!!!!!!!!− !!"! !!"#$
!∈ℐ!∈!!∈!

%

 
Subjected to 

!!"#$%!
!∈ℐ!∈ℱ

!≤ !!!"! % ! ∈ !,!! ∈ !:!! > !! ,!! ∈ !%

!!"#$ ≤ !!"#!
!∈ℐ

% ! ∈ !,!! ∈ !:!! > !! ,%! ∈ !%

!!"#$%!
!∈!!∈ℱ

= !!"#$
!∈!

% ! ∈ ℐ,!! ∈ !:!! > !! ,!! ∈ !%

!!"#$%!
!∈!!∈ℱ

!≤ ! !!!!"!!
!∈!

% ! ∈ ℐ,%! ∈ !:!! ≤ (!!+%!!),%! ∈ !%

!!"#$%!
!∈!!∈ℱ

≤ !! !!"!! + !!,!,!´!!!,!!!
!

!´!(!!!!!)!∈!

+ !!
!∈!

!!,!,!´!!!,!
!

!´!(!!!!!)
%

! ∈ ℐ,%! ∈ !!: ! > (!! + !!),%! ∈ !%

!!"!! + !!"#$!!

!∈!!∈!
≤ 1%

! ∈ ℐ,!! ∈ !%

!!"!! + !!,!,!´!!!,!!!
!

!´!(!!!!!)!∈!
≥ !!,!,!´!!!,!

!∈!

!

!´!(!!!!!)
%

! ∈ ℐ, ! ∈ !!: ! > (!! + !!), ! ∈ !%

!!!!!!"#$% ≤ !!"#$% ≤ !!!!"#$%% ! ∈ ℱ/{1}, ! ∈ !, ! ∈ ℐ,%! ∈ !:!! > !! ,!! ∈ !%
0 ≤ !!"#$% ≤ !!!!"#$%% ! = 1, ! ∈ !, ! ∈ ℐ,!%! ∈ !:!! > !! , ! ∈ !%

!!"#$%
!∈ℱ

≤ 1% ! ∈ !, ! ∈ ℐ, ! ∈ !:!! > !! ,!! ∈ !%

!!"#$% ∈ ℤ!% ! ∈ ℱ, ! ∈ !, ! ∈ ℐ,%! ∈ !:!! > !! ,!! ∈ !%
!!"#$ ∈ ℤ!% ! ∈ ℐ, ! ∈ !, ! ∈ !:!! > !! , ! ∈ !%
!!"!! ∈ {0,1}% ! ∈ ℐ,! ∈!%
!!"#$!! ∈ {0,1}% ! ∈ ℐ,!! ∈!,!! ∈ !!,!! ∈ !%
!!"#$ ∈ {0,1}% ! ∈ ℐ,!! ∈ !,!! ∈ !!,!! ∈ !%
!!"#$% ∈ {0,1}% ! ∈ ℱ, ! ∈ !, ! ∈ ℐ, ! ∈ !: ! > !! ,!! ∈ !%
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APPENDIX C                                                                                

INPUT DATA 



 

Truck Transportation Distance Matrix (km)  
                

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 10 64 95 165 265 333 424 535 552 639 419 480 422 494 568 563 502 575 773 1249 1481 1920 2039 2340 

2 64 10 30 101 201 268 359 470 486 573 449 558 486 437 616 627 557 629 827 1304 1535 1975 2094 2395 

3 95 30 10 71 171 238 329 440 460 547 519 483 522 547 726 663 605 678 876 1352 1584 2023 2142 2443 

4 265 201 171 100 10 68 159 270 299 386 472 505 674 693 872 917 761 834 1032 1508 1740 2179 2298 2599 

5 333 268 238 167 68 10 91 202 233 320 406 439 608 755 934 979 822 895 1093 1569 1801 2240 2359 2660 

6 424 359 329 258 159 91 10 111 166 252 338 373 542 710 888 933 912 985 1183 1659 1891 2330 2449 2750 

7 552 486 460 393 299 233 166 77 10 87 173 214 383 550 729 774 666 739 937 1413 1645 2084 2203 2504 

8 639 573 547 479 386 320 252 163 87 10 86 137 306 473 651 697 589 662 860 1336 1567 2007 2126 2427 

9 480 558 483 407 505 439 373 283 214 137 120 10 169 336 515 560 454 526 724 1201 1432 1872 1991 2292 

10 568 616 726 658 872 934 888 798 729 651 634 515 346 179 10 45 107 180 378 854 1086 1525 1644 1945 

11 563 627 663 703 917 979 933 843 774 697 680 560 391 224 45 10 81 154 352 828 1060 1499 1618 1919 

12 502 557 605 665 761 822 912 735 666 589 582 454 346 280 107 81 10 73 271 747 979 1418 1537 1838 

13 773 827 876 935 1032 1093 1183 1006 937 860 853 724 617 551 378 352 271 198 10 476 708 1147 1266 1567 

14 1249 1304 1352 1411 1508 1569 1659 1482 1413 1336 1329 1201 1093 1027 854 828 747 674 476 10 232 671 790 1091 

15 1920 1975 2023 2082 2179 2240 2330 2153 2084 2007 2000 1872 1764 1698 1525 1499 1418 1345 1147 671 439 10 119 420 

16 2039 2094 2142 2201 2298 2359 2449 2272 2203 2126 2119 1991 1883 1817 1644 1618 1537 1464 1266 790 558 119 10 301 

 

Truck Transportation Unit Cost Matrix (NOK/m3) 
               

 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 6 39 56 91 131 151 171 192 199 230 170 178 171 180 204 203 181 207 278 450 533 691 734 842 

2 39 6 18 59 106 132 158 177 179 206 175 201 179 173 222 226 200 227 298 469 553 711 754 862 

3 56 18 6 42 93 121 150 173 176 197 187 178 188 197 261 239 218 244 315 487 570 728 771 879 

4 131 106 93 58 6 41 88 132 142 164 177 182 243 249 314 330 274 300 371 543 626 784 827 936 

5 151 132 121 92 41 6 54 107 119 148 168 173 219 272 336 352 296 322 393 565 648 806 849 958 

6 171 158 150 128 88 54 6 64 91 126 153 161 195 255 320 336 328 355 426 597 681 839 882 990 

7 199 179 176 165 142 119 91 46 6 51 94 112 163 198 262 279 240 266 337 509 592 750 793 901 

8 230 206 197 178 164 148 126 90 51 6 51 77 144 177 235 251 212 238 309 481 564 722 765 874 

9 178 201 178 168 182 173 161 137 112 77 69 6 92 152 185 202 175 190 261 432 516 674 717 825 

10 204 222 261 237 314 336 320 287 262 235 228 185 155 97 6 27 62 97 162 307 391 549 592 700 

11 203 226 239 253 330 352 336 304 279 251 245 202 165 115 27 6 48 85 156 298 381 540 582 691 

12 181 200 218 239 274 296 328 265 240 212 210 175 155 136 62 48 6 44 132 269 352 510 553 662 

13 278 298 315 337 371 393 426 362 337 309 307 261 222 198 162 156 132 105 6 178 255 413 456 564 

