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Abstract 

This study focuses on the possibility of using Knowledge Based Engineering (KBE) as a tool for 

the early creative design phase, using systematic design principles introduced by Eskild Tjalve. 

In addition, the concept of metacognition was explored to discover how it could relate to KBE 

and creativity. Specifically, the following research questions guided this research: 1) How can 

metacognition benefit KBE and creative design? 2) How can KBE technologies support the 

creative design phase? 3) How can Tjalve’s principles be implemented with KBE for a simple 

product? 4) How can this environment be adapted to work for complex products? 

This research study applies design research as a methodological approach. A literature review 

was conducted on previous research on KBE, creativity, and metacognition. In addition, this 

study has utilized Eskild Tjalve’s work, Systematic Design of Industrial Products. The results of 

this review provided four learnings which became important for answering the main research 

questions. Firstly, existing research on KBE technologies indicated how the advantages of 

these systems could benefit creative design. Secondly, the research on creativity identified 

potential challenges with emulating human creativity, and revealed different ways of 

improving human creativity. Third, the study of metacognition delved into the arts of 

reflective practice and cognitive frameworks for creative design. Existing research suggested 

that computer systems could possibly embed some of these frameworks. Finally, Tjalve 

proposed a set of systematic product design principles that seemed feasible to implement 

using KBE technologies. 

These theoretical results provided a knowledge base for the next phase of the study, and the 

practical part of this research utilizes Tjalve’s principles to derive a cognitive framework for 

systematic design. This framework was then implemented in a pilot KBE environment for 

doing creative design work on a simple product. The environment was later evaluated to 

answer the following questions: a) What are the systematic design constraints applied by the 

chosen framework? b) How do the framework constraints affect creativity? c) How feasible 

were the framework constraints to implement in KBE? 

Based on this evaluation, plans for prototype KBE environments were suggested for future 

development, where genericity and complex products were considered as advancements. In 

conjunction with this, HCI design principles were proposed to mitigate associated negative 

effects on creativity. A framework is proposed that illustrates how metacognition relates to 

KBE and creativity. In addition, positive and negative constraints for creative design are 

highlighted. Finally, implications for research and practice, along with limitations and 

suggestions, are correspondingly discussed in the thesis. 
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Sammendrag 

Denne studien fokuserer på muligheten for å bruke Knowledge Based Engineering (KBE) som 

et verktøy for den tidlige kreative designfasen. I tillegg ble begrepet metakognisjon utforsket 

å finne ut hvordan dette kunne relateres til KBE og kreativitet. Forskningsspørsmålene som 

denne studien ønsker å svare på er: 1) Hvordan kan metakognisjon være til fordel for KBE og 

kreativt design? 2) Hvordan kan KBE-teknologier støtte den kreative designfasen? 3) Hvordan 

kan Tjalves prinsipper implementeres med KBE for et enkelt produkt? 4) Hvordan kan dette 

verktøyet videre tilpasses for å arbeide med komplekse produkter? 

Denne studien benytter design research som metode. En litteraturstudie ble utført på 

tidligere forskning innen KBE, kreativitet og metakognisjon. I tillegg har dette studiet sett på 

Eskild Tjalves Systematic Design of Industrial Products. Resultatene fra dette litteraturstudiet 

ga fire lærdommer som ble essensielle for besvarelsen av forskningsspørsmålene. Først og 

fremst viser eksisterende forskning på KBE-teknologi indikerte hvordan fordelene med disse 

systemene kan være til nytte for kreativ design. Videre viser forskning på kreativitet 

identifiserte potensielle utfordringer ved å simulere menneskelig kreativitet, og forskjellige 

måter for å forbedre menneskelig kreativitet. Studiet på metakognisjon så nærmere på 

konseptet reflekterende praksis og kognitive rammeverk for kreativt design. Eksisterende 

forskning antydet at noen av disse rammeverkene kunne bygges inn i datasystemer. Eskild 

Tjalve foreslo et sett med systematiske designprinsipper for produkter, som virket mulig å 

implementere ved hjelp av KBE-teknologi. 

Den teoretiske delen av studien gav resultater som bidro til å danne en viktig kunnskapsbase 

for neste fase av studien Den praktiske delen av masteroppgaven bygger på Tjalves arbeid 

vedrørende systematisk design av industriprodukter, hvorav et kognitivt rammeverk ble 

etablert. Dette rammeverket ble deretter implementert i en KBE testapplikasjon for å gjøre 

kreativt designarbeid på et enkelt produkt. Applikasjonen ble senere evaluert for å fastslå 

følgende: a) Hva er de systematiske designrestriksjonene i det valgte rammeverket? b) 

Hvordan påvirker rammeverkets restriksjoner kreativitet? c) Hvor gjennomførbart var det å 

implementere rammeverkets restriksjoner i KBE? 

Basert på denne evalueringen, ble det foreslått KBE-prototyper for fremtidig utvikling, hvor 

det ble tatt hensyn til generiske egenskaper og støtte for komplekse produkter. Her foreslås 

også HCI design prinsipper for å nedtone negative effekter på kreativitet. Et rammeverk viser 

hvordan metakognisjon er relatert til KBE og kreativitet. Videre er positive og negative 

restriksjoner for kreativ design diskutert. Tilslutt diskuteres implikasjoner for forskning og 

praksis, begrensninger i studien, samt forslag til videre arbeid.  
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1 Introduction 

1.1 Background and Motivation 

Knowledge Based Engineering (KBE) technologies emerged in the 1980s, and have ever since 

provided invaluable automation of engineering design in various industries (Verhagen et al., 

2012). The ever-increasing demand for product innovation is motivating the use of KBE and 

other computer aided technologies to do creative design (Cascini, 2008; Sanya and Shehab, 

2014). The KBE environments of today are often mature technologies that automate product 

family design through parametrization and Multi Model Generation (Rocca, 2012). Although 

technologies that focus more on innovation do exist, the use of KBE for early creative design 

seems to be a less explored concept. 

1.1.1 Research Motivation 

The potential use of KBE in an early creative design context is the main motivator for our 

study. Additionally, the principles found in Systematic Design of Industrial Products by Tjalve 

(2003) serve as an inspiration and starting point for our research. The resulting scope has 

been expressed as an area of interest for the Department of Engineering Design and Materials 

at NTNU in Trondheim. 

The main purpose of this research is to reveal how the advantages of KBE technologies can 

be leveraged to support creative design. In particular, we seek to adapt the principles of Tjalve 

(2003), and test-implement them in a pilot KBE environment. Having done this, we can 

evaluate how such a tool can affect design creativity. 

An underlying assumption is that human cognition is closely tied to creativity (e.g. Arnsten et 

al., 2012; Goel, 2012; Howard et al., 2008), and that human cognition can have implications 

for the development and use of creative design tools. To explore this notion, we will study 

the field of metacognition1, seeking to identify aspects that may relate to creativity and 

software engineering. Specifically, we will look for metacognitive concepts that can support 

designers to optimize their own creativity, and principles that can be implemented in a KBE 

environment. The inclusion of metacognition as a key part of our study is also motivated by 

literary works and otherwise, such as the podcast of Tim Ferriss (e.g. Ferriss, 2015), Waking 

Up (Harris, 2014), Thinking, Fast and Slow (Kahneman, 2013) and Marcus Aurelius: 

Meditations (e.g. Hays, 2002). 

This study seeks to uncover potential challenges in the emulation or support of human 

creativity using computer technology. This leads us into a study of creativity in general. By 

better understanding its mechanisms, we aim to find ways in which people can improve their 

                                                      
1 Metacognition is defined as knowledge and regulation of own cognition (elaborated in section 2.4). 
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own creativity. In addition, studies indicate that converting and embedding tacit knowledge 

is a challenge in any knowledge-based system (e.g. Alavi and Leidner, 2001; Dingsøyr, 2002; 

Nonaka and Konno, 1998; Rocca, 2012). With this in mind, we investigate key concepts within 

knowledge management to learn about such challenges within the scope of our research. 

1.1.2 Research Contributions 

New knowledge and understanding can further enlighten the possibilities of using KBE for 

early creative design. Moreover, the findings should provide some previously less explored 

connections between the fields of KBE, creativity, and metacognition. Lastly, an important 

aim and potential contribution is to develop the pilot KBE environment for creative design in 

a manner that can benefit or inspire future research and development. 

1.2 Research Questions 

The list below presents the main research questions addressed in this thesis. We elaborate 

on how we intend to approach these questions in 3.2. 

- RQ 1  How can metacognition benefit KBE and creative design? 

- RQ 2  How can KBE technologies support the creative design phase? 

- RQ 3  How can Tjalve’s principles be implemented with KBE for a simple product? 

- RQ 4  How can this environment be adapted to work for complex products? 

1.2.1 Additional Research Scope 

Since creativity is a broad concept that spans a variety of fields, it becomes necessary to apply 

a narrower scope that fits the focus and related aspects of the study. Referring to the research 

questions and the pilot KBE environment that is to be developed, benefit and support of the 

creative design phase are scoped by the following boundaries: 

- The KBE pilot will implement a framework for systematic design that can affect the 

creative efforts of its users (e.g. Tjalve, 2003). 

- The KBE pilot will not demonstrate creativity on its own. 

- The KBE pilot could facilitate creativity by making non-creative tasks easier. 

- The KBE pilot could support the users to focus and direct their creative efforts. 

Having implemented the chosen framework for systematic design, the subsequent evaluation 

of the pilot KBE environment aims to answer the following: 

a) What are the systematic design constraints applied by the chosen framework? 

b) How do the framework constraints affect creativity? 

c) How feasible were the framework constraints to implement in KBE? 
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1.3 Scenario 

This scenario aims to contextualize the use of a KBE environment to do early creative design. 

However, the scenario will not be explicitly referenced or evaluated in this study. 

Bobby is an engineer and product designer who works for a large corporation. Over the years, 

Bobby has been working with all kinds of computer-aided technology for product design. 

Nowadays, Bobby deals with parametrization and Multi Model Generation of complex 

industrial products. 

All product designers in the corporation have received an invitation to participate in a 

renowned creative product design competition. The rules say that contestants are allowed to 

bring any tools to the competition, computational or otherwise, but that the product to be 

designed is not revealed in advance. On the day of the competition, contestants will receive 

a description of the product, along with its main components and functions. In addition, the 

product components will be supplied in the form of industry standard files for computer aided 

technologies. The contestant who can come up with the most creative design shall win. 

Bobby’s coworkers engage in vivid discussions of which product will be announced in the 

competition. Bobby is not so interested in these speculations. Bobby is an experienced 

developer of KBE environments, and has come up with a plan for how to win the competition. 

Using systematic design principles learned from a book by Eskild Tjalve, Bobby aims to 

develop a KBE environment that can assist in performing design variations on arbitrary 

products. This should allow Bobby to import the provided product definition files and quickly 

explore a large product solution space and choose the one that seems the most creative. 
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1.4 Structure of the Thesis 

1.4.1 Chapter Overview 

Chapter 2 presents the theoretical background for this study. Chapter 3 explains the 

methodical approach for answering the research questions, and introduces the main software 

development tools that were used. Chapter 4 provides details regarding the planning, 

development and evaluation of the pilot KBE environment that applies principles from Tjalve 

(2003). Chapter 5 provides suggestions to the future development of a generic KBE 

environment for doing creative design work with arbitrary and complex products. Chapter 6 

provides a discussion of the research questions and an evaluation of the research study. 

Chapter 7 presents the conclusion and implications of this study. Finally, Chapter 8 provides 

suggestions to further research and development. 

1.4.2 Chapter Coverage of Research Questions 

A discussion of all research questions can be found in Chapter 6. The following list shows 

where relevant theory and results can be found for each research question: 

- RQ 1 Theory: Chapter 2 sections 2.1, 2.3, 2.4 

- RQ 2 Theory: Chapter 2 sections 2.1, 2.3 

- RQ 3 Theory: Chapter 2 sections 2.1, 2.3, 2.4, 2.5 

Results: Chapter 4 

- RQ 4 Theory: Chapter 2 sections 2.1, 2.3, 2.4, 2.5 

Results: Chapter 5 

1.4.3 Assignment Focus and Adjustments 

The research questions defined in 1.2 are selected and adapted from the original project 

proposal, which is the assignment text presented in the beginning of the thesis. This 

adaptation has been agreed upon as the revised assignment focus for this thesis. This implies 

that point six of the original assignment text will be presented as suggestions to future 

development in the same manner as point five. 
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2 Theory 

This chapter introduces theoretical concepts that provide background information for 

discussions throughout the thesis. Some concepts are applicable to development of the KBE 

environment, or otherwise relevant for answering the research questions. 

2.1 Knowledge Based Engineering 

From the standpoint of an engineer or product designer, Knowledge Based Engineering (KBE) 

uses engineering knowledge embedded into computer systems to automate routine 

engineering design tasks (Rocca, 2012). This may include intelligent support that mimics the 

design process or simulates the presence of an engineer, providing advice, warnings, smart 

scaling and automated decisions. 

As a consequence of these “smart” characteristics, KBE is labeled by some (Pinfold and 

Chapman, 2001; Rocca, 2012) as a merge between the disciplines of Artificial Intelligence (AI) 

and Computer Aided Design (CAD). Others mention that KBE has coexisted alongside CAD 

since the 1980s, both developing as individual entities (Verhagen et al., 2012). 

Rocca (2012) points out that KBE is a less renowned discipline than for instance CAD, because 

it has mainly been used in a few competitive, non-mainstream industries, such as the 

aerospace and automotive industries. Aker Solutions2 use their KBeDesign3 framework to 

develop offshore oilrigs and platforms. 

2.1.1 Advantages of KBE 

The main advantage of KBE lies in its ability to automate routine engineering tasks, saving 

product development time and labor costs (Rocca, 2012). The ideas behind Knowledge 

Management (KM) approaches (e.g. Alavi and Leidner, 2001; Davenport and Prusak, 1998; 

Dingsøyr, 2002), is not only a central part of how KBE systems function, but these native KM 

capabilities are in themselves valuable for a knowledge dependent organization. Rocca (2012) 

suggests that one of the strengths of KBE lies in its programming language. He highlights how 

a language is advantageous, or even necessary, to perform or implement certain features, 

such as the capturing of design processes, defining consistent generative models, and the 

flexibility to do custom interoperability (Rocca, 2012, p. 173). 

                                                      
2 Aker Solutions: http://akersolutions.com/ 
3 KBeDesign: http://citrix.akersolutions.com/en/Global-menu/Media/Feature-stories/Engineering/KBeDesign/ 

http://akersolutions.com/
http://citrix.akersolutions.com/en/Global-menu/Media/Feature-stories/Engineering/KBeDesign/
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2.1.2 KBE for Creative Design 

Some features of KBE environments could be seen as native abilities to support design 

creativity. It has been found that 80% of engineering design consist of repetitive routine tasks, 

whereas only 20% of their efforts are innovative in nature (Skarka, 2007). Given the time 

savings that KBE systems provide, it should be possible to shift this balance in favor of 

creativity (Sanya and Shehab, 2014). Designers using KBE have more freedom to explore the 

product solution space (Verhagen et al., 2012). This could for instance be done by changing 

product parameters, or generating multiple models from a general set of rules. This is the 

case for generative systems, for instance, which do not contain specific geometrical instances, 

but defines generic rules to enable fast generation of new design instances (Verhagen et al., 

2012).  

2.1.3 Knowledge Modelling Frameworks for KBE 

Two common frameworks (Sanya and Shehab, 2014) for embedding engineering knowledge 

are the Common Knowledge Acquisition and Design Support (CommonKADS), and the 

Knowledge Based Engineering Application methodology (MOKA). CommonKADS is a 

structured and generic-purpose framework, whereas MOKA focuses more specifically on the 

capture of engineering knowledge related to product design. 
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2.2 Essentials of Knowledge Management 

This section contains supplementary information related to the knowledge management 

capabilities of KBE, and provides some perspectives for the following section on creativity. 

However, the findings in this section were not explicitly used in the pilot KBE development. 

Knowledge Management (KM) can be defined as strategies and techniques that improve the 

transfer and use of knowledge in an organization (Dingsøyr, 2002). KM is a central part in the 

development and use of KBE systems. The most important aspects include identifying, 

capturing, converting, and finally embedding knowledge into computer systems for effective 

reuse (Alavi and Leidner, 2001; Rocca, 2012). Different types of knowledge, however, offer 

different challenges in a KBE context. 

2.2.1 Types of Knowledge 

Traditionally we distinguish between tacit and explicit knowledge, which likely originates from 

Gilbert Ryle (1949). Ryle further defined explicit knowledge as a theoretical know-what, while 

tacit knowledge is more of a practical know-how. Others (Nonaka and Konno, 1998) claim that 

knowledge is primarily tacit, which stems from Japanese philosophy, explaining that a focus 

on explicit knowledge has been more popular in western society. 

Tacit knowledge is a complex and intangible concept, which makes it difficult for computer 

systems to grasp and formalize (Alavi and Leidner, 2001). For the same reason, tacit 

knowledge is hard to understand and define. Dingsøyr (2002) describes tacit knowledge as 

something that humans are unable to express, yet that guides their behavior. An everyday 

example is our innate human ability to recognize one face in a crowd, or to swallow a sip of 

water. At another level, tacit knowledge could be skills related to personal experiences or 

awareness of context (Polanyi, 1966). In any case, tacit knowledge is not only hard for humans 

to communicate, but is also difficult to encode into knowledge embedding technologies such 

as KBE. 

Knowledge within a KBE system has by some scholars been divided into categories of facts, 

procedures, judgments, and control (Calkins et al., 2000). Of these, judgments are perhaps 

the most closely related to human tacit knowledge, since judgment is a cognitive skill that 

involves experience, observations, and reasoning. Control knowledge is meta-knowledge that 

manages the other three through pattern directed actions, anticipating developments and 

dealing with uncertainties. 
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2.2.2 Knowledge Conversion 

The Concept of Ba 

The Japanese philosopher Kitaro Nishida defined the concept of ba as a shared space for 

emerging relationships (Nonaka and Konno, 1998). Nonaka and Konno explain that 

knowledge exists within ba as a shared resource. It is attained from ba when we reflect upon 

personal experiences, or the experiences of others. For knowledge to be separated from ba, 

it must first be converted to information. They describe this information as explicit, tangible 

knowledge. With the traditional western view (Ryle, 1949), we can assume that it is only in 

this explicit form that knowledge can be incorporated into for instance KBE systems. 

