

Doctoral theses at NTNU, 2016:110

Tonje Husby Haukaas

Metabolic profiling of breast cancer using *ex vivo*MR spectroscopy

ISBN 978-82-326-1558-2 (printed ver.) ISBN 978-82-326-1559-9 (electronic ver.) ISSN 1503-8181

Doctoral theses at NTNU, 2016:110

Norwegian University of Science and Technology Thesis for the Degree of Philosophiae Doctor Faculty of Medicine Department of Circulation and Medical Imaging

NTNU

Norwegian University of Science and Technology

Norwegian University of Science and Technology

Tonje Husby Haukaas

Metabolic profiling of breast cancer using *ex vivo*MR spectroscopy

Thesis for the Degree of Philosophiae Doctor

Trondheim, April 2016

Norwegian University of Science and Technology Faculty of Medicine Department of Circulation and Medical Imaging

NTNU

Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Medicine Department of Circulation and Medical Imaging

© Tonje Husby Haukaas

ISBN 978-82-326-1558-2 (printed ver.) ISBN 978-82-326-1559-9 (electronic ver.) ISSN 1503-8181

Doctoral theses at NTNU, 2016:110

Printed by NTNU Grafisk senter

Metabolsk profilering av brystkreft ved hjelp av $ex\ vivo\ \mathrm{MR}\ \mathrm{spektroskopi}$

Til tross for tidligere oppdagelse og forbedret behandling er brystkreft fortsatt den nest hyppigste årsaken til kreftrelatert død blant kvinner på verdensbasis. Årlig blir over 3000 kvinner diagnostisert med brystkreft i Norge. Det forskes mye for å finne underliggende mekanismer som bidrar til den komplekse heterogeniteten observert i brystkreft. Dette har ført til oppdagelsen av flere subtyper av brystkreft, inkludert histologiske og genetiske subtyper, med forskjellige egenskaper og prognose, noe som forsterker hypotesen om at brystkreft ikke er én, men en samling av flere sykdommer.

Kreftceller må være i stand til å omdanne næringsstoffer til biomasse samtidig som energi produseres, noe som krever reprogrammering av sentrale metabolske prosesser i cellene. Dette fenomenet er foreslått som et potensielt mål for behandling, samtidig som det kan være en kilde til biomarkører som kan forutsi prognose og risiko og brukes til å overvåke behandlingsrespons. MR metabolomikk er et mye brukt verktøy som kan identifisere klinisk relevante metabolske markører og gi ny forståelse for den molekylære biologien i svulstene. Ex vivo proton høy-oppløsning MR spektroskopi (HR MAS MRS) er en ikke-destruktiv metode som gir høyoppløselige MR spektra fra biologisk vev: Prøven forblir intakt for videre analyser som genetiske analyser, genuttrykksanalyser og/eller histopatologi. HR MAS MRS er mye brukt til å studere sentrale metabolske prosesser som er relatert til kreftprogresjon, inkludert fosfolipidmetabolisme, glykolyse og metabolismen av aminosyrer og polyaminer. Mer enn 30 metabolitter kan detekteres samtidig i et HR MAS spektrum fra brystkreftvev og de metabolske profilene målt ved hjelp av denne metoden har blitt vist å korrelere med tumorgrad, lymfeknute- og hormonreseptorstatus, behandlingsrespons og pasientoverlevelse.

For å oppnå robuste data med høy kvalitet krever MR metabolomikk bevissthet rundt eksperimentelle detaljer. Det er svært viktig at prøvene behandles og prepareres på en optimal måte for å oppnå kvalitetssikre resultater. I artikkel I ble tumorvev fra xenograftmodeller brukt for å vurdere de metabolske endringene forårsaket av tidsintervallet fra tumorene fjernes frem til de hurtigfryses for lagring (frysetid-forsinkelse). Studien viste at de metabolske profilene var robuste for forsinkelser på opp til 30 minutter. Videre viste den metabolske effekten av

langvarig MR analyse viktigheten av standardiserte protokoller og begrensning i analysetid.

I artikkel II avslørte analyse av metabolske profiler tre naturlige metabolske grupper av brystkrefttumorer. Når gruppene ble kombinerte med data fra genuttrykkog proteinuttrykksanalyser, viste de i tillegg forskjeller i nivået av gener og proteiner involvert i ekstracellulær matrix. Forskjellene i genuttrykk kunne også forklare noen av de metabolske forskjellene observert mellom gruppene. De etablerte genetiske subtypene var jevnt fordelt blant de tre gruppene, noe som dermed betyr at de metabolske gruppene kan bidra med tilleggsinformasjon som kan forklare noe av heterogeniteten observert i brystkreft.

I artikkel III ble de metabolske effektene av neoadjuvant kjemoterapi med eller uten angiogenesehemmeren bevacizumab undersøkt hos brystkreftpasienter. Tydelige metabolske endringer som et resultat av behandlingen ble observert. I tillegg kunne de metabolske profilene i tumorene ved operasjon skille pasienter som hadde oppnådd patologisk minimal residual sykdom fra pasienter med ikke-responderende tumorer. Selv om administrering av bevacizumab ikke viste noe tydelig metabolsk endring ble det observert at metabolismen av glutation antakelig ble påvirket. Samlet viser dette at metabolske profiler kan komplementere andre molekylære nivå for kartlegging av underliggende mekanismer som påvirker patologisk respons, og i tillegg gi informasjon om tumorens metabolske respons på behandling.

Totalt sett har arbeidet i denne avhandlingen vist at metabolske profiler bestemt ved hjelp av MR spektroskopi av tumorvev kan bidra til å karakterisere heterogenitet utover genetiske subtyper, så vel som å bidra med verdifull informasjon under overvåkning av respons på neoadjuvant behandling. Ved å kombinere metabolsk data med andre plattformer (f.eks. genuttrykk- og proteinuttrykksanalyser) kan man finne nye molekylære mål som kan brukes til å utvikle behandlingsstrategier som angriper på flere molekylære nivå.

Kandidat: Tonje Husby Haukaas

Institutt: Institutt for sirkulasjon og bildediagnostikk

Veiledere: Prof. Tone Frost Bathen og Dr. Guro Fanneløb Giskeødegård

Finansieringskilde: K. G. Jebsen-senter for brystkreftforskning

Ovennevnte avhandling er funnet verdig til å forsvares offentlig for graden
Philosophiae Doctor i medisinsk teknologi.

Disputas finner sted i Auditoriet MTA, Medisinsk-Teknisk Forskningssenter,
Torsdag 28. April 2016 kl. 12:15.

Acknowledgement

The work presented in this thesis is based on work carried out in the MR Cancer group, Department of Circulation and Medical imaging, Norwegian University of Science and Technology (NTNU), between January 2012 and January 2016. The financial support of my work was provided by K. G. Jebsen Center for Breast Cancer Research.

I would like express gratitude to all the women who have contributed with tumor material for research used in this study.

There are so many people that have helped and supported me in achieving this thesis. First of all I would like to thank my main supervisor Prof. Tone Frost Bathen for believing in me and for always taking the time to give feedback to my work and discuss different subjects. You have encouraged me and given excellent guidance throughout my period as a PhD student. Thank you so much! Second, I would like to thank my co-supervisor Dr. Guro F. Giskeødegård for your positive attitude and for always contributing with great input, especially with your expertise in multivariate analysis. I would also like to thank Prof Ingrid Gribbestad for founding the MR Cancer group and believing that I could contribute to it. I hope this thesis have made you all proud.

A special acknowledgement goes to all my former and current coworkers in the MR Cancer group. Torill, Tina, Øystein, Trygve, Marius, Kirsten, Riyas, Mattijs, Morteza, Eugene, Debbie, Guro, May-Britt, Siver, Tone, Maria, Jana, Brage, Gabriel, Hanna Maja, Liv, Mingshu, Jose, Igor, Ioanna, Torfinn, Saurabh, Maria Karoline, Ailin, Leslie, Elise and Marie, I feel privileged to be part of such a friendly and resourceful research group and I have enjoyed working with all of you. Thank you Leslie for always taking the time to help me and for all your support before and during the submission process. Thank you Marie and Debbie for valuable feedback on my thesis. A special thanks goes to my office mates and to Jana and Shalini for all the friendly discussions, your positive encouragements and many helpful advice.

I would also like to thank my coauthors, especially my collaborators in Oslo. Thank you, Prof. Anne-Lise Børresen-Dale, Dr. Kristine K. Sahlberg, Dr. Miriam R. Aure and Eldri U. Due for valuable suggestions and interesting discussions.

Finally, this thesis could not have been completed without the love and support from my dear family and friends. My mom and dad, Mary-Ann and Tor, have always

supported me and encouraged me to fulfill my dream of taking a PhD. My sister Iselin has made me confident by telling me how proud she is of me and motivated me to keep up the hard work. The greatest inspiration though, has been my dear husband Johnny and my daughter Mila. Thank you both for your love and patience and for making me want to work efficiently so that I could spend as much time as possible with you two.

Jonje Husby Hankaas

Tonje Husby Haukaas Trondheim, April 2016

Summary

Despite progress in early detection and therapeutic strategies, breast cancer remains the second leading cause of cancer-related death among women globally. Annually, more than 3000 women are diagnosed with breast cancer in Norway. Much effort has been made to find underlying mechanisms contributing to the complex heterogeneity observed in breast cancer. This has led to the discovery of several subtypes of breast cancer, for example histological and genetic subtypes, with different traits and prognosis, supporting that breast cancer is not one disease but in fact multiple diseases.

Cancer cells must be able to convert nutrients to biomass while maintaining energy production, which requires reprogramming of central metabolic processes in the cells. This phenomenon is increasingly recognized as a potential target for treatment, but also as a source for biomarkers that can be used for prognosis, risk stratification and therapy monitoring. MR metabolomics is a widely used approach in translational research, aiming to identify clinically relevant metabolic biomarkers or generate novel understanding of the molecular biology of tumors. Ex vivo proton high-resolution magic angle spinning (HR MAS) MR spectroscopy is a non-destructive and high-throughput technique that provides highly resolved MR spectra from biological tissue, leaving the sample intact for further analysis, such as genomics, transcriptomics and/or histopathology. HR MAS MRS is widely used to study central metabolic processes related to cancer progression, including choline phospholipids metabolism, glycolysis and metabolism of amino acids, lipids and polyamines. More than 30 metabolites can be detected and assigned simultaneously in a HR MAS spectrum of breast cancer tissue. The metabolic profiles acquired by HR MAS MRS have shown to correlate to tumor grade, lymph node and hormone receptor status, treatment response and patient survival in breast cancer.

Generating robust and valid data using MR metabolomics requires close attention to experimental details. For valid interpretation of the results, consistent sample collection and preparation is crucial. In paper I, tumor tissue from xenograft models were used to evaluate the metabolic changes caused by the time interval from surgical removal of a tumor until it is snap-frozen for storage (freezing delay time). The study showed that the metabolic profile was robust to freezing delay times up to 30 minutes. Furthermore, the metabolic effect of prolonged MR analysis demon-

strated the importance of using standardized protocols and limiting the analytical time.

In paper II, analysis of tumor metabolic profiles revealed three naturally occurring metabolic clusters of breast cancer tumors. When combined with transcriptomic and proteomic data, the clusters showed differences in expression of genes and proteins involved in the extracellular matrix. Additional gene expression differences explaining some of the observed metabolic differences between the clusters were also observed. Interestingly, genetic subtypes were evenly distributed among the three metabolic clusters, which therefore could contribute additional information beyond the intrinsic gene sets for understanding breast cancer heterogeneity.

In paper III, the metabolic effects of neoadjuvant chemotherapy with or without the antiangiogenic agent bevacizumab in breast cancer patients were explored.
Distinct metabolic alterations due to treatment could be observed. In addition, tumor metabolic profiles at surgery could discriminate patients achieving pathological
minimal residual disease from non-responders. Although bevacizumab administration did not show any prominent metabolic differences, glutathione metabolism was
found to possibly be affected. Together, this shows that metabolic profile may complement other molecular levels for the elucidation of the underlying mechanisms
affecting pathological response, and may additionally provide information on tumor
metabolic response to treatment.

In conclusion, MR determined metabolic profiles of tumor tissue have been shown to characterize breast cancer heterogeneity beyond genetic subtypes as well as to provide valuable information when monitoring response to neoadjuvant chemotherapy. The approach of combining metabolic data with other platforms (e.g. transcriptomics and proteomics) may further provide targets for investigation of new treatment strategies at different molecular levels.

Symbols & Abbreviations

Symbol	Description	\mathbf{Page}
2DG	2-deoxy-D-glucose	59
μ	Magnetic momentum of a precessing nucleus	13
γ	Gyromagnetic ratio	13
B_0	External static magnetic field	13
ATP	Adenosine triphosphate	10
CHKA	Choline kinase alpha	54
CDP	Cytidyldiphosphate	11
CPMG	Carr-Purcell-Meiboom-Gill pulse sequence	15
CT	Computed tomography	62
DAG	Diacylglycerol	11
ECM	Extracellular matrix	57
ER	Estrogen receptor	5
HER2	Human epidermal growth factor 2	5
HES	Hematoxylin-Eosin-Safron	34
HKs	Hexokinases	59
GLS	Glutaminase	55
GPC	Glycerophosphocholine	11
GR	Good response	37
GSEA	Gene set enrichment analysis	41
I	Nuclear spin number	13
IDC	Invasive ductal carcinoma	4
ILC	Invasive lobular carcinoma	4
LMM	Linear mixed model	29
LV	Latent variable	25
MAS	Magic angle spinning	17
MICE	Multivariate imputation by chained equation	40
MRI	Magnetic resonance imaging	37
MRS	Magnetic resonance spectroscopy	13
MS	Mass spectrometry	63
NOESY	Nuclear Overhauser effect spectroscopy	15
NR	No response	37

FFT	Fast fourier transformation	20
FID	Free induction decay	14
PBS	Phosphate buffered saline	38
PCA	Principal component analysis	23
PCho	Phosphocholine	11
pCR	pathological complete response	37
PET	Positron emission tomography	52
PgR	Progesteron receptor	5
PLD	PtdCho-spesific phospholipase D	54
PLS-DA	Partial least squares	25
pMRD	pathological minimal residual disease	37
pNR	pathological non-responder	37
PtdCho	Phosphatidylcholine	11
ppm	Parts per million	14
PQN	Probabilistic quotient normalization	20
RECIST	Response evaluation criteria for solid tumours	6
RF	Radio frequency	14
ROS	Reactive oxygen species	56
RPPA	Reverse phase protein array	9
SAM	Significance analysis of microarrays	41
T_1	Longitudinal relaxation	14
T_2	Transverse relaxation	14
TCA	Tricarboxylic acid	10
tCho	Total-choline	54
TNBC	Triple negative breast cancer	8
TNM	Tumor size (T), degree of spread to lymph nodes (N),	4
	distant metastasis (M)	
TSP	Trimethylsilyl propionic acid	38
VEGF	Vascular endothelial growth factor	6

List of Papers

Paper I

Impact of freezing delay time on tissue samples for metabolomic studies. <u>Haukaas TH*</u>, Moestue SA*, Vettukattil R, Sitter B, Lamichhane S, Segura R, Giskeødegård GF, Bathen TF (2016). *Shared first authorship Frontiers in Oncology 6(17): doi: 10.3389/fonc.2016.00017

Paper II

Metabolic clusters of breast cancer in relation to gene- and protein expression subtypes.

<u>Haukaas TH</u>, Euceda LR, Giskeødegård GF, Lamichhane S, Krohn M, Jernströ m S, Aure MR, Lingærde OC, Schlichting E, Garred Ø, Due EU, OSBREAC, Mills GB, Sahlberg KK, Børresen-Dale A-L, Bathen, TF

Submitted to Cancer & Metabolism 2016.

Paper III

Evaluation of metabolomic changes during neoadjuvant chemotherapy combined with bevacizumab in breast cancer using MR spectroscopy.

Euceda LR, <u>Haukaas TH</u>, Giskeødegård GF, Vettukattil R, Engel J, Silwal-Pandit L, Lundgren S, Postma G, Buydens LMC, Børresen-Dale A-L, Bathen TF Submitted to Neoplasia 2016

CONTENTS CONTENTS

Contents

1	Intr	roduct	ion	1
	1.1	Cance	er	1
	1.2	Breast	t Cancer	3
		1.2.1	Etiology and screening	3
		1.2.2	Anatomy and pathology	3
		1.2.3	Diagnosis and treatment	4
	1.3	The o	mics of breast cancer	7
		1.3.1	Transcriptomics and intrinsic genetic subtypes	7
		1.3.2	Proteomics and protein expression subtypes	8
		1.3.3	Metabolomics and breast tumors metabolism	9
	1.4	Magne	etic resonance spectroscopy (MRS)	13
		1.4.1	MRS acquisition	14
	1.5	High I	Resolution Magic Angle Spinning MRS	17
		1.5.1	¹ H HR MAS MRS analysis of breast cancer tissue	17
		1.5.2	Pre-processing of MRS spectra	19
	1.6	Multi	variate analysis	23
		1.6.1	Principal Component Analysis (PCA)	23
		1.6.2	Hierarchical Cluster Analysis	24
		1.6.3	Partial Least Squares (PLS)	25
		1.6.4	Validation of multivariate models	26
	1.7	Linear	r Mixed Models (LMM)	29
2	Ain	$\mathbf{n}\mathbf{s}$		31
3	Ma	terials	and Methods	33
	3.1	Patier	nts and xenograft models	33
		3.1.1	Breast cancer xenograft models	33
		3.1.2	Patients cohorts	34
		3.1.3	Patient treatment protocols and response measurements	37
	3.2	$^{1}\mathrm{H}~\mathrm{HF}$	R MAS MRS experiments	37
		3.2.1	Sample preparation	37
		3.2.2	Acquisition protocol	38
	3.3	Specti	ral pre-processing and analysis	39

CONTENTS	CONTENTS
----------	----------

		3.3.1	Multivariate analysis	39
		3.3.2	Univariate and multilevel analysis	40
	3.4	Gene a	and protein experiments	40
		3.4.1	Gene expression and genetic subtypes	40
		3.4.2	Protein expression and proteomic subtypes	41
		3.4.3	Analysis of gene expression data	41
		3.4.4	Integrated pathway analysis	42
4	Sun	nmary	of papers	43
	4.1	Paper	I	43
	4.2	Paper	II	45
	4.3	Paper	III	47
5	Disc	cussion	ı	49
	5.1	Metab	olic profiles of breast cancer	49
	5.2		dological considerations	61
6	Cor	clusio	n and future perspectives	69
R	efere	nces		71

List of Figures

1.1	Hallmarks of cancer
1.2	Breast Anatomy
1.3	The omics cascade
1.4	Glucose metabolism
1.5	Choline metabolism
1.6	The basic principle of magnetic resonance
1.7	CMPG sequence
1.8	Magic Angle Spinning
1.9	¹ H HR MAS MRS breast cancer spectra
1.10	Principal component analysis
1.11	Hierarchical cluster analysis
1.12	Partial least squares discriminant analysis
1.13	Double cross validation
3.1	Work flow for xenograft samples paper I
3.2	Tumor preparation paper II
3.3	Flow chart for study participants in paper III
3.4	Illustration of sample preparation
4.1	Paper I, Bar plots
4.2	Paper II, Metabolic clusters
4.3	Paper III, PCA score plots
5.1	Summary of metabolic pathways
List	of Tables
3.1	Materials and methods used in paper I-III
3.2	Tumor response classification criteria (paper III)
3.3	Acquisition parameters
5.1	Summary of metabolic findings in paper I-III

LIST OF TABLES

LIST OF TABLES

1 Introduction

1.1 Cancer

Cancer is a collection of over 100 diseases where genetic alterations (mutations) cause cells to grow and divide uncontrollably and lose regulation of important cellular processes. These characteristics and accumulating mutations can potentially lead to cancer cells invading nearby or distant areas from the cancer's primary site [1]. Invasion of distant locations, also known as metastasis, can happen through blood or lymph vessels and is the main reason for cancer death due to disruption of important and essential functions of the organs it metastasizes to. Based on the most recently reported cancer statistics, it was estimated that 14.1 million new cancer cases were diagnosed in 2012 world wide [2]. The same year, cancer was the leading cause of 8.2 million deaths.

Although there is huge complexity and variety in characteristics among the different cancer types as well as within distinct cancer types, there has been proposed six essential alterations necessary for malignant growth [1] illustrated in Figure 1.1a. During tumor development cancer cells establish characteristics of avoiding apoptosis (programmed cell death), they become self-sufficient of growth signals and insensitive to anti-growth signals, they can potentially invade tissue and metastasize, they have limitless replicative potential and they sustain angiogenesis (blood vessel supply). More recently, two emerging hallmarks were suggested including deregulation of cellular energetics and avoiding immune destruction as illustrated in Figure 1.1b [3].

1.1 Cancer 1 INTRODUCTION

Figure 1.1: Hallmarks and enabling characteristics of cancer. a) The six biological characteristics of cancers acquired during development of human tumors. b) The two emerging hallmarks and enabling characteristics of cancer. The figure is adapted from [1] and [3] with permission.

1.2 Breast Cancer

Breast cancer is the most frequently diagnosed cancer among women worldwide [4] and in Norway it has been estimated that one out of twelve women will develop this disease by the age of 75 [5]. Although trends show decreasing mortality in several countries [4] and almost 90 % of women diagnosed in Norway still are alive 5 years after the diagnosis [5], it is difficult to predict each breast cancer patient's outcome. Patients with the same diagnosis of breast cancer may have different response to treatment, underpinning the need to further characterize breast cancer heterogeneity.

1.2.1 Etiology and screening

Although there still is a lack of knowledge regarding the direct etiology for developing breast cancer, known risk factors are hereditary, age, hormonal circumstances (early menarche, late first-time birth, nulliparity, late menopause, estrogen use before the age of 35, longterm post-menopausal estrogen therapy), obesity and alcohol consumption. Factors reducing the risk include early first pregnancy, multiple pregnancies, breastfeeding and regular exercise [6,7]. In addition, there are higher incidence rates in developed countries, believed to be due to environmental factors [4] as well as increased screening [5]. In Norway, all women in the age of 50-69 are advised to take part in a program with mammography screening every second year aiming to detect breast cancer at an early stage and thereby reducing the mortality. This program was gradually implemented within the years of 1995-2005. Based on a prospective cohort study evaluating the effectiveness of mammography screening, it was reported that such a program could reduce breast cancer mortality by about 28% [8].

1.2.2 Anatomy and pathology

The female breast consists of fatty tissue, connective tissue, lobes, lobules, ducts and lymph nodes (Figure 1.2). Each of the 15 to 20 lobes is made up by several small lobules, the functional unit of the breast which produce milk in nursing women. These lobes are connected to ducts that transport the milk from the lobule to the nipple. Lymph nodes and lymph vessels containing immune system cells surround the breast and contribute to removing waste products.

1.2 Breast Cancer 1 INTRODUCTION

Figure 1.2: The anatomy of the female breast. The female breast consists of nipple, areola and lymph nodes (left) and fatty tissue, lobe, ducts and lobules (right). Reproduced with permission from Terese Winslow LLC.

In some rare cases (less than 1%) the cancer arises from stromal components (connective tissue) within the breast (i.e. sarcomas) [9], however, breast cancer normally originates from epithelial cells and are thus called breast carcinomas. The premalignant changes where the epithelial cells have not broken through the basement membrane, are classified into hyperplasia (atypical or non-atypical) or carcinoma in situ. If cancer cells have broken the basement membrane and invaded surrounding tissue, it is classified as invasive carcinoma [10]. Invasive carcinomas are the most common type of breast cancer [11], where between 72-80% are invasive ductal carcinomas (IDC) and 5-15% are invasive lobular carcinomas (ILC) [12]. Other important subtypes of invasive breast carcinomas include medullary carcinoma, mucinous carcinoma, intracystic and tubular carcinoma [11].

1.2.3 Diagnosis and treatment

During the diagnostic process, breast cancer patients in Norway are examined by three main strategies [10]; clinical examination, image diagnostics and needle biopsy. This is followed by classification into stage I-IV using the TNM-system where tumor size (T), degree of spread to lymph nodes (N) and existence of distant metastasis (M) are considered. To is used for cases where no primary tumor is classified, Tis represents carcinoma in situ and T1-T4 reports increasing size of the tumor. No-

N3 report the number and location of detected lymph node metastasis and finally, the status of detected distant metastasis is reported as either M0 (no apparent metastasis) or M1 (metastasis). Based on the TNM classification, the tumor is defined as primary operable or inoperable [10].

In addition to finding anatomical features of the tumor, histopathological grade gives information of the tumor cells degree of differentiation, a measure that has well-established prognostic value [13]. Grade 1-3 tumors consist of well, moderately and poorly differentiated cancer cells, respectively. The growth and function of the tumor is a result of several factors. Thus, histopathological examination also include assessment of the tumor's expression of estrogen receptor (ER), progesterone receptor (PgR), human epidermal growth factor 2 (HER2) and, in some cases, proliferation (by the Ki67 marker). The hormone receptors ER and PgR are transcription factors depending on binding of their ligand (the hormones estrogen and progesterone, respectively) for activation of important proliferation processes and production of growth factors [14]. As ER activation also regulates the PgR-gene, less than 1% of PgR-positive (PgR+) cases are ER-negative (ER-) [15]. Over-expression of ER and/or PgR are found in approximately 70-80% of all breast cancer cases [16, 17], which due to their dependency of hormonal stimuli can be treated with validated treatment targets, and have a better prognosis than hormone receptor negative patients [16]. Over-expression of the tyrosine kinase associated receptor HER2, and amplification of its gene ERBB2, is found in 15-23% of all breast cancers [18]. HER2 over-expression is associated with aggressiveness and poorer prognosis, however, targeted anti-HER2 treatment improves the progression free survival and overall survival [19]. In addition to these well-establish molecular characteristics, Ki67 is an emerging biomarker for proliferation, present in cells preparing for division [15].

The main treatment strategy for patients with primary operable tumors is surgical removal of the tumor followed by adjuvant treatment according to clinical findings. Patients undergoing breast conserving surgery, that have unclear margins after mastectomy or findings of lymph node involvement are recommended to be treated with local radiotherapy. Depending on age, hormone receptor-, HER2- and Ki67 status, the treatment regimen can also include systemic treatment in form of endocrine treatment for receptor positive cancers, anti-HER2 treatment for HER2-positive (HER2+) and chemotherapy. Tamoxifen is a well-established anti-estrogen treatment where an antagonist of estrogen will compete with estrogen for receptor

binding, and thereby inhibit its activation. For post-menopausal women with ER+tumors, aromatase inactivator or inhibitor is given, to block the formation of estrogen. Patients with HER2+ tumors are given treatment with monoclonal antibody Herceptin® (trastuzumab). This antibody binds to the extracellular domain of the HER2-receptor resulting in inhibition of cell growth.

Chemotherapy is given to kill rapidly dividing cells by attacking DNA and therby impair cell division. In general, three different regimens of chemotherapy are used [10]; CMF combination (cyclophosphamide, metotrexate and fluorouracil), anthracycline chemotherapy and regimens combining taxanes and anthracycline chemotherapy. In Norway, the Norwegian Breast Cancer Group have concluded that the general basis for adjuvant chemotherapy should be anthracycline chemotherapy, usually by FEC (fluorouracil, epirubicin and cyclophosphamide). Anti-angiogenic agents that attacks the formation of new blood vessels into the tumor (i.e. angiogenesis) are being studied for possible improvement of treatment when included in existing regimens. The blood supply will give tumors nutrients and oxygen required to grow beyond a few millimeters in size in addition to anabling metastasis. Due to this, angiogenesis is an established hallmark of cancer [1] and attractive target for cancer treatment. One example is bevacizumab, also known as Avastin®, which blocks the binding of vascular endothelial growth factor (VEGF) to its receptors [20].

Patients diagnosed with primary inoperable tumors are treated with neoadjuvant therapy prior to surgery. The treatment regimens discussed above may then be used pre-surgery to make the tumor operable or to allow for breast conserving surgery. During or after neoadjuvant treatment, the tumor response can be evaluated by physicians. The two most commonly used guidelines for assessing the response are the Response Evaluation Criteria for Solid Tumours (RECIST) and the guidelines from World Health Organization (WHO) [21]. These guidelines are used to classify the response into complete response, partial response progressive disease or stable disease. Studies have shown a association between tumor response and clinical outcome where pathological complete response where a prognostic indicator for overall survival, disease-free survival and relapse-free survival [22].

1.3 The omics of breast cancer

In normal cells, biological processes necessary for cellular function, including DNA repair, cell cycle, differentiation, growth, proliferation, apoptosis, cell migration and cell-to-cell contact, are tightly regulated by complex molecular networks. In cancer, many networks are dysregulated, causing rapid cell proliferation and potentially metastasis. The loss of control is caused by a multistep process where genetic mutations accumulate, predominantly in somatic cells, making cancer an age-related genetic disease [23]. Of all breast cancer cases, approximately 5% are due to inherited mutation in tumor suppressor genes BRCA1 or BRCA2. These mutations will increase the lifetime risk for developing breast and ovarian cancer with over 80% and 40-60%, respectively [24]. Examples of other important inheritable mutations increasing the risk of developing breast cancer are TP53 and PTEN.

Both in normal cells and cancer cells, DNA is transcribed into mRNA transcripts which further can be translated into proteins taking part in molecular pathways and thus controlling the level of metabolites, which will be described in more detail in section 1.3.3. Although additional factors, such as epigenetic alterations, affect and further complicate the flow of this process, the basic principle can be summarized in Figure 1.3.

Figure 1.3: Illustration of the omics cascade. The omics flow of information from DNA and genomics to metabolites and metabolomics

1.3.1 Transcriptomics and intrinsic genetic subtypes

The field of transcriptomics studies gene expression trough measuring the transcripts of DNA called mRNA. It has been estimated that between 20 000-25 000 protein coding genes exists within the human DNA [25]. However, which genes are transcribed into protein coding transcripts at a given time is dependent on several factors, e.g. cell type, cell function, epigenetic events and existing mutations.

Depending on the tumor mRNA levels from a set of intrinsic genes with high interpatient and low intra-patient variation before and after treatment of breast cancer patients, five genetic subtypes have been reported [26, 27]. The intrinsic subtypes, luminal A, luminal B, HER2-enriched, basal-like and normal-like, have characteristic differences in gene expression pattern that correlate with tumor characteristics and clinical outcome [27]. The frequencies of the subtypes varies among ethnicity and age, but in general, luminal A is the most common subtype followed by basal-like, HER2-enriched and luminal B [28].

Both of the luminal subtypes are typically hormonal receptor positive with important differences in the proliferation signature and the rate of relapse-free survival. Luminal A cancers are considered a good prognosis group because of the association with lower expression of proliferating genes and longer relapse-free survival than luminal B cancers. Although the majority of luminal cases are HER2-, approximately 9% and 21% of luminal A and luminal B, respectively are HER2+ [29]. Basal-like and HER2-enriched subtypes have been associated with poorer prognosis and shorter survival times [27]. Most of basal-like cancers are triple negative breast cancers (TNBC), i.e. ER-/PgR-/HER2-, but also here there are variability with 6-29% being ER+ and 9-13% being HER2+ [27]. An additional rare gene expression subtype called claudin-low has been suggested [30], with several similarities to the genetic profile of basal-like, but with lower expression of a set of cell-to-cell adhesion proteins and higher expression of genes linked to immune system response. One of the main characteristics of the HER2-enriched subtype is over-expression of ERBB2 and a group of adjacent located genes, although this is not the case for all tumors classified within this subtype [28]. The normal-like subtype resembles the gene expression of tissue samples from normal breast cancer samples. A centroid based identifier called PAM50 has been developed where prediction analysis of microarrays (PAM) of 50 genes is used to predict and classify breast cancer into one of the five subtypes [31].

1.3.2 Proteomics and protein expression subtypes

Proteins are the functional product of genes and become the workers of cellular pathways and networks controlling cell function as well as cell malignancy [23]. Genetic alterations could possibly affect the activity, function or abundance of proteins directly. Additionally, protein expression and activity are not solely results of gene expression level (i.e. mRNA level), but a product of several ongoing processes,

e.g. post-transcription modification processes. Studies of proteomic profiles within breast cancer as well as cancer in general may thus further increase the understanding of the complex heterogeneity and pathogenesis [32]. As previously described, the expression of hormone receptors ER and PgR and expression of HER2 are valuable targets for current treatment regimens. Further proteomic characterization may identify new pathological biomarkers and therapeutic targets.

Based on the expression of 171 breast cancer related proteins, six subtypes have been proposed; basal, Her2, luminal A, luminal A/B, reactive I and reactive II [33]. These subtypes were found to overlap tightly with the intrinsic genetic subtypes thus providing information about existing differences at the protein expression level. As the proteins are measured by reverse phase protein array (RPPA), the subtypes referred are to as RPPA subtypes.

1.3.3 Metabolomics and breast tumors metabolism

Downstream genomics, transcriptomics and proteomics is metabolomics, a relatively new field that studies small-molecular compounds called metabolites. These compounds are end products or intermediates of chemical processes needed for cell viability, e.g synthesis of building blocks, energy production and cell signaling. The metabolic profile of a cell, tissue or living organism depends on the preceding 'omcis' levels as well as environmental factors like diet and drugs [34]. Small alterations in gene expression levels or in the activity of enzymes could have large impact on the concentration of metabolites which can be viewed as an amplified output of ongoing cellular activity [35]. Due to the accumulated alterations within the cancer cells that contributes to their characteristic uncontrollable growth, they exhibit important metabolic differences compared to normal cells. When presenting the emerging hallmarks of cancer, Hanahan and Weinberg suggested a crucial event of tumor development to be deregulation of cellular energetics [3]. Altered metabolic activity is thus becoming an established characteristic of malignancy. Further elucidation for better understanding of metabolic reprogramming and changes observed in cancer may contribute to revealing dependencies and therapeutic targets (discussed in more detail in 5.1) [36].

In the following sections, altered glucose, choline and amino acid metabolism in relation to cancer are introduced.

Glucose metabolism

Glucose is the main source of energy in living cells. During glycolysis, a small amount of adenosine triphosphate (ATP), the chemical energy transporter essential for cellular processes, is formed when glucose is converted to pyruvate. If oxygen is present, pyruvate can be oxidized in the tricarboxylic acid (TCA) cycle followed by oxidative phosphorylation to produce ATP. In hypoxic situations, i.e. low oxygen concentrations, pyruvate is used to make lactate yielding only 2 ATP molecules per glucose compared to 36 in aerobic conditions.

Figure 1.4: Glucose metabolism in normal and cancer cells. Glucose enters the cell and is converted to pyruvate through the process called glycolysis. In normal cells, pyruvate is converted to acetyl-CoA or lactate depending on the level of oxygen present. In cancer cells, most of the pyruvate is converted to lactate, independently of the level of oxygen, an event called the Warburg Effect.

For most cancer cells glucose metabolism is altered and even if oxygen is present, most of the pyruvate is converted to lactate (Figure 1.4). This characteristic, discovered in the 1950's, is referred to as the Warburg effect [37]. In addition, cancer cells inside solid tumors often experience hypoxia due to the low blood supply, causing production of lactate from pyruvate to be the only possibility to make ATP.

The reduced efficacy to generate ATP has been suggested to be an adaption to facilitate the uptake and incorporation of nutrients into biomass needed to produce a new cell [38]. It is also suggested that the production of lactate favors tumor cells, making them more resistant to the immune system and also by generating an acidic microenvironment which is hostile to surrounding normal tissue and promotes metastasis [39]. To compensate for the inefficient ATP production, most tumors have an increased rate of glucose uptake.

Choline metabolism

Choline is an essential organic compound functioning as a precursor for phosphatidylcholine (PtdCho), one of the most abundant phospholipid in eukaryotic cellular membranes [40]. PtdCho is formed de novo from choline by the Kennedy pathway shown in Figure 1.5. Choline is first transported into the cell and phosphorylated to phosphocholine (PCho) by the enzyme choline kinase. PCho is then added a cytidyldiphosphate (CDP) group forming the high-energy donor CDP-Choline. To synthesize PtdCho, a lipid anchor such as diacylglycerol (DAG) is used by the enzyme called DAG-cholinephosphotransferase [40]. The breakdown products of PtdCho are glycerophosphocholine (GPC) and 1-acylglycerophosphocholine.

Tumor cells grow rapidly and therefore require high production of phospholipids like PtdCho. The abnormal high production of PtdCho from choline and choline-containing compounds has therefore been studied for examination of cancer metabolism in several decades [41] and is an emerging metabolic hallmark for tumor progression [42].

Amino acid metabolism

Although over 300 different amino acids exist, only 20 commonly serve as building blocks for proteins in the human body [43]. Amino acids also have roles as regulators or intermediate metabolites for several important metabolic pathways necessary for cellular maintenance and growth. The anabolic processes that are active during cancer development thus rely on altered flow of amino acid compared to normal cells. Although glucose is considered the main energy source in human cells, amino acids such as glutamine can be utilized to produce ATP through refilling of intermediates to the TCA cycle. Glutamine is normally considered a non-essential amino acid, however studies have shown that in rapidly dividing cells, including both normal

Figure 1.5: Choline metabolism. Choline is transported into the cell and used for synthesis of PtdCho by choline conversion to first PCho followed by CDP-Choline synthesis. PtdCho can further be catabolized directly to choline or PCho, or to GPC through acyl-GPC production. Choline metabolism is frequently observed to be altered in cancers. PCho: phosphocholine, CTP: cytidyltriphosphate, CDP: cytidyldiphosphate, CMP: cytidylmonophosphate, PtdCho: phosphatidylcholine, GPC: glycerophosphocholine.

and cancer cells, it is conditional essential [44]. It is important for the biosynthesis of nucleic acids and can be converted, by glutaminase, to glutamate which further can be used for production of other amino acids or function as a precursor for the important antioxidant glutathione [45]. In addition, glutamate is a precursor for α -ketoglutarate, a TCA intermediate and substrate for dioxygenases (i.e enzymes that modify DNA and proteins) [44].

1.4 Metabolic detection through magnetic resonance spectroscopy (MRS)*

Magnetic resonance spectroscopy (MRS) can be used to identify and quantify metabolites by using the magnetic properties that some atomic nuclei possess. For nuclei with an uneven number of protons and/or neutrons, i.e. spin quantum number $I \neq 1$, the nucleus generates the magnetic momentum (μ) used in MRS given by $\mu = \gamma I$, where γ is the gyromagnetic ratio (unit: MHz/Tesla) dependent on the type of nucleus. Examples of nuclei that all posses this magnetic property and occur naturally in the body are ¹H, ¹³C, ²³Na, ³¹P. If such nuclei are placed in an external static magnetic field (\mathbf{B}_0 , unit: Tesla) they will orient in 2I+1 possible spin states. For the highly abundant and most commonly used nucleus in MRS, proton (¹H), with I=1/2 and $\gamma=42.6$ MHz/Tesla, there exists two spin states for the nuclei at equilibrium when placed in a magnetic field; a low energy state where the magnetic momentum aligns with the applied field and a high energy state where the magnetic momentum aligns against the applied magnetic field (Figure 1.6). The energy differences between these two states are proportional to the strength of the magnetic field.

The nuclei will spin around its own axis and around the axis of the magnetic field in an motion called precession. The frequency ω of this motion is given by the Larmor equation: $\omega = \gamma \mathbf{B}_0$

^{*}This section is based on [46] unless otherwise stated

Figure 1.6: The basic principle of magnetic resonance. Atomic nuclei with spin number 1/2 will orient with or against an applied magnetic field (\mathbf{B}_0). The nuclei spin around their axis creating a magnetic momentum (μ) that precess about \mathbf{B}_0 . The antiparallel spin state is referred to as the high energy state (top) while the parallel spin state has a lower energy state (bottom). With increasing strength of the applied magnetic field, the difference in energy states ($\Delta \mathbf{E}$) increases.

In the applied magnetic field \mathbf{B}_0 , a slight excess of nuclei will align in the low energy state causing an net magnetization pointing along \mathbf{B}_0 's direction. It is this magnetization that MR techniques manipulate to get the MR signal. By applying an external radio frequency (RF) pulse equal or close to the nuclei's Larmor frequency, nuclei will excite to the high energy state. When the RF pulse is turned off, the spins returns back to the original low state through longitudinal (T_1) and transverse (T_2) relaxation. At the same time as the relaxation occurs, the nuclei emit energy that can be detected as a signal called free induction decay (FID). A Fourier transformation of the time dependent FID will result in a frequency dependent spectrum known as the MR spectrum. Due to slight differences in their chemical environment caused by metabolites chemical structure and electrons shielding the nuclei from the magnetic field, peaks will appear at different positions in the spectra, known as chemical shifts reported in parts per million (ppm).

1.4.1 MRS acquisition

Due to the large amount of water within biological tissues, water suppression is needed to increase the signal from small metabolites found in much lower concentrations. A variety of pulse sequences exist, but the two most common metabolomics experiments are Nuclear Overhauser Effect Spectroscopy (NOESY) and Carr-Purcell-Meiboom-Gill (CPMG). These methods use a pre-saturation of water molecules by exposing the sample to a relatively long, low power RF pulse. CPMG sequences are additionally designed to decrease the signals from macromolecules and lipids that cause broad peaks possibly overlapping with important metabolites. To accomplish this, CPMG experiments take advantage of the short T_2 relaxation large molecules have and filter them out using a long echo-time (TE) prior to the acquisition. More specific, after pre-saturation of the water signal and a 90 °pulse, there is a following repeated loop of 180 °pulses with delay τ between each (Figure 1.7). This loop will refocus and preserve the signals from small molecules with long T_2 , consequently reducing signals from macromolecules.

Figure 1.7: Schematic illustration of CPMG pulse sequence. RF: radio frequence, τ : time delay

1.5 High Resolution Magic Angle Spinning MRS

The quality of MR spectra is highly dependent on the molecular orientation and their possibility to reorient. Within semi-solid material (e.g. tissue), molecules are less mobile leading to anisotropic interactions between nuclei, which give rise to broad peaks, possibly concealing relevant spectral information [41]. After its discovery, the use of MRS was thus strictly limited to dissolved or melted solid samples or liquid samples [47]. Within these samples the anisotropic interactions are averaged out by the rapid isotropic movement of molecules resulting in MR spectra with narrow line width. Andrew and Lowe were the first to describe a solution to the problem of semi-solid samples in 1958 [48,49]. By imposing nuclei motion with rapid spinning (4-6kHz) of the sample angled 54.7° (the magic angle) to the static magnetic field \mathbf{B}_0 (Figure 1.8), referred to as magic angle spinning (MAS), line broadening is reduced and MR spectra of high resolution are produced.

Figure 1.8: Magic angle spinning (MAS). Rapidly spinning the sample at the magic angle of 54.7° to the magnetic field \mathbf{B}_0 produces high resolution spectra with line width that resemble spectra obtained from liquid samples.

1.5.1 ¹H HR MAS MRS analysis of breast cancer tissue

Ex vivo high resolution magic angle spinning MR spectroscopy (HR MAS MRS) gives qualitative and quantitative metabolic information from biological tissue with minimal sample preparations. It is also a non-destructive technique allowing subsequent analysis, for example histopathological examination or gene expression profiling, of the tissue after MRS [50]. Metabolic profiling alone and in combination with complementary methods is important for assessment of cancer biology, thus making HR MAS MRS an attractive method [41].

HR MAS MRS is widely used to study central metabolic processes related to cancer progression, including glycolysis, choline phospholipid metabolism and amino acid metabolism. Analyzing breast cancer tissue, ¹H HR MAS MRS has identified more than 30 metabolites [51]. A representative breast cancer spectra is illustrated in Figure 1.9.

Figure 1.9: A representative ¹H HR MAS MRS breast cancer spectra. Black bars represents excluded lipid regions.

To explore metabolic changes in relation to alterations in glycolysis and glucose metabolism, both glucose and lactate are detectable with ¹H HR MAS MRS, and can thus be evaluated. A general hypothesis is that decreasing levels of glucose reflects that the tumor has an increasing energy demand while the degree of lactate production might indicate whether the glucose is guided towards TCA cycle or used for aerobic glycolysis. In accordance with a higher energy demand and thereby higher glucose demand in tumors with actively proliferating cells, a previous study reported glucose levels to be negatively correlated to proliferation index (MIB-1) [52]. If glucose is metabolized though aerobic glycolysis, regardless of oxygen availability, lactate will be produced. Lactate has been suggested a key player for cancer development and metastasis [39] and high levels of this metabolite, together with high glycine levels, has been associated with poor-prognosis for patients with ER+ invasive ductal carcinoma [53]. Accumulation of lactate in tissue extracts analyzed by MRS has previously shown to be correlated to metastasis [54,55]. Furthermore, in a study of patients diagnosed with locally advanced breast cancer, higher lactate levels prior to treatment start was observed for those who did not survive (5 year), supporting it as a poor-prognosis marker [56]. Non-survivors also had higher levels of choline containing metabolites prior to treatment. These metabolites are associated to the synthesis and degradation of the phospholipid PtdCho, referred to as choline metabolism (see section 1.3.3), often observed to be altered in cancers [42]. With HR MAS MRS, several choline metabolites can be detected, including choline, PCho and GPC. Increased amounts of these metabolites have been detected when comparing breast cancer tissue to non-involved breast tissue, both in surgery-excised tissue [51,57] and in core needle biopsies from breast cancer patients [58]. The altered choline metabolism is also found in xenograft models, and shown to differ between different breast cancer subtypes [59]. Basal-like tumor xenografts, which have a more aggressive breast cancer phenotype, are characterized with higher GPC concentration realtive to PCho than the less aggressive phenotype of luminal-like xenograft models.

