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Abstract— This paper deals with the output stabilization
of linear systems with unknown parameters and sinusoidal
disturbance. The approach is based on a hybrid algorithm
of frequency estimation, that is used for compensation of the
harmonic disturbance, and the high-gain feedback principle for
robust stabilization. Efficiency of the approach is demonstrated
through numerical simulations.

I. INTRODUCTION

Rejection of unknown disturbances is not new [14], but
still actual problem in control [5], [7]–[13], [17], [21]–[24],
[27]–[31]. This is an essential problem for many practical
control applications, such as development of advanced re-
search tools for nanotechnology [1] and increased density
hard disks [16], where precise positioning is a critical de-
mand for control system, dynamic positioning systems for
vessels in the presence of waves and wind [33] etc. At the
same time, in number of tasks harmonic nature of distur-
bances is reasonable assumption. Using this representation
we can obtain fruitful results for certain implementations.

Anyway, this challenging problem remains unsolved for
a number of special assumptions on disturbance as well as
restrictions on plant dynamics. Cases, when amplitudes, fre-
quencies, and phases are unknown constant parameters, are
common for current publications in the field. Other variations
in different works are connected with plant, which could
linear or nonlinear, with known parameters or parametric
uncertainty, fully measurable state or not etc.

On the other hand, output adaptive control methods de-
velopment is nontrivial problem itself. It’s highly motivated
by practical applications, when state measurement is hard or
even impossible to realize. A lot of different original results
were obtained in this field for the last years [18]–[20], [25],
[26], [32]. This paper is focused on the recent advantages in
the development of adaptive output control approach using
high-gain principle named by the authors as “consecutive
compensator”, that was considered in number of previous
works [4]–[6], [8], [29], [30].
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Let us briefly review works closely related to proposed
approach and analyze main difference between them. In
[21] control algorithm for linear stable plant with known
parameters and relative degree one under conditions of biased
harmonic disturbance was proposed. In contrast to [21] in
[7] the same task for non-minimum phase plant with known
parameters, but arbitrary relative degree was solved. In [10],
[12], [28] improved approach was extended for time-delay
systems with known parameters. Works [8], [11] are devoted
to output control with sinusoidal disturbance rejection under
conditions of plant parametric uncertainty. In [8] only linear
plant was considered, while [11] is dealing with nonlinear
systems, but for both works relative degree of the systems is
assumed to be one.

In the current work authors discuss novel output control
algorithm for linear parametrically uncertain plant with rela-
tive degree higher than one rejecting sinusoidal disturbance
δ(t) = A sin(ω t + ϕ), where amplitude A, frequency ω,
and phase shift ϕ are also a priori unknown. Merging
two different results, presented at CDC last year (robust
output controller [30] and frequency estimator [31]), we can
provide better disturbance rejection compare to stand apart
“consecutive compensator”.

II. PROBLEM FORMULATION
Consider the linear plant

a(p)y(t) = b(p)[u(t) + δ(t)], (1)

where p = d
dt is the differentiation operator, polynomials

a(p) = pn + an−1p
n−1 + ... + a0 and b(p) = bmp

m +
bm−1p

m−1 + ...+ b0 are unknown, and

δ(t) = A sin(ωt+ ϕ) (2)

is the disturbance with the unknown amplitude A, frequency
ω, and phase ϕ.

The purpose of control is to provide the asymptotic
stability of nonlinear system (1).

lim lim
t→∞

y(t) = 0. (3)

Let us consider the following assumptions.
Assumption 1: Polynomial b(p) is Hurwitz and the param-

eter b0 > 0.
Assumption 2: The relative degree r = n −m is known,

while degrees of polynomials a(p) and b(p) are unknown.
Assumption 3: The lower bound ωmin of frequency ω is

known.



III. MAIN RESULT

A. Nominal Controller Design

In this subsection we consider the preliminary result
assuming that the frequency ω of the disturbance is known.
Rewrite (1) as

Y (s) =
b(s)

a(s)
U(s) +

b(s)

a(s)
Ψ(s) +

D(s)

a(s)
, (4)

where s is the complex variable, Y (s) = L{y(t)}, U(s) =
L{u(t)} and Ψ(s) = L{δ(t)} = Aδ1s+Aδ2

(s2+ω2) is the Laplace
images of corresponding signals, Aδ1 = A sinϕ and Aδ2 =
Aω cosϕ are constants, polynomial D(s) denotes the initial
conditions.

