
Knowledge Based Engineering and
Metacognition for Creative Design

Eivind André Taftø

Master of Science in Engineering and ICT

Supervisor: Ole Ivar Sivertsen, IPM
Co-supervisor: Ivar Marthinusen, IPM

Christos Kalavrytinos, IPM

Department of Engineering Design and Materials

Submission date: February 2016

Norwegian University of Science and Technology

Knowledge Based Engineering
and

Metacognition
for

Creative Design

Eivind A. Taftø

Submitted as partial fulfillment of the

requirements for the degree of

Master of Engineering and ICT

Department of Engineering Design and Materials,

Norwegian University of Science and Technology

2016

i

ii

iii

Preface

This thesis is submitted in partial fulfilment of the requirements for the degree of Master of

Engineering and ICT. The degree is offered by the Engineering and ICT programme at the

Norwegian University of Science and Technology in Trondheim.

My work was supervised by Professor Ole Ivar Sivertsen at the Department of Engineering

Design and Materials, and co-supervised by Ivar Marthinusen and Christos Kalavrytinos in the

same department.

Acknowledgements

To my supervisor, Ivar the Mountain Goat and Christos the Philosopher:

Thank you for your professional input and relentless interest in a flimsy coffee maker.

To my father, mother, sister and brother, in order of descending age, mind you:

Thank you for being an incredible asset to my life. May our bonds be everlasting.

To my grandparents, whom I never truly got to thank:

Your guidance and wisdom will always be remembered.

Epilogue

The remnants of war can be felt across the entire keyboard.

Eivind André Taftø

Trondheim

2016.02.29

iv

v

Abstract

This study focuses on the possibility of using Knowledge Based Engineering (KBE) as a tool for

the early creative design phase, using systematic design principles introduced by Eskild Tjalve.

In addition, the concept of metacognition was explored to discover how it could relate to KBE

and creativity. Specifically, the following research questions guided this research: 1) How can

metacognition benefit KBE and creative design? 2) How can KBE technologies support the

creative design phase? 3) How can Tjalve’s principles be implemented with KBE for a simple

product? 4) How can this environment be adapted to work for complex products?

This research study applies design research as a methodological approach. A literature review

was conducted on previous research on KBE, creativity, and metacognition. In addition, this

study has utilized Eskild Tjalve’s work, Systematic Design of Industrial Products. The results of

this review provided four learnings which became important for answering the main research

questions. Firstly, existing research on KBE technologies indicated how the advantages of

these systems could benefit creative design. Secondly, the research on creativity identified

potential challenges with emulating human creativity, and revealed different ways of

improving human creativity. Third, the study of metacognition delved into the arts of

reflective practice and cognitive frameworks for creative design. Existing research suggested

that computer systems could possibly embed some of these frameworks. Finally, Tjalve

proposed a set of systematic product design principles that seemed feasible to implement

using KBE technologies.

These theoretical results provided a knowledge base for the next phase of the study, and the

practical part of this research utilizes Tjalve’s principles to derive a cognitive framework for

systematic design. This framework was then implemented in a pilot KBE environment for

doing creative design work on a simple product. The environment was later evaluated to

answer the following questions: a) What are the systematic design constraints applied by the

chosen framework? b) How do the framework constraints affect creativity? c) How feasible

were the framework constraints to implement in KBE?

Based on this evaluation, plans for prototype KBE environments were suggested for future

development, where genericity and complex products were considered as advancements. In

conjunction with this, HCI design principles were proposed to mitigate associated negative

effects on creativity. A framework is proposed that illustrates how metacognition relates to

KBE and creativity. In addition, positive and negative constraints for creative design are

highlighted. Finally, implications for research and practice, along with limitations and

suggestions, are correspondingly discussed in the thesis.

vi

vii

Sammendrag

Denne studien fokuserer på muligheten for å bruke Knowledge Based Engineering (KBE) som

et verktøy for den tidlige kreative designfasen. I tillegg ble begrepet metakognisjon utforsket

å finne ut hvordan dette kunne relateres til KBE og kreativitet. Forskningsspørsmålene som

denne studien ønsker å svare på er: 1) Hvordan kan metakognisjon være til fordel for KBE og

kreativt design? 2) Hvordan kan KBE-teknologier støtte den kreative designfasen? 3) Hvordan

kan Tjalves prinsipper implementeres med KBE for et enkelt produkt? 4) Hvordan kan dette

verktøyet videre tilpasses for å arbeide med komplekse produkter?

Denne studien benytter design research som metode. En litteraturstudie ble utført på

tidligere forskning innen KBE, kreativitet og metakognisjon. I tillegg har dette studiet sett på

Eskild Tjalves Systematic Design of Industrial Products. Resultatene fra dette litteraturstudiet

ga fire lærdommer som ble essensielle for besvarelsen av forskningsspørsmålene. Først og

fremst viser eksisterende forskning på KBE-teknologi indikerte hvordan fordelene med disse

systemene kan være til nytte for kreativ design. Videre viser forskning på kreativitet

identifiserte potensielle utfordringer ved å simulere menneskelig kreativitet, og forskjellige

måter for å forbedre menneskelig kreativitet. Studiet på metakognisjon så nærmere på

konseptet reflekterende praksis og kognitive rammeverk for kreativt design. Eksisterende

forskning antydet at noen av disse rammeverkene kunne bygges inn i datasystemer. Eskild

Tjalve foreslo et sett med systematiske designprinsipper for produkter, som virket mulig å

implementere ved hjelp av KBE-teknologi.

Den teoretiske delen av studien gav resultater som bidro til å danne en viktig kunnskapsbase

for neste fase av studien Den praktiske delen av masteroppgaven bygger på Tjalves arbeid

vedrørende systematisk design av industriprodukter, hvorav et kognitivt rammeverk ble

etablert. Dette rammeverket ble deretter implementert i en KBE testapplikasjon for å gjøre

kreativt designarbeid på et enkelt produkt. Applikasjonen ble senere evaluert for å fastslå

følgende: a) Hva er de systematiske designrestriksjonene i det valgte rammeverket? b)

Hvordan påvirker rammeverkets restriksjoner kreativitet? c) Hvor gjennomførbart var det å

implementere rammeverkets restriksjoner i KBE?

Basert på denne evalueringen, ble det foreslått KBE-prototyper for fremtidig utvikling, hvor

det ble tatt hensyn til generiske egenskaper og støtte for komplekse produkter. Her foreslås

også HCI design prinsipper for å nedtone negative effekter på kreativitet. Et rammeverk viser

hvordan metakognisjon er relatert til KBE og kreativitet. Videre er positive og negative

restriksjoner for kreativ design diskutert. Tilslutt diskuteres implikasjoner for forskning og

praksis, begrensninger i studien, samt forslag til videre arbeid.

viii

ix

Contents

1 INTRODUCTION 1

1.1 Background and Motivation 1

1.1.1 Research Motivation 1

1.1.2 Research Contributions 2

1.2 Research Questions 2

1.2.1 Additional Research Scope 2

1.3 Scenario 3

1.4 Structure of the Thesis 4

1.4.1 Chapter Overview 4

1.4.2 Chapter Coverage of Research Questions 4

1.4.3 Assignment Focus and Adjustments 4

2 THEORY 5

2.1 Knowledge Based Engineering 5

2.1.1 Advantages of KBE 5

2.1.2 KBE for Creative Design 6

2.1.3 Knowledge Modelling Frameworks for KBE 6

2.2 Essentials of Knowledge Management 7

2.2.1 Types of Knowledge 7

2.2.2 Knowledge Conversion 8

2.3 Creativity 9

2.3.1 Innovation and Creative Design 9

2.3.2 Computational Creativity 10

2.3.3 How Knowledge Affects Creativity 10

2.3.4 Fostering Creativity 10

2.3.5 Creativity as a Paradox 11

2.3.6 Creative Processes 11

2.4 Metacognition 13

2.4.1 Reflective Practice 13

2.4.2 Cognitive Frameworks 14

2.4.3 Cognition in Human Computer Interaction 16

2.5 Systematic Design of Industrial Products 18

2.5.1 Terminology 18

2.5.2 Product Properties 18

2.5.3 Product Synthesis 18

x

2.5.4 Functions and Basic Structure 19

2.5.5 Quantified Structure 20

2.5.6 Total and Element Form 21

2.5.7 Functional Surfaces 21

2.5.8 Summary 22

3 METHODOLOGY 23

3.1 Design Research Approach 23

3.2 Approach to Research Questions 24

3.3 Development Tools 25

3.3.1 Adaptive Modeling Language 25

3.3.2 Notepad++ 25

3.3.3 Visual Studio 25

4 PILOT KBE ENVIRONMENT 27

4.1 Purpose 27

4.2 Scope 28

4.2.1 Product Synthesis 28

4.2.2 Workflow 28

4.2.3 Product Choice 29

4.2.4 Alternative Products 30

4.2.5 Scope Summary 30

4.3 Requirements Specification 31

4.3.1 Functional Requirements 31

4.3.2 Use Cases 32

4.3.3 Non-Functional Requirements 33

4.4 Development 34

4.4.1 Basic Structure 34

4.4.2 Functional Requirement F 1.1 – Define Functional Surfaces 34

4.4.3 Functional Requirement F 1.2 – Connect Functional Surfaces 36

4.4.4 Functional Requirement F 2.1 – Do Structure Variation (arrangement) 38

4.4.5 Functional Requirement F 2.2 – Do Structure Variation (number of elements) 41

4.4.6 Functional Requirement F 3.1 – Form Variation (element shape) 44

4.4.7 Functional Requirement F 3.2 – Do Form Variation (element dimensions) 46

4.5 Final Implementation 48

4.5.1 Environment 48

4.5.2 Product Variations 50

4.6 Test Report 51

xi

4.6.1 Verification of Functional Requirements 51

4.7 Evaluation 53

4.7.1 Development Issues 53

4.7.2 Effects on Creativity 53

4.7.3 Other Comments 55

5 FUTURE DEVELOPMENT 57

5.1 Features 57

5.1.1 Automatic Creation of Support Elements 57

5.1.2 CAD Import 57

5.1.3 Product Stats 58

5.2 GUI Prototypes 59

5.2.1 Defining and Connecting Functional Surfaces 59

5.2.2 Manual Product Variation 59

5.2.3 Automatic Product Variation 61

5.3 Genericity 63

5.3.1 Interoperability 63

5.3.2 Arbitrary Models 63

5.4 Complex Products 64

5.4.1 Number of Elements 64

5.5 Other Aspects 65

5.5.1 User Interface Design 65

6 DISCUSSION 67

6.1 Research Questions 67

6.1.1 RQ 1: How can metacognition benefit KBE and creative design? 67

6.1.2 RQ 2: How can KBE technologies support the creative design phase? 69

6.1.3 RQ 3: How can Tjalve’s principles be implemented with KBE for a simple product? 70

6.1.4 RQ 4: How can this environment be adapted to work for complex products? 75

6.2 Limitations and Suggestions for Improvement 76

6.2.1 Research Scope 76

6.2.2 Theory and Practice 76

6.2.3 Evaluation Process of the Pilot KBE Environment 76

6.3 Discussion on the AML Development Environment 77

xii

7 CONCLUSION 79

8 SUGGESTIONS FOR FURTHER WORK 81

8.1 Development of the KBE Environment for Creative Design 81

8.2 Participating Design for the KBE Environment 81

8.3 Metacognition and Creativity 81

8.4 Human Computer Interaction and Creativity 81

9 REFERENCES 83

APPENDIX A – SOURCE CODE 87

A.1 Coffee Maker Pilot 87

A.2 Coffee Maker Pilot – Supplementary Files 102

A.3 Coffee Maker Pilot – Discontinued Prototype GUI 103

xiii

List of Figures

Figure 1: SECI process for knowledge conversion (adapted from Nonaka et al., 2000) 8

Figure 2: Deduction, induction and abduction (adapted from Dorst, 2011) 9

Figure 3: The basic entities of OPM (adapted from Dori and Crawley, 2013) 15

Figure 4: Manipulating basic properties (adapted from Tjalve, 2003) 18

Figure 5: Product synthesis stages (adapted from Tjalve, 2003) 19

Figure 6: Different basic structures of a tea maker (adapted from Tjalve, 2003) 19

Figure 7: Quantified structure of a coffee maker (adapted from Tjalve, 2003) 20

Figure 8: Quantified structure of a steam roller (adapted from Tjalve, 2003) 20

Figure 9: Form variation for a tea maker (adapted from Tjalve, 2003) 21

Figure 10: Functional surfaces and form variation (adapted from Tjalve, 2003) 21

Figure 11: Maximum and minimum functional surfaces (adapted from Tjalve, 2003) 22

Figure 12: Scope of Tjalve's product synthesis (adapted from Tjalve, 2003) 28

Figure 13: Pilot application workflow 28

Figure 14: Some filtered coffee maker designs 29

Figure 15: Use case U 1.1 – Define functional surfaces 32

Figure 16: Use case U 1.2 – Connect functional surfaces 33

Figure 17: Use case U 2.1 - Do structure variation 33

Figure 18: Class diagram and AML model of the coffee maker basic structure 34

Figure 19: Functional surfaces in AML – heater pipe exit and filter entry 35

Figure 20: Functional surfaces in AML – created from a selected cross section 36

Figure 21: Class diagram for functional-surface-link 36

Figure 22: Class diagram of the coffee maker elements linked by functional surfaces 37

Figure 23: Custom GUI for connecting functional surfaces in AML 38

Figure 24: Distance between the centers of two adjacent cylinders 39

Figure 25: Structure variation in AML – default GUI for arrangement multipliers 41

Figure 26: Structure variation in AML – rearranging the heater element 41

Figure 27: Structure variation in AML – default GUI for number of filters 43

Figure 28: Structure variation in AML – number of filter elements 43

Figure 29: Form variation in AML – default GUI for heater shape 45

Figure 30: Form variation in AML – heater shapes 45

Figure 31: Form variation in AML – default GUI for element dimensions 47

Figure 32: Form variation in AML – changing dimensions (thickness, size) 47

Figure 33: Final pilot KBE environment 49

Figure 34: Product variations using Tjalve's principles in KBE 50

Figure 35: Radar chart with stats for two coffee makers 58

Figure 36: Prototype GUI for doing manual product variations 60

Figure 37: Prototype GUI for automatic product variation 62

Figure 38: How metacognition relates to KBE and creativity 67

Figure 39: Tjalve's principles as a cognitive framework 70

xiv

xv

Notations

Abbreviations

AI Artificial Intelligence

AML Adaptive Modeling Language, by TechnoSoft Inc.

CAD Computer Aided Design

CAI Computer Aided Innovation

GUI Graphical User Interface

HCI Human Computer Interaction

KBE Knowledge Based Engineering

KM Knowledge Management

MMG Multi Model Generation

OPM Object Process Methodology

RQ Research Question

SECI Socialization, Externalization, Combination, Internalization

1

1 Introduction

1.1 Background and Motivation

Knowledge Based Engineering (KBE) technologies emerged in the 1980s, and have ever since

provided invaluable automation of engineering design in various industries (Verhagen et al.,

2012). The ever-increasing demand for product innovation is motivating the use of KBE and

other computer aided technologies to do creative design (Cascini, 2008; Sanya and Shehab,

2014). The KBE environments of today are often mature technologies that automate product

family design through parametrization and Multi Model Generation (Rocca, 2012). Although

technologies that focus more on innovation do exist, the use of KBE for early creative design

seems to be a less explored concept.

1.1.1 Research Motivation

The potential use of KBE in an early creative design context is the main motivator for our

study. Additionally, the principles found in Systematic Design of Industrial Products by Tjalve

(2003) serve as an inspiration and starting point for our research. The resulting scope has

been expressed as an area of interest for the Department of Engineering Design and Materials

at NTNU in Trondheim.

The main purpose of this research is to reveal how the advantages of KBE technologies can

be leveraged to support creative design. In particular, we seek to adapt the principles of Tjalve

(2003), and test-implement them in a pilot KBE environment. Having done this, we can

evaluate how such a tool can affect design creativity.

An underlying assumption is that human cognition is closely tied to creativity (e.g. Arnsten et

al., 2012; Goel, 2012; Howard et al., 2008), and that human cognition can have implications

for the development and use of creative design tools. To explore this notion, we will study

the field of metacognition1, seeking to identify aspects that may relate to creativity and

software engineering. Specifically, we will look for metacognitive concepts that can support

designers to optimize their own creativity, and principles that can be implemented in a KBE

environment. The inclusion of metacognition as a key part of our study is also motivated by

literary works and otherwise, such as the podcast of Tim Ferriss (e.g. Ferriss, 2015), Waking

Up (Harris, 2014), Thinking, Fast and Slow (Kahneman, 2013) and Marcus Aurelius:

Meditations (e.g. Hays, 2002).

This study seeks to uncover potential challenges in the emulation or support of human

creativity using computer technology. This leads us into a study of creativity in general. By

better understanding its mechanisms, we aim to find ways in which people can improve their

1 Metacognition is defined as knowledge and regulation of own cognition (elaborated in section 2.4).

2

own creativity. In addition, studies indicate that converting and embedding tacit knowledge

is a challenge in any knowledge-based system (e.g. Alavi and Leidner, 2001; Dingsøyr, 2002;

Nonaka and Konno, 1998; Rocca, 2012). With this in mind, we investigate key concepts within

knowledge management to learn about such challenges within the scope of our research.

1.1.2 Research Contributions

New knowledge and understanding can further enlighten the possibilities of using KBE for

early creative design. Moreover, the findings should provide some previously less explored

connections between the fields of KBE, creativity, and metacognition. Lastly, an important

aim and potential contribution is to develop the pilot KBE environment for creative design in

a manner that can benefit or inspire future research and development.

1.2 Research Questions

The list below presents the main research questions addressed in this thesis. We elaborate

on how we intend to approach these questions in 3.2.

- RQ 1 How can metacognition benefit KBE and creative design?

- RQ 2 How can KBE technologies support the creative design phase?

- RQ 3 How can Tjalve’s principles be implemented with KBE for a simple product?

- RQ 4 How can this environment be adapted to work for complex products?

1.2.1 Additional Research Scope

Since creativity is a broad concept that spans a variety of fields, it becomes necessary to apply

a narrower scope that fits the focus and related aspects of the study. Referring to the research

questions and the pilot KBE environment that is to be developed, benefit and support of the

creative design phase are scoped by the following boundaries:

- The KBE pilot will implement a framework for systematic design that can affect the

creative efforts of its users (e.g. Tjalve, 2003).

- The KBE pilot will not demonstrate creativity on its own.

- The KBE pilot could facilitate creativity by making non-creative tasks easier.

- The KBE pilot could support the users to focus and direct their creative efforts.

Having implemented the chosen framework for systematic design, the subsequent evaluation

of the pilot KBE environment aims to answer the following:

a) What are the systematic design constraints applied by the chosen framework?

b) How do the framework constraints affect creativity?

c) How feasible were the framework constraints to implement in KBE?

3

1.3 Scenario

This scenario aims to contextualize the use of a KBE environment to do early creative design.

However, the scenario will not be explicitly referenced or evaluated in this study.

Bobby is an engineer and product designer who works for a large corporation. Over the years,

Bobby has been working with all kinds of computer-aided technology for product design.