Changes in the levels of several amino acids have also been observed by ¹H HR MAS MRS in breast cancer tumors. Higher levels of glycine has been observed in tumors larger than 2 cm compared to smaller tumors [57] and a trend of higher glycine in samples from poor prognosis patients [52]. Additionally, as a response to neoadjuvant chemotherapy, a significant decrease in glycine levels was found in samples from long-term survivors (> 5 years) [56,60]. Other amino acids that can be elucidated using ¹H HR MAS MRS are taurine, which have been linked to lymph node metastasis [57], and glutamine, that were found to be significantly lower in TNBCs compared to triple positive breast cancer [61].

1.5.2 Pre-processing of MRS spectra[†]

The acquired HR MAS MRS spectra are highly complex, typically consisting of thousands of variables. To extract useful information and obtain high quality and comparable spectra eligible for statistical analysis, different pre-processing operations are performed to remove irrelevant sources of variance. These operations may include baseline correction, deletion of irrelevant noise regions, peak alignment, normalization and scaling. Each step is conducted simultaneously on the whole data set to ensure identical protocol for all samples.

Baseline correction is performed to remove unevenness in what should be a flat baseline. Without correction, baseline additives will cause errors when performing statistical tests and during quantification as signal intensities, and thereby metabo-

[†]This section is based on [62,63] unless otherwise stated

lite concentrations, are influenced and will be incorrect. Different algorithms can be performed on either time domain or frequency domain to correct for uneven baseline caused by noise, macromolecules or alternations in the first points of the FID. One of the most common approaches is estimating a base line which is subtracted from the spectral data. When the optimal baseline is achieved, the next step is often to remove areas with no metabolic information or areas that contain pollutions such as chemicals from sample preparation. This can be followed by peak alignment which has the intention to correct for chemical shift differences between the samples, normally caused by changes in pH, temperature, instrumental factors or molecular interactions. Different approaches can be used, that either align the entire spectra (global alignment) or separate segments (local alignment). Icoshift [64] is one of the approaches recommended for HR MAS MRS data [65]. Here, user defined segments of optional sizes are shifted to optimize their cross correlation to the same segment of a selected reference spectra using Fast Fourier Transformation (FFT). The reference spectra can be a spectrum from the original data set or can be generated by the user (e.g. mean or median spectra of the data set). After alignment, normalization ensures comparable spectra by removing variation in signal intensities caused by sample size or dilution. Area normalization, where each variable of the samples is divided by the sum or average of all its variables, can be considered a standard normalization approach for MRS metabolic data. Examples of other approaches are range normalization and probabilistic quotient normalization (PQN). The latter uses a method where the estimated most probable 'dilution factor' caused by sample size of each spectra is calculated based on comparison to a reference spectrum [66].

The signal intensities of metabolites are proportional to their abundance within the sample. Although fluctuations within metabolites of low concentrations might be of biological importance, their variation might be masked by metabolites of higher concentrations. The pre-processing step of scaling aims to balance the importance of each variable making them more comparable. Scaling methods are thus variable-based, and not sample-based as normalization. Prior to other scaling procedures, mean centering is often applied. Here, each variable within the data set is divided by its own mean resulting in a values that vary around zero. Depending on the nature of the data, following scaling approaches can be autoscaling (dividing each variable on its standard deviation), pareto scaling (dividing each variable on the

square root standard deviation) or variable stability scaling (dividing each variable on its standard deviation and coefficient of variation).

Additional pre-processing operations such as variable selection might also be included. Since decisions on what pre-processing procedures to include will affect the result of multivariate analysis, each step should be carefully evaluated and optimized for the specific data it will be applied to.

1.6 Multivariate analysis

Analyzing data sets with pre-processed spectral information requires statistical methods that handle a high number of variables. Additionally, many of the variables obtained by MR spectroscopy are collinear, ruling out standard statistical methods. Two approaches are used to extract and maximize the information recovery from such data sets; unsupervised and supervised methods. Unsupervised methods are exploratory, with no other information than the spectral data set as input. These methods can be used to visualize the data in a few dimensions to reveal hidden structures or groups within the data set. Supervised methods require a priori knowledge about the objects, referred to as response variable(s), with either categorical or continuous information. The independent variables, i.e. spectral intensities, are then used to build models that can classify or predict the response.

1.6.1 Principal Component Analysis (PCA)

Principal component analysis is an unsupervised multivariate method that aims to reduce noise and emphasize systematic data structures. By taking advantage of the many collinear variables within most multivariate data sets, linear combinations are used to reduce the number of variables into new variables called principal components (PCs). Here, the first PC explains the largest amount of the variance within the data set, while the following and subsequent PCs explains as much of remaining variation as possible. The PCs become axes of a new coordinate system and each sample is given score values to mark their position. Plotting samples in a scores plot defined by the PCs is a good tool for visualizing high dimensional data, find underlying patterns and for identifying outliers. Each PC will have a corresponding loading vector which describes how important each of the original variables have been in construction of the specific PC. Together the score and loading plot will give new information and help in the interpretation of the data set. Figure 1.10 shows one example of a PCA score plot and the corresponding first loading. Here, the samples have been colored according to their PC1 scores (positive or negative). By observing samples distribution in the scores plot combined with the corresponding loading plot, variables important for separating the samples in the new coordinate system (i.e PCs) can be found.

Figure 1.10: Principal component analysis (PCA) for two groups of patients. In the score plot (left), similar samples cluster close to each other. The loading plot (right) shows what variables were important for separating samples on the chosen principal component, here PC 1. Lac: lactate, Cr: creatine, Gly: glycine, Tau: taurine, PCho: phosphocholine, Succ: succinate, Ala: alanine.

1.6.2 Hierarchical Cluster Analysis

Hierarchical cluster analysis is an unsupervised method that can be used to find natural groups of samples within a data set, typically used for genomic and transcriptomic data. Complementary to the score plot from PCA, grouping of samples is visualized in a dendrogram, also known as a hierarchical tree. This tree is built with a bottom-up approach and illustrates the grouping of samples according to their pairwise similarity or dissimilarity. At the initial stage, and bottom of the dendrogram, all objects are considered individual clusters. After calculating similarity measurements between every possible pair of objects, the two closest are joined by a branch at the first level. For the next and following levels the process is repeated until only one cluster remains, as illustrated in Figure 1.11. Clusters more similar to each other will thus be connected by shorter branches than clusters less similar.

Several metrics for calculating the similarity between objects exists. Common approaches include Euclidean distance and correlation distance. The Euclidean distance between two points A(a, b, c) and W(x, y, z) is defined in equation (1)

$$d(A, W) = [(a - x)^{2} + (b - y)^{2} + (c - z)^{2}]^{1/2}$$
(1)

Figure 1.11: Dendrogram obtained by hierarchical cluster analysis.

When two objects are joined into a cluster, their new distance measurements to other clusters are decided by the chosen algorithm, typically single or complete linkage, or Wards method. Single linkage defines the distance as the distance between the two closest objects of the two clusters, while complete linkage does the opposite; the distance is defined as the longest possible distance. Wards method calculates the variance within each cluster and the total variance summing all cluster variances. The two clusters that will cause the smallest change in total variance will be fused into a larger cluster.

The resulting dendrogram can in the final step of cluster analysis be used to divide the original data set into groups by deciding a cutoff level. All objects linked by a branch at the cutoff level will belong to one cluster. An alternative approach is deciding the number of clusters and cutting the dendrogram where this criteria is fulfilled.

1.6.3 Partial Least Squares (PLS)

Similar to PCA, partial least squares aims to find linear relationships within a multivariate data matrix, X, to reduce its complexity. However, PLS uses a supervised approach by including the response variable(s) Y with relevant information, e.g clinical data or class membership, to construct the descriptive model. The method aims to find latent variables (LVs) that explains the variation of the data while maximizing the covariance between the X and Y. More specifically, the LVs will give

information about which variables within X that are most important for separating levels or groups within Y. In cases where Y is a categorical variable, the method is called PLS discriminant analysis (PLS-DA). Figure 1.12 shows a constructed example of PLS-DA discrimination between two groups of samples. The resulting model consists of new score values for each sample, and loading vectors corresponding to each LV, and can be interpreted similar to PCA models.

Figure 1.12: Partial least squares discriminant analysis (PLS-DA) example. Similar to PCA, the score plot (left) will cluster similar samples close to each other. The loading plot (right) shows what variables were important for separating samples on the chosen principal component, here PC 1. The corresponding loading plot shows which variables were most important for the PC. Glc: glucose, Lac: lactate, Gly: glycine, PCho: phosphocholine, Glu: glutamate.

1.6.4 Validation of multivariate models

One of the goals when building classification models using methods like PLS-DA is to find variables important for discriminating groups of samples. Additionally, the model could potentially be used for predicting the status of new samples. Prior to such interpretation and classification, proper validation of the model is needed. If it is over-fitted to the data used to build the model, it will not describe the population wide relationships between X and Y. To assess the models robustness and evaluate its performance, common validation approaches include the use of independent data, cross validation and permutation testing. The preferred method for validation is using an independent data set, however this is often not possible due to lack of a validation cohort or a small number of samples. In such cases cross validation can be used. Here, the cohort is divided into training and test sets. The

training set is used to build a model that subsequently is used to classify the objects within the test set. This procedure can be repeated for several training and test sets, measuring the performance (e.g number of correct and incorrect classifications, sensitivity and specificity, respectively) based on the predicted classification for the test sets. The size of the test and training set depends on the cohort. For small sample cohorts (n=20) leave-one-out cross validation can be used, where each sample is left out once. However, this could possible lead to an over-fitted model. For bigger cohorts, the test set can include a specific percentage of samples leaving the remaining samples within the training set. Further extension of cross validation to double cross validation can be used to optimize the model. This approach will have two loops: one outer and one inner loop. The outer loop is identical to the cross validation structure described above. For each round of outer loop validation, there is further an inner loop where the training set is divided into an optimization and second test sets (Figure 1.13). This is repeated for a specific number of times before a new round of the outer loop is repeated. The inner loop is used to decide the optimal number of LVs in PLS.

Figure 1.13: An illustration of double cross validation. The data is divided into a training and a test set. In the inner loop, model parameters, here for a partial least squares (PLS) model, are optimized and used for predicting samples in the test set of the outer loop. Single cross validation is performed using only the outer loop.

Permutation testing is a way of testing whether the model achievements are better than random classification. This technique permutes, or shuffles, the response variable Y before building the model. Consequently, the result obtained from this permuted model represents the result that could be obtained by chance. Comparing the real- and permuted models classification results will tell whether the real model can be regarded as significant.

1.7 Linear Mixed Models (LMM)

In the previous sections, methods to analyze different metabolites or complete spectral profiles simultaneously have been described. Another approach is to build separate multilevel statistical models for each individual metabolite. Such is the case with linear mixed-effects models (LMM), which describe relationships between a particular outcome, e.g. a metabolite concentration, and different categorical or continuous factors, e.g. response group or sample tumor cell percentage, respectively. These factors are regarded as fixed, because they can affect the outcome variable but have known, fixed values and therefore one has modeling control over them. Random effects are also incorporated in LMM, thus the name mixed model. These take into account the variation that cannot be controlled for experimentally and arise due to individual patient differences that are unknown, e.g. unrecorded diet and physical fitness level.

LMM can be applied in a variety of settings, most notably to account for intrasubject correlation that occurs when multiple observations or measurements are included for a single patient. This occurs in longitudinal studies, which are designed to follow up subjects and remeasure the same variables repeatedly at different time points. This allows tracking of individual changes in the measured variables with time. In addition, LMM can handle incomplete data, which is statistically challenging and is typical in longitudinal studies since it is difficult to obtain measurements from all patients at every time point [67].

2 Aims

Overall aim

The main aim of the thesis work was to further characterize breast cancer through metabolic profiling using HR MAS MRS.

Specific objectives

- To identify an optimal sample handling protocol for metabolic studies of tumor tissue with respect to freezing delay time and experiment durability.
- To determine naturally occurring metabolic clusters of primary operable breast tumors and further integrate the metabolic characteristics with gene and protein expression data.
- To investigate the metabolic effect of neoadjuvant treatment with respect to treatment response and the effect bevacizumab treatment.

3 Materials and Methods

A summary of materials and methods used for the present thesis is given in Table 3.1

Table 3.1: Materials and methods used in paper I-III

		Paper I	Paper II	Paper III
Materials ——	Human tissue samples	n = 14	n = 228	$n=270(122\ patients)$
	Xenograft samples	n = 42		
Methods	Metabolomics	¹ H HR MAS MRS	¹ H HR MAS MRS	¹ H HR MAS MRS
	Proteomics		RPPA	
	Transcriptomics		microarray	microarray
	Other methods	HES	HES	HES
		Nile Red		
Data analysis Longitudinal data analysis Longitudinal data analysis Longitudinal data analysis LMM SAM, DAVID, PAM50-subtypin RPPA-subtypin	Multivariate analysis	PCA	PCA	PCA
			Hierarchical cluster analysis	PLS-DA
			PLS-DA	
	M 4 1 124 1 1 1 1 4 2	Integration	Integration	Integration
		Imputation		
	Longitudinal data analysis	LMM		LMM
			SAM, DAVID, GSEA	PAM50-subtyping
	Gene and protein expression		PAM50-subtyping	
			RPPA-subtyping	
	Combing data levels		Integrated pathway analysis	

¹H HR MAS MRS: proton high resolution magic angle spinning MR spectroscopy, RPPA: reverse phase protein array, HES: hematoxylin-eosin-safron, PCA: principal component analysis, PLS-DA: partial least square discriminant analysis, LMM: linear mixed model, SAM: significance analysis of microarrays, DAVID: database for annotation, visualization and integrated discovery, GSEA: gene set enrichment analysis

3.1 Patients and xenograft models

3.1.1 Breast cancer xenograft models

The xenograft models MAS98.06 and MAS98.12 used for paper I was established as described in [68] by implanting primary breast tumors specimens from patients into the fat pad of immunodeficient mice. Passages of tumors to new animals were conducted when tumors reached a diameter of 15 mm. Ethical guide lines from European Convention for the Protection of Vertebrates used for Scientific Purposes were followed during the animal work. Gene expression analysis have shown that these pre-clinical models have a luminal-like and basal-like phenotype respectively. Furthermore, these models have been characterized by MRS [59, 69] showing similarities between metabolic profiles of these models and the profiles

from corresponding patient tumors [59]. Xenografts were established and grown at the Oslo University Hospital, Radiumhospitalet, and transported from Oslo to Trondheim prior to HR MAS MRS analysis. The mice were sacrificed by cervical dislocation and tumors (n=6) were harvested immediately. The tumors were split into seven before following the work flow illustrated in Figure 3.1. One sample was analyzed without snap-freezing, while the remaining were exposed to freezing time delays of 0, 15, 30, 60, 90 and 120 minutes.

Figure 3.1: Study design for evaluating effect of freezing time delay on tissue samples in paper I.

After HR MAS MRS analysis, samples were immediately frozen and stored (2 years) in liquid nitrogen before sectioning in 4 μ l and 10 μ l and staining with hematoxylin-eosin-safron (HES) and Nile Red as described in (21), respectively.

3.1.2 Patients cohorts

All three papers included samples from female patients diagnosed with breast cancer.

For paper I, samples (n=14) were collected during surgery at St Olav's Hospital (Trondheim, Norway) and Molde Hospital (Molde, Norway). Written informed consent was obtained from all patients and the study was approved by the Regional Ethics Committee, Central Norway. Immediately after surgical removal the samples were snap-frozen and stored in liquid nitrogen.

For paper II, tumor samples (n=228) obtained from the Oslo2 breast cancer cohort were included. This is a cohort of patients diagnosed with primary operable disease where patient material (clinical data, tumor material, serum) have been collected at several hospitals in south-eastern Norway. Written informed consent was obtained from all patients and the study is approved by the Regional Committee for Medical and Health Research Ethics (REC South East). The samples for paper II were collected in the time period 2006-2009 from patients operated at the Oslo University Hospital (Radium Hospital and Ullevål Hospital, Norway). Tumor material was fresh frozen after surgery and stored at -80 °C. Depending on tumor size, one sample from each tumor was divided in three (Figure 3.2). The two side parts were sectioned for hormone receptor analysis and histological evaluation performed by a pathologist. Sample material from the mid part was used for HR MAS MRS while the tumor remnants were pooled and used for extraction of RNA (n=201) and/or protein (n=217) for analysis of gene and protein expression (RPPA) respectively.

Figure 3.2: Flow chart for division of tumor material in paper II.

For paper III, tumor samples (n=270) obtained from 122 patients (age ≥ 18 years) within the Neo-Ava breast cancer cohort (Neoadjuvant Avastin in Breast Cancer) were included. This is a randomized phase 2 trial including patients with large (size ≥ 2.5 cm) and HER2- tumors that followed the neoadjuvant treatment regimens described below. Written informed consent was obtained from all patients and the study was approved by Regional Ethics Committee and the Norwegian Medical Agency. Ultrasound guided core needle-biopsies were harvested at treatments start (TP1) and 12 weeks into treatment (TP2) before surgical removal of the tumor 25 weeks after TP1 (TP3) (Figure 3.3). The surgeries were performed at Oslo University Hospital (Radium Hospital and Ullevål Hospital, Norway) and St Olav's Hospital (Trondheim, Norway). Tumor material from TP1 was used for evaluation of hormone receptors status and histopathological diagnosis. For TP1 and TP2, a mid part from a first core-needle biopsy was separated for HR MAS MRS, before pooling the remnants with a second core-needle biopsy for further molecular analysis. For the surgical samples taken at TP3, a similar approach as for tumor preparation in paper II was used (Figure 3.2), where the two side parts were sent for histopathological analysis and a mid part was obtained for HR MAS MRS. The remnants were pooled and used for molecular analysis.

Figure 3.3: Flow chart for randomized neoadjuvant chemotherapy with or without bevacizumab in paper III. Reproduced with permission from Leslie R. Euceda.

3.1.3 Patient treatment protocols and response measurements

In paper III, all patients received neoadjuvant chemotherapy according to Norwegian guidelines and were randomized to additionally receive bevacizumab. The chemotherapy regimen consisted of 12 weeks with anthracyclines treatment (four three-weekly cycles of FEC100; epirubicin 100 mg/m2, 5-fluorouracil 600 mg/m2, cyclophosphamide 600 mg/m2) followed by 12 weeks of taxane-based therapy (four three-weekly cycles of paclitaxel 80 mg/m2 or docetaxel 100 mg/m2). For patients receiving bevacizumab, this was administered in three-weeks cycles (15 mg/kg) during the anthracyclines and docetaxel treatment. Due to toxicity issues, docetaxel treatment was exchanged with paclitaxel for a majority of the patients. For those receiving bevacizumab, the dose was changed to 10 mg/kg every two-weeks.

Tumor size was measured by radiologist at TP1 using MR imaging (MRI), ultrasound and/or mammography and by a pathologist at TP3 when the tumor was surgically removed. To evaluate response of treatment, two characteristics were used; pathological tumor diameter at TP3 and response ratio calculated by pathological tumor diameter at TP3/tumor diameter at TP1. In cases where no MRI was available at TP1, the biggest diameter from ultrasound and/or mammography was used. To prevent the loss of patients experiencing good treatment response, but not qualifying for pathological complete response (pCR) where no invasive cells are detected (in breast nor lymph nodes), a cut-off of tumor diameter < 1 cm was set to classify pathological minimal residual disease (pMRD). Criteria for response classification are summarized in Table 3.2.

Table 3.2: Tumor response classification criteria used in paper III

Pathological response					
Response class	Tumor size at TP3				
pat hological minimal residual	< 1 cm				
diasease (pMRD)					
pathological non-reponder (pNR)	> 1 cm				

Response ratio					
Good response (GR)	≤ 0.10				
Intermediate response (IR)	<0.10, 0.90>				
No response (NR)	≥ 0.90				

3.2 ¹H HR MAS MRS experiments

3.2.1 Sample preparation

For human samples included in paper I, biopsies were kept frozen on an ice block during preparation (Figure 3.4) and cut to fit leak-proof disposable 30 μ l inserts

(Bruker, Biospin Corp, USA) containing 3 μ l of phosphate buffered saline (PBS) based on D₂O with Trimethylsilyl propionic acid (TSP, 1 mM) and sodium formate (1 mM). The insert were placed in a 4-mm diameter zirconium MAS rotor and samples analyzed immediately.

Figure 3.4: Sample preparation before HR MAS MRS experiments. The samples are stored in liquid nitrogen until analysis (left). The samples are kept frozen during preparation and cut to fit inserts MAS rotors prior to analysis. Photo: Geir Mogen/NTNU

For xenograft samples in paper I and human samples in paper II and III, samples were kept frozen on a metal block bathed in liquid nitrogen during preparation and cut to fit leak-proof disposable 30 μ l inserts (Bruker, Biospin Corp, USA) containing 3 μ l cold sodium formate in D₂O (24.29 mM). The insert were placed in a 4-mm diameter zirconium MAS rotor and samples kept -20°C and for maximum 6-8 hours before the experiments.

3.2.2 Acquisition protocol

Samples were analyzed on a Bruker Avance DRX600 spectrometer (Bruker, Biospin GmbH, Germany) equipt with a 1 H/ 13 C MAS probe with gradient. Before acquisition, samples were spun for 5 minutes to allow for temperature acclimation. CPMG experiments (cpmgpr1D, Bruker) were run using acquisition parameters as specified in Table 3.3.

Paper I Paper II & III Human samples Xenograft samples Human samples $4^{\circ}\mathrm{C}$ $5^{\circ}\mathrm{C}$ $5^{\circ}\mathrm{C}$ Temperature Spin rate 5 kHz5 kHz5 kHzRelexation delay 4 s 4 s 4 s $Delay(\tau)$ $0.3 \, \mathrm{ms}$ $0.3 \, \mathrm{ms}$ 1 msEcho time 273.5 ms78 ms78 msNumber of loops 136 126 126 Number of scans 128 64 256

Table 3.3: Acquisition parameters

3.3 Spectral pre-processing and analysis

The acquired spectral data was Fourier transformed into 64k real points by multiplying the FID with a 0.30 Hz exponential function. Each spectrum was automatically phase corrected in TopSpin 3.1 (Bruker Biospin). Spectral data was further preprocessed in Matlab R2013b (The Mathworks, Inc., Natick, USA); chemical shifts were referenced to TSP at 0 ppm (human samples, paper I) or formate at 8.46 ppm (xenograft samples, paper I and human samples, paper II and III), additional baseline correction was achieved by subtracting each spectrum with the lowest value, and peak alignment was performed using icoshift [64]. Pre-processed spectral data from human samples were normalized by mean normalization (paper I and II) or PQN (paper III), while spectral data from xenograft samples (paper I) were normalized to sample weights.

3.3.1 Multivariate analysis

PCA and PLS-DA were performed in Matlab using PLS toolbox version 7.5.2 (Eigenvector Research, Wenatchee, USA) on mean centered data performed by subtracting the average spectrum from each spectra. Hierarchical cluster analysis (paper II) was performed on pre-processed spectral data in Matlab using the Statistical toolbox (Matlab R2013b, The Mathworks, Inc., USA). Euclidean distance was set as distance parameter and Ward's method as the clustering distance.

PLS-DA models were validated using double cross validation where each round of the outer loop divided the data set into a training set consisted of 80 % (paper

II) or 90 % (paper III) of the samples and a test set with the remaining samples. In the inner loop, the training set was equally divided into a new test and training set using the same percentages. For each outer loop (repeated in total 20 times) the inner loop were repeated 20 times. The optimal number of LVs were decided based on the inner loop, while classification result (sensitivity, specificity and classification error) were calculated using the performance of the models during the outer loop of the double cross validation. Permutation testing was performed by building models on data where the response variable (Y) had been shuffled (paper II and III). This was repeated 1000 times before comparing the classification result of the permuted model with the original model. P-values ≤ 0.01 (paper II) and ≤ 0.05 (paper III) were considered significant.

3.3.2 Univariate and multilevel analysis

Metabolite identification was based on previously published HR MAS MRS analyses of human breast cancer [51]. Metabolite levels were calculated using integration of peaks (Matlab). Due to overlapping lipid peaks in the 4.1 ppm lactate region for 116 samples in paper III, the levels were imputed. This was performed in R 3.1.1 [70] using the method of multivariate imputation by chained equation (MICE) [71] and was validated using a resampling procedure.

LMM was performed in R 3.1.1 using the 'nlme' package [72].

3.4 Gene and protein experiments

3.4.1 Gene expression and genetic subtypes

In paper II and III, total RNA was isolated using TRIzol®reagent (Invitrogen, Carlsbad, CA, USA). The RNA purity and concentration was determined with a NanoDrop spectrophotometer (Thermo Fisher scientific, Waltham, MA, USA). Gene expression analysis with 100 ng RNA as input for labeling was performed using SurePrint G3 Human GE 8x60K (Agilent Technologies) according to the manufacturer's protocol (One-Color Microarray-Based Gene expression Analysis, Low Input Quick Amp Labeling, v.6.5, May 2010). For paper II, microarray signals were log2-transformed, quantile normalized and hospital adjusted. The gene specific expression was calculated by taking the average of values from probes with identical Entrez ID. For paper III, all values were log2-transformed and quantile

normalized before adjustment for batch effect from array design, centre differences and correlations to RIN value and background signal. For both paper II and III, the PAM50 subtype algorithm [31] was used to classify samples into luminal A, luminal B, HER2-enriched, basal-like or normal-like. The claudin-low subtype was not included within the studies of this thesis and will thus not be further discussed.

3.4.2 Protein expression and proteomic subtypes

In paper II, measurements of protein expression was performed using the high throughput technique reverse phase protein array (RPPA). Here, protein lysates from up to 1000 samples are printed in dilutions on slides followed by hybridization to specific antibodies. This enables direct comparison of the expression of protein between samples. The expression of breast cancer related proteins were detected using 150 primary antibodies for protein extracts of 217 samples in paper II. The samples were diluted in five 2-fold series. Signal intensity was measured using a biotin conjugated secondary antibody and amplified with DakoCytomation-catalyzed system (Dako, Glostrup, Denmark). MicroViegene software (Vigene Inc., Carlise, MA) was used to measure spot signal intensities before protein expression was quantified using a standard curve from the serial dilutions. The expression levels were log2-transformed and normalized by mean centering of the samples for each of the antibodies.

Samples were classified to their RPPA-subtype using consensus clustering with an option of 4 or 5 groups. The best fit was 5 groups; luminal, HER2, basal, reactive I and reactive II as defined in The Cancer Genome Atlas Network data set [33].

3.4.3 Analysis of gene expression data

In paper II, Significance Analysis of Microarrays (SAM) [73] was performed in R 2.15.2 [70] on expression levels of 21851 genes (found based on 42405 mRNA probes) to identify differences between the metabolic clusters. To validate the findings, a total of 100 permutations were performed.

For functional annotation of genes differently expressed between the metabolic clusters in paper II, Database for Annotation, Visualization and Integrated Discovery (DAVID), an online network analysis tool was used [74]. Additionally, enrichment of sets of genes were identified using Gene Set Enrichment Analysis (GSEA) [75].

3.4.4 Integrated pathway analysis

The online available tool 'Integrated pathway analysis' in MetaboAnalyst 3.0 software (www.metaboanalyst.ca) [76] was used to combine data of differently expressed genes and metabolites of metabolic clusters in paper II.

4 Summary of papers

4.1 Paper I

Impact of freezing delay time on tissue samples for metabolomic studies

Metabolic profiling of intact tumor tissue by high resolution magic angle spinning MR spectroscopy (HR MAS MRS) provides important biological information possibly useful for clinical diagnosis and development of novel treatment strategies. However, generation of high-quality data requires that sample handling from surgical resection until analysis is performed using systematically validated procedures. In this study, we investigated the effect of post-surgical freezing delay time on global metabolic profiles and stability of individual metabolites in intact tumor tissue.

Tumor tissue samples collected from two patient derived breast cancer xenograft models (n=3 for each model) were divided into pieces that were snap-frozen in liquid nitrogen at 0, 15, 30, 60, 90, and 120 minutes after surgical removal. In addition, one sample was analyzed immediately, representing the metabolic profile of fresh tissue exposed neither to liquid nitrogen nor to room temperature. We also evaluated the metabolic effect of prolonged spinning during the HR MAS experiments in biopsies from breast cancer patients (n=14). All samples were analyzed by ¹H HR MAS MRS on a Bruker Avance DRX600 spectrometer, and changes in metabolic profiles were evaluated using multivariate analysis and linear mixed modeling (LMM).

Multivariate analysis showed that the metabolic differences between the two breast cancer models were more prominent than variation caused by freezing delay time. No significant changes in levels of individual metabolites were observed in samples frozen within 30 minutes of resection. After this time point, levels of choline increased whereas ascorbate, creatine and glutathione (GS) levels decreased. Freezing had a significant effect on several metabolites, but is an essential procedure for research and biobank purposes. Furthermore, four metabolites (glucose, glycine, glycerophosphocholine and choline) were affected by prolonged HR MAS experiment time possibly caused by physical release of metabolites caused by spinning or due to structural degradation processes. In conclusion, the MR metabolic profiles of tumor samples are reproducible and robust to variation in post-surgical freezing delay up to 30 minutes.

Figure 4.1: Impact of freezing delay time on level of (A) ascorbate, (B) choline, (C) creatine and (D) glutathione. Metabolite integrals from samples subject to 15, 30, 60, 90 and 120 minutes freezing delay time compared with samples frozen immediately (0 minutes). * and ** indicates that the level is significantly different from the sample frozen after 0 minutes (*p < 0.05, **p < 0.01).

4.2 Paper II

Metabolic clusters of breast cancer in relation to gene- and protein expression subtypes

The heterogeneous biology of breast cancer leads to high diversity in prognosis and response to treatment, even for patients with similar clinical diagnosis, histology and stage of disease. Identifying mechanisms contributing to this heterogeneity may reveal new cancer targets or clinically relevant subgroups for treatment stratification. In this study metabolite, protein and gene expression data from breast cancer patients were combined to examine the heterogeneity at a molecular level.

The study included primary tumor samples from 228 non-treated breast cancer patients. High resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS) was performed to extract the tumors metabolic profiles further used for hierarchical cluster analysis resulting in three significantly different metabolic clusters (Mc1, Mc2 and Mc3). The clusters were further combined with gene and protein expression data.

The result revealed distinct differences in the metabolic profile of the three metabolic clusters. Among the most interesting differences, Mc1 had the highest levels of glycerophosphocholine (GPC) and phosphocholine (PCho), Mc2 had the highest levels of glucose and Mc3 the highest levels of lactate and alanine. Integrated pathway analysis of metabolite and gene expression data uncovered differences in glycolysis/gluconeogenesis and glycerophospholipid metabolism between the clusters. All three clusters had significant differences in the distribution of protein subtypes classified by the expression of breast cancer related proteins. Genes related to collagens and extracellular matrix were downregulated in Mc1 and consequently upregulated in Mc2 and Mc3, underpinning the differences in protein subtypes within the metabolic clusters. Genetic subtypes were evenly distributed among the three metabolic clusters and could therefore contribute to additional explanation of breast cancer heterogeneity.

In conclusion, three naturally occurring metabolic clusters of breast cancer were detected among primary tumors from non-treated breast cancer patients. The clusters expressed differences in breast cancer related protein as well as genes related to extracellular matrix and metabolic pathways known to be aberrant in cancer. Analysis of metabolic activity combined with gene and protein expression provides new information about the heterogeneity of breast tumors and, importantly, the meta-

bolic differences infer that the clusters may be susceptible to different metabolically targeted drugs.

Figure 4.2: Metabolic subtyping of breast cancer tissue samples using HCA. (A) The HRMAS 1H MRS spectra for 228 samples was clustered using Euclidean distance and Wards linkage as similarity measure which separated the samples into three metabolic clusters (Mc); Mc1, Mc2 and Mc3. (B) Mean spectra for the three metabolic clusters. β -Glc: β -glucose, Asc: ascorbate, Lac: lactate, Tyr: tyrosine, Cr: creatine, mI: myoinositol, Gly: glycine, Tau: taurine, sI: scylloinositol, GPC: glycerophosphocholine, PCho: phosphocholine, Cho: choline, Gsh: glutathione, Gln:; glutamine, Succ: succinate, Glu: glutamate, Ace: acetate, Ala: alanine. Grey bars indicate removed spectral regions (containing lipid peaks).

4.3 Paper III

Evaluation of metabolomic changes during neoadjuvant chemotherapy combined with bevacizumab in breast cancer using MR spectroscopy

Metabolomics investigates biochemical processes directly, potentially complementing transcriptomics and proteomics in providing insight into treatment outcome. This study aimed to use magnetic resonance (MR) spectroscopy on breast tumor tissue to explore the effect of neoadjuvant therapy on metabolic profiles, determine metabolic effects of the antiangiogenic drug bevacizumab, and to investigate whether responders could be discriminated from non-responders at the metabolic level.

The metabolic profiles of 122 tumors from breast cancer patients were determined by high resolution magic angle spinning MR spectroscopy (HR MAS MRS). All patients received neoadjuvant chemotherapy, while they were randomized to receive bevacizumab or not. Biopsies were sampled prior, during, and after treatment. Multivariate strategies were used to analyze the metabolic profiles. The levels of 16 metabolites were calculated by peak integration and analyzed by linear mixed models (LMM).

Principal component analysis showed clear metabolic changes as an effect of chemotherapy, pointing to a decline in glucose consumption and a transition to normal breast adipose tissue with treatment progression. Partial least squaresdiscriminant analysis (PLS-DA) revealed metabolic differences between pathological minimal residual disease (pMRD) patients and pathological non-responders (pNRs) after treatment, but not before or during treatment, with an accuracy of 77 % (p < 0.001). Furthermore, metabolic profiles before and after treatment discriminated patients exhibiting a good response ($\geq 90 \%$ tumor reduction) from those with no response ($\leq 10 \%$ tumor reduction) with a classification accuracy of 76 % (p=0.001) and 75 % (p=0.002), respectively. Lower glucose and higher lactate was observed in the good response group before treatment, while the opposite was observed after treatment. Bevacizumab-receiving and chemotherapy-only patients could not be discriminated at any time point. LMM revealed significant differences during treatment for 11/16 metabolites, while 8/16 metabolites differed between pMRD and pNRs. A significant interaction between time and bevacizumab for glutathione revealed higher levels of this antioxidant in chemotherapy-only patients than in bevacizumab receivers after treatment.

In conclusion, MR based metabolic profiles reflected changes as an effect of chemotherapy and successfully discriminated pMRD patients from pNRs after treatment, showing potential for assessment of metabolic response to treatment and to improve the understanding of underlying mechanisms affecting pathological response.

Figure 4.3: PCA score plot, mean spectra from time points and loading plot. (A) The scores plot shows a trend in the direction of the arrow with increasing time point. (B) PQN-normalized mean spectra at each time point. Gray bars indicate removed spectral regions. (C) The normal-like gene expression subtype is most clearly separated from the rest in the scores plot, showing a similar distribution as TP3 in A. (D) The loadings plot indicates higher phosphocholine, glycerophosphocholine, and taurine at TP1 and increasing glucose and lipids with increasing time of treatment and in normal-like samples. Loadings are colored according to LV1. LumA: luminal A, LumB: luminal B, Norm-like: normal-like, NA: not available, Glc: glucose, Asc: ascorbate, Lac: lactate, mI: myo-inositol, Tyr: tyrosine, Cr: creatine, Gly: glycine, Tau: taurine, GPC: glycerophosphocholine, PCh: phosphoscholine, Cho: choline, GSH: glutathione, Gln: glutamine, Succ:

succinate, Glu: glutamate, Ala: alanine

5 Discussion

The main objective of this thesis was to characterize the metabolism of breast cancer in untreated and treated patients as well as to evaluate the metabolic effects of sample handling prior to and during HR MAS experiments. Altogether, this work demonstrates the potential of MR metabolomics in complementing gene and protein expression data to provide insight into breast cancer heterogeneity and treatment outcome, at the same time also gaining insight in how to design sample handling for safe and reproducible measurements.

In paper I, the metabolic effects of sample handling, with a focus on freezing time delay and prolonged experiment time, were evaluated. Tumor samples snap-frozen within 30 minutes after excision did not express significant changes in metabolite levels as measured with ¹H HR MAS MRS. However, in the time frame of 60-120 minutes, and prolonged experiment time for 90 minutes, several metabolite levels were altered. Optimal sample handling protocols are important when designing and interpreting results from metabolomics studies, such as those conducted in paper II and III. Sample handling regimens in these studies were within the time limits indicated in paper I. In paper II, three naturally occurring metabolic clusters of untreated breast cancer were discovered. These were found to have distinct differences in metabolic profiles and in the distribution of protein subtypes, but no significant association to the distribution of gene expression subtypes. In paper III, the tumor metabolic responses in patients undergoing neoadjuvant chemotherapy with or without bevacizumab were evaluated and related to treatment response. Metabolic effects of the treatment were observed as well as differences in the metabolic profiles of responders compared to non-responders. Furthermore, a metabolic effect possibly linked to bevacizumab treatment was observed.

5.1 Metabolic profiles of breast cancer

Metabolic reprogramming is now widely accepted as an independent hallmark of cancer [3]. Genomic and transcriptomic characterization of breast cancer have been extensively performed in the past few decades, while the metabolic level has been less thoroughly explored. Importantly, cancer cells must convert nutrients to biomass while maintaining energy production, which requires reprogramming of central metabolic processes in the cells. This phenomenon is increasingly recognized

as a potential target for treatment, but also as a source for biomarkers that can be used for prognosis, risk stratification and therapy monitoring. The metabolic pathways of interest in the current thesis are summarized in Figure 5.1.

Metabolic characterization of breast cancer

With its limited need of sample preparation and its high reproducibility, HR MAS MRS can give important metabolic information of cancer samples prior to additional analysis. This can improve current breast cancer characterization and, when combined with data from other molecular levels, solve some of the challenges linked to breast cancer heterogeneity.

A short summary of the main metabolic findings of the current thesis is given in Table 5.1.

Table 5.1: Summary of metabolic findings in paper I-III

Summary	Samples	n	Sample group	↑ Metabolites	↓ Metabolites
of results				increased	decreased
Paper I	Basal-like and	14	Freezing delay > 30 min	Cho	Asc, Cr
	luminal-like xenografts		Freezing delay > 60 min		GS
	Human samples,	6	Exp. time > 90 min	Glc, Gly, Cho	GPC
	primary operable tumors				
Paper II	Primary operable tumors	228	Mcl	GPC, PCho	mI, Glc, Glu, Ace
			M c2	Glc, Ace	Lac, Asc, Tyr,
					Gly, GPC, PCho, Ala
			M c3	Lac, Gly, Tau, Ala	Glc
Paper III	Primary inoperable	122	Neoadj uvant	Glc, Lac, Gln	Cho, PCho, GPC, Tyr,
	tumors, HER2-		Chemotherapy		Cr
			pMRD compared to pNR	Glc, Lac	Cho, PCho, GPC, GSH,
					Succ, Tyr, Cr
			GR compared to NR	Glc,	Lac, Cho, PCho, GPC,
					GSH, Succ, Tau, Tyr, Cr
			Bevacizumab		GSH

Cho: choline, Asc: ascorbate, Cr: creatine, GS: glutathione (total), Glc: glucose, Gly: glycine, Cho: choline, GPC: glycerophosphocholine, PCho:phosphocholine, mI: myoinositol, Glu: glutamate, Ace: acetate, Lac: lactate, Tyr: tyrosine, Ala: alanine, Tau: taurine, pMRD: pathological minimal residual disease, pNR: pathological non-responder, GSH: glutathione (reduced), GR: good response, NR: no response, Succ: succinate.

Figure 5.1: An overview of the most relevant metabolites discussed in this thesis. 2DG:2-deoxy-D-glucose, HKs: hexokinases, G6P: glucose 6-phosphate, 3PG:3-Phosphoglyceric acid, GSH; reduced glutathione, GSSG: oxidized glutathione, GLS: glutaminase, CHK: choline kinase, PCho: phosphocholine, CCT: cytidylyltransferase, CHPT1: choline phosphotransferase 1, PtdCho: phosphatidylcholine, GPC: glycerophosphocholine

Glucose metabolism

Cancer cells divide and grow uncontrollably with high demand for energy and molecular building blocks. Although energy production through mitochondrial oxidative phosphorylation is much more efficient, most cancer cells tend to convert glucose to lactate regardless of oxygen availability, the phenomenon known as the Warburg effect. Consequently, an increased glycolytic rate has been observed as a characteristic of many tumors [77]. This is frequently utilized in tumor detection through positron emission tomography (PET) [78] where the glucose analog fludeoxyglucose is injected into cancer patients and used to detect tumors with high glucose uptake. Among genetic subtypes, luminal-like xenograft tumors express a higher glycolytic rate compared to the more aggressive and fast growing tumors of basal-like xenografts [69]. Further exploration of luminal A tumors from patients has revealed three subgroups within this subtype, with one exhibiting higher energy consumption [50]. Glucose metabolism does not necessarily behave similarly within each genetic subtype, but could possibly contribute to important characteristics of the heterogeneity within breast cancer metabolism.

Among the three metabolic clusters described in paper II, Mc2 was characterized by high levels of glucose indicative of lower glycolytic rate, while Mc3 had evidence of higher Warburg effect with low levels of glucose and higher levels of lactate and alanine. The genetic subgroups were evenly distributed among these clusters, underpinning that metabolic differences may add information on breast cancer heterogeneity. Due to its low glucose levels combined with other findings that will be discussed later, Mc2 was suggested to be a group with less aggressive tumors compared to Mc1. Lactate has been linked to tumor aggressiveness and metastasis and has been suggested as a key player in cancer metabolism [39,79]. Expressing the highest lactate level among the three clusters, Mc3 exhibited metabolic features associated with aggressiveness. For ER+ breast cancer patients, higher levels of lactate and glycine have been found to be associated with lower survival rates [53]. The distribution of ER+ patients among the metabolic clusters were found to be equal, and therefore not the reason for higher lactate in Mc3. No differences in gene expression among the clusters could explain these metabolic differences in glucose metabolism, however, significant differences in the distribution of protein expression subtypes were discovered among the clusters. For Mc2, where high levels of glucose imply a low proliferative rate, 44 % belonged to RPPA subtype reactive-I,

known to have features related to stromal activity; this was in accordance with gene expression findings for this cluster and would be of interest to investigate further.

Although metabolic prediction of treatment response prior to onset of neoadjuvant treatment in breast cancer patients currently has not been achieved [56, 60], increase in glucose levels during treatment for responders (paper III) and for 5 year survivors have been observed [60]. For paper III, the main criteria for evaluation of treatment was tumor size reduction. Pathological responders' metabolic profile after treatment (TP3) showed higher lactate in addition to higher glucose compared to pathological non-responders (pNR). While high glucose could be explained by a lower energy demand in accordance with tumor reduction, the high level of lactate was more unexpected. For many of the samples (116 of 270) lactate levels were imputed due to overlapping lipid residuals, however, this calculation was validated using a resampling procedure and is unlikely to have caused the observed increased lactate levels. This finding could support the suggested dual metabolic effect of cancer cells, where glucose consumption decreases due to a non-glycolytic phenotype caused by lactic acidosis [80], or simply by morphological changes in the cancer tissue, limiting cell lactate secretion and removal.

When assessing tumor response using the defined response ratio, patients classified with good response showed a more prominent metabolic shift from lower glucose and higher lactate prior to treatment towards higher glucose and lower lactate after treatment compared to patients with no response. This indicated that tumors with high Warburg effect were targeted more effectively by the current chemotherapy treatment. Due to the exclusion of the high number of patients with intermediate response in this comparison (69 of 122 patients), the model was limited by a lower sample size therefore not valid for prediction, but the glycolytic response of good responders showed similarities to those observed for long-term survivors of locally advanced breast cancer [60]. When intermediate response patients were included, however, increasing lactate correlating with clinically better response ratio was observed, similar to the finding for pathological minimal residual disease. Whether this increase in lactate is a predictor of poorer outcome for patients in paper III regardless of good pathological response still needs to be elucidated. If so, previous findings showed that 5 year survival, but not clinical response to treatment, is predicted from metabolic profiles measured prior to treatment with lower lactate levels in 5 year survivors [56].