To derive the main result temporary assume that first r−
1 derivatives of the variable y(t) are measurable and the
frequency ω of the disturbance δ(t) = A sin(ω t + ϕ) is
known. Choose the control law u(t) as follows

u(t) = −kα(p)(p+ 1)2

p2 + ω2
y(t), (5)

where Hurwitz polynomial α(p) with degree r − 1 and
constant k > 0 are chosen such that all eigenvalues of
a polynomial γ(s) = a(s)(s2 + ω2) + kb(s)α(s)(s + 1)2

has a negative real part (more detailed choice of α(p) and
k > 0 making the polynomial γ(s) Hurwitz can be found,
for example in [5], [6], [9], [15]).

Making the Laplace transformation in (5) and substituting
obtained expression into (4), we have

Y (s) = −k b(s)α(s)(s+ 1)2

a(s)(s2 + ω2)
Y (s)

+
b(s)

a(s)

Aδ1s+Aδ2
(s2 + ω2)

+
D(s)

a(s)

Y (s) = (Aδ1s+Aδ2)
b(s)

γ(s)
+
D(s)(s2 + ω2)

γ(s)
. (6)

Since the polynomial γ(s) is Hurwitz the inverse Laplace
transformation in (6) yields

lim
t→∞

y(t) = 0.

It is easy to see that the controller (5) is realizable if the
frequency ω is known and r−1 derivatives of y(t) are mea-
surable. However the considered problem is formulated so
that the disturbance is unknown and only the output variable
is measurable. Therefore we need to modify the controller
(5) to exclude the unknown functions and parameters. The
next subsection deals with this task.

B. Realizable Control Law

In this subsection the realizable adaptive and robust con-
troller is presented that has iterative structure. Only the
output y(t) is accessible, parameters of polynomials a(p),
b(p), and frequency ω are unknown. Following the results
[5], [5], [6] choose the control law as follows

u(t) = −kα(p)(p+ 1)2

p2 + ω̂2
ξ1(t), (7)

ξ̇1 = σξ2,

ξ̇2 = σξ3,
. . .

ξ̇ρ−1 = σ (−k1ξ1 − . . .− kρ−1ξρ−1 + k1y) ,

(8)

where k and α(p) chosen like in (5), the number σ > k,
and parameters ki are calculated for the system (8) to be
asymptotically stable in the absence of y(t), the constant
parameter ω̂ is the estimate of the disturbance frequency.

Remark 1: If the relative degree equals one r = 1 then
the controller is formed simpler. In (7) we have α(p) = 1,
ξ1(t) = y(t), and the system (8) is excluded.

Substitution (7) into (1), gives

y(t) =
kb(p)α(p)(p+ 1)2

a(p)(p2 + ω̂2) + kb(p)α(p)(p+ 1)2
ε(t)

+
b(p)(p2 + ω̂2)

a(p)(p2 + ω̂2) + kb(p)α(p)(p+ 1)2
δ(t), (9)

where ε(t) = y(t)− ξ1(t).
Rewrite (9) as

y(t) =
kb(p)α(p)(p+ 1)2

a(p)(p2 + ω̂2) + kb(p)α(p)(p+ 1)2
[ε(t) + w(t)],

(10)
where a signal w(t) = (p2+ω̂2)

kα(p)(p+1)2 δ(t).
The similar model like (10) can be found in [6], [9].

Following the results of [6], [9] we write the input-state-
output model

ẋ = Ax+ kb(ε+ w), (11)

y = cTx, (12)

where x ∈ Rn is the state vector of the model (11); A, b,
and c are the corresponding matrices. In accordance to the
well-known KYP lemma (e.g., [15]) one can take the positive
symmetric matrix P , satisfying two following matrix equality

ATP + PA = −Q1, P b = c, (13)

where Q1 = QT1 is some positive definite matrix.
Let us rewrite model (7), (8) in the form

ξ̇(t) = σ(Γξ(t) + dy(t)), (14)

ŷ(t) = hT ξ(t), (15)

where Γ =


0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

−k1 −k2 −k3 . . . −kρ−1

, d =


0
0
0
...
k1

,

and hT =
[
1 0 0 . . . 0

]
.

