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Abstract

Structural ringing can be caused by nonlinear hydrodynamic loads in steep
waves, by wave slamming, or by breaking waves. This thesis deals with the first
category: nonlinear wave loads on bottom-fixed offshore wind turbines in storm
condition. Two higher order forcing models are investigated. The FNV (Faltin-
sen, Newman, Vinje) model accounts for wave loads on a surface piercing column
of up to third order of the incident wave field. It is derived by a perturbation
of the non-dimensional wave steepness kA� 1, and requires the column radius
to be of the same order of magnitude as the wave amplitude: O(ka) = O(kA).
The higher order FNV forces have their maximum at the free surface, and are
decaying exponentially with the water depth. Rainey’s slender body forces are
not derived using a perturbation approach, but rather by conservation of energy
principles. It will be shown that there is agreement between the first and second
order forces from FNV and Rainey for regular waves in deep water, while the
third order component deviates. Both force models are derived in this thesis.

A popular software for dynamic analysis of wind turbines is the open source
FAST (Fatigue, Aerodynamics, Structures and Turbulence) code from NREL
(National Renewable Energy Laboratory). FAST is capable of producing a time
marching simulation of an offshore wind turbine subjected to various environ-
mental loads. However, FAST only supports linear hydrodynamic loads natively.
Thus, the force models of interest have to be implemented in the code. An expla-
nation of the theoretical foundation and architecture of FAST is given, as well
as details of the force model implementation. A test case in regular waves com-
paring the individual force components is conducted, where agreement between
the first and second order components was shown, as previously stated.

Dynamic analysis of a wind turbine model based on the NREL reference
turbine is performed for different environmental condition, operational states
and turbine configurations. The first natural frequency of the tower is held
fixed for all the configurations, to not coincide with the rotor and blade passing
frequencies. The magnitude of the top displacement of the turbine was shown
to be relatively independent of different tower configurations and forcing mod-
els near the natural frequency. No instances of significant structural response
due to higher order effects was observed. The effect was however higher for the
examined configurations with a non-stiff foundation and flexible tower. It is rec-
ommended that future work should investigate the effect of including nonlinear
wave motion for better modeling of steep waves, as well as the effect of nonlinear
structural response of the wind turbine.
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Sammendrag

Ringing kan bli for̊arsaket av ikke-lineære hydrodynamiske krefter i steile
bølger, av bølge-slamming, eller av brytende bølger. Denne oppgaven tar for
seg den første kategorien: ikke-lineære bølgelaster p̊a bunnfaste offshore vind-
turbiner i storm. To høyere ordens lastmodeller er undersøkt. FNV-modellen
(Faltinsen, Newman, Vinje) tar høyde for bølgelaster p̊a en sylinder, og inklud-
erer krefter til og med tredje orden av det innkommende bølgefeltet. Modellen er
utledet ved en perturbasjon av den ikke-dimensjonale bølgesteilheten kA � 1,
og krever at sylinderradien m̊a være av samme orden som bølgeamplituden:
O(ka) = O(kA). De høyere ordens FNV-kreftene har sine maksimum p̊a den
frie overflaten, og minsker eksponentielt med havdybden. Raineys modell for
slanke konstruksjoner er ikke utledet ved perturbasjon, men snarere ved bruk av
energikonserveringsprinsipper. Det vil bli vist overensstemmelse mellom første
og andre ordens krefter fra FNV og Rainey, for tilfellet med regulære bølger i
dypt vann. De tredje ordens kreftene er ikke i overenstemmelse. Begge lastmod-
eller er utledet i denne oppgaven.

En populær programvare for dynamisk analyse av vindturbiner er åpen
kildekode-programmet FAST (Fatigue, Aerodynamics, Structures and Turbu-
lence) fra NREL (National Renewable Energy Laboratory). FAST kan produsere
en tidsserieanalyse av en offshore vindturbin utsatt for diverse miljølaster. Pro-
grammet har dog kun støtte for lineære hydrodynamiske laster, s̊a lastmodellene
av interesse m̊a bli implementert i koden. En forklaring av det teoretiske funda-
mentet og arkitekturen til FAST er gitt, i tillegg til detaljer vedrørende imple-
menteringen av lastmodeller. En testcase i regulære bølger er gjennomført, med
den hensikt å sammenligne individuelle lastkomponenter. Overensstemmelse
mellom første og andre ordens komponenter ble p̊avist, som tidligere p̊apekt.

Dynamisk analyse av en vindturbinmodell basert p̊a NRELs referanseturbin
er gjennomført for forskjellige lastkondisjoner, operasjonstilstander og turbinkon-
figurasjoner. Den første egenfrekvensen til t̊arnet blir holdt konstant for alle
konfigurasjonene, for å unng̊a at den sammenfaller med rotasjonsfrekvensen til
rotoren. Utslaget p̊a toppen av turbinen ble vist å være relativt uavhengig av
forskjellige t̊arnkonfigurasjoner og lastmodeller nær t̊arnets egenfrekvens. Ingen
instanser av signifikant strukturrespons p̊a grunn av høyere ordens lasteffekter
ble observert. Effekten var dog høyere for de undersøkte konfigurasjonene med
et ikke-stivt fundament samt et fleksibelt t̊arn. Det er anbefalt at fremtidig
arbeid burde undersøke effekten av å inkludere ikke-lineære bølgebevegelser for
å bedre kunne modellere steile bølger. Effekten av ikke-lineær strukturrespons
av vindturbinen m̊a ogs̊a undersøkes.
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Chapter 1

Introduction

1.1 Motivation

Offshore wind turbine parks are developed at Dogger Bank outside of England. Good
wind and wave conditions makes this a well suited site for offshore wind industry, but
it also introduces difficult wave kinematics due to shallow water and rough loading
conditions. Driving down the cost without compromising on safety is one of the main
concerns for the industry, and unnecessary conservatism has to be avoided. Calcula-
tions of extreme loads are not well established in the industry, especially for dynamic
structures in shallow water.

Transient structural deflections such as ringing can potentially effect a broad range
of structural forms. A bottom-fixed offshore wind turbine in shallow water is a dy-
namic structure with a large top mass. Compared to other offshore structures, the
hydrodynamic forces act relatively low on the structure, causing a short overturning
moment arm. Because of these distinctive properties of the wind turbine, its vulnera-
bility to higher order forcing effects that can cause large structural deflections has to
be addressed individually.

At present, no model exists that can predict ringing accurately, and the work
of developing better models and approaches to the problem is ongoing. The main
motivation for writing this thesis has been to delve into the theory of some of the
existing forcing models, and to examine how they relate to the study of offshore wind
turbines.

1.2 Scope

The thesis is divided into three main parts. The theoretical foundation for the nonlin-
ear forcing used throughout the thesis is given in Chapter 2. Derivations and results
of the FNV (Faltinsen, Newman, Vinje) and Rainey model is given, together with a
brief review of nonlinear wave motion and nonlinear structural response.

Chapter 3 reviews the architecture of the FAST (Fatigue, Aerodynamics, Struc-
tures and Turbulence) software used for dynamic analysis of wind turbines. The force
models derived in Chapter 2 are implemented in FAST, and explanations of this imple-
mentation are given. The force models are compared to linear forcing for a simplified
case of incident regular waves.

1



2 Introduction

More realistic sea states and wind turbine configurations are applied in Chapter 4,
to perform a dynamic analysis of a reference model developed by NREL (National
Renewable Energy Laboratory), using the FAST software described in Chapter 3.

The scope of the thesis is to examine the effect of nonlinear forcing on bottom-fixed
offshore wind turbines in storm condition. Design optimization and investigation of
nonlinear effects other than nonlinear forcing will not be given.



Chapter 2

Force Models

This chapter concerns the establishing of nonlinear forcing models to predict and
describe structural behavior which can not be understood on the basis of linear theory.
Specifically, the forces that can cause structural ringing of offshore wind turbines will
be addressed. Ringing involves excitation of the structure close to its natural frequency,
and there is evidence that it occurs due to nonlinear force components of the third
order of the incident waves (Tromans et al., 2006).

There has been incidents in the past of structures being exposed to higher-order
forces resulting in fatal structural response, as has been confirmed by model tests of the
Draugen and Heidrun offshore platforms, both revealing pronounced ringing behavior
(Grue and Huseby, 2002). Methods for examining such higher-order effects needs to
be established also for offshore wind turbines. Bottom-fixed offshore wind turbines
situated in shallow water are however exposed to wave loads which attack lower down
on the structure compared to the typical offshore platform. Thus, the overturning
moment arm becomes smaller and it is therefore not clear whether higher-order effects
will be as significant for the offshore wind turbines as for certain offshore structures.

Sec. 2.1 deals with linear forcing as it is described by Morison’s Equation. Sec. 2.2
then deals with nonlinear forcing, and discusses higher order force components, kine-
matic stretching and the rationale for the choice of the two nonlinear forcing models
used throughout this thesis. The first one, the FNV load model, is derived and dis-
cussed in Sec. 2.3, and the second one, the Rainey load model, is presented in Sec. 2.4.
A brief introduction is given on nonlinear wave motion and nonlinear structural re-
sponse, in Sec. 2.5 and Sec. 2.6 respectively, even though those components of the
wave-structure interaction are not examined further in this thesis.

2.1 Linear Forcing

The conventional approach to calculating wave loads on offshore structures is by means
of Morison’s Equation (Morison et al., 1950). In the case of a vertical cylinder in
uniaxial flow, the horizontal force is given by the following expression, consisting of
an inertia term and a drag term:

dFMorison = dFMorison
I + dFMorison

D

= ρCmπa
2∂u

∂t
+ ρCdau |u|

(2.1)

3



4 Force Models

where a is the cylinder radius, u is the horizontal fluid velocity, Cm is the non-
dimensional added mass coefficient and Cd is the non-dimensional drag coefficient.
To get the total force acting on the cylinder, Eq. 2.1 is integrated along the vertical
axis, up to the mean water level. The magnitudes are illustrated in Fig. 2.1.

u

2a

d
z

Figure 2.1: Illustration of the parameters used in Morison’s Equation.

The inertia force resulting from Morison’s Equation is calculated using the fluid
velocities and accelerations at the cylinder center-line if the flow were not disturbed by
the presence of the cylinder. This feature assumes inviscid flow. There is however ex-
perimental evidence of the presence of a drag force, which Morison’s Equation accounts
for. The sum of the theoretical inertia force and the empirical drag therefore consti-
tutes the total force in Eq. 2.1, and it is only possible because the mechanisms that
generates viscous and inviscid effects are largely independent of each other (Manners
and Rainey, 1992).

Because of this distinction, the theoretical inviscid forces can be handled separately.
The rest of this chapter will be devoted to ways of improving the inertia force relative
to the one found in Morison’s Equation.

2.2 Nonlinear Forcing

2.2.1 Higher-order Force Components

When a structure is exposed to a nonlinear wave process, it will be excited not only
by the wave frequency loading, but also by the varying higher-order forces (Haver,
2009). These higher-order forces are typically much smaller in magnitude than the
wave frequency forces, but they can be of importance if their excitation frequencies
coincide with one of the natural frequencies of the structure.

In determining the order of magnitude of the forces, it is common to use the
wave steepness as the perturbation parameter, and the non-dimensional wave slope
kA = 2πA

λ
can be used as a measure for the wave steepness. Fig. 2.2 illustrates these

parameters in relation to the wave steepness. The inertia term in Eq. 2.1 is of order
O(kA) when the acceleration is written out. The purpose of Sec. 2.3 and Sec. 2.4 is to
find force components of higher order, either by perturbation of the velocity potential
or by energy derivations.

Specifically, the low-frequency forcing can be of importance for moored floating
structures, where the natural frequency typically is smaller than the wave frequency
(Greco, 2012). High-frequency forcing however, becomes important for structures with
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λ

2A

Figure 2.2: Illustration of the wave steepness, which is the decisive for the wave force
order of magnitude.

natural frequencies higher than the wave frequency. The contribution from second-
order forces can cause springing, which may be of importance regarding fatigue calcu-
lations (Haver, 2009), eg. fatigue accumulation in TLP tethers.

Another resonant response behavior of the structure is ringing, and unlike springing
it may be of importance for the estimation of extreme loads. Force components of
third-order are decisive for the occurrence of ringing, and ringing events typically
occurs so rarely that fatigue is of less concern. In practice, it can be difficult to
discern between a large springing event and a small ringing event, and other impact-
type loadings such as slamming can induce resonant responses in the structure that
resemble ringing (Haver, 2009).

2.2.2 Stretching

There are several ways to extrapolate the incident wave kinematics to the instanta-
neous free surface, in other words to predict fluid velocity and acceleration at points
above the mean water level. These methods are referred to as kinematic stretch-
ing. Common methods are vertical stretching, extrapolation stretching and Wheeler
stretching.

Wheeler stretching (Wheeler, 1970) is based on the observation that the velocity
at the mean water level is overestimated within linear wave theory, according to DNV
(2010). The vertical coordinate is stretched from the mean water level to the free
surface. The relation between the original and stretched coordinate is given by

z =
zs − ζ

1 +
ζ

d

(2.2)

where ζ is the wave elevation, d the water depth and z and zs the original and stretched
vertical coordinate, respectively. It can be seen from Eq. 2.2 that the wave kinematics
at the free surface when using Wheeler stretching equals that of z = 0 with linear
theory. A visualization is provided with Fig. 2.3.

Empirical observations facilitated the development and application of Wheeler
stretching, and while it is mathematically inconsistent, Wheeler stretching gives good
results in the region around the wave crest, but underpredicts around the mean water
level z = 0 as well as deeper down (DNV, 2010).
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Figure 2.3: Velocity profile using Wheeler stretching (DNV, 2010)

2.2.3 Choice of Force Models

There are primarily two requirements when choosing a force model to describe higher
order effects on a monopile offshore wind turbines in shallow water. First, the model
has to be valid for extreme load cases, eg. large wave amplitudes, and second, it has
to be applicable to the particular geometry of a monopile. The FNV Model (Faltinsen
et al., 1995) considers the case of a vertical surface-piercing column subject to regular
waves, and the Model was later extended by Newman (1996) to account for irregular
waves. The model assumes a wave amplitude with the same order of magnitude as the
column radius, unlike similar work by eg. Malenica and Molin (1995) which assumes
that the wave amplitude is asymptotically small in relation to other length scales
(Tromans et al., 2006). In a related inquiry, Rainey (1989) looked at the potential
flow forces acting on a column, for the limiting case of a small radius. It will be seen
that even though widely different approaches was used to derive the higher-order force
components, the results obtained by FNV and Rainey are relatable.

It is recommended that model testing is used to verify numerical predictions where
nonlinear forcing models are included (Haver, 2009). Due to the lack of availability
of such model tests for the wind turbine analyzed in following chapters, such model
testing verification is saved for future work. The next two chapters deal with the
derivation of the two nonlinear force models, which are later implemented in computer
code and used to investigate some of the resonant response events discussed earlier in
this section.