Choline metabolism

Suggested as an emerging hallmark of cancer, abnormal choline metabolism has been associated with proliferation, tumor progression and oncogenic signaling through the production and degradation of the phospholipid phosphatidylcholine (PtdCho) [42]. This phospholipid is an essential constituent of cellular membranes and consequently needed during cancer cell proliferation and tumor growth. Normal proliferating mammary cells do not show the same characteristics [81], linking this feature to malignancy. The three key intermediates of PtdCho metabolism, choline, phosphocholine (PCho), and glycerophosphocholine (GPC) or tCho when summed together, are detectable using ¹H HR MAS MRS and are found to be altered in several types of cancer. In breast cancer tissue, these choline containing metabolites have been found to be expressed at higher levels than in normal or adjacent breast tissue [52, 57, 82]. These findings can be correlated with detected upregulation of expression and activity of specific enzymes in breast cancer, presented in a recent review of choline metabolism in malignant transformation by Glunde et al [42]. More specifically, several choline metabolism enzymes such as choline kinase α (CHKA) and PtdCho-specific phospholipase D (PLD) are found to be overexpressed in cancer and are associated with altered choline metabolism. The distinct differences in choline metabolite profiles observed in luminal-like and basal-like xenografts have also been found to correlate with gene expression differences [59,83] further supporting the need to combine data levels for better breast cancer stratification.

The results of paper I, where the effect of freezing time delay on cancer metabolites was studied, showed that choline significantly increased in the time interval of 30-60 minutes at room temperature. For GPC and PCho no significant effect was observed, however, a trend towards increased levels was observed. Although proper sample handling whereby samples are stored in liquid nitrogen within 30 minutes from collection should both be possible and standard for metabolic studies, it is important to consider this effect while planning and controlling the study design. Limited time at room temperature will improve the sample quality and enable valid interpretation of findings related to choline metabolism.

Of the three metabolic clusters obtained in paper II, Mc1 was found to have significantly higher levels of PCho and GPC. Differences in PCho/GPC ratio is a common metabolic characteristic distinguishing luminal-like and basal-like xenograft tumors [69], and high PCho has been suggested as a biomarker of breast cancer [84]. While 5 year survivors of locally advanced breast cancer were found to have higher

levels of tCho compared to non-survivors, their lactate levels were lower [56]. Combined with findings related to glucose metabolism in addition to its gene expression profile, we hypothesize that patients classified into Mc1 have the worst prognosis of the three clusters. This hypothesis will be tested once long-term follow up data is available.

Differences in the gene expression level of choline metabolism related enzymes have been observed when exploring differences between basal-like and luminal-like xenograft model [59]. These findings could possibly explain the higher GPC concentration relative to PCho observed in basal-like xenograft tumors, which is found to be a more aggressive phenotype. This suggests that the differences in metabolic profiles together with gene expression data could improve characterization of breast cancer heterogeneity. Several genes linked to choline metabolism were found to be down-regulated in the Mc1-tumors compared to the two other clusters. Although none of these genes code for enzymes directly linked to PCho or GPC formation, they are involved in PtdCho metabolism. The high tCho observed in Mc1 has been detected in other breast cancer cohorts in vivo and its reduction has been used as a marker for response to neoadjuvant therapy measured by invivo MRS [77, 85, 86]. This reduction was in accordance with the findings of paper III, where a general trend was decreased levels of choline, PCho, and GPC with treatment time. Additionally, levels of choline and PCho were found to be lower in patients with pathological minimal residual disease compared to non-responders at the end of treatment. Patients with good or poor prognosis according to TNM classification system, however, did not show the same difference in tCho levels [52], in agreement with the metabolic response seen in 5 year survivors [60].

Amino acid metabolism

A number of amino acids are found to be elevated in cancers [41]. Following abnormal cell growth there is an increased requirement for energy and building blocks to support the synthesis of proteins and other important molecular components; amino acid metabolism can help cancer cells fulfill this need [87]. When glucose supply is limited or directed towards lactate production, cancer cells can use some amino acids to refuel the TCA cycle. Glutamine metabolism, where glutamine can be converted to glutamate, is one possibility to refuel α -ketoglutarate into the TCA cycle. The conversion from glutamine to glutamate is catalyzed by glutaminase (GLS), an enzyme that has been found to be overexpressed in several cancer types

and cancer cell lines [88]. When comparing Mc1 to the two remaining clusters (paper II) significant lower levels of both *GLS* and glutamate in Mc1 tumors were observed, while no differences in glutamine levels could be detected between the clusters. This could indicate more glutamate being guided into other pathways, or simply that glutamine metabolism is less active within these tumors. The latter is also hypothesized to be a general effect of chemotherapy for patients in paper III, which was attributed to increased glutamine levels from TP2 to TP3, independent of response to treatment.

Elevated levels of glycine has repeatedly been linked to tumor aggressiveness and poor prognosis [52,53,57,89], however, to find its role in breast cancer, this has not been fully elucidated. Glycine can be synthesized from different routes including intermediates from the glycolysis pathway and from choline degradation. It can be used for production of DNA and RNA building blocks as well as the important antioxidant, glutathione [90]. In paper II, Mc2 patients exhibited lower levels of glycine than Mc3 patients. Combined with high levels of glucose within Mc2 tumors, this was found to be in accordance to the assumption that Mc2 is associated with better prognosis than the two other clusters. Mc3 on the other hand, expressed higher levels of both glycine and lactate, which for ER+ patients were found to be related to poor prognosis [53]. Higher expression of genes involved in choline metabolism, previously suggested to be linked to increased glycine levels [59], could explain this glycine profile of Mc3. There was no evidence of glycine predicting pathological treatment response (paper III), however, when comparing patients with good and no response according to response ratio, a trend of higher glycine was observed for non-responders at the end of treatment. This finding was not further evaluated in paper III, but underpins the need to evaluate glycine when clinical survival data becomes available for this cohort.

Glycine, together with glutamate and cysteine, can be directed towards synthesis of glutathione, whose modulation has been described as a double-edged sword [91]. While important for protection against cancer development by reducing reactive oxygen species (ROS) and maintaining redox homeostasis, high glutathione levels have been linked to malignancy in cancer development. It has been hypothesised that high levels of glutathione could contribute to treatment resistance by reducing the effectiveness of drugs intended to damage cancer cells [91]. Additionally, cancer cells with lower levels of glutathione are found to be more sensitive to radiation therapy, therefore glutathione is important to consider when designing the opti-

mal treatment regimen. Furthermore, in a chemo-resistant breast cancer cell line, decreased glutathione levels were suggested to be an essential event in treatment-induced reduction of their resistant properties [92]. Importantly, glutathione levels are dependent on sample handling and should only be interpreted in studies were the samples were frozen within 60 minutes from collection (paper I). After this time point, its levels were found to be significantly decreased, possibly a result of oxidative stress within the tumors. Decreased glutathione levels were also observed as a possible effect of bevacizumab observed at the end of treatment (paper III). Based on previous findings, this could indicate that these tumors are less likely to continue to avoid apoptosis and more likely to be sensitive to chemotherapy. Low levels of glutathione could indicate that Mc2 patients are more sensitive to chemotherapy than Mc3, which had the highest glutathione levels of those two groups (paper II).

Metabolism and tumor microenvironment

Emerging evidence suggests that cancer cell progression and metastasis is dependent on the tumor microenvironment [93]. Cancer cells and their surrounding stroma, including blood vessels, cancer-associated fibroblasts, immune cells, fat, extracellular matrix (ECM) and extracellular molecules, will together affect the tumor microenvironment with cellular interactions and molecular crosstalk. Although not malignant themselves, stromal cells within the tumor microenvironment can contribute to the malignant phenotype of cancer cells, for example through production of growth factors and cytokines [94]. Metabolic profiling and combination of data from several omics levels therefore have the potential to unveil biomarkers within tumor microenvironment for metastatic disease and new metabolic targets for treatment [95].

The metabolic clusters of paper II exhibited gene expression differences linked to changes in stromal activity. More specifically, Mc2 and Mc3 had significantly upregulated genes compared to Mc1. Gene annotation and enrichment tools showed that a significant number of these genes were linked to alternations in the ECM, cell adhesion, and basement membrane. Interestingly, when compared to Mc1, both of these clusters were also found to have higher amounts of the protein expression-defined subtypes, reactive I and reactive II. Since the two 'reactive' subtypes are thought to be produced by stromal/microenvironmental elements [96], this finding is in accordance with the gene expression characteristics, suggesting a correlation between metabolic phenotype and stromal activity. The tumor microenvironment is important for tumor progression, metastasis and redox status. Thus, these charac-

teristics might be a result of the cancer cells promoting changes in the extracellular conditions needed for growth [97].

Targeting dependencies in cancer metabolism

All cancer cells exhibit altered metabolism to facilitate the energy demand and synthesis of biomass needed for rapid proliferation. Distinct differences between the three metabolic clusters in paper II were identified. This is interesting, as therapeutic agents that target metabolic dependencies are considered to be a promising anti-cancer strategy. One of the biggest obstacles for the success of this approach is the similarity between cancer cells and normal rapid proliferating cells [95]. This is also an existing well-known challenge in more traditional cancer therapies, resulting in multiple and undesired side effects. An additional obstacle for successful outcome when targeting metabolic dependencies is the redundant nature of metabolic pathways. Alternative routes for the same metabolic end product might exist, impairing the effect of targeted drugs [95]. Despite these issues, several drugs that target metabolic pathways have shown promising results leading to clinical trials [98]. In fact, some of the conventional drugs against cancer are inhibitors of metabolic enzymes, including 5-fluourouracil and methotrexate [97]. After finding evidence of asparagine supply dependency in the acute lymphocytic leukemia (ALL) cancer cells, these patients now benefit from L-asparaginase treatment [99], showing the importance of metabolic characterization in cancer. Metformin, a drug initially intended to lower blood glucose levels for type 2 diabetics, has shown anti-neoplastic effects and has been tested in clinical trials for several cancer types [100], including breast cancer, where the drug was linked with decreased proliferation [101]. Metformin has been observed to reprogram tumor cell metabolism, making chemoresistant breast cancer cells more similar to their chemosensitive counterparts [92], were metformin not only altered the metabolism of glucose, but was also suggested to reprogram glutathione metabolism. Since the sensitivity to radiation and chemotherapy has been found to be associated with glutathione levels in cells and neoplastic tissues, respectively [91], this link should further be investigated. Metformin, or other drugs that alter glutathione metabolism, could potentially be used when targeting tumors found to have high glutathione levels like those observed for the metabolic cluster Mc3.

Mc3 had evidence of high aerobic glycolytic activity, observed as low glucose levels combined with high levels of lactate, a characteristic that is being targeted

using different approaches [102]. Direct inhibition of glucose metabolism using the glucose analogue 2-deoxy-D-glucose (2DG) has been extensively studied in cancer cells, especially in combination with other treatments [103, 104]. Although preclinical toxicity issues have been a concern regarding this drug, it has been reported as well tolerated by patients [105]. By binding to the glucose transporters, 2DG inhibits glucose uptake and thereby all downstream pathways that rely on glucose to contribute with intermediates in both glycolysis and mitochondrial oxidative phosphorylation. Other possible glycolytic targets includes the hexokinases (HKs) where the use of 3-bromopyruvate (3-BrPA) have been found to induce autophagy in breast cancer cell lines [106, 107].

Altered choline metabolism is considered an attractive cancer therapy target and was found to be one of the main characteristics of Mc1. One of the kev enzymes in altered choline metabolism is CHKA [108], the first enzyme in the choline pathway. Inhibition of this enzyme (RSM-932A) induced antiproliferative effects, which were detected both in cancer cell lines and xenograft models of human tumors [109]. These promising results combined with low toxicity profiles have led to the drug being tested in phase I clinical trials [109]. One of the benefits of targeting choline metabolism is the possibility of detecting and monitoring treatment response by observing the tCho signal using in vivo MRSI [86]. Ex vivo monitoring, using HR MAS MRS of fine needle biopsies, could also be valuable tool. Using this approach, a transient increase in choline containing metabolites has been found to be an early marker for docetaxel sensitivity in a BRAC1-mutated mice model [110]. For treatment strategies targeting choline metabolism directly, several metabolic enzymes with altered expression and activity could potentially be used such as choline transporter-like protein 1 (CLT1) and CTP:phosphocholine cytidylyltransferase (CCT) [42].

Targeting amino acid metabolism has been suggested as a promising strategy in cancer therapy [111]. Glutamine, with its potential of providing both carbon and nitrogen to cellular building blocks, is considered to be essential in rapidly dividing cells [44]. However, with the possibility of de novo synthesis of glutamine together with a potential supply of glutamine from other glutamine producing cells [112], information about the variety of and degree of glutamine reprogramming among cancer subtypes is still lacking. If better characterized, prediction of which tumors are more likely to benefit from glutamine targeted treatment could be promising [44]. Glutaminase has been found to be upregulated in several types of cancer [113]

making it a promising target. The glutaminase inhibitor CB-839 is currently being investigated in phase I trials [114] and could potentially be used for tumors found to be glutamine dependent. Among the genetic subtypes of breast cancer, basal-like epithelial cells were found to be more dependent on glutamine supply compared to luminal-like [112]. Targeted investigation into both gene and protein expression differences related to glutamine metabolism could possibly clarify these metabolic differences and predict which are more likely to benefit from targeted treatment. For the metabolic clusters in paper II, Mc1 is reprogrammed in such a way that the glutamate produced is more rapidly guided towards production of proliferative building blocks, or simply that glutamine supply of Mc2 and Mc3 tumors is higher, and converted to glutamate more rapidly due to higher availability of the GLS enzyme.

5.2 Methodological considerations

In a research setting, the study design and choice of methods, both at the experimental stage and during data analysis, is important as it can influence the results. In the following sections, methods used within the current thesis are discussed.

Patients and tumor tissue samples

In this work, both breast cancer xenograft tissue and patient tissue were analyzed. Samples from the patient-derived xenograft models, MAS98.08 and MAS98.12, were used to study the metabolic effects of prolonged time at room temperature prior to freezing (freezing time delay) (paper I) [68]. These models were established by implementing bulk tumor tissue, harvested from breast cancer patients, directly into the mammary fat pad of immunodeficient mice. By using direct grafting of tumor tissue, in contrast to injection of cell lines or using genetically engineered mice, more of the human tumor characteristics are captured. Additionally, injection into the mammary fat pad provides a tumor microenvironment that is more similar to the tumors original surrounding compared subcutaneous injection. Although a tumor model will never be able to capture all properties and aspects of the human cancer, it was considered to be good model system for the methodological purpose of paper I - detecting metabolites affected by sample handling differences. Performing a similar study using patient material would also be valuable, it could however, be influenced to a higher degree by tumor heterogeneity. The models used have been characterized both at the genetic [68] and metabolic [69] level showing small interand intra-tumor variability. Metabolic effects detected in paper I should thus be representative for the ongoing degradation processes in human tumor tissue caused by freezing time delay.

Tumor tissue from breast cancer patients can be harvested through needle biopsies or during surgery. From the moment blood supply is cut, the tumor is prone to degradation processes. To minimize metabolic alterations, as well as ischemic influence on other cellular processes, samples for HR MAS MRS analysis should be snap-frozen in liquid nitrogen as soon as possible [115]. Although the snap-freezing might have metabolic consequences [116], as observed in paper I, the alternative approach of analyzing samples directly after harvesting is often inconvenient. The human samples utilized in paper I and II were obtained from untreated patients during final surgery, while samples in paper III were collected prior to, during and

after neoadjuvant treatment of HER2 negative (HER2-) breast cancer patients. After surgical removal, samples in paper I were immediately (~ 5 min) snap-frozen and stored for a maximum of 3 years in liquid nitrogen until HR MAS MRS analysis. Surgical samples in paper II and III were evaluated by a pathologist within 30-60 minutes prior to storage in -80°C, and stored for a maximum of 5 or 3 years, respectively. The samples were transferred to storage in liquid nitrogen minimum 6 months prior to analysis. The metabolic effect of long-term storage prior to HR MAS analysis was found to be insignificant for prostate tissue stored for 3 years at -80°C [117]. In a more recent study however, significant changes in both breast cancer tissue and adjacent healthy tissue were reported after 12 months of storage [118]. Choline increased significantly for both groups while levels of PCho decreased significantly in 'healthy' samples. Despite these findings, metabolic differences between neoplastic and healthy tissue were considered sufficient for discrimination. The metabolic changes thought to be related to storage could, however, be influenced by degradation processes caused by the repeated freezing and thawing (to 5°C inside HR MAS MRS magnet) needed to reanalyze the same sample after prolonged storage.

Tumor size for treatment response assessment

In paper III, exploring the association between metabolic profile and treatment response was a major objective. The RECIST criteria are commonly used to assess treatment response in solid tumors [119]. However, due to the lack of MRI measurements for some patients before treatment, which in addition to computed tomography (CT) is a recommended method in the RECIST guidelines, we chose to look into alternative measures of treatment response. Pathological complete response, where a total eradication of the invasive cancer cells in the breast and lymph nodes are achieved, would have been a good option for defining responders and non-responders in this cohort, especially since pathological complete response is known to be a prognostic factor after neoadjuvant chemotherapy [24]. However, pathological complete response was only achieved for 20 of 122 patients in our study. If this criterion was to be used for response assessments, valuable information from the cases where the tumors had shrunk significantly with treatment, but not fulfilling pathological complete response criteria, would be lost. Tumor size reduction as a measure of treatment response may have limitations for the evaluation of drugs that do not cause tumor shrinkage [120], which is the case for some antiangiogenetic drugs like bevacizumab [121]. However, since the main purpose of neoadjuvant chemotherapy is to make the tumor operable, pathological minimal residual disease (pathological tumor size < 1 cm) was considered a good choice for classifying responders. An additional response assessment measure was also defined, which described tumor reduction from treatment onset until final surgery.

Metabolomics analysis

Magnetic resonance spectroscopy (MRS), can be considered one of the two main approaches employed for metabolic profiling together with mass spectrometry (MS) [34]. Although neither of these methods can independently identify and quantify the entire metabolome (i.e all metabolites present within the cell/tissue/organ etc), they give high quality data, which is valuable for metabolomics studies. MS methods have high sensitivity, but require more sample preparation, thus reducing its reproducibility. More specifically, prior to analysis, tissue samples have to be extracted, introducing analytical steps that might lead to loss of metabolic information. In contrast, HR MAS MRS is a non-destructive technique requiring minimal sample preparation resulting in data with high specificity and reproducibility. The main disadvantage is its relatively low sensitivity (micromolar range compared to picomolar range for some MS based methods), however, in breast cancer tissue, more than 30 metabolites involved in important cancer related pathways have been detected [51] and distinctive differences have been characterized between normal adjacent tissue and cancer tissue (reviewed in [41]).

As described, sufficient tumor material for the HR MAS MRS analysis in paper II and III were separated from the main sample prior to other molecular analyzes. HR MAS is non-destructive and allows for further subsequent analysis, and previous studies report high RNA integrity after HR MAS MRS [122]. However, this opportunity was not utilized in the current thesis due to the study design involving collection of a high number of samples which were analyzed using several molecular platforms. Furthermore, performing HR MAS MRS studies prior to the remaining methods would be time consuming and lead to logistical challenges due to geographical distances between the collaborating laboratories in this work. Depending on the original tumor size and degree of intratumoral heterogeneity, it could be questioned whether the analyzed part of the tumor is representative of the tumor as a whole. However, as extraction of DNA, RNA and proteins (if applicable) for

the combined molecular analysis were performed in closely adjacent material, we consider the metabolic profiles to be representative.

Metabolic quantification

Due to the anatomy of the female breast, tumor biopsies obtained from breast cancer patients might contain fractions of adipose tissue. The aliphatic side chains of fatty acids within this tissue can give rise to large and broad peaks in MR spectra, potentially overlapping with and influencing signals from important small metabolites. To limit this effect, HR MAS MRS acquisition within the current thesis was performed using a CPMG sequence. As previously described, this takes advantage of the short T₂ relaxation of larger molecules, like fatty acids, and selectively suppresses their signal, consequently enhancing signals from small metabolites. Because of small differences in T_2 relaxation, absolute quantification would be unreliable without proper and time-consuming T_2 measurements. However, the signal intensities and therefore the metabolite levels, are still comparable between the spectra obtained from the samples. Thus, spectral integration of metabolite regions were used to obtain the levels of metabolites identified in the spectra. Overlapping metabolites can cause inaccuracy in these measurements, but integrals were still considered sufficient when used in combination with multivariate approaches within the exploratory studies of this thesis. An alternative approach that could be used to quantify metabolites is manual peak fitting. Manual peak fitting would better correct for overlapping metabolites than integration, however it would be prone to subjective judgment and for big sample cohorts it is extremely time consuming. Automatic peak fitting in tools such as LCModel [123] have been used to quantify metabolites in brain [124] and prostate tissue [125]. In spite of efforts to develop the same automatic method for breast tissue in this thesis, problems caused by the broad lipids peaks has limited its success so far.

An additional alternative to absolute quantification is the use of metabolic ratios rather than concentrations, typically ratios given relative to creatine levels [110, 126, 127]. However, since we observed a significant decrease in creatine levels with freezing time delay (paper I), such ratios should only be used if samples were frozen within 30 minutes after collection. Other ratios could also give valuable information, e.g. GPC/PCho or glucose/lactate, but would not carry information if both metabolites in the ratio increase or decrease simultaneously.

Pre-processing and multivariate analysis

Prior to quantification and multivariate analysis, appropriate pre-processing methods are important to obtain valid and interpretable results. In this thesis, established pre-processing protocols were applied to all data. Baseline correction and alignment of peaks was visually evaluated before performing normalization, which was done to minimize the effect from variations in sample size. The choice of normalization method can largely affect the result and should be carefully chosen. In paper I and II, spectral data obtained from breast cancer patients were normalized to equate areas under the curves after excluding lipid regions. As previously discussed, spectra obtained from patient samples can be largely influenced by fatty acids found in adipose tissue surrounding the tumor. In contrast, tumor tissue from xenografts are found to be more homogenous, with lipid droplets distributed inside the tumor. Lipid regions in spectra from xenografts (paper I) were thus not excluded, but included for statistical analysis. The spectra were normalized to sample weight to account for differences in sample size. In paper III, probabilistic quotient normalization (PQN) [66] was applied. Here, the most probable sample dilution or amount of sample is calculated. As this method is more robust to variance in individual metabolites, it was chosen in paper III because many pre-surgery samples were contaminated with the local anesthetic lidocaine. Although these regions later were removed from the spectra, PQN is more robust for analysis of spectra containing significant amounts of unwanted metabolites.

Absolute quantification enables direct comparisons of metabolic concentrations between studies, but there are also important benefits using multivariate approaches, where the entire spectral data are analyzed as a whole. From complex metabolic data, such statistical methods can be used to extract differences in metabolic profiles and patterns of several metabolites simultaneously, rather than single metabolites. Although these approaches are not quantitative, they are valuable for interpretation as well as validation of complex data. In the current thesis, multivariate methods were used to identify differences in metabolic features between groups of patients. PCA was used for exploratory purposes to look for the main differences within each study sample cohort and to detect outliers. For paper II, unsupervised hierarchical cluster analysis grouped breast cancer tumors into three metabolic clusters, before PLS-DA was performed to evaluate the robustness of these groups. In paper III, PLS-DA models were used to identify metabolic differences between different

groups of patients, e.g. responders versus non-responders. To ensure the quality of the metabolic clusters in paper II and the PLS-DA models built in paper III, proper validation was essential. The optimal choice for validation would always be to use independent test sets, for many studies, however, including the ones in the current thesis, sample size was a limiting factor.

Double cross validation was considered to be the best alternative to independent test sets for validation of multivariate models, thereby also finding the optimal number of LVs. Here, the models were built using a subset of the samples, 80 % and 90 % for paper II and paper III, respectively, while the remaining were used to test each model's performance. Based on the performance of each model (i.e. classification results) and whether it performed better than random classification obtained by permutation tests, each model's metabolic interpretation was evaluated. Still, regardless of each model's performance, it is important to keep in mind that the model built cannot be any better than the cohort used to build it, meaning that cohorts that do not represent the real variability within a population may produce over-optimistic results.

To further investigate how generic findings are, i.e. the metabolic clusters defined in paper II, comparison with data from similar cohorts should be performed. However, we were not able to identify any published cohort with similar patient characteristics (primary operable tumor) where both metabolic and transcriptomic data were made public. There are still relatively few public metabolomics data bases compared to transcriptomic and proteomic data bases and no general standard for how to report metabolite values. In addition, journals do not require submission of metabolic data to the same extent [128]. An obstacle and possible reason for the establishment of metabolic data bases is the high variety of data structure. Differences in metabolic methods, raw data, choice of pre-processing approaches and quantification make it hard to find ways to design a user friendly data base.

Combining omics

Metabolomics has proven to be an important tool for the identification of new biomarkers for targeted treatment, treatment evaluation and prediction of cancer survival [129–132]. Previous studies have also shown the potential and benefit of combining different omics approaches (e.g. transcriptomics and metabolomics) for better molecular characterization and stratification of breast cancer [50, 133, 134]. Breast cancer molecular profiling using combined omics data may thus provide mul-

tiple targets at different molecular levels and possibly improve breast cancer subtyping. Targeting metabolic reprogramming is considered a promising approach for cancer therapy, and in combination with genetic characteristics could lead to more effective treatments [95].

In this work, specifically paper II, combined analysis of transcriptomic, proteomic and metabolic data was performed, employing a similar approach to the discovery of genetic subgroups of breast cancer [26]. Breast tumors were classified into three metabolic clusters by hierarchical clustering. Although both types of data are multivariate, their information structure is different. Each data point from gene expression microarrays represents measurements from a single probe, while when pre-processed spectra are input, multiple variables together make up the signal from one metabolite. When applied to gene expression data, two dimensional clustering is frequently performed (i.e. both samples and probes are set to be clustered), resulting in groups of probes as well as samples. This is a helpful tool for identifying probes with similar expression profiles within a highly complex data set. Due to the well-known collinearity of MR spectra, two dimensional clustering of spectral data would not have the same utility. Despite these differences, the one dimensional clustering approach, as performed in paper II, will help to reduce data complexity and identify metabolic patterns within the data cohort. Samples clustered together have important similarities with each other and dissimilarities with samples clustered further apart. Established in an unsupervised manner, they thus reflect the metabolic variety within the data set used for analysis. A similar approach has previously been used to define metabolic clusters within the genetic subtype luminal A [50]. With a higher number of samples and a more heterogeneous sample cohort in paper II, the statistical power is improved from the previously defined metabolic clusters. The metabolic clusters were combined with available gene expression data for evaluation of transcriptomic differences using available tools (SAM, DAVID, GSEA) and with protein expression subgroups (RPPA-subtype). Furthermore, significantly different expressed genes and metabolites were combined to look for possible biological connections between the two omic levels using online available integrated analysis. The aim of using this approach was to better understand the underlying mechanisms for the metabolic phenotype as well as its link to clinical parameters. The findings emphasizes that the metabolic properties of tumors is a result of a complex network of pathways that cannot solely be explained by gene and protein expression levels.

6 Conclusion and future perspectives

In this thesis, MR metabolic profiling of tumor tissue from breast cancer patients was used to assess metabolic heterogeneity of primary operable tumors and metabolic response to neoadjuvant chemotherapy within primary inoperable tumors. Furthermore, optimal sample handling for metabolomic studies was evaluated using tissue samples from xenograft models, as well as breast cancer patients.

The metabolic profile of tumor samples were found to be robust to freezing delay times of up to 30 minutes prior to sample storage in liquid nitrogen. Longer freezing delay times were found to significantly affect the levels of choline, creatine and important antioxidants. As MR metabolomics is a widely used approach in translational research where metabolic profiles can be linked to other disease parameters and, ultimately, patient outcome, consistent sample collection and preparation is crucial for valid interpretation of the resulting data. Paper I elucidated the importance of minimizing both time prior to storage and experimental duration.

In paper II, three novel metabolic clusters of breast cancer were identified and found to have differences in metabolic pathways known to be aberrant in cancer. Furthermore, the metabolic clusters were found to express differences in breast cancer related proteins as well as genes related to the extracellular matrix. Interestingly, genetic subtypes were evenly distributed among the three metabolic clusters, thus metabolomics contribute with additional information beyond the intrinsic gene sets for understanding breast cancer heterogeneity. Based on previous metabolic findings, one of the clusters was expected to have a worse prognosis. 5-year survival data will, when available, be used to evaluate the prognostic potential of the clusters. In addition, available data from other platforms including DNA methylation, copy number aberrations and expression of miRNA could potentially lead to deeper understanding of the mechanisms for the metabolic reprogramming taking place in the individual clusters.

In paper III, changes in the metabolic profiles as an effect of chemotherapy were detected. In addition, successful discrimination of responders and non-responders after treatment was obtained. Together, this shows potential for MR metabolomics in providing insight into metabolic response to treatment, and to increase the understanding of the underlying mechanisms affecting pathological response. Furthermore, tumors obtained from patients receiving the antiangiogenic drug bevacizumab were found to have alterations in glutathione metabolism, a characteristic

that should be further investigated. In accordance with previous findings, metabolic prediction of response prior to treatment start was not possible. The metabolic data should thus be combined with survival data when available. This could further be used to obtain the prognostic value of metabolic profiles prior to, during and after neoadjuvant chemotherapy.

Altogether, the findings of this thesis have clarified the metabolic consequences of sample handling procedures, and contributed to further improvement of characterization of breast cancer metabolism. As the metabolites may serve as phenotypic markers resulting from both genome and proteome alterations, MR metabolomics can potentially be used to provide important predictive and prognostic information. Future studies combining metabolic profiles with data from other platforms could potentially lead to an improvement in patient stratification and treatment strategies targeting metabolic pathways.

References

 D. Hanahan and R. Weinberg, "The hallmarks of cancer," Cell, vol. 100, no. 1, pp. 57-70, 2000

- [2] J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D. Parkin, D. Forman, and F. Bray, "Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012," Int J Cancer, no. 5, pp. E359–86, 2014.
- [3] D. Hanahan and R. Weinberg, "Hallmarks of cancer: the next generation," Cell, vol. 144, no. 5, pp. 646-74, 2011.
- [4] J. Ferlay, I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D. Parkin, D. Forman, and F. Bray, "Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012," Int J. Cancer, vol. 136, no. 5, pp. E359–86, 2015.
- [5] Cancer Registry of Norway, "Cancer in norway 2013 cancer incidence, mortality, survival and prevalence in norway," tech. rep., 2015.
- [6] T. Key, P. Verkasalo, and E. Banks, "Epidemiology of breast cancer," Lancet Oncol, vol. 2, no. 3, pp. 133–40, 2001.
- [7] K. McPherson, C. Steel, and J. Dixon, "Breast cancer-epidemiology, risk factors, and genetics," Br Med J, vol. 321, no. 7261, p. 624, 2000.
- [8] H. Weedon-Fekjær, P. Romundstad, and L. Vatten, "Modern mammography screening and breast cancer mortality: population study," BMJ, vol. 348, p. g3701, 2014.
- [9] G. Lahat, D. Lev, F. Gerstenhaber, J. Madewell, H. Le-Petross, and R. Pollock, "Sarcomas of the breast," Expert Rev Anticancer Ther, vol. 12, no. 8, pp. 1045-51, 2012.
- [10] Norsk Bryst Cancer Gruppe (NBCG), "Nasjonalt handlingsprogram med retningslinjer for diagnostikk, behandling og oppfølging av pasienter med brystkreft," Helsedirektoratet (Norway), vol. 6, 2015.
- [11] F. Tavassoli and P. Devilee, WHO Classification of Tumours. Pathology and genetics of tumours of the breast and female genital organs, vol. 4. IARC, Lyon 2003.
- [12] D. Arps, P. Healy, L. Zhao, C. Kleer, and J. Pang, "Invasive ductal carcinoma with lobular features: a comparison study to invasive ductal and invasive lobular carcinomas of the breast," *Breast Cancer Res Treat*, vol. 138, no. 3, pp. 719–26, 2013.
- [13] E. Rakha, J. Reis-Filho, F. Baehner, D. Dabbs, T. Decker, V. Eusebi, S. Fox, S. Ichihara, J. Jacquemier, S. Lakhani, J. Palacios, A. Richardson, S. Schnitt, F. Schmitt, P. Tan, G. Tse, S. Badve, and I. Ellis, "Breast cancer prognostic classification in the molecular era: the role of histological grade," *Breast Cancer Res*, vol. 12, no. 4, p. 207, 2010.
- [14] L. Bernstein and M. Press, "Does estrogen receptor expression in normal breast tissue predict breast cancer risk?," J Nat l Cancer Inst, vol. 90, no. 1, pp. 5–7, 1998.

[15] M. Weigel and M. Dowsett, "Current and emerging biomarkers in breast cancer: prognosis and prediction," *Endocr Relat Cancer*, vol. 17, no. 4, pp. R245–R262, 2010.

- [16] L. Dunnwald, M. Rossing, and C. Li, "Hormone receptor status, tumor characteristics, and prognosis: a prospective cohort of breast cancer patients," *Breast Cancer Res*, vol. 9, no. 1, p. R6, 2007.
- [17] M. Engstrøm, S. Opdahl, A. Hagen, P. Romundstad, L. Akslen, O. Haugen, L. Vatten, and A. Bofin, "Molecular subtypes, histopathological grade and survival in a historic cohort of breast cancer patients," *Breast Cancer Res Treat*, vol. 140, no. 3, pp. 463-73, 2013.
- [18] W. Wang, Y. Lei, J. Mei, and C. Wang, "Recent progress in HER2 associated breast cancer," Asian Pac J Cancer Prev, vol. 16, no. 7, pp. 2591–600, 2015.
- [19] M. Figueroa-Magalhães, D. Jelovac, R. Connolly, and A. Wolff, "Treatment of HER2-positive breast cancer," *Breast*, vol. 23, no. 2, pp. 128–36, 2014.
- [20] N. Ferrara, K. Hillan, H.-P. Gerber, and W. Novotny, "Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer," *Nature Rev Drug Discov*, vol. 3, no. 5, pp. 391–400, 2004.
- [21] M. Lobbes, R. Prevos, and M. Smidt, "Response monitoring of breast cancer patients receiving neoadjuvant chemotherapy using breast MRI a review of current knowledge," J Cancer Ther Res, vol. 1, no. 1, p. 34, 2012.
- [22] X. Kong, M. Moran, N. Zhang, B. Haffty, and Q. Yang, "Meta-analysis confirms achieving pathological complete response after neoadjuvant chemotherapy predicts favourable prognosis for breast cancer patients," Eur J Cancer, vol. 47, no. 14, pp. 2084–90, 2011.
- [23] D. Snustad and M. Simmons, Principles of genetics (5th Edition). Wiley New Jersey, 2010.
- [24] M.-C. King, J. Marks, and J. Mandell, "Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2," Science, vol. 302, no. 5645, pp. 643-6, 2003.
- [25] International Human Genome Sequencing Consortium, "Finishing the euchromatic sequence of the human genome," *Nature*, vol. 431, no. 7011, pp. 931–45, 2004.
- [26] C. Perou, T. Sørlie, M. Eisen, M. van de Rijn, S. Jeffrey, C. Rees, J. Pollack, D. Ross, H. Johnsen, and L. Akslen, "Molecular portraits of human breast tumours," *Nature*, vol. 406, no. 6797, pp. 747–52, 2000.
- [27] T. Sørlie, C. Perou, R. Tibshirani, T. Aas, S. Geisler, H. Johnsen, T. Hastie, M. Eisen, M. van de Rijn, and S. Jeffrey, "Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications," *Proc Natl Acad Sci U S A*, vol. 98, no. 19, pp. 10869-74, 2001.
- [28] C. Perou and A.-L. Børresen-Dale, "Systems biology and genomics of breast cancer," Cold Spring Harb Perspect Biol, vol. 3, no. 2, p. a003293, 2011.
- [29] A. Prat and C. M. Perou, "Deconstructing the molecular portraits of breast cancer," Mol Oncol, vol. 5, no. 1, pp. 5-23, 2011.

[30] J. Herschkowitz, K. Simin, V. Weigman, I. Mikaelian, J. Usary, Z. Hu, K. Rasmussen, L. Jones, S. Assefnia, and S. Chandrasekharan, "Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors," *Genome Biol*, vol. 8, no. 5, p. R76, 2007.

- [31] J. Parker, M. Mullins, M. Cheang, S. Leung, D. Voduc, T. Vickery, S. Davies, C. Fauron, X. He, and Z. Hu, "Supervised risk predictor of breast cancer based on intrinsic subtypes," J Clin Oncol, vol. 27, no. 8, pp. 1160-7, 2009.
- [32] R. Sallam, "Proteomics in cancer biomarkers discovery: Challenges and applications," Dis Markers, vol. 2015, 2015.
- [33] T. C. G. A. Network, "Comprehensive molecular portraits of human breast tumours," *Nature*, vol. 490, no. 7418, pp. 61–70, 2012.
- [34] J. T. Bjerrum, "Metabonomics: Analytical techniques and associated chemometrics at a glance," in *Metabonomics: Methods and Protocols* (J. T. Bjerrum, ed.), pp. 1–14, Humana Press, 2015.
- [35] C. Denkert, E. Bucher, M. Hilvo, R. Salek, M. Oresic, J. Griffin, S. Brockmoller, F. Klauschen, S. Loibl, and D. Barupal, "Metabolomics of human breast cancer: new approaches for tumor typing and biomarker discovery," *Genome Med*, vol. 4, no. 4, p. 37, 2012
- [36] A. Schulze and A. Harris, "How cancer metabolism is tuned for proliferation and vulnerable to disruption," *Nature*, vol. 491, no. 7424, pp. 364-73, 2012.
- [37] O. Warburg, "On the origin of cancer cells," Science, vol. 123, no. 3191, pp. 309-14, 1956.
- [38] M. Vander Heiden, L. Cantley, and C. Thompson, "Understanding the Warburg effect: the metabolic requirements of cell proliferation," Science, vol. 324, no. 5930, pp. 1029–33, 2009.
- [39] F. Hirschhaeuser, U. Sattler, and W. Mueller-Klieser, "Lactate: a metabolic key player in cancer," Cancer Res, vol. 71, no. 22, pp. 6921–5, 2011.
- [40] F. Gibellini and T. Smith, "The Kennedy pathway-de novo synthesis of phosphatidylethanolamine and phosphatidylcholine," *IUBMB Life*, vol. 62, no. 6, pp. 414–28, 2010.
- [41] S. Moestue, B. Sitter, T. Bathen, M.-B. Tessem, and I. Gribbestad, "HR MAS MR spectroscopy in metabolic characterization of cancer," Curr Top Med Chem, vol. 11, no. 1, pp. 2–26, 2011.
- [42] K. Glunde, Z. Bhujwalla, and S. Ronen, "Choline metabolism in malignant transformation," Nat Rev Cancer, vol. 11, no. 12, pp. 835-48, 2011.
- [43] P. Champe, R. Harvey, and D. Ferrier, Biochemistry. Lippincott Williams & Wilkins, 3 ed., 2005.
- [44] C. Hensley, A. Wasti, and R. DeBerardinis, "Glutamine and cancer: cell biology, physiology, and clinical opportunities," J Clin Invest, vol. 123, no. 9, p. 3678, 2013.

[45] W. Lu, H. Pelicano, and P. Huang, "Cancer metabolism: is glutamine sweeter than glucose?," Cancer Cell, vol. 18, no. 3, pp. 199–200, 2010.

- [46] P. Rinck, "Magnetic resonance in medicine: the basic textbook of the european magnetic resonance forum," Clin Radiol, vol. 49, no. 11, p. 842, 1994.
- [47] J. Hennel and J. Klinowski, Magic-angle spinning: a historical perspective, pp. 1–14. Springer, 2005.
- [48] E. Andrew, A. Bradbury, and R. Eades, "Nuclear magnetic resonance spectra from a crystal rotated at high speed," *Nature*, vol. 182, no. 4650, p. 1659, 1958.
- [49] I. Lowe, "Free induction decays of rotating solids," Physical Review Letters, vol. 2, no. 7, pp. 285–7, 1959.
- [50] E. Borgan, B. Sitter, O. Lingjærde, H. Johnsen, S. Lundgren, T. Bathen, T. Sørlie, A.-L. Børresen-Dale, and I. Gribbestad, "Merging transcriptomics and metabolomics-advances in breast cancer profiling," BMC Cancer, vol. 10, no. 1, p. 628, 2010.
- [51] B. Sitter, U. Sonnewald, M. Spraul, H. Fjøsne, and I. Gribbestad, "High-resolution magic angle spinning MRS of breast cancer tissue," NMR Biomed, vol. 15, no. 5, pp. 327–37, 2002.
- [52] B. Sitter, T. Bathen, T. Singstad, H. Fjøsne, S. Lundgren, J. Halgunset, and I. Gribbestad, "Quantification of metabolites in breast cancer patients with different clinical prognosis using HR MAS MR spectroscopy," NMR Biomed, vol. 23, no. 4, pp. 424–31, 2010.
- [53] G. Giskeødegård, S. Lundgren, B. Sitter, H. Fjøsne, G. Postma, L. Buydens, I. Gribbestad, and T. Bathen, "Lactate and glycine-potential MR biomarkers of prognosis in estrogen receptor-positive breast cancers," NMR Biomed, vol. 25, no. 11, pp. 1271-9, 2012.
- [54] U. Sharma, A. Mehta, V. Seenu, and N. Jagannathan, "Biochemical characterization of metastatic lymph nodes of breast cancer patients by in vitro ¹H magnetic resonance spectroscopy: a pilot study," Magn Reson Imaging, vol. 22, no. 5, pp. 697–706, 2004.
- [55] V. Seenu, M. Kumar, U. Sharma, S. Gupta, S. Mehta, and N. Jagannathan, "Potential of magnetic resonance spectroscopy to detect metastasis in axillary lymph nodes in breast cancer," Magn Reson Imaging, vol. 23, no. 10, pp. 1005-10, 2005.
- [56] M. Cao, B. Sitter, T. Bathen, A. Bofin, P. Lønning, S. Lundgren, and I. Gribbestad, "Predicting long-term survival and treatment response in breast cancer patients receiving neoadjuvant chemotherapy by MR metabolic profiling," NMR Biomed, vol. 25, no. 2, pp. 369–78, 2012.
- [57] B. Sitter, S. Lundgren, T. Bathen, J. Halgunset, H. Fjøsne, and I. Gribbestad, "Comparison of HR MAS MR spectroscopic profiles of breast cancer tissue with clinical parameters," NMR Biomed, vol. 19, no. 1, pp. 30–40, 2006.
- [58] M. Li, Y. Song, N. Cho, J. Chang, H. Koo, A. Yi, H. Kim, S. Park, and W. Moon, "An HR-MAS MR metabolomics study on breast tissues obtained with core needle biopsy," *PloS one*, vol. 6, no. 10, p. e25563, 2011.

[59] S. Moestue, E. Borgan, E. Huuse, E. Lindholm, B. Sitter, A.-L. Børresen-Dale, O. Engebraaten, G. Mælandsmo, and I. Gribbestad, "Distinct choline metabolic profiles are associated with differences in gene expression for basal-like and luminal-like breast cancer xenograft models," BMC Cancer, vol. 10, no. 1, p. 433, 2010.