Nowadays, Bobby deals with parametrization and Multi Model Generation of complex

industrial products.

All product designers in the corporation have received an invitation to participate in a

renowned creative product design competition. The rules say that contestants are allowed to

bring any tools to the competition, computational or otherwise, but that the product to be

designed is not revealed in advance. On the day of the competition, contestants will receive

a description of the product, along with its main components and functions. In addition, the

product components will be supplied in the form of industry standard files for computer aided

technologies. The contestant who can come up with the most creative design shall win.

Bobby’s coworkers engage in vivid discussions of which product will be announced in the

competition. Bobby is not so interested in these speculations. Bobby is an experienced

developer of KBE environments, and has come up with a plan for how to win the competition.

Using systematic design principles learned from a book by Eskild Tjalve, Bobby aims to

develop a KBE environment that can assist in performing design variations on arbitrary

products. This should allow Bobby to import the provided product definition files and quickly

explore a large product solution space and choose the one that seems the most creative.

4

1.4 Structure of the Thesis

1.4.1 Chapter Overview

Chapter 2 presents the theoretical background for this study. Chapter 3 explains the

methodical approach for answering the research questions, and introduces the main software

development tools that were used. Chapter 4 provides details regarding the planning,

development and evaluation of the pilot KBE environment that applies principles from Tjalve

(2003). Chapter 5 provides suggestions to the future development of a generic KBE

environment for doing creative design work with arbitrary and complex products. Chapter 6

provides a discussion of the research questions and an evaluation of the research study.

Chapter 7 presents the conclusion and implications of this study. Finally, Chapter 8 provides

suggestions to further research and development.

1.4.2 Chapter Coverage of Research Questions

A discussion of all research questions can be found in Chapter 6. The following list shows

where relevant theory and results can be found for each research question:

- RQ 1 Theory: Chapter 2 sections 2.1, 2.3, 2.4

- RQ 2 Theory: Chapter 2 sections 2.1, 2.3

- RQ 3 Theory: Chapter 2 sections 2.1, 2.3, 2.4, 2.5

Results: Chapter 4

- RQ 4 Theory: Chapter 2 sections 2.1, 2.3, 2.4, 2.5

Results: Chapter 5

1.4.3 Assignment Focus and Adjustments

The research questions defined in 1.2 are selected and adapted from the original project

proposal, which is the assignment text presented in the beginning of the thesis. This

adaptation has been agreed upon as the revised assignment focus for this thesis. This implies

that point six of the original assignment text will be presented as suggestions to future

development in the same manner as point five.

5

2 Theory

This chapter introduces theoretical concepts that provide background information for

discussions throughout the thesis. Some concepts are applicable to development of the KBE

environment, or otherwise relevant for answering the research questions.

2.1 Knowledge Based Engineering

From the standpoint of an engineer or product designer, Knowledge Based Engineering (KBE)

uses engineering knowledge embedded into computer systems to automate routine

engineering design tasks (Rocca, 2012). This may include intelligent support that mimics the

design process or simulates the presence of an engineer, providing advice, warnings, smart

scaling and automated decisions.

As a consequence of these “smart” characteristics, KBE is labeled by some (Pinfold and

Chapman, 2001; Rocca, 2012) as a merge between the disciplines of Artificial Intelligence (AI)

and Computer Aided Design (CAD). Others mention that KBE has coexisted alongside CAD

since the 1980s, both developing as individual entities (Verhagen et al., 2012).

Rocca (2012) points out that KBE is a less renowned discipline than for instance CAD, because

it has mainly been used in a few competitive, non-mainstream industries, such as the

aerospace and automotive industries. Aker Solutions2 use their KBeDesign3 framework to

develop offshore oilrigs and platforms.

2.1.1 Advantages of KBE

The main advantage of KBE lies in its ability to automate routine engineering tasks, saving

product development time and labor costs (Rocca, 2012). The ideas behind Knowledge

Management (KM) approaches (e.g. Alavi and Leidner, 2001; Davenport and Prusak, 1998;

Dingsøyr, 2002), is not only a central part of how KBE systems function, but these native KM

capabilities are in themselves valuable for a knowledge dependent organization. Rocca (2012)

suggests that one of the strengths of KBE lies in its programming language. He highlights how

a language is advantageous, or even necessary, to perform or implement certain features,

such as the capturing of design processes, defining consistent generative models, and the

flexibility to do custom interoperability (Rocca, 2012, p. 173).

2 Aker Solutions: http://akersolutions.com/
3 KBeDesign: http://citrix.akersolutions.com/en/Global-menu/Media/Feature-stories/Engineering/KBeDesign/

http://akersolutions.com/
http://citrix.akersolutions.com/en/Global-menu/Media/Feature-stories/Engineering/KBeDesign/

6

2.1.2 KBE for Creative Design

Some features of KBE environments could be seen as native abilities to support design

creativity. It has been found that 80% of engineering design consist of repetitive routine tasks,

whereas only 20% of their efforts are innovative in nature (Skarka, 2007). Given the time

savings that KBE systems provide, it should be possible to shift this balance in favor of

creativity (Sanya and Shehab, 2014). Designers using KBE have more freedom to explore the

product solution space (Verhagen et al., 2012). This could for instance be done by changing

product parameters, or generating multiple models from a general set of rules. This is the

case for generative systems, for instance, which do not contain specific geometrical instances,

but defines generic rules to enable fast generation of new design instances (Verhagen et al.,

2012).

2.1.3 Knowledge Modelling Frameworks for KBE

Two common frameworks (Sanya and Shehab, 2014) for embedding engineering knowledge

are the Common Knowledge Acquisition and Design Support (CommonKADS), and the

Knowledge Based Engineering Application methodology (MOKA). CommonKADS is a

structured and generic-purpose framework, whereas MOKA focuses more specifically on the

capture of engineering knowledge related to product design.

7

2.2 Essentials of Knowledge Management

This section contains supplementary information related to the knowledge management

capabilities of KBE, and provides some perspectives for the following section on creativity.

However, the findings in this section were not explicitly used in the pilot KBE development.

Knowledge Management (KM) can be defined as strategies and techniques that improve the

transfer and use of knowledge in an organization (Dingsøyr, 2002). KM is a central part in the

development and use of KBE systems. The most important aspects include identifying,

capturing, converting, and finally embedding knowledge into computer systems for effective

reuse (Alavi and Leidner, 2001; Rocca, 2012). Different types of knowledge, however, offer

different challenges in a KBE context.

2.2.1 Types of Knowledge

Traditionally we distinguish between tacit and explicit knowledge, which likely originates from

Gilbert Ryle (1949). Ryle further defined explicit knowledge as a theoretical know-what, while

tacit knowledge is more of a practical know-how. Others (Nonaka and Konno, 1998) claim that

knowledge is primarily tacit, which stems from Japanese philosophy, explaining that a focus

on explicit knowledge has been more popular in western society.

Tacit knowledge is a complex and intangible concept, which makes it difficult for computer

systems to grasp and formalize (Alavi and Leidner, 2001). For the same reason, tacit

knowledge is hard to understand and define. Dingsøyr (2002) describes tacit knowledge as

something that humans are unable to express, yet that guides their behavior. An everyday

example is our innate human ability to recognize one face in a crowd, or to swallow a sip of

water. At another level, tacit knowledge could be skills related to personal experiences or

awareness of context (Polanyi, 1966). In any case, tacit knowledge is not only hard for humans

to communicate, but is also difficult to encode into knowledge embedding technologies such

as KBE.

Knowledge within a KBE system has by some scholars been divided into categories of facts,

procedures, judgments, and control (Calkins et al., 2000). Of these, judgments are perhaps

the most closely related to human tacit knowledge, since judgment is a cognitive skill that

involves experience, observations, and reasoning. Control knowledge is meta-knowledge that

manages the other three through pattern directed actions, anticipating developments and

dealing with uncertainties.

8

2.2.2 Knowledge Conversion

The Concept of Ba

The Japanese philosopher Kitaro Nishida defined the concept of ba as a shared space for

emerging relationships (Nonaka and Konno, 1998). Nonaka and Konno explain that

knowledge exists within ba as a shared resource. It is attained from ba when we reflect upon

personal experiences, or the experiences of others. For knowledge to be separated from ba,

it must first be converted to information. They describe this information as explicit, tangible

knowledge. With the traditional western view (Ryle, 1949), we can assume that it is only in

this explicit form that knowledge can be incorporated into for instance KBE systems.

The SECI Process

The well-known SECI process introduced by Nonaka et al. (2000) and also discussed by

Dingsøyr (2002), is a way to describe how knowledge is converted between tacit and explicit

modes of knowledge in a circular pattern (see Figure 1). Each step can be summarized as

follows (Nonaka et al., 2000):

- Socialization Tacit knowledge transfers between people by shared experiences.

- Externalization Tacit knowledge articulates into explicit sharable knowledge.

- Combination Explicit knowledge combines to create new knowledge.

- Internalization Explicit knowledge is embodied by people as tacit knowledge.

Figure 1: SECI process for knowledge conversion (adapted from Nonaka et al., 2000)

The SECI process has become popular since it explains an otherwise hard to define knowledge

creation process. It has also been criticized because it takes a taxonomic perspective on the

concept of knowledge (Walsham, 2001). In this study, however, we seek to embed relevant

knowledge into a KBE environment which creative designers can then draw benefit from.

Within this scope, externalization and internalization of knowledge are perhaps the most

interesting phases of knowledge conversion.

9

2.3 Creativity

In psychology, creativity is typically categorized into the creative process, product, person,

and environment (Howard et al., 2008). Robert Franken (1994) states that creativity allows us

to generate ideas or recognize possibilities that aid in problem solving and original creation.

This last definition seems to be a suitable scope for engineering and creative design.

2.3.1 Innovation and Creative Design

Howard et al. (2008) describe innovation as a black box processing of design information to

produce creative output. This may relate to the notion that it is hard to define exactly how

our creative outputs are formed. Their study found that psychologists are split between

romantic and non-romantic views, where romantics regard creativity as mysterious and

subconscious, while non-romantics see it as a linear sequence of steps. We believe that the

non-romantic view may be more directly applicable to the engineering design process, but

that there are also ways in which we can optimize our subconscious creative powers.

The Challenge of Abduction

Creative design is regarded by some as a form of abduction (e.g. Dorst, 2011; Gero, 2013). We

can understand abduction by considering deduction and induction from traditional science

(see Dorst, 2011). In short, deduction lets us predict results, and induction lets us hypothesize

how something works. With abduction, we imagine a desired result and know a means for

how it can be done, but we do not yet know what can achieve this. This is typically what

product designers and engineers do (Dorst, 2011). A second level of abduction is when both

the what and the how are not yet known (see Figure 2). This effectively gives us an equation

with two unknowns that need to be found in parallel (Dorst, 2011).

Figure 2: Deduction, induction and abduction (adapted from Dorst, 2011)

Gero (2013) argues that design is not like running deduction backwards. He explains that

there is no single solution to a set of requirements. In other words, there is an entire solution

space of what and how that can achieve one desired result. This philosophy may have

implications for the design of computer systems that support or replicate creativity.

10

2.3.2 Computational Creativity

Computational Creativity is the art of using computer technology to either replicate human

creativity, or augment the creativity of a human using such tools (Colton and Wiggins, 2012).

This can be considered as a subfield of Artificial Intelligence (AI), which also has close ties to

human cognition and philosophy (Colton and Wiggins, 2012).

Within the realm of CAx technologies, Computer Aided Innovation (CAI) is an emerging field

of study (Cascini, 2008). CAI supports creative design by aiding the user in generating and

evaluating new product variants. This includes the use of genetic algorithms along with

traditional CAD tools. It seems that CAI has been researched and developed for over a decade

(Cascini, 2008). Both innovative types of KBE systems and CAI technologies could be

categorized as specialized tools for Computational Creativity.

2.3.3 How Knowledge Affects Creativity

Asimov (1959) claimed that a key criterion for optimizing team creativity is to ensure that

each member were experts in their own fields. In such a case, their combined creative efforts

would also depend on their ability to convey and share knowledge. This is closely related to

shared knowledge spaces, or the concept of ba (Nonaka and Konno, 1998, p. 41):

“To participate in a ba means to get involved and transcend one's own limited

perspective or boundary. This exploration is necessary in order to profit from

the "magic synthesis" of rationality and intuition that produces creativity.”

This quotation supports that creativity stems from tacit knowledge and that individual

creativity may flourish by immersing oneself into these shared knowledge spaces.

2.3.4 Fostering Creativity

Törnkvist (1998) proposes that in engineering education, there is a tendency towards “over-

scientification”, which discourages divergent, creative thinking (see also Wagner and

Compton, 2012). Törnkvist also mentions a theory of situated cognition, where creativity

cannot be taught out of its knowledge context or as a special skill, but rather needs some

form of apprenticeship. In addition, he found that decisions made by design engineers were

seldom based on the scientific calculations they learned as students.

In the study by Törnkvist (1998), many students reported that their best creative sessions

were not driven by need or usefulness, but rather from curiosity and playfulness. He brings

up the case of Richard Feynman, a former student at Cornell University, who in a state of

depression started tossing cafeteria plates in the air. Feynman noticed that the plates were

rotating twice as fast as they were wobbling (Törnkvist, 1998, p. 7):

11

“It was effortless. It was easy to play with these things. It was like uncorking a

bottle; everything flowed out effortlessly. I almost tried to resist it! There was

no importance to what I was doing, but ultimately there was. (...)”

Feynman did later receive the Nobel Prize in physics for his Feynman diagrams, which he

attributes to this playful and obsessive research on wobbling plates (Törnkvist, 1998).

A study by Epstein et al. (2008) found that the creativity of individuals could be improved by

training in certain related skills. These include idea capturing, challenging oneself with difficult

tasks, seeking new knowledge, and seeking out new stimuli from the surroundings.

These findings could indicate that there is a need for greater focus on creativity in engineering

education, and that teaching creativity per se comes with certain challenges. Epstein et al.

(2008) suggest teaching supplementary skills to support creativity, and Törnkvist (1998)

argues that creativity can mature during apprenticeship or flourish through playful curiosity.

2.3.5 Creativity as a Paradox

Creativity is paradoxical in the sense that it changes our world, and at the same time this

world changes us. According to the field of ontological design (Willis, 2006), we design new

technology which in turn designs us back. For instance, when people accept a new technology,

it becomes a part of their social structure. The interaction between users and technology is

mutual. This means that a user adapts to the technology, but also the other way around

(DeSanctis and Poole, 1994). This seems true for inventions like the smart phone, and soon

virtual reality. KBE environments that support creativity could fall into the same category.

Former research studies have revealed that many educational institutions actually remove

creativity (Törnkvist, 1998; Wagner and Compton, 2012). At the same time, we require

creative people in order to change how these institutions work. The people we seek are those

that can think outside of established systems, and likely someone who is unconventional in

his habits (Asimov, 1959).

2.3.6 Creative Processes

Creative Processes of Different People

Creativity applies to a wide range of professions, and different people have their own

processes during which they are the most creative. Identifying some commonalities may be

helpful for optimizing creative design processes, both in humans and computer systems.

“For me, creativity is a process of removing barriers, not of pulling something

that’s outside of me. The analogy I use is flow rate. If I’m busy, I think about

lots of other things, but if I clear my mind, I can’t stop the ideas from coming.”

Paraphrase of Scott Adams, creator of Dilbert (Ferriss, 2015, ep 82)

12

“Discipline equals freedom. We have standard operating procedures for

everything. You’d think this would restrain creativity, but it doesn’t. When I

give my team a task, I know what parameters they’ll stay within. This makes

things easier, and gives us freedom both on an individual level and as a group.”

Paraphrase of Jocko Willink, Navy SEAL officer (Ferriss, 2015, ep 83)

“You should work in a casual environment like a living room or café, not in an

office. It makes work not feel like work. An environment that feels safe, social

and casual lets us pitch ideas that seem crazy. Nobody is judging us, measuring

time or quotas. It allows us to be free creatively.”

Paraphrase of Seth Rogen, filmmaker and comedian (Ferriss, 2015, ep 84)

For Scott Adams (Ferriss, 2015, ep 82), creativity is about maintaining flow and removing

barriers. On the other hand, Jocko Willink (Ferriss, 2015, ep 83) prefers discipline and positive

constraints to remove the burden of many small decisions and concerns. Finally, Seth Rogen

(Ferriss, 2015, ep 84) benefits from being in a safe and casual environment, letting ideas come

freely without judgment. This last notion resonates well with the belief that pure creativity

requires isolation to avoid the embarrassment of bad ideas (Asimov, 1959). Although these

people have different preferences, their end result is the same. They leave the creative mind

free to focus on what is important. Even if they are not engineers or product designers, the

principles behind their creative processes may still be applicable.

Night-Waking

In a study by Ekirch (2006), he argues that in the old times, before the invention of electricity,

humans would sleep in two phases. This segmented sleep was divided by a period of night-

waking, with nocturnal activities that people were too tired for at the time of “first sleep”.

Ekirch claims that during this period, our minds have dreamlike characteristics, which could

be similar to how our brains function during optimal creative flow or subconscious creativity

(Howard et al., 2008). The Norwegian novelist Knut Hamsun adapted segmented sleep to do

creative work, and Francis Quarles explained how this period was optimal for concentration:

“Let the end of thy first sleep raise thee from thy repose: then hath thy body

the best temper, then hath thy soule the least incumbrance; then no noise shall

disturbe thine ear; no object shall divert thine eye.”

Francis Quarles, 17th-centruty English poet

At night, activity in the frontal lobe of our brain is reduced, leading to less internal second-

guessing of the ideas that emerge (Arnsten et al., 2012). Some people evaluate their ideas on

the following day, and say that they often seem abstract or unreasonable. In the field of

engineering, we require that ideas are at least scientifically possible. However, unfeasible

ideas can sometimes be adapted to work, or they can serve as further inspiration.

13

2.4 Metacognition

Metacognition can be defined as higher order thinking that involves knowledge and

regulation of own cognition (e.g. Brown, 1987; Schön, 1983; Schraw, 1998). It is also referred

to as “thinking about thinking” or “cognition about cognition”. Metacognitive skills are

considered to be directly teachable (Schraw, 1998), in contrast to for instance creativity,

which seems to be more challenging in this regard (e.g. Epstein et al., 2008; Törnkvist, 1998).

A practitioner of metacognition could for instance monitor their own thoughts, evaluate

current work performance, be aware of their own learning, or reflect upon past experiences.

In most personal cases, these techniques are used to achieve some form of self-improvement.

One could for instance become a more effective learner, find optimal work routines, or

convert experiences into applicable knowledge.

“Whenever you find yourself on the side of the majority,

it is time to pause and reflect.”

Mark Twain, 19044

2.4.1 Reflective Practice

Marcus Aurelius, Roman Emperor from 161 to 180 AD, made a series of personal writings that

were later combined into the book, Meditations (e.g. Hays, 2002). His work demonstrates an

early example of reflective practice with roots in stoic philosophy. Aurelius improved his

personal and professional conduct by reflecting upon his philosophy apprenticeship and his

continuous experience as emperor.