The SECI Process 

The well-known SECI process introduced by Nonaka et al. (2000) and also discussed by 

Dingsøyr (2002), is a way to describe how knowledge is converted between tacit and explicit 

modes of knowledge in a circular pattern (see Figure 1). Each step can be summarized as 

follows (Nonaka et al., 2000): 

- Socialization    Tacit knowledge transfers between people by shared experiences. 

- Externalization   Tacit knowledge articulates into explicit sharable knowledge. 

- Combination   Explicit knowledge combines to create new knowledge. 

- Internalization   Explicit knowledge is embodied by people as tacit knowledge. 

 

Figure 1: SECI process for knowledge conversion (adapted from Nonaka et al., 2000) 

The SECI process has become popular since it explains an otherwise hard to define knowledge 

creation process. It has also been criticized because it takes a taxonomic perspective on the 

concept of knowledge (Walsham, 2001). In this study, however, we seek to embed relevant 

knowledge into a KBE environment which creative designers can then draw benefit from. 

Within this scope, externalization and internalization of knowledge are perhaps the most 

interesting phases of knowledge conversion. 
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2.3 Creativity 

In psychology, creativity is typically categorized into the creative process, product, person, 

and environment (Howard et al., 2008). Robert Franken (1994) states that creativity allows us 

to generate ideas or recognize possibilities that aid in problem solving and original creation. 

This last definition seems to be a suitable scope for engineering and creative design. 

2.3.1 Innovation and Creative Design 

Howard et al. (2008) describe innovation as a black box processing of design information to 

produce creative output. This may relate to the notion that it is hard to define exactly how 

our creative outputs are formed. Their study found that psychologists are split between 

romantic and non-romantic views, where romantics regard creativity as mysterious and 

subconscious, while non-romantics see it as a linear sequence of steps. We believe that the 

non-romantic view may be more directly applicable to the engineering design process, but 

that there are also ways in which we can optimize our subconscious creative powers. 

The Challenge of Abduction 

Creative design is regarded by some as a form of abduction (e.g. Dorst, 2011; Gero, 2013). We 

can understand abduction by considering deduction and induction from traditional science 

(see Dorst, 2011). In short, deduction lets us predict results, and induction lets us hypothesize 

how something works. With abduction, we imagine a desired result and know a means for 

how it can be done, but we do not yet know what can achieve this. This is typically what 

product designers and engineers do (Dorst, 2011). A second level of abduction is when both 

the what and the how are not yet known (see Figure 2). This effectively gives us an equation 

with two unknowns that need to be found in parallel (Dorst, 2011). 

 

Figure 2: Deduction, induction and abduction (adapted from Dorst, 2011) 

Gero (2013) argues that design is not like running deduction backwards. He explains that 

there is no single solution to a set of requirements. In other words, there is an entire solution 

space of what and how that can achieve one desired result. This philosophy may have 

implications for the design of computer systems that support or replicate creativity. 
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2.3.2 Computational Creativity 

Computational Creativity is the art of using computer technology to either replicate human 

creativity, or augment the creativity of a human using such tools (Colton and Wiggins, 2012). 

This can be considered as a subfield of Artificial Intelligence (AI), which also has close ties to 

human cognition and philosophy (Colton and Wiggins, 2012). 

Within the realm of CAx technologies, Computer Aided Innovation (CAI) is an emerging field 

of study (Cascini, 2008). CAI supports creative design by aiding the user in generating and 

evaluating new product variants. This includes the use of genetic algorithms along with 

traditional CAD tools. It seems that CAI has been researched and developed for over a decade 

(Cascini, 2008). Both innovative types of KBE systems and CAI technologies could be 

categorized as specialized tools for Computational Creativity. 

2.3.3 How Knowledge Affects Creativity 

Asimov (1959) claimed that a key criterion for optimizing team creativity is to ensure that 

each member were experts in their own fields. In such a case, their combined creative efforts 

would also depend on their ability to convey and share knowledge. This is closely related to 

shared knowledge spaces, or the concept of ba (Nonaka and Konno, 1998, p. 41): 

“To participate in a ba means to get involved and transcend one's own limited 

perspective or boundary. This exploration is necessary in order to profit from 

the "magic synthesis" of rationality and intuition that produces creativity.” 

This quotation supports that creativity stems from tacit knowledge and that individual 

creativity may flourish by immersing oneself into these shared knowledge spaces. 

2.3.4 Fostering Creativity 

Törnkvist (1998) proposes that in engineering education, there is a tendency towards “over-

scientification”, which discourages divergent, creative thinking (see also Wagner and 

Compton, 2012). Törnkvist also mentions a theory of situated cognition, where creativity 

cannot be taught out of its knowledge context or as a special skill, but rather needs some 

form of apprenticeship. In addition, he found that decisions made by design engineers were 

seldom based on the scientific calculations they learned as students. 

In the study by Törnkvist (1998), many students reported that their best creative sessions 

were not driven by need or usefulness, but rather from curiosity and playfulness. He brings 

up the case of Richard Feynman, a former student at Cornell University, who in a state of 

depression started tossing cafeteria plates in the air. Feynman noticed that the plates were 

rotating twice as fast as they were wobbling (Törnkvist, 1998, p. 7): 
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“It was effortless. It was easy to play with these things. It was like uncorking a 

bottle; everything flowed out effortlessly. I almost tried to resist it! There was 

no importance to what I was doing, but ultimately there was. (...)” 

Feynman did later receive the Nobel Prize in physics for his Feynman diagrams, which he 

attributes to this playful and obsessive research on wobbling plates (Törnkvist, 1998). 

A study by Epstein et al. (2008) found that the creativity of individuals could be improved by 

training in certain related skills. These include idea capturing, challenging oneself with difficult 

tasks, seeking new knowledge, and seeking out new stimuli from the surroundings.  

These findings could indicate that there is a need for greater focus on creativity in engineering 

education, and that teaching creativity per se comes with certain challenges. Epstein et al. 

(2008) suggest teaching supplementary skills to support creativity, and Törnkvist (1998) 

argues that creativity can mature during apprenticeship or flourish through playful curiosity. 

2.3.5 Creativity as a Paradox 

Creativity is paradoxical in the sense that it changes our world, and at the same time this 

world changes us. According to the field of ontological design (Willis, 2006), we design new 

technology which in turn designs us back. For instance, when people accept a new technology, 

it becomes a part of their social structure. The interaction between users and technology is 

mutual. This means that a user adapts to the technology, but also the other way around 

(DeSanctis and Poole, 1994). This seems true for inventions like the smart phone, and soon 

virtual reality. KBE environments that support creativity could fall into the same category. 

Former research studies have revealed that many educational institutions actually remove 

creativity (Törnkvist, 1998; Wagner and Compton, 2012). At the same time, we require 

creative people in order to change how these institutions work. The people we seek are those 

that can think outside of established systems, and likely someone who is unconventional in 

his habits (Asimov, 1959). 

2.3.6 Creative Processes 

Creative Processes of Different People 

Creativity applies to a wide range of professions, and different people have their own 

processes during which they are the most creative. Identifying some commonalities may be 

helpful for optimizing creative design processes, both in humans and computer systems. 

“For me, creativity is a process of removing barriers, not of pulling something 

that’s outside of me. The analogy I use is flow rate. If I’m busy, I think about 

lots of other things, but if I clear my mind, I can’t stop the ideas from coming.” 

Paraphrase of Scott Adams, creator of Dilbert (Ferriss, 2015, ep 82) 
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“Discipline equals freedom. We have standard operating procedures for 

everything. You’d think this would restrain creativity, but it doesn’t. When I 

give my team a task, I know what parameters they’ll stay within. This makes 

things easier, and gives us freedom both on an individual level and as a group.” 

Paraphrase of Jocko Willink, Navy SEAL officer (Ferriss, 2015, ep 83) 

“You should work in a casual environment like a living room or café, not in an 

office. It makes work not feel like work. An environment that feels safe, social 

and casual lets us pitch ideas that seem crazy. Nobody is judging us, measuring 

time or quotas. It allows us to be free creatively.” 

Paraphrase of Seth Rogen, filmmaker and comedian (Ferriss, 2015, ep 84) 

For Scott Adams (Ferriss, 2015, ep 82), creativity is about maintaining flow and removing 

barriers. On the other hand, Jocko Willink (Ferriss, 2015, ep 83) prefers discipline and positive 

constraints to remove the burden of many small decisions and concerns. Finally, Seth Rogen 

(Ferriss, 2015, ep 84) benefits from being in a safe and casual environment, letting ideas come 

freely without judgment. This last notion resonates well with the belief that pure creativity 

requires isolation to avoid the embarrassment of bad ideas (Asimov, 1959). Although these 

people have different preferences, their end result is the same. They leave the creative mind 

free to focus on what is important. Even if they are not engineers or product designers, the 

principles behind their creative processes may still be applicable. 

Night-Waking 

In a study by Ekirch (2006), he argues that in the old times, before the invention of electricity, 

humans would sleep in two phases. This segmented sleep was divided by a period of night-

waking, with nocturnal activities that people were too tired for at the time of “first sleep”. 

Ekirch claims that during this period, our minds have dreamlike characteristics, which could 

be similar to how our brains function during optimal creative flow or subconscious creativity 

(Howard et al., 2008). The Norwegian novelist Knut Hamsun adapted segmented sleep to do 

creative work, and Francis Quarles explained how this period was optimal for concentration: 

“Let the end of thy first sleep raise thee from thy repose: then hath thy body 

the best temper, then hath thy soule the least incumbrance; then no noise shall 

disturbe thine ear; no object shall divert thine eye.” 

Francis Quarles, 17th-centruty English poet 

At night, activity in the frontal lobe of our brain is reduced, leading to less internal second-

guessing of the ideas that emerge (Arnsten et al., 2012). Some people evaluate their ideas on 

the following day, and say that they often seem abstract or unreasonable. In the field of 

engineering, we require that ideas are at least scientifically possible. However, unfeasible 

ideas can sometimes be adapted to work, or they can serve as further inspiration. 
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2.4 Metacognition 

Metacognition can be defined as higher order thinking that involves knowledge and 

regulation of own cognition (e.g. Brown, 1987; Schön, 1983; Schraw, 1998). It is also referred 

to as “thinking about thinking” or “cognition about cognition”. Metacognitive skills are 

considered to be directly teachable (Schraw, 1998), in contrast to for instance creativity, 

which seems to be more challenging in this regard (e.g. Epstein et al., 2008; Törnkvist, 1998). 

A practitioner of metacognition could for instance monitor their own thoughts, evaluate 

current work performance, be aware of their own learning, or reflect upon past experiences. 

In most personal cases, these techniques are used to achieve some form of self-improvement. 

One could for instance become a more effective learner, find optimal work routines, or 

convert experiences into applicable knowledge. 

“Whenever you find yourself on the side of the majority, 

it is time to pause and reflect.” 

Mark Twain, 19044 

2.4.1 Reflective Practice 

Marcus Aurelius, Roman Emperor from 161 to 180 AD, made a series of personal writings that 

were later combined into the book, Meditations (e.g. Hays, 2002). His work demonstrates an 

early example of reflective practice with roots in stoic philosophy. Aurelius improved his 

personal and professional conduct by reflecting upon his philosophy apprenticeship and his 

continuous experience as emperor. 

Also today, people who desire professional development can do so by reflecting upon their 

own professional experiences (Yanow and Tsoukas, 2009). We can evaluate and appraise our 

task performances and results in order to find better ways of doing them. 

Self-Monitoring of Task Performance 

The human mind has a naturally limited attention span, which affects our ability to retain 

optimal task performance over long periods of time. Aurelius encourages: 

“Concentrate every minute (…) on doing what’s in front of you with precise and 

genuine seriousness, tenderly, willingly, with justice. And on freeing yourself 

from all other distractions (…), and stop being aimless (...)” 

(Hays, 2002, bk. 2 section 5) 

Achieving this level of concentration requires that we become observers of our own minds. 

As the mind begins to wander, we can bring it back to focus on the task at hand. Distractions 

may come from internal or external stimuli, and should be handled before starting a task. If 

                                                      
4 Mark Twain quote: http://twainquotes.com/Majority.html 

http://twainquotes.com/Majority.html
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we discover that our task performance is poor despite these attempts, it may actually be more 

productive to continue the task at another time or place. Our goal is to maintain motivation 

and sustained effort over time, so that we may efficiently and effectively see a task to its 

completion. 

Metacognitive Strategies 

Regulation checklists can be used to aid the use of metacognition (Schraw, 1998). These 

mental frameworks are helpful to ensure that we have covered all the aspects that we wish 

to monitor. Over time, a regulation checklist may become second nature, demanding less 

active monitoring. We can also imagine less abstract frameworks that are more directly 

applicable as professional work routines, such as the mandatory preflight checks done by 

pilots. 

2.4.2 Cognitive Frameworks 

We here define a cognitive framework to include thought systems and modeling techniques 

that can represent the real world or abstract concepts. The aim is to find frameworks that can 

contribute to improve design creativity, both in humans and computer systems. 

Fast and Slow Thinking 

Daniel Kahneman (2013) introduces a separation of the mind into fast and slow systems. He 

labels them System I and System II. System I takes care of fast and intuitive thinking, most of 

which happens without any explicit effort from our side. System II represents the more 

engaged thinking that is required when System I cannot automatically solve the problem. 

Kahneman (2013) discovered that when a person meets some form of resistance in an 

otherwise intuitive task, the mind would shift from using System I to System II in order to solve 

the problem. This is also referred to as the “eyebrow response”, which comes from the strict 

facial expression that humans often make when met with difficult or unordinary tasks. 

System I is the part of our mind that is most active during states of creative flow. If System I 

is interrupted, for instance by a sudden “eyebrow response”, the creative flow will likely 

suffer. This could have implications for the development of KBE environments that aim to 

support creativity. 

Systems Thinking 

Goel (2012) defines systems thinking as regarding systems in terms of their components and 

how they interact through processes. He claims that design is naturally done with systems in 

mind. Goel explains that systems thinking is challenging for humans when it involves a large 

number of components and processes. In such cases, the limitations of the human mind will 

inhibit design creativity. To better cope with this, the Structure-Behavior-Function (SBF) 

modeling technique was created (Goel et al., 2009). SBF uses various mental abstractions to 
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divide a system into subsystems. The framework is supposed to aid the analysis and 

organization of a system, and provide a vocabulary for describing it. 

Others have also mentioned structure, behavior and function as key aspects in design 

processes (e.g. Gero, 2013; Howard et al., 2008). Howard et al. (2008) propose that an SBF 

framework can be useful for integrating engineering design with the general creative process. 

Dori and Crawley (2013) have developed the Object Process Methodology (OPM) since 1995, 

which uses objects, processes and states as modeling entities (see Figure 3). OPM also 

considers structure, behavior and form as complementary aspects from which systems can 

be viewed. They argue that the strength of OPM resides in its few and simple entities, while 

at the same time being capable of modeling virtually anything. They also claim that OPM can 

play a role in converting tacit knowledge into explicit knowledge, and that it is good for idea 

generation and rapid prototyping in the early design phases. 

 

Figure 3: The basic entities of OPM (adapted from Dori and Crawley, 2013) 

Judging from what OPM and SBF have to offer, it seems that they would both be suitable 

system modeling frameworks in the scope of creative design. 

Analogical Thinking 

Analogical thinking is regarded as fundamental in some aspects of creative design (Cross, 

1997). We can transfer knowledge from one case and adapt it to another by using analogical 

thinking (Goel, 2012). In other words, we can learn from existing solutions and apply them by 

analogy to new problems. This could resemble lower level abduction where some general 

working principles, i.e. the how, are already known (Dorst, 2011). Goel (2012)states that this 

is cognitively challenging since we must conjure a representation of past solutions, and use 

pattern recognition to adapt the source knowledge to the target problem. KBE systems with 

powerful knowledge management capabilities could support or replicate these creative 

techniques. 
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Meta Thinking 

Goel (2012) introduces meta thinking for creative design, and defines: 

“Meta thinking entails processes such as goal spawning, suspension, and 

abandonment; strategy selection; belief revision; self-explanation; and design, 

diagnosis and revision of reasoning processes.” 

(Goel, 2012, p. 4) 

He claims that creative design is not just about the design process itself, but also about meta 

design of this process. This means that we design the design process to optimize creative 

output. He points out that there is still little research done on metacognition and meta design. 

Goel (2012) took part in the development of creative design frameworks that apply meta 

thinking. These include modifying own design processes that have led to a failure, adapting 

design processes to new tasks, and performing self-diagnostics and repair of defective 

knowledge upon failures. He further states that these frameworks are neither human nor 

computer specific. We can draw a parallel to KBE systems that rely on advanced levels of 

control knowledge to adjust its processes (Calkins et al., 2000). 

Systematic Design of Industrial Products 

Tjalve (2003) introduces a systematic and general approach to product design. We derive a 

cognitive framework from his principles in chapter 2.5. Although there is no mention of 

metacognition throughout his book, he is likely to have used some form of metacognitive 

practice to devise his systematic design methods. Tjalve provides a solid and generic 

framework. However, within the scope of KBE and creative design, it is possible that these 

methods can be tried and reflected upon to provide an even better framework for use within 

modern technology. 

2.4.3 Cognition in Human Computer Interaction 

The field of Human Computer Interaction (HCI) involves the design of interfaces through 

which humans can interact with computer technology (e.g. Preece, 1995). Because of the 

human aspect, HCI has close ties with human cognition. Through an understanding of human 

nature, we can design user interfaces that better pertain to human expectations. 

Don Norman (2013) provides a deep analysis of the cognitive aspects of designing everyday 

things, many of which are directly transferrable to computer interface design. He argues that 

there is no such thing as human error, only bad design. For relatively simple cases, if an 

interface requires a user manual to be understood, there is something inherently wrong with 

the design. 
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User Interface Design for Creative Work 

Norman (2013) explains how signifiers and constraints can be used for early error prevention 

to reduce user frustrations. We can relate these frustrations to the negative “eyebrow 

response” introduced by Kahneman (2013), and how it breaks creative flow. It seems that 

basic HCI design principles are essential for a system that facilitates creative work, by making 

sure that user creativity is not hindered by a poor interface. 