Consider vector

η(t) = hy(t)− ξ(t), (16)



then by force of vector h structure the error ε(t) will become

ε(t) = y(t)− ŷ(t) = hThy(t)− hT ξ(t)
= hT (hy(t)− ξ(t)) = hT η(t). (17)

For derivative of η(t) we obtain

η̇(t) = hẏ(t)− σ(Γ(hy(t)− η(t)) + dy(t))

= hẏ(t) + σΓη(t)− σ(d+ Γh)y(t). (18)

Since d = −Γh (can be checked by substitution), then

ẋ(t) = Ax(t) + kb(ε(t) + w(t)), y(t) = cTx(t), (19)

η̇(t) = hẏ(t) + σΓη(t), ε(t) = hT η(t), (20)

where matrix Γ is Hurwitz by force of calculated parameters
ki of system (8) and

ΓTN +NΓ = −Q2, (21)

where N = NT > 0, Q2 = QT2 > 0.
Proposition 3.1: Consider the system (1) with the control

law (7), (8). Then the output variable y(t) converges to a
small area ε0 for finite time t1.

Proof: Following the ideas of [5], [6], [9] choose the
Lyapunov function

V = xTPx+ ηTNη. (22)

Differentiation (22) yields

V̇ = xT (ATP + PA)x+ 2kxTPbhT η + 2kxTPbw

+ ηTσ(ΓTN +NΓ)η + 2ηTNhcTAx

+ 2kηTNhcT bw + 2kηTNhcT bhT η. (23)

Using [5], [6], [9] consider inequalities

2kxTPbhT η ≤ k−1 xTPbbTPx+ k3ηThhT η,

2kxTPbw ≤ k−1 xTPbbTPx+ k3 w2,

2kηTNhcT bhT η ≤ kηTNhcT bbT chTNη + kηThhT η,

2ηTNhcTAx ≤ kηTNhcTAAT chTNη + k−1 xTx,

2kηTNhcT bw ≤ kηTNhcT bbT chTNη + k w2. (24)

Thus

V̇ ≤ −xTQ1x− σηTQ2η + k−1 xTPbbTPx+ k3ηThhT η

+ k−1 xTPbbTPx+ k3 w2 + kηTNhcT bbT chTNη

+ kηThhT η + kηTNhcTAAT chTNη

+ k−1 xTx+ kηTNhcT bbT chTNη + k w2. (25)

Let numbers k > 0 and σ > 0 be such that

−Q1 + k−1PbbTP + k−1PbbTP + k−1I ≤ −Q′ < 0,

−σQ2 + (k + k3)hhT + kNhcT bbT chTN

+kNhcTAAT chTN + kNhcT bbT chTN ≤ −Q′′ < 0,

then for the derivative of (22) we have

V̇ ≤ −xTQ′x− ηTQ′′η + (k3 + k)w2. (26)

Hence using [5], [6], [9], [29], [30], it is easy to get the
inequality

V̇ ≤ −λV + (k3 + k)w2, (27)

where λ > 0.
From (27) follows that the amplitude of the function (22)

is decreased as soon as the estimate ω̂ converges to the true
value ω. So in the case ω̂ = ω the signal w(t) exponentially
converges to zero that means the Lyapunov function (22)
goes to zero, and objective (3) âûı̈ı̂ëı́ÿåòñÿ.

Then it is necessary to design the identification scheme for
unknown frequency ω of the disturbance δ(t) and substitute
it in the controller (7). It should be noted that in control
law we can substitute only constant values but not the
time-varying functions. The next subsection devoted to the
iterative procedure of frequency estimation.

C. Iterative Frequency Estimation

Identification of the unknown parameter ω can be made in
a few steps. Firstly, we substitute in (7) the minimum value
ω̂ = ωmin and fixed this parameter. Since the considered
closed loop system is linear and state matrix A is Hurwitz
the output variable y(t) has a sinusoidal behavior with the
frequency ω after transient time, i.e.

y(t) = A1 sin(ωt+ ϕ1)

(see, for example, [27], [28]). Thus, identification scheme
of the parameter ω can be based on [2], [3], [8]–[10], [12],
[27], [28]. Following the ideas [13], [27], [28] we introduce
the second order filter