2.3 The FNV Force Model

The motivation behind the development of the FNV model (Faltinsen et al., 1995)
was the recognition that large offshore structures can experience transient response
behavior at frequencies much higher than the wave excitation frequency. To describe
this phenomenon, an extension to the theory of wave diffraction had to be developed.
The FNV model uses a perturbation approach assuming long wave theory. Different
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from the Stokes expansion, where the perturbation is performed using the small wave
steepness parameter kA = O(ε), the FNV model also assumes a column radius with
the same order of magnitude as the wave amplitude: O(ka) = O(kA). The FNV
model is advocated by DNV (2010) for predicting load components up to third order
of magnitude for offshore structures. The theory is derived and presented below.

2.3.1 Derivation

The Boundary Value Problem

Sea water can be assumed to be incompressible and inviscid, with the fluid motion
being irrotational. The boundary value conditions for a free-surface fluid flow problem
is given below (Faltinsen, 1990), starting with the field equation (Laplace equation)
valid in the whole fluid domain:

∇2φ = 0 −∞ < z < ζ (2.3)

For a fixed body in a moving fluid, the kinematic body boundary condition states
that there will be no flow through the boundary:

∂φ

∂n
= 0 on the body surface (2.4)

The kinematic boundary condition on the free surface says that a fluid particle on
the free-surface is assumed to stay on the free surface:

∂ζ

∂t
+
∂φ

∂x

∂ζ

∂x
− ∂φ

∂z
= 0 z = ζ (2.5)

The dynamic free surface condition says that the water pressure equals the atmo-
spheric pressure on the free surface, and it is derived from the Bernoulli equation:

gζ +
∂φ

∂t
+

1

2
|∇2φ| = 0 z = ζ (2.6)

If a cylinder is present, it will radiate waves, and the wave potential at infinity
must be of the general form at the far field (Newman, 1977)

φ ∝ 1√
r
e−ikr at farfield : r →∞ (2.7)

where r is the distance from the origin of the cylinder, r =
√
x2 + y2.

With the kinematic free surface condition Eq. 2.5 and the dynamic free surface
condition Eq. 2.6, one can not know where the free surface is before the equations
are solved. By linearizing the conditions, the velocity potential becomes proportional
to the wave amplitude, and is generally valid for small wave amplitudes relative to
the wavelength and body dimensions. The dynamic condition resulting from linear
theory (Airy wave theory) is obtained by the combination of Eq. 2.5 and Eq. 2.6, only
including the linear terms.

∂2φ

∂t2
+ g

∂φ

∂z
= 0 z = ζ (2.8)

The nonlinear terms can also be maintained, using nonlinear wave theory (Stokes’
wave theory). Taking the material derivative of both sides of the dynamic boundary
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condition Eq. 2.6 and using the kinematic boundary condition Eq. 2.5, the following
combined expression can be obtained.

∂2φ

∂t2
+ g

∂φ

∂z
+ 2∇φ∇∂φ

∂t
+

1

2
∇φ∇|∇φ|2 = 0 z = ζ (2.9)

Since the free surface ζ is still unknown, a Taylor series expansion around z = 0
must be performed to make the boundary value problem solvable. Recall the Taylor
series expansion of a function f , evaluated at z = ζ, taken around the value ζ = 0

f(x, ζ, t) = f |z=0 + ζ
∂f

∂z

∣∣∣∣
z=0

+
1

2
ζ2∂

2f

∂z2

∣∣∣∣
z=0

+ . . . (2.10)

Performing the expansion in Eq. 2.10 on the nonlinear dynamic condition Eq. 2.9
gives

∂2φ

∂t2
+ g

∂φ

∂z
+ ζ

∂

∂z

(
∂2φ

∂t2
+ g

∂φ

∂z

)
+ 2∇φ∇∂φ

∂t
= 0 z = 0 (2.11)

showing terms up to double products of ζ and φ, representing the Stokes expansion up
to second order O((kA)2), where kA is the wave steepness, which is of small magnitude
in long wave theory: kA = O(ε).

In general, the exact solution of the boundary value problem is approximated using
a so called perturbation series approach. The series expansion are in terms of the small
perturbation parameter ε proportional to the wave steepness. Thus, the potential and
surface elevation can be written on the form

φ = εφ1 + ε2φ2 + ε3φ3 + . . . (2.12)

ζ = εζ1 + ε2ζ2 + ε3ζ3 + . . . (2.13)

The Stokes second order dynamic equation derived in Eq. 2.11 can likewise be
represented by a perturbation on the form

ε

{
∂2φ

∂t2
+ g

∂φ

∂z

}
+ ε2

{
∂2φ

∂t2
+ g

∂φ

∂z
+

ζ
∂

∂z

(
∂2φ

∂t2
+ g

∂φ

∂z

)
+ 2∇φ∇∂φ

∂t

}
+O(ε3) = 0 z = 0

(2.14)

where each term on the left hand side needs to be zero separately.
The next sections are used to establish the potential up to the third order. The

derivations requires a significant amount of complicated mathematics, and are only
carried out in detail when it is appropriate to do so with respect to the scope of this
thesis. Otherwise the results are merely presented.

Linear Potential

Sea Loads on Ships and Offshore Structures (Faltinsen, 1990) gives the velocity po-
tential for a wave in infinite water depth (h > 1

2
λ), where the dispersion relation

holds, k = ω2/g. This is not true at offshore wind parks like Dogger Bank, where h
is no larger than approximately 50m, but it is nevertheless assumed in the following
derivation. The insights derived from deep water analysis may prove useful when later
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extending the theory to shallow water conditions. The velocity potential is given in
Eq. 2.15 below.

φ =
gA

ω
ekz cos(ωt− kx) (2.15)

The diffraction potential φD can be divided into a component φI describing the
incoming wave field, and a component φS describing the scattered waves around the
cylinder. Looking at the incoming potential, and using complex notation, Eq. 2.15
can be written as

φI = <
{
gA

ω
ekz−ikx+iωt

}
(2.16)

Equation Eq. 2.16 can be better dealt with by writing it in cylindrical coordinates
(r, θ). r = 0 at the cylinder axis and θ = 0 in the direction of wave propagation. The
conversion between Cartesian and cylindrical coordinates is given by x + iy = reiθ,
where x = r cos θ and y = r sin θ.

The theory of Bessel functions is given in Advanced Engineering Mathematics
(Kreyszig, 2006). Bessel’s equation is an ODE that appears in a diverse range of
applications, but especially when cylindrical symmetry can be identified. The Bessel
function of the first kind of order n is given as

Jn(x) = xn
∞∑
m=0

(−1)mx2m

22m+nm!(n+m)!
(2.17)

It is desirable to write the potential in terms of Bessel functions. Doing a Taylor
expansion on the e−ikx term in Eq. 2.16 yields

e−ikx = e−ikr cos θ = e−ikr
eiθ+e−iθ

2 = e
ζ
2

(η−1/η) = e
ζ
2
η × e−

ζ
2

1
η

=
∞∑
n=0

1

n!

(
ζη

2

)n
×
∞∑
m=0

1

m!

(
− ζ

2η

)m
=

∞∑
n=−∞

ηn
(

(ζ/2)n

n!
− (ζ/2)n+2

1!(n+ 1)!
+

(ζ/2)n+4

2!(n+ 2)!
+ ...+ (−1)k

(ζ/2)n+2k

k!(n+ k)!

)

=
∞∑

n=−∞

ηnJn(ζ)

=
∞∑

n=−∞

(−i)nJn(kr)e−inθ (2.18)

where ζ = kr and η = −ie−iθ was used to simplify the derivation. Now, dividing the
final sum in Eq. 2.18 into two terms, and applying the identities J−n(x) = (−1)nJn(x)
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and (−i)−n = (−1)ni−n (Kreyszig, 2006), the following relation can be derived.

e−ikx =
−1∑

n=−∞

(−i)nJn(kr)e−inθ +
∞∑
n=0

(−i)nJn(kr)e−inθ

=
∞∑
n=1

(−i)−nJ−n(kr)einθ +
∞∑
n=0

(−i)nJn(kr)e−inθ

= J0(kr) +
∞∑
n=1

i−nJn(kr)(einθ + e−inθ)

= J0(kr) + 2
∞∑
n=1

i−nJn(kr) cosnθ

=
∞∑
n=0

εni
−nJn(kr) cosnθ (2.19)

where εn is defined as

εn =

{
1 if n = 0

2 if n > 0
(2.20)

Combining Eq. 2.16 and Eq. 2.19 gives

φI = <

{
gA

ω
ekz+iωt

∞∑
n=0

εni
−nJn(kr) cosnθ

}
(2.21)

which is the formula for the incoming velocity potential found in Faltinsen et al. (1995).
Now consider the diffraction of waves by a fixed vertical cylinder, representing

the wind turbine tower. In the following, consider linear wave theory assuming small
surface elevation relative to the wave length, as well as a small cylinder radius relative
to the wave length. Furthermore, the wave amplitude A and the cylinder radius a are
of the same order, (Faltinsen et al., 1995). This has been known as FNV theory, and is
valid for a fixed vertical cylinder of uniform diameter, which is penetrating the water
surface and is situated in infinite water depth.

kA = O(ε)� 1

ka = O(kA) = O(ε)� 1
(2.22)

Due to the presence of the cylinder, the scattered linear potential φS has to be found.
Rewriting the Laplace equation Eq. 2.3 in terms of cylindric coordinates yields:

∇2φS =
∂2φS
∂r2

+
1

r

∂φS
∂r

+
1

r2

∂2φS
∂θ2

+
∂2φS
∂z2

= 0 (2.23)

Also using the kinematic body boundary condition on the cylinder wall Eq. 2.4

∂φD
∂r

=
∂φI
∂r

+
∂φS
∂r

= 0 =⇒ ∂φI
∂r

= −∂φS
∂r

, r = a (2.24)

and together with the radiation condition in Eq. 2.7, the scattered velocity potential
can be found.
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Without knowing the exact expression for the scattered potential yet, the general
form can be described by Eq. 2.25 below

φS = <
{
gA

ω
ekz+iωtγ(r, θ)

}
(2.25)

where γ = P (r)Q(θ) is a separable function in r and θ (Olsen, 2010). By substituting
Eq. 2.25 into the Laplace equation Eq. 2.23, and solving the differential equation by
separation, one gets

Pn(kr) = BnJn(kr) + CnYn(kr) (2.26)

Q(θ) = A1 cosnθ + A2 sinnθ (2.27)

where An, Bn and Cn are constants, n a positive integer and Yn the Bessel function of
second kind. The simple equations in Eq. 2.26 and Eq. 2.27 proves the advantage of
using Bessel theory on problems with cylindrical symmetry. A2 is set to zero because
the sine term is antisymmetric around the x-axis, which disagrees with the physics
of the problem of a uniaxial flow in x-direction. To satisfy the radiation condition
Eq. 2.7, B and C should be chosen so that the function

Pn(kr) = B∗nJn(kr)− iC∗nYn(kr) (2.28)

is satisfying the far field radiation condition Eq. 2.7

Pn(kr) ∝ 1√
kr

(cos kr − i sin kr) =
1√
kr
e−ikr kr →∞ (2.29)

according to the asymptotic expansion of the Bessel functions.
The so called Hankel functions (Kreyszig, 2006) are useful in the following deriva-

tions, and the Hankel function of the second kind is defined as

H(2)
n = Jn − iYn (2.30)

and Eq. 2.28 can now be written as

Pn(kr) = DnH
(2)
n (kr) (2.31)

where Dn is a complex constant able to represent Eq. 2.28. By setting the derived
components of γ = P (r)Q(θ) into Eq. 2.25, the scattered potential now becomes:

φS = <

{
gA

ω
ekz+iωt

∞∑
n=0

Dn cosnθH(2)
n (kr)

}
(2.32)

The constant Dn is found by applying the kinematic boundary condition Eq. 2.24,
which gives

Dn = −εni−n
1

∂H
(2)
n (ka)/∂(ka)

∂Jn(ka)

∂(ka)
(2.33)

Hence, the linear scattered velocity potential is derived

φS = −<

{
gA

ω
ekz+iωt

∞∑
n=0

εni
−n cosnθH(2)

n (kr)
∂Jn/∂(ka)

∂H
(2)
n /∂(ka)

}
(2.34)
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The total linear potential is then the sum of the incident wave potential and the
scattered potential

φD = φI + φS

= <

{
gA

ω
ekz+iωt

∞∑
n=0

εni
−n cosnθ

(
Jn(kr)−H(2)

n (kr)
J ′n(ka)

H
(2)′
n (ka)

)}
(2.35)

as given in Faltinsen et al. (1995).
The domain is divided into two regions: the inner and outer domain. kr = O(ε)�

1 in the inner domain, and kr = O(1) in the outer domain. The sub domains are
treated one at a time. Now that Eq. 2.35 is established, it is time to evaluate the
Bessel functions corresponding to the leading terms of the potential. Starting with
the scattered potential, and rewriting Eq. 2.34 into a more convenient form.

φS = −<
{
gA

ω
ekz+iωtφ̂S

}
(2.36)

In the outer domain, using the expansions of the Bessel and Hankel functions
of argument ka when ka = O(ε), the dominant terms are the ones when m = 0, 1
(Faltinsen et al., 1995)

φ̂S = −iπ(ka)2

4

(
H

(2)
0 (kr) + i2 cos θH

(2)
1 (kr)

)
(2.37)

Likewise, for the inner domain, using the expansions of the Bessel and Hankel
functions of argument kr when kr = O(ε), the dominant term is from m = 1

φ̂S = i
ka2

r
cos θ (2.38)

The leading terms of the expansion of Bessel functions for the incoming potential
φ̂I in the inner domain is also evaluated

φ̂I = 1− ikr cos θ (2.39)

Combining Eq. 2.38 and Eq. 2.39 results in the total potential for the inner domain
up to an order of ε2 yields

φD = <
{
gA

ω
ekz+iωt

[
1− ik cos θ

(
r +

a2

r

)]}
+O(ε3) (2.40)

Doing the same analysis but including terms up to the order of ε3, the total po-
tential is finally given as:

φD = <
{
gA

ω
ekz+iωt

[
1− ik cos θ

(
r +

a2

r

)
− 1

4
(kr)2

+
1

2
(ka)2

(
log

1

2
kr + C +

iπ

2

)
−1

4
k2 cos 2θ

(
r2 +

a4

r2

)]}
+O(ε4)

(2.41)
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Nonlinear Potential

Recall that the wave amplitude A is of the same order of magnitude as the cylinder
radius a. Equation Eq. 2.41 includes terms of order Aa2 = O(ε3), but nonlinear
terms of order A2a and A3 are ignored in the linear solution. To compensate for this
inconsistency, a correction is included in the total potential for the inner domain

φ = φD + ψ +O(ε4) (2.42)

The boundary conditions for ψ is the same as for φ,

∂ψ

∂r
= 0 at r = a (2.43)

∂2ψ

∂t2
+ g

∂ψ

∂z
= −2∇φ∇φt −

1

2
∇φ∇(∇φ)2 at z = ζ (2.44)

which is the kinematic body boundary condition and the dynamic free surface condi-
tion, respectively.
∇φi∇φj can be found for i and j ∈ (I, S) which in turn solves the two terms on

the right side of Eq. 2.44, both deriving from Eq. 2.40 with order of magnitude O(ε2).