A well designed interface can even offer a joyful user experience (Norman, 2013). This may 

contribute to the sense of playfulness that drives our native human creativity (Törnkvist, 

1998). 

User Awareness of Interface Design 

Norman (2013) would argue that mainly the developers of a user interface are responsible 

for its user friendliness. However, if circumstances allow it, the user can give feedback to the 

interface developers so that they may improve it. This is a natural part of iterative 

development processes (e.g. Larman, 2004). The user would engage in reflective practice to 

determine whether the interface allows them to perform optimally, and help pinpoint any 

problematic areas. 
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2.5 Systematic Design of Industrial Products 

This section is a summary of Systematic Design of Industrial Products by Tjalve (2003). Any 

reference to Tjalve herein implicitly refers to the works of Tjalve (2003). The sketch figures in 

this section are adapted from Tjalve’s work. 

Tjalve presents a set of principles for systematic product design. Of particular interest are 

methods that deal with defining requirements, assigning restrictions, and systematically 

exploring the solution space of a product. 

2.5.1 Terminology 

Some basic terminology should be established before discussing Tjalve’s theories: 

- Product The product as a whole. 

- Element A single part or component of the product. 

- Structure The elements and their relationship. 

- Form  The shape and dimensions of an element. 

2.5.2 Product Properties 

Before a product is designed, we have a set of desired properties which will influence our 

decisions during the design process. Upon completion, we have a set of realized properties. 

According to Tjalve, there are five basic properties that together completely define a product: 

structure, form, material, dimension and surface. The design process is about manipulating 

these five basic properties to get from desired to realized properties (see Figure 4). 

 

Figure 4: Manipulating basic properties (adapted from Tjalve, 2003) 

2.5.3 Product Synthesis 

Tjalve’s product synthesis is his entire product design process divided into systematic steps 

(see Figure 5). An initial problem analysis establishes desired properties which act as criteria 

that affect decisions in all steps. In addition, the main functions are derived, and further 

divided into sub-functions. There can be many ways to realize the sub-functions, where each 

possibility gives a unique basic structure. At this point, we have decided how the product will 

perform its functions, so any alterations beyond this point can only be with structure or form. 
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Figure 5: Product synthesis stages (adapted from Tjalve, 2003) 

2.5.4 Functions and Basic Structure 

When the product functions and basic structure are decided, we already have a specific type 

of product, fixed within a certain scope of possible mutations. It becomes impossible to 

change the entire product gradually in order to get another type of product. 

Two products can also have the same functions, but different basic structures (see Figure 6). 

This is achieved by exploring different means of fulfilling the sub-functions. The basic 

structure of each product can be radically different, as long as the resulting main function is 

the same. 

 

Figure 6: Different basic structures of a tea maker (adapted from Tjalve, 2003) 
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2.5.5 Quantified Structure 

In this stage we look at the basic structure and explore different ways of arranging the 

elements (see Figure 7). The number of each element can also be changed (see Figure 8). 

Tjalve calls this the structure variation method. It can be viewed as exploring all possible 

statistical combinations. The desired properties and some common sense will help to limit 

the solution space. For instance, it is obvious that the wheels of a steam roller cannot be 

placed on its roof. 

 

Figure 7: Quantified structure of a coffee maker (adapted from Tjalve, 2003) 

 

 

Figure 8: Quantified structure of a steam roller (adapted from Tjalve, 2003) 

Isaac Asimov claimed that great ideas were made when connecting two things which might 

not ordinarily seem connected (Asimov, 1959). Systematically using Tjalve’s structure 

variation method allows us to generate a large solution space. This might be one way of 

discovering such unforeseen connections without having to actually think of them. 
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2.5.6 Total and Element Form 

The last step of the product synthesis is what Tjalve refers to as form variation. This means 

changing shapes, materials, dimensions and surfaces (see Figure 9). He further distinguishes 

between total form and form of the elements. The total form is considered when the product 

form as a whole is important, for example the aesthetics of a car. When technical or economic 

criteria dominate, the design of each element is considered. The total form depends on the 

form of the elements, and vice versa. 

 

Figure 9: Form variation for a tea maker (adapted from Tjalve, 2003) 

2.5.7 Functional Surfaces 

The functional surface is a part of an element that has an active function during use. Internal 

surfaces relate to other elements in the product, while external surfaces have active functions 

to the surroundings. In form variation, functional surfaces let us define the most important 

surfaces and design the rest of the element with these in mind (see Figure 10). We can also 

modify the surfaces themselves by changing their number, arrangement, geometry and 

dimensions. 

 

Figure 10: Functional surfaces and form variation (adapted from Tjalve, 2003) 
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Closely tied to form variation is the concept of minimum and maximum functional surfaces. 

This means creating a surface that is as small or large as possible while keeping its intended 

function. We can use this to optimize for certain properties, for instance maximizing adhesion 

between elements, or minimizing the use of materials (see Figure 11). 

 

Figure 11: Maximum and minimum functional surfaces (adapted from Tjalve, 2003) 

2.5.8 Summary 

Systematic Design of Industrial Products (Tjalve, 2003) provides a framework that allows us 

to do systematic and precise design variations to a wide range of products. His techniques 

become increasingly more interesting with a creative KBE environment in mind. We have 

expanded our basic terminology with some concepts that may be relevant to this: 

- Basic Structure  Product scope after functions and sub-functions are decided. 

- Structure Variation  Explore all possible relative arrangements of elements. 

- Form Variation  Explore different element shapes, dimensions and surfaces. 

- Functional Surface  Part of an element which has an active function during use. 
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3 Methodology 

This chapter explains our overall methodical approach to answering the research questions, 

and introduces the tools that were used for software planning and development. 

3.1 Design Research Approach 

Design science stems from the engineering tradition as an approach to problem solving 

(Hevner et al., 2004; Sein et al., 2011). The typical stages in design research approaches are 

1) problem formulation, 2) iterative development and evaluation, 3) reflection and learning, 

and 4) formalization of learning (Sein et al., 2011). 

Design research describes the process involved in designing the artifact (for instance a pilot 

environment), and the product itself (the artifact). Artifacts can be software-intensive 

systems that consist of terminology, models, methods, and system instances. KBE 

technologies represent typical software-intensive systems and the artifact in this case is a 

pilot KBE environment acting as a proof of concept. The artifact will embed systematic 

product design principles by Tjalve (2003) to facilitate creative design work. We describe the 

process and choices involved when implementing creativity into design. This involves 

planning, development, and evaluation of the pilot. From this proof of concept, we develop 

prototype interfaces as suggestions for future work.   

In addition, the description of the artifact shows the relation between the KBE environment, 

creativity and metacognition. Thus, it represents an ensemble that goes beyond technological 

dimensions, and researchers emphasize that several aspects such as contextual factors, 

structure and goals, might be inscribed in the artifact (Sein et al. 2011). In case of this study, 

the artifact also includes theoretical assumptions of cognitive frameworks, metacognition, 

creativity, knowledge management and reflective practice. This knowledge base provided a 

fundament for developing and evaluation of the artifact, or pilot. It also includes research 

inspired from the practical use of Tjalve's (2003) principles. 

Finally, the design process provides us with possibilities to attain learnings that can be 

formalized. For instance, this study proposes a framework that shows the relations between 

the KBE environment, creativity and metacognition. In addition, the study has also identified 

positive and negative constraints as an important outcome. 

A limitation of this research study is the lack of iterative loops of development, feedback and 

evaluation. However, a discussion is provided about how future work should focus on 

participating design to enable iterative loops and necessary feedback from the end users. 
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3.2 Approach to Research Questions 

RQ 1:  How can metacognition benefit KBE and creative design? 

First, we study the field of metacognition to identify which aspects can be relevant in the 

context of KBE and creativity. Secondly, we separate these findings into principles that can be 

implemented in a KBE environment, and concepts that the users can benefit from. 

The users are engineers and product designers. We seek methods that with a reasonable 

amount of effort can be applied in a professional work space, for instance through training or 

change of environment. This could be work methods, awareness of own creative processes, 

and types of environments where people tend to be most creative. 

As for the KBE implementation, we look for mental frameworks that can guide or optimize 

the creative design process, and software design principles that are derived from knowledge 

of human cognition. 

RQ 2:  How can KBE technologies support the creative design phase? 

We suspect that some of the advantages that KBE has to offer can be leveraged to facilitate 

creative design. First, we look further into existing research on KBE to learn about these 

advantages. Secondly, we study the works of Tjalve (2003) to find systematic product design 

principles that can be implemented in a KBE environment. 

RQ 3:  How can Tjalve’s principles be implemented with KBE for a simple product? 

We will choose a simple example product, and develop a pilot KBE environment for doing 

creative design work with this product. Our main focus will be on the principles introduced by 

Tjalve (2003), and the choice of example product will be closely tied to which principles we 

want to test. The pilot will be specific to this product, and therefore non-generic. The overall 

purpose is to get an indication of how our findings from RQ 1 and RQ 2 can support creativity, 

and to what degree they are feasible to implement in a KBE environment. 

RQ 4:  How can this environment be adapted to work for complex products? 

First, we will test and evaluate our pilot KBE environment developed for RQ 3. Secondly, we 

attempt to organize what we have learned from RQ 1, RQ 2 and RQ 3, in order to provide 

suggestions for future development. We will suggest features and prototype interfaces for a 

generic KBE environment for doing creative design work with arbitrary, complex products. 



 

25 
 

3.3 Development Tools 

3.3.1 Adaptive Modeling Language 

Adaptive Modeling Language5 (AML) is a KBE modeling framework provided by TechnoSoft6. 

The development environment is geometry-centric, and the programming language is object-

oriented with a syntax that resembles Lisp7. TechnoSoft provides their AML Reference Manual 

for looking up available classes and functions. 

NTNU has a collaboration with Aker Solutions8, where AML is central. Aker Solutions have 

over time developed their KBeDesign™ framework from an extensive track record of 

products9. This partnership made AML a natural choice for developing my KBE application. 

With the installation of AML comes a customized XEmacs text editor, which is the main tool 

for writing AML code. From here the developer can run the AML environment and load 

models using the provided console window. There is also a Main Modeling Form, which 

already contains tools to inspect and edit models. 

3.3.2 Notepad++ 

Notepad++10 is a free source code editor with support for many languages. Using the built-in 

support for Lisp, it provided customizable syntax highlighting for AML code files. Syntax 

highlighting, auto-completion, and its arguably wider repertoire of editing commands were 

the main reasons for choosing Notepad++ to write AML code instead of XEmacs. 

3.3.3 Visual Studio 

Visual Studio11  is an integrated development environment for the Microsoft .NET 

Framework12.  For this project it was used to sketch class hierarchies and generate class 

diagrams. It was also used to create GUI prototypes for the pilot application and future 

development plans. 

 

  

                                                      
5 Adaptive Modeling Language: http://technosoft.com/application-software/adaptive-modeling-language/ 
6 TechnoSoft Inc.: http://technosoft.com/ 
7 Lisp programming language: https://en.wikipedia.org/wiki/Lisp_(programming_language) 
8 Aker Solutions: http://akersolutions.com/ 
9 KBeDesign: http://citrix.akersolutions.com/en/Global-menu/Media/Feature-stories/Engineering/KBeDesign/ 
10 Notepad++: https://notepad-plus-plus.org/ 
11 Microsoft Visual Studio: https://visualstudio.com/ 
12 Microsoft .NET Framework: http://microsoft.com/net 

http://technosoft.com/application-software/adaptive-modeling-language/
http://technosoft.com/
https://en.wikipedia.org/wiki/Lisp_(programming_language)
http://akersolutions.com/
http://citrix.akersolutions.com/en/Global-menu/Media/Feature-stories/Engineering/KBeDesign/
https://notepad-plus-plus.org/
https://visualstudio.com/
http://microsoft.com/net
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4 Pilot KBE Environment 

This chapter details the planning, development and evaluation of a pilot KBE environment for 

doing creative work with a simple product. The resulting proof of concept will provide 

guidelines for further development.  

4.1 Purpose 

The main purpose of developing the pilot KBE environment is to test-implement the principles 

for systematic product design introduced by Tjalve (2003) using a KBE technology. Specifically, 

we want to see if the following concepts are feasible to develop in AML: 

1) Basic Structure 

2) Structure Variation 

3) Form Variation 

4) Functional Surfaces 

This selection of principles forms a cognitive framework, as we defined in 2.4.2. When testing 

and evaluating the completed environment, we seek to obtain material for answering the 

questions listed in 1.2.1: 

a) What are the systematic design constraints applied by the chosen framework? 

b) How do the framework constraints affect creativity? 

c) How feasible were the framework constraints to implement in KBE? 
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4.2 Scope 

4.2.1 Product Synthesis 

We assume that we are at Tjalve’s quantified structure stage of the product synthesis (see 

Figure 12). This means that the main and sub-functions are already decided, and that a basic 

structure has been derived from these. In other words, we have decided how the product will 

do its job and what type of components will be necessary, but not what form or structure it 

will have. The next stages thus involve structure variation and form variation, where the latter 

also includes defining functional surfaces. 

 

Figure 12: Scope of Tjalve's product synthesis (adapted from Tjalve, 2003) 

4.2.2 Workflow 

All the product components will be premade for the user. The application will first let them 

define and connect functional surfaces. It will then aid them in doing form and structure 

variation, where each of these components can be altered and rearranged. 

 

Figure 13: Pilot application workflow 
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4.2.3 Product Choice 

The ultimate goal is to create a generic solution that could aid creativity for a multitude of 

products. However, the initial development and testing should be focused on a specific 

product. This removes the burden of having to think generically from the start, meaning less 

planning and faster coding. Also, if we are already familiar with the product we can more 

easily imagine various design alternatives and how it functions. 

One such product that is commonly found in many homes and offices around the world is the 

coffee maker. Since coffee can be made in many ways, and we wish to simulate the stages 

after basic structure, we need to specify our product further. We choose a filtered coffee 

maker that uses a water heater, a coffee filter, and a pot for collecting coffee. This means that 

our product can never become an espresso machine, for instance. The coffee maker was 

chosen because it has few parts, yet many design variations, and its functions can be seen as 

a directional process through components. Tjalve also mentions tea and coffee makers as 

examples in his book. 

 

Figure 14: Some filtered coffee maker designs13 

                                                      
13 Coffee makers, from left to right: 

- http://topbestcoffeemaker.com/electric-coffee-makers/ 
- http://en.wikipedia.org/wiki/Drip_brew 
- http://williams-sonoma.com/products/wilfa-precision-coffee-maker/ 

http://topbestcoffeemaker.com/electric-coffee-makers/
http://en.wikipedia.org/wiki/Drip_brew
http://williams-sonoma.com/products/wilfa-precision-coffee-maker/
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4.2.4 Alternative Products 

A previous case study14 dealt with a KBE bookshelf which had rules concerning shelves and 

dividing walls. For this pilot, the bookshelf was a less attractive option because it does not 

have any directional functions that could resemble industrial processes. 

There are a range of possible industries to choose products from, such as the automotive, 

aerospace (e.g. Dahl et al., 2006; Rocca, 2012), and naval engineering industries (e.g. 

Skogsfjord and Rognseth, 2014). KBE has already proven itself as a strong asset to some of 

these industries (Rocca, 2012). 

The automobile is a common product which was up for consideration. In this case, it would 

be hard to imagine how Tjalve’s quantifiable structure methods would create many 

reasonable outcomes. Placing the wheels anywhere but under the car would make it 

dysfunctional. The windows are restricted by the driver’s need to view traffic and other safety 

regulations. Tweaking with the interior or the engine is not an externally visible design 

alteration. Tjalve does have some good examples with a steamroller, but we preferred a 

product that most people are more intimately familiar with. 

4.2.5 Scope Summary 

Based on the product choice and the principles that are to be tested, the pilot application will 

have the following development scope: 

- Only the main product elements will be used (heater, filter, pot).  

- The elements will have simple geometry and no technical features. 

- The elements will be premade for the user. 

- Only a selection of Tjalve’s principles will be demonstrated. 

- The workflow and main functions will be as shown in Figure 13. 

- The GUI will be simplified and less user friendly. 

- The coding style will be mostly non-generic. 

                                                      
14 The KBE bookshelf case study was a pre-master project at NTNU, supervised by Professor Ole Ivar Sivertsen. 
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4.3 Requirements Specification 

4.3.1 Functional Requirements 

Functional requirements determine which features should be available to the user. These will 

later be tested to verify which functions could be successfully implemented. 

 

F 1 Functional Surfaces 

F 1.1 Define functional surfaces. 

The user should be able to select a physical or spatial surface on an 

element. This must be labeled as a functional surface by the system, 

which should be visible to the user when inspecting the product. 

F 1.2 Connect functional surfaces. 

The user should be able to select two functional surfaces, mark them as 

connected, and register the connection type. The system must store this 

information to work with the surfaces at a later stage. 

 

F 2 Structure Variation 

F 2.1 Do structure variation (arrangement). 

The user should be able to rearrange an element relative to another 

element. This arrangement must be possible for all axes. 

F 2.2 Do structure variation (number of elements). 

The user should be able to choose how many instances there will be of 

an element. Any functional surfaces defined on the element (F 1.1) must 

also be duplicated. Relative positioning (F 2.1) of the individual instances 

is not a requirement for this pilot. However, arrangement relative to the 

entire element group must be possible. 
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F 3 Form Variation 

F 3.1 Do form variation (element shape). 

The user should be able to choose different basic geometries for an 

element (sphere, cube, cone, etc.). It must still be possible to change the 

dimensions (F 3.2) in the same way as with the original shape. 

F 3.2 Do form variation (element dimensions). 

The user should be able to change the individual dimensions of each 

element. The system should update other closely tied dimensions. 

 

4.3.2 Use Cases 

Use cases are closely tied to functional requirements because they specify detailed scenarios 

that the user should be able to perform. These are helpful in the implementation process 

later. Use cases will be created for functional requirements that benefit from more 

specification, and will be omitted for further similar scenarios (F 2.1 resembles F 2.2, F 3.1, F 

3.2). The following use cases have numbering that corresponds to their respective functional 

requirement. 

Use Case U 1.1 – Define Functional Surfaces 

The user will select an element, select one of its surfaces, and signify that they want this to 

be a functional surface. If there is no surface, for instance a hole, a virtual surface will be 

created. 