Also today, people who desire professional development can do so by reflecting upon their

own professional experiences (Yanow and Tsoukas, 2009). We can evaluate and appraise our

task performances and results in order to find better ways of doing them.

Self-Monitoring of Task Performance

The human mind has a naturally limited attention span, which affects our ability to retain

optimal task performance over long periods of time. Aurelius encourages:

“Concentrate every minute (…) on doing what’s in front of you with precise and

genuine seriousness, tenderly, willingly, with justice. And on freeing yourself

from all other distractions (…), and stop being aimless (...)”

(Hays, 2002, bk. 2 section 5)

Achieving this level of concentration requires that we become observers of our own minds.

As the mind begins to wander, we can bring it back to focus on the task at hand. Distractions

may come from internal or external stimuli, and should be handled before starting a task. If

4 Mark Twain quote: http://twainquotes.com/Majority.html

http://twainquotes.com/Majority.html

14

we discover that our task performance is poor despite these attempts, it may actually be more

productive to continue the task at another time or place. Our goal is to maintain motivation

and sustained effort over time, so that we may efficiently and effectively see a task to its

completion.

Metacognitive Strategies

Regulation checklists can be used to aid the use of metacognition (Schraw, 1998). These

mental frameworks are helpful to ensure that we have covered all the aspects that we wish

to monitor. Over time, a regulation checklist may become second nature, demanding less

active monitoring. We can also imagine less abstract frameworks that are more directly

applicable as professional work routines, such as the mandatory preflight checks done by

pilots.

2.4.2 Cognitive Frameworks

We here define a cognitive framework to include thought systems and modeling techniques

that can represent the real world or abstract concepts. The aim is to find frameworks that can

contribute to improve design creativity, both in humans and computer systems.

Fast and Slow Thinking

Daniel Kahneman (2013) introduces a separation of the mind into fast and slow systems. He

labels them System I and System II. System I takes care of fast and intuitive thinking, most of

which happens without any explicit effort from our side. System II represents the more

engaged thinking that is required when System I cannot automatically solve the problem.

Kahneman (2013) discovered that when a person meets some form of resistance in an

otherwise intuitive task, the mind would shift from using System I to System II in order to solve

the problem. This is also referred to as the “eyebrow response”, which comes from the strict

facial expression that humans often make when met with difficult or unordinary tasks.

System I is the part of our mind that is most active during states of creative flow. If System I

is interrupted, for instance by a sudden “eyebrow response”, the creative flow will likely

suffer. This could have implications for the development of KBE environments that aim to

support creativity.

Systems Thinking

Goel (2012) defines systems thinking as regarding systems in terms of their components and

how they interact through processes. He claims that design is naturally done with systems in

mind. Goel explains that systems thinking is challenging for humans when it involves a large

number of components and processes. In such cases, the limitations of the human mind will

inhibit design creativity. To better cope with this, the Structure-Behavior-Function (SBF)

modeling technique was created (Goel et al., 2009). SBF uses various mental abstractions to

15

divide a system into subsystems. The framework is supposed to aid the analysis and

organization of a system, and provide a vocabulary for describing it.

Others have also mentioned structure, behavior and function as key aspects in design

processes (e.g. Gero, 2013; Howard et al., 2008). Howard et al. (2008) propose that an SBF

framework can be useful for integrating engineering design with the general creative process.

Dori and Crawley (2013) have developed the Object Process Methodology (OPM) since 1995,

which uses objects, processes and states as modeling entities (see Figure 3). OPM also

considers structure, behavior and form as complementary aspects from which systems can

be viewed. They argue that the strength of OPM resides in its few and simple entities, while

at the same time being capable of modeling virtually anything. They also claim that OPM can

play a role in converting tacit knowledge into explicit knowledge, and that it is good for idea

generation and rapid prototyping in the early design phases.

Figure 3: The basic entities of OPM (adapted from Dori and Crawley, 2013)

Judging from what OPM and SBF have to offer, it seems that they would both be suitable

system modeling frameworks in the scope of creative design.

Analogical Thinking

Analogical thinking is regarded as fundamental in some aspects of creative design (Cross,

1997). We can transfer knowledge from one case and adapt it to another by using analogical

thinking (Goel, 2012). In other words, we can learn from existing solutions and apply them by

analogy to new problems. This could resemble lower level abduction where some general

working principles, i.e. the how, are already known (Dorst, 2011). Goel (2012)states that this

is cognitively challenging since we must conjure a representation of past solutions, and use

pattern recognition to adapt the source knowledge to the target problem. KBE systems with

powerful knowledge management capabilities could support or replicate these creative

techniques.

16

Meta Thinking

Goel (2012) introduces meta thinking for creative design, and defines:

“Meta thinking entails processes such as goal spawning, suspension, and

abandonment; strategy selection; belief revision; self-explanation; and design,

diagnosis and revision of reasoning processes.”

(Goel, 2012, p. 4)

He claims that creative design is not just about the design process itself, but also about meta

design of this process. This means that we design the design process to optimize creative

output. He points out that there is still little research done on metacognition and meta design.

Goel (2012) took part in the development of creative design frameworks that apply meta

thinking. These include modifying own design processes that have led to a failure, adapting

design processes to new tasks, and performing self-diagnostics and repair of defective

knowledge upon failures. He further states that these frameworks are neither human nor

computer specific. We can draw a parallel to KBE systems that rely on advanced levels of

control knowledge to adjust its processes (Calkins et al., 2000).

Systematic Design of Industrial Products

Tjalve (2003) introduces a systematic and general approach to product design. We derive a

cognitive framework from his principles in chapter 2.5. Although there is no mention of

metacognition throughout his book, he is likely to have used some form of metacognitive

practice to devise his systematic design methods. Tjalve provides a solid and generic

framework. However, within the scope of KBE and creative design, it is possible that these

methods can be tried and reflected upon to provide an even better framework for use within

modern technology.

2.4.3 Cognition in Human Computer Interaction

The field of Human Computer Interaction (HCI) involves the design of interfaces through

which humans can interact with computer technology (e.g. Preece, 1995). Because of the

human aspect, HCI has close ties with human cognition. Through an understanding of human

nature, we can design user interfaces that better pertain to human expectations.

Don Norman (2013) provides a deep analysis of the cognitive aspects of designing everyday

things, many of which are directly transferrable to computer interface design. He argues that

there is no such thing as human error, only bad design. For relatively simple cases, if an

interface requires a user manual to be understood, there is something inherently wrong with

the design.

17

User Interface Design for Creative Work

Norman (2013) explains how signifiers and constraints can be used for early error prevention

to reduce user frustrations. We can relate these frustrations to the negative “eyebrow

response” introduced by Kahneman (2013), and how it breaks creative flow. It seems that

basic HCI design principles are essential for a system that facilitates creative work, by making

sure that user creativity is not hindered by a poor interface.

A well designed interface can even offer a joyful user experience (Norman, 2013). This may

contribute to the sense of playfulness that drives our native human creativity (Törnkvist,

1998).

User Awareness of Interface Design

Norman (2013) would argue that mainly the developers of a user interface are responsible

for its user friendliness. However, if circumstances allow it, the user can give feedback to the

interface developers so that they may improve it. This is a natural part of iterative

development processes (e.g. Larman, 2004). The user would engage in reflective practice to

determine whether the interface allows them to perform optimally, and help pinpoint any

problematic areas.

18

2.5 Systematic Design of Industrial Products

This section is a summary of Systematic Design of Industrial Products by Tjalve (2003). Any

reference to Tjalve herein implicitly refers to the works of Tjalve (2003). The sketch figures in

this section are adapted from Tjalve’s work.

Tjalve presents a set of principles for systematic product design. Of particular interest are

methods that deal with defining requirements, assigning restrictions, and systematically

exploring the solution space of a product.

2.5.1 Terminology

Some basic terminology should be established before discussing Tjalve’s theories:

- Product The product as a whole.

- Element A single part or component of the product.

- Structure The elements and their relationship.

- Form The shape and dimensions of an element.

2.5.2 Product Properties

Before a product is designed, we have a set of desired properties which will influence our

decisions during the design process. Upon completion, we have a set of realized properties.

According to Tjalve, there are five basic properties that together completely define a product:

structure, form, material, dimension and surface. The design process is about manipulating

these five basic properties to get from desired to realized properties (see Figure 4).

Figure 4: Manipulating basic properties (adapted from Tjalve, 2003)

2.5.3 Product Synthesis

Tjalve’s product synthesis is his entire product design process divided into systematic steps

(see Figure 5). An initial problem analysis establishes desired properties which act as criteria

that affect decisions in all steps. In addition, the main functions are derived, and further

divided into sub-functions. There can be many ways to realize the sub-functions, where each

possibility gives a unique basic structure. At this point, we have decided how the product will

perform its functions, so any alterations beyond this point can only be with structure or form.

19

Figure 5: Product synthesis stages (adapted from Tjalve, 2003)

2.5.4 Functions and Basic Structure

When the product functions and basic structure are decided, we already have a specific type

of product, fixed within a certain scope of possible mutations. It becomes impossible to

change the entire product gradually in order to get another type of product.

Two products can also have the same functions, but different basic structures (see Figure 6).

This is achieved by exploring different means of fulfilling the sub-functions. The basic

structure of each product can be radically different, as long as the resulting main function is

the same.

Figure 6: Different basic structures of a tea maker (adapted from Tjalve, 2003)

20

2.5.5 Quantified Structure

In this stage we look at the basic structure and explore different ways of arranging the

elements (see Figure 7). The number of each element can also be changed (see Figure 8).

Tjalve calls this the structure variation method. It can be viewed as exploring all possible

statistical combinations. The desired properties and some common sense will help to limit

the solution space. For instance, it is obvious that the wheels of a steam roller cannot be

placed on its roof.

Figure 7: Quantified structure of a coffee maker (adapted from Tjalve, 2003)

Figure 8: Quantified structure of a steam roller (adapted from Tjalve, 2003)

Isaac Asimov claimed that great ideas were made when connecting two things which might

not ordinarily seem connected (Asimov, 1959). Systematically using Tjalve’s structure

variation method allows us to generate a large solution space. This might be one way of

discovering such unforeseen connections without having to actually think of them.

21

2.5.6 Total and Element Form

The last step of the product synthesis is what Tjalve refers to as form variation. This means

changing shapes, materials, dimensions and surfaces (see Figure 9). He further distinguishes

between total form and form of the elements. The total form is considered when the product

form as a whole is important, for example the aesthetics of a car. When technical or economic

criteria dominate, the design of each element is considered. The total form depends on the

form of the elements, and vice versa.

Figure 9: Form variation for a tea maker (adapted from Tjalve, 2003)

2.5.7 Functional Surfaces

The functional surface is a part of an element that has an active function during use. Internal

surfaces relate to other elements in the product, while external surfaces have active functions

to the surroundings. In form variation, functional surfaces let us define the most important

surfaces and design the rest of the element with these in mind (see Figure 10). We can also

modify the surfaces themselves by changing their number, arrangement, geometry and

dimensions.

Figure 10: Functional surfaces and form variation (adapted from Tjalve, 2003)

22

Closely tied to form variation is the concept of minimum and maximum functional surfaces.

This means creating a surface that is as small or large as possible while keeping its intended

function. We can use this to optimize for certain properties, for instance maximizing adhesion

between elements, or minimizing the use of materials (see Figure 11).

Figure 11: Maximum and minimum functional surfaces (adapted from Tjalve, 2003)

2.5.8 Summary

Systematic Design of Industrial Products (Tjalve, 2003) provides a framework that allows us

to do systematic and precise design variations to a wide range of products. His techniques

become increasingly more interesting with a creative KBE environment in mind. We have

expanded our basic terminology with some concepts that may be relevant to this:

- Basic Structure Product scope after functions and sub-functions are decided.

- Structure Variation Explore all possible relative arrangements of elements.

- Form Variation Explore different element shapes, dimensions and surfaces.

- Functional Surface Part of an element which has an active function during use.

23

3 Methodology

This chapter explains our overall methodical approach to answering the research questions,

and introduces the tools that were used for software planning and development.

3.1 Design Research Approach

Design science stems from the engineering tradition as an approach to problem solving

(Hevner et al., 2004; Sein et al., 2011). The typical stages in design research approaches are

1) problem formulation, 2) iterative development and evaluation, 3) reflection and learning,

and 4) formalization of learning (Sein et al., 2011).

Design research describes the process involved in designing the artifact (for instance a pilot

environment), and the product itself (the artifact). Artifacts can be software-intensive

systems that consist of terminology, models, methods, and system instances. KBE

technologies represent typical software-intensive systems and the artifact in this case is a

pilot KBE environment acting as a proof of concept. The artifact will embed systematic

product design principles by Tjalve (2003) to facilitate creative design work. We describe the

process and choices involved when implementing creativity into design. This involves

planning, development, and evaluation of the pilot. From this proof of concept, we develop

prototype interfaces as suggestions for future work.

In addition, the description of the artifact shows the relation between the KBE environment,

creativity and metacognition. Thus, it represents an ensemble that goes beyond technological

dimensions, and researchers emphasize that several aspects such as contextual factors,

structure and goals, might be inscribed in the artifact (Sein et al. 2011). In case of this study,

the artifact also includes theoretical assumptions of cognitive frameworks, metacognition,

creativity, knowledge management and reflective practice. This knowledge base provided a

fundament for developing and evaluation of the artifact, or pilot. It also includes research

inspired from the practical use of Tjalve's (2003) principles.

Finally, the design process provides us with possibilities to attain learnings that can be

formalized. For instance, this study proposes a framework that shows the relations between

the KBE environment, creativity and metacognition. In addition, the study has also identified

positive and negative constraints as an important outcome.

A limitation of this research study is the lack of iterative loops of development, feedback and

evaluation. However, a discussion is provided about how future work should focus on

participating design to enable iterative loops and necessary feedback from the end users.

24

3.2 Approach to Research Questions

RQ 1: How can metacognition benefit KBE and creative design?

First, we study the field of metacognition to identify which aspects can be relevant in the

context of KBE and creativity. Secondly, we separate these findings into principles that can be

implemented in a KBE environment, and concepts that the users can benefit from.

The users are engineers and product designers. We seek methods that with a reasonable

amount of effort can be applied in a professional work space, for instance through training or

change of environment. This could be work methods, awareness of own creative processes,

and types of environments where people tend to be most creative.

As for the KBE implementation, we look for mental frameworks that can guide or optimize

the creative design process, and software design principles that are derived from knowledge

of human cognition.

RQ 2: How can KBE technologies support the creative design phase?

We suspect that some of the advantages that KBE has to offer can be leveraged to facilitate

creative design. First, we look further into existing research on KBE to learn about these

advantages. Secondly, we study the works of Tjalve (2003) to find systematic product design

principles that can be implemented in a KBE environment.

RQ 3: How can Tjalve’s principles be implemented with KBE for a simple product?

We will choose a simple example product, and develop a pilot KBE environment for doing

creative design work with this product. Our main focus will be on the principles introduced by

Tjalve (2003), and the choice of example product will be closely tied to which principles we

want to test. The pilot will be specific to this product, and therefore non-generic. The overall

purpose is to get an indication of how our findings from RQ 1 and RQ 2 can support creativity,

and to what degree they are feasible to implement in a KBE environment.

RQ 4: How can this environment be adapted to work for complex products?

First, we will test and evaluate our pilot KBE environment developed for RQ 3. Secondly, we

attempt to organize what we have learned from RQ 1, RQ 2 and RQ 3, in order to provide

suggestions for future development. We will suggest features and prototype interfaces for a

generic KBE environment for doing creative design work with arbitrary, complex products.

25

3.3 Development Tools

3.3.1 Adaptive Modeling Language

Adaptive Modeling Language5 (AML) is a KBE modeling framework provided by TechnoSoft6.

The development environment is geometry-centric, and the programming language is object-

oriented with a syntax that resembles Lisp7. TechnoSoft provides their AML Reference Manual

for looking up available classes and functions.

NTNU has a collaboration with Aker Solutions8, where AML is central. Aker Solutions have

over time developed their KBeDesign™ framework from an extensive track record of

products9. This partnership made AML a natural choice for developing my KBE application.

With the installation of AML comes a customized XEmacs text editor, which is the main tool

for writing AML code. From here the developer can run the AML environment and load

models using the provided console window. There is also a Main Modeling Form, which

already contains tools to inspect and edit models.

3.3.2 Notepad++

Notepad++10 is a free source code editor with support for many languages. Using the built-in

support for Lisp, it provided customizable syntax highlighting for AML code files. Syntax

highlighting, auto-completion, and its arguably wider repertoire of editing commands were

the main reasons for choosing Notepad++ to write AML code instead of XEmacs.

3.3.3 Visual Studio

Visual Studio11 is an integrated development environment for the Microsoft .NET

Framework12. For this project it was used to sketch class hierarchies and generate class

diagrams. It was also used to create GUI prototypes for the pilot application and future

development plans.

5 Adaptive Modeling Language: http://technosoft.com/application-software/adaptive-modeling-language/
6 TechnoSoft Inc.: http://technosoft.com/
7 Lisp programming language: https://en.wikipedia.org/wiki/Lisp_(programming_language)
8 Aker Solutions: http://akersolutions.com/
9 KBeDesign: http://citrix.akersolutions.com/en/Global-menu/Media/Feature-stories/Engineering/KBeDesign/
10 Notepad++: https://notepad-plus-plus.org/
11 Microsoft Visual Studio: https://visualstudio.com/
12 Microsoft .NET Framework: http://microsoft.com/net

http://technosoft.com/application-software/adaptive-modeling-language/
http://technosoft.com/
https://en.wikipedia.org/wiki/Lisp_(programming_language)
http://akersolutions.com/
http://citrix.akersolutions.com/en/Global-menu/Media/Feature-stories/Engineering/KBeDesign/
https://notepad-plus-plus.org/
https://visualstudio.com/
http://microsoft.com/net

26

27

4 Pilot KBE Environment

This chapter details the planning, development and evaluation of a pilot KBE environment for

doing creative work with a simple product. The resulting proof of concept will provide

guidelines for further development.

4.1 Purpose

The main purpose of developing the pilot KBE environment is to test-implement the principles

for systematic product design introduced by Tjalve (2003) using a KBE technology. Specifically,

we want to see if the following concepts are feasible to develop in AML:

1) Basic Structure

2) Structure Variation

3) Form Variation

4) Functional Surfaces

This selection of principles forms a cognitive framework, as we defined in 2.4.2. When testing

and evaluating the completed environment, we seek to obtain material for answering the

questions listed in 1.2.1:

a) What are the systematic design constraints applied by the chosen framework?

b) How do the framework constraints affect creativity?

c) How feasible were the framework constraints to implement in KBE?

28

4.2 Scope

4.2.1 Product Synthesis

We assume that we are at Tjalve’s quantified structure stage of the product synthesis (see

Figure 12). This means that the main and sub-functions are already decided, and that a basic

structure has been derived from these. In other words, we have decided how the product will

do its job and what type of components will be necessary, but not what form or structure it

will have. The next stages thus involve structure variation and form variation, where the latter

also includes defining functional surfaces.

Figure 12: Scope of Tjalve's product synthesis (adapted from Tjalve, 2003)

4.2.2 Workflow

All the product components will be premade for the user. The application will first let them

define and connect functional surfaces. It will then aid them in doing form and structure

variation, where each of these components can be altered and rearranged.