−2∇φ∇φt = ω3A2e2kz sin 2ωt

(
2a2

r2
cos 2θ − a4

r4

)
+O(ε3) (2.45)

− 1

2
∇φ∇(∇φ)2 =

− 2ω3A3e3kz sin3 ωt

(
a2

r3
cos 3θ − 2

a4

r5
cos θ +

a6

r7
cos θ

)
+O(ε3)

(2.46)

Before Eq. 2.43 and Eq. 2.44 are used to find ψ, it is better to normalize r and z
in terms of the inner coordinates.

R
def
=
r

a
(2.47)

Z
def
=
−z + A sinωt

a
(2.48)

Z = 0 oscillates with the first order wave elevation ζ. The nonlinear inner potential
in inner coordinates must fulfill

Ψ(R, θ, Z)
def
= ψ(r, θ, z) (2.49)

The boundary conditions Eq. 2.43 and Eq. 2.44 are still valid for the potential
in inner coordinates, but the differential operators needs to be changed according to
Eq. 2.47 and Eq. 2.48. The combined result is given in Faltinsen et al. (1995).

a

g
Ψtt + 2ω

A

g
cosωtΨZt − kA sinωtΨZ + kA

A

a
cos2 ωtΨZZ −ΨZ =

ωkaA2 sin 2ωt

(
2

R2
cos 2θ − 1

R4

)
−

ωkA3 sin3 ωt

[
2

R3
cos 3θ +

(
− 4

R5
+

2

R7

)
cos θ

] (2.50)



14 Force Models

The three first terms on the left hand side of Eq. 2.50 is of orderO(ε4) and can therefore
be omitted from the solution, since a third order nonlinear potential derivative is
wanted.

ΨZ =− ωkaA2 sin 2ωt

(
2

R2
cos 2θ − 1

R4

)
+

ωkA3 sin3 ωt

[
2

R3
cos 3θ +

(
− 4

R5
+

2

R7

)
cos θ

] (2.51)

Given Eq. 2.51, the solution of Ψ can be assumed to take on the following form
(Faltinsen et al., 1995)

Ψ(r, z, t) =
3∑

m=0

cm(t)Ψm(R,Z) cosmθ (2.52)

where the c’s are time dependent factors taken from Eq. 2.51,

c0 = c2 = ωkA2a sin 2ωt (2.53)

c1 = c3 = ωkA3 sin3 ωt (2.54)

and the Ψm’s are non-dimensional functions, subjected to the boundary condition of

ΨmZ(R, 0) = fm(R) outside of the cylinder (2.55)

f0 =
1

R4
, f1 = − 4

R5
+

2

R7
, f2 = − 2

R2
, f3 =

2

R3
(2.56)

The evaluation of the f -s, the forcing functions, are done by separation of variables
with Weber transforms of Eq. 2.51, and is saved for future study. Numerical values
for the functions Ψm is given by Newman and Lee (1995) in a paper discussing runup
on a vertical cylinder, and therefore the results are only given for Z = 0, ie. on the
first order linear free surface, and R = 1, ie. on the cylinder wall. The results are
reproduced in Table 2.1.

m Ψm(R = 1, Z = 0)
0 -0.5755
1 0.8004
2 0.8091
3 -0.4925

Table 2.1: Ψm on the cylinder wall and on the linear free surface

Forces due to Regular Waves

The total integrated force acting on the cylinder due to dynamic pressure from the
water is (Faltinsen et al., 1995)

Fx = −a
∫ 2π

0

cos θdθ

∫ ζ

−∞
p(a, θ, z, t)dz

= ρa

∫ 2π

0

cos θdθ

∫ ζ

−∞

(
φt +

1

2
V 2 + gz

)∣∣∣∣
r=a

dz

(2.57)
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The force distribution per length unit dz is called the differential force and is given by

F ′ = −a
∫ 2π

0

p cos θdθ (2.58)

which is the force differentiated with respect to the vertical direction z. This differ-
ential force is useful as a tool for finding the wave loads on a cylinder in finite water
depth, where it can be assumed that the pressure field near the free surface equals
that of a cylinder in infinite fluid.

When evaluating Eq. 2.57, it is useful to divide the region of integration into two
sub domains. The reason for this is the variation of z = ζ, so that one of the sub
domains should handle what happens below the still water line and vice versa.

Fx =ρa

∫ 2π

0

cos θdθ

∫ 0

−∞

(
φt +

1

2
V 2

)∣∣∣∣
r=a

dz+

ρa

∫ 2π

0

cos θdθ

∫ ζ

0

(
φt +

1

2
V 2 + gz

)∣∣∣∣
r=a

dz

(2.59)

In the first integral the term gz is not included since it does not contribute to the
integral over θ.

Using the first order term from the potential found in Eq. 2.41, and considering
only the first order term of the pressure in Eq. 2.58, the first order differential force
can easily be found.

F ′1 = ρa

∫ 2π

0

φDt cos θdθ = 2πρgkAa2ekz cosωt (2.60)

This is equal to the inertia part of the Morison equation Eq. 2.1 when V = πa2dz and
Cm = 2. The second order component is found in the same way, by considering the
second order term in Eq. 2.58.

F ′2 = ρa

∫ 2π

0

1

2
(∇φD)2 cos θdθ =

1

2
πρgk2a2A2e2kz sin 2ωt (2.61)

The nonlinear potential from Eq. 2.42 gives a contribution to the pressure equal to

p = −ρ(ψt +∇φD∇ψ) (2.62)

and the corresponding differential force of third order becomes

F ′3 = ρa

∫ 2π

0

(ψt +∇φD∇ψ) cos θdθ

=
π

2
ρgk2A3a(cosωt− cos 3ωt)×

(
3

2
Ψ1(1, Z) + 2Ψ2(1, Z)

) (2.63)

The linear potentials were given in Table 2.1 for Z = 0.
Next, consider the contribution from the second term in the integrated force in

Eq. 2.59. The first order wave elevation ζ1 = A sinωt is not dependent on θ and the
force can thus be evaluated directly from Eq. 2.60, Eq. 2.61 and Eq. 2.63.

F̃i =

∫ ζ1

0

F ′idz (2.64)
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which can be thought of as point forces acting within the free surface region. That is
to say when r = O(ε).

Gathering all the contributions, the total point force acting on the cylinder is given
by the expression

F̃x = πρgka2A2 sin 2ωt+ πρgk2a2A3(cosωt− 2 cos 3ωt) +O(ε6) (2.65)

and the expression for the total integrated force on the cylinder is (Olsen, 2010)

Fx =πρg cosωt(2Aa2 + k2A3a2) +
5

4
πρgkA2a2 sin 2ωt

− 2πρgk2A3a2 cos 3ωt+O(ε6)
(2.66)

Forces due to Irregular Waves

In reality the sea surface is irregular, and has to be described by a combination of reg-
ular waves with different directions, amplitudes an frequencies (Myrhaug, 2007). For
long crested waves the regular waves are assumed to propagate in the same direction
and can be written as a sum of all the regular components.

ζ(x, t) =
N∑
n=1

An cos (ωnt− knx+ εn) (2.67)

where εn are stochastic independent rectangular distributed (between 0 and 2π) phase
constants. Looking at the case of short crested waves, we have a double sum of regular
components.

ζ(x, y, t) =
I∑
i=1

J∑
j=1

Aij cos (ωit− kix cos θj − kiy sin θj + εij) (2.68)

The total energy of all the regular wave components is given by

E

ρg
=

I∑
i=1

J∑
j=1

1

2
A2
ij =

I∑
i=1

J∑
j=1

S(ωi, θj)∆ω∆θ (2.69)

and letting I, J → ∞ and ∆ω,∆θ → 0 one obtains a continuous spectrum which
describes the concentration of energy per frequency interval.

E

ρg
=

∫ 2π

0

∫ ∞
0

S(ω, θ)dωdθ (2.70)

where the spectrum S(ω) can be found by integrating over the directional spectrum
S(ω, θ).

Newman (1996) made the FNV theory presented in the above sections applicable
for unidirectional irregular waves. A basic assumption of this extension (like it was in
the regular case) is that the wavelength of each spectral component is large compared to
the cylinder radius and the wave amplitude of the component. According to Newman
the most significant high-frequency loads in irregular waves comes from the scattering
of waves by the cylinder, and not from nonlinear effects in the incident wave field.
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The linear potential in Eq. 2.16 can be extended to irregular waves by summing
over the components.

φI =
N∑
n=1

<
{
gAn
ωn

eknz−iknx+iωnt

}
(2.71)

where An is the complex and describes amplitude with the length |An| and phase shift
εn with the argument arg(An). The wave elevation is likewise a sum of components.
Looking at the kinematic boundary condition at the free surface Eq. 2.5, it includes
a nonlinear product of these two sums. Hence, the following identity for two complex
expressions will be useful

<{K1}<{K2} =
1

2
(<{K1K2}+ <{K1K

∗
2}) (2.72)

where K∗2 is the complex conjugate. Trigonometric identities can be used to find the
products of the two expressions, and by summing over all these products, the potential
can be found for irregular waves.

Using the expression for the total integrated force in Eq. 2.90, the horizontal forces
acting on the cylinder can be found, using Bernoulli’s Equation to evaluate the pres-
sure.

The first and second order differential forces is then found and given in Eq. 2.73
and 2.74 below.

F ′1 = 2πρa2ut (2.73)

F ′2 = πρa2(2wwx + uux) (2.74)

The differential forces are integrated up to the mean surface to get the forces acting
on the cylinder.

The third order differential force from the nonlinear potential corresponding to the
one found in Eq. 2.63 is given in Eq. 2.75 below for irregular waves (Newman, 1996)

F ′3(Z) =
πρa

g
u2ut(3Ψ1 + 4Ψ2) (2.75)

which integrated along the length of the vertical coordinate of a column in infinite
depth becomes

F
(Ψ)
3 =

πρa

g
u2ut

∫ ∞
0

(3Ψ1 + 4Ψ2)dZ

= 4
πρa

g
u2ut

(2.76)

where the superscript Ψ denotes that it is based on the nonlinear potential.
The remaining point forces at surface intersection are found by integration of the

differential forces up to the free surface, as was shown in Eq. 2.64. Integrating the
first and second differential force gives Eq. 2.77 below (Newman, 1996).

F̃1 + F̃2 =

∫ ζ

0

(F1 + F2)dz

= πρa2

[
ζ

(
2ut −

2

g
utwt + utzζ + 2wwx + uux

)
− ut

g
(u2 + w2)

] (2.77)

In Eq. 2.77 there are terms of second order and terms of third order due to the linear
potential. All the horizontal force components are now established, and summarized
in the next section.
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2.3.2 Result

Using Eq. 2.73, 2.74, 2.76 and 2.77, the formulas are here reproduced and grouped
into orders of magnitude of the wave steepness of the incoming wave field, denoted
by the subscripts. For the third order forces, a distinction is made between those
emerging from the linear potential φ, and those from the nonlinear potential Ψ. All
the point loads are lumped down to the mean surface, using the velocity components
at z = 0. Even though the FNV model was developed assuming infinite water depth,
the integration is here performed along the finite depth of the cylinder, to make it
applicable to practical problems.

F1 = 2πρa2

∫ 0

−d
utdz (2.78)

F2 = πρa2

∫ 0

−d
(2wwx + uux)dz + 2πρa2utζ (2.79)

F
(φ)
3 = πρa2

[
ζ

(
utzζ + 2wwx + uux −

2

g
utwt

)
− ut

g
(u2 + w2)

]
(2.80)

F
(Ψ)
3 = 4

πρa

g
u2ut (2.81)

These results correspond to those given by Newman (1996).

2.4 The Rainey Force Model

Rainey (1989) derived equations for the wave loading on a moving lattice-type offshore
structure. These equations can be applied to the special case of a fixed partial im-
mersed cylinder, representing the wind turbine tower. The theory proposed by Rainey
requires a small cylinder diameter (slender body theory), and the fluid properties are
only dealt with at the cylinder centerline.

The expressions for calculating the wave loads are summarized by Rainey (1995)
in a paper that generalizes those expressions to account for a structure of non-circular
member cross-sections, joints between members, and surface intersections. Only some
of these expressions apply to the single member wind turbine tower. Rainey’s slender
body forces are not based on a perturbation expansion like the one used to derive
forces according to FNV theory, but rather derived from energy considerations.

In the following, the distributed components of the Rainey equation will be derived
by taking another approach than what was done in the original paper: a perturbation
approach is used. The point load at surface intersection is merely presented. At first,
uniaxial wave propagation in the x-direction will be considered, and the resulting
horizontal force on a slender fixed vertical cylinder will be given. The expressions will
thereafter be generalized and written on matrix form, for easier implementation in
computer code.

2.4.1 Derivation

A three-dimensional slender cylinder is shown in Fig. 2.4. The cylinder is placed in an
undisturbed fluid flow assumed to be incompressible, inviscid and irrotational, in other



2.4. The Rainey Force Model 19
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θ

Figure 2.4: Axis system for the slender cylinder representing the wind turbine tower,
given both in cartesian coordinates and polar coordinates. The cylinder radius is a.

words a potential flow. Thus, the velocities of the flow can be found from the spatial
derivatives of the potential φ = φ(x, y, z, t). An expression for the potential including
second-order terms needs to be found, using a Taylor series expansion around the
origin, the origin being the cylinder centerline at the mean water level z = 0. Kreyszig
(2006) gives the expression for a one-dimensional Taylor expansion around zero

f(z) =
∞∑
n=0

zn

n!
× dnf

dzn

∣∣∣∣
z=0

(2.82)

which can be generalized to functions of more than one variable:

f(x1, . . . , xd) =
∞∑

n1=0

∞∑
n2=0

· · ·
∞∑

nd=0

xn1
1 x

n2
2 . . . xndd

n1!n2! . . . nd!
× ∂n1+n2+···+ndf

∂xn1
1 ∂x

n2
2 . . . ∂xndd

∣∣∣∣
x1,...,xd=0

(2.83)

still expanding around the zero value of each variable.
By using Eq. 2.83 and only including terms up to second order of each of the three

spatial variables, the potential φ can be written on the more convenient form (Manners
and Rainey, 1992):

φ(x, y, z, t) = φ0 +D100x+D010y +D001z +
1

2
D200x

2 +
1

2
D020y

2 +
1

2
D002z

2

+D110xy +D101xz +D011yz
(2.84)

The Ds are functions evaluated at the origin and defined by the relation

Dabc =
∂a+b+cφ

∂xa∂yb∂zc
(2.85)

Eq. 2.84 can be further simplified by using the Laplace equation ∇2φ = 0 → D200 +
D020 +D002 = 0 and using this to eliminate D020 from the equation, D020 = −(D200 +
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D002). The introduction of polar coordinates will also make Eq. 2.84 easier to handle.
Eq. 2.86 gives the transformations from Cartesian coordinates to polar coordinates.

x = r cos θ

y = r sin θ
(2.86)

The final expression for the undisturbed potential up to second order, using polar
coordinates, is derived in Eq. 2.87.