 

Figure 15: Use case U 1.1 – Define functional surfaces 
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Use Case U 1.2 – Connect Functional Surfaces 

The user will select functional surfaces A and B, which have been created in U 1.1 – Define 

Functional Surfaces. The connection type and direction will also be chosen. 

 

Figure 16: Use case U 1.2 – Connect functional surfaces 

Use Case U 2.1 – Do Structure Variation 

The user can select an element and easily rearrange it in relation to the other elements. The 

system will immediately update and display the new arrangement. 

 

Figure 17: Use case U 2.1 - Do structure variation 

4.3.3 Non-Functional Requirements 

Many non-functional requirements are tied to the realm of software architecture, which is 

outside the scope of this pilot environment. However, with a future generic environment in 

mind, we should adhere to certain principles, such as reusability, modifiability, modularity 

and encapsulation. We will not evaluate these non-functional requirements. 
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4.4 Development 

This section explains how the pilot KBE environment was developed, and shows incremental 

results. Code extracts are modified for brevity, meaning that basic or repeated similar code 

may be omitted. The entire source code is listed in Appendix A – Source Code. 

4.4.1 Basic Structure 

At the quantified structure stage of Tjalve’s product synthesis, a basic structure has already 

been established. To achieve this in AML, we create a hierarchy where the coffee maker is a 

parent class, which contains the heater, filter and pot classes (see Figure 18). In Tjalve’s terms, 

this corresponds to one product with three elements. 

 

Figure 18: Class diagram and AML model of the coffee maker basic structure 

4.4.2 Functional Requirement F 1.1 – Define Functional Surfaces 

We need to be able to define functional surfaces which can be associated with specific areas 

of an element. Using the functional relationship between the heater and the filter as an 

example, we can define one functional surface for the heater exit pipe, and one for the filter 

entry area. These are not physical surfaces, but rather a cross section which water can pass 

through. To create these virtual functional surfaces in AML, we make a functional-

surface class and define a subclass which inherits from this and holds a disc-object. 
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;----------------------------------------------------------------- 

; Class:  functional-surface-disc 

; Description: Defines a functional surface in the form of a 

;    disc-object. Optional cylinder projection. 

; Reference 1: Functional Requirement F 1.1 

;----------------------------------------------------------------- 

(define-class functional-surface-disc 

 :inherit-from (functional-surface) 

 :properties ( 

  height  (default 1.0) 

  diameter  (default 1.0) 

  color   (default 'blue) 

 ) 

 :subobjects ( 

  (surface :class 'disc-object 

   render 'shaded 

   ..... 

  (projection :class 'cylinder-object 

   render  'boundary 

   orientation (list ( 

    translate (list 0.0 0.0 (* 0.5 ^height)))) 

   ..... 

The projection component can be useful to better visualize functional surfaces while 

viewing the model from certain angles (see Figure 19). 

 

Figure 19: Functional surfaces in AML – heater pipe exit and filter entry 
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Use Case U 1.1 

A custom user interface was created for the purpose of selecting physical and spatial surfaces 

and have the system create virtual functional surfaces (see Figure 20). However, we 

discovered that this type of user interaction would be too time-consuming to implement in 

AML. It was advised that for the remainder of the pilot, we should instead create default AML 

interfaces linked to geometry and properties. As such, the definition of functional surfaces is 

done at the development stage, and not by the end user. The classes necessary for these 

features exist as a proof of concept, but the custom GUI never became more than a prototype. 

  

Figure 20: Functional surfaces in AML – created from a selected cross section 

4.4.3 Functional Requirement F 1.2 – Connect Functional Surfaces 

We need to store information about the functional relationship between two existing 

functional surfaces. In addition to the surfaces themselves, a connection type and direction 

will be useful at a later stage for dealing with the logics of element connectivity. The direction 

tells us which way the function naturally flows (A-to-B, B-to-A, two-way, none). The 

connection type says how the function flows over this cross section (stream, gravity, 

contact, none). More options can be added as required. The following functional-

surface-link class contains these properties (see Figure 21). 

 

Figure 21: Class diagram for functional-surface-link 
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;----------------------------------------------------------------- 

; Class:  functional-surface-link 

; Description: A connection between two functional-surface. 

;    The type and direction properties further 

;    specify the functional relationship. 

; Reference 1: Functional Requirement F 1.2 

;----------------------------------------------------------------- 

(define-class functional-surface-link 

 :inherit-from (object) 

 :properties ( 

  functional-surface-a nil 

  functional-surface-b nil 

  connection-type   nil ; gravity, stream, contact, ... 

  connection-direction nil ; a-to-b,  b-to-a, two-way, ...  

 ) 

) 

The basic structure (seen in Figure 20), is expanded with functional-surface and 

functional-surface-link (see Figure 22). This effectively binds the geometrical 

elements through their functional relationships. Water exits the heater and enters the filter 

(heater-filter-link), and coffee exits the filter and enters the pot (filter-pot-

link). 

 

Figure 22: Class diagram of the coffee maker elements linked by functional surfaces 
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Use Case U 1.2 

As with use case U 1.1, developing a custom AML interface for selecting functional surfaces 

proved too time consuming for this pilot. The preliminary GUI is shown below (see Figure 23). 

Using the functional-surface and functional-surface-link classes, along with 

some built-in AML classes, the feature is most likely possible to implement. 

   

Figure 23: Custom GUI for connecting functional surfaces in AML 

4.4.4 Functional Requirement F 2.1 – Do Structure Variation (arrangement) 

Moving an element in AML can be done by adjusting its coordinate system’s origin 

property, or by offsetting the element itself using orientation and translate. The former 

method keeps the code more modular. In structure variation, arrangement is done relative 

to other elements, and not just some fixed offsets. We need to devise a formula that can 

replicate this. 

If two elements A and B are arranged adjacently along one axis, the distance between their 

origins must equal half of their dimensions along that axis. For instance, if the walls of two 

cylinders are touching, the distance between their centers must equal the sum of their radii 

or half-diameters (see Figure 24). 
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Figure 24: Distance between the centers of two adjacent cylinders 

This rule is true for any geometrical element which is symmetrical along the axis in question. 

The distance formula for each axis is then: 

|𝑑𝑥| =
(𝐿𝑥,𝐴 + 𝐿𝑥,𝐵)

2
          |𝑑𝑦| =

(𝐿𝑦,𝐴 + 𝐿𝑦,𝐵)

2
          |𝑑𝑧| =

(𝐿𝑧,𝐴 + 𝐿𝑧,𝐵)

2
 

We can further generalize this to: 

|𝑑𝑖| =
(𝐿𝑖,𝐴 + 𝐿𝑖,𝐵)

2
 

This lets us arrange an element adjacently to another element along any axis. However, it 

limits us to exact adjacency along each axis, giving us (3 ∙ 3) - 1 = 26 possible spatial 

arrangements when excluding the center. This can be imagined as a Rubik’s Cube15, where 

each outside block is a possible arrangement. If we multiply a distance |di| by zero, the 

arrangement along that axis nullifies. Multiplying by any non-zero number gives us an offset 

that is a multiple of exact adjacency. For instance, a factor of ± 2.0 provides an open space 

between elements equal to the average of their dimensions. The resulting formula provides 

a dynamic way of assigning new coordinates to the element A that is being rearranged: 

𝑖𝐴 = 𝑚𝑖 ∙
(𝐿𝑖,𝐴 + 𝐿𝑖,𝐵)

2
 

                                                      
15 Rubik’s Cube: https://rubiks.com/ 

https://rubiks.com/
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We can now apply this formula to the origin property of a coordinate system in AML: 

;----------------------------------------------------------------- 

; Function:  arrange 

; Description:  Finds relative arrangement for element A vs B. 

;    Multiplier 0.0 = no offset, 1.0 = adjacent. 

; Reference:  Functional Requirement F 2.1 

;----------------------------------------------------------------- 

(defun arrange (multiplier len-a len-b) 

 (* multiplier (* 0.5 (+ len-a len-b))) 

..... 

; Heater Coordinates (Element A) 

;----------------------------------------------------------------- 

a-x (arrange ^x-multiplier ^a-diameter ^b-diameter) 

a-y (arrange ^y-multiplier ^a-diameter ^b-diameter) 

a-z (arrange ^z-multiplier ^a-height   ^b-height) 

..... 

; Heater Coordinate System (Element A) 

;----------------------------------------------------------------- 

(a-cs :class 'coordinate-system-class 

 origin (list ^^a-x ^^a-y ^^a-z) 

 reference-coordinate-system ^^b-cs 

) 

Use Case 2.1 

We require an interface that lets the user perform these element rearrangements. With the 

equation in place, we can expose the multipliers through an interface to let the user do 

structure variation. This should be easier and faster than to directly input raw coordinates. 

AML supports automatic creation of input fields by inheriting the data-model-node-mixin 

into the object model and linking the desired properties using its property-objects-

list. 

;----------------------------------------------------------------- 

; Class:  coffee-maker-gui 

; Description: Provides a GUI for the user to alter the 

;    coffee-maker through various inputs. 

; References: Functional Requirements F 2.1, 2.2, 3.1, 3.2 

;----------------------------------------------------------------- 

(define-class coffee-maker-gui 

 :inherit-from (coffee-maker data-model-node-mixin) 

 :properties ( 

 ..... 
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  ; Automatic Properties 

  property-objects-list (list 

   "Structure Variation – Heater Arrangement" 

  (the superior x-multiplier self) 

  (the superior y-multiplier self) 

  (the superior z-multiplier self) 

The result is a set of labeled numeric input boxes (see Figure 25). Editing the multipliers will 

rearrange the elements drawn on the canvas (see Figure 26). 

 

Figure 25: Structure variation in AML – default GUI for arrangement multipliers 

 

Figure 26: Structure variation in AML – rearranging the heater element 

4.4.5 Functional Requirement F 2.2 – Do Structure Variation (number of elements) 

Let us assume that we want to design a coffee maker with separate filters for different types 

of coffee to avoid “contamination”. To achieve this second aspect of structure variation, we 

need to be able to duplicate elements. We can define a single element as a generic class in 

AML, and use it to create a parent class which contains multiple child elements. The parent 

and children can have linked properties, which lets us conveniently change all instances from 

one place. The following classes lets us choose between a single filter, or four filters in a two-

by-two layout. 
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;----------------------------------------------------------------- 

; Class:  filter 

; Description: Defines a single filter element. Uses two 

;    truncated-cone-object for wall thickness. 

;----------------------------------------------------------------- 

(define-class filter 

 :inherit-from (difference-object) 

 :properties ( 

  b-height  (default 1.0) ; Auto-link 

  b-diameter1 (default 1.0) ; Auto-link 

  b-diameter2 (default 2.0) ; Auto-link 

  wall-t  (default 0.25) ; Auto-link 

  ..... 

 :subobjects ( 

  (outer :class 'truncated-cone-object 

   height   ^b-height 

   start-diameter  ^b-diameter1 

   end-diameter  ^b-diameter2 

  ) 

  (inner :class 'truncated-cone-object 

  ..... 

;----------------------------------------------------------------- 

; Class:  filter-2x2 

; Description: Defines a 2 by 2 grid of Filter elements. 

; Reference 1: Functional Requirement F 2.2 

;----------------------------------------------------------------- 

(define-class filter-2x2 

 :inherit-from (object) 

 :properties ( 

  ..... 

  diameter1  (* 0.5 ^b-diameter1) ; Half lengths (2x2) 

  diameter2  (* 0.5 ^b-diameter2) ; Half lengths (2x2) 

  offset  (arrange 0.5 ^diameter2 ^diameter2) 

 

 :subobjects ( 

  (filter-1 :class 'filter 

   b-diameter1 ^diameter1 ; Specific, not auto linked 

   b-diameter2 ^diameter2 ; Specific, not auto linked 

   orientation (list ( 

    translate (list ^^offset ^^offset 0.0))) 

  ) 

   

  (filter-2 :class 'filter . . .) 

   

  (filter-3 :class 'filter . . .) 

   

  (filter-4 :class 'filter . . .) 
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We add an option-property-class to the coffee-maker and link the filter instance to 

this property. The user can then select between one and four filters from a dropdown menu 

to update the model (see Figure 27 and Figure 28). 

; Filter Count Selection 

;----------------------------------------------------------------- 

(b-filter-selection :class 'option-property-class 

 label   "Filter Count" 

 options-list  '(filter filter-2x2) 

 ..... 

; Filter (Element B) 

;----------------------------------------------------------------- 

(element-b :class !b-filter-selection 

 ; All dimensions auto-linked 

) 

When duplicating the number of filter elements, we also need to ensure any related entities 

are scaled accordingly, for instance functional surfaces (see Figure 28). The code for 

duplicating functional surfaces can be found in Appendix A – Source Code (functional-

surface-disc and functional-surface-disc-2x2). 

 

Figure 27: Structure variation in AML – default GUI for number of filters 

 

Figure 28: Structure variation in AML – number of filter elements 
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4.4.6 Functional Requirement F 3.1 – Form Variation (element shape) 

An example of changing the shape of an element could be to choose a cubic water tank 

instead of a cylindrical one. This is equivalent to changing the base class of an element in AML. 

Since each class has unique properties for dimensions, we should add a class layer to 

genericize these. This lets us set the width of a cube and the diameter of a cylinder using the 

same property. The following classes define cubical and cylindrical water tanks. 

;----------------------------------------------------------------- 

; Class:  cylinder-heater 

; Description: Defines a cylindrical shape for the water tank. 

; Reference 1: Functional Requirement F 3.1 

;----------------------------------------------------------------- 

(define-class cylinder-heater 

 :inherit-from (cylinder-object) 

 :properties ( 

  a-height   (default 1.0) 

  a-diameter (default 1.0) 

  height  ^a-height 

  diameter  ^a-diameter 

  ..... 

;----------------------------------------------------------------- 

; Class:  box-heater 

; Description: Defines a cubical shape for the water tank. 

;    X and Y dimensions are set from the diameter. 

; Reference 1: Functional Requirement F 3.1 

;----------------------------------------------------------------- 

(define-class box-heater 

 :inherit-from (box-object) 

 :properties ( 

  a-height  (default 1.0) 

  a-diameter (default 1.0) 

  height  ^a-diameter 

  width  ^a-diameter 

  depth  ^a-height 

To enable choosing between these classes, we add an option-property-class to the 

coffee-maker and link the heater element shape to this property. 

; Heater Shape Selection 

;----------------------------------------------------------------- 

(a-shape-selection :class 'option-property-class 

 label  "Heater Geometrical Shape" 

 options-list '(cylinder-heater box-heater) 

 ..... 
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; Heater (Element A) 

;----------------------------------------------------------------- 

(element-a :class 'difference-object 

 object-list (list ^outer ^inner) 

  

 ; Tank outer wall 

 (outer :class !a-shape-selection 

  ; All dimensions auto-linked 

 )  

    

 ; Tank inner space, floor intact  

 (inner :class !a-shape-selection 

  a-diameter (inner-diameter ^^a-diameter ^^wall-t) 

  orientation (list (translate (list 0.0 0.0 ^^wall-t))) 

 ) 

) 

The results are shown below (see Figure 29 and Figure 30). 

 

Figure 29: Form variation in AML – default GUI for heater shape 

 

Figure 30: Form variation in AML – heater shapes 
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4.4.7 Functional Requirement F 3.2 – Do Form Variation (element dimensions) 

Changing dimensions that are not bound by any knowledge is very straight forward to 

implement in AML. We simply need to link the element dimensions to the GUI using the 

editable-data-property-class as we did before. 

; Pot Dimensions (Element C) 

;----------------------------------------------------------------- 

(c-rim-height :class 'editable-data-property-class 

 label "Pot Rim Height" 

 formula 1.25 

) 

(c-rim-diameter :class 'editable-data-property-class 

 label "Pot Rim Diameter" 

 formula 4.0 

) 

(c-pot-height :class 'editable-data-property-class 

 label "Pot Height" 

 formula 7.0  

) 

(c-pot-bottom-cut-height :class 'editable-data-property-class 

 label "Pot Bottom Cut" 

 formula 1.25 

) 

Linking these properties in the coffee-maker-gui exposes them to the user in the default 

interface (see Figure 31 and Figure 32). 
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Figure 31: Form variation in AML – default GUI for element dimensions 

 

Figure 32: Form variation in AML – changing dimensions (thickness, size) 
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4.5 Final Implementation 

This section shows the final implementation of the pilot application with screenshots of the 

environment and examples of possible product variations. 

4.5.1 Environment 

The final pilot KBE environment has a control panel on the left for making design variations, 

and a graphics canvas on the right where the product is shown (see Figure 33). In reality, the 

AML interface is larger with more features, but has been cropped to show only what is 

relevant here. 

Most of the features in the control panel have already been covered in 4.4 Development, but 

to summarize, the user can do the following: 

- Change general properties such as render mode and wall thickness (form variation) 

- Toggle functional surfaces on/off and change their projection height 

- Change the arrangement of the heater element (structure variation) 

- Change the number of filter elements (structure variation) 

- Change the shape of the heater element (form variation) 

- Change the dimensions of any element (form variation) 
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Figure 33: Final pilot KBE environment 



 

50 
 

4.5.2 Product Variations 

Combining all implemented techniques for structure and form variation, we are able to 

produce a wide range of designs from the basic structure (see Figure 34). 

 

Figure 34: Product variations using Tjalve's principles in KBE 
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4.6 Test Report 

All functional requirements are tested by the developer. In future development, we would 

include end users in any tests, to help verify user friendliness and receive other feedback. 

4.6.1 Verification of Functional Requirements 

 

F 1 Functional Surfaces 

F 1.1 Define functional surfaces. 

The system has pre-generated virtual functional surfaces between the 

heater and filter elements. Once the base concept has been 

implemented, it can with reasonable amount of effort be added to other 

elements. The graphical user interface for selecting these surfaces was 

not feasible to implement in this pilot due to high development time 

(discussed in 4.4.2). 

Overall verification:  Partial Success 

Initial development time: Medium 

Further development time: Medium (per added element/surface)  

F 1.2 Connect functional surfaces. 

The system has the classes and mechanics needed to handle connection 

of functional surfaces. However, the initial GUI was discontinued for the 

same reasons as F 1.1. The GUI was reduced to a default AML interface 

where the user can link two functional surfaces by choosing connection 

type and direction. 