- [60] M. Cao, G. Giskeødegård, T. Bathen, B. Sitter, A. Bofin, P. Lønning, S. Lundgren, and I. Gribbestad, "Prognostic value of metabolic response in breast cancer patients receiving neoadjuvant chemotherapy," BMC Cancer, vol. 12, no. 1, pp. 12–39, 2012.
- [61] M. Cao, S. Lamichhane, S. Lundgren, A. Bofin, H. Fjøsne, G. Giskeødegård, and T. Bathen, "Metabolic characterization of triple negative breast cancer," BMC Cancer, vol. 14, no. 1, p. 941, 2014.
- [62] L. Euceda, G. Giskeødegård, and T. Bathen, "Preprocessing of NMR metabolomics data," Scand J Clin Lab Invest, vol. 75, no. 3, pp. 193–203, 2015.
- [63] R. Vettukattil, "Preprocessing of raw metabonomic data," in Metabonomics: Methods and Protocols (J. T. Bjerrum, ed.), vol. 1277 of Methods in Molecular Biology, pp. 123–36, Springer New York, 2015.
- [64] F. Savorani, G. Tomasi, and S. Engelsen, "icoshift: A versatile tool for the rapid alignment of 1D NMR spectra," J Magn Reson, vol. 202, no. 2, pp. 190–202, 2010.
- [65] G. Giskeødegård, T. Bloemberg, G. Postma, B. Sitter, M.-B. Tessem, I. Gribbestad, T. Bathen, and L. Buydens, "Alignment of high resolution magic angle spinning magnetic resonance spectra using warping methods," Anal Chim Acta, vol. 683, no. 1, pp. 1–11, 2010.
- [66] F. Dieterle, A. Ross, G. Schlotterbeck, and H. Senn, "Probabilistic quotient normalization as robust method to account for dilution of complex biological mixtures. application in ¹H NMR metabonomics," Anal Chem, vol. 78, no. 13, pp. 4281–90, 2006.
- [67] J. Ibrahim and G. Molenberghs, "Missing data methods in longitudinal studies: a review," Test, vol. 18, no. 1, pp. 1–43, 2009.
- [68] A. Bergamaschi, G. Hjortland, T. Triulzi, T. Sørlie, H. Johnsen, A. Ree, H. Russnes, S. Tronnes, G. Mælandsmo, and Ø. Fodstad, "Molecular profiling and characterization of luminal-like and basal-like in vivo breast cancer xenograft models," Mol Oncol, vol. 3, no. 5, pp. 469–82, 2009.
- [69] M. Grinde, S. Moestue, E. Borgan, Ø. Risa, O. Engebraaten, and I. Gribbestad, "¹³C high-resolution-magic angle spinning MRS reveals differences in glucose metabolism between two breast cancer xenograft models with different gene expression patterns," NMR Biomed, vol. 24, no. 10, pp. 1243–52, 2011.
- [70] R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2014.
- [71] S. Buuren and K. Groothuis-Oudshoorn, "mice: Multivariate imputation by chained equations in R," J Stat Softw, vol. 45, no. 3, 2011.

[72] J. Pinheiro, D. Bates, S. DebRoy, and D. Sarkar, "nmle: Linear and nonlinear mixed effects models. R package version 3.1-117." URL: http://CRAN.R-project.org/package=nlme, 2014.

- [73] V. Tusher, R. Tibshirani, and G. Chu, "Significance analysis of microarrays applied to the ionizing radiation response," *Proc Natl Acad Sci U S A*, vol. 98, no. 9, pp. 5116–21, 2001.
- [74] W. Huang da, B. Sherman, and R. Lempicki, "Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources," Nat Protoc, vol. 4, no. 1, pp. 44–57, 2008.
- [75] A. Subramanian, P. Tamayo, V. Mootha, S. Mukherjee, B. Ebert, M. Gillette, A. Paulovich, S. Pomeroy, T. Golub, and E. Lander, "Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles," *Proc Natl Acad Sci U S A*, vol. 102, no. 43, pp. 15545–50, 2005.
- [76] J. Xia, R. Mandal, I. Sinelnikov, D. Broadhurst, and D. Wishart, "Metaboanalyst 2.0-a comprehensive server for metabolomic data analysis," *Nucleic Acids Res*, vol. 40, no. Web Server issue, pp. W127-33, 2012.
- [77] R. Gillies and D. Morse, "In vivo magnetic resonance spectroscopy in cancer," Annu Rev Biomed Eng, vol. 7, pp. 287–326, 2005.
- [78] D. Mankoff, J. Eary, J. Link, M. Muzi, J. Rajendran, A. Spence, and K. Krohn, "Tumor-specific positron emission tomography imaging in patients:[18F] fluorodeoxyglucose and be-yond," Clin Cancer Res, vol. 13, no. 12, pp. 3460–9, 2007.
- [79] S. Walenta, T. Schroeder, and W. Mueller-Klieser, "Lactate in solid malignant tumors: potential basis of a metabolic classification in clinical oncology," Curr Med Chem, vol. 11, no. 16, pp. 2195–204, 2004.
- [80] J. Xie, H. Wu, C. Dai, Q. Pan, Z. Ding, D. Hu, B. Ji, Y. Luo, and X. Hu, "Beyond Warburg effect-dual metabolic nature of cancer cells," Sci Rep, vol. 4, 2014.
- [81] E. Aboagye and Z. Bhujwalla, "Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells," Cancer Res, vol. 59, no. 1, pp. 80–4, 1999.
- [82] R. Katz-Brull, D. Seger, D. Rivenson-Segal, E. Rushkin, and H. Degani, "Metabolic markers of breast cancer enhanced choline metabolism and reduced choline-ether-phospholipid synthesis," Cancer Res, vol. 62, no. 7, pp. 1966–70, 2002.
- [83] M. Grinde, N. Skrbo, S. Moestue, E. Rødland, E. Borgan, A. Kristian, B. Sitter, T. Bathen, A.-L. Børresen-Dale, G. Mælandsmo, O. Engebraaten, T. Sørlie, E. Marangoni, and I. Gribbestad, "Interplay of choline metabolites and genes in patient-derived breast cancer xenografts," Breast Cancer Res, 2014.
- [84] G. Eliyahu, T. Kreizman, and H. Degani, "Phosphocholine as a biomarker of breast cancer: molecular and biochemical studies," Int J Cancer, vol. 120, no. 8, pp. 1721–30, 2007.
- [85] N. Jagannathan, M. Kumar, V. Seenu, O. Coshic, S. Dwivedi, P. Julka, A. Srivastava, and G. Rath, "Evaluation of total choline from in-vivo volume localized proton MR spectroscopy

- and its response to neoadjuvant chemotherapy in locally advanced breast cancer," Br J Cancer, vol. 84, no. 8, p. 1016, 2001.
- [86] H.-M. Baek, J.-H. Chen, K. Nie, H. Yu, S. Bahri, R. Mehta, O. Nalcioglu, and M.-Y. Su, "Predicting pathologic response to neoadjuvant chemotherapy in breast cancer by using MR imaging and quantitative ¹H MR spectroscopy," *Radiology*, vol. 251, no. 3, pp. 653–62, 2009.
- [87] J. Locasale, "Serine, glycine and one-carbon units: cancer metabolism in full circle," Nat Rev Cancer, vol. 13, no. 8, pp. 572-83, 2013.
- [88] R. J. DeBerardinis and T. Cheng, "Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer," Oncogene, vol. 29, no. 3, pp. 313-24, 2010.
- [89] M. Jain, R. Nilsson, S. Sharma, N. Madhusudhan, T. Kitami, A. Souza, R. Kafri, M. Kirschner, C. Clish, and V. Mootha, "Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation," *Science*, vol. 336, no. 6084, pp. 1040–4, 2012.
- [90] I. Amelio, F. Cutruzzola, A. Antonov, M. Agostini, and G. Melino, "Serine and glycine metabolism in cancer," *Trends Biochemi Sci*, vol. 39, no. 4, pp. 191–8, 2014.
- [91] N. Traverso, R. Ricciarelli, M. Nitti, B. Marengo, A. Furfaro, M. Pronzato, U. Marinari, and C. Domenicotti, "Role of glutathione in cancer progression and chemoresistance," Oxid Med Cell Longev, vol. 2013, 2013.
- [92] M. Cioce, M. Valerio, L. Casadei, C. Pulito, A. Sacconi, F. Mori, F. Biagioni, C. Manetti, P. Muti, and S. Strano, "Metformin-induced metabolic reprogramming of chemoresistant ALDH^{bright} breast cancer cells," *Oncotarget*, vol. 5, no. 12, p. 4129, 2014.
- [93] D. Quail and J. Joyce, "Microenvironmental regulation of tumor progression and metastasis," Nat Med, vol. 19, no. 11, pp. 1423-37, 2013.
- [94] H. Li, X. Fan, and J. Houghton, "Tumor microenvironment: the role of the tumor stroma in cancer," J Cell Biochem, vol. 101, no. 4, pp. 805-15, 2007.
- [95] M. Vander Heiden, "Targeting cancer metabolism: a therapeutic window opens," Nat Rev Drug Discov, vol. 10, no. 9, pp. 671–84, 2011.
- [96] Y. Chae and A. Gonzalez-Angulo, "Implications of functional proteomics in breast cancer," Oncologist, vol. 19, no. 4, pp. 328–35, 2014.
- [97] P. Ghaffari, A. Mardinoglu, and J. Nielsen, "Cancer metabolism: a modeling perspective," Front Physiol, vol. 6, 2015.
- [98] L. Galluzzi, O. Kepp, M. Vander Heiden, and G. Kroemer, "Metabolic targets for cancer therapy," Nat Rev Drug Discov, vol. 12, no. 11, pp. 829-46, 2013.
- [99] R. Pieters, S. Hunger, J. Boos, C. Rizzari, L. Silverman, A. Baruchel, N. Goekbuget, M. Schrappe, and C. Pui, "L-asparaginase treatment in acute lymphoblastic leukemia," *Cancer*, vol. 117, no. 2, pp. 238–49, 2011.
- [100] D. Tennant, R. Durán, and E. Gottlieb, "Targeting metabolic transformation for cancer therapy," Nat Rev Cancer, vol. 10, no. 4, pp. 267-77, 2010.

[101] S. Hadad, P. Coates, L. Jordan, R. Dowling, M. Chang, S. Done, C. Purdie, P. Goodwin, V. Stambolic, and S. Moulder-Thompson, "Evidence for biological effects of metformin in operable breast cancer: biomarker analysis in a pre-operative window of opportunity randomized trial," *Breast Cancer Res Treat*, vol. 150, no. 1, pp. 149–55, 2015.

- [102] S. Elf and J. Chen, "Targeting glucose metabolism in patients with cancer," Cancer, vol. 120, no. 6, pp. 774–80, 2014.
- [103] J. Islamian, F. Aghaee, A. Farajollahi, B. Baradaran, and M. Fazel, "Combined treatment with 2-Deoxy-D-glucose and doxorubicin enhances the in vitro efficiency of breast cancer radiotherapy," Asian Pac J Cancer Prev, vol. 16, no. 18, pp. 8431–8, 2014.
- [104] S. Ma, R. Jia, D. Li, and B. Shen, "Targeting cellular metabolism chemosensitizes the doxorubicin-resistant human breast adenocarcinoma cells," *Biomed Res Int*, vol. 2015, 2015.
- [105] D. Zhang, J. Li, F. Wang, J. Hu, S. Wang, and Y. Sun, "2-Deoxy-D-glucose targeting of glucose metabolism in cancer cells as a potential therapy," *Cancer Lett*, vol. 355, no. 2, pp. 176–83, 2014.
- [106] Z. Liu, Y.-Y. Zhang, Q.-W. Zhang, S.-R. Zhao, C.-Z. Wu, X. Cheng, C.-C. Jiang, Z.-W. Jiang, and H. Liu, "3-bromopyruvate induces apoptosis in breast cancer cells by downregulating Mcl-1 through the PI3K/Akt signaling pathway," *Anticancer Drugs*, vol. 25, no. 4, pp. 447–55, 2014.
- [107] Q. Zhang, Y. Zhang, P. Zhang, Z. Chao, F. Xia, C. Jiang, X. Zhang, Z. Jiang, and H. Liu, "Hexokinase II inhibitor, 3-BrPA induced autophagy by stimulating ROS formation in human breast cancer cells," *Genes Cancer*, vol. 5, no. 3-4, p. 100, 2014.
- [108] K. Glunde, L. Jiang, S. Moestue, and I. Gribbestad, "MRS and MRSI guidance in molecular medicine: Targeting and monitoring of choline and glucose metabolism in cancer," NMR Biomed, vol. 24, no. 6, pp. 673–90, 2011.
- [109] J. Lacal and J. Campos, "Preclinical characterization of RSM-932A, a novel anticancer drug targeting the human choline kinase alpha, an enzyme involved in increased lipid metabolism of cancer cells," Mol Cancer Ther, vol. 14, no. 1, pp. 31-9, 2015.
- [110] J. van Asten, R. Vettukattil, T. Buckle, S. Rottenberg, F. van Leeuwen, T. Bathen, and A. Heerschap, "Increased levels of choline metabolites are an early marker of docetaxel treatment response in BRCA1-mutated mouse mammary tumors: an assessment by ex vivo proton magnetic resonance spectroscopy," J Transl Med, vol. 13, no. 1, p. 114, 2015.
- [111] E. Ananieva, "Targeting amino acid metabolism in cancer growth and anti-tumor immune response," World J Biol Chem, vol. 6, no. 4, p. 281, 2015.
- [112] H.-N. Kung, J. Marks, and J.-T. Chi, "Glutamine synthetase is a genetic determinant of cell type-specific glutamine independence in breast epithelia," *PLoS Genet*, vol. 7, no. 8, p. e1002229, 2011.
- [113] W. Katt and R. Cerione, "Glutaminase regulation in cancer cells: a druggable chain of events," *Drug Discov Today*, vol. 19, no. 4, pp. 450-7, 2014.

[114] B. Ratnikov, Y. Jeon, J. Smith, and Z. Ronai, "Right on TARGET: glutamine metabolism in cancer," Oncoscience, vol. 2, no. 8, p. 681, 2015.

- [115] G. Giskeødegård, M. Cao, and T. Bathen, "High-resolution magic-angle-spinning NMR spectroscopy of intact tissue," in *Metabonomics: Methods and Protocols* (J. T. Bjerrum, ed.), vol. 1277 of *Methods in Molecular Biology*, pp. 37–50, Springer New York, 2015.
- [116] C.-L. Wu, J. Taylor, W. He, A. Zepeda, E. Halpern, A. Bielecki, R. Gonzalez, and L. Cheng, "Proton high-resolution magic angle spinning NMR analysis of fresh and previously frozen tissue of human prostate," Magn Reson Med, vol. 50, no. 6, pp. 1307–11, 2003.
- [117] K. Jordan, W. He, E. Halpern, C.-L. Wu, and L. Cheng, "Evaluation of tissue metabolites with high resolution magic angle spinning MR spectroscopy human prostate samples after three-year storage at -80°C," *Biomark Insights*, vol. 2, p. 147, 2007.
- [118] V. Righi, L. Schenetti, A. Maiorana, E. Libertini, S. Bettelli, L. Bonetti, and A. Mucci, "Assessment of freezing effects and diagnostic potential of biobank healthy and neoplastic breast tissues through HR-MAS NMR spectroscopy," *Metabolomics*, vol. 11, no. 2, pp. 487–98, 2015.
- [119] E. Eisenhauer, P. Therasse, J. Bogaerts, L. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, and M. Mooney, "New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1)," Eur J Cancer, vol. 45, no. 2, pp. 228–47, 2009.
- [120] K. Brindle, S. Bohndiek, F. Gallagher, and M. Kettunen, "Tumor imaging using hyperpolarized ^{13}C magnetic resonance spectroscopy," *Magnetic Resonance in Medicine*, vol. 66, no. 2, pp. 505–19, 2011.
- [121] P. Boonsirikamchai, M. Asran, D. Maru, J.-N. Vauthey, H. Kaur, S. Kopetz, and E. Loyer, "CT findings of response and recurrence, independent of change in tumor size, in colorectal liver metastasis treated with bevacizumab," Am J Roentgenol, vol. 197, no. 6, pp. W1060-6, 2011.
- [122] H. Bertilsson, M.-B. Tessem, A. Flatberg, T. Viset, I. Gribbestad, A. Angelsen, and J. Halgunset, "Changes in gene transcription underlying the aberrant citrate and choline metabolism in human prostate cancer samples," *Clinical Cancer Research*, vol. 18, no. 12, pp. 3261–9, 2012.
- [123] S. W. Provencher, "Estimation of metabolite concentrations from localized in vivo proton NMR spectra," Magn Reson Med, vol. 30, no. 6, pp. 672-9, 1993.
- [124] K. Opstad, A. Wright, B. Bell, J. Griffiths, and F. Howe, "Correlations between in vivo ¹H MRS and ex vivo ¹H HRMAS metabolite measurements in adult human gliomas," J Magn Reson Imaging, vol. 31, no. 2, pp. 289–97, 2010.
- [125] G. Giskeødegård, H. Bertilsson, K. Selnæs, A. Wright, T. Bathen, T. Viset, J. Halgunset, A. Angelsen, I. Gribbestad, and M.-B. Tessem, "Spermine and citrate as metabolic biomarkers for assessing prostate cancer aggressiveness," PloS one, vol. 8, no. 4, p. e62375, 2013.

[126] J. Choi, H.-M. Baek, S. Kim, M. Kim, J. Youk, H. Moon, E.-K. Kim, K. Han, D.-H. Kim, and S. Kim, "HR-MAS MR spectroscopy of breast cancer tissue obtained with core needle biopsy: Correlation with prognostic factors," *PloS one*, vol. 7, no. 12, p. e51712, 2012.

- [127] J. Choi, H.-M. Baek, S. Kim, M. Kim, J. Youk, H. Moon, E.-K. Kim, and Y. Nam, "Magnetic resonance metabolic profiling of breast cancer tissue obtained with core needle biopsy for predicting pathologic response to neoadjuvant chemotherapy," *PloS one*, 2013.
- [128] A. Carroll, P. Zhang, L. Whitehead, S. Kaines, G. Tcherkez, and M. Badger, "Phenometer: a metabolome database search tool using statistical similarity matching of metabolic phenotypes for high-confidence detection of functional links," Front Bioeng Biotechnol, vol. 3, 2015.
- [129] A. Nordström and R. Lewensohn, "Metabolomics: moving to the clinic," J Neuroimmune Pharmacol, vol. 5, no. 1, pp. 4–17, 2010.
- [130] T. Bathen, B. Geurts, B. Sitter, H. Fjøsne, S. Lundgren, L. Buydens, I. Gribbestad, G. Postma, and G. Giskeødegård, "Feasibility of MR metabolomics for immediate analysis of resection margins during breast cancer surgery," *PLoS One*, vol. 8, no. 4, p. e61578, 2013.
- [131] W. Claudino, P. Goncalves, A. di Leo, P. Philip, and F. Sarkar, "Metabolomics in cancer: a bench-to-bedside intersection," *Critl Rev Oncol Hematol*, vol. 84, no. 1, pp. 1–7, 2012.
- [132] O. Aboud and R. Weiss, "New opportunities from the cancer metabolome," *Clin Chem*, vol. 59, no. 1, pp. 138–46, 2013.
- [133] M. Cuperlovic-Culf, I. Chute, A. Culf, M. Touaibia, A. Ghosh, S. Griffiths, D. Tulpan, S. Léger, A. Belkaid, and M. Surette, "¹H NMR metabolomics combined with gene expression analysis for the determination of major metabolic differences between subtypes of breast cell lines," Chem Sci, vol. 2, no. 11, pp. 2263-70, 2011.
- [134] U. Martinez-Outschoorn, M. Prisco, A. Ertel, A. Tsirigos, Z. Lin, S. Pavlides, C. Wang, N. Flomenberg, E. Knudsen, and A. Howell, "Ketones and lactate increase cancer cell "stemness," driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via Metabolo-Genomics," Cell Cycle, vol. 10, no. 8, pp. 1271–86, 2011.

Paper I

Impact of Freezing Delay Time on Tissue Samples for Metabolomic Studies

Tonje H. Haukaas^{1,2†}, Siver A. Moestue^{1,3†}, Riyas Vettukattii¹, Beathe Sitter⁴, Santosh Lamichhane^{1,5}, Remedios Segura⁶, Guro F. Giskeødegård^{1,3} and Tone F. Bathen^{1,2*}

¹ Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway, ² Faculty of Medicine, K. G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway, ³ St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway, ⁴ Department of Health Science, Faculty of Health and Social Science, Ser-Trendelag University College, Trondheim, Norway, ⁵ Department of Food Science, Faculty of Science and Technology, Aarhus University, Årslev, Denmark, ⁶ Metabolomic and Molecular Image Laboratory, Health Research Institute INCLIVA. Valencia. Soain

Introduction: Metabolic profiling of intact tumor tissue by high-resolution magic angle spinning (HR MAS) MR spectroscopy (MRS) provides important biological information possibly useful for clinical diagnosis and development of novel treatment strategies. However, generation of high-quality data requires that sample handling from surgical resection until analysis is performed using systematically validated procedures. In this study, we investigated the effect of postsurgical freezing delay time on global metabolic profiles and stability of individual metabolites in intact tumor tissue.

Materials and methods: Tumor tissue samples collected from two patient-derived breast cancer xenograft models (n=3 for each model) were divided into pieces that were snap-frozen in liquid nitrogen at 0, 15, 30, 60, 90, and 120 min after surgical removal. In addition, one sample was analyzed immediately, representing the metabolic profile of fresh tissue exposed neither to liquid nitrogen nor to room temperature. We also evaluated the metabolic effect of prolonged spinning during the HR MAS experiments in biopsies from breast cancer patients (n=14). All samples were analyzed by proton HR MAS MRS on a Bruker Avance DRX600 spectrometer, and changes in metabolic profiles were evaluated using multivariate analysis and linear mixed modeling.

Results: Multivariate analysis showed that the metabolic differences between the two breast cancer models were more prominent than variation caused by freezing delay time. No significant changes in levels of individual metabolites were observed in samples frozen within 30 min of resection. After this time point, levels of choline increased, whereas ascorbate, creatine, and glutathione (GS) levels decreased. Freezing had a significant effect on several metabolites but is an essential procedure for research and biobank purposes. Furthermore, four metabolites (glucose, glycine, glycerophosphocholine, and choline) were affected by prolonged HR MAS experiment time possibly caused by physical release of metabolites caused by spinning or due to structural degradation processes.

Conclusion: The MR metabolic profiles of tumor samples are reproducible and robust to variation in postsurgical freezing delay up to 30 min.

Keywords: cancer, freezing time delay, HR MAS, metabolic profile, MR spectroscopy, metabolomics, snap-freezing, degradation

OPEN ACCESS

Edited by

Franca Podo, Istituto Superiore di Sanità, Italy

Reviewed by: Egidio Iorio,

Istituto Superiore di Sanità, Italy Claudio Luchinat, University of Florence, Italy

*Correspondence: Tone F. Bathen

tone.f.bathen@ntnu.no

†Shared first authorship; Tonje H. Haukaas and Siver A. Moestue contributed equally to this work.

Specialty section:

This article was submitted to Cancer Imaging and Diagnosis, a section of the journal Frontiers in Oncology

Received: 18 November 2015 Accepted: 16 January 2016 Published: 28 January 2016

Citation:

Haukaas TH, Moestue SA, Vettukattil R, Sitter B, Lamichhane S, Segura R, Giskeødegård GF and Bathen TF (2016) Impact of Freezing Delay Time on Tissue Samples for Metabolomic Studies. Front. Oncol. 6:17. doi: 10.3389/fonc.2016.00017

INTRODUCTION

The field of metabolomics has the potential to fill important gaps within the knowledge of cancer biology (1). Within this field, molecular pathways and interactions are studied through the expression of small molecular compounds called metabolites. These compounds are intermediates or end products of ongoing biochemical processes, and the overall metabolic profile represents a unique fingerprint of the cellular state at a specific time point. Metabolites constitute the final level in the -omics cascade. downstream to genomics, transcriptomics, and proteomics, reflecting the combined effect of all the upstream molecular levels (2). However, the metabolic snapshot obtained from a tumor tissue specimen depends on additional factors, such as the tumor microenvironment and the polyclonality frequently observed in cancer, which introduces additional complexity for the interpretation of the metabolic information. Nevertheless, metabolic profiling of intact fresh frozen tissue is gaining popularity in clinical research, as it potentially can identify novel prognostic or predictive metabolic biomarkers or explore the abnormal biochemical activity aiming to identify novel therapeutic approaches.

Metabolomic studies using high-resolution magic angle spinning MR spectroscopy (HR MAS MRS) enables investigation of tumor tissue with minimal sample preparation, thus limiting loss of information through tissue extraction and maintaining high reproducibility (3). HR MAS MRS is also a non-destructive technique (4) shown to retain histopathological characteristics (5) and high RNA quality (6) of analyzed tissue. This technology has been used to discriminate between tumor and normal tissues in several cancers (7), but is increasingly used to explore the role of metabolomics in patient stratification for personalized oncology (8-10). In these studies, biobanks have been established after collecting tumor tissue from large patient cohorts and the association between metabolic characteristics and disease outcome has been investigated. The quality of data from such studies requires a high degree of analytical accuracy and precision, as well as highly standardized and validated protocols for sample collection, storage, and handling prior to analysis.

One of the critical points during sample collection, especially in a clinical setting, is the time period from blood supply cutoff during surgical resection until the sample is frozen for storage (freezing delay time). This interval may vary depending on the difficulty of the surgical procedure and the required tissue processing procedures, while cellular enzymatic and chemical reactions will take place and potentially cause alterations in the tissue metabolomic profile. Therefore, it is important to assess the susceptibility of these profiles to systematic variability resulting from sample handling and analysis. The main objective of this study was to investigate the metabolic effects of freezing delay time, aiming to validate the sample collection protocols normally used in biobanking for MR metabolomics studies. To minimize the impact of inter- and intratumor variability, tumor tissue was obtained from two well-characterized breast cancer xenograft models (11, 12). Furthermore, we describe the metabolic effects of snap-freezing tumor samples and the degradation pattern caused by prolonged HR MAS MRS acquisitions using human

breast cancer samples. Finally, sample collection and handling procedures that ensure optimal data quality in metabolomic studies of cancer tissue are suggested.

MATERIALS AND METHODS

Tissue Samples

Animal Model

The two orthotopic xenograft models MAS98.12 and MAS98.06 were established by direct transplantation of biopsy tissue from primary mammary carcinomas in immunodeficient SCID mice and thereafter passaged as previously described (11). These models have been characterized by unsupervised hierarchical clustering of intrinsic genes (13, 14) to represent basal-like (poor prognosis) and luminal-like (better prognosis) breast cancer phenotype respectively (11), and they also have distinct metabolic profiles (12, 15). Mice carrying xenograft tumors [basal-like (n = 3) and luminal-like (n = 3)] were sacrificed by cervical dislocation and tumor tissue was harvested and snap-frozen in liquid nitrogen according to the protocol below. All procedures and experiments involving animals were approved by the National Animal Research Authority and carried out according to the European Convention for the Protection of Vertebrates used for Scientific Purposes.

Patient Material

Breast cancer tissue samples from 14 female patients undergoing surgery at St. Olav's Hospital (Trondheim, Norway) and Molde Hospital (Molde, Norway) were included in the study. Patients were chosen without any other prior clinical information. The biopsies were snap-frozen immediately after excision during the surgical procedure and further stored in liquid nitrogen until subsequent analyses. All patients have signed a written informed consent, and the study was approved by the Regional Ethics Committee, Central Norway.

Experimental Design and HR MAS MRS Experiments

Effect of Freezing Delay Time

One tumor from each mouse was divided into pieces and left at room temperature for 0, 15, 30, 60, 90, and 120 min, prior to snapfreezing in liquid nitrogen. This procedure covers both realistic and extreme freezing time delays, which could occur in tissue harvesting procedures during breast cancer surgery. In addition, one sample was analyzed immediately after excision representing the metabolic profile of the tumor tissue without exposure to liquid nitrogen or freezing. The total number of samples analyzed for this study was 42.

Before HR MAS MRS experiments, 3 μ L cold sodium formate in D₂O (24.29 mM) was added to a leak-proof disposable 30- μ L insert (Bruker, Biospin GmbH, Germany) as a shimming reference. Tissue samples were cut to fit the insert (mean sample weight 9.8 mg) on a dedicated work station designed to keep the samples frozen (16) during preparation. The insert containing the frozen sample was placed in a 4-mm diameter zirconium rotor (Bruker, Biospin GmbH, Germany) and kept at -20° C for 6–8 h before the experiments to minimize degradation.

HR MAS MRS experiments were performed on a Bruker Avance DRX600 spectrometer (Bruker, Biospin GmbH, Germany) equipped with a $^1\mathrm{H}/^{13}\mathrm{C}$ MAS probe with gradient aligned with the magic angle (Bruker, Biospin GmbH, Germany). Samples were spun at 5000 Hz and experiments run at 5°C. The samples were allowed 5 min temperature acclimatization before shimming and spectral acquisition.

Spin-echo spectra were recorded using a Carr–Purcell–Meiboom–Gill (cpmg) pulse sequence (cpmgpr1D; Bruker, L4 = 126). T_2 filtering was obtained using a delay of 0.6 ms between each 180° pulse to suppress macromolecules and lipid signals and enhance signal from small molecules. This resulted in a total echo time (TE) of 77 ms. The total number of scans (NS) were 64 over a spectral width of 20 ppm (-5 to 15 ppm) with an acquisition time of 3.07 s.

Degradation during Prolonged HR MAS MRS Analysis

Frozen human breast cancer tissue samples were cut to fit a leak-proof 30- μL disposable insert (mean sample weight: 8.8 mg) added 3 μL of phosphate-buffered saline (PBS) based on D_2O with trimethylsilyl propionate (TSP, 1 mM) and sodium formate (1 mM). The insert was placed in a 4-mm diameter zirconium rotor (Bruker, Biospin GmbH, Germany). Spin-echo experiments (cpmgpr1D; Bruker, L4 = 136) were run with 2 ms delay between 180° pulses, TE of 273.5 ms, spectral width of 20 ppm (–5 to 15 ppm) and NS of 256 scans (17). To evaluate the effect of prolonged HR MAS MRS experimental time, data acquisition was repeated after 1.5 h. The sample was kept spinning (5000 Hz) within the magnet at 5°C in this time interval.

Data Preprocessing and Statistical Analysis

The FIDs were multiplied by a 0.30 Hz exponential function and Fourier transformed into 64k real points. Phase correction was performed automatically for each spectrum using TopSpin 3.1 (Bruker). Further preprocessing of the HR MAS spectra was performed in Matlab R2013b (The Mathworks, Inc., USA). Due to unavailability of a stable internal reference, human spectra were referenced to the TSP peak (0 ppm) while xenograft spectra were referenced to formate (8.46 ppm). Baseline correction was achieved by setting the minimum value of each spectrum to 0 and subtracting the lowest value. Peak alignment was performed using icoshift (18). The spectral region of interest in the human samples (2.89-4.73 ppm), which excludes the main lipid peaks, was normalized to equal total mean area, while the total spectral region (0.62-4.70 ppm) was normalized to sample weight in the xenograft spectra. In human tissue, lipid signals mainly originate from adipose tissue, and the lipid peaks may be very dominant in samples with low tumor content. Thus, the normalization accounts for differences in sample size and tumor cell content, the latter not necessary in xenograft samples with homogenous distribution of cancer cells.

To find underlying structure and main differences in the dataset, the unsupervised multivariate method principal component analysis (PCA) was used. PCA is a powerful method to decrease

the complexity of collinear multivariate data, such as MR spectra, into a few principal components (PCs). PCA was performed (using PLS_Toolbox 7.5.2, Matlab, Eigenvector Research, Inc., Wenatchee, WA, USA) on xenograft spectra and human breast cancer spectra to explore the metabolic variation within samples exposed to increasing delays in postsurgical freezing and prolonged experiment time respectively.

For both cohorts, metabolite assignment was based on previous published data from HR MAS MRS analyses of breast tumors (19). Furthermore, metabolite levels were determined by integrating fixed spectral regions (performed in Matlab R2013b) corresponding to the metabolites of interest and used for univariate analysis. For metabolites with baseline strongly affected by closely resonating lipids, a linear baseline ranging from the first to the last point of the integral area was used.

Linear mixed models (LMM), an extension of linear regression, can be used to model data where several measurements from the same object are available. LMM accounts for both fixed and random effects in the modeling of the metabolite levels. Fixed effects are those that are of particular interest, e.g., effect of freezing delay time, while random effects are often not of interest but cannot be adjusted for prior to the modeling, e.g., effects originating from between subjects variation. In the current study, freezing delay time as well as type of xenograft model (basal-like or luminal-like) were set as fixed effects (continuous and categorical variable respectively), while xenograft subject was set as an random effect (without interaction term). The modeling was performed in R (20) using the "nlme" package (21).

Paired *t*-test was used to find time points were the metabolic levels had changed compared to baseline and to evaluate the effect of snap-freezing. Wilcoxon signed-rank test were performed to test the effect of prolonged experiment time on metabolite levels in human tumor tissue.

To adjust for the multiple metabolites tested, calculated p values were corrected for using The Benjamini Hochberg false discovery rate (FDR) in Matlab R2013b (The Mathworks, Inc., USA), and the differences were considered statistically significant for adjusted p-values \leq 0.05.

Histopathology and Nile Red Staining

Histopathological analysis was performed in order to evaluate the presence of viable tumor tissue and mobile lipid droplets in each individual xenograft sample. After HR MAS MRS analysis, samples were immediately frozen in liquid nitrogen. About 4 and 10 µm frozen sections were stained with hematoxylineosin–saffron (HES) and Nile Red as described in Ref. (22), respectively.

RESULTS

Effect of Freezing Delay Time in Xenograft Tumor Tissue

To examine the metabolic effect of delayed freezing, samples from the same xenograft tumor were left in room temperature for 0, 15, 30, 60, 90, and 120 min prior to freezing. A PCA score plot of the spectra from all 42 samples revealed a clear separation of basal-like and luminal-like xenograft model samples (Figure 1A). The variability between samples was predominantly attributed to the lipid content (PC1), whereas the levels of taurine, glycerophosphocholine, and phosphocholine (PC2) contributed to discrimination between the two xenograft models (Figure 1B).

A trajectory PCA score plot suggests that freezing delay time had no systematic effect on metabolic profiles (**Figure 1C**).

The Impact of Freezing Delay Time on Individual Metabolites in Xenograft Samples

The LMM result for glucose was excluded due to non-normally distributed residuals. The percentage change in levels of 15 metabolites measured by HR MAS MRS in samples subject to increasing delays before freezing (n=36) are shown in **Table 1**. After adjusting p-values for multiple testing, LMM revealed that three metabolites were significantly affected by type of xenograft model (basal-like and luminal-like) and four metabolites were significantly affected by delayed freezing (**Table 2**).

Figure 2 illustrates the change in average level of ascorbate, choline, creatine, and glutathione (GS) with increasing freezing delay time. The levels of ascorbate, creatine, and GS decreased with time. Both ascorbate and creatine levels decreased with approximately 30% within the 120 min time frame, while levels of GS were approximately 40% lower. The choline levels increased with time, reaching a level approximately 110% higher than baseline at freezing delay time of 120 min.

Ascorbate, choline, and creatine levels were significantly different from baseline sample (frozen immediately) after 60 min freezing delay time while the same was observed for GS levels after 90 min (Figure 2).

Metabolic Effect of Freezing

Immediately snap-frozen samples (0 min, n=6) were compared to samples analyzed directly after excision (not frozen, 0 min, n=6). A clear effect of freezing compared to unfrozen tissue was seen for 12 of 16 metabolites (**Figure 3**). Increased levels were observed for all of these metabolites after snap-freezing.

Histopathology

Visual inspection of HES-stained sections of xenograft samples analyzed by HR MAS MRS confirmed that the samples predominantly consisted of viable tumor tissue without significant necrosis or fibrosis. No adipose tissue or normal mammary gland tissue was observed. Due to the observed heterogeneity in lipid content of samples obtained from the same xenograft, we examined whether the lipids detected were located in adipose cells lining the tumor or in lipid droplets within the tumor. Visual inspection of the Nile Red stained histological sections showed good correlation between lipid signal intensity in spectral data and the amount of lipid detected by Nile Red staining (Figures S1 and S2 in Supplementary Material). The lipids were also observed to be located inside tumors and were therefore considered to represent mobile lipids in the cancer cells and not adipose tissue adjacent to the tumors. No systematic difference in lipid content

FIGURE 1 | PCA of MR spectra from xenografts tumors exposed to variable freezing delay time, (A) score plot with samples colored by xenograft type, (B) loading plots for PC1 (identifying lipid content as the most significant contributor to variability) and PC2 (identifying the metabolic difference between xenograft models as the second most significant contributor to variability), (C) PCA trajectory score plot. Samples from the same animal are connected with colored lines and numbered according to freezing delay time: (1) not frozen, (2) 0 min, (3) 15 min, (4) 30 min, (5) 60 min, (6) 90 min, and (7) 120 min.

TABLE 1 | Metabolic effect of freezing delay time.

Metabolite	ppm	15 min	30 min	60 min	90 min	120 min
Glucose	4.65	22 ± 107%	-8 ± 19%	31 ± 41%	6 ± 50%	26 ± 71%
Ascorbate	4.53	$-18 \pm 37\%$	$-15 \pm 20\%$	$-25 \pm 17\%$	$-31 \pm 22\%$	$-31 \pm 24\%$
Lactate	4.13	$4 \pm 44\%$	$10 \pm 24\%$	12 ± 29%	16 ± 27%	19 ± 45%
Tyrosine	3.99	$-8 \pm 32\%$	$-10 \pm 21\%$	$-13 \pm 19\%$	$-15 \pm 22\%$	$-17 \pm 29\%$
Glycine	3.55	$-7 \pm 45\%$	$-4 \pm 22\%$	$-5 \pm 25\%$	1 ± 45%	$6 \pm 62\%$
Myoinositol	3.53	12 ± 49%	11 ± 19%	26 ± 28%	26 ± 27%	$43 \pm 64\%$
Taurine	3.42	$-7 \pm 38\%$	$-7 \pm 15\%$	$-8 \pm 16\%$	$-8 \pm 20\%$	$-4 \pm 31\%$
Glycerophosphocholine	3.23	$-9 \pm 22\%$	$-10 \pm 18\%$	$-3 \pm 25\%$	$0 \pm 34\%$	28 ± 40%
Phosphocholine	3.22	$-19 \pm 24\%$	$-7 \pm 16\%$	1 ± 32%	$7 \pm 25\%$	$34 \pm 63\%$
Choline	3.21	$6 \pm 72\%$	20 ± 31%	$56 \pm 44\%$	62 ± 49%	111 ± 111%
Creatine	3.03	$-16 \pm 31\%$	$-19 \pm 18\%$	$-28 \pm 22\%$	$-25 \pm 22\%$	$-29 \pm 26\%$
Glutathione (GS)	2.55	$-18 \pm 32\%$	$-19 \pm 15\%$	$-24 \pm 25\%$	$-35 \pm 18\%$	$-37 \pm 26\%$
Succinate	2.41	$-5 \pm 35\%$	$-13 \pm 22\%$	$-2 \pm 33\%$	$-13 \pm 29\%$	$-15 \pm 38\%$
Glutamine	2.44	5 ± 49%	$-1 \pm 40\%$	28 ± 55%	$-1 \pm 22\%$	7 ± 54%
Glutamate	2.37	$-10 \pm 35\%$	$-11 \pm 17\%$	$-20 \pm 17\%$	$-16 \pm 25\%$	$-14 \pm 37\%$
Alanine	1.49	$-7 \pm 42\%$	$9 \pm 40\%$	2 ± 42%	17 ± 72%	23 ± 108%

Percentage (average ± SD) increase or decrease of metabolite level in samples exposed to freezing delay time compared to samples frozen immediately after tumor collection.

TABLE 2 | LMM-results reporting the effect of xenograft model and freezing delay time on levels of 15 metabolites.

Metabolite	Xeno	graft model	Freezing time delay			
	Adj. p-value	Est. effect	SD	Adj. p-value	Est. effect	SD
Ascorbate	0.628	1.6	2.2	0.037*	-1.2	0.4
Lactate	0.849	-2.5	12.2	0.281	4.5	3.0
Tyrosine	0.059	128.3	33.4	0.343	-7.1	5.6
Glycine	0.649	-9.4	16.9	0.838	1.2	2.8
Myoinositol	0.373	-4.8	3.9	0.072	2.7	1.1
Taurine	0.025*	240.9	37.9	0.838	-2.2	7.0
Glycerophosphocholine	0.017*	-477.3	56.6	0.255	23.9	14.6
Phosphocholine	0.040*	470.3	94.3	0.255	22.7	13.8
Choline	0.068	43.5	12.5	0.002**	16.2	3.7
Creatine	0.059	-41.6	10.3	0.037*	-8.4	3.0
Glutathione (GS)	0.649	-4.1	7.3	0.005**	-6.0	1.6
Succinate	0.112	8.7	3.1	0.301	-1.0	0.7
Glutamine	0.194	12.3	6.2	0.838	0.3	0.9
Glutamate	0.322	-20.9	14.4	0.348	-3.7	3.1
Alanine	0.194	17.1	8.4	0.838	0.4	1.6

The estimated effect (Est. effect) reports each fixed factors (i.e., xenograft model or freezing time delay) influence on metabolite levels. Adjusted p-values in bold indicates that the level is significantly different from the sample frozen after 0 min ("adjusted p < 0.05, "adjusted p < 0.01).

due to delayed freezing time was observed. While Figure S1 in Supplementary Material shows a pattern of decreasing Nile Red signal with increased delay before freezing, Figure S2 in Supplementary Material shows an example where the same pattern was not observed.

Degradation during Prolonged HR MAS Analysis

Repeated HR MAS MRS analysis of 14 human breast cancer samples was performed with 1.5 h interval to observe the metabolic effect of prolonged time in the magnet. The levels of glucose, glycine, glycerophosphocholine, and choline were found to significantly change from the first to the second acquisition (Table 3). While glucose, glycine, and choline increased, levels of glycerophosphocholine decreased with prolonged experiment time. A PCA score

plot of all spectra showed that the metabolic variation between samples was higher than variation in spectra obtained from the same sample (Figure S3 in Supplementary Material).

DISCUSSION

In this study, we evaluated the metabolic effect of freezing delay time, snap-freezing in liquid nitrogen and prolonged experimental time using HR MAS MRS. The results show that levels of HR MAS MRS visible metabolites in breast tumors are not subject to significant degradation if snap-frozen within 30 min after surgical excision.

Principal component analysis showed that differences in lipid content explained most of the variance between the samples from the two different breast cancer xenograft models. This was

FIGURE 2 | Impact of freezing delay time on level of (A) ascorbate, (B) choline, (C) creatine, and (D) glutathione. Metabolite integrals from samples subject to 15, 30, 60, 90, and 120 min freezing delay time compared with samples frozen immediately (0 min). * and ** indicates that the level is significantly different from the sample frozen after 0 min (*p < 0.05, **p < 0.01).

further examined by histopathological staining of frozen sections with Nile Red, which showed no correlation between lipid content and freezing delay time. Hence, the variability explained by lipid content most likely reflects tumor heterogeneity rather

than the sample handling conditions. Furthermore, PCA clearly discriminated between samples from the two xenograft models (i.e., basal-like or luminal-like breast cancer subtype). Basal-like xenografts had higher levels of glycerophosphocholine, while

TABLE 3 | Metabolic effect of prolonged experiment time.

•	-		
Metabolite	ppm	1.5 h	Adj. p-value
Glucose	4.65	21 ± 20%	0.006**
Ascorbate	4.53	$-4 \pm 6\%$	0.078
Lactate	4.15	$0 \pm 7\%$	0.903
Tyrosine	3.98	$3 \pm 6\%$	0.08
Glycine	3.56	$8 \pm 7\%$	0.006**
Myoinositol	3.54	7 ± 11%	0.08
Taurine	3.42	$0 \pm 5\%$	0.903
Glycerophosphocholine	3.23	$-15 \pm 12\%$	0.001**
Phosphocholine	3.22	$-4 \pm 6\%$	0.08
Choline	3.21	11 ± 13%	0.011*
Creatine	3.03	$0 \pm 6\%$	0.903

Percentages (average \pm SD) were calculated relative to the metabolite levels (integrals) from the initial experiment. Adjusted p-values in bold indicates that the level is significantly different from the sample frozen after 0 min ("adjusted p < 0.05, ""adjusted p < 0.01).

luminal-like xenografts had higher levels of phosphocholine and taurine, in accordance with previously published data from these xenograft models (15). The same metabolic differences between the xenograft models were observed in LMM.

Discrimination between the two xenograft models based on overall metabolic profile did not depend on freezing delay time. Furthermore, no significant changes in individual metabolite levels were observed at 30 min past tumor excision. At 60 min, levels of three metabolites had significantly changed from baseline measurements. Thus, samples should be frozen within 30 min of resection, which in general should be sufficient when obtaining tissue biopsies during surgical procedures. Ascorbate, choline, creatine, and GS were the only metabolites exhibiting significant changes within the time frame (0–120 min) used in the current study. For the majority of metabolites, no systematic dependency on freezing time delay was observed, suggesting that intratumor heterogeneity is the predominant source of variability.

Ascorbate, also known as vitamin C, and GS are important antioxidants in animal cells that, together with other antioxidants, are responsible for eliminating reactive oxygen species (ROS) from oxidative stress (23, 24). As a consequence of high ROS levels in cancer cells, GS levels are often elevated compared to normal tissue (25). GS has also been reported to be increased in estrogen receptor (ER) negative tumors compared to ER-positive (26). ROS levels can increase as a consequence of ischemia, potentially leading to oxidative damage. It is therefore plausible that the decreased levels of GS and ascorbate reflect oxidative stressed caused by prolonged ischemia. Ascorbate levels obtained from samples frozen 60, 90, and 120 min after excision were significantly lower than the levels from samples frozen immediately. The same was observed for GS levels at 90 and 120 min of freezing delay. Consequently, biological interpretation of the levels of these antioxidants should only be considered if the experimental design of the study includes a controlled freezing delay time of <30 min.