14 450 469 487 508 543 565 597 534 509 481 479 432 393 370 307 298 269 243 178 6 119 242 284 393 

15 691 711 728 750 784 806 839 775 750 722 720 674 635 611 549 540 510 484 413 242 173 6 68 170 

16 734 754 771 793 827 849 882 818 793 765 763 717 678 654 592 582 553 527 456 284 201 68 6 142 

 



 

 

 

 

 

 

 

Ship Transportation Distance Matrix (nmi) 
           

 
1(1) 2(2) 3(3) 4(5) 5(6) 6(7) 7(9) 8(10) 9(12) 10(15) 11(16) 12(17) 13(19) 14(20) 15(23) 16(24) 

1(9) 321 289 273 173 125 76 0 32 99 321 337 371 532 789 1023 1091 

2(12) 420 388 372 272 224 175 99 67 0 222 238 272 433 690 924 992 

3(25) 1613 1581 1565 1465 1417 1369 1293 1261 1194 972 956 922 761 504 270 202 

                 

                 

                 

                 

                 
Ship Transportation Unit Cost Matrix (NOK/m3) 

          

 

 
1(1) 2(2) 3(3) 4(5) 5(6) 6(7) 7(9) 8(10) 9(12) 10(15) 11(16) 12(17) 13(19) 14(20) 15(23) 16(24) 

1(9) 79 74 71 53 45 36 0 28 40 79 82 88 117 162 203 215 

2(12) 97 91 88 71 62 54 40 34 0 62 65 71 99 145 186 198 

3(25) 308 302 299 282 273 265 251 246 234 194 192 186 157 112 70 58 

 

 

 

 

 

 

 

 

-The unit cost estimated by 

SINTEF, MARINTEK et al. 

(2002) included the cost of four 

small import terminals, this is taken 

into account by subtracting 30% of 

the cost. 

-15 % is added as port costs  

-The unit cost is adjusted to the 

consumer price index 

 



 

 

 

 

 
Demand - Scenario 1 (1000m3 LNG) 

                           
Time 
period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 208733 118470 64171 78980 6347 62761 7052 14809 57825 8462 7757 60645 32438 7052 9873 16924 9167 28207 154434 41606 11283 74749 9873 10578 
2 187269 106288 57573 70859 5694 56307 6327 13286 51879 7592 6959 54409 29103 6327 8857 15184 8225 25307 138554 37327 10123 67063 8857 9490 
3 165661 94024 50930 62683 5037 49810 5597 11753 45893 6716 6156 48131 25745 5597 7835 13432 7276 22387 122567 33020 8955 59325 7835 8395 
4 144053 81760 44287 54507 4380 43313 4867 10220 39907 5840 5353 41853 22387 4867 6813 11680 6327 19467 106580 28713 7787 51587 6813 7300 
5 141172 80125 43401 53417 4292 42447 4769 10016 39109 5723 5246 41016 21939 4769 6677 11446 6200 19077 104448 28139 7631 50555 6677 7154 
6 138291 78490 42515 52326 4205 41581 4672 9811 38310 5606 5139 40179 21491 4672 6541 11213 6074 18688 102317 27565 7475 49523 6541 7008 
7 135410 76854 41629 51236 4117 40715 4575 9607 37512 5490 5032 39342 21043 4575 6405 10979 5947 18299 100185 26991 7319 48491 6405 6862 
8 132529 75219 40744 50146 4030 39848 4477 9402 36714 5373 4925 38505 20596 4477 6268 10746 5821 17909 98054 26416 7164 47460 6268 6716 
9 129648 73584 39858 49056 3942 38982 4380 9198 35916 5256 4818 37668 20148 4380 6132 10512 5694 17520 95922 25842 7008 46428 6132 6570 

10 126767 71949 38972 47966 3854 38116 4283 8994 35118 5139 4711 36831 19700 4283 5996 10278 5567 17131 93790 25268 6852 45396 5996 6424 
11 123886 70314 38087 46876 3767 37249 4185 8789 34320 5022 4604 35994 19253 4185 5859 10045 5441 16741 91659 24693 6697 44365 5859 6278 
12 121005 68678 37201 45786 3679 36383 4088 8585 33522 4906 4497 35157 18805 4088 5723 9811 5314 16352 89527 24119 6541 43333 5723 6132 

13 118124 67043 36315 44695 3592 35517 3991 8380 32723 4789 4390 34320 18357 3991 5587 9578 5188 15963 87396 23545 6385 42301 5587 5986 

 

Demand - Scenario 2 (1000m3 LNG) 
                           

Time 
period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 208733 118470 64171 78980 6347 62761 7052 14809 57825 8462 7757 60645 32438 7052 9873 16924 9167 28207 154434 41606 11283 74749 9873 10578 
2 226716 128677 69700 85784 6893 68168 7659 16085 62806 9191 8425 65870 35233 7659 10723 18382 9957 30637 167739 45190 12255 81189 10723 11489 
3 245371 139265 75435 92843 7461 68168 8290 17408 67974 9947 9119 71290 38132 8290 11605 19895 10776 33158 181541 48908 13263 87869 11605 12434 
4 252093 143080 77502 95387 7665 68168 8517 17885 69837 10220 9368 73243 39177 8517 11923 20440 11072 34067 186515 50248 13627 90277 11923 12775 
5 268900 152619 82668 101746 8176 68168 9084 19077 74492 10901 9993 78126 41788 9084 12718 21803 11810 36338 198949 53598 14535 96295 12718 13627 
6 285706 162157 87835 108105 8687 68168 9652 20270 79148 11583 10617 83009 44400 9652 13513 23165 12548 38609 211384 56948 15444 102314 13513 14478 
7 302512 171696 93002 114464 9198 68168 10220 21462 83804 12264 11242 87892 47012 10220 14308 24528 13286 40880 223818 60298 16352 108332 14308 15330 
8 319318 181235 98169 120823 9709 68168 10788 22654 88460 12945 11867 92775 49624 10788 15103 25891 14024 43151 236252 63648 17260 114350 15103 16182 
9 336124 190773 103336 127182 10220 68168 11356 23847 93116 13627 12491 97658 52236 11356 15898 27253 14762 45422 248687 66998 18169 120369 15898 17033 

10 339486 192681 104369 128454 10322 68168 11469 24085 94047 13763 12616 98634 52758 11469 16057 27526 14910 45876 251174 67668 18351 121573 16057 17204 
11 346275 196535 106456 131023 10529 68168 11698 24567 95928 14038 12868 100607 53813 11698 16378 28076 15208 46794 256197 69021 18718 124004 16378 17548 
12 356664 202431 109650 134954 10845 68168 12049 25304 98805 14459 13254 103625 55427 12049 16869 28919 15664 48198 263883 71092 19279 127724 16869 18074 

13 370930 210528 114036 140352 11278 68168 12531 26316 102758 15038 13785 107770 57645 12531 17544 30075 16291 50126 274438 73935 20050 132833 17544 18797 

 



 

 

 

 

Demand - Scenario 3  (1000m3 LNG) 
                    