Overall verification:  Partial Success 

Initial development time: Medium 

Further development time: Low (per added connection)  

 

F 2 Structure Variation 

F 2.1 Do structure variation (arrangement). 

The user is able to move an element relative to another by entering 

positioning multipliers (devised in 4.4.4). It is implemented for the 

heater relative to the filter, and the general formula can easily be used 

on new elements by applying it to their coordinate systems. 
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Overall verification:  Success 

Initial development time: High 

Further development time: Low (per added element) 

F 2.2 Do structure variation (number of elements). 

The user is able to select the number of instances of an element from a 

dropdown menu. This is achieved through the definition of a parent 

element that holds several original elements. We reuse a generic class, 

which is good, but it takes time to create the parent class for each new 

variation, and any belonging functional surfaces must also be multiplied. 

Overall verification:  Success 

Initial development time: High 

Further development time: High (per added element) 

 

F 3 Form Variation 

F 3.1 Do form variation (element shape). 

The user is able to select a different geometrical shape for an element 

from a dropdown menu. This feature is implemented for the heater 

element, and can with a reasonable amount of effort be added to other 

elements, or include new shapes. If the new shape involves a change in 

functional surfaces, the required time is higher. 

Overall verification:  Success 

Initial development time: Medium 

Further development time: Medium (per added element/shape) 

F 3.2 Do form variation (element dimensions). 

The user is able to change several dimensions on all elements. This is 

done by numerical input of new sizes. This type of feature could be said 

to be native to AML, thus it requires little effort to implement. 

Overall verification:  Success 

Initial development time: Medium 

Further development time: Low (per added dimension input)  
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4.7 Evaluation 

This chapter evaluates the final implementation of the pilot application. We discuss what 

could have been done differently and suggest possible trajectories for future development. 

Parts of the evaluation is based on test results and theoretical findings. Other parts are based 

on the reflections and opinions of the developer and tester. 

4.7.1 Development Issues 

Functional Requirement F 1.1 and 1.2 – Custom Interfaces 

The custom interfaces for functional surfaces could not be made as planned. Having pre-

defined surfaces is decent enough for this simple coffee maker. Some of the work is shifted 

from user to developer, but leaves the user with less freedom in specifying their product. To 

make the application generic and user friendly, a custom interface should be a priority in 

future development. 

Functional Requirement F 2.2 – Structure Variation (number of elements) 

As noted in the test report, enabling this feature for new elements requires a high amount of 

development time. This is because we need to create a parent class for each new variation, 

and add a corresponding set of functional surfaces. We would also have to consider this added 

work load if the application were to automatically generate pipes between the heater and 

filter.  

Looking at the class structure, if we had decided to incorporate the functional surfaces inside 

the original class instead, we could effectively eliminate this extra work per new variation. In 

addition, there are methods in AML for systematically repeating objects, for instance along 

curves. This approach may be useful to genericize the code to quicken further development. 

4.7.2 Effects on Creativity 

We wanted to evaluate how the application supports or inhibits creativity. During and after 

requirements testing, a wide range of product variations were made, some of which were 

shown in 4.5.2. Reflecting upon the creative flow during this design process allows us to 

identify some of the contributing factors. 

Cognitive Framework Constraints 

We have implemented our cognitive framework for creative design, derived from principles 

by Tjalve (2003). The four principles that we chose in section 4.1 have now become 

constraints that this framework applies to the design process: 

1) The product basic structure is decided. 

2) Elements can be rearranged and multiplied with structure variation. 

3) Elements can be assigned new geometry and dimensions with form variation. 

4) Variations must consider functional surfaces to retain product functionality. 
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Supporting Factor – Systematic Design 

Having performed a large number of variations, there were times when no new ideas would 

emerge. When this happened, I would look at the user interface to find operations that I had 

not yet tried out. It could then happen that I suddenly entered a state of renewed flow, and 

more ideas kept emerging. I think that having systemized Tjalve’s principles into a KBE 

environment can allow a designer to fall back to these guidelines for inspiration while the 

creative flow is poor.  

Supporting Factor – Visual Feedback 

Being able to continuously inspect the product on a 3D canvas was helpful to evaluate any 

new ideas. This is perhaps comparable to for instance cardboard mockups, but less tangible 

and more detailed. Still, I think that tangible mockups have the advantage of being faster than 

the current user interface. In order to compete, the interface needs to be better, and a future 

application should have some other knowledge-based advantages that a cardboard mockup 

cannot offer. 

Inhibiting Factor – Limited Tools 

I discovered that my creativity was sometimes hampered by the limitations of the pilot 

environment. There were operations that I foresaw in my mind that simply could not be done 

with the available variation tools. This would be an unfortunate situation for a designer, 

effectively stopping his creative flow. However, this is only a pilot application, and these flaws 

should be expected for several reasons: 

1) Not all variation principles were to be implemented (Tjalve’s or otherwise). One 

specific operation that I would find useful for certain arrangements is the ability to 

rotate individual elements. For a future application with more knowledge 

implemented, the system should account for potential issues such as functional 

surfaces with connection type gravity. 

2) The implementation is not as sophisticated or detailed as the underlying theory. For 

instance, in the case of form variation, a person’s ideas for new geometrical shapes 

may emerge with more specificity than the system is able to reproduce. A future 

version could have more basic shapes available, but also various extrusion and 

difference tools for creating more advanced geometry. 

3) Some implemented principles were not available for the entire product. For instance, 

element rearrangement and basic shape change was only available for the heater. 
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4) The constraints of having a chosen basic structure. I found this limiting at times when 

more radical ideas emerged, until I realized that it would actually change how the 

product performed its task. In one sense, this limits creativity, while in another, it helps 

focus our creative efforts (as proposed in 2.3.6) and not get off track. 

Inhibiting Factor – Graphical User Interface 

Each incremental product variation can be done with relative ease. However, numeric input 

and dropdown menus are not optimal in terms of efficiency and user friendliness. Operations 

should be much faster in order to speed up the idea-to-realization cycle. I found that too much 

time and focus was spent on inputting values and redrawing the model. This mundane task 

got annoying over time, and I think it distracts our minds enough to hamper creative flow. I 

was likely having a taste of the negative “eyebrow effect”, leading my task solving system II 

to dominate instead of the more creative system I (Kahneman, 2013). 

4.7.3 Other Comments 

Form Variation – Total and Element Form 

Tjalve distinguishes between total form and form of the elements (described in 2.5.6 Total 

and Element Form). He also states that these are naturally connected. When changing the 

form of an element, the total form of the product must follow, and vice versa. If desired, we 

could implement more automation related to this in our KBE environment. Using AML, we 

can assign dependencies to dimensions and geometry. We could for instance have overall 

product dimensions like height or width, which automatically scale all individual element 

dimensions. 

Product Variations – Degrees of Freedom 

Let us consider our product variation tools in terms of degrees of freedom. For each element 

in the product, we have: 

- Structural arrangement along three axes. 

- Structural repetition of an instance.  

- Different basic geometrical shapes. 

- One or more dimension properties, such as height, width, thickness. 

This gives us at least six degrees of freedom per element. For a user, more freedom equals 

more variation capabilities, but perhaps also fewer positive constraints, as Jocko Willink 

would have it (2.3.6). For complex products, the number of possible combinations would 

increase at an exponential rate for each new element added. If the application later evolved 

into some type of generative system, it would need manual or intelligent filtering to manage 

its solution space. 
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Product Variations – Viability of Outcomes 

In the current state of the application, some of the product variants that can be created would 

not be immediately usable. There is currently no intelligent support if an element is displaced 

in some way that logically breaks its functional surface link. For instance, if the heater exit 

hole is placed outside or below the filter entry, we would require pipes and/or pumps to 

transport the water. Also, if we choose multiple filter elements, we would need individual 

pipe exits or some kind of rotational system. 
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5 Future Development 

This chapter suggests the future development of a KBE environment for supporting creative 

design. We base these suggestions on the evaluation of the pilot application and any relevant 

theoretical findings. The GUI prototypes herein are made to illustrate some of these concepts, 

but they are not yet functional KBE environments. 

5.1 Features 

This kind of system competes with traditional methods for early creative design, like 

cardboard mockups. These are excellent because they are fast, tangible and inexpensive. The 

environment should offer some more advanced knowledge-based features that such tangible 

methods cannot. 

5.1.1 Automatic Creation of Support Elements 

When a product is changed through for instance structure and form variation, the functional 

surface connections will sometimes become invalid. This could be due to a gravitational flow 

between two elements that is no longer possible because the exit surface is below the entry 

surface. In the coffee maker case, moving the heater element outside or below the filter 

would require water pipes and/or pumps to be added. The KBE environment could be 

designed to automatically add these support elements when needed. This would let the user 

to creatively design his product without having to worry about breaking its functions. 

5.1.2 CAD Import 

AML supports import of industry-standard files like IGES, STEP, STL and DXF16. This could let 

us build modules using CAD, and import them into our KBE environment to do creative work. 

There could be some form of intelligence that helps with the logical arrangement of incoming 

objects, using functional surfaces or otherwise. 

                                                      
16 AML support for import/export: http://technosoft.com/application-software/adaptive-modeling-language/ 

http://technosoft.com/application-software/adaptive-modeling-language/
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5.1.3 Product Stats 

KBE gives the ability to implement cost functions. These could for instance calculate material 

or production costs as the product changes. Inspired by this, we could create a live updated 

display of various product stats. Similar calculated product stats are demonstrated in for 

instance TechnoSoft’s AMRaven, Adaptive Modeling for Rapid Air Vehicle Engineering (e.g. 

Dahl et al., 2006), and in Parametric Ship Hull Design in NX (Skogsfjord and Rognseth, 2014). 

Coffee maker stats could include material costs, production costs, element count, power 

consumption during use, brewing time, pot volume, and so on. Automatically added pipes 

and pumps would increase the material costs, production costs, and power consumption. The 

designer would receive immediate feedback on his changes, and could choose which stats to 

optimize for. This should further ease the cognitive load on the designer, possibly allowing 

more effort to be spent on being creative instead. 

Radar Chart 

Another way to more visually represent product stats could be through a radar chart17. This 

places three or more stats on individual axes in a two-dimensional diagram (see Figure 35). 

Higher stats are represented with further distance from the chart origin. It may be faster to 

determine the overall size of stats by glancing at a radar chart instead of raw numbers. 

 

Figure 35: Radar chart with stats for two coffee makers 

                                                      
17 Radar Chart: https://en.wikipedia.org/wiki/Radar_chart 

https://en.wikipedia.org/wiki/Radar_chart
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5.2 GUI Prototypes 

5.2.1 Defining and Connecting Functional Surfaces 

The improved versions of these interfaces are more about interaction style than design. In 

the pilot application we failed to demonstrate a click-to-select method for element surfaces. 

Since this is not something we can explicitly show in a new image of a prototype GUI, we shall 

refer to the previously created pilot prototype (seen in Figure 23). The new interface would 

be similar to this, but with the ability for the user to click on physical and spatial surfaces to 

do their selection. 

5.2.2 Manual Product Variation 

In the pilot application, we created a default AML interface for product variation (Functional 

Requirements F 2.1, 2.2, 3.1, 3.2). The following prototype is a suggestion to how we can 

improve this interface (see Figure 36). 

Structure Variation 

Arranging elements was previously done by entering positioning multipliers to make them 

adjacent, spaced or overlapping along an axis. Although the concept is relatively simple, the 

interface could be optimized to avoid hindering the creative flow. This version uses buttons 

to immediately reposition an element and show the update in the canvas. By simultaneously 

pressing the control, shift or alt/option buttons, the movement would be far, short or aligning.  

Another possibility would be to have some kind of drag and drop system where the user could 

simply pull on an element to reposition. The system could then suggest aligned positions by 

letting the element “snap” into place depending on which modifier keys are held down. 

The user can also press a button to align elements according to their functional surface 

connections. In the case shown below, the heater would then be centered directly above the 

filter with intersecting functional surfaces. 

The second aspect of structure variation is done by choosing number of elements from a 

dropdown menu. This is the same as before, but we could now have more options and make 

sure that the model view instantly updates itself upon a new selection. 

Form Variation 

The form variation toolset follows the same behaviors as the controls for structure variation. 

Selecting new geometrical shapes is done from a dropdown menu, and element dimensions 

are adjusted incrementally using buttons. Holding the modifier keys determines the big or 

small change in dimensions, will determine how much the dimensions, or if they should auto 

align to other elements. 

We could also add more advanced form variation options here, such as custom extrusions, 

difference objects, and edge rounding. 
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Other Features 

Below the main canvas, the user can view live updated product stats, and a miniature version 

of the unchanged product. The user could optionally show these stats as a radar chart. 

 

  

Figure 36: Prototype GUI for doing manual product variations 
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5.2.3 Automatic Product Variation 

We recall Asimov (1959) who states that great ideas often stem from finding a connection 

between two entities which might not ordinarily seem connected. Using the product variation 

principles, we could let the system automatically generate a solution space for the user to 

explore. This means trying all possible combinations within reasonable parameters. A system 

with these characteristics could fall into the category of computational creativity systems that 

attempt to replicate human creativity (e.g. Colton and Wiggins, 2012). 

Variation Filters 

As discussed in the evaluation of the pilot application (4.7.3), for each new variation method, 

we add more degrees of freedom. An automatic variation environment like this would need 

a comprehensive filtering system which can be controlled by the user. These could include: 

- Choosing to work with certain elements at a time.  

- Choosing which types of variations to perform (arrangement, shape, dimensions, etc.). 

- Preventing illogical relationships according to functional surface connections. 

- Preventing physical element overlaps. 

- Setting minimum and maximum limits to product stats. 

- Sorting the solution space by product stats. 

- Sorting the solution space by how much they differ from the basic structure. 

This way, the user could choose to do precise exploration of outcomes, or allow the system 

to take its own questionable liberties. We could make a slightly farfetched comparison to the 

freely creative, dreamlike state of mind that results from human night-waking (Arnsten et al., 

2012; Ekirch, 2006), discussed in 2.3.6. Even if many of these generated solutions are 

unfeasible, the more radical combinations could aid user creativity by sparking new ideas. 

Solution Space View 

The user interface displays the solution space as a sortable list of products (see Figure 37), 

with filtering options on the left side. Each preview also shows product stats, and has buttons 

that open full screen preview or the manual variation form to do further variations. Product 

stats could also be shown as a radar chart according to user preferences. 
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Figure 37: Prototype GUI for automatic product variation 
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5.3 Genericity 

5.3.1 Interoperability 

The CAD import feature (5.1.2) would represent a significant contribution to genericity. This 

means that we would not necessarily have to program our basic structure in KBE. We could 

use other CAD tools to design products, or import already existing structures. This would also 

demand that our environment is in itself generic enough to handle arbitrary models. 

5.3.2 Arbitrary Models 

Dynamic User Interface 

The user interface for product variation needs to dynamically adapt to the structure or 

element being edited. This means displaying all the dimensions that can be changed, and all 

basic geometrical shapes that are feasible choices. 

Connecting Arbitrary Elements 

The system should have some form of intelligence for connecting arbitrary elements together. 

This could mean that the system inherently understands certain component types, and would 

suggest pairings. Currently the user does all connections manually through functional 

surfaces. An interesting feature would be to have the system learn from the user, establishing 

an increasingly better understanding for what type of components typically go together. 

General and Specific Product Stats 

Some product stats can likely be calculated generically, such as material costs. More specific 

stats, such as the coffee maker brew time, would need to be developed for each special case.  
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5.4 Complex Products 

Tjalve (2003) provides examples of moderately complex machines, but not for entire facilities 

such as industrial process plants. We seek to expand or adapt his principles for use with more 

complex products. 

5.4.1 Number of Elements 

Complex products have a significant amount of elements compared to a simple coffee maker. 

The original variation techniques were tested for low level variations, element by element. 

We would like to make these principles work for high level variations as well. 

Product Sections 

When doing form and structure variation, the user could choose to limit the variations to a 

selection of elements at a time, gradually finishing divisions of the product. It is also likely that 

such products are developed in teams. Each member or group could perform design 

variations on separate sections, while still being able to view other sections and take them 

into consideration. We could also have the ability to lock certain elements or sections, 

disabling any further editing or automatic variations there. 

Group Operations 

We could implement the ability to perform actions on entire product sections, for instance 

doing structure variation on sections by moving all elements as one group. This could be 

useful during an initial structural planning phase for the overall layout of an industrial facility. 

Functional Surfaces 

The functional surfaces in the pilot KBE environment were defined on single, function-specific 

areas of the product. For a complex product, we could also imagine large functional surfaces 

defined across multiple elements that serve as a group. This way, we could connect product 

sections with an overall connection type and direction. Whether using functional surfaces on 

low or high levels, we would argue that this concept scales well with increasing complexity. 

Systems Thinking 

The natural limits of human cognition come into play when thinking about large and complex 

systems (Goel, 2012). We could incorporate modeling frameworks into the KBE environment, 

such as OPM (Dori and Crawley, 2013) or SBF (Goel et al., 2009). This could help users get a 

better understanding of the system they are working on, and free more capacity for creative 

design. To get the most use of the modeling frameworks, the KBE environment could be able 

to create geometry and relationships from OPM or SBF models, and vice versa. 
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5.5 Other Aspects 

5.5.1 User Interface Design 

As discussed in 2.4.3, HCI design principles may affect user creativity. The pilot application 

used the default generated AML interface with simple input mechanisms. Taking human 

cognitive aspects into consideration, it would be preferable to have a more progressive 

custom interface, designed in AML or otherwise. The prototype interfaces above attempt to 

improve some issues with the pilot interface. 

Intuitiveness 

The first issue is that the pilot interface is not intuitive enough to be used without reading a 

user manual, as Norman (2013) would recommend. A new user would not immediately know 

what is meant by structure variation and positioning multipliers, for instance. 

Spacing and Grouping 

Secondly, being met with an entire column of labels and textboxes is likely daunting to many 

users, and may trigger the “eyebrow response” (Kahneman, 2013). The common HCI design 

principle of spacing and grouping was applied in the pilot interface to improve the sense of 

belonging and make input sections easier to recognize (Norman, 2013; Preece, 1995). 

However, this was not enough to make input components stand out in the default AML layout. 