ς(s) =
γ20

(s+ γ0)2
, (28)

where γ0 > 0.
To identify the disturbance frequency we use the following

algorithm

ω̂(t) =

√∣∣∣θ̂(t)∣∣∣, (29)

θ̂ = χ+ kς̇ ς̈, (30)

χ̇ = −kς̇2θ̂ − kς̈2, (31)

When the estimate of the frequency ω is found we sub-
stitute it into the control law (7) instead of ωmin. However,
one can ask what time should be chosen for substitution the
value ω̂ from the algorithm (29) – (31) into (7), because
the estimate ω̂ converges to the true value in the infinite
time limt→∞(ω − ω̂) = 0. Obviously, that moment of time
t = ∞ is not applicable. To solve this problem we propose
to use the iterative procedure of identification.

The main idea of the iterative procedure is to substitute
the frequency estimate ω̂ in (7) in discrete time periods. At
the first step we use the value ω̂0 = ωmin that corresponds
the minimum value of the frequency. The system works so
for a some period of time t1. In the moment t1 the renewed
value ω̂1 = ω̂(t1) is taken from adaptive algorithm (29)–(31)
and then it is substituted into the controller (7).



Until the moment of time t2 the controller uses the
estimate ω̂1. In the moment t2 the new estimate of the
frequency ω̂2 = ω̂(t2) is taken from (29) – (31) and applied
to the controller (7) etc. Thus, the iterative update law can
be written as

ω̄(t) =

{
ωmin, t ≤ t1,
ω̂(ti), t ∈ [ti, ti+1) , i = 2, N,

(32)

where ω̂(ti) denotes the frequency estimates gotten from (30)
– (29) in the moment ti while ω̄(t) is the constant value
substituted to the controller (7) – (8).

In the general case moments of renewing can be not
regular. For example, the first moment for updating should
be chosen large in comparison with the following moments
of time. This interval means the initialization period that is
necessary that the estimate ω̂ would be as closer to true value
ω as possible. Moreover, it will happen faster if undesired
switchings in the system are eliminated.

It should be noted that theoretical analysis of rules of
choosing switching moments ti for iterative update law in
the controller (7) – (8) is the nontrivial problem. Authors
are planning to consider the detailed analysis of this problem
as the extension of already obtained result. In this work we
present the approach the effectiveness of which confirmed
only empirically.

IV. ILLUSTRATIVE EXAMPLE

To illustrate effectiveness and analyze properties of ob-
tained control algorithm consider following simulation re-
sults.

For example, we need to stabilize linear parametrically
uncertain unstable plant with simultaneous unknown sinusoid
disturbance rejection having only system output measure-
ments. The plant is described in input-output form as

y(t) =
p+ 1

p(p− 1)(p+ 2)(p+ 3)
[u(t) + δ(t)],

where relative degree of transfer function is r = 3.
Let us choose only the time of the first frequency update t1

independently to have enough time for more accurate initial
frequency estimation, while set subsequent iteration intervals
τ fixed and equal.

Figs. 1–2 display transients in the closed-loop system
for different parameters of external disturbance and iterative
algorithm itself.

Obtained results show that proposed iterative control
algorithm provides system stabilization with simultaneous
disturbance rejection. Achieved stabilization accuracy and
dynamic performance indexes are comparable with other
known results. At the same time, one can see that overall
system performance strictly depends on the parameters of
iterative updates of estimations of the unknown disturbance
frequency such as t1 and τ which are strongly correlated with
other controller parameters, therefore further research efforts
will target this part to develop more sophisticated scheme
and theoretically prove its workability.

V. CONCLUSIONS

Novel robust output control algorithm with unknown si-
nusoidal disturbance rejection for linear parametrically un-
certain plant was derived. This method is based on high-gain
principle and utilizing iterative substitution of the disturbance
frequency estimations. In contrast to known results, proposed
approach provides disturbance rejection for the systems with
relative degree higher than one.

Obtained algorithm enclose stabilizing controller, de-
scribed by (7) and (8), and unknown disturbance’ frequency
estimator (29) – (31). Simplified iterative scheme with fixed
and even equal switching intervals have been validated for
closed-loop system stability and performance analysis. More
sophisticated strategies of real-time frequency estimation ω̂i
substitution to output control algorithm (7) should be derived
as the next steps.

Moreover, authors believe, that obtained results can be
extended to nonlinear case.
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