Time 
period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 208733 118470 64171 78980 6347 62761 7052 14809 57825 8462 7757 60645 32438 7052 9873 16924 9167 28207 154434 41606 11283 74749 9873 10578 
2 264098 149893 81192 99929 8030 79408 8922 18737 73162 10707 9814 76731 41042 8922 12491 21413 11599 35689 195397 52641 14276 94576 12491 13383 
3 312116 177147 95954 118098 9490 93846 10544 22143 86464 12653 11599 90682 48504 10544 14762 25307 13708 42178 230923 62212 16871 111771 14762 15817 
4 360133 204400 110717 136267 10950 108283 12167 25550 99767 14600 13383 104633 55967 12167 17033 29200 15817 48667 266450 71783 19467 128967 17033 18250 
5 384142 218027 118098 145351 11680 115502 12978 27253 106418 15573 14276 111609 59698 12978 18169 31147 16871 51911 284213 76569 20764 137564 18169 19467 
6 408151 231653 125479 154436 12410 122721 13789 28957 113069 16547 15168 118584 63429 13789 19304 33093 17926 55156 301977 81354 22062 146162 19304 20683 
7 432160 245280 132860 163520 13140 129940 14600 30660 119720 17520 16060 125560 67160 14600 20440 35040 18980 58400 319740 86140 23360 154760 20440 21900 
8 456169 258907 140241 172604 13870 137159 15411 32363 126371 18493 16952 132536 70891 15411 21576 36987 20034 61644 337503 90926 24658 163358 21576 23117 
9 480178 272533 147622 181689 14600 144378 16222 34067 133022 19467 17844 139511 74622 16222 22711 38933 21089 64889 355267 95711 25956 171956 22711 24333 

10 492182 279347 151313 186231 14965 147987 16628 34918 136348 19953 18291 142999 76488 16628 23279 39907 21616 66511 364148 98104 26604 176254 23279 24942 
11 504187 286160 155003 190773 15330 151597 17033 35770 139673 20440 18737 146487 78353 17033 23847 40880 22143 68133 373030 100497 27253 180553 23847 25550 
12 528196 299787 162384 199858 16060 158816 17844 37473 146324 21413 19629 153462 82084 17844 24982 42827 23198 71378 390793 105282 28551 189151 24982 26767 

13 552204 313413 169766 208942 16790 166034 18656 39177 152976 22387 20521 160438 85816 18656 26118 44773 24252 74622 408557 110068 29849 197749 26118 27983 

 

 

Demand - Aggregated scenario (1000m3 LNG) 
                   

Time 
period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 208733 118470 64171 78980 6347 62761 7052 14809 57825 8462 7757 60645 32438 7052 9873 16924 9167 28207 154434 41606 11283 74749 9873 10578 
2 226028 128286 69488 85524 6872 67961 7636 16036 62616 9163 8400 65670 35126 7636 10690 18327 9927 30544 167230 45053 12218 80942 10690 11454 
3 241049 136812 74106 91208 7329 72478 8144 17101 66777 9772 8958 70035 37460 8144 11401 19545 10587 32574 178344 48047 13030 86322 11401 12215 
4 252093 143080 77502 95387 7665 75798 8517 17885 69837 10220 9368 73243 39177 8517 11923 20440 11072 34067 186515 50248 13627 90277 11923 12775 
5 264738 150257 81389 100171 8049 79600 8944 18782 73340 10733 9838 76917 41142 8944 12521 21465 11627 35775 195870 52769 14310 94805 12521 13416 
6 277383 157433 85276 104956 8434 83402 9371 19679 76843 11245 10308 80591 43107 9371 13119 22490 12182 37484 205226 55289 14994 99333 13119 14057 
7 290027 164610 89164 109740 8818 87204 9798 20576 80345 11758 10778 84265 45072 9798 13718 23516 12738 39193 214581 57810 15677 103861 13718 14697 
8 302672 171787 93051 114525 9203 91006 10225 21473 83848 12270 11248 87939 47037 10225 14316 24541 13293 40902 223936 60330 16361 108389 14316 15338 
9 315317 178964 96939 119309 9587 94808 10653 22370 87351 12783 11718 91612 49002 10653 14914 25566 13848 42610 233292 62850 17044 112917 14914 15979 

10 319478 181326 98218 120884 9714 96059 10793 22666 88504 12952 11873 92821 49649 10793 15110 25904 14031 43173 236371 63680 17269 114408 15110 16190 
11 324783 184336 99849 122891 9875 97654 10972 23042 89974 13167 12070 94363 50473 10972 15361 26334 14264 43890 240295 64737 17556 116307 15361 16459 
12 335288 190299 103078 126866 10195 100813 11327 23787 92884 13593 12460 97415 52106 11327 15858 27186 14725 45309 248068 66831 18124 120069 15858 16991 

13 347086 196995 106706 131330 10553 104360 11726 24624 96152 14071 12898 100843 53939 11726 16416 28142 15244 46904 256797 69183 18761 124294 16416 17589 

 



 

 

 

 

 

 
Import terminal cost and import terminal expansion cost 
 

          

   

 Time period  1 2 3 4 5 6 7 8 9 10 11 12 13 

 
Capacity alternative 

          

   

Terminal cost - Deterministic Model 1 324094657 283028473 245695578 211756583 180902951 152854195 127355326 104174535 83101090 63943412 - - - 

 2 380271064 332086741 288282812 248461058 212259463 179348922 149430249 122231455 97505279 75026937 - - - 

 3 553121547 483035260 419320453 361397902 308741037 260871160 217353089 177791207 141825860 109130090 - - - 

  
  

        
  

   

Terminal expansion cost - Deterministic Model 1 190135532 166043371 144141406 124230529 106129731 89674461 74715124 61115727 48752639 37513468 - - - 

 2 220384367 192459361 167072993 143994477 123014007 103940853 86601621 70838684 56508741 43481520 - - - 

 
 

  
        

  
   

Terminal cost - Stage 1 - Stochastic Model 1 324094657 - - - - - - - - - - - - 

 2 380271064 - - - - - - - - - - - - 

 3 553121547 - - - - - - - - - - - - 

  
  

        
  

   

Terminal cost - Stage 2 - Stochastic Model 1 - - - 211756583 180902951 152854195 127355326 104174535 83101090 63943412 - - - 

 2 - - - 248461058 212259463 179348922 149430249 122231455 97505279 75026937 - - - 

 3 - - - 361397902 308741037 260871160 217353089 177791207 141825860 109130090 - - - 

  
  

        
  

   

Terminal expansion cost - Stage 2 - Stochastic Model 1 - - - 124230529 106129731 89674461 74715124 61115727 48752639 37513468 - - - 

 2 - - - 143994477 123014007 103940853 86601621 70838684 56508741 43481520 - - - 
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 SOURCE CODE (DETERMINISTIC MODEL) 
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!This is an implementation of the deterministic model developed in the Master Thesis 
!Created by Marius Kongsfjell Fekene, Spring 2014
!Norwegian University of Science and Technology

model deterministic_model

options explterm,  !require statment termination with ;
        noimplicit !require all symbols to be declared before use

uses  "mmxprs";    !MIP (integer or mixed integer programming)