The levels of choline increased with increasing freezing delay time. Although not significant, a similar trend was observed for the choline-containing metabolites phosphocholine and glycerophosphocholine, suggesting that ischemia affects choline metabolism. Studying the effect of hypoxia in human

MDA-MB-231 breast cancer cell and tumors, Jiang et al. detected higher concentrations of total choline-containing metabolites (tCho; composed of phosphocholine, glycerophosphocholine, and free choline), mainly contributed by phosphocholine, in hypoxic regions (27). Altered choline metabolism is considered an emerging hallmark in malignant transformation (28). A major component of mammalian cell membranes, phosphatidylcholine (PtdCho), is synthesized from choline, thus making choline and choline-containing intermediates essential for the increased proliferation observed in tumor cells. Several ex vivo breast cancer studies using HR MAS MRS have detected increased concentrations of choline, phosphocholine, and glycerophosphocholine in tumor tissue compared to non-involved breast tissue (19, 29, 30). Differences in tCho have been found to have predictive value for the 5-year survival of breast cancer patients receiving neoadjuvant chemotherapy (31) and higher choline concentrations have been found in core needle biopsies from patients that are ER- and/or PgR-negative compared to ER- and/or PgR-positive patients (10). Delays in freezing time up to 30 min had no significant impact on choline levels. While choline levels at 60 and 90 min delay were significantly increased, this was not observed at 120 min (p = 0.065), probably due to variability within these last measurements. However, because of the biological relevance of choline metabolism in cancer, this trend of increasing levels with freezing delay time emphasize the importance of reporting and controlling sample handling to limit possible effects.

Levels of creatine significantly decreased as a result of prolonged time before freezing, where 60 min was found to be the first time point significantly different from samples frozen directly after exiting. Creatine is involved in energy storage through formation of phosphocreatine and thus functions as a carrier of energy within cells. Decreasing levels of creatine (or phosphocreatine) could be suggestive of energy depletion caused by ischemia. Several studies use creatine for calculation of metabolic ratios to allow for comparable quantities between samples (10, 32–34) and in studies of breast cancer tissue, higher level of this metabolite have been correlated to ER-positive (35) and PgR-positive tumors (15). As the tendency of decreasing levels is seen from the initial time point, it is important to keep the time before freezing minimal to allow the usage of ratios involving creatine.

Rapid metabolic phenotyping in operating theaters of unfrozen tissue has been proposed to facilitate real-time diagnostics and further aid decision making during surgery (36). To evaluate the metabolic effect of snap-freezing, tumor tissue was analyzed by HR MAS MRS without any exposure to liquid nitrogen and compared to tissue from the same xenografts that were immediately frozen after excision. Freezing was found to significantly increase the level of 12 metabolites. In previous studies, the freezing of rat kidney and liver tissue has reportedly led to increased amounts of amino acids (37, 38) and decreased contents of choline, glycerophosphocholine, glucose, myoinositol, trimethylamine N-oxide (TMAO), and taurine (38) using HR MAS MRS. The increased levels of multiple metabolites observed in the current study might be caused by intracellular lysis releasing metabolites. Metabolites bound to cellular molecules or compartments are more restricted and thus less MR-visible. If these metabolites are released as a consequence of freezing, HR MAS MRS will detect higher levels than in unfrozen tissue as found here. The findings underpin that studies of fresh and frozen tissue are not directly comparable. Although the effect of freezing was significant for the majority of metabolites, we believe that analyzing fresh tissue samples is neither feasible nor optimal in the current clinical and research setting. Care must therefore be taken not to compare metabolic information obtained in unfrozen samples with data from frozen biobank tissue

We also examined the effect on the metabolic profile of prolonged HR MAS MRS analysis. After the first acquisition, the sample was kept spinning inside the magnet and reanalyzed after 1.5 h. The level of four metabolites was found to differ significantly from the initial acquisition. Glucose, glycine, and choline were found to increase with time, while glycerophosphocholine decreased. Similar effects on glycine, choline, and glycerophosphocholine levels have been observed in lung cancer tissue (39) and in brain tumor tissue (40) supporting the current findings. As Rocha et al. describe, the changes might be caused by spinning effects causing release of bound metabolites or due to ongoing metabolic activity (39). Importantly, these metabolic effects should be considered for quantitative two-dimensional HR MAS MRS studies where long acquisition time is required.

In conclusion, this study confirms that HR MAS MRS metabolic profiles are robust to metabolic changes due to delayed freezing within a timeframe of 30 min. This allows biological interpretation of metabolic profiles, including metabolites involved in protection against ROS formation/oxidative stress, such as GS and ascorbate, as well as evaluation of the levels of creatine and choline-containing metabolites. Within the 30 min freezing delay time window, the effect of structural or biochemical degradation on metabolic profiles is insignificant. A clear effect of freezing was observed for most of the detected metabolites. However, this step in sample handling is considered essential for biobanking and research purposes. The study also identified moderate metabolic consequences of prolonged HR MAS experiment time, and thus, the protocol should be designed to keep experiment time to a minimum.

REFERENCES

- Patel S, Ahmed S. Emerging field of metabolomics: big promise for cancer biomarker identification and drug discovery. J Pharm Biomed Anal (2015) 107:63–74. doi:10.1016/j.jpba.2014.12.020
- Zhang A-H, Sun H, Qiu S, Wang X. Metabolomics in noninvasive breast cancer. Clin Chim Acta (2013) 424:3–7. doi:10.1016/j.cca.2013.05.003
- Pan Z, Raftery D. Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal Bioanal Chem (2007) 387(2):525-7. doi:10.1007/s00216-006-0687-8
- Bathen TF, Sitter B, Sjøbakk TE, Tessem M-B, Gribbestad IS. Magnetic resonance metabolomics of intact tissue: a biotechnological tool in cancer diagnostics and treatment evaluation. *Cancer Res* (2010) 70(17):6692–6. doi:10.1158/0008-5472.CAN-10-0437
- Bathen T, Geurts B, Sitter B, Fjøsne H, Lundgren S, Buydens L, et al. Feasibility
 of MR metabolomics for immediate analysis of resection margins during
 breast cancer surgery. PLoS One (2013) 8(4):e61578. doi:10.1371/journal.
 pone.0061578
- Bertilsson H, Tessem M-B, Flatberg A, Viset T, Gribbestad I, Angelsen A, et al. Changes in gene transcription underlying the aberrant citrate and choline metabolism in human prostate cancer samples. Clin Cancer Res (2012) 18(12):3261–9. doi:10.1158/1078-0432.CCR-11-2929

AUTHOR CONTRIBUTIONS

Author contributions included: study design (TH, SM, BS, and TB), data acquisition (SM, TH, and SL), data analysis (TH, SM, RV, SL, and RS), data interpretation (TH, SM, GG, and TB), and drafting the manuscript (TH, SM, and TB). All authors contributed in revising the manuscript.

ACKNOWLEDGMENTS

The HR MAS MRS analysis was performed at the MR Core Facility, Norwegian University of Science and Technology (NTNU). MR core facility is funded by the Faculty of Medicine at NTNU and Central Norway Regional Health Authority. The staining of histology sections was provided by the *Cellular and Molecular Imaging* Core Facility (CMIC), NTNU. *CMIC* is funded by the Faculty of Medicine at NTNU and Central Norway Regional Health Authority.

FUNDING

This work was funded by K.G. Jebsen Center for Breast Cancer Research, Norwegian Cancer Society grant 2209215-2011, The Research Council of Norway grant number FRIMED-221879 and 239940/F20, the Financial Statement Grants SAF2011-23029 and SAF2014-52875R from Ministerio de Economía y Competitividad of Spain, the Liaison Committee between the Central Norway Regional Health Authority (RHA), the Norwegian University of Science and Technology grant number 46056655, and INCLIVA Foundation with funding for scholarship stay in prestigious center 2013.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at http://journal.frontiersin.org/article/10.3389/fonc.2016.00017

- Moestue S, Sitter B, Bathen T, Tessem M-B, Gribbestad I. HR MAS MR spectroscopy in metabolic characterization of cancer. Curr Top Med Chem (2011) 11(1):2–26. doi:10.2174/156802611793611869
- Giskeødegard GF, Bertilsson H, Selnæs KM, Wright AJ, Bathen TF, Viset T, et al. Spermine and citrate as metabolic biomarkers for assessing prostate cancer aggressiveness. PLoS One (2013) 8(4):e62375. doi:10.1371/journal. pone.0062375
- Giskeødegård G, Lundgren S, Sitter B, Fjøsne HE, Postma G, Buydens L, et al. Lactate and glycine – potential MR biomarkers of prognosis in estrogen receptor-positive breast cancers. NMR Biomed (2012) 25(11):1271–9. doi:10.1002/php. 7298
- Choi J, Baek H-M, Kim S, Kim M, Youk J, Moon H, et al. HR-MAS MR spectroscopy of breast cancer tissue obtained with core needle biopsy: correlation with prognostic factors. *PLoS One* (2012) 7(12):e51712. doi:10.1371/journal.pone.0051712
- Bergamaschi A, Hjortland G, Triulzi T, Sørlie T, Johnsen H, Ree A, et al. Molecular profiling and characterization of luminal-like and basal-like in vivo breast cancer xenograft models. Mol Oncol (2009) 3(5):469–82. doi:10.1016/j. molonc.2009.07.003
- Grinde MT, Moestue SA, Borgan E, Risa Ø, Engebraaten O, Gribbestad IS.
 13C High-resolution-magic angle spinning MRS reveals differences in glucose metabolism between two breast cancer xenograft models with different gene

- expression patterns. NMR Biomed (2011) **24**(10):1243–52. doi:10.1002/nbm.1683
- Sørlie T, Perou C, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A (2001) 98(19):10869–74. doi:10.1073/pnas.191367098
- Sørlie T, Tibshirani R, Parker J, Hastie T, Marron J, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. *Proc Natl Acad Sci U S A* (2003) 100(14):8418–23. doi:10.1073/ pnas.0932692100
- Moestue S, Borgan E, Huuse E, Lindholm E, Sitter B, Børresen-Dale A-L, et al. Distinct choline metabolic profiles are associated with differences in gene expression for basal-like and luminal-like breast cancer xenograft models. BMC Cancer (2010) 10(1):433. doi:10.1186/1471-2407-10-433
- Giskeødegård G, Cao M, Bathen T. High-resolution magic-angle-spinning NMR spectroscopy of intact tissue. In: Bjerrum, Jacob T, editor. Metabonomics: Methods and Protocols. New York: Springer (2015). p. 37–50.
- Cao M, Lamichhane S, Lundgren S, Bofin A, Fjøsne H, Giskeødegård G, et al. Metabolic characterization of triple negative breast cancer. BMC Cancer (2014) 14(1):941. doi:10.1186/1471-2407-14-941
- Savorani F, Tomasi G, Engelsen S. icoshift: a versatile tool for the rapid alignment of 1D NMR spectra. J Magn Reson (2010) 202(2):190–202. doi:10.1016/j.jmr.2009.11.012
- Sitter B, Sonnewald U, Spraul M, Fjösne H, Gribbestad I. High-resolution magic angle spinning MRS of breast cancer tissue. NMR Biomed (2002) 15(5):327–37. doi:10.1002/nbm.775
- R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing (2012).
- Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-117 (2014). Available from: http://CRAN.R-project.org/package=nlme
- Opstad KS, Bell BA, Griffiths JR, Howe FA. An investigation of human brain tumour lipids by high-resolution magic angle spinning 1H MRS and histological analysis. NMR Biomed (2008) 21(7):677–85. doi:10.1002/nbm.1239
- Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov (2013) 12(12):931–47. doi:10.1038/nrd4002
- Bánhegyi G, Braun L, Csala M, Puskás F, Mandl J. Ascorbate metabolism and its regulation in animals. Free Radic Biol Med (1997) 23(5):793–803. doi:10.1016/S0891-5849(97)00062-2
- Gamcsik MP, Kasibhatla MS, Teeter SD, Colvin OM. Glutathione levels in human tumors. *Biomarkers* (2012) 17(8):671–91. doi:10.3109/13547 50X.2012.715672
- Tang X, Lin C-C, Spasojevic I, Iversen ES, Chi J-T, Marks JR. A joint analysis
 of metabolomics and genetics of breast cancer. Breast Cancer Res (2014)
 16(4):415. doi:10.1186/s13058-014-0415-9
- Jiang L, Greenwood TR, Artemov D, Raman V, Winnard PT, Heeren RM, et al. Localized hypoxia results in spatially heterogeneous metabolic signatures in breast tumor models. Neoplasia (2012) 14(8):732–41. doi:10.1593/neo.12858
- Glunde K, Bhujwalla Z, Ronen S. Choline metabolism in malignant transformation. Nat Rev Cancer (2011) 11(12):835–48. doi:10.1038/nrc3162
- Sitter B, Lundgren S, Bathen T, Halgunset J, Fjosne H, Gribbestad I. Comparison
 of HR MAS MR spectroscopic profiles of breast cancer tissue with clinical
 parameters. NMR Biomed (2006) 19(1):30–40. doi:10.1002/nbm.992

- Gribbestad IS, Sitter B, Lundgren S, Krane J, Axelson D. Metabolite composition in breast tumors examined by proton nuclear magnetic resonance spectroscopy. Anticancer Res (1998) 19(3A):1737–46.
- Cao M, Sitter B, Bathen T, Bofin A, Lønning P, Lundgren S, et al. Predicting long-term survival and treatment response in breast cancer patients receiving neoadjuvant chemotherapy by MR metabolic profiling. NMR Biomed (2012) 25(2):369–78. doi:10.1002/nbm.1762
- Choi JS, Baek H-M, Kim S, Kim MJ, Youk JH, Moon HJ, et al. Magnetic resonance metabolic profiling of breast cancer tissue obtained with core needle biopsy for predicting pathologic response to neoadjuvant chemotherapy. PLoS One (2013) 8(12):e83866. doi:10.1371/journal.pone.0083866
- 33. van Asten JJ, Vettukattil R, Buckle T, Rottenberg S, van Leeuwen F, Bathen TF, et al. Increased levels of choline metabolites are an early marker of docetaxel treatment response in BRCA1-mutated mouse mammary tumors: an assessment by ex vivo proton magnetic resonance spectroscopy. J Transl Med (2015) 13(1):114. doi:10.1186/s12967-015-0458-4
- Vettukattil R. Preprocessing of raw metabonomic data. Methods Mol Biol (2015) 1277:123–36. doi:10.1007/978-1-4939-2377-9_10
- Giskeødegård G, Grinde M, Sitter B, Axelson D, Lundgren S, Fjøsne H, et al. Multivariate modeling and prediction of breast cancer prognostic factors using MR metabolomics. J Proteome Res (2010) 9(2):972–9. doi:10.1021/pr9008783
- Kinross JM, Holmes E, Darzi AW, Nicholson JK. Metabolic phenotyping for monitoring surgical patients. *Lancet* (2011) 377(9780):1817–9. doi:10.1016/ S0140-6736(11)60171-2
- Middleton DA, Bradley DP, Connor SC, Mullins PG, Reid DG. The effect of sample freezing on proton magic-angle spinning NMR spectra of biological tissue. Magn Reson Med (1998) 40(1):166-9. doi:10.1002/ mrm.1910400122
- Waters N, Garrod S, Farrant R, Haselden J, Connor S, Connelly J, et al. Highresolution magic angle spinning 1 H NMR spectroscopy of intact liver and kidney: optimization of sample preparation procedures and biochemical stability of tissue during spectral acquisition. *Anal Biochem* (2000) 282(1):16–23. doi:10.1006/abio.2000.4574
- Rocha CM, Barros AS, Gil AM, Goodfellow BJ, Humpfer E, Spraul M, et al. Metabolic profiling of human lung cancer tissue by 1H high resolution magic angle spinning (HRMAS) NMR spectroscopy. J Proteome Res (2009) 9(1):319–32. doi:10.1021/pr9006574
- Opstad KS, Bell BA, Griffiths JR, Howe FA. An assessment of the effects of sample ischaemia and spinning time on the metabolic profile of brain tumour biopsy specimens as determined by high-resolution magic angle spinning 1H NMR. NMR Biomed (2008) 21(10):1138–47. doi:10.1002/nbm.1296

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2016 Haukaas, Moestue, Vettukattil, Sitter, Lamichhane, Segura, Giskeødegård and Bathen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Supplementary figures

Supplementary Figure 1: Example lipid heterogeneity within samples from the same tumor (A) Xenograft HR MAS spectra (2.1 - 0.8 ppm) from sample not frozen and samples with freezing time delay of 0 and 30 minutes (B) The samples corresponding Nile Red fluorescent-stained images showing lipid droplets within the tumor samples.

Supplementary Figure 2: Example lipid heterogeneity within samples from the same tumor (A) Xenograft HR MAS spectra (2.1 - 0.8 ppm) from freezing time delay of 0, 30 and 60 minutes (B) The samples corresponding Nile Red fluorescent-stained images showing lipid droplets within the tumor samples.

Supplementary Figure 3: PCA score plot for samples analyzed with 1.5 hour time interval. Spectra acquired from the same sample are colored accordingly.

Paper II

Metabolic clusters of breast cancer in relation to gene- and protein expression subtypes

Authors and affiliations:

Tonje H. Haukaas^{1,2}, Leslie R. Euceda¹, Guro F. Giskeødegård^{1,3}, Santosh Lamichhane^{1,4}, Marit Krohn^{2,5}, Sandra Jernström^{2,5}, Miriam R. Aure^{2,5}, Ole C. Lingjærde^{2,6,7}, Ellen Schlichting⁸, Øystein Garred⁹, Eldri U. Due^{2,5}, The Oslo Breast Cancer Consortium (OSBREAC)*, Gordon B. Mills¹⁰, Kristine K. Sahlberg^{2,11}, Anne-Lise Børresen-Dale^{2,5}, Tone F. Bathen^{1,2}

¹Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway. ²K.G. Jebsen Center for Breast Cancer Research, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway. ³St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway. ⁴Department of Food Science, Aarhus University, Faculty of Science and Technology, Årslev, Denmark. ⁵Department of Cancer Genetics, Institute for Cancer Research Oslo University Hospital, The Norwegian Radium Hospital, Oslo, Norway. ⁶Department of Computer Science, University of Oslo, Oslo, Norway. ⁷Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway. ⁸Section for Breast and Endocrine Surgery, Oslo University Hospital, Ullevål, Oslo, Norway. ⁹Department of Pathology, Oslo University Hospital, Oslo, Norway. ¹⁰Department of Systems Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA. ¹¹Department of Research, Vestre Viken, Drammen, Norway.

^{*}List of participants and their affiliations in Additional file 1.

Corresponding authors: Tone F. Bathen, Department of Circulation and Medical Imaging - MR Center, Norwegian University of Science and Technology (NTNU), Postboks 8905, Medisinsk Teknisk Forskningssenter, 7491 Trondheim, Norway; Phone: +47 73598888, Fax: +47 73598613, E.mail: tone.f.bathen@ntnu.no. Anne-Lise Børresen-Dale, Department of Cancer Genetics, Institute for Cancer Research, Rikshospitalet-Radiumhospitalet Medical Centre, Montebello, 0310 Oslo, Norway; Phone: +47 22781333, Fax: +47 22781395, E-mail: a.l.borresen-dale@medisin.uio.no

Email: Tonje H. Haukaas tonje.h.haukaas@ntnu.no – Leslie R. Euceda leslie.e.wood@ntnu.no – Guro F. Giskeødegård guro.giskeodegard@ntnu.no – Santosh Lamichhane santosh.lamichhane@food.au.dk – Marit Krohn Marit.Krohn@rr-research.no – Sandra Jernström Sandra.Nyberg@rr-research.no – Miriam R. Aure Miriam.Ragle.Aure@rr-research.no – Ole C. Lingjærde ole@ifi.uio.no – Ellen Schlichting

ELSCHL@ous-hf.no – Øystein Garred UXYSGA@ous-hf.no – Eldri U. Due Eldri.Undlien.Due@rr-research.no – Gordon B. Mills gmills@mdanderson.org – Kristine K. Sahlberg

kristine.sahlberg@vestreviken.no – Anne -Lise Børresen-Dale a.l.borresen-dale@medisin.uio.no – Tone

F. Bathen tone.f.bathen@ntnu.no

Abstract

Background: The heterogeneous biology of breast cancer leads to high diversity in prognosis and response to treatment, even for patients with similar clinical diagnosis, histology and stage of disease. Identifying mechanisms contributing to this heterogeneity may reveal new cancer targets or clinically relevant subgroups for treatment stratification. In this study we have merged metabolite, protein and gene expression data from breast cancer patients to examine the heterogeneity at a molecular level.

Methods: The study included primary tumor samples from 228 non-treated breast cancer patients. High resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS) was performed to extract the tumors metabolic profiles further used for hierarchical cluster analysis resulting in three significantly different metabolic clusters (Mc1, Mc2 and Mc3). The clusters were further combined with gene and protein expression data.

Results: Our result revealed distinct differences in the metabolic profile of the three metabolic clusters. Among the most interesting differences, Mc1 had the highest levels of glycerophosphocholine (GPC) and phosphocholine (PCho), Mc2 had the highest levels of glucose and Mc3 the highest levels of lactate and alanine. Integrated pathway analysis of metabolite and gene expression data uncovered differences in glycolysis/gluconeogenesis and glycerophospholipid metabolism between the clusters. All three clusters had significant differences in the distribution of protein subtypes classified by the expression of breast cancer related proteins. Genes related to collagens and extracellular matrix were downregulated in Mc1 and consequently upregulated in Mc2 and Mc3, underpinning the differences in protein subtypes within the metabolic clusters. Genetic subtypes were evenly distributed among the three metabolic clusters and could therefore contribute to additional explanation of breast cancer heterogeneity.

Conclusions: Three naturally occurring metabolic clusters of breast cancer were detected among primary tumors from non-treated breast cancer patients. The clusters expressed differences in breast cancer related protein as well as genes related to extracellular matrix and metabolic pathways known to be aberrant in cancer. Analyses of metabolic activity combined with gene and protein expression provides new

information about the heterogeneity of breast tumors and, importantly, the metabolic differences infer that the clusters may be susceptible to different metabolically targeted drugs.

Key Words: Metabolomics, HR MAS MRS, breast cancer subgroups, metabolic cluster, extracellular matrix

Background

Breast cancer accounts for 25% of newly diagnosed cancers and 15% of cancer deaths among women worldwide [1]. It is a heterogeneous disease [2] with high diversity in prognosis and response to treatment. Identification of underlying mechanisms contributing to this heterogeneity may reveal new cancer targets and clinically relevant subgroups and has thus been the focus of many recent studies [3-5].

Searching for genetic features causing the variation in breast cancers, Perou et al. used gene expression analyses followed by hierarchical clustering and defined naturally occurring molecular subtypes [4, 6]. These subtypes are named basal-like, luminal A, luminal B, Erb-B2+ (Her2 enriched), and normal-like, and are found to be associated with tumor characteristics and clinical outcome; patients with basal-like tumors having the shortest and luminal A the longest relapse-free survival [6]. A centroid based method called prediction analysis of microarrays 50 (PAM50), which uses the expression of 50 genes to classify breast cancer into these five intrinsic subtypes was later established and is now broadly implemented [7].

Proteins are the ultimate cellular effectors of pathways and networks within cells, tissues and organisms. Although protein levels are dependent on mRNA expression, not all mRNA will be translated into protein and further protein levels are also influenced by protein stability. In a study by Myhre et al. only 22 of 52 quantified breast cancer related proteins were found to correlate with mRNA expression levels [8] and similar low levels of correlation have been seen in large scale studies [9, 10]. Protein expression subtypes of breast cancer could give further understanding of underlying mechanisms causing heterogeneity [11]. Based on the expression of 171 breast cancer- associated proteins detected by reverse phase protein array (RPPA), six breast cancer subtypes, called RPPA-subtypes, have been defined [5]. Four of these subgroups were in high accordance with the gene expression profiles of the PAM50 subtypes and named accordingly; Basal, Her2, Luminal A and Luminal A/B. In addition, two new subgroups were defined; reactive I and reactive II, based on expression of proteins possibly produced by the surrounding microenvironment

The chemical processes controlled by proteins involve metabolites as intermediates or end- products. In metabolomics, metabolite levels are measured to gather the final downstream information of ongoing cellular processes. Which processes are active at a specific time point, is strongly influenced by environmental factors like diet and drugs as well as disease state. Well-established metabolic differences have been observed when comparing cancer cells to normal cells. Cancer cell energy production frequently depends on increased glycolysis and production of lactate from glucose regardless of access to oxygen, in contrast to normal cells which produce pyruvate and lactate in aerobic conditions [12]. Also, to produce macromolecules/biomass, mitochondrial metabolism is reprogrammed [13]. Altered metabolism has therefore been included as one of the emerging hallmarks of cancer [14]. In breast cancer, metabolic differences between cancer tissue and normal adjacent tissue have been studied by the magnetic resonance spectroscopy (MRS) method high resolution magic angle spinning (HRMAS) MRS [15]. Using this technique, metabolic profiles and biomarkers predicting long-term survival for locally advanced breast cancer [16], node involvement of patients with infiltrating ductal carcinoma [17] and 5-year survival for ER positive patients [18] have been identified.

Merging transcriptomics and metabolomics led to the discovery of three luminal A subgroups with distinct metabolic profiles and significant differences within gene set expression in a study by Borgan et al. [19]. The aim of the current study was to establish clusters of breast cancer based on the metabolic expression using an approach similar to Borgan et al., but in a larger cohort of patients including all PAM50 subgroups. This approach reveals the main metabolic differences between untreated breast tumors. In addition, the combination of the metabolic clusters with transcriptomics and protein expression data provide an opportunity for information gain from each -omics technology, giving further characterization of the defined metabolic clusters.

Methods

Patients and tissue samples

Primary breast carcinoma samples from 228 patients at the Oslo University Hospital (Radium Hospital and Ullevål Hospital) were collected in the time period 2006 – 2009 as part of the Oslo2 study. The study is approved by the Norwegian Regional Committee for Medical Research Ethics (Biobank approval 1.2006.1607), and all patients have given written consent for the use of material for research purposes. The samples were fresh frozen after surgery and stored at -80°C. The tumors were divided into smaller pieces depending on their size and one of them was selected for this study. The samples were cut into three sections where the edges of the two outer pieces were used for histological evaluation and an adequate part of the mid pieces were used for HR MAS MRS experiments to obtain metabolic profiles. The remnants of all three pieces were pooled and cut into smaller pieces with scalpel, and depending on the size of the tumor divided into fractions used for extraction of DNA, RNA and protein. Due to high lipid content, HR MAS MRS was performed on a second piece from the same tumor for 13 of the samples. A total of 228 samples were analyzed by MR spectroscopy, of which 201 and 217 were analyzed for gene expression by arrays and protein expression using RPPA, respectively, leaving a total of 191 samples analyzed by all three methods. Patient and tumor characteristics are shown in Table 1.

HR MAS MRS Spectra

HR MAS MRS spectra were acquired from tissue samples (mean sample weight: 7.3 mg) on a Bruker Avance III 600MHz/54 mm US (Bruker, Biospin GmbH, Germany) equipped with a 1H/13C MAS probe with gradient aligned with the magic angle (Bruker, Biospin GmbH, Germany). Spin-echo spectra were recorded using a Carr-Purcell-Meiboom-Gill (cpmg) pulse sequence (cpmgpr1d; Bruker). For experimental details and information about data processing, see Additional file 1.

43 samples were excluded from the original sample cohort of 271 samples due to large lipid content. The spectral region between 1.40 and 4.70 ppm was chosen for further analysis excluding lipid peaks at 4.36-4.27, 2.88-2.70, 2.30-2.20, 2.09-1.93 and 1.67-1.50 ppm. After removal of the lipid residuals, the spectra

were mean normalized to account for differences in tumor cell percentage and sample weight, as it can be assumed that most of the lipid signals from breast samples do not originate from cancer cells.

Protein experiments and protein expression subtyping

Protein levels were determined using Reverse Phase Protein Array (RPPA), a platform were single protein levels can be measured across a series of samples simultaneously [20]. 150 primary antibodies were used to detect breast cancer related proteins (Additional file 2, Add. Table 1). For analytical details, see Additional file 1.

The samples underwent consensus clustering with an option for 4 or 5 groups. The best fit on consensus clustering identified 5 groups, luminal, HER2, basal and reactive I and II subsets as defined in The Cancer Genome Atlas Network data set [5].

mRNA expression profiling and gene expression subtyping

Total RNA was isolated with TRIzol (Invitrogen, Carlsbad, CA, USA). Expression of mRNA was measured using SurePrint G3 Human GE 8x60K (Aglient Technologies) according to the manufactory's protocol (One-Color Microarray-Based Gene expression Analysis, Low Input Quick Amp Labeling, v.6.5, May 2010) and 100 ng RNA was used as input for labeling. Arrays were log2-transformed, quantile normalized and hospital adjusted [21]. Values corresponding to probes with identical Entrez ID were averaged to form a single expression value per gene.

The PAM50 subtype algorithm [7] was used to assign a subtype label to each sample as previously described [22].

Statistical analysis

Subgrouping with cluster analysis of metabolic data

Hierarchical cluster analysis (HCA) was performed with Euclidean distance as the distance parameter and Ward's method (furthest inner square distance) as the clustering distance (Statistical toolbox, Matlab

R2013b, The Mathworks, Inc., USA) on the preprocessed metabolic spectra. Similar spectra based on the distance measures cluster together. The dendrogram was cut to give three clusters. To evaluate the robustness of the three HCA clusters, Partial Least Square Discriminant analysis (PLS-DA) model, using the cluster group for classification was carried out and classification accuracy was evaluated. For details, see Additional file 1.

Analysis of metabolic profiles

Metabolite assignments were performed based on literature values [23] and metabolite levels were calculated as the integral of fixed regions corresponding to the metabolite of interest. Kruskal-Wallis test was performed to compare metabolite levels between clusters. Calculated p values were corrected for multiple testing by The Benjamini Hochberg false discovery rate (FDR) in Matlab, and the differences were considered statistically significant for adjusted $p \le 0.05$.

Analysis of subtype and clinical distributions

Differences in the distributions of RPPA and PAM50 subtype as well as that of other clinical characteristics of the tumors between the different metabolic clusters were tested for significance using Fisher's Exact Test for Count Data (R 2.15.2). Calculated p values were corrected for multiple testing by The Benjamini Hochberg FDR, and the differences were considered statistically significant for adjusted p < 0.05.

Analysis of gene expression data

Significance Analysis of Microarrays (SAM) was used to identify differentially expressed gene between the metabolic clusters [24]. SAM analysis was performed using 21851 genes from 42405 mRNA probes. The expression analysis was performed in R 2.15.2 [25] with the cluster group as the dependent variable and a total of 100 permutations. T-statistics/Wilcoxon statistics were calculated using multiclass comparisons and two-class unpaired tests while comparing two clusters. The differences were considered statistically significant for adjusted p < 0.01.

DAVID, an online network analysis tool [26], was used to search for biological functions within gene sets. DAVID was performed on the gene list over for each of the class comparisons produced by SAM. Official gene symbol was selected as gene identifier. The Functional Annotation Clustering report of this software reports similar annotations together, where the member of a cluster have similar biological meaning due to sharing of similar gene members.

Gene Set Enrichment Analysis (GSEA) was used to identifying sets of genes that were enriched in the metabolic clusters [27, 28]. During each cluster comparison genes were ranked depending on calculated absolute signal to noise-ratio (eq.1), where μ and σ are the mean and standard deviation, respectively.

$$abs(\frac{\mu_A - \mu_B}{\sigma_A + \sigma_B})$$
 (eq. 1)

High absolute signal to noise -ratio will represent genes that are more likely to be "class markers" in the comparison because of high difference in expression.

The gene set C5 (Gene Ontology (GO) gene sets) available from the Molecular Signatures Database (MSigDB) [29] from The Broad Institute was chosen for evaluation of enrichment. 1004 (of 1454) gene sets from this data base passed the filtering of lacking any gene from the expression data followed by minimum and maximum size of 15 and 500 genes, respectively. For each comparison, 1000 permutations on phenotypes were performed and FDR cutoff was set to 25% (recommended in the manual).

Integrated Pathway Analysis

To combine transcriptomics and metabolic data the 'Integrated pathway analysis' tool in MetaboAnalyst 3.0 software was used [30]. Genes with adjusted p < 0.05 from SAM analysis and metabolites differently expressed between the clusters were used as input. Pathways with p values \leq 0.05 were interpreted as significant.

Results

Three main metabolic clusters of breast cancer

From the spectral data of 228 breast tumors, hierarchical clustering gave a dendrogram divided in three metabolic clusters (Mc) (Figure 1A) Mc1, Mc2 and Mc3. The mean spectra of the clusters are illustrated in Figure 1B.

Prediction of the metabolic clusters by PLS-DA resulted in a model with two valid latent variables LVs (Figure 2A). The clusters Mc1 and Mc2 were well separated in the score plot of LV1 and LV2, while most Mc3 samples had low values of LV2. Classification accuracy was found to be 91.1%, 88.7% and 69.9%, respectively, for the three clusters. Permutation testing showed that all three clusters had significantly different metabolic profiles (p < 0.001). The regression vectors for each of the clusters (Figure 2B) indicate each metabolite's influence on the cluster prediction. The regression vector for Mc1 showed that high levels of glycerophosphocholine (GPC) and phosphocholine (PCho) and low levels of lactate (Lac), taurine (Tau) and alanine (Ala) were important for the class prediction result. For Mc2, high levels of β -glucose (β -Glc) were important as well as low levels of Lac, creatine (Cr), glycine (Gly), Tau, GPC, PCho and Ala. Mc3 had a regression profile with low β -Glc, GPC and PCh levels, and high Lac, Gly, Tau, Cr and Ala levels. Univariate comparison of metabolite levels between the three clusters revealed that 15 out of 18 metabolites analyzed were found to be significantly different (adjusted p < 0.05) between at least two of the clusters (Table 2). Combination of metabolic cluster labels and heatmap of metabolite fold change further illustrate this (Figure 3).

Clinical parameters (tumor size, histology, grade, node status, hormone receptor status) were analyzed for differences in distribution among the metabolic clusters. Only histology was found to be significantly different between the clusters (adjusted p = 0.0144), where 11 of 21 lobular tumors and all ductal carcinoma in situ (DCIS) (n = 4) were classified as Mc2 (Table 1).

Protein expression subtype (RPPA) distribution differs between the three metabolic clusters

The metabolic clusters were investigated for differences in distribution of PAM50- and RPPA subtypes. While PAM50 subtypes did not show increased frequency of occurrence in any of the metabolic clusters, (Figure 3C, adjusted p = 0.138), RPPA distribution was significantly different (Figure 3D, adjusted p = 1.43E-04) with only 9% of the RPPA reactive I and II samples being classified as Mc1, and 44% of Mc2 samples subtyped as reactive I. The complete distribution of PAM50- and RPPA subtypes is listed in Table 3.

SAM reveals only one metabolic cluster to have differences in gene expression

SAM was performed to identify expression differences between the metabolic clusters. Of the 21851 genes, multiclass SAM showed that 696 were differently expressed between the metabolic clusters with adjusted p < 0.01 (Figure 3E, Additional file 2, Add. Table 2). Further investigation through two-class SAM revealed that Mc2 and Mc3 did not have significant differences in mRNA expression, while they had 413 and 617 genes upregulated, respectively, compared to Mc1 (Additional file 2, Add. Table 3 and 4, respectively). Out of these, 277 genes were found in both comparisons and upregulated compared to Mc1. DAVID software was used to investigate the biological interactions between genes that were found to be significantly differentially expressed between the metabolic clusters.

A total of 404 of the 413 significant genes from SAM between Mc1 and Mc2 were identified by DAVID. Functional Annotation Clustering resulted in 117 clusters (Top 10 in Additional file 2, Add. Table 5), where the clusters with the highest enrichment scores were linked to signaling, extracellular region and cell adhesion.

A total of 653 of the 671 significant genes from SAM between Mc1 and Mc3 were identified by DAVID. Functional Annotation Clustering resulted in 236 clusters (Top 10 in Additional file 2, Add. Table 6), where the clusters with the highest enrichment scores were linked to extracellular matrix (ECM), cell adhesion and basement membrane.

Enrichment analysis shows gene expression differences to be related to extracellular matrix (ECM) activity

Since Mc1 was found to have a gene expression pattern different from both Mc2 and Mc3 and these two clusters lacked statistically significant gene expression differences, Mc1 was compared to Mc2 and Mc3 combined in GSEA. This resulted in 146 of the gene ontology gene sets altered in Mc1 compared to Mc2 and Mc3 (Additional file 2, Add. Table 7). Gene sets with the highest significance were classified with functions within collagen, ECM and integrin binding. None of the gene ontology sets were significantly different when comparing Mc2 to Mc1 combined with Mc3, but 44 gene sets were significantly enriched when comparing Mc2 to Mc1 alone, with gene ontology terms relevant to ECM dominating the result (Additional file 2, Add. Table 8). 11 gene sets were significantly altered between Mc3 and Mc1 combined with Mc2 (Additional file 2, Add. Table 9) and also here ECM related findings were reported. 114 gene sets were significantly different between Mc1 and Mc3, while none were significant between Mc2 and Mc3 (results not shown).

Joint analysis of gene and metabolite expression shows differences in metabolic pathways

Integrated Pathway Analysis resulted in 12 significantly different metabolic pathways (p value < 0.05) between Mc1 and Mc2 (Additional file 2, Add. Table 10). The most significant pathway was 'Tyrosine metabolism' with 8 hits of genes and metabolites, but also 'D-Glutamine and D-glutamate metabolism', 'Glycolysis / Gluconeogenesis' (Figure 4A) and 'Glycerophospholipid metabolism' (Figure 4B) were among the significant pathways. Integrated Pathway Analysis resulted in 4 significantly different metabolic pathways (p value < 0.05) between Mc1 and Mc3 (Additional file 2, Add. Table 11). The most significant pathway was 'Glycerophospholipid metabolism' with 9 hits, succeeded by 'D-Glutamine and D-glutamate metabolism'.

Discussion

In the present work, metabolite, protein and gene expression data from 228 breast tumors were combined to search for new insight into the heterogeneity of breast cancer. MR metabolite data was used to derive naturally occurring metabolic clusters, which were further combined with data from the proteomics and transcriptomics levels. We identified three significantly different metabolic clusters, Mc1, Mc2, and Mc3, with significant differences in gene expression and protein expression profiles, but not within PAM50 subgroups. The metabolic clusters could therefore contribute with additional information beyond the intrinsic gene sets for understanding breast cancer heterogeneity.

Of the three metabolic clusters, Mc1 was on a separate branch in the dendrogram indicating that the metabolic profile of this cluster was the most different. This cluster is defined by significantly higher levels of GPC and PCho, two choline-containing metabolites involved in the synthesis and degradation of phosphatidylcholine (PtdCho), a major component of cell membranes [31]. Altered choline metabolism has been considered an emerging hallmark for malignant transformations, and has been detected in several cancer types including breast cancer [32]. PCho in particular has been suggested a biomarker of breast cancer [33]. Both GPC and PCho are confirmed elevated in tumor tissue compared to adjacent noninvolved tissue from breast cancer patients [17] and a higher GPC/PCho-ratio has been reported in ER negative tumors [34, 35]. The latter was also observed for our cohort (results not shown), however, there was no significant difference in ER status between the three metabolic clusters. Thus, the high level of GPC and PCho is not resulting from differences in the distribution of estrogen receptor (ER) status. Interestingly, integrated pathway analysis showed that 'Glycerophospholipid metabolism' was the most significant pathway, when comparing Mc1 to Mc2. This metabolic pathway had eight hits including the metabolites GPC and PCho and genes LCAT, LPCAT2, PPAP2A, PPAP2B, PLD1 and AGPAT4. Downregulation of the expression of these genes in Mc1 indicate a less active degradation of PtdCho causing an accumulation of GPC and PCho, thus explaining the higher levels of GPC and PCho in Mc1. Furthermore, LPCAT2 is involved in the reaction where the GPC precursor (acyl-GPC) is converted into

PtdCho. Lower expression of this gene may explain why the GPC precursor is directed to the production of GPC instead of PtdCho. The same hits were obtained when Mc1 was compared to Mc3. In addition, *PLA2G5*, one of the enzymes degrading PtdCho to acyl-GPC, is downregulated in Mc1 compared to Mc3, further supporting that Mc1 has an altered PtdCho metabolism.

For Mc1 compared to Mc2 through integrated pathway analysis, 'D-glutamine and D-glutamate metabolism' has only two hits, but comes out as significant because of the small number of genes and metabolites within this pathway. Interestingly, the gene *GLS* which catalyzes the conversion of glutamine to glutamate is downregulated in Mc1, the cluster with lowest levels of glutamate. Glutamine metabolism is considered a therapeutic target as some cancer cells exhibit high uptake and addiction to this nonessential amino acid [36]. Since there were no differences in glutamine levels of Mc1 and Mc2, less glutamate in Mc1 could indicate that more glutamine is directed towards other metabolic pathways necessary for proliferation, glutathione needed for reducing power or further that glutamate is rapidly metabolized in cells through the TCA cycle or other mechanisms.

The distribution of protein subtypes (RPPA) was significantly different between the metabolic clusters, whereas no significant differences in the distribution of PAM50 subtypes were found. Thus, the metabolic difference between Mc1, Mc2 and Mc3 is not a result of intrinsic subtypes and might therefore contain additional information for understanding breast cancer heterogeneity. Among the tumors clustered in Mc1, 12% were classified as RPPA-reactive (either I or II) while 49% were classified as RPPA-luminal. The reactive RPPA subtypes have a characteristic protein expression pattern probably produced by the microenvironment [5], indicating less microenvironmental activity within Mc1. Mc1 also had downregulation of several genes involved in processes within the ECM of the stroma compared to both Mc2 and Mc3. As ECM changes can drive cancer behavior [37], these genetic differences between Mc1 and Mc2 might be of prognostic relevance. In fact, differences in expression of ECM-related genes have been used to stratify breast carcinomas into four groups, where the subgroup ECM1 have the worst prognosis [38]. ECM-classification was not performed on this cohort. However, 34 of 43 genes that

clustered with a tendency of being downregulated in ECM1 and ECM2 were also found to be downregulated in Mc1. In addition, only 5 of 46 genes reported to be downregulated in ECM2 compared to ECM1 were downregulated in Mc1 (results extracted from SAM analyses, Additional file 2, Add. Table 5-6). These results support the contention that Mc1 tumors have an ECM signature similar to the reported ECM2 tumors. ECM2 did not show significant difference in disease outcome compared to ECM3 and ECM4, but had better prognosis than ECM1 tumors [38].

Mc2 has a metabolic profile with significant higher glucose level and at the same time lower levels of most of the other metabolites compared to one or both of the remaining clusters. High glucose level could reflect lower glucose consumption, inferring a lower demand for energy within these tumors. 'Glycolysis / Gluconeogenesis' came out as a significant pathway when Mc1 was compared to Mc2 during integrated pathway analysis with two metabolite hits and five gene hits. For the most significant metabolite, glucose, the levels are higher in Mc2 compared to Mc1. Glucose is the main source of energy for mammalian cells, either through aerobic glycolysis (production of lactate even in the presence of oxygen) or tricarboxylic acid (TCA) cycle and oxidative phosphorylation. For normal proliferating cells and cancer cells, which both have an increased energy demand, a glycolytic switch is often observed (higher glycolytic rate) [12]. The increased glycolysis is followed by fermentation of the pyruvate to lactate (Warburg effect), in contrast to the conversion of acetyl CoA through the TCA cycle that occurs in normal non-proliferating cells. Increased glucose consumption is commonly used in tumor detection using a glucose analogue and positron emission tomography (PET) [39] and has shown to correlate with poor prognosis and tumor aggressiveness [12]. However, not all breast cancers are detected by PET. Here we expect lower sensitivity in detection of Mc2 tumors due to the possible difference in glycolytic rate. None of the genes with hits in 'Glycolysis / Gluconeogenesis' for the comparison of Mc1 and Mc2 could directly explain the high glucose levels of Mc2 tumors, but altered expression of the genes indicate pyruvate being guided towards the TCA cycle rather than lactate production. Two of the alternative fates of pyruvate showed significantly higher levels (alanine) or levels approaching significance (lactate, adjusted p = 0.056),

supporting a higher glycolytic rate in Mc1 and that the pyruvate produced is not directed to metabolism in the TCA cycle. The significantly lower acetate levels in Mc1 compared to Mc2 could be linked to *ALDH1A3* and *ALDH2* downregulation, since the enzymatic product of these genes catalyzes the reversible reaction where acetaldehyde is converted to acetate.