Figure 13: Pilot application workflow

29

4.2.3 Product Choice

The ultimate goal is to create a generic solution that could aid creativity for a multitude of

products. However, the initial development and testing should be focused on a specific

product. This removes the burden of having to think generically from the start, meaning less

planning and faster coding. Also, if we are already familiar with the product we can more

easily imagine various design alternatives and how it functions.

One such product that is commonly found in many homes and offices around the world is the

coffee maker. Since coffee can be made in many ways, and we wish to simulate the stages

after basic structure, we need to specify our product further. We choose a filtered coffee

maker that uses a water heater, a coffee filter, and a pot for collecting coffee. This means that

our product can never become an espresso machine, for instance. The coffee maker was

chosen because it has few parts, yet many design variations, and its functions can be seen as

a directional process through components. Tjalve also mentions tea and coffee makers as

examples in his book.

Figure 14: Some filtered coffee maker designs13

13 Coffee makers, from left to right:

- http://topbestcoffeemaker.com/electric-coffee-makers/
- http://en.wikipedia.org/wiki/Drip_brew
- http://williams-sonoma.com/products/wilfa-precision-coffee-maker/

http://topbestcoffeemaker.com/electric-coffee-makers/
http://en.wikipedia.org/wiki/Drip_brew
http://williams-sonoma.com/products/wilfa-precision-coffee-maker/

30

4.2.4 Alternative Products

A previous case study14 dealt with a KBE bookshelf which had rules concerning shelves and

dividing walls. For this pilot, the bookshelf was a less attractive option because it does not

have any directional functions that could resemble industrial processes.

There are a range of possible industries to choose products from, such as the automotive,

aerospace (e.g. Dahl et al., 2006; Rocca, 2012), and naval engineering industries (e.g.

Skogsfjord and Rognseth, 2014). KBE has already proven itself as a strong asset to some of

these industries (Rocca, 2012).

The automobile is a common product which was up for consideration. In this case, it would

be hard to imagine how Tjalve’s quantifiable structure methods would create many

reasonable outcomes. Placing the wheels anywhere but under the car would make it

dysfunctional. The windows are restricted by the driver’s need to view traffic and other safety

regulations. Tweaking with the interior or the engine is not an externally visible design

alteration. Tjalve does have some good examples with a steamroller, but we preferred a

product that most people are more intimately familiar with.

4.2.5 Scope Summary

Based on the product choice and the principles that are to be tested, the pilot application will

have the following development scope:

- Only the main product elements will be used (heater, filter, pot).

- The elements will have simple geometry and no technical features.

- The elements will be premade for the user.

- Only a selection of Tjalve’s principles will be demonstrated.

- The workflow and main functions will be as shown in Figure 13.

- The GUI will be simplified and less user friendly.

- The coding style will be mostly non-generic.

14 The KBE bookshelf case study was a pre-master project at NTNU, supervised by Professor Ole Ivar Sivertsen.

31

4.3 Requirements Specification

4.3.1 Functional Requirements

Functional requirements determine which features should be available to the user. These will

later be tested to verify which functions could be successfully implemented.

F 1 Functional Surfaces

F 1.1 Define functional surfaces.

The user should be able to select a physical or spatial surface on an

element. This must be labeled as a functional surface by the system,

which should be visible to the user when inspecting the product.

F 1.2 Connect functional surfaces.

The user should be able to select two functional surfaces, mark them as

connected, and register the connection type. The system must store this

information to work with the surfaces at a later stage.

F 2 Structure Variation

F 2.1 Do structure variation (arrangement).

The user should be able to rearrange an element relative to another

element. This arrangement must be possible for all axes.

F 2.2 Do structure variation (number of elements).

The user should be able to choose how many instances there will be of

an element. Any functional surfaces defined on the element (F 1.1) must

also be duplicated. Relative positioning (F 2.1) of the individual instances

is not a requirement for this pilot. However, arrangement relative to the

entire element group must be possible.

32

F 3 Form Variation

F 3.1 Do form variation (element shape).

The user should be able to choose different basic geometries for an

element (sphere, cube, cone, etc.). It must still be possible to change the

dimensions (F 3.2) in the same way as with the original shape.

F 3.2 Do form variation (element dimensions).

The user should be able to change the individual dimensions of each

element. The system should update other closely tied dimensions.

4.3.2 Use Cases

Use cases are closely tied to functional requirements because they specify detailed scenarios

that the user should be able to perform. These are helpful in the implementation process

later. Use cases will be created for functional requirements that benefit from more

specification, and will be omitted for further similar scenarios (F 2.1 resembles F 2.2, F 3.1, F

3.2). The following use cases have numbering that corresponds to their respective functional

requirement.

Use Case U 1.1 – Define Functional Surfaces

The user will select an element, select one of its surfaces, and signify that they want this to

be a functional surface. If there is no surface, for instance a hole, a virtual surface will be

created.

Figure 15: Use case U 1.1 – Define functional surfaces

33

Use Case U 1.2 – Connect Functional Surfaces

The user will select functional surfaces A and B, which have been created in U 1.1 – Define

Functional Surfaces. The connection type and direction will also be chosen.

Figure 16: Use case U 1.2 – Connect functional surfaces

Use Case U 2.1 – Do Structure Variation

The user can select an element and easily rearrange it in relation to the other elements. The

system will immediately update and display the new arrangement.

Figure 17: Use case U 2.1 - Do structure variation

4.3.3 Non-Functional Requirements

Many non-functional requirements are tied to the realm of software architecture, which is

outside the scope of this pilot environment. However, with a future generic environment in

mind, we should adhere to certain principles, such as reusability, modifiability, modularity

and encapsulation. We will not evaluate these non-functional requirements.

34

4.4 Development

This section explains how the pilot KBE environment was developed, and shows incremental

results. Code extracts are modified for brevity, meaning that basic or repeated similar code

may be omitted. The entire source code is listed in Appendix A – Source Code.

4.4.1 Basic Structure

At the quantified structure stage of Tjalve’s product synthesis, a basic structure has already

been established. To achieve this in AML, we create a hierarchy where the coffee maker is a

parent class, which contains the heater, filter and pot classes (see Figure 18). In Tjalve’s terms,

this corresponds to one product with three elements.

Figure 18: Class diagram and AML model of the coffee maker basic structure

4.4.2 Functional Requirement F 1.1 – Define Functional Surfaces

We need to be able to define functional surfaces which can be associated with specific areas

of an element. Using the functional relationship between the heater and the filter as an

example, we can define one functional surface for the heater exit pipe, and one for the filter

entry area. These are not physical surfaces, but rather a cross section which water can pass

through. To create these virtual functional surfaces in AML, we make a functional-

surface class and define a subclass which inherits from this and holds a disc-object.

35

;---

; Class: functional-surface-disc

; Description: Defines a functional surface in the form of a

; disc-object. Optional cylinder projection.

; Reference 1: Functional Requirement F 1.1

;---

(define-class functional-surface-disc

 :inherit-from (functional-surface)

 :properties (

 height (default 1.0)

 diameter (default 1.0)

 color (default 'blue)

)

 :subobjects (

 (surface :class 'disc-object

 render 'shaded

 (projection :class 'cylinder-object

 render 'boundary

 orientation (list (

 translate (list 0.0 0.0 (* 0.5 ^height))))

The projection component can be useful to better visualize functional surfaces while

viewing the model from certain angles (see Figure 19).

Figure 19: Functional surfaces in AML – heater pipe exit and filter entry

36

Use Case U 1.1

A custom user interface was created for the purpose of selecting physical and spatial surfaces

and have the system create virtual functional surfaces (see Figure 20). However, we

discovered that this type of user interaction would be too time-consuming to implement in

AML. It was advised that for the remainder of the pilot, we should instead create default AML

interfaces linked to geometry and properties. As such, the definition of functional surfaces is

done at the development stage, and not by the end user. The classes necessary for these

features exist as a proof of concept, but the custom GUI never became more than a prototype.

Figure 20: Functional surfaces in AML – created from a selected cross section

4.4.3 Functional Requirement F 1.2 – Connect Functional Surfaces

We need to store information about the functional relationship between two existing

functional surfaces. In addition to the surfaces themselves, a connection type and direction

will be useful at a later stage for dealing with the logics of element connectivity. The direction

tells us which way the function naturally flows (A-to-B, B-to-A, two-way, none). The

connection type says how the function flows over this cross section (stream, gravity,

contact, none). More options can be added as required. The following functional-

surface-link class contains these properties (see Figure 21).

Figure 21: Class diagram for functional-surface-link

37

;---

; Class: functional-surface-link

; Description: A connection between two functional-surface.

; The type and direction properties further

; specify the functional relationship.

; Reference 1: Functional Requirement F 1.2

;---

(define-class functional-surface-link

 :inherit-from (object)

 :properties (

 functional-surface-a nil

 functional-surface-b nil

 connection-type nil ; gravity, stream, contact, ...

 connection-direction nil ; a-to-b, b-to-a, two-way, ...

)

)

The basic structure (seen in Figure 20), is expanded with functional-surface and

functional-surface-link (see Figure 22). This effectively binds the geometrical

elements through their functional relationships. Water exits the heater and enters the filter

(heater-filter-link), and coffee exits the filter and enters the pot (filter-pot-

link).

Figure 22: Class diagram of the coffee maker elements linked by functional surfaces

38

Use Case U 1.2

As with use case U 1.1, developing a custom AML interface for selecting functional surfaces

proved too time consuming for this pilot. The preliminary GUI is shown below (see Figure 23).

Using the functional-surface and functional-surface-link classes, along with

some built-in AML classes, the feature is most likely possible to implement.

Figure 23: Custom GUI for connecting functional surfaces in AML

4.4.4 Functional Requirement F 2.1 – Do Structure Variation (arrangement)

Moving an element in AML can be done by adjusting its coordinate system’s origin

property, or by offsetting the element itself using orientation and translate. The former

method keeps the code more modular. In structure variation, arrangement is done relative

to other elements, and not just some fixed offsets. We need to devise a formula that can

replicate this.

If two elements A and B are arranged adjacently along one axis, the distance between their

origins must equal half of their dimensions along that axis. For instance, if the walls of two

cylinders are touching, the distance between their centers must equal the sum of their radii

or half-diameters (see Figure 24).

39

Figure 24: Distance between the centers of two adjacent cylinders

This rule is true for any geometrical element which is symmetrical along the axis in question.

The distance formula for each axis is then:

|𝑑𝑥| =
(𝐿𝑥,𝐴 + 𝐿𝑥,𝐵)

2
 |𝑑𝑦| =

(𝐿𝑦,𝐴 + 𝐿𝑦,𝐵)

2
 |𝑑𝑧| =

(𝐿𝑧,𝐴 + 𝐿𝑧,𝐵)

2

We can further generalize this to:

|𝑑𝑖| =
(𝐿𝑖,𝐴 + 𝐿𝑖,𝐵)

2

This lets us arrange an element adjacently to another element along any axis. However, it

limits us to exact adjacency along each axis, giving us (3 ∙ 3) - 1 = 26 possible spatial

arrangements when excluding the center. This can be imagined as a Rubik’s Cube15, where

each outside block is a possible arrangement. If we multiply a distance |di| by zero, the

arrangement along that axis nullifies. Multiplying by any non-zero number gives us an offset

that is a multiple of exact adjacency. For instance, a factor of ± 2.0 provides an open space

between elements equal to the average of their dimensions. The resulting formula provides

a dynamic way of assigning new coordinates to the element A that is being rearranged:

𝑖𝐴 = 𝑚𝑖 ∙
(𝐿𝑖,𝐴 + 𝐿𝑖,𝐵)

2

15 Rubik’s Cube: https://rubiks.com/

https://rubiks.com/

40

We can now apply this formula to the origin property of a coordinate system in AML:

;---

; Function: arrange

; Description: Finds relative arrangement for element A vs B.

; Multiplier 0.0 = no offset, 1.0 = adjacent.

; Reference: Functional Requirement F 2.1

;---

(defun arrange (multiplier len-a len-b)

 (* multiplier (* 0.5 (+ len-a len-b)))

.....

; Heater Coordinates (Element A)

;---

a-x (arrange ^x-multiplier ^a-diameter ^b-diameter)

a-y (arrange ^y-multiplier ^a-diameter ^b-diameter)

a-z (arrange ^z-multiplier ^a-height ^b-height)

.....

; Heater Coordinate System (Element A)

;---

(a-cs :class 'coordinate-system-class

 origin (list ^^a-x ^^a-y ^^a-z)

 reference-coordinate-system ^^b-cs

)

Use Case 2.1

We require an interface that lets the user perform these element rearrangements. With the

equation in place, we can expose the multipliers through an interface to let the user do

structure variation. This should be easier and faster than to directly input raw coordinates.

AML supports automatic creation of input fields by inheriting the data-model-node-mixin

into the object model and linking the desired properties using its property-objects-

list.

;---

; Class: coffee-maker-gui

; Description: Provides a GUI for the user to alter the

; coffee-maker through various inputs.

; References: Functional Requirements F 2.1, 2.2, 3.1, 3.2

;---

(define-class coffee-maker-gui

 :inherit-from (coffee-maker data-model-node-mixin)

 :properties (

41

 ; Automatic Properties

 property-objects-list (list

 "Structure Variation – Heater Arrangement"

 (the superior x-multiplier self)

 (the superior y-multiplier self)

 (the superior z-multiplier self)

The result is a set of labeled numeric input boxes (see Figure 25). Editing the multipliers will

rearrange the elements drawn on the canvas (see Figure 26).

Figure 25: Structure variation in AML – default GUI for arrangement multipliers

Figure 26: Structure variation in AML – rearranging the heater element

4.4.5 Functional Requirement F 2.2 – Do Structure Variation (number of elements)

Let us assume that we want to design a coffee maker with separate filters for different types

of coffee to avoid “contamination”. To achieve this second aspect of structure variation, we

need to be able to duplicate elements. We can define a single element as a generic class in

AML, and use it to create a parent class which contains multiple child elements. The parent

and children can have linked properties, which lets us conveniently change all instances from

one place. The following classes lets us choose between a single filter, or four filters in a two-

by-two layout.

42

;---

; Class: filter

; Description: Defines a single filter element. Uses two

; truncated-cone-object for wall thickness.

;---

(define-class filter

 :inherit-from (difference-object)

 :properties (

 b-height (default 1.0) ; Auto-link

 b-diameter1 (default 1.0) ; Auto-link

 b-diameter2 (default 2.0) ; Auto-link

 wall-t (default 0.25) ; Auto-link

 :subobjects (

 (outer :class 'truncated-cone-object

 height ^b-height

 start-diameter ^b-diameter1

 end-diameter ^b-diameter2

)

 (inner :class 'truncated-cone-object

;---

; Class: filter-2x2

; Description: Defines a 2 by 2 grid of Filter elements.

; Reference 1: Functional Requirement F 2.2

;---

(define-class filter-2x2

 :inherit-from (object)

 :properties (

 diameter1 (* 0.5 ^b-diameter1) ; Half lengths (2x2)

 diameter2 (* 0.5 ^b-diameter2) ; Half lengths (2x2)

 offset (arrange 0.5 ^diameter2 ^diameter2)

 :subobjects (

 (filter-1 :class 'filter

 b-diameter1 ^diameter1 ; Specific, not auto linked

 b-diameter2 ^diameter2 ; Specific, not auto linked

 orientation (list (

 translate (list ^^offset ^^offset 0.0)))

)

 (filter-2 :class 'filter . . .)

 (filter-3 :class 'filter . . .)

 (filter-4 :class 'filter . . .)

43

We add an option-property-class to the coffee-maker and link the filter instance to

this property. The user can then select between one and four filters from a dropdown menu

to update the model (see Figure 27 and Figure 28).

; Filter Count Selection

;---

(b-filter-selection :class 'option-property-class

 label "Filter Count"

 options-list '(filter filter-2x2)

; Filter (Element B)

;---

(element-b :class !b-filter-selection

 ; All dimensions auto-linked

)

When duplicating the number of filter elements, we also need to ensure any related entities

are scaled accordingly, for instance functional surfaces (see Figure 28). The code for

duplicating functional surfaces can be found in Appendix A – Source Code (functional-

surface-disc and functional-surface-disc-2x2).

Figure 27: Structure variation in AML – default GUI for number of filters

Figure 28: Structure variation in AML – number of filter elements

44

4.4.6 Functional Requirement F 3.1 – Form Variation (element shape)

An example of changing the shape of an element could be to choose a cubic water tank

instead of a cylindrical one. This is equivalent to changing the base class of an element in AML.

Since each class has unique properties for dimensions, we should add a class layer to

genericize these. This lets us set the width of a cube and the diameter of a cylinder using the

same property. The following classes define cubical and cylindrical water tanks.

;---

; Class: cylinder-heater

; Description: Defines a cylindrical shape for the water tank.

; Reference 1: Functional Requirement F 3.1

;---

(define-class cylinder-heater

 :inherit-from (cylinder-object)

 :properties (

 a-height (default 1.0)

 a-diameter (default 1.0)

 height ^a-height

 diameter ^a-diameter

;---

; Class: box-heater

; Description: Defines a cubical shape for the water tank.

; X and Y dimensions are set from the diameter.

; Reference 1: Functional Requirement F 3.1

;---

(define-class box-heater

 :inherit-from (box-object)

 :properties (

 a-height (default 1.0)

 a-diameter (default 1.0)

 height ^a-diameter

 width ^a-diameter

 depth ^a-height

To enable choosing between these classes, we add an option-property-class to the

coffee-maker and link the heater element shape to this property.

; Heater Shape Selection

;---

(a-shape-selection :class 'option-property-class

 label "Heater Geometrical Shape"

 options-list '(cylinder-heater box-heater)

45

; Heater (Element A)

;---

(element-a :class 'difference-object

 object-list (list ^outer ^inner)

 ; Tank outer wall

 (outer :class !a-shape-selection

 ; All dimensions auto-linked

)

 ; Tank inner space, floor intact

 (inner :class !a-shape-selection

 a-diameter (inner-diameter ^^a-diameter ^^wall-t)

 orientation (list (translate (list 0.0 0.0 ^^wall-t)))

)

)

The results are shown below (see Figure 29 and Figure 30).

Figure 29: Form variation in AML – default GUI for heater shape

Figure 30: Form variation in AML – heater shapes

46

4.4.7 Functional Requirement F 3.2 – Do Form Variation (element dimensions)

Changing dimensions that are not bound by any knowledge is very straight forward to

implement in AML. We simply need to link the element dimensions to the GUI using the

editable-data-property-class as we did before.

; Pot Dimensions (Element C)

;---

(c-rim-height :class 'editable-data-property-class

 label "Pot Rim Height"

 formula 1.25

)

(c-rim-diameter :class 'editable-data-property-class

 label "Pot Rim Diameter"

 formula 4.0

)

(c-pot-height :class 'editable-data-property-class

 label "Pot Height"

 formula 7.0

)

(c-pot-bottom-cut-height :class 'editable-data-property-class

 label "Pot Bottom Cut"

 formula 1.25

)

Linking these properties in the coffee-maker-gui exposes them to the user in the default

interface (see Figure 31 and Figure 32).