!..................................................................................................
!                                            Importing data file
!..................................................................................................
parameters
DataFile = 'InputDeterministicModel(C.LastChance).txt';
end-parameters

!..................................................................................................
!                                          Declaration of indices
!..................................................................................................
declarations
Production:     set of integer;
Distribution:   set of integer; 
Consumer:       set of integer; 
Capacity:       set of integer;
Expand:         set of integer;
Time:           set of integer;
Fare:           set of integer;
end-declarations

!..................................................................................................
!                                    Declaration of the amount of indices
!..................................................................................................
declarations
AmountP:    integer;
AmountD:    integer;
AmountCo:   integer;
AmountCa:   integer;
AmountV:    integer;
AmountT:    integer;
AmountF:    integer;
end-declarations

!..................................................................................................
!                                     Retrieves paramters from datafile
!..................................................................................................
initializations from DataFile
AmountP;
AmountD;
AmountCo;
AmountCa;
AmountV;
AmountT;
AmountF;
end-initializations

!..................................................................................................
!                                          Definition of indices 
!..................................................................................................
Production      := 1.. AmountP;
Distribution    := 1.. AmountD; 
Consumer        := 1.. AmountCo;
Capacity        := 1.. AmountCa;
Expand          := 1.. AmountV; 
Time            := 1.. AmountT; 
Fare            := 1.. AmountF;

!..................................................................................................
!                                          Finalizing of indices
!...................................................................................................
finalize(Production);
finalize(Distribution);
finalize(Consumer);
finalize(Capacity);
finalize(Expand);
finalize(Time);
finalize(Fare);

!..................................................................................................
!                                         Declaration of variables
!..................................................................................................
declarations
X:                  dynamic array (Fare,Production,Distribution,Time)   of mpvar;
Y:                  dynamic array (Distribution,Consumer,Time)          of mpvar;
Z:                  dynamic array (Fare,Production,Distribution,Time)   of mpvar;
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Delta1:             dynamic array (Distribution,Capacity,Time)          of mpvar;
Alpha:              dynamic array (Distribution,Expand,Time)            of mpvar;

!..................................................................................................
!                                        Declaration of Parameters
!..................................................................................................
Revenue:            array (Time)                                of integer;
TransportCostPD:    array (Production,Distribution)             of integer;
TransportCostDC:    array (Distribution,Consumer)               of integer;
TerminalCost:       array (Capacity,Time)                       of integer;
DiscountR:          array (Fare)                                of real;
Threshold:          array (Fare)                                of integer;
ExpandCost:         array (Expand,Time)                         of integer;
Demand:             array (Time,Consumer)                       of integer;
CapacityDi:         array (Capacity)                            of integer;
CapacityEx:         array (Expand)                              of integer;
CapacityPr:         array (Production)                          of integer;
DistanceS:          array (Production,Distribution)             of integer;
DiscountF:          array (Time)                                of real;
tLead:                                                          integer;
                                
!..................................................................................................
!                            Declaration of ObjectiveFunction and Constraints
!..................................................................................................
ObjectiveFunction:                                              linctr;
Constraint1:        array(Production,Time)                      of linctr;
Constraint2:        array(Consumer,Time)                        of linctr;
Constraint3:        array(Distribution,Time)                    of linctr;
Constraint4:        array(Distribution,Time)                    of linctr;
Constraint5:        array(Distribution,Time)                    of linctr;
Constraint6:        array(Fare,Production,Distribution,Time)    of linctr;
Constraint7:        array(Fare,Production,Distribution,Time)    of linctr;
Constraint67:       array(Fare,Production,Distribution,Time)    of linctr;
Constraint8:        array(Production,Distribution,Time)         of linctr;
end-declarations

!..................................................................................................
!                           Retrieves the rest of the paramters from datafile
!..................................................................................................
initializations from DataFile
Revenue;
TransportCostPD;
TransportCostDC;
TerminalCost;       
DiscountR;
Threshold;      
ExpandCost;             
Demand;                 
CapacityDi;     
CapacityEx;         
CapacityPr;                                                 
tLead;
DistanceS;
DiscountF;
end-initializations

!..................................................................................................
!                                              Creation Variables
!...................................................................................................
forall (ff in Fare,pp in Production,dd in Distribution,tt in Time|tt>(tLead)) do 
    if DistanceS(pp,dd)<800 then !varaibale reduction
        create(X(ff,pp,dd,tt));
    end-if
end-do

forall (dd in Distribution,cc in Consumer,tt in Time|tt>(tLead)) do 
        create(Y(dd,cc,tt));
end-do

forall (ff in Fare,pp in Production,dd in Distribution,tt in Time|tt>(tLead)) do 
    create(Z(ff,pp,dd,tt));
end-do

forall (dd in Distribution,kk in Capacity,tt in Time|tt<=(AmountT-tLead)) do  !variable reduction
    create(Delta1(dd,kk,tt));
end-do

forall (dd in Distribution,ee in Expand,tt in Time|tt<=(AmountT-tLead)) do  !variable reduction   
    create(Alpha(dd,ee,tt));
end-do

!..................................................................................................
!                                       Creation of Binary Variables
!..................................................................................................
forall (dd in Distribution,kk in Capacity,tt in Time) do 
    Delta1(dd,kk,tt) is_binary;
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end-do

forall (ff in Fare,pp in Production,dd in Distribution,tt in Time) do 
    Z(ff,pp,dd,tt) is_binary;
end-do

forall (dd in Distribution,ee in Expand,tt in Time) do 
    Alpha(dd,ee,tt) is_binary;
end-do

!..................................................................................................
!                                           Objective function
!..................................................................................................
ObjectiveFunction:=                                                                                 
+ sum(tt in Time) (sum(cc in Consumer) (sum(dd in Distribution)  
  Revenue(tt)*Y(dd,cc,tt)))                                                             !(5.0a)
- sum(tt in Time) (sum(kk in Capacity) (sum(dd in Distribution)  
  TerminalCost(kk,tt)*Delta1(dd,kk,tt)))                                                !(5.0b)
- sum(tt in Time) (sum(dd in Distribution) (sum(pp in Production) (sum(ff in Fare) 
  DiscountF(tt)*DiscountR(ff)*TransportCostPD(pp,dd)*X(ff,pp,dd,tt))))                  !(5.0c)
- sum(tt in Time) (sum(cc in Consumer) (sum(dd in Distribution)  
  DiscountF(tt)*TransportCostDC(dd,cc)*Y(dd,cc,tt)))                                    !(5.0d)      
- sum(tt in Time) (sum(ee in Expand) (sum(dd in Distribution)  
  ExpandCost(ee,tt)*Alpha(dd,ee,tt)));                                                  !(5.0e)

!..................................................................................................
!                                              Constraints
!..................................................................................................
!Constraint 5.1
forall(pp in Production,tt in Time|(tt)>(tLead)) do
    Constraint1(pp,tt):=
            sum(ff in Fare) (sum(dd in Distribution) X(ff,pp,dd,tt)) <= CapacityPr(pp);
end-do