Both DAVID and GSEA showed that many of the genes found to be downregulated in Mc1 and consequently upregulated in Mc2 were related to ECM activity. Mc2 had the highest percentage of RPPA-reactive I with 44% of Mc2 tumors classified as this protein subtype, also related to stromal changes.

Together with the metabolic finding, this implies that Mc2 tumors have cancer cells with low proliferating rate and at the same time ongoing changes within the ECM of the stroma. Mc2 tumors also had a higher frequency of lobular and ductal carcinoma in situ, indicating metabolic differences between histological subtypes of breast cancer which should be further investigated.

Mc3 has the highest lactate levels of all three clusters and higher glycine level than Mc2. These metabolites have been related to poor prognosis in ER positive patients [18] and higher levels of glycine is also associated with poor prognosis in a study irrespective of ER status [40]. Although the ER-positive patients are equally distributed among our reported metabolic clusters, Mc3 expressed higher levels of both of these metabolites compared to Mc2. Moestue et al. detected differences in the expression of genes involved in choline degradation that could explain higher glycine concentrations in the poor-prognosis basal-like breast cancer xenograft model compared to luminal-like [41]. Five of the genes described by Moestue et al. were significantly upregulated in Mc3 compared to Mc1; AGPAT4, PPAP2B, PPAP2A, LCAT and PLD1. Of these, LCAT and PLD1 are directly involved in choline metabolism. LCAT catalyze the conversion of PtdCho to acyl-GPC while PLD1 catalyzes the conversion of PtdCho to choline. Higher GPC levels, but no difference in choline levels in Mc3 compared to Mc1 indicates that a higher amount of GPC is converted to choline in Mc3, and further contributing to higher glycine levels through choline degradation.

Mc3 share similarities with a previously reported metabolic subgroup of luminal A tumors with significantly lower levels of glucose, higher levels of alanine and nearly significantly higher lactate levels [19]. In Mc3 we also see a significant higher level of lactate. Since one of the main sources of alanine is pyruvate, which also is the source for lactate, it appears that Mc3 is a cluster with a switch in glycolytic activity.

The majority of Mc3 tumors were classified as RPPA-luminal, similar to Mc1. In contrast to Mc1, Mc3 had a higher percentage of RPPA-reactive II tumors, probably linked to changes in stromal content. Also gene expression wise this was observed by significantly different gene expressions linked to ECM activity and the gene expression profile of Mc3 was found similar to the previously reported ECM3 or ECM4 subtypes [38].

In this study, information flow between the transcriptomics, proteomics and metabolomics levels is illustrated; at the transcriptomics level only one of the metabolic clusters shows difference in gene expression compared to the two others, while at the proteomics level there is difference between all three clusters. Combining these findings, Mc1 is expected to have the worst prognosis due to the distinct gene expression profile and the alterations in both glycerophospholipid metabolism and evidence of increased glycolytic rate. However, this has to be validated when 5-years follow-up of this cohort is available. The main metabolic characteristics, especially of Mc1 and Mc3, have been proposed as treatment targets that could improve the therapeutic effect [42]. Cancer therapy targeting choline kinase alpha (CHK- α), the enzyme responsible for PCho production from choline, cause tumor growth arrest and apoptosis in preclinical models [43], while treatment targeting glycolytic enzymes in combination with chemotherapy has been shown to re-sensitize cancer cells that had become resistant to treatment [42]. Metabolic classification as illustrated here could therefore be relevant for developing a more targeted treatment plan. Importantly, the prognostic value of the clusters should be evaluated once 5-year follow-up is available.

Conclusion

We have here identified three metabolic clusters of breast cancer, also characterized with differences at the proteomic and transcriptomic level. The metabolic clusters are not reflecting the intrinsic genetic subtypes and may give important additional information for understanding breast cancer heterogeneity. Gene enrichment analysis revealed diverse ECM characteristics among these clusters in accordance with RPPA-subtyping. The approach of combining information from several -omics levels in the same tumor shows promise in improving the understanding of breast cancer heterogeneity potentially leading to more patient specific treatment.

Abbreviations

Ala: alanine; Cr: creatine; DCIS: ductal carcinoma in situ; ER: Estrogen receptor; ECM: extracellular matrix; FDR: False discovery rate; GSEA: Gene Set Enrichment Analysis; GPC: glycerophosphocholine; Gly: glycine; HCA: Hierarchical cluster analysis; HR MAS MRS: High resolution magic angle spinning magnetic resonance spectroscopy; Lac: lactate; MRS: Magnetic resonance spectroscopy; Mc: Metabolic cluster; MSigDB: Molecular Signatures Database; PLS-DA: Partial Least Square Discriminant analysis; PtdCho: phosphatidylcholine (PtdCho); PCho: phosphocholine; PET: positron emission tomography; PAM50: prediction analysis of microarrays 50; RPPA: reverse phase protein array; SAM: Significance Analysis of Microarrays; Tau: taurine; TCA: tricarboxylic acid; β-Glc: β-glucose.

Competing interests

The authors disclose no potential competing interest.

Authors' contributions

THH, LRE, GFG, OLC, ES, ØG, OSBREAC, KKS, ALBD and TFB participated in the design of the study. KKS, ALDB and TFB conceived the study. THH, LRE, GFG, KKS, ALDB and TFB interpreted the data. SL and THH performed the HR MAS MRS acquisition. THH performed statistical analysis and

drafted the manuscript. MK, SJ, MRA, OCL, ES, ØG, EUD, OSBREAC, GBM, KKS, ALDB and TFB participated in acquisition of the data. All authors have read and helped to revise the manuscript. The final manuscript is approved by all the authors.

Acknowledgements

The HR MAS MRS analysis was performed at the MR Core Facility, Norwegian University of Science and Technology (NTNU). MR core facility is funded by the Faculty of Medicine at NTNU and Central Norway Regional Health Authority

This work was supported by:

- (1) K. G. Jebsen Center for Breast Cancer Research. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
- (2) Cancer Society of Norway
- (3) South-Eastern Norway Regional Health Authority (Project no 2011042, OSBREAC: Towards personalized therapy for breast cancer)
- (4) The Research Council of Norway, Imaging the breast cancer metabolome, Project no 221879
- (5) Liaison Committee between the Central Norway Regional Health Authority and NTNU Project no 46056615
- (6) NCI grants P01CA0099031 and P30 CA016672 to GBM

References

- Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. 2013. http://globocan.iarc.fr. Accessed:04/01 2015.
- 2. Polyak K. Heterogeneity in breast cancer. J Clin Invest. 2011;121(10):3786-8.
- Wang Y K and Crampin E J. Biclustering reveals breast cancer tumour subgroups with common clinical features and improves prediction of disease recurrence. BMC genomics. 2013;14(1):102.
- 4. Perou C M, Sørlie T, Eisen M B, van de Rijn M, Jeffrey S S, Rees C A, et al. Molecular portraits of human breast tumours. Nature. 2000;406(6797):747-52.
- 5. The Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61-70.
- Sørlie T, Perou C M, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad of Sci U S A. 2001;98(19):10869-74.
- 7. Parker J S, Mullins M, Cheang M C, Leung S, Voduc D, Vickery T, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol. 2009;27(8):1160-7.
- Myhre S, Lingjærde O-C, Hennessy B T, Aure M R, Carey M S, Alsner J, et al. Influence of DNA copy number and mRNA levels on the expression of breast cancer related proteins. Mol Oncol. 2013;7(3):704-18.
- 9. Akbani R, Ng P K S, Werner H M, Shahmoradgoli M, Zhang F, Ju Z, et al. A pan-cancer proteomic perspective on The Cancer Genome Atlas. Nat Commun. 2014;5.
- 10. Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, et al. Proteogenomic characterization of human colon and rectal cancer. Nature. 2014;513(7518):382-7.
- 11. Hennessy B T, Lu Y, Gonzalez-Angulo A M, Carey M S, Myhre S, Ju Z, et al. A technical assessment of the utility of reverse phase protein arrays for the study of the functional proteome in non-microdissected human breast cancers. Clin Proteomics. 2010;6(4):129-51.
- 12. Gatenby R A and Gillies R J. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4(11):891-9.
- 13. Ward P S and Thompson C B. Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer cell. 2012;21(3):297-308.
- Hanahan D and Weinberg R A. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74.
- Bathen T F, Geurts B, Sitter B, Fjøsne H E, Lundgren S, Buydens L M, et al. Feasibility of MR metabolomics for immediate analysis of resection margins during breast cancer surgery. PLoS One. 2013;8(4):e61578.
- Cao M D, Sitter B, Bathen T F, Bofin A, Lønning P E, Lundgren S, et al. Predicting long-term survival and treatment response in breast cancer patients receiving neoadjuvant chemotherapy by MR metabolic profiling. NMR Biomed. 2012;25(2):369-78.
- 17. Sitter B, Lundgren S, Bathen T F, Halgunset J, Fjosne H E, and Gribbestad I S. Comparison of HR MAS MR spectroscopic profiles of breast cancer tissue with clinical parameters. NMR Biomed. 2006;19(1):30-40.
- Giskeødegård G F, Lundgren S, Sitter B, Fjøsne H E, Postma G, Buydens L, et al. Lactate and glycine—potential MR biomarkers of prognosis in estrogen receptor-positive breast cancers. NMR Biomed. 2012;25(11):1271-9.
- Borgan E, Sitter B, Lingjærde O C, Johnsen H, Lundgren S, Bathen T F, et al. Merging transcriptomics and metabolomics-advances in breast cancer profiling. BMC Cancer. 2010;10(1):628.

- 20. Tibes R, Qiu Y, Lu Y, Hennessy B, Andreeff M, Mills G B, et al. Reverse phase protein array: validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. Mol Cancer Ther. 2006;5(10):2512-21.
- 21. Aure M R, Jernström S, Krohn M, Vollan H K M, Due E Ü, Rødland E, et al. Integrated analysis reveals microRNA networks coordinately expressed with key proteins in breast cancer. Genome Med. 2015;7(1).
- 22. Nilsen G, Vollan H K M, Pladsen A V, Borgan Ø, Liestøl K, Vitelli V, et al., Dissecting genome aberration patterns in tumors, Submitted 2015.
- Sitter B, Sonnewald U, Spraul M, Fjösne H E, and Gribbestad I S. High-resolution magic angle spinning MRS of breast cancer tissue. NMR Biomed. 2002;15(5):327-37.
- 24. Tusher V G, Tibshirani R, and Chu G. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001;98(9):5116-21.
- R Core Team. R: A language and environment for statistical computing. 2012. http://www.R-project.org.
- 26. Da Wei Huang B T S and Lempicki R A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2008;4(1):44-57.
- Subramanian A, Tamayo P, Mootha V K, Mukherjee S, Ebert B L, Gillette M A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545-50.
- 28. Mootha V K, Lindgren C M, Eriksson K-F, Subramanian A, Sihag S, Lehar J, et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267-73.
- Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, and Mesirov J P. Molecular signatures database (MSigDB) 3.0. Bioinformatics 2011. http://www.broadinstitute.org/gsea/msigdb/index.jsp. Accessed:08/10 14.
- 30. Xia J, Mandal R, Sinelnikov I V, Broadhurst D, and Wishart D S. MetaboAnalyst 2.0--a comprehensive server for metabolomic data analysis. Nucleic Acids Res. 2012;40(Web Server issue):W127-33.
- Gibellini F and Smith T K. The Kennedy pathway--de novo synthesis of phosphatidylethanolamine and phosphatidyleholine. IUBMB Life. 2010;62(6):414-28.
- 32. Glunde K, Bhujwalla Z M, and Ronen S M. Choline metabolism in malignant transformation. Nat Rev Cancer. 2011;11(12):835-48.
- 33. Eliyahu G, Kreizman T, and Degani H. Phosphocholine as a biomarker of breast cancer: molecular and biochemical studies. Int J Cancer. 2007;120(8):1721-30.
- Grinde M T, Skrbo N, Moestue S A, Rødland E A, Borgan E, Kristian A, et al. Interplay of choline metabolites and genes in patient-derived breast cancer xenografts. Breast Cancer Res. 2014.
- 35. Giskeødegård G F, Grinde M T, Sitter B, Axelson D E, Lundgren S, Fjøsne H E, et al. Multivariate modeling and prediction of breast cancer prognostic factors using MR metabolomics. J Proteome Res. 2010;9(2):972-79.
- 36. Wise D R and Thompson C B. Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci. 2010;35(8):427-33.
- 37. Tlsty T D and Hein P W. Know thy neighbor: stromal cells can contribute oncogenic signals. Curr Opin Genet Dev. 2001;11(1):54-9.
- Bergamaschi A, Tagliabue E, Sørlie T, Naume B, Triulzi T, Orlandi R, et al. Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. J Pathol. 2008;214(3):357-67.
- Mankoff D A, Eary J F, Link J M, Muzi M, Rajendran J G, Spence A M, et al. Tumor-specific positron emission tomography imaging in patients:[18F] fluorodeoxyglucose and beyond. Clin Cancer Res. 2007;13(12):3460-9.

- 40. Sitter B, Bathen T F, Singstad T E, Fjøsne H E, Lundgren S, Halgunset J, et al. Quantification of metabolites in breast cancer patients with different clinical prognosis using HR MAS MR spectroscopy. NMR Biomed. 2010;23(4):424-31.
- 41. Moestue S A, Borgan E, Huuse E M, Lindholm E M, Sitter B, Børresen-Dale A-L, et al. Distinct choline metabolic profiles are associated with differences in gene expression for basal-like and luminal-like breast cancer xenograft models. BMC Cancer. 2010;10(1):433.
- 42. Zhao Y, Butler E, and Tan M. Targeting cellular metabolism to improve cancer therapeutics. Cell Death Dis. 2013;4(3):e532.
- 43. Glunde K, Jiang L, Moestue S A, and Gribbestad I S. MRS and MRSI guidance in molecular medicine: targeting and monitoring of choline and glucose metabolism in cancer. NMR Biomed. 2011;24(6):673-90.

Tables

	Total	Mc1	Mc2	Mc3
Number of patients	228	58	58	112
Age (years)				
Mean (range)	55.5 (31.8 – 81.1)	58.0 (33.2 - 80.8)	58.6 (40.9 - 81.1)	52.7 (31.8 - 73.9
Clinical classification				
Histology				
Ductal	186	52	37	97
Lobular	21	4	11	6
Medullary	0	0	0	0
Ductal carsinoma in situ (DCIS)	4	0	4	0
Metaplastic	1	0	1	0
Mucinous	4	0	2	2
Tubular	4	1	1	2
Mixed	2	1	0	1
Papillary	0	0	0	0
NA	6	0	2	4
Primary tumor	•	, and the second	_	
Tx or NA	9	1	3	5
T0	0	0	0	0
pTis	4	0	4	0
T1	113	31	28	54
T2	93	24	21	48
T3	9	2	2	5
T4	0	0	0	0
Grade	· ·	v	v	· ·
I	31	8	10	13
II	93	20	24	49
III	97	30	21	46
NA	7	0	3	4
Node status	,	v	J	·
N0	133	34	36	63
N1(mi)	8	3	3	2
N1	59	17	13	29
N2	14	2	3	9
N3	8	2	1	5
NA	6	0	2	4
Receptor status	V	v	-	•
HER2+	26	7	7	12
HER2-	192	51	45	96
ER+	178	49	42	87
ER-	40	9	10	21
PR+	155	39	36	80
PR-	63	19	16	28
NA not available	10	0	6	4

	Mc1 (n=58)	1=58)	Mc2 (n=58)	(85=1	Mc3 (n=112)	=112)	Adjusted P value	Significant between
Metabolite name	Mean	SE	Mean	SE	Mean	SE		
Beta-D-Glucose	30.0	27.7	711.7	55.2	32.3	16.3	3.62E-09	Mc2 vs rest
Ascorbate	40.0	17.1	28.8	9.8	38.3	13.6	1.02E-05	Mc2 vs rest
Lactate	259.5	73.0	229.4	57.6	303.6	76.7	4.98E-09	Mc3 vs rest
L-Tyrosine	407.5	56.5	352.8	82.6	405.9	62.4	1.22E-04	Mc2 vs rest
Glycine	187.0	80.8	152.3	41.9	195.7	8.89	1.04E-04	Mc2 vs Mc3
Myoinositol	163.7	47.0	217.7	53.5	196.1	54.3	9.44E-07	all
Taurine	332.2	122.7	330.2	84.0	369.3	99.3	0.017	Mc1 vs Mc3
Scylloinositol	55.0	16.2	94.7	186.5	62.5	32.1	0.138	NS
Glycerophosphocholine	210.0	91.6	107.9	33.6	151.2	48.4	4.44E-12	all
Phosphocholine	552.0	131.1	216.8	8.99	327.2	6.69	9.59E-33	all
Choline	135.2	44.6	120.3	37.7	132.9	42.2	0.128	NS
Creatine	149.9	64.2	93.2	33.7	136.0	52.1	1.41E-09	Mc2 vs rest
Glutathione	57.5	13.8	50.9	13.9	58.1	14.5	0.011	Mc2 vs Mc3
Glutamine	134.4	41.3	134.3	30.2	145.4	43.6	0.223	NS
Succinate	58.0	15.7	53.6	10.6	62.2	15.7	0.003	Mc2 vs Mc3
Glutamate	237.9	61.3	266.2	63.3	277.5	61.2	1.95E-04	Mc1 vs rest
Acetate	32.7	0.6	48.4	17.2	40.3	13.1	7.89E-08	all
Alanine	82.6	36.6	0.99	24.9	95.1	33.8	6.56E-07	all

The values are calculated by integrated peak areas from normalized spectra to equal total areas. Kruskal- Wallis test was performed to compare metabolite levels between clusters and P values were adjusted for multiple testing by The Benjamini Hochberg false discovery rate. NS: not significant (adjusted p > 0.05)

Table 3: Distribution of PAM50 and RPPA subtype among the metabolic clusters. Values in brackets are each subtype's percentage distribution within the metabolic clusters.

	Metabolic cluster		
Total	Mc1	Mc2	Mc3
85	19 (35)	18 (43)	48 (46)
56	23 (42)	5 (12)	28 (27)
24	6 (11)	5 (12)	13 (13)
22	5 (9)	7 (17)	10 (10)
14	2 (4)	7 (17)	5 (5)
27	4	15	8
201	55	42	104
43	4 (7)	24 (44)	15 (14)
36	3 (5)	8 (15)	25 (23)
47	16 (29)	8 (15)	23 (21)
18	5 (9)	4 (7)	9 (8)
73	27 (49)	11 (20)	35 (33)
11	3	3	5
	55	55	107
	85 56 24 22 14 27 201 43 36 47 18 73	Total Mc1 85 19 (35) 56 23 (42) 24 6 (11) 22 5 (9) 14 2 (4) 27 4 201 55 43 4 (7) 36 3 (5) 47 16 (29) 18 5 (9) 73 27 (49)	Total Mc1 Mc2 85 19 (35) 18 (43) 56 23 (42) 5 (12) 24 6 (11) 5 (12) 22 5 (9) 7 (17) 14 2 (4) 7 (17) 27 4 15 201 55 42 43 4 (7) 24 (44) 36 3 (5) 8 (15) 47 16 (29) 8 (15) 18 5 (9) 4 (7) 73 27 (49) 11 (20)

26

Figure legends

Figure 1: Metabolic subtyping of breast cancer tissue samples using HCA. (A) The HRMAS 1H MRS spectra for 228 samples was clustered using Euclidean distance and Wards linkage as similarity measure which separated the samples into three metabolic clusters (Mc); Mc1, Mc2 and Mc3. (B) Mean spectra for the three metabolic clusters. β-Glc; β-glucose, Asc; ascorbate, Lac; lactate, Tyr; tyrosine, Cr; creatine, mI; myoinositol, Gly; glycine, Tau; taurine, sI; scylloinositol, GPC; glycerophosphocholine, PCho; phosphocholine, Cho; choline, Gsh; glutathione, Gln; glutamine, Succ; succinate, Glu; glutamate, Ace; acetate, Ala; alanine. Grey bars indicate removed spectral regions (containing lipid peaks).

Figure 2: Results from PLS-DA of metabolic clusters. (A) Score plot of the two first latent variables explaining 42.2% of the X-variance and 28.2% of the Y-variance; **(B)** Regression vectors for the three metabolic clusters (Mc)

Figure 3: Main differences between metabolic subtypes (A) Metabolic cluster label from hierarchical clustering with Euclidean distance and Wards linkage of HR MAS MR spectra of samples. The samples clustered in three groups called Mc1, Mc2 and Mc3. (B) Fold change in expression levels of (1) scylloinositol, (2) GPC, (3) PCho, (4) creatine, (5) ascorbate, (6) taurine, (7) GSH, (8) tyrosine, (9) lactate, (10) glutamate, (11) succinate, (12) glutamine, (13) glycine, (14) alanine, (15) choline, (16) myoinositol, (17) acetate, (18) glucose. Blue regions in the heat map represent decreased levels while red levels represent increased metabolite levels. (C) PAM50-subtypes (D) RPPA-subtype (E) Gene expression levels (quantile normalized, log 2 transformed) for the 277 overlapping significant genes (SAM, adjusted p < 0.01) between Mc1 and Mc3. The genes have been clustered.

Figure 4: Illustration of metabolic pathways reported to have altered gene and metabolite expression by Integrated Pathway Analysis (MetaboAnalyst) (A) Result within 'Glycolysis/Glutaminolysis' genes and metabolites differently expressed in metabolic cluster (Mc) Mc2 compared to Mc1. Adapted from KEGG ID: hsa00010. LDHB: lactate dehydrogenase B;

ADH1A/ADH1B/ADH1C: Alcohol dehydrogenase 1A/ 1B/ 1C; ALDH1A3: Aldehyde dehydrogenase 1 family member A3; ALDH2: Aldehyde dehydrogenase 2 family; ACSS1: Acetate CoA ligase; TCA cycle: trucarboxylic acid cycle.

(B) Result within 'Glycerophospholipid metabolism' of genes and metabolites differently expressed in Mc1 compared to Mc2. Adapted from KEGG ID: hsa00564. CHKA: Choline kinase alpha; PCYT1A: Phosphate cytidyltransferase 1; CEPT1: Choline/ethanolamine phosphotransferase 1; PLA2G5: phospholipase A2; LCAT: Lecithin-cholesterol acyltransferase; LPCAT2: Lysophosphatidyl-choline acyltransferase; PC-PLD: Phospholipase D; Lyso-PLA1: Lysophospholipase I; GPC-PDE: Glycerophosphocholine phosphodiesterase; PLC: Phospholipase C; PLD1: Phospholipidase D1; PPAP2A, PPAP2B: phosphatidate phosphatase LPIN; AGPAT4: 1-acylglycerol-3-phosphate O-acyltransferase.

Figure 1

Figure 2

Figure 3

Figure 4

Additional Information to:

Metabolic clusters of breast cancer in relation to gene- and protein expression subtypes

Tonje H. Haukaas , Leslie R. Euceda, Guro F. Giskeødegård, Santosh Lamichhane, Marit Krohn, Sandra Jernström, Miriam R. Aure, Ole C. Lingjærde, Ellen Schlichting, Øystein Garred, Eldri U. Due, The Oslo Breast Cancer Consortium (OSBREAC), Gordon B. Mills, Kristine K. Sahlberg, Anne-Lise Børresen-Dale, Tone F. Bathen

Additional Authors

The Oslo Breast Cancer Research Consortium (OSBREAC)

Vessela N Kristensen^{1,2,3}, Torill Sauer^{4,5}, Elin Borgen⁶, Olav Engebråten^{7,8,9}, Øystein Fodstad^{7,9}, Rolf Kåresen^{9,10}, Bjørn Naume^{2,8}, Gunhild Mari Mælandsmo^{2,7,11}, Hege G Russnes^{1,2,12}, Therese Sørlie^{1,2}, Helle Kristine Skjerven¹³, Britt Fritzman¹⁴

¹Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.

²K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo, Norway.

³Department of Clinical Molecular Biology and Laboratory Science (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, Norway.

⁴Department of Pathology, Akershus University Hospital, Lørenskog, Norway.

⁵Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.

⁶Department of Pathology, Division of Diagnostics and Intervention, Oslo University Hospital, Oslo, Norway.

⁷Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.

⁸Department of Oncology, Division of Surgery and Cancer and Transplantation Medicine, Oslo University Hospital, Oslo, Norway.

Faculty of Medicine, University of Oslo, Oslo, Norway. ¹⁰Department of Breast- and Endocrine Surgery, Division of Surgery, Cancer and Transplantation, Oslo University Hospital, Oslo, Norway. ¹¹Department of Pharmacy, Faculty of Health Sciences, University of Tromsø, Tromsø, Norway. ¹²Department of Pathology, Oslo University Hospital, Oslo, Norway. ¹³Breast and Endocrine Surgery, Department of Breast and Endocrine Surgery, Vestre Viken Hospital, Drammen, Norway. ¹⁴Østfold Hospital, Østfold, Norway

Email: Vessela N Kristensen v.n.kristensen@medisin.uio.no – Torill Sauer Torill.sauer@medisin.uio.no – Elin Borgen ebg@ous-hf.no – Olav Engebråten Olav.engebraten@medisin.uio.no – Øystein Fodstad Oystein.Fodstad@rr-research.no – Rolf Kåresen rolf.karesen@medisin.uio.no – Bjørn Naume bjorn.naume@medisin.uio.no – Gunhild Mari Mælandsmo Gunhild.Mari.Malandsmo@rr-research.no – Hege G Russnes Hege.russnes@rr-research.no – Therese Sørlie therese.sorlie@rr-research.no – Helle Kristine Skjerven@vestreviken.no – Britt Fritzman Britt.Fritzman@so-hf.no

Additional Methods

HR MAS MRS acquisition and data processing. Before HR MAS MRS experiments, 3 μL cold sodium formate in D2O (24.29mM) was added to a leak-proof disposable 30μL insert (Bruker, Biospin GmbH, Germany) as a chemical shift reference. Tissue samples were cut to fit the insert on a dedicated work station designed to keep the samples frozen [1]. The insert containing the frozen sample was placed in a 4-mm diameter zirconium rotor (Bruker, Biospin GmbH, Germany) and kept at -20 °C for maximum 8 hours before the experiments. Samples were spun at 5000 Hz and experiments run at 5 °C. The samples were allowed 5 minutes temperature acclimatization before shimming and spectral acquisition. Spin-echo spectra were recorded using a Carr-Purcell-Meiboom-Gill (cpmg) pulse sequence (cpmgpr1d; Bruker) with 4s water suppression prior to a 90° excitation pulse. T2 filtering was obtained using a delay of 0.6 ms between each 180° pulse to suppress macromolecules and lipid signals and enhance signal from small molecules. This resulted in an effective TE of 77 ms. A total of 256 scans over a spectral region of 12 kHz was collected into 72k complex data points with an acquisition time of 3.07 s. The FIDs were multiplied by a 0.30 Hz exponential weighting function and Fourier transformed into 64k real points. Phase

correction was performed automatically for each spectrum using TopSpin 3.1 (Bruker). Further preprocessing of the HR MAS spectra were performed in Matlab R2013b (The Mathworks, Inc., USA). Chemical shifts were referenced to the creatine peak at 3.92 ppm. Baseline correction was performed using asymmetric least squares [2] with parameters $\lambda = 1e7$ and p = 0.0001, and baseline offset was adjusted by setting the minimum value of each spectrum to zero by subtracting the lowest value. Peak alignment was performed using icoshift [3].

Reverse Phase Protein Array (RPPA). Tumor tissue was lysed by homogenization in lysis buffer containing proteinase inhibitors and phosphatase inhibitors. The tumor lysates were diluted in 1.33 mg/ml concentration as assessed by bicinchonic acid assay (BCA) and boiled in 1% SDS and 2-mercaptoethanol. Supernatants were manually diluted in five serial 2-fold dilutions with lysis buffer. The samples were spotted onto and immobilized on nitrocellulose-coated FAST slides. The slides were probed with 151 primary antibodies (Supplementary Table 1) in appropriate dilutions. The signal intensity was captured by a biotin conjugated secondary antibody and was amplified by Dako Cytomation-catalysed system (Dako, Glostrup, Denmark). Slides were scanned, analyzed and quantitated using MicroVigene software (VigeneTech Inc., Carlise, MA, USA) to generate spot signal intensities. These were then processed by the R package SuperCurve /version 1.01. The protein concentrations were derived from the supercurve for each sample by curve fitting, log2-transformed, and the relative concentrations were normalized by median centering of the samples for each of the antibodies [4].

Statistical analysis. PLS-DA was performed on mean centered spectra using double cross validation [5]. The model was built on randomly chosen training samples (80 % of the spectra) and used to predict the class of the remaining independent test samples (20 % of the spectra). This was repeated 20 times before average classification results were calculated. To validate that the result is not achieved simply by random predictions, permutation testing was performed. Here Y-data (class labels for the samples) are permutated to resemble random classification. For each permutation 20 random training and test sets are chosen as described for the PLS-DA model. This was repeated 1000 times before the error distribution was

compared with the classification error for the original data. P values \leq 0.01 were considered significant. PCA and PLS-DA were performed in Matlab using PLS_Toolbox 7.5.2 (Eigenvector Research, Inc., Wenatchee, USA).

Additional References

- 1. Giskeødegård, G.F., M.D. Cao, and T.F. Bathen, *High-Resolution Magic-Angle-Spinning NMR Spectroscopy of Intact Tissue*, in *Metabonomics: Methods and Protocols*, J.T. Bjerrum, Editor 2015, Springer New York. p. 37-50.
- 2. Eilers, P.H., *Parametric time warping*. Anal Chem, 2004. **76**(2): p. 404-411.
- 3. Savorani, F., G. Tomasi, and S.B. Engelsen, *icoshift: A versatile tool for the rapid alignment of 1D NMR spectra*. J Magn Reson, 2010. **202**(2): p. 190-202.
- 4. Aure, M.R., et al., *Integrated analysis reveals microRNA networks coordinately expressed with key proteins in breast cancer.* Genome Med, 2015. 7(1).
- 5. Smilde, A.K., et al., *Data processing in metabolomics*, in *Metabolomics in practice: successful strategies to generate and analyze metabolic data*, M. Lämmerhofer and W. Weckwerth, Editors. 2013, John Wiley & Sons.

Additional Table Legends:

Add. Table 1: Antibodies used for reverse phase protein array (RPPA)

Add. Table 2: Significantly different expressed genes between the three metabolic clusters

Add. Table 3: Significantly different expressed genes between the metabolic clusters Mc1 and Mc2

Add. Table 4: Significantly different expressed genes between the metabolic clusters Mc1 and Mc3

Add. Table 5: Statistically over-represented annotation terms, according to DAVID, of differently expressed genes between metabolic cluster Mc1 and Mc2

Add. Table 6: Statistically over-represented annotation terms, according to DAVID, of differently expressed genes between metabolic cluster Mc1 and Mc3

Add. Table 7: Gene set enrichment analysis (GSEA) result for Gene Ontology (GO) gene sets. Metabolic cluster Mc1 was compared with Mc2 and Mc3.

Add. Table 8: Gene set enrichment analysis (GSEA) result for Gene Ontology (GO) gene sets. Metabolic cluster Mc1 was compared with Mc2.

Add. Table 9: Gene set enrichment analysis (GSEA) result for Gene Ontology (GO) gene sets. Metabolic cluster Mc3 was compared with Mc1 and Mc2.

Add. Table 10: Integrated pathway analysis result from comparison of the metabolic clusters Mc1 compared to Mc2

Add. Table 11: Integrated pathway analysis result from comparison of the metabolic clusters Mc1 compared to Mc3

Add. Table 1: Antibodies used for reverse phase protein array (RPPA)

Add. Table 1: Antibodies used					
RPPA Antibody	Company Santa Cruz	Catalog # sc-2395		Validation status C- use with caution	Species Mouse
14-3-3_epsilon 4E-BP1	CST	9452		V - validated	Rabbit
4E-BP1_pS65	CST	9456		V - validated	Rabbit
53BP1	CST	4937		C- use with caution	Rabbit
A-Raf pS299	CST	4431	100		Rabbit
ACC_pS79	CST	3661	200	V - validated	Rabbit
ACC1	Epitomics	1768-1	300	C- use with caution	Rabbit
AIB1	BD	611105		V - validated	Mouse
Akt	CST	9272		V - validated	Rabbit
Akt_pS473	CST	9271		V - validated	Rabbit
Akt_pT308	CST	9275		V - validated	Rabbit
alpha-Catenin AMPK alpha	Calbiochem CST	CA1030 2532		V - validated C- use with caution	Mouse Rabbit
AMPK pT172	CST	2535		V - validated	Rabbit
Annexin I	Invitrogen	71-3400		V - validated	Rabbit
AR	Epitomics	1852-1		V - validated	Rabbit
B-Raf	Santa Cruz	sc-5284	500 1		Mouse
Bak	Epitomics	1542-1	50 (C- use with caution	Rabbit
Bax	CST	2772	300	V - validated	Rabbit
Bcl-2	Dako	M0887	50	V - validated	Mouse
Bcl-X	Epitomics	1018-1		C- use with caution	Rabbit
Bcl-xL	CST	2762		V - validated	Rabbit
Beclin	Santa Cruz	sc-10086		V - validated	Goat
beta-Catenin	CST	9562		V - validated	Rabbit
Bid	Epitomics	1008-1		C- use with caution	Rabbit
Bim c-Jun pS73	Epitomics CST	1036-1 9164		V - validated C- use with caution	Rabbit Rabbit
c-Kit	Epitomics	1522		V - validated	Rabbit
c-Met	CST	3127		C- use with caution	Mouse
c-Met pY1235	CST	3129		C- use with caution	Rabbit
c-Myc	CST	9402		C- use with caution	Rabbit
C-Raf	Millipore	05-739		V - validated	Rabbit
C-Raf_pS338	CST	9427	300	C- use with caution	Rabbit
Caspase-3_active	Epitomics	1476-1	200	C- use with caution	Rabbit
Caspase-7_cleavedD198	CST	9491		C- use with caution	Rabbit
Caspase-8	CST	9746		C- use with caution	Mouse
Caspase-9_cleavedD330	CST	9501		C- use with caution	Rabbit
Caveolin-1	CST	3238		V - validated	Rabbit
CD31	Dako	M0823		V - validated	Mouse
CDK1 Chk1	CST	9112 2345		V - validated C- use with caution	Rabbit Rabbit
Chk1_pS345	CST CST	2348		C- use with caution	Rabbit
Chk2	CST	3440		C- use with caution	Mouse
Chk2 pT68	CST	2197		C- use with caution	Rabbit
cIAP	Millipore	07-759		V - validated	Rabbit
Claudin-7	Novus	NB100-91714		V - validated	Rabbit
Collagen_VI	Santa Cruz	sc-20649	250	V - validated	Rabbit
COX-2	Epitomics	2169-1	150	C- use with caution	Rabbit
Cyclin_B1	Epitomics	1495-1		V - validated	Rabbit
Cyclin_D1	Santa Cruz	sc-718		V - validated	Rabbit
Cyclin_E1	Santa Cruz	sc-247		V - validated	Mouse
DJ-1	Abcam	ab76008		C- use with caution	Rabbit
Dvl3	CST	3218		V - validated V - validated	Rabbit
E-Cadherin eEF2	CST CST	4065 2332		v - validated V - validated	Rabbit Rabbit
eEF2K	CST	3692		V - validated	Rabbit
EGFR	Santa Cruz	sc-03		C- use with caution	Rabbit
EGFR pY1068	CST	2234		V - validated	Rabbit
EGFR_pY1173	Epitomics	1124		C- use with caution	Rabbit
EGFR_pY992	CST	2235		V - validated	Rabbit
eIF4E	CST	9742		V - validated	Rabbit
ER-alpha	Lab Vision	RM-9101-S	200	V - validated	Rabbit
ER-alpha_pS118	Epitomics	1091-1		V - validated	Rabbit
ERCC1	Lab Vision	MS-671-PO		C- use with caution	Mouse
FAK	Epitomics	1700-1		C- use with caution	Rabbit
Fibronectin	Epitomics	1574-1		C- use with caution	Rabbit
FOXO3a	CST	9467		C- use with caution	Rabbit
FOXO3a_pS318_S321	CST	9465		C- use with caution	Rabbit Rabbit
GAB2 GATA3	CST BD	3239 558686		V - validated V - validated	Mouse
GSK3_pS9	CST	9336		v - vandated V - validated	Rabbit
GSK3-alpha-beta	Santa Cruz	sc-7291		V - validated	Mouse
GSK3-alpha-beta_pS21_S9	CST	9331		V - validated	Rabbit
HER2	Lab Vision	MS-325-P1		V - validated	Mouse
HER2_pY1248	R&D	AF1768	350 1		Rabbit