47

Figure 31: Form variation in AML – default GUI for element dimensions

Figure 32: Form variation in AML – changing dimensions (thickness, size)

48

4.5 Final Implementation

This section shows the final implementation of the pilot application with screenshots of the

environment and examples of possible product variations.

4.5.1 Environment

The final pilot KBE environment has a control panel on the left for making design variations,

and a graphics canvas on the right where the product is shown (see Figure 33). In reality, the

AML interface is larger with more features, but has been cropped to show only what is

relevant here.

Most of the features in the control panel have already been covered in 4.4 Development, but

to summarize, the user can do the following:

- Change general properties such as render mode and wall thickness (form variation)

- Toggle functional surfaces on/off and change their projection height

- Change the arrangement of the heater element (structure variation)

- Change the number of filter elements (structure variation)

- Change the shape of the heater element (form variation)

- Change the dimensions of any element (form variation)

49

Figure 33: Final pilot KBE environment

50

4.5.2 Product Variations

Combining all implemented techniques for structure and form variation, we are able to

produce a wide range of designs from the basic structure (see Figure 34).

Figure 34: Product variations using Tjalve's principles in KBE

51

4.6 Test Report

All functional requirements are tested by the developer. In future development, we would

include end users in any tests, to help verify user friendliness and receive other feedback.

4.6.1 Verification of Functional Requirements

F 1 Functional Surfaces

F 1.1 Define functional surfaces.

The system has pre-generated virtual functional surfaces between the

heater and filter elements. Once the base concept has been

implemented, it can with reasonable amount of effort be added to other

elements. The graphical user interface for selecting these surfaces was

not feasible to implement in this pilot due to high development time

(discussed in 4.4.2).

Overall verification: Partial Success

Initial development time: Medium

Further development time: Medium (per added element/surface)

F 1.2 Connect functional surfaces.

The system has the classes and mechanics needed to handle connection

of functional surfaces. However, the initial GUI was discontinued for the

same reasons as F 1.1. The GUI was reduced to a default AML interface

where the user can link two functional surfaces by choosing connection

type and direction.

Overall verification: Partial Success

Initial development time: Medium

Further development time: Low (per added connection)

F 2 Structure Variation

F 2.1 Do structure variation (arrangement).

The user is able to move an element relative to another by entering

positioning multipliers (devised in 4.4.4). It is implemented for the

heater relative to the filter, and the general formula can easily be used

on new elements by applying it to their coordinate systems.

52

Overall verification: Success

Initial development time: High

Further development time: Low (per added element)

F 2.2 Do structure variation (number of elements).

The user is able to select the number of instances of an element from a

dropdown menu. This is achieved through the definition of a parent

element that holds several original elements. We reuse a generic class,

which is good, but it takes time to create the parent class for each new

variation, and any belonging functional surfaces must also be multiplied.

Overall verification: Success

Initial development time: High

Further development time: High (per added element)

F 3 Form Variation

F 3.1 Do form variation (element shape).

The user is able to select a different geometrical shape for an element

from a dropdown menu. This feature is implemented for the heater

element, and can with a reasonable amount of effort be added to other

elements, or include new shapes. If the new shape involves a change in

functional surfaces, the required time is higher.

Overall verification: Success

Initial development time: Medium

Further development time: Medium (per added element/shape)

F 3.2 Do form variation (element dimensions).

The user is able to change several dimensions on all elements. This is

done by numerical input of new sizes. This type of feature could be said

to be native to AML, thus it requires little effort to implement.

Overall verification: Success

Initial development time: Medium

Further development time: Low (per added dimension input)

53

4.7 Evaluation

This chapter evaluates the final implementation of the pilot application. We discuss what

could have been done differently and suggest possible trajectories for future development.

Parts of the evaluation is based on test results and theoretical findings. Other parts are based

on the reflections and opinions of the developer and tester.

4.7.1 Development Issues

Functional Requirement F 1.1 and 1.2 – Custom Interfaces

The custom interfaces for functional surfaces could not be made as planned. Having pre-

defined surfaces is decent enough for this simple coffee maker. Some of the work is shifted

from user to developer, but leaves the user with less freedom in specifying their product. To

make the application generic and user friendly, a custom interface should be a priority in

future development.

Functional Requirement F 2.2 – Structure Variation (number of elements)

As noted in the test report, enabling this feature for new elements requires a high amount of

development time. This is because we need to create a parent class for each new variation,

and add a corresponding set of functional surfaces. We would also have to consider this added

work load if the application were to automatically generate pipes between the heater and

filter.

Looking at the class structure, if we had decided to incorporate the functional surfaces inside

the original class instead, we could effectively eliminate this extra work per new variation. In

addition, there are methods in AML for systematically repeating objects, for instance along

curves. This approach may be useful to genericize the code to quicken further development.

4.7.2 Effects on Creativity

We wanted to evaluate how the application supports or inhibits creativity. During and after

requirements testing, a wide range of product variations were made, some of which were

shown in 4.5.2. Reflecting upon the creative flow during this design process allows us to

identify some of the contributing factors.

Cognitive Framework Constraints

We have implemented our cognitive framework for creative design, derived from principles

by Tjalve (2003). The four principles that we chose in section 4.1 have now become

constraints that this framework applies to the design process:

1) The product basic structure is decided.

2) Elements can be rearranged and multiplied with structure variation.

3) Elements can be assigned new geometry and dimensions with form variation.

4) Variations must consider functional surfaces to retain product functionality.

54

Supporting Factor – Systematic Design

Having performed a large number of variations, there were times when no new ideas would

emerge. When this happened, I would look at the user interface to find operations that I had

not yet tried out. It could then happen that I suddenly entered a state of renewed flow, and

more ideas kept emerging. I think that having systemized Tjalve’s principles into a KBE

environment can allow a designer to fall back to these guidelines for inspiration while the

creative flow is poor.

Supporting Factor – Visual Feedback

Being able to continuously inspect the product on a 3D canvas was helpful to evaluate any

new ideas. This is perhaps comparable to for instance cardboard mockups, but less tangible

and more detailed. Still, I think that tangible mockups have the advantage of being faster than

the current user interface. In order to compete, the interface needs to be better, and a future

application should have some other knowledge-based advantages that a cardboard mockup

cannot offer.

Inhibiting Factor – Limited Tools

I discovered that my creativity was sometimes hampered by the limitations of the pilot

environment. There were operations that I foresaw in my mind that simply could not be done

with the available variation tools. This would be an unfortunate situation for a designer,

effectively stopping his creative flow. However, this is only a pilot application, and these flaws

should be expected for several reasons:

1) Not all variation principles were to be implemented (Tjalve’s or otherwise). One

specific operation that I would find useful for certain arrangements is the ability to

rotate individual elements. For a future application with more knowledge

implemented, the system should account for potential issues such as functional

surfaces with connection type gravity.

2) The implementation is not as sophisticated or detailed as the underlying theory. For

instance, in the case of form variation, a person’s ideas for new geometrical shapes

may emerge with more specificity than the system is able to reproduce. A future

version could have more basic shapes available, but also various extrusion and

difference tools for creating more advanced geometry.

3) Some implemented principles were not available for the entire product. For instance,

element rearrangement and basic shape change was only available for the heater.

55

4) The constraints of having a chosen basic structure. I found this limiting at times when

more radical ideas emerged, until I realized that it would actually change how the

product performed its task. In one sense, this limits creativity, while in another, it helps

focus our creative efforts (as proposed in 2.3.6) and not get off track.

Inhibiting Factor – Graphical User Interface

Each incremental product variation can be done with relative ease. However, numeric input

and dropdown menus are not optimal in terms of efficiency and user friendliness. Operations

should be much faster in order to speed up the idea-to-realization cycle. I found that too much

time and focus was spent on inputting values and redrawing the model. This mundane task

got annoying over time, and I think it distracts our minds enough to hamper creative flow. I

was likely having a taste of the negative “eyebrow effect”, leading my task solving system II

to dominate instead of the more creative system I (Kahneman, 2013).

4.7.3 Other Comments

Form Variation – Total and Element Form

Tjalve distinguishes between total form and form of the elements (described in 2.5.6 Total

and Element Form). He also states that these are naturally connected. When changing the

form of an element, the total form of the product must follow, and vice versa. If desired, we

could implement more automation related to this in our KBE environment. Using AML, we

can assign dependencies to dimensions and geometry. We could for instance have overall

product dimensions like height or width, which automatically scale all individual element

dimensions.

Product Variations – Degrees of Freedom

Let us consider our product variation tools in terms of degrees of freedom. For each element

in the product, we have:

- Structural arrangement along three axes.

- Structural repetition of an instance.

- Different basic geometrical shapes.

- One or more dimension properties, such as height, width, thickness.

This gives us at least six degrees of freedom per element. For a user, more freedom equals

more variation capabilities, but perhaps also fewer positive constraints, as Jocko Willink

would have it (2.3.6). For complex products, the number of possible combinations would

increase at an exponential rate for each new element added. If the application later evolved

into some type of generative system, it would need manual or intelligent filtering to manage

its solution space.

56

Product Variations – Viability of Outcomes

In the current state of the application, some of the product variants that can be created would

not be immediately usable. There is currently no intelligent support if an element is displaced

in some way that logically breaks its functional surface link. For instance, if the heater exit

hole is placed outside or below the filter entry, we would require pipes and/or pumps to

transport the water. Also, if we choose multiple filter elements, we would need individual

pipe exits or some kind of rotational system.

57

5 Future Development

This chapter suggests the future development of a KBE environment for supporting creative

design. We base these suggestions on the evaluation of the pilot application and any relevant

theoretical findings. The GUI prototypes herein are made to illustrate some of these concepts,

but they are not yet functional KBE environments.

5.1 Features

This kind of system competes with traditional methods for early creative design, like

cardboard mockups. These are excellent because they are fast, tangible and inexpensive. The

environment should offer some more advanced knowledge-based features that such tangible

methods cannot.

5.1.1 Automatic Creation of Support Elements

When a product is changed through for instance structure and form variation, the functional

surface connections will sometimes become invalid. This could be due to a gravitational flow

between two elements that is no longer possible because the exit surface is below the entry

surface. In the coffee maker case, moving the heater element outside or below the filter

would require water pipes and/or pumps to be added. The KBE environment could be

designed to automatically add these support elements when needed. This would let the user

to creatively design his product without having to worry about breaking its functions.

5.1.2 CAD Import

AML supports import of industry-standard files like IGES, STEP, STL and DXF16. This could let

us build modules using CAD, and import them into our KBE environment to do creative work.

There could be some form of intelligence that helps with the logical arrangement of incoming

objects, using functional surfaces or otherwise.

16 AML support for import/export: http://technosoft.com/application-software/adaptive-modeling-language/

http://technosoft.com/application-software/adaptive-modeling-language/

58

5.1.3 Product Stats

KBE gives the ability to implement cost functions. These could for instance calculate material

or production costs as the product changes. Inspired by this, we could create a live updated

display of various product stats. Similar calculated product stats are demonstrated in for

instance TechnoSoft’s AMRaven, Adaptive Modeling for Rapid Air Vehicle Engineering (e.g.

Dahl et al., 2006), and in Parametric Ship Hull Design in NX (Skogsfjord and Rognseth, 2014).

Coffee maker stats could include material costs, production costs, element count, power

consumption during use, brewing time, pot volume, and so on. Automatically added pipes

and pumps would increase the material costs, production costs, and power consumption. The

designer would receive immediate feedback on his changes, and could choose which stats to

optimize for. This should further ease the cognitive load on the designer, possibly allowing

more effort to be spent on being creative instead.

Radar Chart

Another way to more visually represent product stats could be through a radar chart17. This

places three or more stats on individual axes in a two-dimensional diagram (see Figure 35).

Higher stats are represented with further distance from the chart origin. It may be faster to

determine the overall size of stats by glancing at a radar chart instead of raw numbers.

Figure 35: Radar chart with stats for two coffee makers

17 Radar Chart: https://en.wikipedia.org/wiki/Radar_chart

https://en.wikipedia.org/wiki/Radar_chart

59

5.2 GUI Prototypes

5.2.1 Defining and Connecting Functional Surfaces

The improved versions of these interfaces are more about interaction style than design. In

the pilot application we failed to demonstrate a click-to-select method for element surfaces.

Since this is not something we can explicitly show in a new image of a prototype GUI, we shall

refer to the previously created pilot prototype (seen in Figure 23). The new interface would

be similar to this, but with the ability for the user to click on physical and spatial surfaces to

do their selection.

5.2.2 Manual Product Variation

In the pilot application, we created a default AML interface for product variation (Functional

Requirements F 2.1, 2.2, 3.1, 3.2). The following prototype is a suggestion to how we can

improve this interface (see Figure 36).

Structure Variation

Arranging elements was previously done by entering positioning multipliers to make them

adjacent, spaced or overlapping along an axis. Although the concept is relatively simple, the

interface could be optimized to avoid hindering the creative flow. This version uses buttons

to immediately reposition an element and show the update in the canvas. By simultaneously

pressing the control, shift or alt/option buttons, the movement would be far, short or aligning.

Another possibility would be to have some kind of drag and drop system where the user could

simply pull on an element to reposition. The system could then suggest aligned positions by

letting the element “snap” into place depending on which modifier keys are held down.

The user can also press a button to align elements according to their functional surface

connections. In the case shown below, the heater would then be centered directly above the

filter with intersecting functional surfaces.

The second aspect of structure variation is done by choosing number of elements from a

dropdown menu. This is the same as before, but we could now have more options and make

sure that the model view instantly updates itself upon a new selection.

Form Variation

The form variation toolset follows the same behaviors as the controls for structure variation.

Selecting new geometrical shapes is done from a dropdown menu, and element dimensions

are adjusted incrementally using buttons. Holding the modifier keys determines the big or

small change in dimensions, will determine how much the dimensions, or if they should auto

align to other elements.

We could also add more advanced form variation options here, such as custom extrusions,

difference objects, and edge rounding.

60

Other Features

Below the main canvas, the user can view live updated product stats, and a miniature version

of the unchanged product. The user could optionally show these stats as a radar chart.

Figure 36: Prototype GUI for doing manual product variations

61

5.2.3 Automatic Product Variation

We recall Asimov (1959) who states that great ideas often stem from finding a connection

between two entities which might not ordinarily seem connected. Using the product variation

principles, we could let the system automatically generate a solution space for the user to

explore. This means trying all possible combinations within reasonable parameters. A system

with these characteristics could fall into the category of computational creativity systems that

attempt to replicate human creativity (e.g. Colton and Wiggins, 2012).

Variation Filters

As discussed in the evaluation of the pilot application (4.7.3), for each new variation method,

we add more degrees of freedom. An automatic variation environment like this would need

a comprehensive filtering system which can be controlled by the user. These could include:

- Choosing to work with certain elements at a time.

- Choosing which types of variations to perform (arrangement, shape, dimensions, etc.).

- Preventing illogical relationships according to functional surface connections.

- Preventing physical element overlaps.

- Setting minimum and maximum limits to product stats.

- Sorting the solution space by product stats.

- Sorting the solution space by how much they differ from the basic structure.

This way, the user could choose to do precise exploration of outcomes, or allow the system

to take its own questionable liberties. We could make a slightly farfetched comparison to the

freely creative, dreamlike state of mind that results from human night-waking (Arnsten et al.,

2012; Ekirch, 2006), discussed in 2.3.6. Even if many of these generated solutions are

unfeasible, the more radical combinations could aid user creativity by sparking new ideas.

Solution Space View

The user interface displays the solution space as a sortable list of products (see Figure 37),

with filtering options on the left side. Each preview also shows product stats, and has buttons

that open full screen preview or the manual variation form to do further variations. Product

stats could also be shown as a radar chart according to user preferences.

62

Figure 37: Prototype GUI for automatic product variation

63

5.3 Genericity

5.3.1 Interoperability

The CAD import feature (5.1.2) would represent a significant contribution to genericity. This

means that we would not necessarily have to program our basic structure in KBE. We could

use other CAD tools to design products, or import already existing structures. This would also

demand that our environment is in itself generic enough to handle arbitrary models.

5.3.2 Arbitrary Models

Dynamic User Interface

The user interface for product variation needs to dynamically adapt to the structure or

element being edited. This means displaying all the dimensions that can be changed, and all

basic geometrical shapes that are feasible choices.

Connecting Arbitrary Elements

The system should have some form of intelligence for connecting arbitrary elements together.

This could mean that the system inherently understands certain component types, and would

suggest pairings. Currently the user does all connections manually through functional

surfaces. An interesting feature would be to have the system learn from the user, establishing

an increasingly better understanding for what type of components typically go together.

General and Specific Product Stats

Some product stats can likely be calculated generically, such as material costs. More specific

stats, such as the coffee maker brew time, would need to be developed for each special case.

64

5.4 Complex Products

Tjalve (2003) provides examples of moderately complex machines, but not for entire facilities

such as industrial process plants. We seek to expand or adapt his principles for use with more

complex products.

5.4.1 Number of Elements

Complex products have a significant amount of elements compared to a simple coffee maker.

The original variation techniques were tested for low level variations, element by element.

We would like to make these principles work for high level variations as well.

Product Sections

When doing form and structure variation, the user could choose to limit the variations to a

selection of elements at a time, gradually finishing divisions of the product. It is also likely that

such products are developed in teams. Each member or group could perform design

variations on separate sections, while still being able to view other sections and take them

into consideration. We could also have the ability to lock certain elements or sections,

disabling any further editing or automatic variations there.

Group Operations

We could implement the ability to perform actions on entire product sections, for instance

doing structure variation on sections by moving all elements as one group. This could be

useful during an initial structural planning phase for the overall layout of an industrial facility.

Functional Surfaces

The functional surfaces in the pilot KBE environment were defined on single, function-specific

areas of the product. For a complex product, we could also imagine large functional surfaces

defined across multiple elements that serve as a group. This way, we could connect product

sections with an overall connection type and direction. Whether using functional surfaces on

low or high levels, we would argue that this concept scales well with increasing complexity.

Systems Thinking

The natural limits of human cognition come into play when thinking about large and complex

systems (Goel, 2012). We could incorporate modeling frameworks into the KBE environment,

such as OPM (Dori and Crawley, 2013) or SBF (Goel et al., 2009). This could help users get a

better understanding of the system they are working on, and free more capacity for creative

design. To get the most use of the modeling frameworks, the KBE environment could be able

to create geometry and relationships from OPM or SBF models, and vice versa.

65

5.5 Other Aspects

5.5.1 User Interface Design

As discussed in 2.4.3, HCI design principles may affect user creativity. The pilot application

used the default generated AML interface with simple input mechanisms. Taking human

cognitive aspects into consideration, it would be preferable to have a more progressive

custom interface, designed in AML or otherwise. The prototype interfaces above attempt to

improve some issues with the pilot interface.

Intuitiveness

The first issue is that the pilot interface is not intuitive enough to be used without reading a

user manual, as Norman (2013) would recommend. A new user would not immediately know

what is meant by structure variation and positioning multipliers, for instance.

Spacing and Grouping

Secondly, being met with an entire column of labels and textboxes is likely daunting to many

users, and may trigger the “eyebrow response” (Kahneman, 2013). The common HCI design

principle of spacing and grouping was applied in the pilot interface to improve the sense of

belonging and make input sections easier to recognize (Norman, 2013; Preece, 1995).