!Constraint 5.2
forall(cc in Consumer,tt in Time) do 
    Constraint2(cc,tt):=
            sum(dd in Distribution) Y(dd,cc,tt) <= Demand(tt,cc);    
end-do

!Constraint 5.3
forall(dd in Distribution,tt in Time) do 
    Constraint3(dd,tt):=
             sum(pp in Production) (sum(ff in Fare) X(ff,pp,dd,tt)) 
             = sum(cc in Consumer) Y(dd,cc,tt);
end-do

!Constraint 5.4
forall(dd in Distribution,tt in Time|(tt)>tLead) do 
    Constraint4(dd,tt):=
             sum(pp in Production)(sum(ff in Fare) X(ff,pp,dd,tt)) 
             <=(sum(kk in Capacity) (CapacityDi(kk)*(sum(ii in (tLead+1)..tt)Delta1(dd,kk,ii-tLead)))
             + sum(ii in (tLead+1)..tt) (sum(ee in Expand) CapacityEx(ee)*Alpha(dd,ee,ii-tLead)));
end-do

!Constraint 5.5
forall(dd in Distribution,tt in Time|(tt)>tLead) do 
    Constraint5(dd,tt):=
             sum(kk in Capacity) (sum(ii in 1..tt) Delta1(dd,kk,ii)) 
             >=sum(ii in 1..tt) (sum(ee in Expand) Alpha(dd,ee,ii));
end-do

!Part 1 ofConstraint 5.6
forall(ff in Fare,pp in Production,dd in Distribution,tt in Time|(ff)>1) do
    Constraint6(ff,pp,dd,tt):=
            Threshold(ff-1)*Z(ff,pp,dd,tt)<= X(ff,pp,dd,tt);
end-do

!Part 1 of Constraint 5.7
forall(ff in Fare, pp in Production,dd in Distribution,tt in Time|(ff)=1) do
    Constraint6(ff,pp,dd,tt):=
            0 <= X(ff,pp,dd,tt);
end-do

!Part 2 of Constraint 5.6 and 5.7
forall(ff in Fare,pp in Production,dd in Distribution,tt in Time) do
    Constraint67(ff,pp,dd,tt):=
            X(ff,pp,dd,tt) <= Threshold(ff)*Z(ff,pp,dd,tt);
end-do

!Constraint 5.8
forall(pp in Production,dd in Distribution,tt in Time) do
    Constraint8(pp,dd,tt):=
            sum(ff in Fare) Z(ff,pp,dd,tt) <= 1;
end-do
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!..................................................................................................
!                                    Maximization of objective function
!..................................................................................................
maximize(ObjectiveFunction);

!..................................................................................................
!                                              Writing Output
!..................................................................................................
fopen("Deterministic-result.txt", F_OUTPUT);

writeln('ObjectiveFunctionValue: ',getsol(ObjectiveFunction));

writeln('New Terminals: (',strfmt(sum(dd in Distribution)(sum(kk in Capacity) (sum(tt in Time) 
        (getsol(Delta1(dd,kk,tt))))),1),'/',AmountD,')');

forall (dd in Distribution,kk in Capacity,tt in Time|getsol(Delta1(dd,kk,tt)) > 0.1) do 
        writeln('(T: ',tt,')','  Terminal ',dd,' ','(Ca: ',kk,')');         
end-do

        writeln;
        
writeln('Expand Terminals: (',strfmt(sum(dd in Distribution)(sum(ee in Expand) (sum(tt in Time) 
        (getsol(Alpha(dd,ee,tt))))),1),'/',AmountD,')');    
forall (dd in Distribution,ee in Expand,tt in Time|getsol(Alpha(dd,ee,tt))> 0.1) do 
        writeln('(T: ',tt,')','  Terminal ',dd,' ','(Ca: ',ee,')');
end-do
    
    writeln;

writeln('From Production to Distribution:');
forall (ff in Fare,pp in Production, dd in Distribution,tt in Time| 
        getsol(X(ff,pp,dd,tt)) > 0.1) do 
    write(tt,'  ',strfmt(getsol(X(ff,pp,dd,tt)),4),'    ' );
    writeln(pp, '   ',dd);
end-do

    writeln;

writeln('From Distribution to Consumer:');
forall (dd in Distribution,cc in Consumer,tt in Time| getsol(Y(dd,cc,tt)) > 0.1) do 
    write(tt,'  ',strfmt(getsol(Y(dd,cc,tt)),4),'   ' );
    writeln(dd, '   ',cc);
end-do

    writeln;

writeln('Part of Y served:');
forall (dd in Distribution,cc in Consumer,tt in Time|(tt)>tLead and getsol(Y(dd,cc,tt))>0.9) do 
    writeln(dd,' to ',cc,'  ','  (T:',tt,')   (',getsol(Y(dd,cc,tt)),')/(',getsol(Demand(tt,cc)),')' 
end-do

fclose(F_OUTPUT);

end-model
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!This is an implementation of the stochastic model developed in the Master Thesis 
!Created by Marius Kongsfjell Fekene, Spring 2014
!Norwegian University of Science and Technology

model stochastic_model

options explterm,  !require statment termination with ;
        noimplicit !require all symbols to be declared before use

uses  "mmxprs";    !MIP (integer or mixed integer programming)

!....................................................................................................
!                                             Importing data file
!....................................................................................................
parameters
DataFile = 'InputStochasticModel(C.LastChance).txt';
RUNTIME = 10000;
end-parameters

setparam("XPRS_maxtime", RUNTIME);

!....................................................................................................
!                                            Declaration of indices
!....................................................................................................
declarations
Production:     set of integer;
Distribution:   set of integer; 
Consumer:       set of integer; 
Scenario:       set of integer;
Capacity:       set of integer;
Expand:         set of integer;
Time:           set of integer;
Fare:           set of integer;
end-declarations

!....................................................................................................
!                                     Declaration of the amount of indices
!....................................................................................................
declarations
AmountP:    integer;
AmountD:    integer;
AmountCo:   integer;
AmountS:    integer;
AmountCa:   integer;
AmountV:    integer;
AmountT:    integer;
AmountF:    integer;
end-declarations

!....................................................................................................
!                                      Retrieves paramters from datafile
!....................................................................................................
initializations from DataFile
AmountP;
AmountD;
AmountCo;
AmountS;
AmountCa;
AmountV;
AmountT;
AmountF;
end-initializations

!....................................................................................................
!                                            Definition of indices 
!....................................................................................................
Production      := 1.. AmountP;
Distribution    := 1.. AmountD; 
Consumer        := 1.. AmountCo;
Scenario        := 1.. AmountS;
Capacity        := 1.. AmountCa;
Expand          := 1.. AmountV; 
Time            := 1.. AmountT; 
Fare            := 1.. AmountF;