HERS	RPPA Antibody	Company	Catalog #	Dilution used Validation status	Species
HERS py1298	·				
IGF-IR-Rene					
IGFBP2					
INPPAB					
IRSI					
JANC2					
K-Rais					
MAPK_DT20_Y204 CST	JNK2	CST	4672	50 C- use with caution	Rabbit
MIKI Spitomics 1235-1 S000 V - validated Rabbit MiKI pS217_S212 ST 9121 S00 V - validated Rabbit MIKI pS217_S21 ST 9121 S00 V - validated Rabbit MIKI pS217_S21 ST 9285 S0 C - use with caution Rabbit S10 Z203_00.02 1000 C - use with caution Rabbit Rabbit S01 Z203_00.02 1000 C - use with caution Rabbit Rabbit Rabbit S01 Z203_00.02 1000 C - use with caution Rabbit Rabbit S01 Z203_00.02 S00 C - use with caution Rabbit Rabbit S01 Z203_00.02 S00 C - use with caution Rabbit Rabbit S01 Z203_00.02 S00 C - use with caution Rabbit Rabbit S01 Z203_00.02 S00 C - use with caution Rabbit Rabbit S01 Z203_00.02 S00 C - use with caution Rabbit Rabbit S01 Z203_00.02 S00 C - use with caution Rabbit Rabbit S01 Z203_00.02 S00 C - use with caution Rabbit Rabbit S01 Z03_00.02 S00 C - use with caution Rabbit S01_00.02 S00_00.02 S00_00.	K-Ras	Santa Cruz	sc-30	75 C- use with caution	Mouse
MIKI Spitomics 1235-1 S000 V - validated Rabbit MiKI pS217_S212 ST 9121 S00 V - validated Rabbit MIKI pS217_S21 ST 9121 S00 V - validated Rabbit MIKI pS217_S21 ST 9285 S0 C - use with caution Rabbit S10 Z203_00.02 1000 C - use with caution Rabbit Rabbit S01 Z203_00.02 1000 C - use with caution Rabbit Rabbit Rabbit S01 Z203_00.02 1000 C - use with caution Rabbit Rabbit S01 Z203_00.02 S00 C - use with caution Rabbit Rabbit S01 Z203_00.02 S00 C - use with caution Rabbit Rabbit S01 Z203_00.02 S00 C - use with caution Rabbit Rabbit S01 Z203_00.02 S00 C - use with caution Rabbit Rabbit S01 Z203_00.02 S00 C - use with caution Rabbit Rabbit S01 Z203_00.02 S00 C - use with caution Rabbit Rabbit S01 Z203_00.02 S00 C - use with caution Rabbit Rabbit S01 Z03_00.02 S00 C - use with caution Rabbit S01_00.02 S00_00.02 S00_00.	MAPK pT202 Y204	CST	4377	100 V - validated	Rabbit
MIRLI p. 2217 S221 S00 V - validated Mouse Mou	MEK1	Epitomics	1235-1	5000 V - validated	Rabbit
MIG-6	MEK1 pS217 S221		9121	500 V - validated	Rabbit
MSH2					
MSH2					
MSH6	· ·				
N-Cadherin					
No. Proceedings No. No					
Net					
Noteh	NF-kB-p65_pS536	CST	3033	100 C- use with caution	Rabbit
Notcha	NF2	SDI	2271.00.02	500 C- use with caution	Rabbit
P.Cadherin CST 2130 50 C use with caution Rabbit p21 Santa Cruz se-397 100 C use with caution Rabbit p27 Filtonics 1591-1 50 V - validated Rabbit P27 P1157 R&D AF1555 500 C use with caution Rabbit P27 P118 Abeam ab69499 75 V - validated Rabbit P38 P1180 V182 CST 9212 100 C use with caution Rabbit P38 P1180 V182 CST 9211 50 V - validated Rabbit P38 P1180 V182 CST 9211 50 V - validated Rabbit P38 P1180 V182 CST 9211 50 V - validated Rabbit P38 P1180 V182 CST 9282 2500 V - validated Rabbit P38 P1180 P38	Notch1	CST	3268	50 V - validated	Rabbit
P.Cadherin CST 2130 50 C use with caution Rabbit p21 Santa Cruz se-397 100 C use with caution Rabbit p27 Filtonics 1591-1 50 V - validated Rabbit P27 P1157 R&D AF1555 500 C use with caution Rabbit P27 P118 Abeam ab69499 75 V - validated Rabbit P38 P1180 V182 CST 9212 100 C use with caution Rabbit P38 P1180 V182 CST 9211 50 V - validated Rabbit P38 P1180 V182 CST 9211 50 V - validated Rabbit P38 P1180 V182 CST 9211 50 V - validated Rabbit P38 P1180 V182 CST 9282 2500 V - validated Rabbit P38 P1180 P38	Notch3	Santa Cruz	sc-5593	600 C- use with caution	Rabbit
p21					
p27 Epitomics 1591-1 50 V - validated Rabbit p27 pT157 R&D APE555 500 C use with caution Rabbit p27 pT198 Abeam ab64949 75 V - validated Rabbit p38 MAPK CST 9211 50 V - validated Rabbit p38 pT180 Y182 CST 9211 50 V - validated Rabbit p7086K pEpitomics 1494-1 750 V - validated Rabbit p7086K pEpitomics 1494-1 750 V - validated Rabbit p7086K p39 CST 9205 50 V - validated Rabbit p806K p182 CST 9344 50 C use with caution Mabbit p8078C CST 9344 50 C validated Mabbit p808T PSL4 CST 3061 50 V - validated Mabbit p80K PSL4 CST 3061 50 V - validated Mabbit p183k-p31 Millipore 06-195					
p. 27 p. 1157 p. 28. D. AF1555 p. 500 C. use with caution Rabbit p. 28 p. 1157 p. 198 Abcam ab64049 p. 35 V. validated Rabbit p. 28 p. 18 p. 212 p. 100 C. use with caution Rabbit p. 28 p. 28 p. 212 p. 210 C. use with caution Rabbit p. 28 p. 28 p. 29 p. 212 p. 200 V. validated Rabbit p. 28 p. 250 V. validated Rabbit p. 28 p. 250 V. validated Rabbit p. 250 V. validated Ra	1*				
107_pT198	1*				
p88_m7180_Y182					
p38 pT180 Y182	p27_pT198				
PAS	p38_MAPK		9212		
p7056K p7056K p71589 Epitomics (ST 1494-1 750 V - validated (Rabbit p706R) (ST Rabbit p706R) (ST 9205 p908R) (ST 9205 p908R) (ST 9344 p908R) (ST 50 V - validated (Rabbit p808R) (ST Rabbit p706R) (ST 9344 p944 p944 p948 p948 p948 p948 p948 p9	p38_pT180_Y182	CST	9211	50 V - validated	Rabbit
p7056K p7056K p71589 Epitomics (ST 1494-1 750 V - validated (Rabbit p706R) (ST Rabbit p706R) (ST 9205 p908R) (ST 9205 p908R) (ST 9344 p908R) (ST 50 V - validated (Rabbit p808R) (ST Rabbit p706R) (ST 9344 p944 p944 p948 p948 p948 p948 p948 p9		CST	9282	2500 V - validated	Rabbit
POSER PT389				750 V - validated	Rabbit
PORTSK_pT359 S363	I*				
PARP_cleaved CST 9546 50 C- use with caution Mouse Paxillin Epitomics 1500-1 500 V - validated Rabbit PCNA Abeam ab29 500 V - validated Mouse PDK1 pS241 CST 3061 500 V - validated Rabbit PI3K-p110-alpha CST 4255 150 C- use with caution Rabbit PI3K-p85 Millipore 06-195 10000 V - validated Rabbit PKC-alpha Millipore 06-195 10000 V - validated Rabbit PKC-alpha pS657 Millipore 06-822 750 V - validated Rabbit PR Epitomics 1483-1 200 V - validated Rabbit PRAS40_pT246 Biosource 441100G 10000 V - validated Rabbit PTCH SDI 2113.00.02 1000 C - use with caution Rabbit PTCH SDI 2113.00.02 1000 C - use with caution Rabbit Rab11 CST 3539 250 V - validated Rabbit Rab25 Covance C					
Paxillim					
PCNA Abcam ab29 500 V - validated Mouse PDK1 pS241 CST 3061 500 V - validated Rabbit PDK2 pS5 Millipore 06-195 10000 V - validated Rabbit PBK-p85 Millipore 06-195 10000 V - validated Mouse PKC-alpha pS657 Millipore 06-822 750 V - validated Rabbit PR Epitomics 1483-1 200 V - validated Rabbit PR Epitomics 441100G 1000 C - use with caution Rabbit PTCH SDI 2113.00.02 1000 C - use with caution Rabbit PTEN CST 9552 750 V - validated Rabbit Rab11 CST 3539 250 V - validated Rabbit Rab25 Covance Custom 2500 C - use with caution Rabbit Rad50 Millipore 05-525 100 C - use with caution Mouse Rad51 Chem Biotech na 71 125 C - use with caution Mouse Rab51 CST <td></td> <td></td> <td></td> <td></td> <td></td>					
PDKL pS241 CST 3061 500 V - validated Rabbit PI3K-p110-alpha CST 4255 150 C - use with caution Rabbit PI3K-pR5 Millipore 06-195 10000 V - validated Rabbit PKC-alpha Millipore 05-154 1000 V - validated Mouse PKC-alpha Millipore 06-822 750 V - validated Rabbit PRC-alpha pS657 Millipore 06-822 750 V - validated Rabbit PRAS40_pT246 Biosource 441100G 1000 V - validated Rabbit PRAS40_pT246 Biosource 441100G 1000 V - validated Rabbit PRAS40_pT246 Rabbit Rabbi					
P13K-p110-alpha CST 4255 150 C- use with caution Rabbit P13K-p85 Millipore 06-195 10000 V - validated Rabbit PKC-alpha Millipore 06-184 1000 V - validated Rabbit PKC-alpha_p8657 Millipore 06-822 750 V - validated Rabbit PRAS40_p7246 Biosource 441100G 1000 V - validated Rabbit PRC-alpha_p8657 Millipore 06-822 750 V - validated Rabbit PRAS40_p7246 Biosource 441100G 1000 V - validated Rabbit PRTCH SDI 2113.00.02 1000 C- use with caution Rabbit PTCH SDI 213.00.02 1000 C- use with caution Rabbit Rab11 CST 3539 250 V - validated Rabbit Rab25 Covance Custom 2500 C- use with caution Rabbit Rad51 Chem Biotech na 71 125 C- use with caution Mouse Rab51 CST 9309 200 V - validated Rabbit <tr< td=""><td>PCNA</td><td>Abcam</td><td>ab29</td><td>500 V - validated</td><td>Mouse</td></tr<>	PCNA	Abcam	ab29	500 V - validated	Mouse
PI3K—85 Millipore 06-195 10000 V - validated Rabbit PKC-alpha PKC-alpha Millipore 05-154 1000 V - validated Mouse PKC-alpha Millipore 06-822 750 V - validated Rabbit PR Epitomics 1483-1 200 V - validated Rabbit PRAS40_pT246 Biosource 441100G 1000 C - validated Rabbit PTCH SDI 2113.00.02 1000 C - validated Rabbit PTEN CST 9552 750 V - validated Rabbit Rab11 CST 3539 250 V - validated Rabbit Rab25 Covance Custom 2500 C - use with caution Mouse Rad50 Millipore 05-525 100 C - use with caution Mouse Rb CST 9309 200 V - validated Mouse Rb CST 9308 250 V - validated Rabbit S6_pS235_S236 CST 2211 3000 V - validated Rabbit S6_pS240_S244 CST <	PDK1_pS241	CST	3061	500 V - validated	Rabbit
PKC-alpha Millipore 05-154 1000 V - validated Mouse PKC-alpha_pS657 Millipore 06-8:22 750 V - validated Rabbit Rabbit Rabbit Rabbit PR Epitomics 1483-1 200 V - validated Rabbit PRS4840_pT246 Biosource 441100G 1000 V - validated Rabbit PTCH SDI 2113.00.02 1000 C- use with caution Rabbit PTCH SDI 2113.00.02 1000 C- use with caution Rabbit PTCH CST 9552 750 V - validated Rabbit Rabbit PTCH CST 9552 750 V - validated Rabbit Rabbit Rab11 CST 9552 750 V - validated Rabbit Rab51 Rab51 Rab51 Rab51 Rab51 Rab51 Rab51 CST 9309 250 V - validated Rabbit Rab51	PI3K-p110-alpha	CST	4255	150 C- use with caution	Rabbit
PKC-alpha Millipore 05-154 1000 V - validated Mouse PKC-alpha_pS657 Millipore 06-822 750 V - validated Rabbit PR Epitomics 1483-1 200 V - validated Rabbit PRAS40_pT246 Biosource 441100G 1000 V - validated Rabbit PTCH SDI 2113.00.02 1000 C - use with caution Rabbit PTEN CST 9552 750 V - validated Rabbit Rab11 CST 3539 250 V - validated Rabbit Rab25 Covance Custom 2500 C - use with caution Mouse Rad51 Chem Biotech na 71 125 C - use with caution Mouse Rb CST 9309 200 V - validated Rabbit Rb CST 9308 250 V - validated Rabbit S6_pS240 S236 CST 2211 3000 V - validated Rabbit S6_pS240 S244 CST 2215 2000 V - validated Rabbit Smac CST 2431 50 NA Rabbit	PI3K-p85	Millipore	06-195	10000 V - validated	Rabbit
PKC-alpha_pS657 Millipore 06-822 750 V - validated Rabbit PR PR Epitomics 1483-1 200 V - validated Rabbit PRASH0_pT246 Biosource 441100G 1000 V - validated Rabbit PTCH SDI 2113.00.02 1000 C- use with caution Rabbit PTEN CST 9552 750 V - validated Rabbit Rab11 CST 3539 250 V - validated Rabbit Rab25 Covance Custom 2500 C- use with caution Mouse Rad50 Millipore 05-525 100 C- use with caution Mouse Rab55 CST 9309 200 V - validated Mouse Rb CST 9309 200 V - validated Mouse Rb CST 9308 250 V - validated Rabbit S6_pS235_S236 CST 2211 3000 V - validated Rabbit S6_pS235_S236 CST 2211 3000 V - validated Rabbit Smac CST 2431 50 NA Rabbit <td>-</td> <td></td> <td>05-154</td> <td>1000 V - validated</td> <td>Mouse</td>	-		05-154	1000 V - validated	Mouse
PR Epitomics 1483-1 200 V - validated Rabbit PRAS40_pT246 Biosource 441100G 1000 V - validated Rabbit PTCH SDI 2113.00.02 1000 C - use with caution Rabbit PTEN CST 9552 750 V - validated Rabbit Rab11 CST 3539 250 V - validated Rabbit Rab25 Covance Custom 2500 C - use with caution Mouse Rad50 Millipore 05-525 100 C - use with caution Mouse Rad51 Chem Biotech na 71 125 C - use with caution Mouse Rb CST 9308 250 V - validated Mouse Rb pS807_S811 CST 9308 250 V - validated Rabbit S6_pS235_S236 CST 2211 3000 V - validated Rabbit S6_pS240_S244 CST 2215 2000 V - validated Rabbit Smac CST 2431 50 NA Rabbit Smac CST 2954	-				
PRAS40_pT246 Biosource 441100G 1000 V - validated Rabbit PTCH PTCH SDI 2113.00.02 1000 C- use with caution Rabbit PTCH PTEN CST 9552 750 V - validated Rabbit Rab11 Rab11 CST 3539 250 V - validated Rabbit Rab25 Covance Custom 2500 C- use with caution Rabbit Rab25 Rad50 Millipore 05-525 100 C- use with caution Mouse Rad51 Rad51 Chem Biotech na 71 125 C- use with caution Mouse Rad51 Rb CST 9309 200 V - validated Mouse Rabbit Rb CST 9308 250 V - validated Rabbit S6_pS235_S236 CST 2211 3000 V - validated Rabbit S6_pS235_S236 CST 2211 3000 V - validated Rabbit S6_pS235_S236 CST 2211 3000 V - validated Rabbit S6_pS236_S240_S244 CST 2215 2000 V - validated Rabbit Smac CS					
PTCH SDI 2113.00.02 1000 C- use with caution Rabbit PTEN PTEN CST 9552 750 V - validated Rabbit Rab11 Rab11 CST 3539 250 V - validated Rabbit Rab25 Rad50 Millipore 05-525 100 C- use with caution Mouse Rabbit Rab50 Rad51 Chem Biotech na 71 125 C- use with caution Mouse West Rab50 Rb CST 9309 200 V - validated Mouse Rabbit Saccost					
PTEN CST 9552 750 V - validated Rabbit Rab11 CST 3539 250 V - validated Rabbit Rab25 Covance 2500 C - use with caution Rabbit Rad50 Millipore 05-525 100 C - use with caution Mouse Rad51 Chem Biotech na 71 125 C - use with caution Mouse Rb CST 9309 200 V - validated Mouse Rb DS807_S811 CST 9308 250 V - validated Rabbit S6_pS235_S236 CST 2211 3000 V - validated Rabbit S6_pS240_S244 CST 2215 2000 V - validated Rabbit She_pY317 CST 2431 50 NA Rabbit Sma2 CST 2954 250 V - validated Mouse Smad1 Epitomics 1735-1 750 V - validated Rabbit Smad3 Epitomics 1735-1 750 V - validated Rabbit Smad4 Santa Cruz sc-7866 50 V - validated					
Rab11 CST 3539 250 V - validated Rabbit Rab25 Covance Custom 2500 C- use with caution Rabbit Rad50 Millipore 05-525 100 C- use with caution Mouse Rad51 Chem Biotech na 71 125 C- use with caution Mouse Rb CST 9309 200 V - validated Mouse Rb_pS807_S811 CST 9308 250 V - validated Rabbit S6_pS235_S236 CST 2211 3000 V - validated Rabbit S6_pS240_S244 CST 2215 2000 V - validated Rabbit Shc_pS217 CST 2431 50 NA Rabbit Smac CST 2954 250 V - validated Mouse Smad1 Epitomics 1649-1 250 V - validated Rabbit Smad3 Epitomics 1735-1 750 V - validated Rabbit Smad4 Santa Cruz sc-7866 50 V - validated Mouse Snail CST 3895 100 C- u					
Rab25 Covance Custom 2500 C- use with caution Rabbit Rad50 Millipore 05-525 100 C- use with caution Mouse Rad51 Chem Biotech na 71 125 C- use with caution Mouse Rb CST 9309 200 V - validated Mouse Rb_pS807_S811 CST 9308 250 V - validated Rabbit S6_pS236_S236 CST 2211 3000 V - validated Rabbit S6_pS240_S244 CST 2215 2000 V - validated Rabbit She_pY317 CST 2431 50 NA Rabbit Smac CST 2954 250 V - validated Mouse Smad1 Epitomics 1649-1 250 V - validated Rabbit Smad3 Epitomics 1735-1 750 V - validated Rabbit Smad4 Santa Cruz sc-7866 50 V - validated Rabbit Smad4 Santa Cruz sc-7866 50 V - validated Mouse Src_pY416 CST 2101					
Rad50 Millipore 05-525 100 C- use with caution Mouse Rad51 Chem Biotech na 71 125 C- use with caution Mouse Rb CST 9309 200 V - validated Mouse Rb_pS807_S811 CST 9308 250 V - validated Rabbit S6_pS235_S236 CST 2211 3000 V - validated Rabbit S6_pS240_S244 CST 2215 2000 V - validated Rabbit Shc_pS317 CST 2431 50 NA Rabbit Smac CST 2431 50 NA Rabbit Smac CST 2431 50 NA Rabbit Smad1 Epitomics 1649-1 250 V - validated Rabbit Smad3 Epitomics 1735-1 750 V - validated Rabbit Smad4 Santa Cruz sc-7866 50 V - validated Mouse Src Millipore 05-184 200 V - validated Mouse Src_pY516 CST 2101 125 C- use with caution	Rab11	CST	3539		Rabbit
Rad51 Chem Biotech na 71 125 C- use with caution Mouse Rb CST 9309 200 V - validated Mouse Rb_pS807_S811 CST 9308 250 V - validated Rabbit S6_pS235_S236 CST 2211 3000 V - validated Rabbit S6_pS240_S244 CST 2215 2000 V - validated Rabbit She_pY317 CST 2431 50 NA Rabbit Smac CST 2954 250 V - validated Mouse Smad1 Epitomics 1649-1 250 V - validated Rabbit Smad3 Epitomics 1735-1 750 V - validated Rabbit Smad4 Santa Cruz sc-7866 50 V - validated Mouse Sre Millipore 05-184 200 V - validated Mouse Src_pY416 CST 2101 125 C- use with caution Rabbit Sr_pY527 CST 2105 250 V - validated Rabbit STAT3_pY705 CST 9131 50 V - val	Rab25	Covance	Custom	2500 C- use with caution	Rabbit
Rb CST 9309 200 V - validated Mouse Rb_pS807_S811 CST 9308 250 V - validated Rabbit S6_pS235_S236 CST 2211 3000 V - validated Rabbit S6_pS240_S244 CST 2215 2000 V - validated Rabbit She_pY317 CST 2431 50 NA Rabbit Smac CST 2954 250 V - validated Mouse Smad1 Epitomics 1649-1 250 V - validated Rabbit Smad3 Epitomics 1735-1 750 V - validated Rabbit Smad4 Santa Cruz sc-7866 50 V - validated Rabbit Smad4 Santa Cruz sc-7866 50 V - validated Mouse Src Millipore 05-184 200 V - validated Mouse Src_pY527 CST 2101 125 C use with caution Rabbit STAT3_pY705 CST 9131 50 V - validated Rabbit Stathmin Epitomics 1289-1 250 V - va	Rad50	Millipore	05-525	100 C- use with caution	Mouse
Rb CST 9309 200 V - validated Mouse Rb_pS807_S811 CST 9308 250 V - validated Rabbit S6_pS235_S236 CST 2211 3000 V - validated Rabbit S6_pS240_S244 CST 2215 2000 V - validated Rabbit She_pY317 CST 2431 50 NA Rabbit Smac CST 2954 250 V - validated Mouse Smad1 Epitomics 1649-1 250 V - validated Rabbit Smad3 Epitomics 1735-1 750 V - validated Rabbit Smad4 Santa Cruz sc-7866 50 V - validated Rabbit Smad4 Santa Cruz sc-7866 50 V - validated Mouse Src Millipore 05-184 200 V - validated Mouse Src_pY527 CST 2101 125 C use with caution Rabbit STAT3_pY705 CST 9131 50 V - validated Rabbit Stathmin Epitomics 1289-1 250 V - va	Rad51	Chem Biotech	na 71	125 C- use with caution	Mouse
Rb_pS807_S811 CST 9308 250 V - validated Rabbit S6_pS235_S236 CST 2211 3000 V - validated Rabbit S6_pS240_S244 CST 2215 2000 V - validated Rabbit She_pY317 CST 2431 50 NA Rabbit Smac CST 2954 250 V - validated Mouse Smad1 Epitomics 1649-1 250 V - validated Rabbit Smad3 Epitomics 1735-1 750 V - validated Rabbit Smad4 Santa Cruz se-7866 50 V - validated Mouse Snail CST 3895 100 C- use with caution Mouse Src Millipore 05-184 200 V - validated Mouse Src_pY416 CST 2101 125 C- use with caution Rabbit STC_pSy27 CST 2105 250 V - validated Rabbit STAT3-pY705 CST 9131 50 V - validated Rabbit Stathmin Epitomics 1289-1 250 V					
S6_pS235_S236 CST 2211 3000 V - validated Rabbit S6_pS240_S244 CST 2215 2000 V - validated Rabbit Shc_pY317 CST 2431 50 NA Rabbit Smac CST 2954 250 V - validated Mouse Smad1 Epitomics 1649-1 250 V - validated Rabbit Smad3 Epitomics 1735-1 750 V - validated Rabbit Smad4 Santa Cruz se-7866 50 V - validated Mouse Snail CST 3895 100 C - use with caution Mouse Src Millipore 05-184 200 V - validated Mouse Src_pY416 CST 2101 125 C - use with caution Rabbit Src_pY527 CST 2105 250 V - validated Rabbit STAT3-py705 CST 9131 50 V - validated Rabbit STAT5-alpha Epitomics 1972-1 150 V - validated Rabbit Syk Santa Cruz sc-1240					
S6_pS240_S244 CST 2215 2000 V - validated Rabbit Shc_pY317 CST 2431 50 NA Rabbit Smac CST 2954 250 V - validated Mouse Smad1 Epitomics 1649-1 250 V - validated Rabbit Smad3 Epitomics 1735-1 750 V - validated Rabbit Smad4 Santa Cruz sc-7866 50 V - validated Mouse Snail CST 3895 100 C- use with caution Mouse Src Millipore 05-184 200 V - validated Mouse Src_pY416 CST 2101 125 C- use with caution Rabbit Src_pY527 CST 2105 250 V - validated Rabbit STAT3_pY705 CST 9131 50 V - validated Rabbit STAT5-alpha Epitomics 1289-1 250 V - validated Rabbit Syk Santa Cruz sc-1240 250 V - validated Rabbit Syk Santa Cruz sc-17610 75					
Shc_py317 CST 2431 50 NA Rabbit Smac CST 2954 250 V - validated Mouse Smad1 Epitomics 1649-1 250 V - validated Rabbit Smad3 Epitomics 1735-1 750 V - validated Rabbit Smad4 Santa Cruz sc-7866 50 V - validated Mouse Snail CST 3895 100 C- use with caution Mouse Src_py416 CST 2101 125 C- use with caution Rabbit Src_py527 CST 2105 250 V - validated Rabbit STAT3_py705 CST 9131 50 V - validated Rabbit STAT5-alpha Epitomics 1289-1 250 V - validated Rabbit Stathmin Epitomics 1972-1 150 V - validated Rabbit Syk Santa Cruz sc-1240 250 V - validated Rabbit Syk Santa Cruz sc-17610 75 C- use with caution Mouse TAZ_pS89 Santa Cruz sc-17610					
Smac CST 2954 250 V - validated Mouse Smad1 Epitomics 1649-1 250 V - validated Rabbit Smad3 Epitomics 1735-1 750 V - validated Rabbit Smad4 Santa Cruz se-7866 50 V - validated Mouse Snail CST 3895 100 C- use with caution Mouse Src Millipore 05-184 200 V - validated Mouse Src_pY416 CST 2101 125 C- use with caution Rabbit Src_pY527 CST 2105 250 V - validated Rabbit STAT3_pY705 CST 9131 50 V - validated Rabbit STAT5-alpha Epitomics 1289-1 250 V - validated Rabbit Stathmin Epitomics 1972-1 150 V - validated Rabbit Syk Santa Cruz sc-1240 250 V - validated Mouse Tau Millipore 05-348 100 C- use with caution Mouse TAZ_pS89 Santa Cruz sc-					
Smad1 Epitomics 1649-1 250 V - validated Rabbit Smad3 Epitomics 1735-1 750 V - validated Rabbit Smad4 Santa Cruz sc-7866 50 V - validated Mouse Snail CST 3895 100 C- use with caution Mouse Src Millipore 05-184 200 V - validated Mouse Src_pY416 CST 2101 125 C- use with caution Rabbit Src_pY527 CST 2105 250 V - validated Rabbit STAT3_pY705 CST 9131 50 V - validated Rabbit STAT5-alpha Epitomics 1289-1 250 V - validated Rabbit Stathmin Epitomics 1972-1 150 V - validated Rabbit Syk Santa Cruz sc-1240 250 V - validated Mouse Tau Millipore 05-348 100 C- use with caution Mouse TAZ_pS89 Santa Cruz sc-17610 75 C- use with caution Rabbit VASP CST					
Smad3 Epitomics 1735-1 750 V - validated Rabbit Smad4 Santa Cruz se-7866 50 V - validated Mouse Snail CST 3895 100 C- use with caution Mouse Src Millipore 05-184 200 V - validated Mouse Src_pY416 CST 2101 125 C- use with caution Rabbit Src_pY527 CST 2105 250 V - validated Rabbit STAT3_pY705 CST 9131 50 V - validated Rabbit STAT5-alpha Epitomics 1289-1 250 V - validated Rabbit Stathmin Epitomics 1972-1 150 V - validated Rabbit Syk Santa Cruz sc-1240 250 V - validated Mouse Tau Millipore 05-348 100 C- use with caution Mouse TAZ_pS89 Santa Cruz sc-17610 75 C- use with caution Rabbit VASP CST 3112 50 C- use with caution Rabbit VEGFR2 CST					
Smad4 Santa Cruz sc-7866 50 V - validated Mouse Snail CST 3895 100 C- use with caution Mouse Src Millipore 05-184 200 V - validated Mouse Src_pY416 CST 2101 125 C- use with caution Rabbit Src_pY527 CST 2105 250 V - validated Rabbit STAT3_pY705 CST 9131 50 V - validated Rabbit STAT5-alpha Epitomics 1289-1 250 V - validated Rabbit Stathmin Epitomics 1972-1 150 V - validated Rabbit Syk Santa Cruz sc-1240 250 V - validated Rabbit Syk Santa Cruz sc-17610 75 C- use with caution Mouse TAZ_pS89 Santa Cruz sc-17610 75 C- use with caution Rabbit VASP CST 3112 50 C- use with caution Rabbit VEGFR2 CST 2479 5000 C- use with caution Rabbit XIAP CST		Epitomics			
Snail CST 3895 100 C- use with caution Mouse Src Millipore 05-184 200 V - validated Mouse Src_pY416 CST 2101 125 C- use with caution Rabbit Src_pY527 CST 2105 250 V - validated Rabbit STAT3_pY705 CST 9131 50 V - validated Rabbit STAT5-alpha Epitomics 1289-1 250 V - validated Rabbit Stathmin Epitomics 1972-1 150 V - validated Rabbit Syk Santa Cruz sc-1240 250 V - validated Mouse Tau Millipore 05-348 100 C- use with caution Mouse TAZ_pS89 Santa Cruz sc-17610 75 C- use with caution Rabbit Tuberin Epitomics 1613-1 500 C- use with caution Rabbit VASP CST 3112 50 C- use with caution Rabbit VEGFR2 CST 2479 5000 V - validated Rabbit XIAP CST	Smad3	Epitomics	1735-1	750 V - validated	Rabbit
Snail CST 3895 100 C- use with caution Mouse Src Millipore 05-184 200 V - validated Mouse Src_pY416 CST 2101 125 C- use with caution Rabbit Src_pY527 CST 2105 250 V - validated Rabbit STAT3_pY705 CST 9131 50 V - validated Rabbit STAT5-alpha Epitomics 1289-1 250 V - validated Rabbit Stathmin Epitomics 1972-1 150 V - validated Rabbit Syk Santa Cruz sc-1240 250 V - validated Mouse Tau Millipore 05-348 100 C- use with caution Mouse TAZ_pS89 Santa Cruz sc-17610 75 C- use with caution Rabbit Tuberin Epitomics 1613-1 500 C- use with caution Rabbit VASP CST 3112 50 C- use with caution Rabbit VEGFR2 CST 2479 5000 V - validated Rabbit XIAP CST	Smad4	Santa Cruz	sc-7866	50 V - validated	Mouse
Src Millipore 05-184 200 V - validated Mouse Src_pY416 CST 2101 125 C- use with caution Rabbit Src_pY527 CST 2105 250 V - validated Rabbit STAT3_pY705 CST 9131 50 V - validated Rabbit STAT5-alpha Epitomics 1289-1 250 V - validated Rabbit Stathmin Epitomics 1972-1 150 V - validated Rabbit Syk Santa Cruz sc-1240 250 V - validated Mouse Tau Millipore 05-348 100 C- use with caution Mouse TAZ_pS89 Santa Cruz sc-17610 75 C- use with caution Rabbit Tuberin Epitomics 1613-1 500 C- use with caution Rabbit VASP CST 3112 50 C- use with caution Rabbit VEGFR2 CST 2479 5000 V - validated Rabbit XIAP CST 2042 50 C- use with caution Rabbit XRCC1 CST					
Src_pY416 CST 2101 125 C- use with caution Rabbit Src_pY527 CST 2105 250 V - validated Rabbit STAT3_pY705 CST 9131 50 V - validated Rabbit STAT5-alpha Epitomics 1289-1 250 V - validated Rabbit Stathmin Epitomics 1972-1 150 V - validated Rabbit Syk Santa Cruz sc-1240 250 V - validated Mouse Tau Millipore 05-348 100 C- use with caution Mouse TAZ_pS89 Santa Cruz sc-17610 75 C- use with caution Rabbit Tuberin Epitomics 1613-1 500 C- use with caution Rabbit VASP CST 3112 50 C- use with caution Rabbit VEGFR2 CST 2479 5000 V - validated Rabbit XIAP CST 2042 50 C- use with caution Rabbit XRCC1 CST 2735 50 C- use with caution Rabbit YAP Santa Cruz					
Src_pY527 CST 2105 250 V - validated Rabbit STAT3_pY705 CST 9131 50 V - validated Rabbit STAT5-alpha Epitomics 1289-1 250 V - validated Rabbit Stathmin Epitomics 1972-1 150 V - validated Rabbit Syk Santa Cruz sc-1240 250 V - validated Mouse Tau Millipore 05-348 100 C- use with caution Mouse TAZ_pS89 Santa Cruz sc-17610 75 C- use with caution Rabbit VASP CST 3112 50 C- use with caution Rabbit VEGFR2 CST 3112 50 C- use with caution Rabbit XIAP CST 2042 50 C- use with caution Rabbit XRCC1 CST 2735 50 C- use with caution Rabbit YAP Santa Cruz sc-15407 300 V - validated Rabbit YAP_pS127 CST 4911 350 C- use with caution Rabbit YB-1 SDI <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
STAT3_pY705 CST 9131 50 V - validated Rabbit STAT5_alpha Epitomics 1289-1 250 V - validated Rabbit Stathmin Epitomics 1972-1 150 V - validated Rabbit Syk Santa Cruz sc-1240 250 V - validated Mouse Tau Millipore 05-348 100 C - use with caution Mouse TAZ_pS89 Santa Cruz sc-17610 75 C - use with caution Rabbit Tuberin Epitomics 1613-1 500 C - use with caution Rabbit VASP CST 3112 50 C - use with caution Rabbit VEGFR2 CST 2479 5000 V - validated Rabbit XIAP CST 2042 50 C - use with caution Rabbit XRCC1 CST 2735 50 C - use with caution Rabbit YAP Santa Cruz sc-15407 300 V - validated Rabbit YAP_pS127 CST 4911 350 C - use with caution Rabbit YAP_pS127					
STAT5-alpha Epitomics 1289-1 250 V - validated Rabbit Stathmin Epitomics 1972-1 150 V - validated Rabbit Syk Santa Cruz sc-1240 250 V - validated Mouse Tau Millipore 05-348 100 C- use with caution Mouse TAZ_pS89 Santa Cruz sc-17610 75 C- use with caution Rabbit Tuberin Epitomics 1613-1 500 C- use with caution Rabbit VASP CST 3112 50 C- use with caution Rabbit VEGFR2 CST 2479 5000 V - validated Rabbit XIAP CST 2042 50 C- use with caution Rabbit XRCC1 CST 2735 50 C- use with caution Rabbit YAP Santa Cruz sc-15407 300 V - validated Rabbit YAP_pS127 CST 4911 350 C- use with caution Rabbit YB-1 SDI 1725.00.02 200 V - validated Rabbit					
Stathmin Epitomics 1972-1 150 V - validated Rabbit Syk Santa Cruz sc-1240 250 V - validated Mouse Tau Millipore 05-348 100 C- use with caution Mouse TAZ_pS89 Santa Cruz sc-17610 75 C- use with caution Rabbit Tuberin Epitomics 1613-1 500 C- use with caution Rabbit VASP CST 3112 50 C- use with caution Rabbit VEGFR2 CST 2479 5000 V - validated Rabbit XIAP CST 2042 50 C- use with caution Rabbit XRCC1 CST 2735 50 C- use with caution Rabbit YAP Santa Cruz sc-15407 300 V - validated Rabbit YAP_pS127 CST 4911 350 C- use with caution Rabbit YB-1 SDI 1725.00.02 200 V - validated Rabbit					
Syk Santa Cruz sc-1240 250 V - validated Mouse Tau Millipore 05-348 100 C- use with caution Mouse TAZ_pS89 Santa Cruz sc-17610 75 C- use with caution Rabbit Tuberin Epitomics 1613-1 500 C- use with caution Rabbit VASP CST 3112 50 C- use with caution Rabbit VEGFR2 CST 2479 5000 V - validated Rabbit XIAP CST 2042 50 C- use with caution Rabbit XRCC1 CST 2735 50 C- use with caution Rabbit YAP Santa Cruz sc-15407 300 V - validated Rabbit YAP_pS127 CST 4911 350 C- use with caution Rabbit YB-1 SDI 1725.00.02 200 V - validated Rabbit					
Tau Millipore 05-348 100 C- use with caution Mouse TAZ_pS89 Santa Cruz sc-17610 75 C- use with caution Rabbit Tuberin Epitomics 1613-1 500 C- use with caution Rabbit VASP CST 3112 50 C- use with caution Rabbit VEGFR2 CST 2479 5000 V - validated Rabbit XIAP CST 2042 50 C- use with caution Rabbit XRCC1 CST 2735 50 C- use with caution Rabbit YAP Santa Cruz sc-15407 300 V - validated Rabbit YAP_pS127 CST 4911 350 C- use with caution Rabbit YB-1 SDI 1725.00.02 200 V - validated Rabbit					
TAZ_pS89 Santa Cruz sc-17610 75 C- use with caution Rabbit Tuberin Epitomics 1613-1 500 C- use with caution Rabbit VASP CST 3112 50 C- use with caution Rabbit VEGFR2 CST 2479 5000 V - validated Rabbit XIAP CST 2042 50 C- use with caution Rabbit XRCC1 CST 2735 50 C- use with caution Rabbit YAP Santa Cruz sc-15407 300 V - validated Rabbit YAP_pS127 CST 4911 350 C- use with caution Rabbit YB-1 SDI 1725.00.02 200 V - validated Rabbit	-				
Tuberin Epitomics 1613-1 500 C- use with caution Rabbit VASP CST 3112 50 C- use with caution Rabbit VEGFR2 CST 2479 5000 V - validated Rabbit XIAP CST 2042 50 C- use with caution Rabbit XRCC1 CST 2735 50 C- use with caution Rabbit YAP Santa Cruz sc-15407 300 V - validated Rabbit YAP_pS127 CST 4911 350 C- use with caution Rabbit YB-1 SDI 1725.00.02 200 V - validated Rabbit			05-348		
Tuberin Epitomics 1613-1 500 C- use with caution Rabbit VASP CST 3112 50 C- use with caution Rabbit VEGFR2 CST 2479 5000 V - validated Rabbit XIAP CST 2042 50 C- use with caution Rabbit XRCC1 CST 2735 50 C- use with caution Rabbit YAP Santa Cruz sc-15407 300 V - validated Rabbit YAP_pS127 CST 4911 350 C- use with caution Rabbit YB-1 SDI 1725.00.02 200 V - validated Rabbit	TAZ_pS89	Santa Cruz	sc-17610	75 C- use with caution	Rabbit
VASP CST 3112 50 C- use with caution Rabbit VEGFR2 CST 2479 5000 V - validated Rabbit XIAP CST 2042 50 C- use with caution Rabbit XRCC1 CST 2735 50 C- use with caution Rabbit YAP Santa Cruz sc-15407 300 V - validated Rabbit YAP_pS127 CST 4911 350 C- use with caution Rabbit YB-1 SDI 1725.00.02 200 V - validated Rabbit				500 C- use with caution	Rabbit
VEGFR2 CST 2479 5000 V - validated Rabbit XIAP CST 2042 50 C- use with caution Rabbit XRCC1 CST 2735 50 C- use with caution Rabbit YAP Santa Cruz sc-15407 300 V - validated Rabbit YAP_pS127 CST 4911 350 C- use with caution Rabbit YB-1 SDI 1725.00.02 200 V - validated Rabbit					
XIAP CST 2042 50 C- use with caution Rabbit XRCC1 CST 2735 50 C- use with caution Rabbit YAP Santa Cruz sc-15407 300 V - validated Rabbit YAP_pS127 CST 4911 350 C- use with caution Rabbit YB-1 SDI 1725.00.02 200 V - validated Rabbit					
XRCC1CST273550 C- use with cautionRabbitYAPSanta Cruzsc-15407300 V - validatedRabbitYAP_pS127CST4911350 C- use with cautionRabbitYB-1SDI1725.00.02200 V - validatedRabbit					
YAP Santa Cruz sc-15407 300 V - validated Rabbit YAP_pS127 CST 4911 350 C- use with caution Rabbit YB-1 SDI 1725.00.02 200 V - validated Rabbit					
YAP_pS127 CST 4911 350 C- use with caution Rabbit YB-1 SDI 1725.00.02 200 V - validated Rabbit					
YB-I SDI 1725.00.02 200 V - validated Rabbit					
YB-I SDI 1725.00.02 200 V - validated Rabbit	YAP_pS127	CST	4911	350 C- use with caution	Rabbit
		SDI	1725.00.02	200 V - validated	Rabbit
	YB-1_pS102	CST	2900	150 V - validated	Rabbit

Gene ID CALD1	Gene Name 2825	Score (d) 0.8	Numerator (r) 0.138	Denominator (s+s0) 0.173	-3.427	contrast 2	contrast 3	adjusted P value (%)	Di
TAGLN	2825 18949	0.8	0.138 0.168	0.173	-3.427	1.454	1.225	0	
FERMT2	6321	0.772	0.1	0.13	-3.384	1.624	1.134	0	
NNMT	13555	0.764	0.163	0.214	-3.207	0.811	1.369	0	
CTGF	4323	0.749	0.168	0.224	-3.148	1.414	1.094	0	
GPX8	7474	0.74	0.138	0.186	-3.146	0.877	1.309	0	
MRC2	12641	0.74	0.146	0.198	-3.081	0.466	1.441	0	
RUNX2	17000	0.739	0.086	0.116	-2.988	-0.457	1.765	0	
CLMP	3830	0.737	0.136	0.184	-3.137	0.946	1.277	0	
DPYSL3	5150	0.737	0.16	0.217	-3.108	1.192	1.162	0	
GEM	7035	0.735	0.146	0.199	-3.047	1.907	0.841	0	
COL18A1	3970	0.729	0.128	0.175	-3.082	0.576 0.472	1.397 1.406	0	
TSHZ3 NEXN	20086 13395	0.715 0.712	0.118 0.098	0.165 0.137	-3.019 -3.114	1.352	1.101	0	
PTRF	15990	0.712	0.078	0.109	-3.201	1.178	1.217	0	
MSRB3	12776	0.705	0.141	0.2	-2.98	1.426	1.217	0	
CYR61	4528	0.701	0.164	0.234	-2.891	1.727	0.831	0	
PLS3	15215	0.7	0.136	0.195	-2.866	1.989	0.712	0	
ACTA2	202	0.699	0.163	0.233	-2.862	1.832	0.774	0	
TIMP2	19344	0.698	0.141	0.202	-2.948	0.796	1.238	0	
SRPX2	18547	0.698	0.142	0.203	-2.897	0.414	1.365	0	
GFPT2	7054	0.697	0.123	0.177	-2.877	0.188	1.446	0	
CNN2	3901	0.691	0.141	0.204	-2.92	1.308	1.016	0	
TCF4	19112	0.689	0.108	0.157	-2.975	1.219	1.081	0	
VCAN	20645	0.686	0.157	0.229	-2.846	0.518	1.296	0	
TGFB111	19244	0.684	0.104	0.152	-2.958	1.35	1.019	0	
FAP	6172	0.684	0.161	0.236	-2.795	0.311	1.353	0	
LMOD1	9739	0.68	0.075	0.111	-3	1.753	0.879	0	
FBLN2	6199	0.678	0.163	0.241	-2.843	1.027	1.089	0	
LOXL2	11683	0.677	0.138	0.204	-2.746	0.096	1.413	0	
LIMS2	9684	0.676	0.093	0.138	-2.851	1.956	0.718	0	
COL3A1	3983	0.675	0.18	0.266	-2.742	0.3	1.329	0	
S100A10	17025	0.674	0.117	0.173	-2.872	1.458	0.93	0	
DACT3	4555	0.674	0.139	0.206	-2.852	1.184	1.03	0	
GSN	7558	0.673	0.104	0.155	-2.808	1.934	0.704	0	
NID1	13456	0.672	0.129	0.192	-2.847	0.754	1.201	0	
ANGPTL2	633	0.671	0.134	0.199	-2.799	0.461	1.294	0	
SLIT3	18036	0.666	0.142	0.213	-2.8	0.736	1.183	0	
PDLIM4	14775	0.666	0.087	0.13	-2.831	1.921	0.721	0	
ISM1	8696	0.666	0.152	0.228	-2.763	1.56	0.831	0	
FSTL1	6776	0.662	0.143	0.217	-2.789	0.862	1.127	0	
SNAI2	18133	0.662	0.096	0.145	-2.879	0.945	1.141	0	
MIR100HG	12463	0.661	0.13	0.197	-2.804	1.207	0.995	0	
PDGFRB	14755	0.66	0.115	0.174	-2.782	0.46	1.285	0	
MRVII	12739	0.659	0.114 0.141	0.173	-2.806	1.449	0.899	0	
LOX PLK3	11680 15203	0.658	0.141	0.214 0.129	-2.678 -2.877	0.176 1.408	1.345 0.952	0	
TPM4	19855	0.656	0.101	0.129	-2.787	0.43	1.301	0	
SPARC	18362	0.652	0.155	0.238	-2.665	0.43	1.288	0	
C5orf62	2509	0.648	0.12	0.185	-2.742	1.445	0.867	0	
PODN	15296	0.648	0.099	0.153	-2.807	1.128	1.029	0	
SKAP2	17634	0.648	0.095	0.133	-2.714	1.876	0.677	0	
RARRES2	16240	0.646	0.152	0.236	-2.698	1.339	0.886	0	
GLT8D2	7182	0.646	0.079	0.123	-2.809	0.442	1.307	0	
SHOX2	17566	0.644	0.092	0.143	-2.807	0.931	1.109	0	
EMILIN1	5520	0.644	0.108	0.168	-2.719	0.45	1.256	0	
PODNLI	15297	0.644	0.098	0.152	-2.79	1.059	1.048	0	
MGC24103	12397	0.643	0.142	0.22	-2.654	0.376	1.252	0	
EGR1	5396	0.64	0.177	0.276	-2.557	1.817	0.618	0	
ANXA1	754	0.639	0.129	0.203	-2.627	1.735	0.688	0	
TMEM200A	19554	0.638	0.086	0.135	-2.793	0.878	1.123	0	
MXRA5	12901	0.637	0.092	0.145	-2.737	0.52	1.237	0	
DKK3	4932	0.636	0.1	0.158	-2.746	1.188	0.972	0	
SERPINF1	17400	0.635	0.129	0.203	-2.692	1.101	0.979	0	
PDLIM7	14777	0.635	0.092	0.145	-2.763	1.15	0.997	0	
GPR124	7367	0.635	0.104	0.163	-2.735	0.947	1.064	0	
RNF144A	16653	0.634	0.089	0.14	-2.705	0.352	1.288	0	
PRKCDBP	15652	0.631	0.11	0.175	-2.701	1.204	0.942	0	
COL5A1	3991	0.63	0.102	0.162	-2.595	0.076	1.342	0	
CNN1	3900	0.629	0.185	0.295	-2.424	2.015	0.468	0	
VIM	20673	0.629	0.099	0.157	-2.711	0.82	1.102	0	
ZEB1	21166	0.628	0.107	0.171	-2.675	0.629	1.161	0	
HTRA3	8272	0.628	0.119	0.189	-2.43	-0.352	1.427	0	
IGFBP3	8405	0.628	0.115	0.184	-2.676	0.879	1.06	0	
POSTN	15383	0.627	0.179	0.285	-2.532	0.246	1.239	0	
ITPRIP NDN	8761 13282	0.627 0.626	0.094 0.111	0.151 0.177	-2.719 -2.63	0.975 1.566	1.044 0.759	0	
	13282 12956				-2.63 -2.618	1.566		0	
MYL9		0.624	0.125	0.201			0.81		
NOX4	13603	0.624	0.093	0.149	-2.514	-0.195	1.408	0	
COL1A2	3973 8270	0.623 0.623	0.17	0.273	-2.522 -2.577	0.25 0.524	1.233	0	
HTRA1 SCG5	8270 17165	0.623	0.156 0.11	0.251 0.177	-2.577 -2.643	0.524	1.151	0	
PALLD	1/165	0.623	0.11	0.177	-2.643 -2.732	0.597	1.157	0	
COL5A2	3992	0.623	0.167	0.126	-2.732	-0.024	1.178	0	
LTBP2	3992 11867	0.621	0.167	0.269	-2.453 -2.691	1.199	0.939	0	
DSE	5180	0.621	0.088	0.13	-2.657	0.425	1.234	0	
DZIP1L	5277	0.62	0.088	0.142	-2.708	0.425	1.268	0	
FEZ1	6326	0.618	0.075	0.115	-2.688	1.629	0.764	0	
ARHGAP28	926	0.616	0.082	0.121	-2.665	0.486	1.213	0	
TUBB6	20251	0.615	0.122	0.133	-2.613	0.480	0.986	0	
TRPC1	20231	0.613	0.122	0.198	-2.659	0.822	1.074	0	
SERPING1	17402	0.613	0.09	0.147	-2.669	1.367	0.859	0	
CIS	2133	0.611	0.08	0.131	-2.595	1.367	0.859	0	
THYI						0.081		0	
	19311	0.61	0.121	0.198	-2.477		1.277		
CHADL	3589	0.609	0.127	0.209	2.555	-1.338	-0.811	0	
RHOJ	16542	0.609	0.092	0.152	-2.578	1.622	0.709	0	
FOXO1	6712	0.609	0.077	0.127	-2.47	2.137	0.443	0	
TNS1	19782	0.609	0.074	0.122	-2.69	1.263	0.912	0	
DACT1	4553	0.608	0.126	0.208	-2.559	0.64	1.095	0	
GAS1	6942	0.608	0.13	0.215	-2.554	1.265	0.84	0	
AEBP1	364	0.608	0.154	0.254	-2.502	0.431	1.149	0	
	4634	0.606	0.157	0.26	-2.53	0.849	0.995	0	
DCN		0.606	0.13	0.214	-2.484	0.235	1.219	0	
TNFAIP6	19715				2	1.555			
	6883 465	0.605 0.605	0.099 0.104	0.163 0.172	-2.597 -2.435	1.238 1.928	0.873 0.509	0	