However, this was not enough to make input components stand out in the default AML layout.

This is also likely to inhibit the creative process when users cannot immediately find the

desired input component, which would require their System II to work instead of System I

(Kahneman, 2013). A custom interface with frames and distinct headers improves separation.

In addition, using different GUI components for each type of functionality makes them easier

to locate. We can compare this to a well-designed TV remote control, where the volume

button is clearly different from the other buttons.

Casual and Playful Creativity

The third issue is related to encouraging creativity through playfulness and curiosity

(Törnkvist, 1998). This is perhaps more of a potential benefit of a good interface, rather than

an actual issue (Norman, 2013). However, solving the former issues will provide some of these

benefits as a byproduct. To improve this further, we should make the interface casual and

“not feel like work”, as Seth Rogen put it in 2.3.6 (Ferriss, 2015, ep 84).

66

67

6 Discussion

This chapter aims to answer the main research questions by structuring what has been

learned from this study. In addition, we discuss and reflect upon the research study itself.

6.1 Research Questions

6.1.1 RQ 1: How can metacognition benefit KBE and creative design?

In our initial studies, we discovered branches of metacognition that could apply in a KBE

setting or have implications for creativity in general. We defined the cognitive frameworks

category to include systems of thought that could enable people or computer systems to

improve design creativity. In addition, we investigated the art of reflective practice, and how

it could improve the creative processes of people, or refine the effectiveness of existing

computational creativity tools. The following figure suggests how metacognition and its

derived concepts could relate to KBE and creativity (see Figure 38).

Figure 38: How metacognition relates to KBE and creativity

68

Cognitive Frameworks

The wording in Figure 38 may suggest that cognitive frameworks are exclusively beneficial for

creativity. However, we found that cognitive frameworks can have both positive and negative

constraints. Some constraints can also be positive and negative at the same time. The

outcome depends on how the framework is used. For instance, a framework that is applied

too strictly could limit freedom and produce negative constraints on creativity. Likewise, a

framework with no boundaries could easily lead to derailment of the creative process.

The balance between freedom and restriction matters both for people who use cognitive

frameworks as thought structure, and for computer systems that implement them. However,

negative constraints in a computer system are more problematic, because once they are

implemented, there is no way around them. On the other hand, when applying the same

constraints in our minds, we can more easily cheat and escape the restraints if we notice that

they are hindering our creative process.

Reflective Practice

We found that reflective practice allows for continuous development and refinement of

existing creative tools and processes. With awareness of their own cognition and creative

process, people can seek more optimal work routines, environments, times of day, and

mental states in which they are the most creative. In the same way, people can reflect upon

the tools they use for creative work, such as KBE environments, to consider whether they are

optimal for what they want to achieve.

Having reflected upon our own pilot KBE environment, we found that our user interface had

flaws that were strongly related to human cognition. Some HCI design principles were

suggested for future development to mitigate or eliminate these issues. Our pilot evaluation

also revealed that the cognitive framework that we had implemented offered both positive

and negative constraints on creativity. Some prototype features for future development were

suggested to shift the balance in favor of the positive aspects.

This is demonstrated by the concepts of reflection-in-action and reflection-on-action which

were introduced by Schön (1983). These concepts have also been applied in software

engineering to understand the importance of reflective practice in system development

(Mathiassen, 1998).

Reflection-in-action refers to experiences and ideas that provide inputs to our actions in a

learning situation. With respect to creativity, this can be stimulated if we have an intuitive

user interface. On the other hand, reflection-on-action occurs after an experience that is

perceived as complex or uncertain. For instance, a designer that has had problems with

designing a new product in KBE, would need post-reflection before new actions can be taken.

The designer has then become a reflective actor who combines his existing knowledge with

69

new knowledge into a retrospective reflection. Because of this, reflection could be a vital

activity in creative design, effectively turning experiences into explicit benefits.

Branching of Cognitive Frameworks under Metacognition

Within section 2.4, we introduce some systems of thought that we label cognitive

frameworks. Branching this under metacognition may have been slightly incorrect, because

strictly speaking, not all of these frameworks really apply metacognition. However, we reckon

they may have been uncovered through reflecting upon existing processes or a desire to

formalize systems of thought into modeling frameworks.

6.1.2 RQ 2: How can KBE technologies support the creative design phase?

Through our initial study of KBE technologies, we found that some of the native advantages

that KBE provides could benefit creative design. We highlighted that engineering design

efforts typically consist of 80% routine and 20% innovation (Sanya and Shehab, 2014; Skarka,

2007). It is possible that KBE could shift this balance in favor of innovation through the

automation of routine tasks. In addition, the knowledge management capabilities of KBE

could allow knowledge to be combined in a creative manner, or apply existing knowledge to

new designs by analogy.

Implementation of Systematic Design Frameworks

As part of this study, we created a cognitive framework based on the principles of Tjalve

(2003), and were able to implement them in a KBE environment. Specifically, we start with

Tjalve’s basic structure and use structure variation, form variation, and functional surfaces to

generate a product solution space from the basic structure. This way we have embedded a

set of design constraints that allow us to steer and support the creative process of a user.

Although these constraints have both positive and negative aspects, it shows that KBE enables

us to structure the creative design phase and facilitate a certain kind of creativity.

The fact that a KBE technology such as AML can successfully implement a cognitive framework

is a good indicator in itself. This leads us to believe that other types of frameworks could be

implemented as well, tailoring the creative support as required. The following discussions on

RQ 3 and RQ 4 mention other frameworks and theoretical considerations that are also valid

for this question.

70

6.1.3 RQ 3: How can Tjalve’s principles be implemented with KBE for a simple product?

Tjalve’s Principles as a Cognitive Framework for KBE

Through our study of Tjalve (2003), we extracted a set of principles that seemed applicable to

KBE and creative design. These principles make up what we shall refer to as Tjalve’s

framework, which we test-implemented in a pilot KBE environment. The entire

implementation process is elaborated in chapter 4. Tjalve’s framework structures some of the

mental creative processes, and applies systematic design constraints that can facilitate and

inhibit creativity. The following figure explains how this cognitive framework relates to

creativity (see Figure 39).

Figure 39: Tjalve's principles as a cognitive framework

The following sections will elaborate more on this figure, and aims to answer the questions

asked in 1.2.1:

a) What are the systematic design constraints applied by the chosen framework?

b) How do the framework constraints affect creativity?

c) How feasible were the framework constraints to implement in KBE?

a) Tjalve’s Framework – Constraints

Tjalve’s framework applies the following constraints on the creative design, as established in

4.7.2. These constraints have positive and negative aspects, which can facilitate or inhibit

creativity (as seen in Figure 39 above).

1) The product basic structure is decided.

2) Elements can be rearranged and multiplied with structure variation.

3) Elements can be assigned new geometry and dimensions with form variation.

4) Variations must consider functional surfaces to retain product functionality.

71

b) Tjalve’s Framework – Effects on Creativity

Having evaluated the pilot KBE environment, we got a better impression of how each

constraint affected our creative process. The following table highlights the positive and

negative aspects of the framework constraints. We have attempted to make this a conceptual

evaluation, meaning that we try to look beyond how well or to what degree each constraint

was implemented in the pilot. Some of the reasoning behind these results are covered in the

pilot evaluation in 4.7.2.

Constraint Effects on Creativity

1) Basic

Structure

Positive: Effective at steering the trajectory of the creative

design process.

Negative: Prevents ideas that would change how the

product performs its function, i.e. altering the sub-functions

that together fulfill the main function. We cannot return to

an earlier stage of our product synthesis.

2) Structure

Variation

Positive: Can inspire new and radical element combinations.

A good support to fall back on when creative flow is poor.

Negative: No adverse effects were found.

3) Form

Variation

Positive: Experimenting with geometries and dimensions

inspires completely different aesthetic designs. Changing

these parameters can also spawn new arrangement ideas

that were previously not possible. This creates an effective

synergy with structure variation.

Negative: No adverse effects were found.

4) Functional

Surfaces

Positive: Easier to understand and visualize the product as a

system of functional relationships. This frees more capacity

for creative efforts with form and structure variation.

Negative: The functional surfaces restrict how we can do

form and structure variation. However, this is necessary to

retain functionality and adhere to the basic structure.

72

c) Tjalve’s Framework – Implementation Feasibility

We developed the pilot KBE environment using the Adaptive Modeling Language (AML) by

TechnoSoft Inc. In terms of feasibility, we consider the implementation of Tjalve’s framework

in KBE to be an overall success. However, some interface-related features required more

development time than anticipated. These were reduced to default input mechanisms or

instead predefined for the user. The following table summarizes the implementation

feasibility of the framework constraints in a KBE environment using AML. This reasoning

behind these results are covered in 4.6.

Constraint Implementation Feasibility

1) Basic

Structure

Implementation: Feasible

Development time: Medium

Basic geometry and element relationships were predefined

for the user, setting natural boundaries for any further

creative work.

2) Structure

Variation

Implementation: Feasible

Development time: High

Elements were positioned relative to each other by applying

an adjacency formula to their coordinate systems. Parent

classes with multiple element instances were created to

support a variable number of elements.

3) Form

Variation

Implementation: Feasible

Development time: Medium

Different element classes were created for each new

geometrical shape. Element dimensions and shapes were

then exposed to the user through the default AML interface.

4) Functional

Surfaces

Implementation: Partial Success (Feasible)

Development time: Medium

We created classes to represent functional surfaces and

their relationships. These classes support the definition of

arbitrary relationships, but the custom user interface was

discontinued. Virtual functional surfaces were predefined

for the user instead.

73

Further Comments on the Effects on Creativity

Given the fact that the pilot KBE environment was not tested with product designers, it is fully

possible that the environment in its current state does not improve creativity, but merely

structures it into a system. We could argue that the environment does not impede creativity

either. During testing, ideas would still emerge that existed outside of the solution space

enforced by the framework. A trained creative person could have routines for systematically

capturing ideas that emerge (Epstein et al., 2008). The issue then might be that these ideas

are not allowed to flourish and mature as they would in an unrestricted environment, for

instance while sketching ideas on paper.

This brings us to the thought that the systematic design principles introduced by Tjalve (2003)

are indeed very systematic and engineer-like, but does not take into account the potentials

of unhindered creativity (e.g. Asimov, 1959; Ferriss, n.d., 2015, ep 82; Törnkvist, 1998). Based

on these thoughts, one could argue that a creative environment should not rigidly enforce a

such principles, and at the very least grant users the liberty to discard the framework if they

notice that it is hindering their creative output.

Human Computer Interaction and Creativity

Throughout our study, we discovered that there could be a strong connection between the

fields of Human Computer Interaction and creativity. We base this notion on the results of

evaluating how the pilot KBE environment affected creativity, and connecting our separate

learnings on human interface design, cognition and creativity (e.g. Brown, 1987; Kahneman,

2013; Norman, 2013; Preece, 1995). However, more research would be needed to determine

whether there is a connection between HCI and creativity.

Assuming there is such a relation, it would be fair to assume that some aspects of user

interface design are up to the preferences of the individual user, for instance colors and fonts.

However, the more proven HCI design principles could guide the development of objectively

better interfaces for creative design (e.g. Norman, 2013; Preece, 1995).

Potential Use of Modeling Techniques

During the study, we uncovered various modeling techniques that could be suited to

represent a product structure and its functional relationships. Already mentioned in 2.4.2, are

OPM (Dori and Crawley, 2013) and SBF (e.g. Goel et al., 2009). These were also suggested for

future development in 5.4.

In addition, we looked into the possibility of using Oriented Networks to represent the

functional relationships of a product (Sheth, 1972). This modeling technique uses a network

of nodes with directional connections. We considered using it in conjunction with the concept

of functional surfaces by Tjalve (2003). However, due to the simple, linear nature of the coffee

maker example, this technique was not used in the pilot KBE development.

74

Alternative Workflow

In 4.2.2, we established a workflow where functional surfaces were defined and connected

before doing structure variation. This is not strictly in accordance with the product synthesis

proposed by Tjalve (2003), and could introduce some challenges. Originally, functional

surfaces are a part of form variation, which is done after structure variation. Having already

defined functional surfaces and their relationships, our options for rearranging and

multiplying elements become restricted. However, as suggested in 5.1.1, these functional

surface relationships allow us to implement things like automatic pipes and pumps as

required. This increases the development cost, but eventually gives us a more powerful KBE

environment that can retain product functionality while doing unrestricted structure

variation.

The Origin of Positive and Negative Constraints

The word constraint arguably has an inherent negative feel to it. However, in order to discuss

the good and bad aspects of cognitive frameworks, we established the terms positive

constraints and negative constraints. By positive constraints we mean boundaries that

eventually yield some form of gain, for instance more focused creative efforts. Negative

constraints would have the opposite effect, for instance limiting creative outputs.

In an attempt to formalize this concept, we looked for other studies that had used similar

terms. Our initial search showed few relevant results for positive constraints, except for

occasional mentions on the podcast of Tim Ferriss (e.g. Ferriss, 2015, ep 83), and in various

blogs18, 19, 20. It is possible that the concept itself has been discussed in previous research, but

with different terminology. Further study would be required to determine whether this is a

previously explored concept with respect to creativity.

The Role of Knowledge Management

Throughout our study, the concept of Knowledge Management (KM) emerged as an

interesting perspective on both KBE and creativity. We discovered that tacit knowledge in

particular, has challenges associated to its conversion and embedment into knowledge based

systems (e.g. Alavi and Leidner, 2001; Nonaka et al., 2000; Rocca, 2012). Combined with the

fact that creativity could stem from tacit knowledge and experiences (Asimov, 1959; Nonaka

and Konno, 1998), we wanted to investigate whether this could be relevant for implementing

KBE systems that support or emulate human creativity. Although we did uncover interesting

relationships between the fields of KM, KBE and creativity, we could not make any solid

conclusions without further study. Therefore, we did not include KM as part of our main

inspirations for the development of the pilot and future KBE environments.

Blog mentions of positive constraints:
18 http://jamesclear.com/dr-seuss
19 http://thinkspace.com/the-power-of-positive-constraints/
20 http://innovationexcellence.com/blog/2013/04/01/the-power-of-positive-constraints/

http://jamesclear.com/dr-seuss
http://thinkspace.com/the-power-of-positive-constraints/
http://innovationexcellence.com/blog/2013/04/01/the-power-of-positive-constraints/

75

6.1.4 RQ 4: How can this environment be adapted to work for complex products?

In chapter 5, we suggested features and prototype interfaces for a potential generic KBE

environment for doing creative work with complex products. These proposals were based on

the evaluation of the pilot KBE environment and other findings in our study. However, we

would highlight that many of these suggestions also bear the subjective assessments of the

author. As such, until further research is conducted, we cannot not make any solid claims

regarding the feasibility or effectiveness of the suggested features.

Prototype User Interfaces

We proposed an updated version of the product variation form that applies Tjalve’s

framework, which would allow users to more easily perform structure and form variation

(Tjalve, 2003). Based on Tjalve’s framework, we also suggested an automatic product

variation form, which would produce an entire solution space of products, controlled by filters

chosen by the user. We argued that such an environment would converge towards the realm

of computational creativity, attempting to emulate human level creativity (Colton and

Wiggins, 2012). This automated exploration of the product solution space was inspired by the

principles of Tjalve (2003), combined with the notion that great ideas often stem from

discovering connections between things that ordinarily do not seem connected (Asimov,

1959).

Genericity and Complex Products

To create a more generic environment, we suggested features such as interoperability

through the import of industry standard files to do creative work in KBE, intelligent connection

of arbitrary elements, and a more dynamic interface for product variation.

To have a system that can scale with complex products, we proposed doing variations with

entire sections of the product, definition of overall functional surfaces to link product

sections, and incorporating systems thinking modeling frameworks such as OPM or SBF (Dori

and Crawley, 2013; Goel et al., 2009).

Meta Thinking and Analogical Thinking

In 2.4.2, we mentioned meta thinking and analogical thinking as cognitive frameworks for

structuring design processes. These could be options to consider for future development, but

the underlying principles do not seem to pair well with our chosen principles by Tjalve (2003).

Analogical thinking (Cross, 1997; Dorst, 2011; Goel, 2012) seems to resonate well with

knowledge conversion (Nonaka and Konno, 1998) and the potential for KBE environments to

reuse existing knowledge in new designs (Verhagen et al., 2012). Meta thinking (Goel, 2012),

on the other hand, would inspire systems that rely on artificial intelligence and control

knowledge to perform self-diagnostics and adaptation of processes (Calkins et al., 2000).

76

6.2 Limitations and Suggestions for Improvement

6.2.1 Research Scope

The originally suggested thesis assignment was focused on incorporating the principles of

Tjalve (2003) into a KBE environment for creative design. With the addition of metacognition,

the research scope widened, and also led to a greater focus on the cognitive aspects of

creativity. This ultimately led to a more diverse, but challenging thesis. We believe that the

original scope would have allowed for a more in-depth research on KBE, and possibly to have

experimented with a working generic KBE environment using Tjalve’s principles. Despite

these limitations, we hope that the broader scope has uncovered some new perspectives with

potentials for additional research. These could include how knowledge and KM relates to KBE

and creative design, the effect that positive constraints have on creativity, and how HCI design

principles can affect human creativity.

6.2.2 Theory and Practice

This study involved a combination of theoretical research and software development. The

latter could be seen as more practical than theoretical. However, the pilot KBE environment

was ultimately developed as a proof of concept with the theoretical research in mind, and not

for immediate use in a specific industry. In light of former development experiences within

other industries, we would argue that there is often a notable difference between theory and

practice when it comes to software development and its integration into organizations. In

retrospect, we would have preferred to incorporate some more practical aspects into our

research and development, knowing that what is found in theory might come with

unexpected challenges when attempted in practice later.

6.2.3 Evaluation Process of the Pilot KBE Environment

The findings in 4.6 and 4.7 were attained by the developer alone, who is neither a product

designer by profession, nor the end user of the application. This compromises the objectivity

and quality of the test results. Including the end users in the process would yield a more solid

evaluation of the effects on creativity, and would provide invaluable feedback on potentials

for improvement. The Scandinavian tradition of Participating Design includes the users in the

design process of system development (Ehn, 1993). A collective resource approach suggested

by Ehn (1993) with participating design in iterations could improve the evaluation stage

(Schuler and Namioka, 1993).

77

6.3 Discussion on the AML Development Environment

Rocca (2012) mentions how some find a programming language to be tedious compared to

simply using a graphical user interface. However, he also points out several advantages of

having an underlying language, and that it is even necessary to achieve certain advanced

capabilities. Some cases where a KBE language is required or advantageous: when we need

to capture the design intent or process, when we need to define a consistent automated

generative process, and when we need to handle custom interoperability with non-standard

file formats (Rocca, 2012, p. 173).

Rocca (2012) gives further support to KBE, which he says has been labeled by many as “just

CAD systems”, and highlights that, in fact, some KBE technologies are merely CAD systems

with augmented KBE-like capabilities. He argues that the Adaptive Modeling Language (AML)

by TechnoSoft, and the General-purpose Declarative Language (GDL) by Genworks, are “the

only true KBE systems on the market”.