!....................................................................................................
!                                             Finalizing of indices
!....................................................................................................
finalize(Production);
finalize(Distribution);
finalize(Consumer);
finalize(Scenario);
finalize(Capacity);
finalize(Expand);
finalize(Time);
finalize(Fare);
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!....................................................................................................
!                                           Declaration of variables
!....................................................................................................
declarations
X:                  dynamic array (Fare,Production,Distribution,Time,Scenario)  of mpvar;
Y:                  dynamic array (Distribution,Consumer,Time,Scenario)         of mpvar;
Z:                  dynamic array (Fare,Production,Distribution,Time,Scenario)  of mpvar;
Delta1:             dynamic array (Distribution,Capacity)                       of mpvar;
Delta2:             dynamic array (Distribution,Capacity,Time,Scenario)         of mpvar;
Alpha:              dynamic array (Distribution,Expand,Time,Scenario)           of mpvar;

!....................................................................................................
!                                          Declaration of Parameters
!....................................................................................................
Revenue:            array (Time)                                of integer;
TransportCostPD:    array (Production,Distribution)             of integer;
TransportCostDC:    array (Distribution,Consumer)               of integer;
TerminalCost1:      array (Capacity)                            of integer;
TerminalCost2:      array (Capacity,Time)                       of integer;
DiscountR:          array (Fare)                                of real;
Threshold:          array (Fare)                                of integer;
ExpandCost:         array (Expand,Time)                         of integer;
DemandS1:           array (Time,Consumer)                       of integer;
DemandS2:           array (Time,Consumer)                       of integer;
DemandS3:           array (Time,Consumer)                       of integer;
CapacityDi:         array (Capacity)                            of integer;
CapacityEx:         array (Expand)                              of integer;
CapacityPr:         array (Production)                          of integer;
Probability:        array (Scenario)                            of real;
DistanceS:          array (Production,Distribution)             of integer;
DiscountF:          array (Time)                                of real;
t1:                                                             integer;    
tLead:                                                          integer;

!....................................................................................................
!                               Declaration of ObjectiveFunction and Constraints
!....................................................................................................
ObjectiveFunction:                                                         linctr;
Constraint1:        array(Production,Time,Scenario)                     of linctr;
Constraint2:        array(Consumer,Time)                                of linctr;
Constraint3:        array(Distribution,Time,Scenario)                   of linctr;
Constraint4:        array(Distribution,Time,Scenario)                   of linctr;
Constraint5:        array(Distribution,Time,Scenario)                   of linctr;
Constraint6:        array(Distribution,Scenario)                        of linctr;
Constraint7:        array(Distribution,Time,Scenario)                   of linctr;
Constraint8:        array(Fare,Production,Distribution,Time,Scenario)   of linctr;
Constraint9:        array(Fare,Production,Distribution,Time,Scenario)   of linctr;
Constraint89:       array(Fare,Production,Distribution,Time,Scenario)   of linctr;
Constraint10:       array(Production,Distribution,Time,Scenario)        of linctr;

end-declarations

!....................................................................................................
!                              Retrieves the rest of the paramters from datafile
!....................................................................................................
initializations from DataFile
Revenue;
TransportCostPD;
TransportCostDC;
TerminalCost1;      
TerminalCost2;
DiscountR;
Threshold;      
ExpandCost;             
DemandS1;           
DemandS2;       
DemandS3;       
CapacityDi;     
CapacityEx;         
CapacityPr;         
Probability;        
DistanceS;
DiscountF;
t1;                                                         
tLead;
end-initializations

!....................................................................................................
!                                            Creation of Variables
!....................................................................................................
forall (ff in Fare,pp in Production,dd in Distribution,tt in Time,ss in Scenario|tt>(tLead)) do 
    if DistanceS(pp,dd)<800 then    !variable reduction
        create(X(ff,pp,dd,tt,ss));
    end-if
end-do
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forall (dd in Distribution,cc in Consumer,tt in Time,ss in Scenario|tt>(tLead)) do 
        create(Y(dd,cc,tt,ss));
end-do

forall (ff in Fare,pp in Production,dd in Distribution,tt in Time,ss in Scenario|tt>(tLead)) do 
    create(Z(ff,pp,dd,tt,ss));
end-do

forall (dd in Distribution,kk in Capacity) do   
    create(Delta1(dd,kk));
end-do

forall (dd in Distribution,kk in Capacity,tt in Time,ss in Scenario|
       (tt)>(t1)and (tt)<=(AmountT-tLead)  ) do  !variable reduction
    create(Delta2(dd,kk,tt,ss));
end-do

forall (dd in Distribution,ee in Expand,tt in Time,ss in Scenario|
       (tt)>(t1)and (tt)<=(AmountT-tLead)) do   !variable reduction
    create(Alpha(dd,ee,tt,ss));
end-do

!....................................................................................................
!                                         Creation of Binary Variables
!....................................................................................................
forall (dd in Distribution,kk in Capacity) do 
    Delta1(dd,kk) is_binary;
end-do

forall (ff in Fare,pp in Production,dd in Distribution,tt in Time,ss in Scenario|tt>(tLead)) do 
    Z(ff,pp,dd,tt,ss) is_binary;
end-do

forall (dd in Distribution,kk in Capacity,tt in Time,ss in Scenario|(tt)>(t1)) do 
    Delta2(dd,kk,tt,ss) is_binary;
end-do

forall (dd in Distribution,ee in Expand,tt in Time,ss in Scenario|(tt)>(t1)) do 
    Alpha(dd,ee,tt,ss) is_binary;
end-do

!....................................................................................................
!                                             Objective function
!....................................................................................................
ObjectiveFunction:= 
- sum(kk in Capacity) (sum(dd in Distribution)   TerminalCost1(kk)*Delta1(dd,kk))           !(5.14a) 
+ sum(ss in Scenario) Probability(ss)*(                                                              
    + (sum(tt in Time) (sum(cc in Consumer) (sum(dd in Distribution)  
        Revenue(tt)*Y(dd,cc,tt,ss))))                                                       !(5.14b)
    - (sum(tt in Time) (sum(dd in Distribution) (sum(pp in Production) (sum(ff in Fare) 
        DiscountF(tt)*DiscountR(ff)*TransportCostPD(pp,dd)*X(ff,pp,dd,tt,ss)))))            !(5.14c)
    - (sum(tt in Time) (sum(cc in Consumer) (sum(dd in Distribution)  
        DiscountF(tt)*TransportCostDC(dd,cc)*Y(dd,cc,tt,ss))))                              !(5.14d)
    - (sum(tt in Time) (sum(kk in Capacity) (sum(dd in Distribution)  
        TerminalCost2(kk,tt)*Delta2(dd,kk,tt,ss))))                                         !(5.14e)
    - (sum(tt in Time) (sum(ee in Expand) (sum(dd in Distribution)  
        ExpandCost(ee,tt)*Alpha(dd,ee,tt,ss)))));                                           !(5.14f)

!....................................................................................................
!                                               Constraints
!....................................................................................................
!Constraint 5.15
forall(pp in Production,tt in Time,ss in Scenario|(tt)>(tLead)) do
    Constraint1(pp,tt,ss):=
            sum(ff in Fare) (sum(dd in Distribution) X(ff,pp,dd,tt,ss)) <= CapacityPr(pp);
end-do