This is also likely to inhibit the creative process when users cannot immediately find the 

desired input component, which would require their System II to work instead of System I 

(Kahneman, 2013). A custom interface with frames and distinct headers improves separation. 

In addition, using different GUI components for each type of functionality makes them easier 

to locate. We can compare this to a well-designed TV remote control, where the volume 

button is clearly different from the other buttons. 

Casual and Playful Creativity 

The third issue is related to encouraging creativity through playfulness and curiosity 

(Törnkvist, 1998). This is perhaps more of a potential benefit of a good interface, rather than 

an actual issue (Norman, 2013). However, solving the former issues will provide some of these 

benefits as a byproduct. To improve this further, we should make the interface casual and 

“not feel like work”, as Seth Rogen put it in 2.3.6 (Ferriss, 2015, ep 84). 
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6 Discussion 

This chapter aims to answer the main research questions by structuring what has been 

learned from this study. In addition, we discuss and reflect upon the research study itself. 

6.1 Research Questions 

6.1.1 RQ 1: How can metacognition benefit KBE and creative design? 

In our initial studies, we discovered branches of metacognition that could apply in a KBE 

setting or have implications for creativity in general. We defined the cognitive frameworks 

category to include systems of thought that could enable people or computer systems to 

improve design creativity. In addition, we investigated the art of reflective practice, and how 

it could improve the creative processes of people, or refine the effectiveness of existing 

computational creativity tools. The following figure suggests how metacognition and its 

derived concepts could relate to KBE and creativity (see Figure 38). 

 

 

Figure 38: How metacognition relates to KBE and creativity 
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Cognitive Frameworks 

The wording in Figure 38 may suggest that cognitive frameworks are exclusively beneficial for 

creativity. However, we found that cognitive frameworks can have both positive and negative 

constraints. Some constraints can also be positive and negative at the same time. The 

outcome depends on how the framework is used. For instance, a framework that is applied 

too strictly could limit freedom and produce negative constraints on creativity. Likewise, a 

framework with no boundaries could easily lead to derailment of the creative process. 

The balance between freedom and restriction matters both for people who use cognitive 

frameworks as thought structure, and for computer systems that implement them. However, 

negative constraints in a computer system are more problematic, because once they are 

implemented, there is no way around them. On the other hand, when applying the same 

constraints in our minds, we can more easily cheat and escape the restraints if we notice that 

they are hindering our creative process. 

Reflective Practice 

We found that reflective practice allows for continuous development and refinement of 

existing creative tools and processes. With awareness of their own cognition and creative 

process, people can seek more optimal work routines, environments, times of day, and 

mental states in which they are the most creative. In the same way, people can reflect upon 

the tools they use for creative work, such as KBE environments, to consider whether they are 

optimal for what they want to achieve. 

Having reflected upon our own pilot KBE environment, we found that our user interface had 

flaws that were strongly related to human cognition. Some HCI design principles were 

suggested for future development to mitigate or eliminate these issues. Our pilot evaluation 

also revealed that the cognitive framework that we had implemented offered both positive 

and negative constraints on creativity. Some prototype features for future development were 

suggested to shift the balance in favor of the positive aspects. 

This is demonstrated by the concepts of reflection-in-action and reflection-on-action which 

were introduced by Schön (1983). These concepts have also been applied in software 

engineering to understand the importance of reflective practice in system development 

(Mathiassen, 1998). 

Reflection-in-action refers to experiences and ideas that provide inputs to our actions in a 

learning situation. With respect to creativity, this can be stimulated if we have an intuitive 

user interface. On the other hand, reflection-on-action occurs after an experience that is 

perceived as complex or uncertain. For instance, a designer that has had problems with 

designing a new product in KBE, would need post-reflection before new actions can be taken. 

The designer has then become a reflective actor who combines his existing knowledge with 
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new knowledge into a retrospective reflection. Because of this, reflection could be a vital 

activity in creative design, effectively turning experiences into explicit benefits. 

Branching of Cognitive Frameworks under Metacognition 

Within section 2.4, we introduce some systems of thought that we label cognitive 

frameworks. Branching this under metacognition may have been slightly incorrect, because 

strictly speaking, not all of these frameworks really apply metacognition. However, we reckon 

they may have been uncovered through reflecting upon existing processes or a desire to 

formalize systems of thought into modeling frameworks. 

6.1.2 RQ 2: How can KBE technologies support the creative design phase? 

Through our initial study of KBE technologies, we found that some of the native advantages 

that KBE provides could benefit creative design. We highlighted that engineering design 

efforts typically consist of 80% routine and 20% innovation (Sanya and Shehab, 2014; Skarka, 

2007). It is possible that KBE could shift this balance in favor of innovation through the 

automation of routine tasks. In addition, the knowledge management capabilities of KBE 

could allow knowledge to be combined in a creative manner, or apply existing knowledge to 

new designs by analogy. 

Implementation of Systematic Design Frameworks 

As part of this study, we created a cognitive framework based on the principles of Tjalve 

(2003), and were able to implement them in a KBE environment. Specifically, we start with 

Tjalve’s basic structure and use structure variation, form variation, and functional surfaces to 

generate a product solution space from the basic structure. This way we have embedded a 

set of design constraints that allow us to steer and support the creative process of a user. 

Although these constraints have both positive and negative aspects, it shows that KBE enables 

us to structure the creative design phase and facilitate a certain kind of creativity. 

The fact that a KBE technology such as AML can successfully implement a cognitive framework 

is a good indicator in itself. This leads us to believe that other types of frameworks could be 

implemented as well, tailoring the creative support as required. The following discussions on 

RQ 3 and RQ 4 mention other frameworks and theoretical considerations that are also valid 

for this question. 
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6.1.3 RQ 3: How can Tjalve’s principles be implemented with KBE for a simple product? 

Tjalve’s Principles as a Cognitive Framework for KBE 

Through our study of Tjalve (2003), we extracted a set of principles that seemed applicable to 

KBE and creative design. These principles make up what we shall refer to as Tjalve’s 

framework, which we test-implemented in a pilot KBE environment. The entire 

implementation process is elaborated in chapter 4. Tjalve’s framework structures some of the 

mental creative processes, and applies systematic design constraints that can facilitate and 

inhibit creativity. The following figure explains how this cognitive framework relates to 

creativity (see Figure 39). 

 

Figure 39: Tjalve's principles as a cognitive framework 

The following sections will elaborate more on this figure, and aims to answer the questions 

asked in 1.2.1: 

a) What are the systematic design constraints applied by the chosen framework? 

b) How do the framework constraints affect creativity? 

c) How feasible were the framework constraints to implement in KBE? 

a)   Tjalve’s Framework – Constraints 

Tjalve’s framework applies the following constraints on the creative design, as established in 

4.7.2. These constraints have positive and negative aspects, which can facilitate or inhibit 

creativity (as seen in Figure 39 above). 

1) The product basic structure is decided. 

2) Elements can be rearranged and multiplied with structure variation. 

3) Elements can be assigned new geometry and dimensions with form variation. 

4) Variations must consider functional surfaces to retain product functionality. 
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b)   Tjalve’s Framework – Effects on Creativity 

Having evaluated the pilot KBE environment, we got a better impression of how each 

constraint affected our creative process. The following table highlights the positive and 

negative aspects of the framework constraints. We have attempted to make this a conceptual 

evaluation, meaning that we try to look beyond how well or to what degree each constraint 

was implemented in the pilot. Some of the reasoning behind these results are covered in the 

pilot evaluation in 4.7.2. 

 

Constraint Effects on Creativity 

1) Basic 

Structure 

Positive: Effective at steering the trajectory of the creative 

design process. 

Negative: Prevents ideas that would change how the 

product performs its function, i.e. altering the sub-functions 

that together fulfill the main function. We cannot return to 

an earlier stage of our product synthesis. 

2) Structure 

Variation 

Positive: Can inspire new and radical element combinations. 

A good support to fall back on when creative flow is poor. 

Negative: No adverse effects were found. 

3) Form 

Variation 

Positive: Experimenting with geometries and dimensions 

inspires completely different aesthetic designs. Changing 

these parameters can also spawn new arrangement ideas 

that were previously not possible. This creates an effective 

synergy with structure variation. 

Negative: No adverse effects were found. 

4) Functional 

Surfaces 

Positive: Easier to understand and visualize the product as a 

system of functional relationships. This frees more capacity 

for creative efforts with form and structure variation. 

Negative: The functional surfaces restrict how we can do 

form and structure variation. However, this is necessary to 

retain functionality and adhere to the basic structure.  
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c)   Tjalve’s Framework – Implementation Feasibility 

We developed the pilot KBE environment using the Adaptive Modeling Language (AML) by 

TechnoSoft Inc. In terms of feasibility, we consider the implementation of Tjalve’s framework 

in KBE to be an overall success. However, some interface-related features required more 

development time than anticipated. These were reduced to default input mechanisms or 

instead predefined for the user. The following table summarizes the implementation 

feasibility of the framework constraints in a KBE environment using AML. This reasoning 

behind these results are covered in 4.6. 

 

Constraint Implementation Feasibility 

1) Basic 

Structure 

Implementation: Feasible 

Development time: Medium 

Basic geometry and element relationships were predefined 

for the user, setting natural boundaries for any further 

creative work. 

2) Structure 

Variation 

Implementation: Feasible 

Development time: High 

Elements were positioned relative to each other by applying 

an adjacency formula to their coordinate systems. Parent 

classes with multiple element instances were created to 

support a variable number of elements. 

3) Form 

Variation 

Implementation: Feasible 

Development time: Medium 

Different element classes were created for each new 

geometrical shape. Element dimensions and shapes were 

then exposed to the user through the default AML interface.  

4) Functional 

Surfaces 

Implementation: Partial Success (Feasible) 

Development time: Medium 

We created classes to represent functional surfaces and 

their relationships. These classes support the definition of 

arbitrary relationships, but the custom user interface was 

discontinued. Virtual functional surfaces were predefined 

for the user instead. 
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Further Comments on the Effects on Creativity 

Given the fact that the pilot KBE environment was not tested with product designers, it is fully 

possible that the environment in its current state does not improve creativity, but merely 

structures it into a system. We could argue that the environment does not impede creativity 

either. During testing, ideas would still emerge that existed outside of the solution space 

enforced by the framework. A trained creative person could have routines for systematically 

capturing ideas that emerge (Epstein et al., 2008). The issue then might be that these ideas 

are not allowed to flourish and mature as they would in an unrestricted environment, for 

instance while sketching ideas on paper. 

This brings us to the thought that the systematic design principles introduced by Tjalve (2003) 

are indeed very systematic and engineer-like, but does not take into account the potentials 

of unhindered creativity (e.g. Asimov, 1959; Ferriss, n.d., 2015, ep 82; Törnkvist, 1998). Based 

on these thoughts, one could argue that a creative environment should not rigidly enforce a 

such principles, and at the very least grant users the liberty to discard the framework if they 

notice that it is hindering their creative output. 

Human Computer Interaction and Creativity 

Throughout our study, we discovered that there could be a strong connection between the 

fields of Human Computer Interaction and creativity. We base this notion on the results of 

evaluating how the pilot KBE environment affected creativity, and connecting our separate 

learnings on human interface design, cognition and creativity (e.g. Brown, 1987; Kahneman, 

2013; Norman, 2013; Preece, 1995). However, more research would be needed to determine 

whether there is a connection between HCI and creativity. 

Assuming there is such a relation, it would be fair to assume that some aspects of user 

interface design are up to the preferences of the individual user, for instance colors and fonts. 

However, the more proven HCI design principles could guide the development of objectively 

better interfaces for creative design (e.g. Norman, 2013; Preece, 1995). 

Potential Use of Modeling Techniques 

During the study, we uncovered various modeling techniques that could be suited to 

represent a product structure and its functional relationships. Already mentioned in 2.4.2, are 

OPM (Dori and Crawley, 2013) and SBF (e.g. Goel et al., 2009). These were also suggested for 

future development in 5.4. 

In addition, we looked into the possibility of using Oriented Networks to represent the 

functional relationships of a product (Sheth, 1972). This modeling technique uses a network 

of nodes with directional connections. We considered using it in conjunction with the concept 

of functional surfaces by Tjalve (2003). However, due to the simple, linear nature of the coffee 

maker example, this technique was not used in the pilot KBE development. 
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Alternative Workflow 

In 4.2.2, we established a workflow where functional surfaces were defined and connected 

before doing structure variation. This is not strictly in accordance with the product synthesis 

proposed by Tjalve (2003), and could introduce some challenges. Originally, functional 

surfaces are a part of form variation, which is done after structure variation. Having already 

defined functional surfaces and their relationships, our options for rearranging and 

multiplying elements become restricted. However, as suggested in 5.1.1, these functional 

surface relationships allow us to implement things like automatic pipes and pumps as 

required. This increases the development cost, but eventually gives us a more powerful KBE 

environment that can retain product functionality while doing unrestricted structure 

variation. 

The Origin of Positive and Negative Constraints 

The word constraint arguably has an inherent negative feel to it. However, in order to discuss 

the good and bad aspects of cognitive frameworks, we established the terms positive 

constraints and negative constraints. By positive constraints we mean boundaries that 

eventually yield some form of gain, for instance more focused creative efforts. Negative 

constraints would have the opposite effect, for instance limiting creative outputs. 

In an attempt to formalize this concept, we looked for other studies that had used similar 

terms. Our initial search showed few relevant results for positive constraints, except for 

occasional mentions on the podcast of Tim Ferriss (e.g. Ferriss, 2015, ep 83), and in various 

blogs18, 19, 20. It is possible that the concept itself has been discussed in previous research, but 

with different terminology. Further study would be required to determine whether this is a 

previously explored concept with respect to creativity. 

The Role of Knowledge Management 

Throughout our study, the concept of Knowledge Management (KM) emerged as an 

interesting perspective on both KBE and creativity. We discovered that tacit knowledge in 

particular, has challenges associated to its conversion and embedment into knowledge based 

systems (e.g. Alavi and Leidner, 2001; Nonaka et al., 2000; Rocca, 2012). Combined with the 

fact that creativity could stem from tacit knowledge and experiences (Asimov, 1959; Nonaka 

and Konno, 1998), we wanted to investigate whether this could be relevant for implementing 

KBE systems that support or emulate human creativity. Although we did uncover interesting 

relationships between the fields of KM, KBE and creativity, we could not make any solid 

conclusions without further study. Therefore, we did not include KM as part of our main 

inspirations for the development of the pilot and future KBE environments. 

                                                      
Blog mentions of positive constraints: 
18 http://jamesclear.com/dr-seuss 
19 http://thinkspace.com/the-power-of-positive-constraints/ 
20 http://innovationexcellence.com/blog/2013/04/01/the-power-of-positive-constraints/ 

http://jamesclear.com/dr-seuss
http://thinkspace.com/the-power-of-positive-constraints/
http://innovationexcellence.com/blog/2013/04/01/the-power-of-positive-constraints/
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6.1.4 RQ 4: How can this environment be adapted to work for complex products? 

In chapter 5, we suggested features and prototype interfaces for a potential generic KBE 

environment for doing creative work with complex products. These proposals were based on 

the evaluation of the pilot KBE environment and other findings in our study. However, we 

would highlight that many of these suggestions also bear the subjective assessments of the 

author. As such, until further research is conducted, we cannot not make any solid claims 

regarding the feasibility or effectiveness of the suggested features. 

Prototype User Interfaces 

We proposed an updated version of the product variation form that applies Tjalve’s 

framework, which would allow users to more easily perform structure and form variation 

(Tjalve, 2003). Based on Tjalve’s framework, we also suggested an automatic product 

variation form, which would produce an entire solution space of products, controlled by filters 

chosen by the user. We argued that such an environment would converge towards the realm 

of computational creativity, attempting to emulate human level creativity (Colton and 

Wiggins, 2012). This automated exploration of the product solution space was inspired by the 

principles of Tjalve (2003), combined with the notion that great ideas often stem from 

discovering connections between things that ordinarily do not seem connected (Asimov, 

1959). 

Genericity and Complex Products 

To create a more generic environment, we suggested features such as interoperability 

through the import of industry standard files to do creative work in KBE, intelligent connection 

of arbitrary elements, and a more dynamic interface for product variation. 

To have a system that can scale with complex products, we proposed doing variations with 

entire sections of the product, definition of overall functional surfaces to link product 

sections, and incorporating systems thinking modeling frameworks such as OPM or SBF (Dori 

and Crawley, 2013; Goel et al., 2009). 

Meta Thinking and Analogical Thinking 

In 2.4.2, we mentioned meta thinking and analogical thinking as cognitive frameworks for 

structuring design processes. These could be options to consider for future development, but 

the underlying principles do not seem to pair well with our chosen principles by Tjalve (2003). 

Analogical thinking (Cross, 1997; Dorst, 2011; Goel, 2012) seems to resonate well with 

knowledge conversion (Nonaka and Konno, 1998) and the potential for KBE environments to 

reuse existing knowledge in new designs (Verhagen et al., 2012). Meta thinking (Goel, 2012), 

on the other hand, would inspire systems that rely on artificial intelligence and control 

knowledge  to perform self-diagnostics and adaptation of processes (Calkins et al., 2000). 
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6.2 Limitations and Suggestions for Improvement 

6.2.1 Research Scope 

The originally suggested thesis assignment was focused on incorporating the principles of 

Tjalve (2003) into a KBE environment for creative design. With the addition of metacognition, 

the research scope widened, and also led to a greater focus on the cognitive aspects of 

creativity. This ultimately led to a more diverse, but challenging thesis. We believe that the 

original scope would have allowed for a more in-depth research on KBE, and possibly to have 

experimented with a working generic KBE environment using Tjalve’s principles. Despite 

these limitations, we hope that the broader scope has uncovered some new perspectives with 

potentials for additional research. These could include how knowledge and KM relates to KBE 

and creative design, the effect that positive constraints have on creativity, and how HCI design 

principles can affect human creativity. 

6.2.2 Theory and Practice 

This study involved a combination of theoretical research and software development. The 

latter could be seen as more practical than theoretical. However, the pilot KBE environment 

was ultimately developed as a proof of concept with the theoretical research in mind, and not 

for immediate use in a specific industry. In light of former development experiences within 

other industries, we would argue that there is often a notable difference between theory and 

practice when it comes to software development and its integration into organizations. In 

retrospect, we would have preferred to incorporate some more practical aspects into our 

research and development, knowing that what is found in theory might come with 

unexpected challenges when attempted in practice later. 