φ = φ0 +D100x+D010y +D001z +
1

2
D200(x2 − y2) +

1

2
D002(z2 − y2)

+D110xy +D101xz +D011yz

= φ0 +D100r cos θ +D010r sin θ +D001z +
1

2
D200r

2 cos 2θ

+
1

2
D002(z2 − r2 sin2 θ) +

1

2
D110r

2 sin 2θ +D101zr cos θ +D011zr sin θ

= φ0 +D001z +
1

4
D002(2z2 − r2) + (D100 +D101z)r cos θ

+ (D010 +D001z)r sin θ +
1

4
(2D200 +D002)r2 cos 2θ +

1

2
D110r

2 sin 2θ

(2.87)

The trigonometric identities used in the derivation of Eq. 2.87 are: sin2 θ+ cos2 θ = 1,
sin 2θ = 2 sin θ cos θ, cos 2θ = cos2 θ − sin2 θ and cos2 θ = (1 + cos 2θ)/2, (Kreyszig,
2006).

Since Eq. 2.87 only gives the expression for the undisturbed potential, it is necessary
to find additional terms to represent the disturbance due to the presence of the cylinder.
The total potential φtot must satisfy the kinematic body boundary condition that was
given in Eq. 2.4, reproduced in Eq. 2.88.

∂φtot

∂r
= 0 at r = a (2.88)

In addition to the condition in Eq. 2.4, φtot must fulfill a far-field requirement which
says that the additional terms in φtot compared to the undisturbed φ must diminish
as r increases. In the absence of the unknown real expression for φtot, one can instead
use Eq. 2.87 to find an approximation valid at z = 0, like the one given by Manners
and Rainey (1992), reproduced in Eq. 2.89.

φtot = φ0 +D001z +
1

4
D002(2z2 − r2 + 2a2 ln r)

+ (D100 +D101z)(r +
a2

r
) cos θ

+ (D010 +D011z)(r +
a2

r
) sin θ

+
1

4
(2D200 +D002)(r2 +

a4

r2
) cos 2θ

+
1

2
D110(r2 +

a4

r2
) sin 2θ

(2.89)

It is noted that since the approximation in Eq. 2.89 only contains terms up to second
order in z, it inherits the characteristics of a Taylor series expansion around z = 0. This
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combined with the radially decaying disturbance and the kinematic body boundary
condition in Eq. 2.4 are features that legitimizes this approximation.

The reason for the foregoing derivation has been to establish an expression for the
forces acting on the cylinder. The total integrated force in the x-direction is given by
Faltinsen et al. (1995):

Fx = −a
∫ 2π

0

cos θdθ

∫ ζ

−d
p(a, θ, z, t)dz =

∫ ζ

−d
F ′xdz (2.90)

where F ′x is the differential force which gives the force distribution along the z-axis,
defined by

F ′x = −a
∫ 2π

0

p cos θdθ (2.91)

The Bernoulli equation for unsteady potential flow is used to express the pressure p
in terms of the potential.

−p = ρ
∂φ

∂t
+

1

2
ρ |∇φ|2 + ρgz (2.92)

The last term on the right hand side of Eq. 2.92 is the hydrostatic pressure, and will
not be examined further in the derivation of the forces, hence it will be omitted. The
second term is the dynamic pressure. The velocity potential gradient can be written
out on the following form, using polar coordinates:

|∇φ|2 =

(
∂φ

∂x

)2

+

(
∂φ

∂y

)2

+

(
∂φ

∂z

)2

=

(
∂φ

∂r

)2

+

(
1

r

∂φ

∂θ

)2

+

(
∂φ

∂z

)2

(2.93)

In accordance with Eq. 2.90, we want the pressure evaluated at the cylinder surface
r = a. Thus, the first term on the right hand side of Eq. 2.93 must be zero according
to the kinematic body boundary condition in Eq. 2.4.

Going back to the differential force in Eq. 2.91, it is convenient to rewrite it into
a more manageable form, separating the three pressure terms emerging from Eq. 2.92
and Eq. 2.93, and using the total potential from Eq. 2.89:

F ′x = ρaI1 +
1

2
ρa(I21 + I22) (2.94)

where

I1 =

∫ 2π

0

∂φtot

∂t
cos θdθ, I21 =

∫ 2π

0

(
1

a

∂φtot

∂θ

)2

cos θdθ

and I22 =

∫ 2π

0

(
∂φtot

∂z

)2

cos θdθ

(2.95)

in accordance with Manners and Rainey (1992).
To evaluate Eq. 2.94 at z = 0 and r = a using the potential from Eq. 2.89,

it is useful to see that most of the terms from Eq. 2.89 is evaluated to zero when
integrated. Starting with I1 it can be seen that

∫ 2π

0
cos θdθ =

∫ 2π

0
cos θ sin θdθ =∫ 2π

0
cos θ cos 2θdθ =

∫ 2π

0
cos θ sin 2θdθ = 0. The only remaining term is

∫ 2π

0
cos2 θdθ =

π, and thus I1 reduces to:

I1 = 2πa
∂D100

∂t
(2.96)
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The remaining two integrals can be found in the same manner:

I21 = 2πa [D100 (2D200 +D002) + 2D010D110] (2.97)

I22 = 4πaD001D101 (2.98)

Thus

F ′x = 2πρa2

[
∂D100

∂t
+D100

(
D200 +

1

2
D002

)
+D010D110 +D001D101

]
= 2πρa2

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
+
u

2

∂w

∂z

) (2.99)

using the definition of velocity potential derivatives given in Eq. 2.85. The surprising
result here is that besides the unsteady and convective acceleration, there appears an
additional term, namely u

2
∂w
∂z

. This term is called the axial divergence correction, and
its origin and implications will be discussed in Sec. 2.4.2 below.

Rainey (1989) also describes the the forces that must exist at the ends of a sub-
merged cylinder. In the case of a bottom-fixed cylinder piercing the surface, this force
at the surface intersection is given as

Fx,SI = −1

2
ρπa2 ∂ζ

∂x
u2 (2.100)

This is a point load which first arises at the third order of wave steepness. It is also
known as the oblique slam force. If the first-order wave theory is employed, Eq. 2.100
reduces to

Fx,SI ≈ −
1

8
πρgk2a2ζ3 cos 3ωt (2.101)

This force is eight times smaller that the corresponding force given by FNV theory.
The combined results of the derivations are presented and discussed below.

2.4.2 Results

The distributed force representing the inertia component of the Morison Equation in
Eq. 2.1 was derived in Eq. 2.99 using pressure integration. This force is reproduced
below.

Fx,I =

∫ ζ(1)

−d
2πρa2

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)
dz (2.102)

In Eq. 2.102 there has been a couple of changes from the Morison inertia component.
The spatial velocity derivatives are taken into account, and thus the total water accel-
eration is included, both the unsteady and the convective. The integration is extended
to the first order instantaneous free surface, by employing some form of stretching.
To be comparable to the Morison inertia term, Eq. 2.102 assumes an added mass
coefficient of Cm = 2.

Apart from the Morison inertia term, Eq. 2.99 showed the appearance of an addi-
tional force called the axial divergence force, given in Eq. 2.103.

Fx,AD =

∫ ζ(1)

−d
πρa2u

∂w

∂z
dz (2.103)
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This force can be seen as the rate of change of added mass along the cylinder axis. It is
the product of the transverse fluid velocity with the longitudinal velocity gradient, and
should be added to the water particle acceleration when computing the added-mass
component of the force (Manners and Rainey, 1992).

Lastly, the third order surface intersection force point load is given below.

Fx,SI = −1

2
ρπa2∂ζ

(1)

∂x
u2 (2.104)

The velocity components at the mean surface is used when finding the value of
Eq. 2.104.

For easier implementation in computer code, the three components will be written
on matrix form incorporating the forces in all three directions, as they were originally
given by Rainey (1989). Eq. 2.105 gives the distributed differential load, consisting of
both the inertia term and the axial divergence term.

F′ = ρca + M [a + (` ·V`)v] (2.105)

c in Eq. 2.105 represents the cross-sectional area of the cylinder, a is the fluid accel-
eration vector (with both unsteady and convective terms), M is the two-dimensional
diagonal added-mass matrix, V is the velocity gradient matrix, v is the fluid velocity
vector, and ` is a unit vector along the cylinder axis pointing in the positive z-direction,
` = [0, 0, 1]T . Written out and integrated, Eq. 2.105 gives Eq. 2.102 and Eq. 2.103
combined. The first term of Eq. 2.105 is known as the Froude-Krylov force, and the
second term is the diffraction force with the axial divergence correction. The point
load is given by Eq. 2.106, and consists of the surface intersection force previously
discussed.

F =
1

2
tanα [(t · v)Mv] (2.106)

t is a unit vector normal to the cylinder axis, pointing out of the fluid, and tanα
represents the wave slope previously given by the wave elevation derivative in Eq. 2.104.

2.5 Nonlinear Wave Motion

Recent research concerning the description of extreme waves states that for a wave
model to be effective, it must incorporate both unsteadiness, directionality and non-
linearity of the waves (Tromans et al., 2006). Nonlinear wave motion models exist
both as empirical models and analytical models in closed form. In particular, Cnoidal
waves represents nonlinear waves with dispersion in relatively shallow water. It is
based on a perturbation of the non-dimensional wave steepness parameter kA, as well
as the non-dimensional wave height over wave length parameter kh (Myrhaug, 2006).
Cnoidal waves contain Solitary waves and sinusoidal waves, where the wave elevation
for Solitary waves is given by

ζ =
A

cosh2
[√

3
2

√
A
h3

(x− cwt)
] (2.107)

where cw is the wave velocity given by

cw =
√
g(h+ A) (2.108)
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Qualitatively, Cnoidal waves are symmetric with respect to a vertical axis through
the wave crest, and can therefore not describe nonlinear waves with asymmetry with
respect to this axis. The wave crest is higher for Cnoidal waves than for linear waves,
and the wave trough is correspondingly shallower, in accordance with observations of
waves in shallow water (Dean and Dalrymple, 1991).

The validity for different wave theories is shown in Fig. 2.5. Stokes 5th order wave

Figure 2.5: Validity of different wave motion models with respect to wave height and
water depth relative to the wave period (Dean and Dalrymple, 1991).

theory is applicable for deep water, linear wave theory (Airy theory) for intermediate
water, and Cnoidal waves for shallow water. It will be seen in later chapters that the
sea states used for analyzing a wind turbine in shallow water and extreme waves might
legitimize the use of Cnoidal waves according to Fig. 2.5.

Fully nonlinear state of the art wave models exist in many variations. For use
together with FNV and Rainey forcing, Tromans et al. (2006) recommends work done
by Bateman et al. (2001) & (2003), which provide a efficient wave model with a
wave potential that is time marched using a nonlinear free surface boundary condition
coupled with a Taylor expansion of the Dirichlet-Neumann operator. In following
chapters, the force models will be implemented without a nonlinear wave model, partly
because of the tediousness of the implementation, and partly to maintain the focus of
the thesis to the study of higher order forcing effects.

2.6 Nonlinear Structural Response

The structure might hold nonlinearities in both material and geometry, of which the
relation to the structural response of the wind turbine in storm condition has to be
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identified. Material nonlinearity is associated with inelastic behavior of parts of the
wind turbine structure, while geometric nonlinearity is associated with resisting forces
due to change in geometry, and effects due to curvature. The stiffness matrix of the
structure is the combined elastic and geometric stiffness in Eq. 2.109.

k = kE + kG (2.109)

An example of the effect of change in geometry on the structure stiffness is shown
for a beam with supported ends in Fig. 2.6. The geometric stiffness arises by including
second order strains, as shown below.

ε(x, y) =
∂vx
∂x
− y∂

2vy
∂x2

+
1

2

(
∂vy
∂x

)2

(2.110)
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F
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Figure 2.6: The figure shows the resisting forces due to change in geometry. The
geometric element stiffness matrix is dependent on the element axial force and the
element length, as illustrated by this two-element structure.

The investigation of nonlinearities in material and geometry will not be carried out
in this thesis, and is saved for future work.





Chapter 3

Software Implementation

The FAST (Fatigue, Aerodynamics, Structures and Turbulence) code is a computer-
aided engineering tool for horizontal axis wind turbines, developed by The National
Renewable Energy Laboratory (NREL) in the USA. It was originally intended for the
analysis of onshore wind turbines, but offshore capabilities has later been added. Its
free and open-source nature is the reason why FAST has been chosen as the primary
analysis tool for this thesis. Additionally, a reference model of a 5MW monopile
offshore wind turbine is provided by NREL, ready to be analyzed by FAST. Thus
the task of building a model has been reduced to the task of modifying an existing
reference model.

FAST is in continuous development, and a new version (v.8) has just been released
at the time of writing this thesis. It features a new code architecture and presum-
ably an improved way of modularizing its components into separate aerodynamic and
hydrodynamic modules (Jonkman and Jonkman, 2013). It is however poorly docu-
mented, and it was therefore decided to use the better-documented old version of the
code (v.7). The FAST user’s guide (Jonkman and Buhl Jr., 2005), which is also its of-
ficial theory manual, is based on an even earlier version of the code, but an addendum
was released to cover the changes made to v.7 (Jonkman, 2008).

Even though FAST is intended to run on Windows machines, a patching and re-
compilation of the source code was performed to make the software run on Linux
operating systems. FAST has no user interface, and is solely based on input files
for specifying model properties and environmental conditions. The program itself is
executed from the terminal, and output files are created according to the user’s spec-
ifications. FAST is capable of performing both a time marching analysis in the time
domain, and a linearization analysis in the frequency domain. However, at this stage
in the code development, the last option is not valid for the inclusion of hydrodynamic
loads. If a frequency domain analysis is desired incorporating the effects of wave loads,
it is therefore necessary to do a discrete Fourier transform of the time series.

Sec. 3.1 will outline the theoretical foundation for the architecture of the FAST
code and the components of the wind turbine model. The implementation of the force
models as they were presented in the previous chapter is described in Sec. 3.2. A
comparison between these and the linear forcing is done in Sec. 3.3 for the case of
regular waves.

27
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3.1 Theoretical Foundation

FAST is not well documented and lacks a usable theory manual. The code itself is
however readable and extensively commented. One of the creators of FAST, Jason
Jonkman, also provided his personal notes roughly describing the theoretical founda-
tion of FAST. Those notes, together with the FAST source code and the user’s guide
(Jonkman and Buhl Jr., 2005) form the basis of the following survey.

3.1.1 Model Description

A 3-bladed wind turbine model in FAST consist of 24 degrees of freedom (DOFs).
Since FAST is made to handle floating offshore wind turbines, six of those DOFs
are the rigid body translations (surge, sway, heave) and rotations (roll, pitch, yaw)
for the floating support platform. These are fixed and therefore not applicable for
the monopile offshore wind turbine with a stiff foundation. The next four DOFs
are the first and second mode shapes of the flexible tower, in the fore-aft and side-
side direction, respectively. The remaining DOFs are related to turbine and blade
mechanics.