!Constraint 5.16
forall(cc in Consumer,tt in Time) do 
    Constraint2(cc,tt):=
            sum(dd in Distribution) Y(dd,cc,tt,1) <= DemandS1(tt,cc);   
            sum(dd in Distribution) Y(dd,cc,tt,2) <= DemandS2(tt,cc);   
            sum(dd in Distribution) Y(dd,cc,tt,3) <= DemandS3(tt,cc); 
end-do

!Constraint 5.17
forall(dd in Distribution,ss in Scenario,tt in Time|(tt)>(tLead)) do 
    Constraint3(dd,tt,ss):=
            sum(ff in Fare) (sum(pp in Production) X(ff,pp,dd,tt,ss)) 
            = sum(cc in Consumer) Y(dd,cc,tt,ss);
end-do

!Constraint 5.18
forall(dd in Distribution,tt in Time,ss in Scenario|(tt)<=(t1+tLead)) do 
    Constraint4(dd,tt,ss):=
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            sum(ff in Fare) (sum(pp in Production) X(ff,pp,dd,tt,ss)) 
            <= sum(kk in Capacity) CapacityDi(kk)*Delta1(dd,kk); 
end-do

!Constraint 5.19
forall(dd in Distribution,tt in Time,ss in Scenario|(tt)>(t1+tLead)) do 
    Constraint5(dd,tt,ss):=
            sum(ff in Fare) (sum(pp in Production) X(ff,pp,dd,tt,ss)) 
            <=  (sum(kk in Capacity) CapacityDi(kk)*(Delta1(dd,kk)
            + sum(ii in (tLead+t1+1)..tt) Delta2(dd,kk,ii-tLead,ss))
            + sum(ii in (tLead+t1+1)..tt) (sum(ee in Expand) CapacityEx(ee)*Alpha(dd,ee,ii-tLead,ss))
end-do

!Constraint 5.20
forall(dd in Distribution,ss in Scenario) do 
    Constraint6(dd,ss):=
             sum(kk in Capacity) (Delta1(dd,kk) + sum(tt in Time) Delta2(dd,kk,tt,ss)) <= 1;
end-do

!Constraint 5.21
forall(dd in Distribution,tt in Time,ss in Scenario) do 
    Constraint7(dd,tt,ss):=
             sum(kk in Capacity) (Delta1(dd,kk) 
             + sum(ii in (tLead+t1+1)..tt) Delta2(dd,kk,ii-tLead,ss)) 
             >=sum(ii in (tLead+t1+1)..tt) (sum(ee in Expand) Alpha(dd,ee,ii-tLead,ss));
end-do

!Part 1 Constraint 5.22
forall(ff in Fare,pp in Production,dd in Distribution,tt in Time,ss in Scenario|
    (ff)>1 and (tt)>(tLead)) do
    Constraint8(ff,pp,dd,tt,ss):=
            Threshold(ff-1)*Z(ff,pp,dd,tt,ss)<= X(ff,pp,dd,tt,ss);
end-do
!Part 1 Constraint 5.23
forall(ff in Fare,pp in Production,dd in Distribution,tt in Time,ss in Scenario|
    (ff)=1 and (tt)>(tLead)) do
    Constraint9(ff,pp,dd,tt,ss):=
            0 <= X(ff,pp,dd,tt,ss);
end-do

!Part 2 Constraint 5.22 and 5.23
forall(ff in Fare,pp in Production,dd in Distribution,tt in Time,ss in Scenario| (tt)>(tLead)) do
    Constraint89(ff,pp,dd,tt,ss):=
            X(ff,pp,dd,tt,ss) <= Threshold(ff)*Z(ff,pp,dd,tt,ss);
end-do

!Constraint 5.24
forall(pp in Production,dd in Distribution,tt in Time,ss in Scenario|(tt)>(tLead)) do
    Constraint10(pp,dd,tt,ss):=
            sum(ff in Fare) Z(ff,pp,dd,tt,ss) <= 1;
end-do

!....................................................................................................
!                                    Maximization of objective function
!....................................................................................................
maximize(ObjectiveFunction);

!....................................................................................................
!                                              Writing Output
!....................................................................................................
fopen("Stochastic-result.txt", F_OUTPUT);

    writeln;

writeln('ObjectiveFunctionValue: ',getsol (ObjectiveFunction));

    writeln;

writeln('Open Terminals (stage 1):');

writeln('(',strfmt(sum(dd in Distribution)(sum(kk in Capacity) 
        (getsol(Delta1(dd,kk)))),1),'/',AmountD,')');
forall (dd in Distribution,kk in Capacity| getsol(Delta1(dd,kk)) = 1) do 
        writeln('  Terminal ',dd,' ','(Ca: ',kk,')');
end-do

    writeln;

writeln('Stage 2 Decisions:');
writeln('Scenario 1:');

writeln('New Terminals: (',strfmt(sum(dd in Distribution)(sum(kk in Capacity) (sum(tt in Time) 
        (getsol(Delta2(dd,kk,tt,1))))),1),'/',AmountD,')');

forall (dd in Distribution,kk in Capacity,tt in Time,ss in Scenario|getsol(Delta2(dd,kk,tt,ss)) = 1) 
        if (ss = 1) then
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            writeln('(T:',tt,')','  Terminal ',dd,' ','(Ca: ',kk,')');
        end-if              
end-do

    writeln;
writeln('Expand Terminals: (',strfmt(sum(dd in Distribution)(sum(ee in Expand) (sum(tt in Time) 
        (getsol(Alpha(dd,ee,tt,1))))),1),'/',AmountD,')');  
forall (dd in Distribution,ee in Expand,tt in Time,ss in Scenario|getsol(Alpha(dd,ee,tt,ss)) = 1) do 
        if (ss = 1) then
            writeln('(T:',tt,')','  Terminal ',dd,' ','(Ca: ',ee,')');
        end-if
end-do
    
    writeln;
writeln('Scenario 2:');
writeln('New Terminals: (',strfmt(sum(dd in Distribution)(sum(kk in Capacity) (sum(tt in Time) 
        (getsol(Delta2(dd,kk,tt,2))))),1),'/',AmountD,')');
forall (dd in Distribution,kk in Capacity,tt in Time,ss in Scenario|getsol(Delta2(dd,kk,tt,ss)) = 1) 
        if (ss = 2) then
            writeln('(T:',tt,')','  Terminal ',dd,' ','(Ca: ',kk,')');
        end-if  
end-do

    writeln;
writeln('Expand Terminals: (',strfmt(sum(dd in Distribution)(sum(ee in Expand) (sum(tt in Time) 
        (getsol(Alpha(dd,ee,tt,2))))),1),'/',AmountD,')');  
forall (dd in Distribution,ee in Expand,tt in Time,ss in Scenario|getsol(Alpha(dd,ee,tt,ss)) = 1) do 
        if (ss = 2) then
            writeln('(T:',tt,')','  Terminal ',dd,' ','(Ca: ',ee,')');
        end-if
end-do
    
    writeln;
writeln('Scenario 3:');
writeln('New Terminals: (',strfmt(sum(dd in Distribution)(sum(kk in Capacity) (sum(tt in Time) 
        (getsol(Delta2(dd,kk,tt,3))))),1),'/',AmountD,')'); 
forall (dd in Distribution,kk in Capacity,tt in Time,ss in Scenario|getsol(Delta2(dd,kk,tt,ss)) = 1) 
        if (ss = 3) then
            writeln('(T:',tt,')','  Terminal ',dd,' ','(Ca: ',kk,')');
        end-if
end-do