Assuming that having a powerful language is one of the key advantages of KBE technologies,

we would argue that the language and its facilities would be a vital area of focus for the

providers of KBE development environments. As mentioned in 3.3, we used both AML XEmacs

and Notepad++ to develop the pilot KBE environment. The reason for supplementing with

Notepad++, was that it had certain assistive features that led to a faster and less error prone

coding experience. This may be wholly subjective, as the preferred choice of code editor

varies greatly in the software development community. Even so, given our experience from

this, and other development projects, we would like to suggest some key features that we

think would enhance the AML XEmacs environment. It is possible that some of these features

already exist without our knowledge. We would also like to propose that some of these

features would yield benefits for the developer, referring to HCI design principles (Norman,

2013; Preece, 1995), and metacognitive aspects (Brown, 1987; Kahneman, 2013) which were

identified in our theoretical studies. These benefits include faster code writing, less routine

work, reduced cognitive load, early error catching, and ultimately being able to redirect these

spared efforts into coding. We propose the following:

1) Auto-completion of text would allow faster code output, less typing errors, and not

having to remember exact names of already declared classes and properties.

2) The editor could highlight other code that is relevant to the currently selected term,

for instance a class name or a declared property.

3) The editor could highlight the target of long references such as (the superior

superior ...), when possible to determine.

4) The environment code-to-test-cycle could be shortened so that the developer could

more quickly view the results of minor code changes.

78

79

7 Conclusion
This study investigates the possibility of using Knowledge Based Engineering (KBE) as a tool

for the early creative design phase, and examines how the concept of metacognition could

relate to KBE and creativity. Design research was used as an overall methodological approach

as a basis for the research and development processes.

A literature review on KBE and creativity revealed that KBE can facilitate creativity by

automating routine tasks in favor of innovative efforts, and by exploration of product solution

spaces via parametrization and generative procedures. A study of Eskild Tjalve’s work

suggested that his design methodology could be implemented in KBE to support the creative

design phase. A literature review on metacognition suggested that aspects such as reflective

practice play a role in the creation, evaluation, and refinement of cognitive frameworks that

can ultimately be suitable for implementation in systems for computational creativity.

A pilot KBE environment was developed in AML using Tjalve’s systematic design principles.

The resulting tool could perform Tjalve’s design variations on a simple product, by rearranging

or multiplying components, and by changing the dimensions or base geometries of

components. Tjalve’s functional surfaces could be defined on specific areas of components

and connected with functional surface on other components, effectively defining their

functional relationships. It was determined that all of the chosen principles from Tjalve were

feasible to implement using a KBE technology with a strong modeling language such as AML.

An evaluation of the KBE environment found that Tjalve’s framework imposed positive and

negative constraints on creativity. The positive constraints facilitated creativity by guiding the

trajectory of the design process, and by providing a set of design principles to fall back to

when the creative flow is poor. The negative constraints inhibited creativity when the

framework was unable to reproduce the ideas of the designer. Other negative aspects were

identified as being related to Human Computer Interaction (HCI) and human cognition.

A future development plan was proposed to advance the pilot KBE environment. Prototype

interfaces were suggested to demonstrate how HCI design principles could mitigate the

associated negative effects on creativity. Live updated product stats would allow the tool to

better compete with traditional methods for mockup design. The concept of interoperability

and handling of arbitrary models would promote a generic environment. Finally, suggestions

were made for how to scale Tjalve’s design principles to work for complex products.

The paper has demonstrated that KBE technologies with powerful language capabilities are

well suited to incorporate a systematic design methodology as a framework to guide the early

creative design process. The resulting effects on user creativity is largely dependent on the

positive and negative constraints applied by the framework, and how strictly these

constraints are enforced.

80

81

8 Suggestions for Further Work

This chapter offers propositions for further work. The primary focus should be on 1) further

development of the KBE environment, and 2) the use of participating design to reveal more

potential effects on creativity. Secondary aspects to investigate include 3) getting a deeper

understanding of how metacognition can benefit creative design, and 4) how HCI design

principles can benefit human creativity.

8.1 Development of the KBE Environment for Creative Design

The next logical step after this study is to consider the suggestions in 5 Future Development,

and conduct further research and development of a KBE environment for the early creative

design phase using Tjalve’s framework. First, this adaptation should focus on genericity and

the ability to handle arbitrary product models. Secondly, the environment should be aimed

towards more complex products, such as industrial process plants.

8.2 Participating Design for the KBE Environment

A limitation of this study was that the potential end users of the KBE environment were not

included in the testing and evaluation processes. Further research along with for instance

product designers is needed to more accurately determine the effects that this tool has on

creativity. The Scandinavian concept of Participating Design may be of relevance here.

8.3 Metacognition and Creativity

The study discovered potential ways to improve human creativity through reflective practice,

which involves refinement of existing creative processes, adaptation of work environments

to encourage casual and self-motivated idea generation, and evaluation of existing tools for

creative design to uncover flaws and potentials for improvement.

The concept of cognitive frameworks can be explored further with respect to the refinement

of creative processes and to their applicability in tools for computational creativity.

8.4 Human Computer Interaction and Creativity

The study revealed potential close ties between Human Computer Interaction (HCI), human

cognition, and creativity. This could have implications for not only KBE and creative design,

but for the development of computational creativity tools in general. Further literature

reviews and research must be conducted in order to substantiate this notion.

82

83

9 References

Alavi, M., Leidner, D.E., 2001. Review: Knowledge Management and Knowledge

Management Systems: Conceptual Foundations and Research Issues. MIS Q 25, 107–

136.

Arnsten, A.F., Wang, M.J., Paspalas, C.D., 2012. Neuromodulation of Thought: Flexibilities

and Vulnerabilities in Prefrontal Cortical Network Synapses. Neuron 76, 223–239.

Asimov, I., 1959. Isaac Asimov Asks, “How Do People Get New Ideas?” MIT Technol. Rev.

Brown, A., 1987. Metacognition, Executive Control, Self-Regulation and Other More

Mysterious Mechanisms. In F. E. Weinert & R. H. Kluew (Eds.), Metacognition,

Motivation and Understanding (pp. 65-116), The Psychology of education and

instruction. L. Erlbaum Associates, Hillsdale, N.J.

Calkins, D.E., Egging, N., Scholz, C., 2000. Knowledge-Based Engineering (KBE) Design

Methodology at the Undergraduate and Graduate Levels. Int. J. Eng. Educ. 16, 21–38.

Cascini, G., 2008. Computer-aided innovation (CAI). Int. Fed. Inf. Process., IFIP International

Federation for Information Processing 277, 7–18.

Colton, S., Wiggins, G.A., 2012. Computational Creativity: The Final Frontier? Front. Artif.

Intell. Appl. 21–26. doi:10.3233/978-1-61499-098-7-21

Cross, N., 1997. Descriptive models of creative design: application to an example. Des. Stud.,

Descriptive models of design 18, 427–440.

Dahl, J., Hill, S., Chemaly, A., 2006. AMRaven - An Integrated Air Vehicle Design and

Analysis Environment.

Davenport, T.H., Prusak, L., 1998. Working knowledge: how organizations manage what they

know. Harvard Business School Press, Boston, Mass.

DeSanctis, G., Poole, M.S., 1994. Capturing the Complexity in Advanced Technology Use:

Adaptive Structuration Theory. Organ. Sci. 5, 121–147.

Dingsøyr, T., 2002. Knowledge Management in Medium-Sized Software Consulting

Companies (Doctoral Thesis). Norwegian University of Science and Technology,

Tapir, Norway.

Dori, D., Crawley, E.F., 2013. Object-process methodology: a holistic systems paradigm,

softcover repr. of the hardcover 1. ed. 2002. ed. Springer, Berlin.

Dorst, K., 2011. The core of “design thinking” and its application. Des. Stud. 32, 521–532.

Ehn, P., 1993. Scandinavian design: On participation and skill. ResearchGate.

Ekirch, A.R., 2006. At day’s close: night in times past, 1. ed., 1. publ. as a Norton paperback.

ed. Norton, New York.

84

Epstein, R., Schmidt, S.M., Warfel, R., 2008. Measuring and Training Creativity

Competencies: Validation of a New Test. Creat. Res. J. 20, 7–12.

Ferriss, T., 2015, ep 82. Podcast - The Tim Ferriss Show, Scott Adams: The Man Behind

Dilbert.

Ferriss, T., 2015, ep 83. Podcast - The Tim Ferriss Show, The Scariest Navy SEAL

Imaginable…And What He Taught Me.

Ferriss, T., 2015, ep 84. Podcast - The Tim Ferriss Show, Comedy’s Dynamic Duo, Seth Rogen

and Evan Goldberg.

Franken, R.E., 1994. Human motivation, 3rd ed. ed. Brooks/Cole Pub. Co, Pacific Grove, Calif.

Gero, J., 2013. Understanding Designing: What Are Designers Doing When They Design

(Video Presentation, https://youtu.be/TRiETj2ujvQ).

Goel, A.K., 2012. Analogical Thinking, Systems Thinking, Visual Thinking and Meta

Thinking: Four Fundamental Processes of Design Creativity. Proc. Des. Soc. SIG Des.

Creat. Workshop Coll. Stn. Tex.

Goel, A.K., Rugaber, S., Vattam, S., 2009. Structure, behavior, and function of complex

systems: The structure, behavior, and function modeling language. Artif. Intell. Eng.

Des. Anal. Manuf. 23, 23.

Harris, S., 2014. Waking up: a guide to spirituality without religion, First Simon & Schuster

hardcover edition. ed. Simon & Schuster, New York.

Hays, G., 2002. Marcus Aurelius: Meditations. Modern Library, New York.

Hevner, A.R., March, S.T., Park, J., Ram, S., 2004. Design science in information systems

research. MIS Q. Manag. Inf. Syst. 28.

Howard, T.J., Culley, S.J., Dekoninck, E., 2008. Describing the creative design process by the

integration of engineering design and cognitive psychology literature. Des. Stud. 29,

160–180.

Kahneman, D., 2013. Thinking, fast and slow, 1st pbk. ed. ed. Farrar, Straus and Giroux, New

York.

Larman, C., 2004. Agile and iterative development: a manager’s guide, Agile software

development series. Addison-Wesley, Boston, Mass.

Mathiassen, L., 1998. Reflective systems development. Scand. J. Inf. Syst. 10, 12.

Nonaka, I., Konno, N., 1998. The Concept of “Ba”: Building a Foundation for Knowledge

Creation. Calif. Manage. Rev. 40, 40–54.

Nonaka, I., Toyama, R., Konno, N., 2000. SECI, Ba and Leadership: A Unified Model of

Dynamic Knowledge Creation. Long Range Plann. 33, 5–34.

85

Norman, D.A., 2013. The design of everyday things, Revised and expanded edition. ed. Basic

Books, New York, New York.

Pinfold, M., Chapman, C.B., 2001. The application of a knowledge based engineering approach

to the rapid design and analysis of an automotive structure. Adv. Eng. Softw. 32, 903–

912.

Polanyi, M., 1966. The Tacit Dimension. Routledge, London.

Preece, J., 1995. Human-computer interaction. Addison-Wesley Pub. Co, Wokingham,

England; Reading, Mass.

Rocca, G.L., 2012. Knowledge based engineering: Between AI and CAD. Review of a

language based technology to support engineering design. Adv. Eng. Inform. 26, 159–

179.

Ryle, G., 1949. The Concept of Mind. Penguin Books, Ltd, London.

Sanya, I.O., Shehab, E.M., 2014. An ontology framework for developing platform-independent

knowledge-based engineering systems in the aerospace industry. Int. J. Prod. Res. 52,

6192–6215.

Schön, D.A., 1983. The Reflective Practitioner: How Professionals Think in Action. Basic

Books.

Schraw, G., 1998. Promoting general metacognitive awareness. Instr. Sci. 26, 113–125.

Schuler, D., Namioka, A. (Eds.), 1993. Participatory Design: Principles and Practices. L.

Erlbaum Associates Inc., Hillsdale, NJ, USA.

Sein, M.K., Henfridsson, O., Purao, S., Rossi, M., Lindgren, R., 2011. Action Design Research.

MIS Q 35, 37–56.

Sheth, P.N., 1972. A Digital Computer based Simulation Procedure for Multiple Degree of

Freedom Mechanical Systems with Geometric Constraints (Doctoral Thesis).

University of Wisconsin.

Skarka, W., 2007. Application of MOKA methodology in generative model creation using

CATIA. Eng. Appl. Artif. Intell. 20, 677–690.

Skogsfjord, M.B., Rognseth, C., 2014. Parametric Ship Hull Design in NX. Institutt for

produktutvikling og materialer.

Tjalve, E., 2003. Systematic Design of Industrial Products. Institute for Product Development,

Technical University of Denmark, Lyngby.

Törnkvist, S., 1998. Creativity: Can It Be Taught? The Case of Engineering Education. Eur. J.

Eng. Educ. 23, 5–12.

86

Verhagen, W.J.C., Bermell-Garcia, P., van Dijk, R.E.C., Curran, R., 2012. A critical review of

Knowledge-Based Engineering: An identification of research challenges. Adv. Eng.

Inform., Network and Supply Chain System Integration for Mass Customization and

Sustainable Behavior 26, 5–15.

Wagner, T., Compton, R.A., 2012. Creating innovators: the making of young people who will

change the world, 1st Scribner hardcover ed. ed. Scribner, New York.

Walsham, G., 2001. Knowledge Management: The Benefits and Limitations of Computer

Systems. Eur. Manag. J. 19, 599–608.

Willis, A.M., 2006. Ontological Designing. Des. Philos. Pap. 4, 69–92.

Yanow, D., Tsoukas, H., 2009. What is Reflection-In-Action? A Phenomenological Account.

J. Manag. Stud. 46, 1339–1364.

87

Appendix A – Source Code

A.1 Coffee Maker Pilot

;==

;

; Module: Coffee Maker Pilot

; Version: 1.0.3.2

; Date: 2016.02.08

; Authors: Eivind A. Taftø

; Description: This pilot was made as part of a master's assignment at

; the Norwegian University of Science and Technology.

; The thesis explores the use of Knowledge Based

; Engineering technology to support an early creative

; design phase. The purpose of this pilot was to

; test-implement theoretical findings from Systematic

; Design of Industrial Products, by Tjalve (2003).

; These techniques include systematic variation

; of element arrangement, number of elements,

; element dimensions, element geometrical shapes,

; as well as creation of virtual functional surfaces that

; represent functional relationships between elements.

;

;==

(in-package :aml)

;--

; Function: arrange

; Description: Calculates a relative arrangement coordinate for two

; elements. The multiplier determines the spacing between

; them, where 0.0 is no offset, and 1.0 is exact adjacency.

; Reference: Functional Requirement F 2.1

; Structure Variation (relative arrangement)

;--

(defun arrange (multiplier len-a len-b)

 (* multiplier (* 0.5 (+ len-a len-b)))

)

;--

; Function: inner-diameter

; Description: Calculates diameter excluding wall thickness

;--

(defun inner-diameter (diameter thickness)

 (- diameter (* 2.0 thickness))

)

88

;--

; Class: functional-surface

; Description: General mixin class for functional surfaces.

; Reference 1: Functional Requirement F 1.1

; Functional Surfaces (define)

;--

(define-class functional-surface

 :inherit-from (object)

 :properties (

)

)

;--

; Class: functional-surface-link

; Description: Defines a connection between two functional-surface.

; The type and direction properties further specify

; the functional relationship.

; Reference 1: Functional Requirement F 1.2

; Functional Surfaces (connect)

;--

(define-class functional-surface-link

 :inherit-from (object)

 :properties (

 functional-surface-a nil

 functional-surface-b nil

 connection-type nil ; gravity, stream, contact, none

 connection-direction nil ; a-to-b, b-to-a, two-way, none

)

)

89

;--

; Class: functional-surface-disc

; Description: Defines a functional surface in the form of a disc.

; The surface can optionally be projected above its origin.

; Reference 1: Functional Requirement F 1.1

; Functional Surfaces (define)

;--

(define-class functional-surface-disc

 :inherit-from (functional-surface)

 :properties (

 height (default 1.0)

 diameter (default 1.0)

 color (default 'blue)

 origin (default (list 0.0 0.0 0.0))

 display? (default t)

 reference-coordinate-system nil

)

 :subobjects (

 ; Coordinate System

 (cs :class 'coordinate-system-class

 reference-coordinate-system (default)

 display? nil

 origin (default)

)

 ; Virtual Surface Disc

 (surface :class 'disc-object

 reference-coordinate-system ^^cs

 diameter (default)

 color (default)

 render 'shaded

 display? (default)

)

 ; Surface Projection

 (projection :class 'cylinder-object

 reference-coordinate-system ^^cs

 height (default)

 diameter (default)

 color (default)

 render 'boundary

 display? (default)

 orientation (list (translate (list 0.0 0.0 (* 0.5 ^height))))

)

)

)

90

;--

; Class: functional-surface-disc-2x2

; Description: Defines a 2 by 2 grid of functional-surface-disc.

; Reference 1: Functional Requirement F 1.1

; Functional Surfaces (define)

; Reference 2: Functional Requirement F 2.2

; Structure Variation (number of elements)

;--

(define-class functional-surface-disc-2x2

 :inherit-from (functional-surface)

 :properties (

 height (default 1.0)

 diameter (default 1.0)

 color (default 'blue)

 spacing 0.0

 d (- (* 0.5 ^diameter) ^spacing)

 offset (+ (arrange 0.5 ^d ^d) ^spacing)

 origin (default (list 0.0 0.0 0.0))

 display? (default t)

 reference-coordinate-system nil

)

 :subobjects (

 (cs :class 'coordinate-system-class

 reference-coordinate-system (default)

 display? nil

 origin (default)

)

 (fs-1 :class 'functional-surface-disc

 diameter ^^d

 origin (list ^^offset ^^offset 0.0)

 reference-coordinate-system ^^cs

)

 (fs-2 :class 'functional-surface-disc

 diameter ^^d

 origin (list (- ^^offset) ^^offset 0.0)

 reference-coordinate-system ^^cs

)

 (fs-3 :class 'functional-surface-disc

 diameter ^^d

 origin (list ^^offset (- ^^offset) 0.0)

 reference-coordinate-system ^^cs

)

 (fs-4 :class 'functional-surface-disc

 diameter ^^d

 origin (list (- ^^offset) (- ^^offset) 0.0)

 reference-coordinate-system ^^cs

)

)

)

91

;--

; Class: filter

; Description: Defines a single Filter element. Its geometry is based on

; the truncated-cone-object, using difference-object to

; provide wall thickness.

; Reference 1: Functional Requirement F 3.2

; Form Variation (dimensions)

;--

(define-class filter

 :inherit-from (difference-object)

 :properties (

 b-h (default 1.0)

 b-d1 (default 1.0)

 b-d2 (default 2.0)

 wall-t (default 0.25)

 object-list (list ^outer ^inner)

 reference-coordinate-system ^cs

)

 :subobjects (

 (outer :class 'truncated-cone-object

 height ^b-h

 start-diameter ^b-d1

 end-diameter ^b-d2

 display? nil

)

 (inner :class 'truncated-cone-object

 height ^b-h

 start-diameter (inner-diameter ^b-d1 ^wall-t)

 end-diameter (inner-diameter ^b-d2 ^wall-t)

 display? nil

)

)

)

92

;--

; Class: filter-2x2

; Description: Defines a 2 by 2 grid of Filter elements. The individual

; element properties can be changed collectively from here.