Much can be said about the properties of the 5MW reference turbine provided by
NREL. It is a sophisticated model that is able to account for blade aerodynamics,
hub, nacelle and drivetrain properties etc. The focus here will be on the part where
the hydrodynamics act, which is the tower of the wind turbine. It is important to
know how this part of the model is constructed, to be able to correctly implement the
nonlinear hydrodynamic forcing which was derived in the previous chapter. Fig. 3.1
and Fig. 3.2 shows the tower model with the orientation of the axes and the respective
DOFs and length scales, and Fig. 3.3 illustrates the two tower mode shapes.

Figure 3.1: The axes orientation of the tower support at mudline (Jonkman and Buhl
Jr., 2005).

The properties of the tower depends on the type of support structure to carry the
rotor-nacelle assembly, and the support structure will depend on the specific instal-
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Figure 3.2: The various length scales of the tower and support platform (Jonkman
and Buhl Jr., 2005).

lation site and in particular the properties of the soil at that place (Jonkman et al.,
2009). The model adapted to this thesis is a bottom-fixed monopile with fixed DOFs
at the sea bed, which is a configuration representing infinite soil stiffness, and without
the inclusion of a support platform. Varying soil stiffness is however obtained by in-
cluding a massless support platform, and specifying the hydrodynamic stiffness of the
platform in accordance with the desired soil stiffness.
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Figure 3.3: Illustration of the first and second mode shapes of the flexible tower,
using the original configuration of the NREL 5MW offshore turbine reference model.
The axes are obscured for the figure to be appreciated qualitatively.

The base diameter of the tower is 6m with a thickness of 0.027m. The top diameter
is 3.87m with a thickness of 0.019m. Young’s modulus is taken to be 210GPa, and
the shear modulus is taken to be 80.8GPa. The effective density of the steel is set
at 8, 500kg/m3. The resulting overall tower mass is 347, 460kg and is centered at
58.234m along the tower centerline above mudline, which follows directly from the
overall tower height of 107.6m above mudline, for a wave height of 20m (denoted by
TwrDraft in Fig. 3.2). The only one of these parameters that will be modified in
the analysis following this chapter, is the Young’s modulus, to examine the effect of
varying stiffness along the tower.

It should be noted that throughout this thesis, the massless support platform as it is
shown in Fig. 3.2 has no span, and thus it is located at the tower base at mudline. This
means that PtfmCM and PtfmRef has the same length as the TwrDraft. Everything
above the mudline will henceforth be referred to as the tower, and everything below
the mudline will be referred to as the foundation.

3.1.2 Mechanics

The flexible components of the wind turbine model are the tower and the blades.
FAST uses the mode shapes of these components, but is not capable of producing them
internally by means of a modal analysis. If changes are being made to the reference
model, the mode shapes are needed to be calculated externally, and then given as input
in the initialization of FAST. This is because FAST uses an assumed-modes approach
for its flexible components to calculate modal integrals for its equations of motion.
There exists a finite-element program written by NREL, that provides dynamically
coupled modes for a beam, which is called BModes (Bir, 2013).

In BModes, tower properties are specified together with the magnitude and align-
ment of the top mass and the foundation stiffness. The output is given as tower eigen
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frequencies and mode shapes in the fore-aft and side-side direction. FAST takes as
input the first two mode shapes in each direction, as well as the rigid body support
platform motion, if any. Torsional modes are not accounted for, and nonlinearity in
neither material or geometry is included.

3.1.3 Hydrodynamics

The way FAST natively calculates wave loads on the wind turbine tower is by using
Morison’s Equation. The tower is divided into equally spaced elements along its height,
with nodes placed in the middle of each element, and the wave loads are calculated
at each submerged node, using the wave velocities at the tower centerline. The con-
tributions are summed up over the whole submerged part of the tower. If an element
is partly submerged, a coefficient describing the level of submersion is multiplied with
the force contribution.

Even though FAST does not natively include higher order forcing as an option,
a user defined function has been included in the source code with the possibility of
overriding the Morison calculated wave loads. This is the option that has been used
when implementing the FNV and Rainey model in FAST. Details of this will be given
in Sec. 3.2.

Kinematic stretching is supported by FAST, including Wheeler stretching as pre-
sented in Sec.2.2.2. The choice of wave direction is arbitrary, but it is not possible
to apply spreading of the waves. Nonlinear waves are not supported, and will not be
implemented.

FAST supports both periodic linear regular waves, and stochastic linear irregular
waves. In the case of the irregular waves, they are created as a sum of regular wave
components using the Pierson-Moskowitz (PM) wave spectrum. The wave spectrum
is based on data from the North Atlantic Sea, and is given on the form

S(ω) =
A

ω5
e−

B
ω4 (3.1)

where the parameters A = 0.0081g2 and B = 0.74
(
g
U

)4
are given, with U being the

wind velocity taken at 19.5m above the sea level (Myrhaug, 2007). Thus, the PM
spectrum is only dependent on the wind velocity. The spectrum is plotted in Fig. 3.4
for a wind speed of 20m/s. The spectrum is one-peaked and has a steep front for low
frequencies. In FAST, an inverse discrete Fourier transform is used for the transition
from the wave spectrum to the incident wave kinematics. The algorithm used for
this operation is the Fast Fourier Transform (FFT), which is given in more detail in
Sec. 4.3.
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Figure 3.4: Pierson-Moskowitz spectrum for a wind speed of 20m/s.

3.1.4 Operational States

Many operational states and special events can be modeled with FAST (Jonkman and
Buhl Jr., 2005). Examples are turbine startup, shutdown due to loss of grid, an idling
turbine, a parked turbine etc.

How to model a parked turbine is of particular interest for extreme weather con-
dition, where the wind speed exceeds the cut-out wind speed of the turbine. In the
following, a presentation of how to model this with FAST will be given, referring to
the relevant input parameter names for completeness.

The rotor speed has to be initialized to zero: RotSpeed = 0.0. Pitch control is
disabled by setting PCMode equal to 0, and the generator is assured to be turned off by
setting the initialization time for the generator higher than the simulation duration:
TimGenOn = 9999.9. To apply the rotor breaks instantly, THssBrDp is set to
0.0. The blades are fully feathered by setting BlPitch = 90 for all the 3 blades.
Lastly, the aerodynamic induction has to be disabled, which is obtained by setting
IndModel = None.

3.2 Implementation of Force Models

The FAST code is open source, and is written in Fortran 90. Because the source
code is available, it is possible to do changes to all parts of the program. A dummy
placeholder routine for the calculation of hydrodynamic loads on the tower is included
in the hydrodynamic module of FAST, and it is called UserTwrLd. It can be specified
in the FAST input that this user defined routine should override the forces calculated
from Morison’s Equation. The UserTwrLd routine for the calculation of both the
FNV and Rainey forces is given in Appendix A and B, respectively.

Even though this placeholder routine is predefined in the FAST code, the task of
implementing the force models has not been straightforward. Since several parameters
such as the convective accelerations and wave slope are not natively computed by
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FAST, it was needed to write functions to find these parameters, and then pass the
values to the UserTwrLd routine. Great care was taken to not interfere with existing
functionality when implementing the new ones. A previous master thesis by Rosenlund
(2013) has proved useful for the following derivations, as it deals with modification of
the FAST source code.

The convective acceleration vector is given in Eq. 3.2 below, used extensively in
finding the second and third order FNV components, as well as the first and second
order Rainey components.

a =


∂u
∂t

+ u∂u
∂x

+ v ∂u
∂y

+ w ∂u
∂z

∂v
∂t

+ u ∂v
∂x

+ v ∂v
∂y

+ w ∂v
∂z

∂w
∂t

+ u∂w
∂x

+ v ∂w
∂y

+ w ∂w
∂z

 (3.2)

The velocity components and the temporal derivatives are already found by FAST.
However, the spatial velocity derivatives have to be implemented. These are collected
in the wave gradient matrix in Eq. 3.3.

V =

 ∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z

 (3.3)

FAST implements a plane wave where the the surface elevation is calculated in the
2D plane (x′, z′), and thereafter transformed to the three dimensional system (x, y, z).
The 2D coordinate system is rotated β degrees to the global, and the transformations
between the two follows in Eq. 3.4 below.

x′ = x cos β + y sin β

x = x′ cos β − y′ sin β
y′ = y cos β − x sin β

y = y′ cos β + x′ sin β

z′ = z

(3.4)

The velocities in the two coordinate systems are also related by the following equations
(Rosenlund, 2013).

u = u′ cos β

v = u′ sin β

w = w′
(3.5)

In shallow water, the first order velocity potential is given by Eq. 3.6 for the case
of uniaxial flow in the x′-direction.

φ = <
{
igA

ω

cosh k(z′ + h)

cosh (kh)
ei(ωt−kx

′)

}
(3.6)

The velocities in the 2D coordinate system are simply the spatial derivatives of the
potential.

u′ =
∂φ

∂x′
= <

{
ωA

cosh k(z′ + h)

cosh (kh)
ei(ωt−kx

′)

}
w′ =

∂φ

∂z′
= <

{
iωA

cosh k(z′ + h)

cosh (kh)
ei(ωt−kx

′)

} (3.7)
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using the dispersion relation for arbitrary water depth

k tanh kh =
ω2

g
(3.8)

The convective accelerations in the 2D coordinate system, ∂u′

∂x′
, ∂u′

∂z′
, ∂w′

∂x′
and ∂w′

∂z′
, are

found in a similar manner.

The remaining operation is to transform the accelerations back to the 3D coordinate
system (x, y, z). Using the coordinate transformations in Eq. 3.4 and Eq. 3.5, these
relations are shown in Eq.3.9 below.

∂u

∂x
=
∂u′

∂x′
cos2 β

∂u

∂y
=
∂u′

∂x′
cos β sin β

∂u

∂z
=
∂u′

∂z′
cos β

∂v

∂x
=
∂u′

∂x′
cos β sin β

∂v

∂y
=
∂u′

∂x′
sin2 β

∂v

∂z
=
∂u′

∂z′
sin β

∂w

∂x
=
∂w′

∂x′
cos β

∂w

∂y
=
∂w′

∂x′
sin β

∂w

∂z
=
∂w′

∂z′

(3.9)

Using the relations in Eq. 3.9 on the convective accelerations in the 2D coordinate
system, the convective accelerations for the 3D system as they were collected in the gra-
dient matrix in Eq. 3.3 can be found. The complete expressions are given in Eq. 3.10.
Since the velocities are taken at the cylinder centerline x′ = 0, the exponential terms
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all equals 1.

∂u

∂x
= −ikωAcosh k(z′ + h)

sinh kh
cos2 β

∂u

∂y
= −ikωAcosh k(z′ + h)

sinh kh
cos β sin β

∂u

∂z
= kωA

sinh k(z′ + h)

sinh kh
cos β

∂v

∂x
= −ikωAcosh k(z′ + h)

sinh kh
cos β sin β

∂v

∂y
= −ikωAcosh k(z′ + h)

sinh kh
sin2 β

∂v

∂z
= kωA

sinh k(z′ + h)

sinh kh
sin β

∂w

∂x
= kωA

sinh k(z′ + h)

sinh kh
cos β

∂w

∂y
= kωA

sinh k(z′ + h)

sinh kh
sin β

∂w

∂z
= ikωA

cosh k(z′ + h)

sinh kh

(3.10)

These are the Fourier coefficients that FAST will use in the Fast Fourier Transform to
generate the time series.

The wave slopes are similarly found by differentiation of the first order wave ele-
vation ζ ′ = <

{
Aei(ωt−kx

′)
}

.

∂ζ

∂x
= −ikA cos β

∂ζ

∂y
= −ikA sin β

(3.11)

Implicitly, the real parts of Eq. 3.10 and Eq. 3.11 are considered.

3.2.1 FNV

The equations of the FNV model are restated below.

F1 = 2πρa2

∫ 0

−d
utdz (3.12)

F2 = πρa2

∫ 0

−d
(2wwx + uux)dz + 2πρa2utζ (3.13)

F
(φ)
3 = πρa2

[
ζ

(
utzζ + 2wwx + uux −

2

g
utwt

)
− ut

g
(u2 + w2)

]
(3.14)

F
(Ψ)
3 = 4

πρa

g
u2ut (3.15)
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Eq. 3.13 and 3.14 make use of the convective accelerations in Eq. 3.10. In addition,
the utz term has to be established, and is found in a similar manner as the convective
accelerations. It is given in Eq. 3.16.

∂2u

∂t∂z
= ikω2A

sinh k(z′ + h)

sinh kh
cos β (3.16)

The distributed terms of the FNV equations are implemented as a sum of the
forces at each node along the submerged part of the tower, while the point forces are
lumped at the position of the free surface, using wave kinematics of the mean surface
level z = 0. In reality, these forces are also distributed from z = 0 to z = ζ. The
downside to lumping the forces are that the moments will not be of correct order of
magnitude. In FAST, a check is performed to see whether the element in question is
partly submerged, in other words if the free surface acts along the element. If this
is the case, the point forces are applied to the node of this element, and if not, no
contribution is given from these forces.

The equations are similar for flow in the y-direction as they are for the x-direction
given above.

3.2.2 Rainey

The equations of the Rainey model are restated below.

FI =

∫ 0

−d
2πρa2 (ut + uux + vuy + wuz) dz (3.17)

FAD =

∫ 0

−d
πρa2uwzdz (3.18)

FSI = −1

2
ρπa2 ∂ζ

∂x
u2 (3.19)

The convective accelerations from Eq. 3.10 appear both in the inertia force in Eq. 3.17
and the axial divergence force in Eq. 3.18, while the wave slope from Eq. 3.11 appears
in the surface intersection force in Eq. 3.19. The distributed Rainey forces are here
integrated up to the mean surface level. For the surface intersection point load, as
similar check of partly submersion is performed, as it was with the FNV point loads.
The forces in the y-direction are found in a similar manner as the forces in the x-
direction above.

3.3 Comparison of Force Models

Tromans et al. (2006) compared the FNV and Rainey forces to work done by Lighthill
in 1979. Lighthill derived forces according to the Morison’s inertia load, a force due
to the integration of dynamic pressure −1

2
ρ(∇φ)2 over the surface of the column, a

waterline force and a force due to nonlinear potential.
The first order force of both FNV and Rainey are both equal to the first order

inertia force in Morison’s Equation. For regular waves, the second order FNV force
in Eq. 3.13 is equal to the sum of the Lighthill dynamic force and waterline force.
Tromans et al. (2006) shows that for regular waves in infinite water depth, the Rainey
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force due to convective accelerations in Eq. 3.17 is equal to the Lighthill waterline force,
and the axial divergence force in Eq. 3.18 is equal to the Lighthill dynamic force. Thus,
under these conditions, there is agreement between Lighthill, FNV and Rainey on the
second order forces. The third order forces are generally not in agreement.

A test case of the wind turbine model subjected to regular waves will be performed,
to compare the FNV and Rainey forces to the linear forces from Morison’s Equation,
as well as a comparison between the forces of different orders of magnitude. Table. 3.1
gives the sea state used in the simulations. Regular waves are used to check the validity
of the statements above.

Table 3.1: Parameters of regular incident waves used to run a test case for force
model verification.