    writeln;
writeln('Expand Terminals: (',strfmt(sum(dd in Distribution)(sum(ee in Expand) (sum(tt in Time) 
        (getsol(Alpha(dd,ee,tt,3))))),1),'/',AmountD,')');  
forall (dd in Distribution,ee in Expand,tt in Time,ss in Scenario|getsol(Alpha(dd,ee,tt,ss)) = 1) do 
        if (ss = 3) then
            writeln('(T:',tt,')','  Terminal ',dd,' ','(Ca: ',ee,')');
        end-if
end-do

    writeln;

writeln('From Production to Distribution:');
writeln('Scenario 1:');
forall (ff in Fare,pp in Production, dd in Distribution,tt in Time,ss in Scenario| 
        getsol(X(ff,pp,dd,tt,ss)) > 0.1) do 
    if (ss = 1) then
        write(tt,'  ',strfmt(getsol(X(ff,pp,dd,tt,ss)),4),' ' );
        writeln(pp, '   ',dd);
    end-if
end-do

    writeln;
    
writeln('Scenario 2:');
forall (ff in Fare,pp in Production, dd in Distribution,tt in Time,ss in Scenario| 
        getsol(X(ff,pp,dd,tt,ss)) > 0.1) do 
    if (ss = 2) then
        write(tt,'  ',strfmt(getsol(X(ff,pp,dd,tt,ss)),4),' ' );
        writeln(pp, '   ',dd);
    end-if
end-do

    writeln;
    
writeln('Scenario 3:');
forall (ff in Fare,pp in Production, dd in Distribution,tt in Time,ss in Scenario| 
        getsol(X(ff,pp,dd,tt,ss)) > 0.1) do 
    if (ss = 3) then
        write(tt,'  ',strfmt(getsol(X(ff,pp,dd,tt,ss)),4),' ' );
        writeln(pp, '   ',dd);
    end-if
end-do

    writeln;
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writeln('From Distribution to Consumer:');
writeln('Scenario 1:');
forall (dd in Distribution,cc in Consumer,tt in Time,ss in Scenario| getsol(Y(dd,cc,tt,ss)) > 0.1) do
    if (ss = 1) then
        write(tt,'  ',strfmt(getsol(Y(dd,cc,tt,ss)),4),'    ' );
        writeln(dd, '   ',cc);
    end-if
end-do

writeln('Scenario 2:');
forall (dd in Distribution,cc in Consumer,tt in Time,ss in Scenario| getsol(Y(dd,cc,tt,ss)) > 0.1) do
    if (ss = 2) then
        write(tt,'  ',strfmt(getsol(Y(dd,cc,tt,ss)),4),'    ' );
        writeln(dd, '   ',cc);
    end-if
end-do

writeln('Scenario 3:');
forall (dd in Distribution,cc in Consumer,tt in Time,ss in Scenario| getsol(Y(dd,cc,tt,ss)) > 0.1) do
    if (ss = 3) then
        write(tt,'  ',strfmt(getsol(Y(dd,cc,tt,ss)),4),'    ' );
        writeln(dd, '   ',cc);
    end-if
end-do

    writeln;

writeln('Part of Y served in Scenario 1:');
forall (dd in Distribution,cc in Consumer,tt in Time|(tt)>t1 and getsol(Y(dd,cc,tt,1))>0.9) do 
    writeln(dd,' to ',cc,'  ','  (T:',tt,')   (',getsol(Y(dd,cc,tt,1)),')/(',
    getsol(DemandS1(tt,cc)),')' );
end-do

    writeln;

writeln('Part of Y served in Scenario 2:');
forall (dd in Distribution,cc in Consumer,tt in Time|(tt)>t1 and getsol(Y(dd,cc,tt,1))>0.9) do 
    writeln(dd,' to ',cc,'  ','  (T:',tt,')   (',getsol(Y(dd,cc,tt,2)),')/(',
    getsol(DemandS2(tt,cc)),')' );
end-do

    writeln;

writeln('Part of Y served in Scenario 3:');
forall (dd in Distribution,cc in Consumer,tt in Time|(tt)>t1 and getsol(Y(dd,cc,tt,1))>0.9) do 
    writeln(dd,' to ',cc,'  ','  (T:',tt,')   (',getsol(Y(dd,cc,tt,3)),')/(',
    getsol(DemandS3(tt,cc)),')' );
end-do

    writeln;

fclose(F_OUTPUT);

end-model
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writeln('From Distribution to Consumer:');
writeln('Scenario 1:');
forall (dd in Distribution,cc in Consumer,tt in Time,ss in Scenario| getsol(Y(dd,cc,tt,ss)) > 0.1) do
    if (ss = 1) then
        write(tt,'  ',strfmt(getsol(Y(dd,cc,tt,ss)),4),'    ' );
        writeln(dd, '   ',cc);
    end-if
end-do

writeln('Scenario 2:');
forall (dd in Distribution,cc in Consumer,tt in Time,ss in Scenario| getsol(Y(dd,cc,tt,ss)) > 0.1) do
    if (ss = 2) then
        write(tt,'  ',strfmt(getsol(Y(dd,cc,tt,ss)),4),'    ' );
        writeln(dd, '   ',cc);
    end-if
end-do

writeln('Scenario 3:');
forall (dd in Distribution,cc in Consumer,tt in Time,ss in Scenario| getsol(Y(dd,cc,tt,ss)) > 0.1) do
    if (ss = 3) then
        write(tt,'  ',strfmt(getsol(Y(dd,cc,tt,ss)),4),'    ' );
        writeln(dd, '   ',cc);
    end-if
end-do

    writeln;

writeln('Part of Y served in Scenario 1:');
forall (dd in Distribution,cc in Consumer,tt in Time|(tt)>t1 and getsol(Y(dd,cc,tt,1))>0.9) do 
    writeln(dd,' to ',cc,'  ','  (T:',tt,')   (',getsol(Y(dd,cc,tt,1)),')/(',
    getsol(DemandS1(tt,cc)),')' );
end-do

    writeln;

writeln('Part of Y served in Scenario 2:');
forall (dd in Distribution,cc in Consumer,tt in Time|(tt)>t1 and getsol(Y(dd,cc,tt,1))>0.9) do 
    writeln(dd,' to ',cc,'  ','  (T:',tt,')   (',getsol(Y(dd,cc,tt,2)),')/(',
    getsol(DemandS2(tt,cc)),')' );
end-do

    writeln;

writeln('Part of Y served in Scenario 3:');
forall (dd in Distribution,cc in Consumer,tt in Time|(tt)>t1 and getsol(Y(dd,cc,tt,1))>0.9) do 
    writeln(dd,' to ',cc,'  ','  (T:',tt,')   (',getsol(Y(dd,cc,tt,3)),')/(',
    getsol(DemandS3(tt,cc)),')' );
end-do

    writeln;

fclose(F_OUTPUT);

end-model