6.2.3 Evaluation Process of the Pilot KBE Environment 

The findings in 4.6 and 4.7 were attained by the developer alone, who is neither a product 

designer by profession, nor the end user of the application. This compromises the objectivity 

and quality of the test results. Including the end users in the process would yield a more solid 

evaluation of the effects on creativity, and would provide invaluable feedback on potentials 

for improvement. The Scandinavian tradition of Participating Design includes the users in the 

design process of system development (Ehn, 1993). A collective resource approach suggested 

by Ehn (1993) with participating design in iterations could improve the evaluation stage 

(Schuler and Namioka, 1993). 
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6.3 Discussion on the AML Development Environment 

Rocca (2012) mentions how some find a programming language to be tedious compared to 

simply using a graphical user interface. However, he also points out several advantages of 

having an underlying language, and that it is even necessary to achieve certain advanced 

capabilities. Some cases where a KBE language is required or advantageous: when we need 

to capture the design intent or process, when we need to define a consistent automated 

generative process, and when we need to handle custom interoperability with non-standard 

file formats (Rocca, 2012, p. 173). 

Rocca (2012) gives further support to KBE, which he says has been labeled by many as “just 

CAD systems”, and highlights that, in fact, some KBE technologies are merely CAD systems 

with augmented KBE-like capabilities. He argues that the Adaptive Modeling Language (AML) 

by TechnoSoft, and the General-purpose Declarative Language (GDL) by Genworks, are “the 

only true KBE systems on the market”. 

Assuming that having a powerful language is one of the key advantages of KBE technologies, 

we would argue that the language and its facilities would be a vital area of focus for the 

providers of KBE development environments. As mentioned in 3.3, we used both AML XEmacs 

and Notepad++ to develop the pilot KBE environment. The reason for supplementing with 

Notepad++, was that it had certain assistive features that led to a faster and less error prone 

coding experience. This may be wholly subjective, as the preferred choice of code editor 

varies greatly in the software development community. Even so, given our experience from 

this, and other development projects, we would like to suggest some key features that we 

think would enhance the AML XEmacs environment. It is possible that some of these features 

already exist without our knowledge. We would also like to propose that some of these 

features would yield benefits for the developer, referring to HCI design principles (Norman, 

2013; Preece, 1995), and metacognitive aspects (Brown, 1987; Kahneman, 2013) which were 

identified in our theoretical studies. These benefits include faster code writing, less routine 

work, reduced cognitive load, early error catching, and ultimately being able to redirect these 

spared efforts into coding. We propose the following: 

1) Auto-completion of text would allow faster code output, less typing errors, and not 

having to remember exact names of already declared classes and properties. 

2) The editor could highlight other code that is relevant to the currently selected term, 

for instance a class name or a declared property. 

3) The editor could highlight the target of long references such as (the superior 

superior ...), when possible to determine. 

4) The environment code-to-test-cycle could be shortened so that the developer could 

more quickly view the results of minor code changes.  
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7 Conclusion 
This study investigates the possibility of using Knowledge Based Engineering (KBE) as a tool 

for the early creative design phase, and examines how the concept of metacognition could 

relate to KBE and creativity. Design research was used as an overall methodological approach 

as a basis for the research and development processes. 

A literature review on KBE and creativity revealed that KBE can facilitate creativity by 

automating routine tasks in favor of innovative efforts, and by exploration of product solution 

spaces via parametrization and generative procedures. A study of Eskild Tjalve’s work 

suggested that his design methodology could be implemented in KBE to support the creative 

design phase. A literature review on metacognition suggested that aspects such as reflective 

practice play a role in the creation, evaluation, and refinement of cognitive frameworks that 

can ultimately be suitable for implementation in systems for computational creativity. 

A pilot KBE environment was developed in AML using Tjalve’s systematic design principles. 

The resulting tool could perform Tjalve’s design variations on a simple product, by rearranging 

or multiplying components, and by changing the dimensions or base geometries of 

components. Tjalve’s functional surfaces could be defined on specific areas of components 

and connected with functional surface on other components, effectively defining their 

functional relationships. It was determined that all of the chosen principles from Tjalve were 

feasible to implement using a KBE technology with a strong modeling language such as AML. 

An evaluation of the KBE environment found that Tjalve’s framework imposed positive and 

negative constraints on creativity. The positive constraints facilitated creativity by guiding the 

trajectory of the design process, and by providing a set of design principles to fall back to 

when the creative flow is poor. The negative constraints inhibited creativity when the 

framework was unable to reproduce the ideas of the designer. Other negative aspects were 

identified as being related to Human Computer Interaction (HCI) and human cognition. 

A future development plan was proposed to advance the pilot KBE environment. Prototype 

interfaces were suggested to demonstrate how HCI design principles could mitigate the 

associated negative effects on creativity. Live updated product stats would allow the tool to 

better compete with traditional methods for mockup design. The concept of interoperability 

and handling of arbitrary models would promote a generic environment. Finally, suggestions 

were made for how to scale Tjalve’s design principles to work for complex products. 

The paper has demonstrated that KBE technologies with powerful language capabilities are 

well suited to incorporate a systematic design methodology as a framework to guide the early 

creative design process. The resulting effects on user creativity is largely dependent on the 

positive and negative constraints applied by the framework, and how strictly these 

constraints are enforced. 
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8 Suggestions for Further Work 

This chapter offers propositions for further work. The primary focus should be on 1) further 

development of the KBE environment, and 2) the use of participating design to reveal more 

potential effects on creativity. Secondary aspects to investigate include 3) getting a deeper 

understanding of how metacognition can benefit creative design, and 4) how HCI design 

principles can benefit human creativity. 

8.1 Development of the KBE Environment for Creative Design 

The next logical step after this study is to consider the suggestions in 5 Future Development, 

and conduct further research and development of a KBE environment for the early creative 

design phase using Tjalve’s framework. First, this adaptation should focus on genericity and 

the ability to handle arbitrary product models. Secondly, the environment should be aimed 

towards more complex products, such as industrial process plants. 

8.2 Participating Design for the KBE Environment 

A limitation of this study was that the potential end users of the KBE environment were not 

included in the testing and evaluation processes. Further research along with for instance 

product designers is needed to more accurately determine the effects that this tool has on 

creativity. The Scandinavian concept of Participating Design may be of relevance here. 

8.3 Metacognition and Creativity 

The study discovered potential ways to improve human creativity through reflective practice, 

which involves refinement of existing creative processes, adaptation of work environments 

to encourage casual and self-motivated idea generation, and evaluation of existing tools for 

creative design to uncover flaws and potentials for improvement. 

The concept of cognitive frameworks can be explored further with respect to the refinement 

of creative processes and to their applicability in tools for computational creativity. 

8.4 Human Computer Interaction and Creativity 

The study revealed potential close ties between Human Computer Interaction (HCI), human 

cognition, and creativity. This could have implications for not only KBE and creative design, 

but for the development of computational creativity tools in general. Further literature 

reviews and research must be conducted in order to substantiate this notion. 
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Appendix A – Source Code 

A.1 Coffee Maker Pilot 

;========================================================================== 

;  

; Module:  Coffee Maker Pilot 

; Version:  1.0.3.2 

; Date:  2016.02.08 

; Authors:  Eivind A. Taftø 

; Description: This pilot was made as part of a master's assignment at 

;    the Norwegian University of Science and Technology. 

;    The thesis explores the use of Knowledge Based 

;    Engineering technology to support an early creative 

;    design phase. The purpose of this pilot was to 

;    test-implement theoretical findings from Systematic 

;    Design of Industrial Products, by Tjalve (2003). 

;    These techniques include systematic variation 

;    of element arrangement, number of elements, 

;    element dimensions, element geometrical shapes, 

;    as well as creation of virtual functional surfaces that  

;    represent functional relationships between elements. 

; 

;========================================================================== 

 

(in-package :aml) 

 

 

;-------------------------------------------------------------------------- 

; Function:  arrange 

; Description: Calculates a relative arrangement coordinate for two 

;    elements. The multiplier determines the spacing between 

;    them, where 0.0 is no offset, and 1.0 is exact adjacency. 

; Reference: Functional Requirement F 2.1 

;    Structure Variation (relative arrangement) 

;-------------------------------------------------------------------------- 

(defun arrange (multiplier len-a len-b) 

 (* multiplier (* 0.5 (+ len-a len-b))) 

) 

 

 

;-------------------------------------------------------------------------- 

; Function:  inner-diameter 

; Description: Calculates diameter excluding wall thickness 

;-------------------------------------------------------------------------- 

(defun inner-diameter (diameter thickness) 

 (- diameter (* 2.0 thickness)) 

) 
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;-------------------------------------------------------------------------- 

; Class:  functional-surface 

; Description: General mixin class for functional surfaces. 

; Reference 1: Functional Requirement F 1.1 

;    Functional Surfaces (define) 

;-------------------------------------------------------------------------- 

(define-class functional-surface 

 :inherit-from (object) 

 :properties ( 

   

 ) 

) 

 

 

;-------------------------------------------------------------------------- 

; Class:  functional-surface-link 

; Description: Defines a connection between two functional-surface. 

;    The type and direction properties further specify 

;    the functional relationship. 

; Reference 1: Functional Requirement F 1.2 

;    Functional Surfaces (connect) 

;-------------------------------------------------------------------------- 

(define-class functional-surface-link 

 :inherit-from (object) 

 :properties ( 

  functional-surface-a nil 

  functional-surface-b nil 

  connection-type   nil ; gravity, stream, contact, none 

  connection-direction nil ; a-to-b,  b-to-a, two-way, none 

 ) 

) 
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;-------------------------------------------------------------------------- 

; Class:  functional-surface-disc 

; Description: Defines a functional surface in the form of a disc. 

;    The surface can optionally be projected above its origin. 

; Reference 1: Functional Requirement F 1.1 

;    Functional Surfaces (define) 

;-------------------------------------------------------------------------- 

(define-class functional-surface-disc 

 :inherit-from (functional-surface) 

 :properties ( 

  height (default 1.0) 

  diameter (default 1.0) 

  color  (default 'blue) 

  origin (default (list 0.0 0.0 0.0)) 

  display? (default t) 

  reference-coordinate-system nil 

 ) 

 :subobjects ( 

 

  ; Coordinate System 

  (cs :class 'coordinate-system-class 

   reference-coordinate-system (default) 

   display?  nil 

   origin (default) 

  ) 

   

  ; Virtual Surface Disc 

  (surface :class 'disc-object 

   reference-coordinate-system ^^cs 

   diameter (default) 

   color (default) 

   render 'shaded 

   display? (default) 

  ) 

  

  ; Surface Projection 

  (projection :class 'cylinder-object 

   reference-coordinate-system ^^cs 

   height  (default) 

   diameter  (default) 

   color  (default) 

   render  'boundary 

   display? (default) 

   orientation (list (translate (list 0.0 0.0 (* 0.5 ^height)))) 

  ) 

 ) 

) 
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;-------------------------------------------------------------------------- 

; Class:  functional-surface-disc-2x2 

; Description: Defines a 2 by 2 grid of functional-surface-disc. 

; Reference 1: Functional Requirement F 1.1 

;    Functional Surfaces (define) 

; Reference 2: Functional Requirement F 2.2 

;    Structure Variation (number of elements) 

;-------------------------------------------------------------------------- 

(define-class functional-surface-disc-2x2 

 :inherit-from (functional-surface) 

 :properties ( 

  height (default 1.0) 

  diameter (default 1.0) 

  color  (default 'blue) 

  spacing 0.0 

  d  (- (* 0.5 ^diameter) ^spacing) 

  offset (+ (arrange 0.5 ^d ^d) ^spacing) 

  origin (default (list 0.0 0.0 0.0)) 

  display? (default t) 

  reference-coordinate-system nil 

 ) 

 :subobjects ( 

  (cs :class 'coordinate-system-class 

   reference-coordinate-system (default) 

   display?  nil 

   origin (default) 

  ) 

  (fs-1 :class 'functional-surface-disc 

   diameter ^^d 

   origin (list ^^offset ^^offset 0.0) 

   reference-coordinate-system ^^cs 

  ) 

  (fs-2 :class 'functional-surface-disc 

   diameter ^^d 

   origin (list (- ^^offset) ^^offset 0.0) 

   reference-coordinate-system ^^cs 

  ) 

  (fs-3 :class 'functional-surface-disc 

   diameter ^^d 

   origin (list ^^offset (- ^^offset) 0.0) 

   reference-coordinate-system ^^cs 

  ) 

  (fs-4 :class 'functional-surface-disc 

   diameter ^^d 

   origin (list (- ^^offset) (- ^^offset) 0.0) 

   reference-coordinate-system ^^cs 

  ) 

 ) 

) 
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;-------------------------------------------------------------------------- 

; Class:  filter 

; Description: Defines a single Filter element. Its geometry is based on 

;    the truncated-cone-object, using difference-object to 

;    provide wall thickness. 

; Reference 1: Functional Requirement F 3.2 

;    Form Variation (dimensions) 

;-------------------------------------------------------------------------- 

(define-class filter 

 :inherit-from (difference-object) 

 :properties ( 

  b-h   (default 1.0) 

  b-d1   (default 1.0) 

  b-d2   (default 2.0) 

  wall-t  (default 0.25) 

  object-list (list ^outer ^inner) 

  reference-coordinate-system ^cs 

 ) 

 :subobjects ( 

  (outer :class 'truncated-cone-object 

   height   ^b-h 

   start-diameter  ^b-d1 

   end-diameter  ^b-d2 

   display?   nil 

  ) 

  (inner :class 'truncated-cone-object 

   height   ^b-h 

   start-diameter  (inner-diameter ^b-d1 ^wall-t) 

   end-diameter  (inner-diameter ^b-d2 ^wall-t) 

   display?   nil 

  ) 

 ) 

) 
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;-------------------------------------------------------------------------- 

; Class:  filter-2x2 

; Description: Defines a 2 by 2 grid of Filter elements. The individual 

;    element properties can be changed collectively from here. 

; Reference 1: Functional Requirement F 2.1 

;    Structure Variation (relative arrangement) 

; Reference 2: Functional Requirement F 2.2 

;    Structure Variation (number of elements) 

; Reference 3: Functional Requirement F 3.2 

;    Form Variation (dimensions) 

;-------------------------------------------------------------------------- 

(define-class filter-2x2 

 :inherit-from (object) 

 :properties ( 

  b-h  (default 1.0) 

  b-d1  (default 1.0) 

  b-d2  (default 2.0) 

  wall-t (default 0.25) 

  d1  (* 0.5 ^b-d1) 

  d2  (* 0.5 ^b-d2) 

  offset (arrange 0.5 ^d2 ^d2) 

  reference-coordinate-system nil 

 ) 

 :subobjects ( 

  (filter-1 :class 'filter 

   b-d1 ̂ d1 

   b-d2 ̂ d2 

   reference-coordinate-system (default) 

   orientation (list  

    (translate (list ^^offset ^^offset 0.0))) 

  ) 

  (filter-2 :class 'filter 

   b-d1 ̂ d1 

   b-d2 ̂ d2 

   reference-coordinate-system (default) 

   orientation (list  

    (translate (list (- ^^offset) ^^offset 0.0))) 

  ) 

  (filter-3 :class 'filter 

   b-d1 ̂ d1 

   b-d2 ̂ d2 

   reference-coordinate-system (default) 

   orientation (list  

    (translate (list ^^offset (- ^^offset) 0.0))) 

  ) 

  (filter-4 :class 'filter 

   b-d1 ̂ d1 

   b-d2 ̂ d2 

   reference-coordinate-system (default) 

   orientation (list  

    (translate (list (- ^^offset) (- ^^offset) 0.0))) 

  ) 

 ) 

) 
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;-------------------------------------------------------------------------- 

; Class:  cylinder-heater 

; Description: Defines a cylindrical shape for the water heater tank. 

; Reference 1: Functional Requirement F 3.1 

;    Form Variation (geometrical shape) 

; Reference 2: Functional Requirement F 3.2 

;    Form Variation (dimensions) 

;-------------------------------------------------------------------------- 

(define-class cylinder-heater 

 :inherit-from (cylinder-object) 

 :properties ( 

  a-h   (default 1.0) 

  a-d   (default 1.0) 

  height  ^a-h 

  diameter  ̂ a-d 

 ) 

) 

 

 

;-------------------------------------------------------------------------- 

; Class:  box-heater 

; Description: Defines a cubical shape for the water heater tank. 

;    Its X and Y dimensions are set from one property. 

; Reference 1: Functional Requirement 3.1 

;    Form Variation (geometrical shape) 

; Reference 2: Functional Requirement 3.2 

;    Form Variation (dimensions) 

;-------------------------------------------------------------------------- 

(define-class box-heater 

 :inherit-from (box-object) 

 :properties ( 

  a-h   (default 1.0) 

  a-d   (default 1.0) 

  height  ^a-d 

  width  ^a-d 

  depth  ^a-h 

 ) 

) 

  



 

94 
 

;-------------------------------------------------------------------------- 

; Class:  coffee-maker 

; Description: Defines the entire coffee maker model with properties and 

;    geometry. The main components are: water heater tank, 

;    coffee filter, and coffee pot. 