Tower radius at mudline, a 3m
Water depth, d 20m
Significant wave height, Hs 6m
Peak wave period, Tp 11s
Wind None

A comparison is shown in Fig. 3.5 for the mudline shear force, and another one
in Fig. 3.6 for the mudline moment. The output is only started at 130s, after the
simulation has stabilized, and is shown for approximately four wave periods. No
discernible difference is seen between the Morison forces, FNV forces and Rainey
forces in this sea states. That is, the second and third order components are small
compared to the first order component. As should be expected, the first order FNV
and Rainey forces are equal, since they are both equal to the first order Morison inertia
force. No discernible difference can be seen between the second order FNV and Rainey
forces, in agreement with the observations by Tromans et al. (2006) stated above. The
third order forces and moments are different, with the Rainey components having the
biggest impact for this sea state, but the forces are of the same order of magnitude,
and have the same orders of harmonics.
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Figure 3.5: The mudline shear force resulting from the different forcing components.
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Figure 3.6: The mudline bending moment resulting from the different forcing
components.





Chapter 4

Dynamic Analysis

This chapter deals with dynamic analysis of a wind turbine model for different oper-
ational states and tower configurations. Sec. 4.1 gives the turbine characteristics and
Sec. 4.2 gives the environmental conditions used for the analysis. A brief presentation
of the discrete Fourier transform is given in Sec. 4.3, and the dynamic analyses are
then carried out in Sec. 4.4 through Sec. 4.6 for varying turbine configurations. At
last, discussion of results, uncertainties and sources of error are discussed in Chapter 5,
together with recommendations for future work.

4.1 Turbine Characteristics

A dynamic analysis of the wind turbine model described in Sec.3.1.1 will be performed.
The model is based on the three bladed 5MW reference turbine created by NREL, and
it is modified to facilitate the effects of dynamic response that is sought in this section.
Fig. 4.1 describes the turbine proportions, and Table 4.1 describes some of the main
turbine characteristics (Jonkman et al., 2009). The boundary condition at the seabed

Table 4.1: Central parameters of the wind turbine, some of which are going to be
altered in later sections.

Rated power 5MW
Rotor orientation, configuration Upwind, 3 blades
Control Variable speed
Rotor diameter, hub diameter 126m, 3m
Hub height 90m
Tower length 107.6m
Tower base diameter 6m
Tower top diameter 3.87m
Sea depth 20m
Top mass 3.5× 105kg
Tower mass 347, 460kg
Cut-in, rated, cut-out wind speed 3m/s, 11.4m/s, 25m/s
Cut-in, rated rotor speed 6.9rpm, 12.1rpm

is fixed in Fig. 4.1, but it will later be changed in Sec. 4.5 and 4.6 to account for varying
soil stiffness.

41
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Figure 4.1: The dimensions of the wind turbine for the case of stiff soil. The total
top mass including the nacelle, hub and blades is 3.5× 105kg.

When modeling the offshore wind turbine, one of the main things to consider is the
excitation frequencies, and the most visible source of excitation of the wind turbine is
the motion of the rotor (van der Tempel and Molenaar, 2002). The rotational speed of
the rotor is related to the excitation frequency, and the wind turbine has to be designed
so that its first natural frequency does not coincide with the excitation frequencies.
For a three-bladed wind turbine with constant rotational speed, the first excitation
frequency is the frequency of the rotor, referred to as 1P. The second is the blade
passing frequency, referred to as 3P. These frequencies are illustrated in Fig. 4.2.

rotor

1P

3P

Figure 4.2: Illustration of the excitation frequencies due to the blade rotations. 1P is
the frequency of the rotor rotating one period. 3P is the blade passing frequency at a
certain point.

As can be seen from Table 4.1, the rotor speed operates in the range of 6.9rpm to
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12.1rpm. In other words, the first rotational excitation frequency lies in the range of
1P = [0.115, 0.202]Hz, while the second excitation frequency lies in the range of 3P =
[0.345, 0.605]Hz. This range is plotted in Fig. 4.3, together with a definition of what
is meant by a soft-soft, soft-stiff and stiff-stiff structure. If the first eigen frequency

0.115 0.202 0.345 0.605
Excitation frequency [Hz]

soft-soft soft-stiff stiff-stiff

1P 3P

Figure 4.3: The domains of the first and second excitation frequency from the rotor.
To avoid resonant behaviour, either a soft-soft, a soft-stiff or a stiff-stiff wind turbine
should be sought.

of the wind turbine coincides with one of the gray areas in Fig. 4.3, there is the risk
of resonant behavior. Thus, the wind turbine could be designed with the first eigen
frequency belonging to one of the three non-resonant regions. In consultation with
Krokstad (2014) and Jonkman et al. (2009), a first natural frequency of approximately
f1 = 0.27Hz is desired for this particular wind turbine, hence a soft-stiff structure.

4.2 Environmental Conditions

The design of offshore wind turbines in ultimate limit state (ULS) is based on a
characteristic load effect with an annual probability of exceedance of less than 0.02, in
other words with a return period of at least 50 years, according to DNV (2013). This
in contrast to the characteristic load effect with a return period of 100 years for other
offshore installations. The wave conditions that will be used in this section is derived
using a deterministic design wave method suitable for extreme loading conditions,
and will be based on environmental data from the Dogger Bank wind farm, where
bottom-fixed wind turbines similar to the one described in this thesis are installed.

In determining a 50-year sea state, previous storm data from the NORA10 hindcast
is used. The data was proved by Engebretsen (2012) to be conservative in determining
a 50 year sea state, when comparing with the results obtained by the SWAN (Simulat-
ing Waves Near Shore) wave model, which is a model based on solving a conservation
of wave action equation. The NORA10 data will nevertheless be used as the basis
of choosing the sea state used for the following dynamic analysis. The three largest
observed storms at the south side of Dogger Bank where the water depth is approxi-
mately 20m, orginating from the north side of Dogger Bank where the water depth is
approximately 80m, is given in Table. 4.2 (Engebretsen, 2012). The direction of wind
and wave propagation is approximately the same, and will be assumed equal in the
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following calculations. Sea state 1 in Table 4.2 will be used as the dimensioning sea

Table 4.2: The three largest sea states at the southern point of Dogger Bank from the
NORA10 hindcast.

Hs [m] Tp [s] Wind speed [m/s]
10.20 15.98 24.00
8.60 15.03 23.52
8.30 14.45 21.12

state. The wind speed of 24.00m/s is close to the cut-off speed given in Table 4.1.
Hence, it is purposeful to run the simulations both with a parked and running turbine.
Additionally, it is interesting to examine the effects of hydrodynamic loads separately,
ie. when the turbine is not influenced by wind loads. The absence of wind in an
extreme sea state is not realistic, but will nevertheless be simulated to illuminate the
effects of higher order hydrodynamic forcing on the dynamic response of the wind
turbine. The three load cases of interest are summarized in Table 4.3. For all the
simulations, irregular waves from the Pierson-Moskowitz spectrum is used as defined
in Sec. 3.1.3. The wind loads are calculated using the TurbSim software provided by

Table 4.3: The three load cases that are used in the dynamic response analysis.

Load case Hs [m] Tp [s] Wind speed [m/s] Operational state
1 10.20 15.98 24.00 Running turbine
2 10.20 15.98 24.00 Parked turbine
3 10.20 15.98 0 -

NREL. It generates turbulent wind files used as inputs to FAST. The wind speeds in
Table 4.3 are defined at hub height, 90m above the sea surface.

4.3 Transformation to the Frequency Domain

Since FAST is only capable of running a time marching simulation when accounting for
hydrodynamic loads, a frequency representation of the response has to be created post
simulation. Fast Fourier Transform (FFT) is an algorithm to compute the discrete
Fourier transform and its inverse (Press et al., 2007). The purpose of Fourier analysis
is to convert time to frequency and vice versa. The SciPy extension package for the
Python programming language provides a toolbox with functions and methods related
to FFT.

The discrete Fourier transform is given in Eq. 4.1 in its general form, accounting
for complex numbers.

Ak =
n−1∑
m=0

am exp

{
−2πi

mk

n

}
, k = 0, . . . , n− 1 (4.1)

To find the energy Ak at a particular frequency k, the signal in the time domain
am is spun around a circle and averaged over points along the path. The energy
representation used throughout the rest of the thesis is the power spectrum density
(PSD), defined by the square of the absolute value of the output: |A|2.



4.4. Stiff Foundation, Flexible Tower 45

4.4 Stiff Foundation, Flexible Tower

(a) Infinitely large foundation
stiffness.
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(b) Varying stiffness along the tower.

Figure 4.4: Soil and tower properties for the case of a stiff foundation and a flexible
tower. The stiffness in the fore-aft and side-side direction are equal. The first natural
frequency of the wind turbine tower is f1 = 0.27Hz.
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Figure 4.5: The first and second normalized mode shapes for the stiff foundation and
flexible tower configuration.

Various tower configurations will be examined in this and the following sections.
First, the case of a foundation in soil with infinitely large stiffness, together with a
flexible tower, will be considered. This is the standard configuration of the NREL
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Figure 4.6: Wave elevation for the whole one hour simulation.

reference turbine, and it is shown in Fig. 4.4. The first natural frequency is fixed
at f1 = 0.27Hz, as will be the case for all the foundation-tower configurations. The
normalized first and second mode shapes are shown in Fig. 4.5.

A simulation of one hour is performed for the various loading conditions given in
Table 4.3. Regions of large response are then examined closer to evaluate the impact
of different force models and foundation-tower configurations.

Fig. 4.6 shows the wave elevation for the whole hour of simulation. The region
of largest response was found to be around the 700 second mark. A time series of
100 seconds is shown in Fig. 4.7, together with a time series visualization of the
displacement of the top of the turbine, the shear force at mudline and the mudline
moment for the case of a running turbine. It is hard to see a difference between the
three force models from these plots, in any of the plotted parameters. A zoom in on
the region of largest impact of the mudline moment is given in Fig. 4.8, where the
higher order contributions from FNV and Rainey moments can be distinguished from
the linear forces. The difference is however minor.

In large sea states like the one simulated, the turbine will likely be parked. Fig. 4.9
shows a comparison between the different operational states and loading conditions
on the mudline moment. The simulation with no wind generates a moment oscillating
around an equilibrium close to zero, as should be expected when the moment is only
caused by wave loads. When introducing wind loads, the magnitude of the moment
is increased, while the main oscillations still follow the pattern for the case with no
wind. The running turbine gives rise to more short time oscillations than the parked
turbine, due to the rotor dynamics. The PSD plot reveals that the moment magnitude
at the incident wave frequency 1/15.98 = 0.063Hz is unaffected by the wind loading.

The higher order force components of FNV and Rainey will excite the wind turbine
at higher frequencies than the linear forces. A PSD plot of the three benchmark
parameters (top displacement, mudline shear force, mudline moment) is shown in
Fig. 4.10 to look for differences in the excitation frequencies. The simulation with no
wind loads makes for less noise in the PSD plot, as Fig. 4.9 showed, and thus easier
see the hydrodynamic effects isolated.

The moment along the tower is shown in Fig. 4.11 for one wave period. The nine
circles along the tower are the sensors where the moment values are measured, and
the moment distribution is interpolated between these point.
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Figure 4.7: Wave elevation, top displacement, mudline shear force and mudline
moment plotted as a time series for a running turbine. A comparison is given
between Morison, FNV and Rainey forces.
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Figure 4.8: Zoom in on the region of largest impact for the mudline moment.
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Figure 4.9: Comparison between different operational states and loading conditions
on the mudline moment. The top figure gives a time series representation, and the
bottom figure shows a power spectrum density plot of the mudline moment in the
frequency domain. Morison forces are used for all the simulations.
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Figure 4.10: PSD of the top displacement, mudline shear force and mudline moment
for the case of no wind.
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(b) t = 724s
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(c) t = 728s
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(d) t = 732s
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Figure 4.11: Snapshots of the vertical moment distribution during one wave period.
At the bottom, the whole time series for the moment at the mean surface level is
plotted.



4.5. Flexible Foundation, Stiff Tower 51

4.5 Flexible Foundation, Stiff Tower

k = 1.80× 1010[Nm/rad]

stiff tower

Figure 4.12: Soil and tower properties for the case of a flexible foundation and a stiff
tower. The first natural frequency of the wind turbine tower is f1 = 0.27Hz.

A flexible foundation due to soil stiffness was modeled by including a massless
support platform and subject it to a hydrodynamic stiffness equal to the wanted soil
stiffness. The magnitude of the soil stiffness was found by having a stiff tower and
varying the soil stiffness until the desired first natural frequency of f1 = 0.27Hz was
obtained. The stiff tower was acquired by using a predefined scaling factor for the
stiffness and Young’s modulus in one of the input files of FAST. This scaling factor
was set to a high number.

Fig. 4.7 shows the time series of the different benchmark parameters for a running
turbine, and Fig. 4.14 gives the corresponding PSD series.

A comparison between the present configuration and the previous configuration is
given in Fig. 4.15. The top displacement is plotted in both the time and frequency
domain for the two configurations, comparing Morison and Rainey forces (omitting
FNV forces to keep the plots readable).
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Figure 4.13: Wave elevation, top displacement, mudline shear force and mudline
moment plotted as a time series for a running turbine. A comparison is given
between Morison, FNV and Rainey forces.
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Figure 4.14: PSD of the top displacement, mudline shear force and mudline moment
for the case of no wind.
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Figure 4.15: Comparison between two different configurations.
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4.6 Flexible Foundation, Flexible Tower

k = 2.64× 1011[Nm/rad]

(a) Foundation stiffness.
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(b) Varying stiffness along the tower.

Figure 4.16: Soil and tower properties for the case of a flexible foundation and a
flexible tower. The first natural frequency of the wind turbine tower is f1 = 0.27Hz.

Passon (2006) released a memo describing the details of the soil-pile-interaction
models used for the monopile configurations from the code comparison exercise OC3
(Jonkman and Musial, 2010), where FAST was one of the participants. Linearized soil
conditions based on the p-y-method was considered, and a combination of the monopile
and soil ensuring a proper participation of the soil structure interaction was sought.
The tower configurations used by Passon (2006) agrees well with the configuration
used in this simulation, and the memo aimed at achieving a selection of soil properties
based on realistic values and typical design procedures.

The soil consists of three sand layers with different properties. A coupled springs
model is established, with a stiffness matrix representation for the soil-structure in-
teraction model. The reader is referred to Passon (2006) for the details. Fig. 4.17
visualizes the translational and rotational stiffness. ku was found to be 2.58×109N/m
and kϕ was found to be 2.64 × 1011Nm/rad. Only the rotational stiffness effect is
included for this configuration, as shown in Fig. 4.16.

kukϕ

Figure 4.17: The soil stiffness model represented by a translational and rotational
stiffness at the foundation.

Fig. 4.18 and Fig. 4.19 shows the benchmark parameters plotted in the time and
frequency domain for the current configuration.
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Figure 4.18: Wave elevation, top displacement, mudline shear force and mudline
moment plotted as a time series for a running turbine. A comparison is given
between Morison, FNV and Rainey forces.
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Figure 4.19: PSD of the top displacement, mudline shear force and mudline moment
for the case of no wind.