; Reference 1: Functional Requirement F 2.1

; Structure Variation (relative arrangement)

; Reference 2: Functional Requirement F 2.2

; Structure Variation (number of elements)

; Reference 3: Functional Requirement F 3.2

; Form Variation (dimensions)

;--

(define-class filter-2x2

 :inherit-from (object)

 :properties (

 b-h (default 1.0)

 b-d1 (default 1.0)

 b-d2 (default 2.0)

 wall-t (default 0.25)

 d1 (* 0.5 ^b-d1)

 d2 (* 0.5 ^b-d2)

 offset (arrange 0.5 ^d2 ^d2)

 reference-coordinate-system nil

)

 :subobjects (

 (filter-1 :class 'filter

 b-d1 ̂ d1

 b-d2 ̂ d2

 reference-coordinate-system (default)

 orientation (list

 (translate (list ^^offset ^^offset 0.0)))

)

 (filter-2 :class 'filter

 b-d1 ̂ d1

 b-d2 ̂ d2

 reference-coordinate-system (default)

 orientation (list

 (translate (list (- ^^offset) ^^offset 0.0)))

)

 (filter-3 :class 'filter

 b-d1 ̂ d1

 b-d2 ̂ d2

 reference-coordinate-system (default)

 orientation (list

 (translate (list ^^offset (- ^^offset) 0.0)))

)

 (filter-4 :class 'filter

 b-d1 ̂ d1

 b-d2 ̂ d2

 reference-coordinate-system (default)

 orientation (list

 (translate (list (- ^^offset) (- ^^offset) 0.0)))

)

)

)

93

;--

; Class: cylinder-heater

; Description: Defines a cylindrical shape for the water heater tank.

; Reference 1: Functional Requirement F 3.1

; Form Variation (geometrical shape)

; Reference 2: Functional Requirement F 3.2

; Form Variation (dimensions)

;--

(define-class cylinder-heater

 :inherit-from (cylinder-object)

 :properties (

 a-h (default 1.0)

 a-d (default 1.0)

 height ^a-h

 diameter ̂ a-d

)

)

;--

; Class: box-heater

; Description: Defines a cubical shape for the water heater tank.

; Its X and Y dimensions are set from one property.

; Reference 1: Functional Requirement 3.1

; Form Variation (geometrical shape)

; Reference 2: Functional Requirement 3.2

; Form Variation (dimensions)

;--

(define-class box-heater

 :inherit-from (box-object)

 :properties (

 a-h (default 1.0)

 a-d (default 1.0)

 height ^a-d

 width ^a-d

 depth ^a-h

)

)

94

;--

; Class: coffee-maker

; Description: Defines the entire coffee maker model with properties and

; geometry. The main components are: water heater tank,

; coffee filter, and coffee pot.

;--

(define-class coffee-maker

 :inherit-from (object)

 :properties (

 ; General

 ;--

 display-cs? nil

 color 'gray

 (render :class 'option-property-class

 label "Render Mode"

 formula 'shaded

 mode 'combo

 labels-list '("Shaded" "Boundary")

 options-list '(shaded boundary)

)

 (wall-t :class 'editable-data-property-class

 label "Wall Thickness"

 formula 0.25

)

 ; Filter Count Selection

 ; Functional Requirement F 2.2

 ; Structure Variation - Number of Elements

 ;--

 (b-count :class 'option-property-class

 label "Filter Count"

 formula 'filter

 mode 'combo

 labels-list '("Single Filter" "Four Filters (2x2)")

 options-list '(filter filter-2x2)

)

 b-fs-count (case !b-count

 (filter 'functional-surface-disc)

 (filter-2x2 'functional-surface-disc-2x2)

)

95

 ; Heater Shape Selection

 ; Functional Requirement F 3.1

 ; Form Variation (geometrical shape)

 ;--

 (a-shape :class 'option-property-class

 label "Heater Geometrical Shape"

 formula 'cylinder-heater

 mode 'combo

 labels-list '("Cylinder Heater" "Box Heater")

 options-list '(cylinder-heater box-heater)

)

 ; Pot (Element C)

 ; Functional Requirement F 3.2

 ; Form Variation (dimensions)

 ;--

 (c-d1 :class 'editable-data-property-class

 label "Pot Height"

 formula 7.0

)

 (c-h1-diff :class 'editable-data-property-class

 label "Pot Bottom Cut"

 formula 1.25

)

 (c-h2 :class 'editable-data-property-class

 label "Pot Rim Height"

 formula 1.25

)

 (c-d2 :class 'editable-data-property-class

 label "Pot Rim Diameter"

 formula 4.0

)

 c-h1 ^c-d1

 c-d1-diff ^c-d1

 ; Filter (Element B)

 ; Functional Requirement F 3.2

 ; Form Variation (dimensions)

 ;--

 (b-h :class 'editable-data-property-class

 label "Filter Height"

 formula 5.0

)

 (b-d1 :class 'editable-data-property-class

 label "Filter Diameter (bottom)"

 formula 2.0

)

 (b-d2 :class 'editable-data-property-class

 label "Filter Diameter (top)"

 formula 7.5

)

96

 ; Heater (Element A)

 ; Functional Requirement F 3.2

 ; Form Variation (dimensions)

 ;--

 (a-h :class 'editable-data-property-class

 label "Heater Height"

 formula 5.0

)

 (a-d :class 'editable-data-property-class

 label "Heater Diameter/Width"

 formula 7.5

)

 (a-pipe-h :class 'editable-data-property-class

 label "Heater Pipe Height"

 formula 1.0

)

 (a-pipe-d :class 'editable-data-property-class

 label "Heater Pipe Diameter"

 formula 2.0

)

 (a-pipe-t :class 'editable-data-property-class

 label "Heater Pipe Thickness"

 formula 0.25

)

 ; Arrangement Multipliers (Element A)

 ; Functional Requirement F 2.1

 ; Structure Variation (arrangement)

 ;--

 (x-multiplier :class 'editable-data-property-class

 label "Heater X-Multiplier"

 formula 0.0

)

 (y-multiplier :class 'editable-data-property-class

 label "Heater Y-Multiplier"

 formula 0.0

)

 (z-multiplier :class 'editable-data-property-class

 label "Heater Z-Multiplier"

 formula 1.5

)

 ; Coordinates (Element A)

 ; Functional Requirement F 2.1

 ; Structure Variation (arrangement)

 ;--

 a-x (arrange ^x-multiplier ^a-d ^b-d2)

 a-y (arrange ^y-multiplier ^a-d ^b-d2)

 a-z (arrange ^z-multiplier ^a-h ^b-h)

97

 ; Coordinates (Element B)

 ;--

 b-x 0.0

 b-y 0.0

 b-z (* 0.5 (+ ^c-h2 ^b-h))

 ; Coordinates (Element B)

 ;--

 c-x 0.0

 c-y 0.0

 c-z1 (* 0.5 ^c-h1)

 c-z2 (* 0.5 (+ ^c-h1)) ; ^c-h2))

 c-h1-diff-z (* 0.5 (- ^c-h1-diff ^c-d1))

 ; Functional Surfaces

 ;--

 (display-fs? :class 'editable-data-property-class

 label "Display Functional Surfaces"

 formula t

)

 (fs-gap :class 'editable-data-property-class

 label "Functional Surface Projection"

 formula 0.6 ; Offset from element

)

 a-fs-z (- (+ (* 0.5 ^a-h) ^fs-gap))

 b-fs-z (+ (* 0.5 ^b-h) ^fs-gap)

)

 :subobjects (

 ; General

 ;--

 ; Main Coordinate System

 (main-cs :class 'coordinate-system-class

 origin (list 0.0 0.0 0.0)

 display? ^^display-cs?

)

 ; Element C (Pot)

 ;--

 ; Coordinate System - Pot

 (c-cs1 :class 'coordinate-system-class

 origin (list ^^c-x ^^c-y ^^c-z1)

 reference-coordinate-system ^^main-cs

 display? ^^display-cs?

)

98

 ; Coordinate System - Pot Rim, Handle

 (c-cs2 :class 'coordinate-system-class

 origin (list ^^c-x ^^c-y ^^c-z2)

 reference-coordinate-system ^^c-cs1

 display? ^^display-cs?

)

 ; Pot

 (obj-c1 :class 'difference-object

 object-list (list ^sphere ^cylinder)

 reference-coordinate-system ^^c-cs1

 (sphere :class 'sphere-object

 height ^^c-h1

 diameter ^^c-d1

)

 (cylinder :class 'cylinder-object

 height ^^c-h1-diff

 diameter ^^c-d1-diff

 orientation (list

 (translate (list 0.0 0.0 ^^c-h1-diff-z)))

)

)

 ; Pot Rim

 (obj-c2 :class 'pipe-object

 height ^^c-h2

 outer-diameter ^^c-d2

 thickness ^^wall-t

 reference-coordinate-system ^^c-cs2

)

 ; Pot Handle (part 1)

 (obj-c-handle1 :class 'box-object

 ; NOTE: Properties are currently hard-coded

 height 1.0

 width 2.75

 depth 0.5

 reference-coordinate-system ^^c-cs2

 orientation (list (translate (list (+ 2.0 1.25) 0.0 0.0)))

)

 ; Pot Handle (part 2)

 (obj-c-handle2 :class 'box-object

 ; NOTE: Properties are currently hard-coded

 height 1.0

 width 0.5

 depth 4.0

 reference-coordinate-system ^^c-cs2

 orientation (list (translate (list (+ 2.0 2.5) 0.0 -1.75)))

)

99

 ; Element B (Filter)

 ;--

 ; Coordinate System - Filter

 (b-cs :class 'coordinate-system-class

 origin (list ^^b-x ^^b-y ^^b-z)

 reference-coordinate-system ^^c-cs2

 display? ^^display-cs?

)

 ; Functional Surface B

 (b-fs :class !b-fs-count

 height (- ^^fs-gap)

 diameter (inner-diameter ^^b-d2 ^^wall-t)

 color 'green

 origin (list 0.0 0.0 ^^b-fs-z)

 display? ^^display-fs?

 reference-coordinate-system ^^b-cs

 spacing (if (equal

 ^^b-fs-count 'functional-surface-disc-2x2) ^^wall-t)

)

 ; Filter

 (obj-b :class !b-count

 reference-coordinate-system ^^b-cs

)

 ; Element A (Heater)

 ;--

 ; Coordinate System - Heater

 (a-cs :class 'coordinate-system-class

 origin (list ^^a-x ^^a-y (+ ^^a-z ^^a-pipe-h))

 reference-coordinate-system ^^b-cs

 display? ^^display-cs?

)

 ; Functional Surface A

 (a-fs :class 'functional-surface-disc

 reference-coordinate-system ^^a-cs

 height ^^fs-gap

 diameter (inner-diameter ^^a-pipe-d ^^a-pipe-t)

 color 'red

 origin (list 0.0 0.0 (- ^^a-fs-z ^^a-pipe-h))

 display? ^^display-fs?

)

100

 ; Heater

 (obj-a :class 'difference-object

 reference-coordinate-system ^^a-cs

 object-list (list ^outer ^inner)

 (outer :class !a-shape

)

 (inner :class !a-shape

 a-d (inner-diameter ^^a-d ^^wall-t)

 orientation (list

 (translate (list 0.0 0.0 ^^wall-t)))

)

)

 ; Heater Pipe

 (obj-a-pipe :class 'pipe-object

 reference-coordinate-system ^^a-cs

 outer-diameter ^^a-pipe-d

 thickness ^^a-pipe-t

 height ^^a-pipe-h

 orientation (list

 (translate (list 0.0 0.0 (* -0.5 (+ ^^a-h !height)))))

)

)

)

101

;--

; Class: coffee-maker-gui

; Description: Provides a GUI for the user to alter the

; coffee-maker through various inputs.

; References: Functional Requirements F 2.1, F 2.2, F 3.1, F 3.2

;--

(define-class coffee-maker-gui

 :inherit-from (coffee-maker data-model-node-mixin)

 :properties (

 label "Coffee Maker Pilot"

 ; Default Properties

 property-objects-list (list

 "General"

 (the superior render self)

 (the superior wall-t self)

 ""

 "Functional Surfaces"

 (the superior display-fs? self)

 (the superior fs-gap self)

 ""

 "Structure Variation - Heater Arrangement"

 (the superior x-multiplier self)

 (the superior y-multiplier self)

 (the superior z-multiplier self)

 ""

 "Structure Variation - Filter Count"

 (the superior b-count self)

 ""

 "Form Variation - Heater Shape"

 (the superior a-shape self)

 ""

 "Form Variation - Heater Dimensions"

 (the superior a-h self)

 (the superior a-d self)

 (the superior a-pipe-h self)

 (the superior a-pipe-d self)

 (the superior a-pipe-t self)

 ""

 "Form Variation - Filter Dimensions"

 (the superior b-h self)

 (the superior b-d1 self)

 (the superior b-d2 self)

 ""

 "Form Variation - Pot Dimensions"

 (the superior c-h2 self)

 (the superior c-d2 self)

 (the superior c-d1 self)

 (the superior c-h1-diff self)

)

)

)

102

A.2 Coffee Maker Pilot – Supplementary Files

;==

;

; File: Coffee Maker Pilot Supplements

; Authors: Eivind A. Taftø

; Description: Contains run commands and AML configuration files.

;

;==

;--

; A simple set of commands for to launch the

; coffee maker pilot from the XEmacs command line.

;--

(load "C:\\AML\\Pilot\\sources\\coffee-maker.aml") ; Your source file path

(delete-all-models t)

(create-model 'coffee-maker-test :class 'coffee-maker-gui)

(select-model 'coffee-maker-test)

(draw (the) :clear-display? t)

;--

; AML Lights configuration file.

; The default lighting used in most screenshots.

;--

((1.0 1.0 1.0) (0.5 0.45 -0.2))

((0.02 0.02 0.02) (-1 0 0))

;--

; AML View configuration file.

; The default head-on view used in most screenshots.

;--

Coffee Maker Default View

0 -23.632500 3.733979

0 0.156066 0.987747

0.027129 0 11.187500

26.299973 23.925671

;--

; AML View configuration file.

; The default head-on view used when a 2x2 filter option is selected.

;--

Coffee Maker 2x2 View

12.057594 -18.332682 4.872201

-0.119114 0.181104 0.976224

0.027129 0 11.187500

26.299974 23.925671

103

A.3 Coffee Maker Pilot – Discontinued Prototype GUI

;==

;

; Module: Connect Functional Surfaces GUI (DISCONTINUED)

; Version: 0.9.1.4

; Date: 2015.12.18

; Authors: Eivind A. Taftø

; Description: This is a preliminary GUI prototype for connecting

; functional-surfaces. The user would interactively select

; two predefined functional surfaces from the model canvas.

; Next, the user selects connection type and directoin

; from dropdown menus. This information would be saved in

; a functional-surface-link class.

; See also: functional-surface,

; functional-surface-link,

; functional-surface-disc,

; functional-surface-disc-2x2

;

;==

(in-package :aml)

;--

; Class: connect-functional-surfaces-gui

; Description: Defines the main GUI for connecting functional surfaces.

; Reference 1: Functional Requirement F 1.2

; Functional Surfaces (connect)

;--

(define-class connect-functional-surfaces-gui

 :inherit-from (ui-form-class)

 :properties(

 ; Common Properties

 title "Connect Functional Surfaces"

 x-margin 3

 y-margin 5

 x-spacing 5

 input-frame-w 40 ; Entire left side frame

 input-label-w 45 ; Left side input labels

 input-frame-w-half (/ ^input-frame-w 2.0)

 input-field-h 8

 input-y-spacing 4

 input-field-total-h (+ ^input-field-h ^input-y-spacing)

 canvas-frame-h (- 100 (* ^y-margin 2.0))

 canvas-frame-w (- 100

 (+ ^input-frame-w ^x-spacing (* ^x-margin 2.0)))

104

 ; FORM - Main properties

 label ^title

 x-offset 50

 y-offset 50

 width 800

 height 400

 ; FORM - Close

 close-action '(when

 (string= (pop-up-message

 "Are you sure you want to close the form?"

 :done-label "Yes"

 :cancel-label "No")

 "Yes")

 (hide !superior)

)

)

 :subobjects (

 ; TITLE

 (lbl-title :class 'ui-label-class

 x-offset ^^x-margin

 y-offset ^^y-margin

 width (- 100 (* 2 ^^x-margin))

 label ^^title

 label-align 'left

)

 ; INPUT - Select Surface A

 (txt-obj-A :class 'ui-labeled-field-class

 x-offset ^^x-margin

 y-offset ^^y-margin

 width ^^input-frame-w

 height ^^input-field-h

 label-width ^^input-label-w

 label "Surface A"

)

 ; INPUT - Select Surface B

 (txt-obj-B :class 'ui-labeled-field-class

 x-offset ^^x-margin

 y-offset (+ ^^input-field-total-h

 (the superior superior txt-obj-A y-offset))

 width ^^input-frame-w

 height ^^input-field-h

 label-width ^^input-label-w

 label "Surface B"

)

105

 ; INPUT - Connection Type

 (cbo-conn-type :class 'ui-labeled-option-menu-class

 x-offset ^^x-margin

 y-offset (+ ^^input-field-total-h

 (the superior superior txt-obj-B y-offset))

 width ^^input-frame-w

 height ^^input-field-h

 label "Connection Type"

 label-width ^^input-label-w

 labels-list '("Touch" "Gravitational" "None")

 options-list (list 'touch 'gravity 'none)

 selected-option 'touch

)

 ; INPUT - Connection Direction

 (cbo-conn-dir :class 'ui-labeled-option-menu-class

 x-offset ^^x-margin

 y-offset (+ ^^input-field-total-h

 (the superior superior cbo-conn-type y-offset))

 width ^^input-frame-w

 height ^^input-field-h

 label "Connection Direction"

 label-width ^^input-label-w

 labels-list '("A to B" "B to A" "Two-way" "None")

 options-list (list 'ab 'ba 'two 'none)

 selected-option 'ab

)

 ; BUTTON - Apply

 (btn-apply :class 'ui-apply-button-class

 x-offset ^^x-margin

 y-offset (+ ^^input-field-total-h

 (the superior superior cbo-conn-dir y-offset))

 width ^^input-frame-w-half

 height ^^input-field-h

 label "Apply"

)

 ; BUTTON - Cancel

 (btn-cancel :class 'ui-cancel-button-class

 x-offset (+ ^^x-margin ^^input-frame-w-half)

 y-offset (+ ^^input-field-total-h

 (the superior superior cbo-conn-dir y-offset))

 width ^^input-frame-w-half

 height ^^input-field-h

 label "Cancel"

)

106

 ; CANVAS - Model

 (can-main :class 'ui-canvas-class

 x-offset (+ ^^input-frame-w ^^x-margin ^^x-spacing)

 y-offset ^^y-margin

 width ^^canvas-frame-w

 height ^^canvas-frame-h

)

)

)