;-------------------------------------------------------------------------- 

(define-class coffee-maker 

 :inherit-from (object) 

 :properties ( 

 

  ; General 

  ;------------------------------------------------------------------ 

  display-cs? nil 

  color 'gray 

  (render :class 'option-property-class 

   label  "Render Mode" 

   formula  'shaded 

   mode   'combo 

   labels-list '("Shaded" "Boundary") 

   options-list '(shaded boundary) 

  ) 

  (wall-t :class 'editable-data-property-class 

   label "Wall Thickness" 

   formula 0.25 

  ) 

 

 

  ; Filter Count Selection 

  ; Functional Requirement F 2.2 

  ; Structure Variation - Number of Elements 

  ;------------------------------------------------------------------ 

  (b-count :class 'option-property-class 

   label   "Filter Count" 

   formula   'filter 

   mode   'combo 

   labels-list  '("Single Filter" "Four Filters (2x2)") 

   options-list  '(filter filter-2x2) 

  ) 

  b-fs-count (case !b-count 

      (filter   'functional-surface-disc) 

      (filter-2x2 'functional-surface-disc-2x2) 

  ) 

  



 

95 
 

  ; Heater Shape Selection 

  ; Functional Requirement F 3.1 

  ; Form Variation (geometrical shape) 

  ;------------------------------------------------------------------ 

  (a-shape :class 'option-property-class 

   label   "Heater Geometrical Shape" 

   formula   'cylinder-heater 

   mode   'combo 

   labels-list  '("Cylinder Heater" "Box Heater") 

   options-list  '(cylinder-heater box-heater) 

  ) 

 

 

  ; Pot (Element C) 

  ; Functional Requirement F 3.2 

  ; Form Variation (dimensions) 

  ;------------------------------------------------------------------ 

  (c-d1 :class 'editable-data-property-class 

   label "Pot Height" 

   formula 7.0  

  ) 

  (c-h1-diff :class 'editable-data-property-class 

   label "Pot Bottom Cut" 

   formula 1.25 

  ) 

  (c-h2 :class 'editable-data-property-class 

   label "Pot Rim Height" 

   formula 1.25 

  ) 

  (c-d2 :class 'editable-data-property-class 

   label "Pot Rim Diameter" 

   formula 4.0 

  ) 

  c-h1 ^c-d1 

  c-d1-diff ^c-d1 

 

 

  ; Filter (Element B) 

  ; Functional Requirement F 3.2 

  ; Form Variation (dimensions) 

  ;------------------------------------------------------------------ 

  (b-h :class 'editable-data-property-class 

   label "Filter Height" 

   formula 5.0 

  ) 

  (b-d1 :class 'editable-data-property-class 

   label "Filter Diameter (bottom)" 

   formula 2.0 

  ) 

  (b-d2 :class 'editable-data-property-class 

   label "Filter Diameter (top)" 

   formula 7.5 

  ) 
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  ; Heater (Element A) 

  ; Functional Requirement F 3.2 

  ; Form Variation (dimensions) 

  ;------------------------------------------------------------------ 

  (a-h :class 'editable-data-property-class 

   label "Heater Height" 

   formula 5.0 

  ) 

  (a-d :class 'editable-data-property-class 

   label "Heater Diameter/Width" 

   formula 7.5 

  ) 

  (a-pipe-h :class 'editable-data-property-class 

   label "Heater Pipe Height" 

   formula 1.0 

  ) 

  (a-pipe-d :class 'editable-data-property-class 

   label "Heater Pipe Diameter" 

   formula 2.0 

  ) 

  (a-pipe-t :class 'editable-data-property-class 

   label "Heater Pipe Thickness" 

   formula 0.25 

  ) 

 

 

  ; Arrangement Multipliers (Element A) 

  ; Functional Requirement F 2.1 

  ; Structure Variation (arrangement) 

  ;------------------------------------------------------------------ 

  (x-multiplier :class 'editable-data-property-class 

   label "Heater X-Multiplier" 

   formula 0.0 

  ) 

  (y-multiplier :class 'editable-data-property-class 

   label "Heater Y-Multiplier" 

   formula 0.0 

  ) 

  (z-multiplier :class 'editable-data-property-class 

   label "Heater Z-Multiplier" 

   formula 1.5 

  ) 

 

 

  ; Coordinates (Element A) 

  ; Functional Requirement F 2.1 

  ; Structure Variation (arrangement) 

  ;------------------------------------------------------------------ 

  a-x (arrange ^x-multiplier ^a-d ^b-d2) 

  a-y (arrange ^y-multiplier ^a-d ^b-d2) 

  a-z (arrange ^z-multiplier ^a-h ^b-h) 
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  ; Coordinates (Element B) 

  ;------------------------------------------------------------------ 

  b-x 0.0 

  b-y 0.0 

  b-z (* 0.5 (+ ^c-h2 ^b-h)) 

 

 

  ; Coordinates (Element B) 

  ;------------------------------------------------------------------ 

  c-x 0.0 

  c-y 0.0 

  c-z1 (* 0.5 ^c-h1) 

  c-z2 (* 0.5 (+ ^c-h1)) ; ^c-h2)) 

  c-h1-diff-z (* 0.5 (- ^c-h1-diff ^c-d1)) 

 

 

  ; Functional Surfaces 

  ;------------------------------------------------------------------ 

  (display-fs? :class 'editable-data-property-class 

   label "Display Functional Surfaces" 

   formula t 

  ) 

  (fs-gap :class 'editable-data-property-class 

   label "Functional Surface Projection" 

   formula 0.6 ; Offset from element 

  ) 

  a-fs-z (- (+ (* 0.5 ^a-h) ^fs-gap)) 

  b-fs-z    (+ (* 0.5 ^b-h) ^fs-gap) 

 

 ) 

 

 

 :subobjects ( 

   

  ; General 

  ;------------------------------------------------------------------ 

 

  ; Main Coordinate System 

  (main-cs :class 'coordinate-system-class 

   origin (list 0.0 0.0 0.0) 

   display? ^^display-cs? 

  ) 

 

 

  ; Element C (Pot) 

  ;------------------------------------------------------------------ 

 

  ; Coordinate System - Pot 

  (c-cs1 :class 'coordinate-system-class 

   origin (list ^^c-x ^^c-y ^^c-z1) 

   reference-coordinate-system ^^main-cs 

   display? ^^display-cs? 

  ) 
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  ; Coordinate System - Pot Rim, Handle 

  (c-cs2 :class 'coordinate-system-class 

   origin (list ^^c-x ^^c-y ^^c-z2) 

   reference-coordinate-system ^^c-cs1 

   display? ^^display-cs? 

  ) 

 

 

  ; Pot 

  (obj-c1 :class 'difference-object 

   object-list (list ^sphere ^cylinder) 

   reference-coordinate-system ^^c-cs1 

   (sphere :class 'sphere-object 

    height ^^c-h1 

    diameter ^^c-d1 

   ) 

   (cylinder :class 'cylinder-object 

    height ^^c-h1-diff 

    diameter ^^c-d1-diff 

    orientation (list  

     (translate (list 0.0 0.0 ^^c-h1-diff-z))) 

   ) 

  ) 

 

 

  ; Pot Rim 

  (obj-c2 :class 'pipe-object 

   height    ^^c-h2 

   outer-diameter ^^c-d2 

   thickness   ^^wall-t 

   reference-coordinate-system ^^c-cs2 

  ) 

 

 

  ; Pot Handle (part 1) 

  (obj-c-handle1 :class 'box-object 

   ; NOTE: Properties are currently hard-coded 

   height 1.0 

   width  2.75 

   depth  0.5 

   reference-coordinate-system ^^c-cs2 

   orientation (list (translate (list (+ 2.0 1.25) 0.0 0.0))) 

  ) 

 

 

  ; Pot Handle (part 2) 

  (obj-c-handle2 :class 'box-object 

   ; NOTE: Properties are currently hard-coded 

   height 1.0  

   width  0.5 

   depth  4.0 

   reference-coordinate-system ^^c-cs2 

   orientation (list (translate (list (+ 2.0 2.5) 0.0 -1.75))) 

  ) 
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  ; Element B (Filter) 

  ;------------------------------------------------------------------ 

 

  ; Coordinate System - Filter 

  (b-cs :class 'coordinate-system-class 

   origin (list ^^b-x ^^b-y ^^b-z) 

   reference-coordinate-system ^^c-cs2 

   display? ^^display-cs? 

  ) 

 

 

  ; Functional Surface B 

  (b-fs :class !b-fs-count 

   height  (- ^^fs-gap) 

   diameter  (inner-diameter ^^b-d2 ^^wall-t) 

   color  'green 

   origin  (list 0.0 0.0 ^^b-fs-z) 

   display? ^^display-fs? 

   reference-coordinate-system ^^b-cs 

   spacing  (if (equal  

    ^^b-fs-count 'functional-surface-disc-2x2) ^^wall-t) 

  ) 

 

 

  ; Filter 

  (obj-b :class !b-count 

   reference-coordinate-system ^^b-cs 

  ) 

 

 

  ; Element A (Heater) 

  ;------------------------------------------------------------------ 

 

  ; Coordinate System - Heater 

  (a-cs :class 'coordinate-system-class 

   origin (list ^^a-x ^^a-y (+ ^^a-z ^^a-pipe-h)) 

   reference-coordinate-system ^^b-cs 

   display? ^^display-cs? 

  ) 

 

 

  ; Functional Surface A 

  (a-fs :class 'functional-surface-disc 

   reference-coordinate-system ^^a-cs 

   height  ^^fs-gap 

   diameter (inner-diameter ^^a-pipe-d ^^a-pipe-t) 

   color  'red 

   origin  (list 0.0 0.0 (- ^^a-fs-z ^^a-pipe-h)) 

   display? ^^display-fs? 

  ) 
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  ; Heater 

  (obj-a :class 'difference-object 

   reference-coordinate-system ^^a-cs 

   object-list (list ^outer ^inner) 

    

   (outer :class !a-shape 

     

   ) 

   (inner :class !a-shape 

    a-d (inner-diameter ^^a-d ^^wall-t) 

    orientation (list  

     (translate (list 0.0 0.0 ^^wall-t))) 

   ) 

  ) 

 

 

  ; Heater Pipe 

  (obj-a-pipe :class 'pipe-object 

   reference-coordinate-system ^^a-cs 

   outer-diameter  ^^a-pipe-d 

   thickness   ^^a-pipe-t 

   height   ^^a-pipe-h 

   orientation (list  

    (translate (list 0.0 0.0 (* -0.5 (+ ^^a-h !height))))) 

  ) 

 

 ) 

) 
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;-------------------------------------------------------------------------- 

; Class:  coffee-maker-gui 

; Description: Provides a GUI for the user to alter the 

;    coffee-maker through various inputs. 

; References: Functional Requirements F 2.1, F 2.2, F 3.1, F 3.2 

;-------------------------------------------------------------------------- 

(define-class coffee-maker-gui 

 :inherit-from (coffee-maker data-model-node-mixin) 

 :properties ( 

  label "Coffee Maker Pilot" 

   

  ; Default Properties 

  property-objects-list (list 

   "General" 

   (the superior render self) 

   (the superior wall-t self) 

   "" 

   "Functional Surfaces" 

   (the superior display-fs? self) 

   (the superior fs-gap self) 

   "" 

   "Structure Variation - Heater Arrangement" 

   (the superior x-multiplier self) 

   (the superior y-multiplier self) 

   (the superior z-multiplier self) 

   "" 

   "Structure Variation - Filter Count" 

   (the superior b-count self) 

   "" 

   "Form Variation - Heater Shape" 

   (the superior a-shape self) 

   "" 

   "Form Variation - Heater Dimensions" 

   (the superior a-h self) 

   (the superior a-d self) 

   (the superior a-pipe-h self) 

   (the superior a-pipe-d self) 

   (the superior a-pipe-t self) 

   "" 

   "Form Variation - Filter Dimensions" 

   (the superior b-h self) 

   (the superior b-d1 self) 

   (the superior b-d2 self) 

   "" 

   "Form Variation - Pot Dimensions" 

   (the superior c-h2 self) 

   (the superior c-d2 self) 

   (the superior c-d1 self) 

   (the superior c-h1-diff self) 

  ) 

 ) 

) 
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A.2 Coffee Maker Pilot – Supplementary Files 

;========================================================================== 

;  

; File:  Coffee Maker Pilot Supplements 

; Authors:  Eivind A. Taftø 

; Description: Contains run commands and AML configuration files. 

; 

;========================================================================== 

 

 

;-------------------------------------------------------------------------- 

; A simple set of commands for to launch the  

; coffee maker pilot from the XEmacs command line.  

;-------------------------------------------------------------------------- 

(load "C:\\AML\\Pilot\\sources\\coffee-maker.aml") ; Your source file path 

(delete-all-models t) 

(create-model 'coffee-maker-test :class 'coffee-maker-gui) 

(select-model 'coffee-maker-test) 

(draw (the) :clear-display? t) 

 

 

;-------------------------------------------------------------------------- 

; AML Lights configuration file. 

; The default lighting used in most screenshots.  

;-------------------------------------------------------------------------- 

((1.0 1.0 1.0) (0.5 0.45 -0.2)) 

((0.02 0.02 0.02) (-1 0 0)) 

 

 

;-------------------------------------------------------------------------- 

; AML View configuration file. 

; The default head-on view used in most screenshots. 

;-------------------------------------------------------------------------- 

Coffee Maker Default View 

0 -23.632500 3.733979  

0 0.156066 0.987747  

0.027129 0 11.187500  

26.299973 23.925671 

 

 

;-------------------------------------------------------------------------- 

; AML View configuration file. 

; The default head-on view used when a 2x2 filter option is selected. 

;-------------------------------------------------------------------------- 

Coffee Maker 2x2 View 

12.057594 -18.332682 4.872201  

-0.119114 0.181104 0.976224  

0.027129 0 11.187500  

26.299974 23.925671 
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A.3 Coffee Maker Pilot – Discontinued Prototype GUI 

;========================================================================== 

;  

; Module:  Connect Functional Surfaces GUI (DISCONTINUED) 

; Version:  0.9.1.4 

; Date:  2015.12.18 

; Authors:  Eivind A. Taftø 

; Description: This is a preliminary GUI prototype for connecting 

;    functional-surfaces. The user would interactively select 

;    two predefined functional surfaces from the model canvas. 

;    Next, the user selects connection type and directoin  

;    from dropdown menus. This information would be saved in 

;    a functional-surface-link class. 

; See also:  functional-surface, 

;    functional-surface-link, 

;    functional-surface-disc, 

;    functional-surface-disc-2x2 

; 

;========================================================================== 

 

(in-package :aml) 

 

 

;-------------------------------------------------------------------------- 

; Class:  connect-functional-surfaces-gui 

; Description: Defines the main GUI for connecting functional surfaces. 

; Reference 1: Functional Requirement F 1.2 

;    Functional Surfaces (connect) 

;-------------------------------------------------------------------------- 

(define-class connect-functional-surfaces-gui 

 :inherit-from (ui-form-class) 

 :properties( 

 

  ; Common Properties 

  title "Connect Functional Surfaces" 

  x-margin 3 

  y-margin 5 

  x-spacing 5 

  input-frame-w 40 ; Entire left side frame 

  input-label-w 45 ; Left side input labels 

  input-frame-w-half (/ ^input-frame-w 2.0) 

  input-field-h 8 

  input-y-spacing 4 

  input-field-total-h (+ ^input-field-h ^input-y-spacing)  

  canvas-frame-h (- 100 (* ^y-margin 2.0)) 

  canvas-frame-w (- 100  

   (+ ^input-frame-w ^x-spacing (* ^x-margin 2.0))) 

 



 

104 
 

  ; FORM - Main properties 

  label ^title 

  x-offset 50 

  y-offset 50 

  width  800 

  height 400 

 

 

  ; FORM - Close 

  close-action '(when  

   (string= (pop-up-message 

    "Are you sure you want to close the form?" 

    :done-label "Yes" 

    :cancel-label "No") 

   "Yes") 

   (hide !superior) 

  ) 

 ) 

 

 :subobjects ( 

 

  ; TITLE 

  (lbl-title :class 'ui-label-class 

   x-offset  ^^x-margin 

   y-offset  ^^y-margin 

   width   (- 100 (* 2 ^^x-margin)) 

   label   ^^title 

   label-align  'left 

  ) 

 

 

  ; INPUT - Select Surface A 

  (txt-obj-A :class 'ui-labeled-field-class 

   x-offset  ^^x-margin 

   y-offset  ^^y-margin 

   width  ^^input-frame-w 

   height  ^^input-field-h 

   label-width ^^input-label-w 

   label  "Surface A" 

  ) 

 

 

  ; INPUT - Select Surface B 

  (txt-obj-B :class 'ui-labeled-field-class 

   x-offset   ^^x-margin 

   y-offset   (+ ^^input-field-total-h  

        (the superior superior txt-obj-A y-offset)) 

   width  ^^input-frame-w 

   height  ^^input-field-h 

   label-width ^^input-label-w 

   label  "Surface B" 

  ) 
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  ; INPUT - Connection Type 

  (cbo-conn-type :class 'ui-labeled-option-menu-class 

   x-offset  ^^x-margin 

   y-offset  (+ ^^input-field-total-h  

       (the superior superior txt-obj-B y-offset)) 

   width  ^^input-frame-w 

   height  ^^input-field-h 

   label  "Connection Type" 

   label-width ^^input-label-w 

   labels-list '("Touch" "Gravitational" "None") 

   options-list (list 'touch 'gravity 'none) 

   selected-option 'touch 

  ) 

 

 

  ; INPUT - Connection Direction 

  (cbo-conn-dir :class 'ui-labeled-option-menu-class 

   x-offset  ^^x-margin 

   y-offset  (+ ^^input-field-total-h  

       (the superior superior cbo-conn-type y-offset)) 

   width   ^^input-frame-w 

   height   ^^input-field-h 

   label   "Connection Direction" 

   label-width  ^^input-label-w 

   labels-list  '("A to B" "B to A" "Two-way" "None") 

   options-list  (list 'ab 'ba 'two 'none) 

   selected-option 'ab 

  ) 

 

 

  ; BUTTON - Apply 

  (btn-apply :class 'ui-apply-button-class 

   x-offset ^^x-margin 

   y-offset (+ ^^input-field-total-h  

      (the superior superior cbo-conn-dir y-offset)) 

   width ^^input-frame-w-half 

   height ^^input-field-h 

   label  "Apply" 

  ) 

 

 

  ; BUTTON - Cancel 

  (btn-cancel :class 'ui-cancel-button-class 

   x-offset (+ ^^x-margin ^^input-frame-w-half) 

   y-offset (+ ^^input-field-total-h  

      (the superior superior cbo-conn-dir y-offset)) 

   width  ^^input-frame-w-half 

   height  ^^input-field-h 

   label  "Cancel" 

  ) 
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  ; CANVAS - Model 

  (can-main :class 'ui-canvas-class 

   x-offset (+ ^^input-frame-w ^^x-margin ^^x-spacing) 

   y-offset ^^y-margin 

   width ^^canvas-frame-w 

   height ^^canvas-frame-h 

  ) 

 ) 

) 

 