Chapter 5

Discussion of Results, Uncertainties
and Further Work

The nonlinear force models have been derived and verified using the papers where they
were first presented. It was shown that for moderately high regular waves, the first
and second order force components agreed, which has also been confirmed analytically
by Tromans et al. (2006), building on the works by Lighthill (1979). No such analysis
of the different components was conducted for irregular waves, and in fact Fig. 4.18
and 4.19 showed deviations between the FNV and Rainey forces, as discussed below.

No significant response due to nonlinear forcing was observed. No ringing event
occurred. In Fig. 4.10, 4.14 and 4.19, excitations of higher frequencies than the wave
frequency could not be identified, neither for the FNV or the Rainey forcing model.
The largest response frequency was close to the wave excitation frequency 0.063Hz.
The top displacement of the turbine also showed a peak at the tower natural frequency
0.27Hz. The amplitude of this response was approximately similar for the configura-
tion with a stiff foundation and a flexible tower, and vice versa. This can bee seen
from the case of no wind in Fig. 4.15, ie. only hydrodynamic loads. Thus, it seemed
like the top displacement amplitude around the tower natural frequency was quite
unresponsive to changing foundation and tower configurations. The response around
the wave excitation frequency was higher for the case with a flexible tower.

In Fig. 4.19, it is not clear why the response due to FNV forces close to the tower
natural frequency was significantly lower than the linear forces and Rainey forces.
Since in the present implementation, the FNV point loads are lumped using the wave
kinematics of the mean surface level, the moment will not be exact, and this may be
the reason for the deviations seen in Fig. 4.19. An implementation where the point
loads are distributed between the mean surface level and the free surface should be
used to reveal if this is the source of error.

One of the main uncertainties of this thesis is related to the lack of model test results
to compare with the implemented force models. Additionally, the lack of software
for dynamic analysis of offshore wind turbines with higher order forcing capabilities
according to FNV and Rainey theory, makes it difficult to assess the correctness of the
implementation done in the work with this thesis. Analytical derivations of the force
components as it was done in Chapter 2, or comparisons with the linear forcing as it
was done in Chapter 3, are not adequate.

Some of the assumptions made when deriving the force models are not tested for
the different simulation runs. The assumption of infinite water depth is certainly not
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satisfied, and a survey should be carried out to see whether the force models are still
valid for the applied water depth of 20m. The evaluation of wave kinematics at the
cylinder centerline instead of the cylinder wall is an assumption that is inherent in the
wave models, but also the FAST software itself. This may be limiting the correctness
of the integrated forces along the wind turbine tower, depending on the wave velocities
and cylinder diameter.

In FAST, the tower is discretized into an evenly spaced number of elements. Future
planned capabilities will include the option for arbitrary element discretization. No
study was carried out to evaluate the effect of refining element sizes close to the free
surface. Since the higher order FNV and Rainey components are significant near the
free surface, the mesh refinement around this region could potentially be significant.

The choice of including neither wave motion or structural nonlinearities was made
because these features are not supported by FAST at present, and to implement them
would be demanding. It is reason to believe that nonlinear wave models would show
significant contribution to the higher order forcing effects, as they are more capable
than linear waves of representing realistic wave profiles of high steepness. Future work
should investigate the effect of these nonlinearities.

Future work should also seek to address the influence of vertical mode shape dis-
tribution from the soil, tower and top mass on the dynamic response of the wind
turbine. It was touched upon, introducing different soil and tower configurations, but
no conclusion was made to this topic.
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Appendix A

FNV Source Code

1 SUBROUTINE UserTwrLd ( JNode, TwrDiam, TwrCA, TwrCD, X, XD, ZTime, TwrAM, TwrFt )

2

3 ! This routine assumes that the tower loads are transmitted through a medium

4 ! like soil [foundation] and/or water [offshore], so that added mass

5 ! effects are important. Consequently, the routine assumes that the total

6 ! load per unit length on the current tower element can be written as:

7 !

8 ! TwrF(i) = SUM( -TwrAM(i,j)*XDD(j), j=1,2,..,6) + TwrFt(i) for i=1,2,...,6

9 !

10 ! where,

11 ! TwrF(i) = the i’th component of the total load per unit length

12 ! applied on the current tower element; positive in the

13 ! direction of positive motion of the i’th DOF of the current

14 ! tower element

15 ! TwrAM(i,j) = the (i,j) component of the tower added mass matrix per unit

16 ! length (output by this routine)

17 ! XDD(j) = the j’th component of the current tower element

18 ! acceleration vector

19 ! TwrFt(i) = the i’th component of the portion of the current tower

20 ! element load per unit length associated with everything but

21 ! the added mass effects; positive in the direction of

22 ! positive motion of the i’th DOF of the current tower

23 ! element (output by this routine)

24

25 ! The order of indices in all arrays passed to and from this routine is as

26 ! follows:

27 ! 1 = Current tower element surge / xi-component of translation

28 ! 3 = Current tower element sway / yi-component of translation

29 ! 3 = Current tower element heave / zi-component of translation

30 ! 4 = Current tower element roll / xi-component of rotation

31 ! 5 = Current tower element pitch / yi-component of rotation

32 ! 6 = Current tower element yaw / zi-component of rotation

33

34 ! NOTE: The added mass matrix returned by this routine, TwrAM, must be

35 ! symmetric. FAST and ADAMS will abort otherwise.

36 !

37 ! Please also note that the hydrostatic restoring contribution to the

38 ! hydrodynamic force returned by this routine should not contain the

39 ! effects of body weight, as is often done in classical marine

40 ! hydrodynamics. The effects of body weight are included within FAST

41 ! and ADAMS.

42

65



66 FNV Source Code

43 USE Precision

44 USE Waves

45

46 IMPLICIT NONE

47

48 ! Passed Variables:

49

50 REAL(ReKi), INTENT(OUT) :: TwrAM (6,6) ! Added mass matrix per unit length of

current tower element (kg/m, kg-m/m, kg-m^2/m)

51 REAL(ReKi), INTENT(IN ) :: TwrCA ! Normalized hydrodynamic added mass coefficient

of current tower element (-)

52 REAL(ReKi), INTENT(IN ) :: TwrCD ! Normalized hydrodynamic viscous drag

coefficient of current tower element (-)

53 REAL(ReKi), INTENT(IN ) :: TwrDiam ! Diameter of current tower element (meters)

54 REAL(ReKi), INTENT(OUT) :: TwrFt (6) ! The surge/xi (1), sway/yi (2), and heave

/zi (3)-components of the portion of the tower force per unit length (in N/m)

at the current tower element and the roll/xi (4), pitch/yi (5), and yaw/zi (6)-

components of the portion of the tower moment per unit length (in N-m/m) acting

at the current tower element associated with everything but the added-mass

effects; positive forces are in the direction of motion.

55 REAL(ReKi), INTENT(IN ) :: X (6) ! The 3 components of the translational

displacement (in m ) of the current tower node and the 3 components of the

rotational displacement (in rad ) of the current tower element relative to the

inertial frame origin at ground level [onshore] or MSL [offshore].

56 REAL(ReKi), INTENT(IN ) :: XD (6) ! The 3 components of the translational

velocity (in m/s) of the current tower node and the 3 components of the

rotational (angular) velocity (in rad/s) of the current tower element relative

to the inertial frame origin at ground level [onshore] or MSL [offshore].

57 REAL(ReKi), INTENT(IN ) :: ZTime ! Current simulation time (sec)

58

59 INTEGER(4), INTENT(IN ) :: JNode ! The number of the current tower node / element

(-) [1 to TwrNodes]

60

61 ! Local Variables:

62

63 REAL(ReKi) :: DZFract ! The fraction of the current tower element

that is below the free surface of the incident wave and above the seabed (0.0

<= DZFract <= 1.0): 0.0 = the element is entirely above the free surface, 1.0 =

element is entirely below the free surface and above the seabed (-)

64 REAL(ReKi) :: DZFractS ! The fraction of the current tower element

that is above the seabed (0.0 <= DZFractS <= 1.0): 0.0 = the element is

entirely below the seabed, 1.0 = element is entirely above the seabed (-)

65 REAL(ReKi) :: DZFractW ! The

fraction of the current tower element that is below the free surface of the

incident wave (0.0 <= DZFractW <= 1.0): 0.0 = the element is entirely above the

free surface, 1.0 = element is entirely below the free surface (-)

66 REAL(ReKi) :: InertiaForce(2) ! Wave inertia force in the xi- (1)

and yi- (2) directions, respectively, on the current tower element at the

current time (N)

67 REAL(ReKi) :: MagVRel ! The magnitude of the horizontal incident

wave velocity relative to the current tower node at the current time (m/s)

68 REAL(ReKi) :: MomArm ! Moment arm in the vertical direction from the

current tower node to the center of pressure of the wave load on the current

tower element (meters)

69 REAL(ReKi) :: TowerAM ! Force -translation component of TwrAM (kg /m

)

70 REAL(ReKi) :: TowerAMM ! Force -rotation and moment-translation
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component of TwrAM (kg-m /m)

71 REAL(ReKi) :: TowerAMM2 ! Moment-rotation component of TwrAM (kg-m

^2/m)

72 REAL(ReKi) :: TwrArea ! Cross-sectional area of current tower

element (m^2)

73 REAL(ReKi) :: TwrVelocity(2) ! Velocity of the center of pressure of

the wave load on the current tower element in the xi- (1) and yi- (2)

directions, respectively, at the current time (m/s)

74 REAL(ReKi) :: ViscousForce(2) ! Viscous drag force in the xi- (1)

and yi- (2) directions, respectively, on the current tower element at the

current time (N)

75 REAL(ReKi) :: WaveAcceleration0(3) ! Acceleration of incident waves

in the xi- (1) and yi- (2) directions, respectively, at the current tower node

and time (m/s^2)

76 REAL(ReKi) :: WaveElevation0 ! Elevation of incident waves at the

platform reference point and current time (meters)

77 REAL(ReKi) :: WaveVelocity0(3) ! Velocity of incident waves in the

xi- (1) and yi- (2) directions, respectively, at the current tower node and

time (m/s )

78 REAL(ReKi) :: WaveVelocityGradient0(3,3) ! Wave velocity gradient

matrix

79 REAL(ReKi) :: WaveVelocitySurf0(3) ! Wave velocity vector at surface

intersection

80 REAL(ReKi) :: WaveAccelerationSurf0(3) ! Wave acceleration vector at

surface intersection

81 REAL(ReKi) :: WavedudzSurface0(3)

82 REAL(ReKi) :: Waved2udtdzSurface0(3)

83 REAL(ReKi) :: FNV(2) ! Total FNV force in x- and y-direction

84 REAL(ReKi) :: FNV1_1(2) ! First order FNV force

85 REAL(ReKi) :: FNV2_1(2) ! Second order distributed FNV force

86 REAL(ReKi) :: FNV2_2(2) ! Second order FNV point force

87 REAL(ReKi) :: FNV3_1(2) ! Third order FNV force from linear

potential

88 REAL(ReKi) :: FNV3_2(2) ! Third order FNV force from non-linear

potential

89

90 INTEGER(4) :: K ! Generic index

91

92 ! Initialize the added mass matrix per unit length of the current tower

93 ! element, TwrAM, and the portion of the current tower element load per

94 ! unit length associated with everything but the added mass effects,

95 ! TwrFt, to zero:

96

97 TwrAM(1,:) = (/ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 /)

98 TwrAM(2,:) = (/ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 /)

99 TwrAM(3,:) = (/ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 /)

100 TwrAM(4,:) = (/ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 /)

101 TwrAM(5,:) = (/ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 /)

102 TwrAM(6,:) = (/ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 /)

103

104 TwrFt(1) = 0.0

105 TwrFt(2) = 0.0

106 TwrFt(3) = 0.0

107 TwrFt(4) = 0.0

108 TwrFt(5) = 0.0

109 TwrFt(6) = 0.0

110
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111 ! Find the fraction of the current tower element that is below the free

112 ! surface of the incident wave and above the seabed:

113

114 IF ( WaveStMod == 0 ) THEN ! .TRUE. if we have no stretching; therefore, integrate

up to the MSL, regardless of the instantaneous free surface elevation.

115

116 IF ( ( WaveKinzi0(JNode) - 0.5*DZNodes(JNode) ) >= 0.0 ) THEN ! .TRUE.

if the current tower element lies entirely above the MSL.

117 DZFractW = 0.0

118 ELSEIF ( ( WaveKinzi0(JNode) + 0.5*DZNodes(JNode) ) <= 0.0 ) THEN ! .TRUE.

if the current tower element lies entirely below the MSL.

119 DZFractW = 1.0

120 ELSE ! The free

surface of the incident wave must fall somewhere along the current tower

element; thus, interpolate.

121 DZFractW = ( ( 0.0 - ( WaveKinzi0(JNode) - 0.5*DZNodes(JNode) ) )/

DZNodes(JNode) )

122 ENDIF

123

124 ELSE ! We must have some sort of stretching.

125

126 WaveElevation0 = WaveElevation ( 1, ZTime )

127

128 IF ( ( WaveKinzi0(JNode) - 0.5*DZNodes(JNode) ) >= WaveElevation0 ) THEN ! .

TRUE. if the current tower element lies entirely above the free surface of

the incident wave.

129 DZFractW = 0.0

130 ELSEIF ( ( WaveKinzi0(JNode) + 0.5*DZNodes(JNode) ) <= WaveElevation0 ) THEN ! .

TRUE. if the current tower element lies entirely below the free surface of

the incident wave.

131 DZFractW = 1.0

132 ELSE ! The free

surface of the incident wave must fall somewhere along the current tower

element; thus, interpolate.

133 DZFractW = ( ( WaveElevation0 - ( WaveKinzi0(JNode) - 0.5*DZNodes(JNode) ) )/

DZNodes(JNode) )

134 ENDIF

135

136 ENDIF

137

138 IF ( ( WaveKinzi0(JNode) - 0.5*DZNodes(JNode) ) >= -WtrDpth ) THEN ! .TRUE.

if the current tower element lies entirely above the seabed.

139 DZFractS = 1.0

140 ELSEIF ( ( WaveKinzi0(JNode) + 0.5*DZNodes(JNode) ) <= -WtrDpth ) THEN ! .TRUE.

if the current tower element lies entirely below the seabed.

141 DZFractS = 0.0

142 ELSE ! The

seabed must fall somewhere along the current tower element; thus, interpolate.

143 DZFractS = ( ( ( WaveKinzi0(JNode) + 0.5*DZNodes(JNode) ) - ( -WtrDpth ) )/

DZNodes(JNode) )

144 ENDIF

145

146 DZFract = DZFractW*DZFractS

147

148 ! Compute the hydrodynamic loads using FNV equations for the portion of

149 ! the current tower element that lies below the free surface of the

150 ! incident wave and above the seabed:
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151

152 IF ( DZFract > 0.0 ) THEN ! .TRUE. if a portion of the current tower element lies

below the free surface of the incident wave.

153

154 ! Compute the moment arm in the vertical direction between the current tower

155 ! node and the center of pressure of the wave load on the current tower

156 ! element:

157

158 MomArm = 0.5*DZNodes(JNode)*( DZFractW - DZFractS ) ! NOTE: MomArm = 0.0 when

the entire element is submerged in the fluid; consequently, the roll and

pitch components of the load are zero when the entire element is submerged

in the fluid

159

160 ! Compute the velocity and acceleration of the incident waves in the xi- (1)

161 ! and yi- (2) directions, respectively, at the current tower node and

162 ! time:

163

164 DO K = 1,3 ! Loop through the xi- (1) and yi- (2) directions

165 WaveVelocity0 (K) = WaveVelocity ( JNode, K, ZTime )

166 WaveAcceleration0(K) = WaveAcceleration ( JNode, K, ZTime )

167 WaveVelocityGradient0 (1,K) = WaveVelocityGradient(JNode, K, ZTime)

168 WaveVelocityGradient0 (2,K) = WaveVelocityGradient(JNode, K+3, ZTime)

169 WaveVelocityGradient0 (3,K) = WaveVelocityGradient(JNode, K+6, ZTime)

170 ENDDO ! K - The xi- (1) and yi- (2) directions

171

172 ! Compute the velocity of the center of pressure of the wave load on the

173 ! current tower element in the xi- (1) and yi- (2) directions,

174 ! respectively, at the current time:

175

176 TwrVelocity(1) = XD(1) + XD(5)*MomArm

177 TwrVelocity(2) = XD(2) - XD(4)*MomArm

178

179 ! Compute the magnitude of the horizontal incident wave velocity relative to

180 ! the center of pressure of the wave load on the current tower element at

181 ! the current time:

182

183 MagVRel = SQRT( ( WaveVelocity0(1) - TwrVelocity(1) )**2 &

184 + ( WaveVelocity0(2) - TwrVelocity(2) )**2 )

185

186 ! Compute the cross-sectional area of the current tower element:

187

188 TwrArea = PiOvr4*TwrDiam*TwrDiam

189

190 ! Compute the added mass matrix per unit length of the current tower

191 ! element:

192

193 TowerAM = TwrCA*WtrDens*TwrArea*DZFract ! force -translation

component

194 TowerAMM = TowerAM *MomArm ! force -rotation and moment-translation

component

195 TowerAMM2 = TowerAMM*MomArm ! moment-rotation

component

196

197 TwrAM(1,1) = TwrAM(1,1) + TowerAM ! surge-surge component

198 TwrAM(2,2) = TwrAM(2,2) + TowerAM ! sway -sway component

199 TwrAM(4,4) = TwrAM(4,4) + TowerAMM2 ! roll -roll component

200 TwrAM(5,5) = TwrAM(5,5) + TowerAMM2 ! pitch-pitch component
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201 TwrAM(2,4) = TwrAM(2,4) - TowerAMM ! sway -roll component

202 TwrAM(4,2) = TwrAM(4,2) - TowerAMM ! roll -sway component

203 TwrAM(1,5) = TwrAM(1,5) + TowerAMM ! surge-pitch component

204 TwrAM(5,1) = TwrAM(5,1) + TowerAMM ! pitch-surge component

205

206 ! Compute the wave velocity and acceleration at surface intersection

207

208 WaveVelocitySurf0(1) = WaveVelocitySurface(1, ZTime)

209 WaveVelocitySurf0(2) = WaveVelocitySurface(2, ZTime)

210 WaveVelocitySurf0(3) = WaveVelocitySurface(3, ZTime)

211

212 WaveAccelerationSurf0(1) = WaveAccelerationSurface(1, ZTime)

213 WaveAccelerationSurf0(2) = WaveAccelerationSurface(2, ZTime)

214 WaveAccelerationSurf0(3) = WaveAccelerationSurface(3, ZTime)

215

216 WavedudzSurface0(1) = WavedudzSurface(1, ZTime)

217 WavedudzSurface0(2) = WavedudzSurface(2, ZTime)

218 WavedudzSurface0(3) = WavedudzSurface(3, ZTime)

219

220 Waved2udtdzSurface0(1) = Waved2udtdzSurface(1, ZTime)

221 Waved2udtdzSurface0(2) = Waved2udtdzSurface(2, ZTime)

222 Waved2udtdzSurface0(3) = Waved2udtdzSurface(3, ZTime)

223

224 ! Compute the portions of the current tower element load per unit length

225 ! associated with the incident wave acceleration and the viscous drag:

226

227 DO K = 1,2 ! Loop through the xi- (1) and yi- (2) directions

228

229 ! Compute the distributed FNV load components

230 FNV1_1(K) = ( 1.0 + TwrCA )*WtrDens*TwrArea*WaveAcceleration0(K)*DZFract

231 FNV2_2(K) = WtrDens*TwrArea*WaveVelocity0(3)*WaveVelocityGradient0(K,3)*

DZFract

232

233 ! Compute the viscous forces

234 ViscousForce(K) = 0.5*TwrCD*WtrDens*TwrDiam*( WaveVelocity0(K) - TwrVelocity(K

) )*MagVRel*DZFract

235

236 ! Calculate the FNV point loads at surface intersections

237 IF ( DZFractW < 1.0 .AND. DZFractW > 0.0 ) THEN

238

239 FNV2_1(K) = 2 * WtrDens * TwrArea * WaveAccelerationSurf0(K) *

WaveElevation0 / DZNodes(JNode)

240 FNV3_1(K) = WtrDens * TwrArea * WaveElevation0 * (Waved2udtdzSurface0(K) *

WaveElevation0 + WaveVelocitySurf0(3) * WavedudzSurface0(K) - 2 / 9.81

* WaveAccelerationSurf0(K) * WaveAccelerationSurf0(3)) / DZNodes(JNode)

241 FNV3_2(K) = 4 / 9.81 * WtrDens * TwrArea * WaveVelocitySurf0(K) *

WaveVelocitySurf0(K) * WaveAccelerationSurf0(K) / DZNodes(JNode)

242

243 ELSE

244

245 FNV2_1(K) = 0.0

246 FNV3_1(K) = 0.0

247 FNV3_2(K) = 0.0

248

249 ENDIF

250

251 ENDDO ! K - The xi- (1) and yi- (2) directions
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252

253 TwrFt(1 ) = TwrFt(1 ) + FNV1_1(1) + FNV2_1(1) + FNV2_2(1) + FNV3_1(1) + FNV3_2

(1) + ViscousForce(1) ! surge component

254 TwrFt(2 ) = TwrFt(2 ) + FNV1_1(2) + FNV2_1(2) + FNV2_2(2) + FNV3_1(2) + FNV3_2

(2) + ViscousForce(2) ! sway component

255 TwrFt(4 ) = TwrFt(4 ) - ( FNV1_1(2) + FNV2_2(2) + ViscousForce(2) )*MomArm -

0.5*(FNV2_1(2)+FNV3_1(2)+FNV3_2(2))*(WaveElevation0 - WaveKinzi0(JNode)) !

roll component

256 TwrFt(5 ) = TwrFt(5 ) + ( FNV1_1(1) + FNV2_2(1) + ViscousForce(1) )*MomArm +

0.5*(FNV2_1(1)+FNV3_1(1)+FNV3_2(1))*(WaveElevation0 - WaveKinzi0(JNode)) !

pitch component

257

258 ENDIF

259

260 RETURN

261 END SUBROUTINE UserTwrLd





Appendix B

Rainey Source Code

1 SUBROUTINE UserTwrLd ( JNode, TwrDiam, TwrCA, TwrCD, X, XD, ZTime, TwrAM, TwrFt )

2

3 ! <--- Same declaration and initialization as for the FNV source code. --->

4

5 ! Compute the hydrodynamic loads using Rainey equations for the portion of

6 ! the current tower element that lies below the free surface of the

7 ! incident wave and above the seabed:

8

9 IF ( DZFract > 0.0 ) THEN ! .TRUE. if a portion of the current tower element lies

below the free surface of the incident wave.

10

11

12 ! Compute the moment arm in the vertical direction between the current tower

13 ! node and the center of pressure of the wave load on the current tower

14 ! element:

15

16 MomArm = 0.5*DZNodes(JNode)*( DZFractW - DZFractS ) ! NOTE: MomArm = 0.0 when

the entire element is submerged in the fluid; consequently, the roll and

pitch components of the load are zero when the entire element is submerged

in the fluid

17

18

19 ! Compute the velocity and acceleration of the incident waves in the xi- (1)

20 ! and yi- (2) directions, respectively, at the current tower node and

21 ! time:

22

23 DO K = 1,3 ! Loop through the xi- (1) and yi- (2) and zi- (3) directions

24 WaveVelocity0 (K) = WaveVelocity ( JNode, K, ZTime )

25 WaveAcceleration0(K) = WaveAcceleration ( JNode, K, ZTime )

26 WaveVelocityGradient0 (1,K) = WaveVelocityGradient(JNode, K, ZTime)

27 WaveVelocityGradient0 (2,K) = WaveVelocityGradient(JNode, K+3, ZTime)

28 WaveVelocityGradient0 (3,K) = WaveVelocityGradient(JNode, K+6, ZTime)

29 ENDDO ! K - The xi- (1) and yi- (2) and zi- (3) directions

30

31 ! Calculate the convective accelerations

32

33 WaveConvAcc0(1) = WaveVelocity0(1)*WaveVelocityGradient0(1,1) + WaveVelocity0(2)

*WaveVelocityGradient0(1,2) + WaveVelocity0(3)*WaveVelocityGradient0(1,3)

34 WaveConvAcc0(2) = WaveVelocity0(1)*WaveVelocityGradient0(2,1) + WaveVelocity0(2)

*WaveVelocityGradient0(2,2) + WaveVelocity0(3)*WaveVelocityGradient0(2,3)

35 WaveConvAcc0(3) = WaveVelocity0(1)*WaveVelocityGradient0(3,1) + WaveVelocity0(2)

*WaveVelocityGradient0(3,2) + WaveVelocity0(3)*WaveVelocityGradient0(3,3)

73
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36

37

38 ! Compute the velocity of the center of pressure of the wave load on the

39 ! current tower element in the xi- (1) and yi- (2) directions,

40 ! respectively, at the current time:

41

42 TwrVelocity(1) = XD(1) + XD(5)*MomArm

43 TwrVelocity(2) = XD(2) - XD(4)*MomArm

44 TwrVelocity(3) = XD(4)*MomArm - XD(5)*MomArm

45

46

47 ! Compute the magnitude of the horizontal incident wave velocity relative to

48 ! the center of pressure of the wave load on the current tower element at

49 ! the current time:

50

51 MagVRel = SQRT( ( WaveVelocity0(1) - TwrVelocity(1) )**2 &

52 + ( WaveVelocity0(2) - TwrVelocity(2) )**2 )

53

54

55 ! Compute the cross-sectional area of the current tower element:

56

57 TwrArea = PiOvr4*TwrDiam*TwrDiam

58

59

60 ! Compute the added mass matrix per unit length of the current tower

61 ! element:

62

63 TowerAM = TwrCA*WtrDens*TwrArea*DZFract ! force -translation

component

64 TowerAMM = TowerAM *MomArm ! force -rotation and moment-translation

component

65 TowerAMM2 = TowerAMM*MomArm ! moment-rotation

component

66

67 TwrAM(1,1) = TwrAM(1,1) + TowerAM ! surge-surge component

68 TwrAM(2,2) = TwrAM(2,2) + TowerAM ! sway -sway component

69 TwrAM(4,4) = TwrAM(4,4) + TowerAMM2 ! roll -roll component

70 TwrAM(5,5) = TwrAM(5,5) + TowerAMM2 ! pitch-pitch component

71 TwrAM(2,4) = TwrAM(2,4) - TowerAMM ! sway -roll component

72 TwrAM(4,2) = TwrAM(4,2) - TowerAMM ! roll -sway component

73 TwrAM(1,5) = TwrAM(1,5) + TowerAMM ! surge-pitch component

74 TwrAM(5,1) = TwrAM(5,1) + TowerAMM ! pitch-surge component

75

76

77 ! Calculate the two dimensional added mass matrix

78

79 TwoDimAM(1,1) = TwrCA*WtrDens*TwrArea

80 TwoDimAM(2,2) = TwrCA*WtrDens*TwrArea

81

82 ! Calculate the wave slope at surface

83 WaveSlopeSurf0(1) = WaveSlope(ZTime)*abs(CWavedir)

84 WaveSlopeSurf0(2) = WaveSlope(ZTime)*abs(SWavedir)

85 WaveSlopeSurf0(3) = 0.0

86

87 ! Calculate wave velocity at surface

88 WaveVelocitySurf0(1) = WaveVelocitySurface(1, ZTime)

89 WaveVelocitySurf0(2) = WaveVelocitySurface(2, ZTime)
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90 WaveVelocitySurf0(3) = WaveVelocitySurface(3, ZTime)

91

92

93 ! Compute the portions of the current tower element load per unit length

94 ! associated with the incident wave acceleration and the viscous drag:

95

96 DO K = 1,2 ! Loop through the xi- (1) and yi- (2) directions

97

98 InertiaForce(K) = ( 1.0 + TwrCA ) * WtrDens * TwrArea * (WaveAcceleration0(K)

+ WaveConvAcc0(K)) * DZFract

99 AxialDivForce(K) = WtrDens * TwrArea * WaveVelocity0(K) *

WaveVelocityGradient0(3,3) * DZFract

100 ViscousForce(K) = 0.5 * TwrCD * WtrDens * TwrDiam * ( WaveVelocity0(K) -

TwrVelocity(K) ) * MagVRel * DZFract

101

102

103 ! Calculate the point loads at surface intersections

104

105 IF ( DZFractW < 1.0 .AND. DZFractW > 0.0 ) THEN

106

107 PointLoad(K) = -0.5 * WaveSlopeSurf0(K) * WtrDens * TwrArea *

WaveVelocitySurf0(K)**2 / DZNodes(JNode)

108

109 ELSE

110

111 PointLoad(K) = 0.0

112

113 ENDIF

114

115

116 ENDDO ! K - The xi- (1) and yi- (2) directions

117

118 ! Calculate the tower loads

119

120 TwrFt(1 ) = TwrFt(1 ) + InertiaForce(1) + AxialDivForce(1) + ViscousForce(1) +

PointLoad(1) ! surge component

121 TwrFt(2 ) = TwrFt(2 ) + InertiaForce(2) + AxialDivForce(2) + ViscousForce(2) +

PointLoad(2) ! sway component

122 TwrFt(4 ) = TwrFt(4 ) - ( InertiaForce(2) + AxialDivForce(2) + ViscousForce(2) )

*MomArm - PointLoad(2)*(WaveElevation0 - WaveKinzi0(JNode)) ! roll component

123 TwrFt(5 ) = TwrFt(5 ) + ( InertiaForce(1) + AxialDivForce(1) + ViscousForce(1) )

*MomArm + PointLoad(1)*(WaveElevation0 - WaveKinzi0(JNode)) ! pitch

component

124

125

126 ENDIF

127

128 RETURN

129 END SUBROUTINE UserTwrLd