Gene ID Gene Name Score (d) Numerator (r) Denominator (s+s0) contrast 1 contrast 2 contrast 3 adjusted P val	Up
PRICKLE1 15627 0.604 0.137 0.226 -2.538 1.167 0.871 0 MYLK 12958 0.604 0.138 0.229 -2.473 1.599 0.662 0	
MYLK 12958 0.604 0.138 0.229 -2.473 1.599 0.662 0	Up
PCSK5 14697 0.604 0.054 0.089 -2.788 0.801 1.151 0	Up
	Up
COLIAI 3972 0.664 0.165 0.273 -2.415 0.113 1.231 0	Up
TPM2 19853 0.602 0.109 0.181 -2.573 0.928 0.986 0 EGR2 5397 0.602 0.127 0.21 -2.449 1.711 0.604 0	Up
BGN 1500 0.601 0.103 0.172 -2.562 0.633 1.099 0	Up Up
FBN1 6202 0.601 0.108 0.179 -2.44 0.01 1.286 0	Up
BHLHE41 1507 0.6 0.133 0.222 -2.455 1.614 0.647 0	Up
CDH11 3348 0.6 0.089 0.148 -2.533 0.262 1.234 0	Up
UHMK1 20465 0.599 0.061 0.102 2.512 -2.131 -0.468 0	Up
NHBA 8573 0.599 0.148 0.246 -2.303 -0.261 1.324 0 CFH 3562 0.598 0.101 0.17 -2.565 1.098 0.913 0	Up Up
FIBIN 6389 0.598 0.12 0.2 2-2.536 0.914 0.972 0	Up
GRASP 7484 0.597 0.094 0.157 -2.527 1.556 0.708 0	Up
KCNMB4 8924 0.597 0.122 0.205 -2.496 0.478 1.127 0	Up
ANTXR1 750 0.597 0.108 0.181 -2.537 0.663 1.074 0	Up
ISLR 8694 0.596 0.133 0.223 -2.506 0.765 1.016 0	Up
SRPX 18546 0.596 0.123 0.206 -2.52 0.847 0.991 0	Up
MMP19 12536 0.594 0.062 0.104 -2.687 0.932 1.045 0 SEMA5A 17317 0.593 0.115 0.194 -2.511 1.193 0.846 0	Up Up
PPIC 15449 0.593 0.098 0.166 -2.527 0.556 1.112 0	Up
C1R 2131 0.592 0.114 0.192 -2.516 1.092 0.89 0	Up
PRRX1 15774 0.592 0.121 0.204 -2.445 0.285 1.178 0	Up
ARL4C 996 0.592 0.106 0.179 -2.462 1.594 0.658 0	Up
RPRD2 16856 0.591 0.05 0.085 2.704 -1.656 -0.761 0	Up
DLC1 4936 0.59 0.059 0.1 -2.664 1.387 0.849 0 MMP2 12537 0.589 0.126 0.213 -2.49 0.915 0.947 0	Up Up
THBS2 19280 0.588 0.146 0.248 2-2399 0.274 1.158 0	Up
NAPIL3 13066 0.588 0.074 0.127 -2.447 1.901 0.526 0	Up
FBLN5 6200 0.586 0.12 0.205 -2.45 1.386 0.736 0	Up
PPAPDC3 15424 0.586 0.06 0.102 -2.609 0.418 1.211 0	Up
CCDC8 3099 0.585 0.114 0.194 -2.387 1.693 0.579 0	Up
TEAD1 19159 0.585 0.072 0.123 -2.294 -0.496 1.414 0.	Up
PDGFRA 14754 0.582 0.128 0.219 -2.453 0.919 0.926 0 MEG3 12275 0.581 0.083 0.143 -2.516 0.611 1.084 0	Up Up
MEGS 12273 0.361 0.005 0.145 -2.310 0.011 1.004 0 COL6A3 3996 0.581 0.103 0.178 -2.283 -0.253 1.31 0	Up
RBMS1 16338 0.581 0.088 0.152 -2.516 0.868 0.98 0	Up
CXorfS7 4437 0.58 0.09 0.154 -1.891 2.587 -0.045 0	Up
SFRP2 17448 0.58 0.164 0.283 -2.412 0.85 0.932 0	Up
MARVELDI 12120 0.58 0.103 0.179 -2.362 0.038 1.234 0	Up
EMP1 5529 0.579 0.105 0.182 -2.25 2.007 0.379 0 CYS1 4529 0.578 0.118 0.204 -2.414 0.447 1.096 0	Up Up
LHFP 9642 0.577 0.112 0.194 2.2431 1.293 0.764 0	Up
ADAMTS6 284 0.577 0.055 0.095 -2.571 0.27 1.251 0	Up
MMP14 12532 0.577 0.125 0.216 -2.36 0.218 1.16 0	Up
PTPN21 15959 0.576 0.098 0.171 -2.366 1.706 0.562 0	Up
PDLIM3 14774 0.576 0.103 0.179 -2.317 1.817 0.492 0	Up
EHD2 5403 0.575 0.087 0.151 -2.486 1.178 0.839 0	Up
PRKD1 15660 0.575 0.073 0.127 -2.467 1.61 0.655 0 RPUSD1 16914 0.575 0.065 0.113 2.397 -1.956 -0.478 0	Up
CAV2 2944 0.575 0.064 0.111 -2.24 2.289 0.26 0	Up Up
SPON1 18456 0.574 0.165 0.287 -2.382 0.714 0.971 0	Up
MXRA8 12903 0.574 0.121 0.211 -2.402 0.517 1.061 0	Up
APCDD1 809 0.573 0.125 0.218 -2.314 1.67 0.549 0	Up
CYTH3 4535 0.572 0.098 0.171 -2.45 1.117 0.845 0	Up
COL6A1 3994 0.572 0.13 0.228 -2.271 -0.048 1.22 0	Up
EVC2 5727 0.571 0.045 0.078 -2.686 0.6 1.178 0 FN1 6649 0.571 0.157 0.276 -2.064 -0.558 1.317 0	Up Up
PNI 0049 0.571 0.157 0.270 -2.004 -0.356 1.517 0 C907125 2684 0.571 0.081 0.143 -2.249 1.422 0.721 0	Up
AGPAT4 404 0.57 0.065 0.113 -2.542 0.752 1.04 0	Up
FGF1 6341 0.568 0.043 0.075 -2.691 0.561 1.196 0	Up
PROS1 15712 0.568 0.071 0.125 -2.481 1.387 0.752 0	Up
RGS2 16502 0.568 0.136 0.24 -2.071 2.112 0.242 0	Up
MGC4294 12410 0.567 0.101 0.179 -2.14 -0.485 1.327 0 MDFIC 12218 0.567 0.071 0.124 -2.492 0.635 1.062 0	Up Un
MDFIC 12218 0.567 0.071 0.124 -2-492 0.555 1.062 0 sep.11 17342 0.566 0.09 0.159 -2-443 0.794 0.971 0	Up Up
SQL11 17072 0.500 0.07 0.157 2-2394 1.102 0.821 0	Up
EFHA2 5366 0.565 0.071 0.126 -2.496 0.891 0.96 0	Up
PSMD4 15868 0.565 0.051 0.09 2.515 -1.752 -0.623 0	Up
Clorf15-NBL1 2163 0.564 0.115 0.205 -2.375 0.605 1.011 0	Up
COL6A2 3995 0.562 0.118 0.21 -2.373 0.745 0.954 0 PLXDC1 15224 0.561 0.066 0.118 -2.454 0.392 1.14 0	Up Up
LUM 11879 0.56 0.155 0.276 -2.294 0.379 1.06 0	Up
ADAM12 247 0.56 0.072 0.128 -2.384 0.16 1.196 0	Up
SVEP1 18824 0.56 0.066 0.118 -2.433 1.539 0.665 0	Up
FOXF2 6694 0.559 0.059 0.105 -2.446 1.638 0.632 0	Up
LCAT 9536 0.558 0.069 0.124 -2.469 0.878 0.951 0	Up
SERPINHI 17403 0.558 0.113 0.203 -2.207 -0.128 1.219 0 LAYN 9528 0.557 0.084 0.151 -2.322 1.628 0.57 0	Up Up
RFX8 16471 0.556 0.065 0.117 -2.298 -0.177 1.287 0	Up
CD200 3228 0.556 0.067 0.12 -2.42 1.464 0.689 0	Up
DNAJBS 5018 0.555 0.065 0.116 -2.473 0.775 0.995 0	Up
SLC2A3 17831 0.555 0.045 0.08 -2.562 0.361 1.209 0	Up
PDPN 14781 0.555 0.107 0.193 -2.356 0.772 0.934 0.	Up
HSPB2 8233 0.554 0.123 0.222 -2.212 1.686 0.489 0 NID2 13457 0.552 0.063 0.114 -2.25 -0.303 1.312 0	Up Up
NID2 13457 0.552 0.065 0.114 -2-2.5 -0.305 1.312 0 ZFP36 21191 0.552 0.107 0.193 -2-298 1.412 0.645 0	Up Up
SGCD 17470 0.552 0.082 0.148 2-2.314 0.16 1.159 0	Up
DAB2 4549 0.551 0.082 0.149 -2.393 0.966 0.875 0	Up
VEGFC 20657 0.551 0.078 0.142 -2.337 1.517 0.624 0	Up
FOSB 6676 0.55 0.182 0.331 -2.048 1.891 0.319 0	Up
TBX15 19068 0.55 0.052 0.094 -2.512 0.635 1.072 0	Up
SSPN 18583 0.55 0.1 0.182 -2.333 1.175 0.759 0 PMEPAI 15241 0.549 0.103 0.188 -2.303 0.393 1.059 0	Up Up
PDGFRL 14756 0.549 0.145 0.264 -2.281 0.61 0.96 0	Up Up
CAVI 2943 0.549 0.11 0.2 -2.093 1.944 0.322 0	Up
SH3PXD2A 17528 0.548 0.085 0.154 -2.374 0.876 0.901 0	Up
HIF1A 7874 0.548 0.083 0.151 -2.362 0.583 1.014 0	Up
C12orf34 1798 0.547 0.097 0.178 2.336 -1.068 -0.804 0	Up
SLC2A14 17829 0.547 0.08 0.147 -2.358 0.54 1.029 0 VGLL3 20667 0.547 0.05 0.092 -2.484 0.462 1.127 0	Up
Vol.L3 2006 / 0.54 / 0.05 0.092 -2-484 0.402 1.12 / 0 CTSK 4353 0.546 0.133 0.243 -2.288 0.767 0.901 0	Up Up
	Up
TWIST2 20278 0.546 0.113 0.207 -2.304 1.061 0.79 0	

Gene ID	Gene Name	Score (d)	Numerator (r)	Denominator (s+s0)	contrast 1	contrast 2	contrast 3	adjusted P value (%)	Direction
COPZ2 C10orf10	4039 1681	0.545 0.545	0.108 0.121	0.198 0.222	-2.267 -2.207	0.319 1.553	1.07 0.54	0	Up Up
C14orf37	1892	0.545	0.076	0.139	-2.359	0.505	1.044	0	Up
CLIP3	3821	0.545	0.067	0.123	-2.407	0.697	0.991	0	Up
HABP4	7685	0.545	0.073	0.133	-2.355	1.36	0.696	0	Up
IKBIP	8438	0.545	0.05	0.092	-2.273	-0.35	1.343	0	Up
C11orf96 CACNA2D1	1787 2793	0.544 0.543	0.106 0.051	0.196 0.094	-2.288 -2.438	1.218 0.311	0.718 1.164	0	Up
KIAA1462	9087	0.542	0.085	0.156	-2.328	0.584	0.995	0	Up Up
DDR2	4674	0.542	0.076	0.14	-2.366	0.907	0.885	0	Up
PCOLCE	14687	0.542	0.1	0.185	-2.276	0.409	1.038	0	Up
SFXN4	17466	0.541	0.056	0.104	2.418	-1.324	-0.744	0	Up
MARCKS	12111	0.54	0.082	0.152	-2.315	0.463	1.037	0	Up
PVRL3 MAP4K4	16018 12065	0.54 0.54	0.062 0.058	0.114 0.108	-2.355 -2.425	0.292 0.771	1.128 0.971	0	Up Up
SLC12A4	17666	0.538	0.06	0.112	-2.423	1.55	0.612	0	Up
CMTM3	3874	0.538	0.089	0.166	-2.3	1.17	0.744	0	Up
BNC2	1562	0.538	0.071	0.132	-2.327	0.388	1.074	0	Up
GRP	7537	0.537	0.177	0.329	-2.214	1.026	0.756	0	Up
PPFIBP1	15442	0.537	0.065	0.122	-2.329	0.302	1.109	0	Up
KLF12 C7orf10	9198 2582	0.537 0.537	0.069 0.077	0.128 0.144	-2.308 -2.289	1.462 0.325	0.63 1.079	0	Up Up
MYO1B	12972	0.536	0.062	0.116	-2.35	1.394	0.68	0	Up
ADCK3	304	0.536	0.052	0.097	2.436	-1.237	-0.788	0	Up
CELF2	3478	0.536	0.069	0.129	-2.316	1.397	0.661	0	Up
SOBP	18276	0.536	0.054	0.1	-2.419	1.244	0.777	0	Up
PLXDC2	15225	0.536	0.09	0.169	-2.183	-0.003	1.156	0	Up
PXDN	16027	0.535	0.116	0.217	-2.2	0.255	1.061	0	Up
ARAP3 LIMS1	887 9683	0.535 0.534	0.077 0.06	0.144 0.112	-2.252 -2.361	1.526 0.434	0.575 1.073	0	Up Up
CFHR3	3565	0.534	0.086	0.162	-2.291	1.115	0.762	0	Up
RAB23	16092	0.534	0.086	0.161	-2.26	0.36	1.05	0	Up
FOS	6675	0.534	0.162	0.303	-1.938	1.941	0.241	0	Up
MT1M	12797	0.533	0.143	0.268	-2.222	0.953	0.79	0	Up
LRP1	11735	0.533	0.051	0.096	-2.424	0.588	1.045	0	Up
MFAP5 ETV1	12348 5718	0.533 0.532	0.127 0.05	0.238 0.094	-2.155 -2.436	0.142 0.683	1.082 1.012	0	Up
PSMB4	15847	0.532	0.054	0.094	2.241	-1.867	-0.431	0	Up
COL16A1	3968	0.532	0.076	0.143	-2.318	0.886	0.868	0	Up Up
CSRP1	4276	0.532	0.059	0.11	-2.094	2.087	0.264	0	Up
COL8A2	4002	0.531	0.121	0.227	-2.158	0.151	1.081	0	Up
FOXQ1	6719	0.531	0.146	0.275	-2.197	1.097	0.719	0	Up
PPAPDC1A	15421	0.53	0.149	0.281	-2.113	0.084	1.083	0	Up
KIRREL ARSI	9182 1056	0.53 0.53	0.072 0.066	0.135 0.124	-2.318 -2.294	0.694 0.316	0.945 1.086	0	Up Up
SPON2	18457	0.529	0.065	0.124	-2.294	0.789	0.92	0	Up
PRKCA	15649	0.528	0.1	0.189	-2.103	1.697	0.427	0	Up
RASD1	16251	0.528	0.155	0.293	-1.846	2.036	0.154	0	Up
SCAMP3	17128	0.528	0.055	0.104	2.362	-1.284	-0.731	0	Up
SCARNA17	17147	0.527	0.107	0.202	-2.2	1.27	0.651	0	Up
PPP1R16A	15494	0.527	0.074	0.141	2.214	-1.543	-0.548	0	Up
CLDN11 NIT1	3758 13476	0.527 0.526	0.131 0.055	0.25 0.104	-1.985 2.313	1.833 -1.522	0.31 -0.609	0	Up Up
MTIX	12798	0.526	0.113	0.214	-2.199	1.189	0.683	0	Up
ARRDC3	1046	0.525	0.082	0.157	-2.113	1.74	0.415	0	Up
ADAMTS5	283	0.525	0.11	0.21	-2.22	0.803	0.85	0	Up
KLF2	9204	0.525	0.093	0.178	-2.208	1.295	0.645	0	Up
COL12A1	3964	0.524	0.141	0.269	-2.073	-0.001	1.097	0	Up
GXYLT2 FNDC4	7646 6658	0.524 0.524	0.137 0.072	0.261 0.137	-2.165 -2.131	0.458 1.763	0.96 0.415	0	Up Up
MB21D2	12148	0.524	0.067	0.127	-1.767	2.352	-0.016	0	Up
SLFN11	18026	0.523	0.084	0.161	-2.253	0.756	0.886	0	Up
FNDC1	6655	0.523	0.119	0.229	-2.19	0.613	0.911	0	Up
JDP2	8787	0.523	0.077	0.148	-2.265	0.668	0.928	0	Up
DOCK11	5084	0.522	0.076	0.146	-2.169	1.591	0.504	0	Up
AIM1 H19	446 7663	0.522 0.522	0.116 0.125	0.223 0.24	-1.118 -2.038	2.569 1.676	-0.446 0.401	0	Up Up
YYIAPI	21044	0.521	0.055	0.105	2.35	-1.031	-0.826	0	Up
C1QTNF5	2125	0.521	0.099	0.19	-2.218	0.848	0.831	0	Up
FLNA	6617	0.521	0.062	0.12	-2.278	1.329	0.668	0	Up
LRIG3	11730	0.521	0.094	0.181	-2.196	1.235	0.662	0	Up
TMEM45A	19610	0.521	0.131	0.252	-2.17	0.607	0.902	0	Up
UACA FMO2	20323 6639	0.521 0.52	0.069 0.174	0.132 0.335	-2.282 -1.91	0.674 1.835	0.935 0.269	0	Up Up
LPCAT2									
DPYSL2	11695	0.52	0.054	0.103	-2.32	1.347	0.683	0	
KDELC2	5149	0.52 0.519	0.054 0.083		-2.32 -1.976		0.683 0.261	0	Up Up
	5149 8968	0.519 0.519	0.083 0.062	0.103 0.16 0.119	-1.976 -2.261	1.347 1.941 0.313	0.261 1.069	0	Up Up Up
ARHGAP39	5149 8968 934	0.519 0.519 0.519	0.083 0.062 0.072	0.103 0.16 0.119 0.139	-1.976 -2.261 2.265	1.347 1.941 0.313 -0.722	0.261 1.069 -0.906	0 0 0	Up Up Up Up
SGK1	5149 8968 934 17475	0.519 0.519 0.519 0.519	0.083 0.062 0.072 0.091	0.103 0.16 0.119 0.139 0.176	-1.976 -2.261 2.265 -2.109	1.347 1.941 0.313 -0.722 1.583	0.261 1.069 -0.906 0.476	0 0 0	Up Up Up Up Up
SGK1 SGIP1	5149 8968 934 17475 17474	0.519 0.519 0.519 0.519 0.518	0.083 0.062 0.072 0.091 0.072	0.103 0.16 0.119 0.139 0.176 0.14	-1.976 -2.261 2.265 -2.109 -2.098	1.347 1.941 0.313 -0.722 1.583 -0.165	0.261 1.069 -0.906 0.476 1.176	0 0 0 0	Up Up Up Up Up Up
SGK1	5149 8968 934 17475	0.519 0.519 0.519 0.519 0.518 0.517	0.083 0.062 0.072 0.091	0.103 0.16 0.119 0.139 0.176	-1.976 -2.261 2.265 -2.109	1.347 1.941 0.313 -0.722 1.583	0.261 1.069 -0.906 0.476	0 0 0	Up Up Up Up Up Up Up
SGK1 SGIP1 CLEC11A	5149 8968 934 17475 17474 3782	0.519 0.519 0.519 0.519 0.518	0.083 0.062 0.072 0.091 0.072 0.105	0.103 0.16 0.119 0.139 0.176 0.14 0.203 0.163 0.166	-1.976 -2.261 2.265 -2.109 -2.098 -2.141	1.347 1.941 0.313 -0.722 1.583 -0.165 0.274	0.261 1.069 -0.906 0.476 1.176 1.022	0 0 0 0 0	Up Up Up Up Up Up Up Up
SGK1 SGIP1 CLEC11A CES1 CFI KLF7	5149 8968 934 17475 17474 3782 3545 3568 9209	0.519 0.519 0.519 0.519 0.518 0.517 0.517 0.517	0.083 0.062 0.072 0.091 0.072 0.105 0.084 0.086	0.103 0.16 0.119 0.139 0.176 0.14 0.203 0.163 0.166 0.136	-1.976 -2.261 2.265 -2.109 -2.098 -2.141 -2.226 -2.074 -2.263	1.347 1.941 0.313 -0.722 1.583 -0.165 0.274 0.948 1.691 0.805	0.261 1.069 -0.906 0.476 1.176 1.022 0.794 0.414 0.872	0 0 0 0 0 0 0	Up
SGK1 SGIP1 CLEC11A CES1 CFI KLF7 PHLDB1	5149 8968 934 17475 17474 3782 3545 3568 9209 14949	0.519 0.519 0.519 0.519 0.518 0.517 0.517 0.517 0.517	0.083 0.062 0.072 0.091 0.072 0.105 0.084 0.086 0.07	0.103 0.16 0.119 0.139 0.176 0.14 0.203 0.163 0.166 0.136	-1.976 -2.261 2.265 -2.109 -2.098 -2.141 -2.226 -2.074 -2.263 -2.243	1.347 1.941 0.313 -0.722 1.583 -0.165 0.274 0.948 1.691 0.805 0.226	0.261 1.069 -0.906 0.476 1.176 1.022 0.794 0.414 0.872 1.095	0 0 0 0 0 0 0	Up U
SGK1 SGIP1 CLEC11A CES1 CFI KLF7 PHLDB1 ACTN1	5149 8968 934 17475 17474 3782 3545 3568 9209 14949 214	0.519 0.519 0.519 0.519 0.518 0.517 0.517 0.517 0.517	0.083 0.062 0.072 0.091 0.072 0.105 0.084 0.086 0.07 0.059	0.103 0.16 0.119 0.139 0.176 0.14 0.203 0.163 0.166 0.136 0.115 0.165	-1.976 -2.261 2.265 -2.109 -2.098 -2.141 -2.226 -2.074 -2.263 -2.243 -2.22	1.347 1.941 0.313 -0.722 1.583 -0.165 0.274 0.948 1.691 0.805 0.226 0.9	0.261 1.069 -0.906 0.476 1.176 1.022 0.794 0.414 0.872 1.095 0.81	0 0 0 0 0 0 0	Up U
SGK1 SGIP1 CLEC11A CES1 CFI KLF7 PHLDB1 ACTN1 SFRP4	5149 8968 934 17475 17474 3782 3545 3568 9209 14949 214 17449	0.519 0.519 0.519 0.519 0.518 0.517 0.517 0.517 0.517 0.517	0.083 0.062 0.072 0.091 0.072 0.105 0.084 0.086 0.07 0.089 0.087	0.103 0.16 0.119 0.139 0.176 0.14 0.203 0.163 0.166 0.136 0.115 0.168	-1.976 -2.261 2.265 -2.109 -2.098 -2.141 -2.226 -2.074 -2.263 -2.243 -2.243 -2.22 -2.024	1.347 1.941 0.313 -0.722 1.583 -0.165 0.274 0.948 1.691 0.805 0.226 0.9 1.62	0.261 1.069 -0.906 0.476 1.176 1.022 0.794 0.414 0.872 1.095 0.81	0 0 0 0 0 0 0 0	Up U
SGK1 SGIP1 CLEC11A CES1 CFI KLF7 PHLDB1 ACTN1 SFRP4 NHS	5149 8968 934 17475 17474 3782 3545 3568 9209 14949 214 17449 13452	0.519 0.519 0.519 0.519 0.518 0.517 0.517 0.517 0.517 0.517 0.516 0.516	0.083 0.062 0.072 0.091 0.072 0.105 0.084 0.086 0.07 0.059 0.087 0.129	0.103 0.16 0.119 0.139 0.176 0.14 0.203 0.163 0.166 0.136 0.115 0.168 0.25 0.095	-1.976 -2.261 2.265 -2.109 -2.098 -2.141 -2.226 -2.074 -2.263 -2.243 -2.22 -2.024 -2.341	1.347 1.941 0.313 -0.722 1.583 -0.165 0.274 0.948 1.691 0.805 0.226 0.9 1.62	0.261 1.069 -0.906 0.476 1.176 1.022 0.794 0.414 0.872 1.095 0.81 0.416	0 0 0 0 0 0 0 0 0	Up U
SGK1 SGIP1 CLEC11A CES1 CF1 KLF7 PHLDB1 ACTN1 SFRP4 NHS RECK	5149 8968 934 17475 17474 3782 3545 3568 9209 14949 214 17449 13452 16395	0.519 0.519 0.519 0.519 0.518 0.517 0.517 0.517 0.517 0.517 0.516 0.516	0.083 0.062 0.072 0.091 0.072 0.105 0.084 0.086 0.07 0.059 0.087 0.129 0.049	0.103 0.16 0.119 0.139 0.176 0.14 0.203 0.163 0.166 0.136 0.115 0.168 0.25 0.095 0.125	-1.976 -2.261 -2.265 -2.109 -2.098 -2.141 -2.226 -2.074 -2.263 -2.243 -2.22 -2.024 -2.341 -2.265	1.347 1.941 0.313 -0.722 1.583 -0.165 0.274 0.948 1.691 0.805 0.226 0.9 1.62 1.263 0.575	0.261 1.069 -0.906 0.476 1.176 1.022 0.794 0.414 0.872 1.095 0.81 0.416 0.728	0 0 0 0 0 0 0 0 0	Up U
SGK1 SGIP1 CLEC11A CES1 CFI KLF7 PHLDB1 ACTN1 SFRP4 NHS RECK GGT5 LRCH2	5149 8968 934 17475 17474 3782 3545 3568 9209 14949 214 17449 13452 16395 7072	0.519 0.519 0.519 0.519 0.518 0.517 0.517 0.517 0.517 0.517 0.516 0.516 0.515	0.083 0.062 0.072 0.091 0.072 0.105 0.084 0.07 0.059 0.087 0.129 0.049 0.065 0.089	0.103 0.16 0.119 0.139 0.176 0.14 0.203 0.163 0.166 0.136 0.115 0.168 0.25 0.095 0.125 0.172	-1.976 -2.261 -2.265 -2.109 -2.098 -2.141 -2.226 -2.074 -2.263 -2.243 -2.22 -2.024 -2.341 -2.265 -2.187 -2.366	1.347 1.941 0.313 -0.722 1.583 -0.165 0.274 0.948 1.691 0.206 0.9 1.62 1.263 0.575 1.182 1.213	0.261 1.069 -0.906 0.476 1.176 1.022 0.794 0.414 0.872 1.095 0.81 0.416 0.728 0.965 0.679	0 0 0 0 0 0 0 0 0 0	Up U
SGK1 SGIP1 CLEC11A CES1 CFI KLF7 PHLDB1 ACTN1 SFRP4 NHS RECK GGT5 LRCH2 PRDM1	\$149 8968 934 17475 17474 3782 3545 3568 9209 14949 214 17449 13452 16395 7072 11717 15591	0.519 0.519 0.519 0.519 0.518 0.517 0.517 0.517 0.517 0.517 0.516 0.516 0.515 0.515	0.083 0.062 0.072 0.091 0.072 0.105 0.084 0.086 0.07 0.059 0.087 0.129 0.049 0.065 0.089 0.046 0.089	0.103 0.16 0.119 0.139 0.176 0.14 0.203 0.163 0.166 0.136 0.115 0.168 0.25 0.095 0.172 0.099	-1.976 -2.261 -2.265 -2.109 -2.098 -2.141 -2.226 -2.074 -2.263 -2.243 -2.22 -2.024 -2.341 -2.265 -2.187 -2.366 -2.11	1.347 1.941 0.313 -0.722 1.583 -0.165 0.274 0.948 1.691 0.805 0.226 0.9 1.62 1.263 0.575 1.182 1.213	0.261 1.069 -0.906 0.476 1.176 1.022 0.794 0.414 0.872 1.095 0.81 0.416 0.728 0.965 0.679 0.762	0 0 0 0 0 0 0 0 0 0	Up U
SGK1 SGBP1 CLECI1A CES1 CF1 KLF7 PHLDB1 ACTN1 SFRP4 NHS RECK GGT5 LRCH2 PMM1 HOXAI1-AS1	\$149 8968 934 17475 17474 3782 3545 3568 9209 14949 214 17449 13452 16395 7072 11717 15591 8086	0.519 0.519 0.519 0.519 0.519 0.518 0.517 0.517 0.517 0.517 0.517 0.516 0.516 0.515 0.515 0.515 0.515	0.083 0.062 0.072 0.091 0.072 0.105 0.084 0.07 0.059 0.087 0.129 0.049 0.065 0.089 0.089	0.103 0.16 0.119 0.139 0.176 0.14 0.203 0.163 0.166 0.136 0.115 0.168 0.25 0.095 0.125 0.172 0.09 0.164	-1,976 -2,261 -2,265 -2,109 -2,098 -2,141 -2,226 -2,074 -2,263 -2,243 -2,22 -2,024 -2,341 -2,265 -2,111 -2,138	1.347 1.941 0.313 -0.722 1.583 -0.165 0.274 0.948 1.691 0.805 0.226 0.9 1.62 1.263 0.575 1.182 1.213	0.261 1.069 -0.906 0.476 1.176 1.022 0.794 0.414 0.872 1.095 0.81 0.416 0.728 0.965 0.679 0.762 1.105	0 0 0 0 0 0 0 0 0 0 0	Up U
SGK1 SGIP1 CLEC11A CES1 CF1 KLF7 PHLDB1 ACTN1 STRP4 NHS RECK GGT5 LRCH2 PRDM1 HOXA11-AS1 HEG1	\$149 8968 934 17475 17474 3782 3545 3568 9209 14949 214 17449 13452 16395 7072 11717 15591 8086 7809	0.519 0.519 0.519 0.519 0.518 0.517 0.517 0.517 0.517 0.517 0.516 0.516 0.515 0.515 0.515	0.083 0.062 0.072 0.091 0.072 0.105 0.084 0.086 0.07 0.059 0.087 0.129 0.049 0.065 0.089 0.046 0.084 0.094 0.081	0.103 0.16 0.119 0.139 0.176 0.14 0.203 0.163 0.166 0.136 0.115 0.168 0.25 0.095 0.125 0.172 0.09 0.164 0.183 0.158	-1.976 -2.261 -2.265 -2.109 -2.098 -2.141 -2.226 -2.074 -2.263 -2.243 -2.22 -2.024 -2.341 -2.265 -2.187 -2.366 -2.11 -2.138 -2.174	1.347 1.941 0.313 -0.722 1.583 -0.165 0.274 0.948 1.691 0.805 0.226 0.9 1.62 1.263 0.575 1.182 1.213 0.025 0.234	0.261 1.069 -0.906 0.476 1.176 1.022 0.794 0.414 0.872 1.095 0.81 0.416 0.728 0.965 0.679 0.728 0.679	0 0 0 0 0 0 0 0 0 0 0 0	Up U
SGK1 SGIP1 CLEC11A CES1 CF1 KLF7 PHLDB1 ACTN1 SFRP4 NHS RECK GGT5 LRCH2 PRDM1 HOXA11-AS1 HEG1 RUNNITI	\$149 8968 934 17475 17474 3782 3545 3568 9209 14949 214 17449 13452 16395 7072 11717 15591 8086 7809 16999	0.519 0.519 0.519 0.519 0.518 0.517 0.517 0.517 0.517 0.517 0.516 0.516 0.515 0.515 0.515	0.083 0.062 0.072 0.091 0.072 0.105 0.084 0.07 0.059 0.087 0.129 0.049 0.065 0.089 0.049	0.103 0.16 0.119 0.139 0.176 0.14 0.203 0.163 0.166 0.136 0.115 0.168 0.25 0.095 0.125 0.172 0.09 0.164 0.183 0.158 0.158	-1,976 -2,261 -2,265 -2,109 -2,098 -2,141 -2,263 -2,243 -2,224 -2,243 -2,224 -2,366 -2,111 -2,138 -2,174 -2,159	1.347 1.941 0.313 -0.722 1.583 -0.165 0.274 0.948 1.691 0.805 0.29 1.62 1.263 0.575 1.182 1.213 0.023 1.313 1.314 1.314 1.341 1.341	0.261 1.069 -0.906 0.476 1.176 1.022 0.794 0.414 0.872 1.095 0.81 0.416 0.728 0.965 0.679 0.762 1.103 0.608	0 0 0 0 0 0 0 0 0 0 0 0	Up U
SGK1 SGIP1 CLEC11A CES1 CF1 KLF7 PHLDB1 ACTN1 SFRP4 NHS RECK GGT5 LRCH2 PRDM1 HOXA11-AS1 HEGI RUNXIT1 BACH2	\$149 8968 934 17475 17474 3782 3545 3568 9209 14949 214 17449 13452 16395 7072 11717 15591 8086 7809 16999	0.519 0.519 0.519 0.519 0.518 0.517 0.517 0.517 0.517 0.516 0.516 0.515 0.515 0.515 0.515 0.515 0.515	0.083 0.062 0.072 0.091 0.072 0.105 0.084 0.086 0.07 0.059 0.087 0.129 0.049 0.065 0.089 0.046 0.084 0.084 0.094 0.081 0.1	0.103 0.16 0.119 0.139 0.176 0.14 0.203 0.163 0.166 0.136 0.115 0.168 0.25 0.095 0.125 0.172 0.09 0.164 0.183 0.158	-1.976 -2.261 -2.265 -2.109 -2.098 -2.141 -2.226 -2.074 -2.263 -2.243 -2.224 -2.341 -2.265 -2.187 -2.366 -2.11 -2.188 -2.174 -2.159 -2.236	1.347 1.941 0.313 -0.722 1.583 -0.165 0.274 0.948 1.691 0.805 0.226 0.9 1.62 1.263 0.575 1.182 1.213 0.025 0.234 1.341 1.201 1.853	0.261 1.069 -0.906 0.476 1.176 1.022 0.794 0.414 0.872 1.095 0.81 0.416 0.728 0.965 0.679 0.762 1.105 1.036 0.688 0.687 0.687 0.687	0 0 0 0 0 0 0 0 0 0 0 0 0	Up U
SGKI SGIPI CLECIJA CESI CFI KLF7 PHLDBI ACTNI SFRP4 NHS RECK GGTS LRCH2 PRDMI HOXAII-ASI HEGI RUNNITI BACH2 LSPI LAMBI	\$149 8968 934 17475 17474 3782 35445 3568 9209 14949 214 17449 13452 16395 7072 11717 15591 8086 7809 1366 11857 9491	0.519 0.519 0.519 0.518 0.518 0.517 0.517 0.517 0.517 0.516 0.516 0.516 0.515 0.515 0.515 0.515 0.515	0.083 0.062 0.072 0.091 0.072 0.105 0.084 0.086 0.07 0.059 0.087 0.129 0.049 0.065 0.089 0.046 0.084 0.094 0.081 0.1 0.043 0.07	0.103 0.16 0.119 0.139 0.176 0.14 0.203 0.163 0.166 0.136 0.115 0.168 0.25 0.095 0.125 0.172 0.09 0.164 0.183 0.158 0.158	-1.976 -2.261 -2.265 -2.109 -2.098 -2.141 -2.226 -2.074 -2.263 -2.243 -2.22 -2.024 -2.341 -2.265 -2.187 -2.366 -2.11 -2.138 -2.174 -2.159 -2.236 -2.238 -2.238 -2.238 -2.238 -2.238 -2.238 -2.238 -2.238 -2.238 -2.238 -2.238	1.347 1.941 0.313 -0.722 1.583 -0.165 0.274 0.948 1.691 0.805 0.226 0.9 1.62 1.263 0.575 1.182 0.275 1.213 0.025 0.234 1.341 1.341 1.353 1.085	0.261 1.069 -0.906 0.476 1.176 1.022 0.794 0.414 0.872 1.095 0.81 0.416 0.728 0.965 0.679 0.762 1.103 0.608	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Up U
SGKI SGIPI CLEC11A CESI CFI KLEF PHLDBI ACTINI STRP4 NHS RECK GGTS LRCH2 PRDMI HOXAI1-ASI HEGI RUNXITI BACH2 LSPI LAMBI FZRLI	\$149 8968 934 17475 17474 3782 3545 3568 9209 14949 214 17449 13452 16395 7072 11717 15591 8086 7809 16999 1366 11857 9491 5787	0.519 0.519 0.519 0.519 0.518 0.517 0.517 0.517 0.517 0.517 0.516 0.516 0.515 0.515 0.515 0.515 0.515 0.515	0.083 0.062 0.072 0.091 0.072 0.105 0.084 0.086 0.07 0.059 0.087 0.129 0.049 0.065 0.089 0.046 0.0884 0.094 0.081 0.1 0.043 0.07 0.044 0.078	0.103 0.16 0.119 0.139 0.176 0.14 0.203 0.163 0.166 0.136 0.115 0.168 0.25 0.095 0.125 0.172 0.09 0.164 0.183 0.158 0.158 0.158 0.194 0.084 0.136 0.078	-1,976 -2,261 -2,265 -2,109 -2,098 -2,141 -2,226 -2,074 -2,22 -2,024 -2,341 -2,265 -2,111 -2,138 -2,159 -2,238 -2,174 -2,159 -2,238 -2,429 -2,033	1.347 1.941 0.313 -0.722 1.583 -0.165 0.274 0.948 1.691 0.805 0.226 0.9 1.62 0.226 1.263 0.375 1.182 1.213 0.025 0.234 1.341 1.201 1.853 0.025 0.234 1.341 1.341 1.351 1	0.261 1.069 -0.906 0.476 1.176 1.022 0.794 0.414 0.872 1.095 0.81 0.416 0.728 0.965 0.679 0.762 1.105 1.036 0.657 0.434 0.745 1.003		Up
SGKI SGBPI CLECITA CESI CFI KLF7 PHLDBI ACTNI STRP4 NIIS RECK GGTS LRCH2 PRDMI HOXAII-ASI HEGI RUNXITI BACH2 LSPI LAMBI FZRLI TSPO2	\$149 8968 934 17475 17474 3782 3545 3568 9209 14949 214 17449 13452 16395 7072 11717 15591 8086 7809 1366 11857 9491 5787 20120	0.519 0.519 0.519 0.518 0.518 0.517 0.517 0.517 0.517 0.516 0.516 0.516 0.515 0.515 0.515 0.515 0.515 0.515 0.515	0.083 0.062 0.072 0.091 0.0772 0.105 0.084 0.086 0.07 0.129 0.049 0.065 0.089 0.046 0.084 0.094 0.081 0.1 0.043 0.07 0.043 0.07 0.044 0.078 0.078	0.103 0.16 0.119 0.139 0.176 0.14 0.203 0.163 0.166 0.136 0.115 0.168 0.25 0.095 0.125 0.172 0.09 0.164 0.183 0.158 0.194 0.084 0.136 0.078 0.153 0.173	-1.976 -2.261 -2.261 -2.265 -2.109 -2.098 -2.141 -2.226 -2.074 -2.263 -2.243 -2.22 -2.024 -2.341 -2.265 -2.187 -2.366 -2.11 -2.138 -2.174 -2.159 -2.236 -2.238 -2.228 -2.238 -2.228 -2.238 -2.238 -2.238 -2.449 -2.033 -2.115	1.347 1.941 0.313 -0.722 1.583 -0.165 0.274 0.948 1.691 0.805 0.226 0.9 1.62 1.263 0.575 1.182 1.213 0.025 1.213 0.025 1.213 0.025 1.213 0.025 1.213 0.025 1.213 0.025 0.025 1.021 1	0.261 1.069 -0.906 0.476 1.176 1.022 0.794 0.414 0.872 1.095 0.81 0.416 0.728 0.965 0.679 0.762 1.105 1.036 0.608 0.657 0.434 0.745 1.003 0.361 1.197		Up
SGKI SGBPI CLEC11A CESI CFI KLF7 PHLDBI ACTNI STRP4 NHS RECK GGTS LRCH2 PRDMI HOXA11-ASI HEGI RUNXITI BACH2 LSPI LAMBI F2RLI TSPO2 ZFHX4	\$149 8968 934 17475 17474 3782 3545 3568 9209 14949 214 17449 13452 16395 7072 11717 15591 8086 7809 16999 1366 11857 9491 5787 20120 21181	0.519 0.519 0.519 0.519 0.518 0.517 0.517 0.517 0.517 0.517 0.516 0.516 0.515 0.515 0.515 0.515 0.514 0.514 0.514 0.514 0.514 0.513	0.083 0.062 0.072 0.091 0.072 0.105 0.084 0.086 0.07 0.059 0.087 0.129 0.049 0.065 0.089 0.046 0.084 0.094 0.081 0.1 0.043 0.07 0.07 0.043 0.07	0.103 0.16 0.119 0.139 0.176 0.14 0.203 0.163 0.166 0.136 0.115 0.168 0.225 0.095 0.125 0.172 0.09 0.164 0.183 0.158 0.194 0.084 0.136 0.078 0.153 0.114	-1,976 -2,261 -2,265 -2,109 -2,098 -2,141 -2,226 -2,074 -2,243 -2,22 -2,024 -2,341 -2,265 -2,187 -2,366 -2,11 -2,138 -2,174 -2,159 -2,238	1.347 1.941 0.313 -0.722 1.583 -0.165 0.274 0.948 1.691 0.805 0.226 0.29 1.623 1.263 0.715 1.182 1.213 0.025 0.234 1.341 1.201 1.853 0.696 0.769	0.261 1.069 -0.906 0.476 1.176 1.022 0.794 0.414 0.872 1.095 0.81 0.416 0.728 0.965 0.679 0.762 1.103 0.657		Up U
SGKI SGBPI CLECI1A CESI CFI KLF7 PHLIDBI ACTINI SFRP4 NHS RECK GGT5 LRCH2 PRDMI HOXAI1-ASI HEGI RUNXITI BACH2 LSPI LAMBI FZRLI TSPO2 ZFHX4 WDR86	\$149 8968 934 17475 17474 3782 3545 3568 9209 14949 214 17449 13452 16395 7072 11717 15591 8086 7809 1366 11857 9491 5787 20120 21181 20856	0.519 0.519 0.519 0.519 0.518 0.517 0.517 0.517 0.517 0.516 0.516 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.514 0.514 0.514 0.514 0.514 0.513 0.513 0.513 0.513 0.513 0.513 0.514 0.514 0.514 0.514 0.515	0.083 0.062 0.072 0.091 0.072 0.105 0.084 0.086 0.07 0.059 0.087 0.129 0.049 0.065 0.089 0.046 0.084 0.094 0.081 0.1 0.043 0.07 0.043 0.07 0.045 0.088	0.103 0.16 0.119 0.139 0.176 0.14 0.203 0.163 0.166 0.136 0.168 0.25 0.095 0.125 0.172 0.09 0.164 0.183 0.158 0.194 0.084 0.193 0.078 0.153 0.114 0.181	-1.976 -2.261 -2.262 -2.109 -2.098 -2.141 -2.226 -2.074 -2.263 -2.243 -2.243 -2.243 -2.265 -2.187 -2.366 -2.11 -2.138 -2.174 -2.159 -2.236 -2.238 -2.249 -2.238 -2.249 -2.238 -2.115 -2.184 -2.115	1.347 1.941 0.313 -0.722 1.583 -0.165 0.274 0.948 1.691 0.805 0.226 0.9 1.62 1.263 0.575 1.182 0.234 1.213 0.025 0.234 1.341 1.201 1.853 0.696 1.769 0.996 1.085 0.996 1.085 0.996 1.188 0.996 1.996 0	0.261 1.069 -0.906 0.476 1.176 1.022 0.794 0.414 0.872 1.095 0.81 0.416 0.728 0.965 0.679 0.762 1.105 1.036 0.608 0.657 0.434 0.745 1.003 0.361 1.197 0.777 0.777		Up
SGKI SGRI SGIPI CLECIIA CESI CFI KLF7 PHILDBI ACTNI SFRP4 NIS RECK GGTS LRCH2 PRDMI HOXAII-ASI HEGI RUNXITI BACH2 LSPI LAMBI F2RLI TSPO2 ZFHX4 WDR86 PKD2	\$149 8968 934 17475 17474 3782 3545 3545 3568 9209 14949 214 17449 13452 16395 7072 11717 15591 8086 7809 16999 1366 11857 9491 5787 20120 21181 20856 15071	0.519 0.519 0.519 0.518 0.517 0.517 0.517 0.517 0.517 0.516 0.516 0.515 0.515 0.515 0.515 0.514 0.514 0.514 0.514 0.514 0.514 0.514 0.514 0.514 0.514 0.515	0.083 0.062 0.072 0.091 0.072 0.105 0.084 0.086 0.07 0.059 0.087 0.129 0.049 0.065 0.089 0.046 0.084 0.094 0.081 0.1 0.043 0.07 0.078 0.058 0.058 0.07 0.078 0.058 0.07	0.103 0.16 0.119 0.139 0.176 0.14 0.203 0.163 0.166 0.136 0.115 0.168 0.225 0.095 0.125 0.172 0.09 0.164 0.183 0.158 0.194 0.084 0.136 0.078 0.133 0.114 0.181 0.266 0.139	-1,976 -2,261 -2,265 -2,109 -2,098 -2,141 -2,226 -2,074 -2,263 -2,243 -2,22 -2,024 -2,341 -2,187 -2,366 -2,11 -2,138 -2,174 -2,159 -2,238	1.347 1.941 0.313 -0.722 1.583 -0.165 0.274 0.948 1.691 0.805 0.226 0.29 1.623 1.213 0.025 0.234 1.341 1.201 1.853 0.696 0.769 0.1696 0.769 0.1696 0.7696 0.1696 0.7696 0.1696 0.7696 0.1696 0.	0.261 1.069 -0.906 0.476 1.176 1.022 0.794 0.414 0.872 1.095 0.81 0.416 0.728 0.965 0.679 0.762 1.103 0.608 0.657 0.434 0.745 1.003 0.361 1.197 0.745 1.003		Up
SGK1 SGBP1 CLEC11A CES1 CFI KLF7 PHLIDB1 ACTIN1 SFRP4 NHS RECK GGT5 LRCH2 PRDM1 HOXA11-AS1 HEG1 RUNXIT1 BACH2 LSP1 LAMB1 FZRL1 TSPO2 ZFHX4 WDR86	\$149 8968 934 17475 17474 3782 3545 3568 9209 14949 214 17449 13452 16395 7072 11717 15591 8086 7809 1366 11857 9491 5787 20120 21181 20856	0.519 0.519 0.519 0.519 0.518 0.517 0.517 0.517 0.517 0.516 0.516 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.515 0.514 0.514 0.514 0.514 0.514 0.513 0.513 0.513 0.513 0.513 0.513 0.514 0.514 0.514 0.514 0.515	0.083 0.062 0.072 0.091 0.072 0.105 0.084 0.086 0.07 0.059 0.087 0.129 0.049 0.065 0.089 0.046 0.084 0.094 0.081 0.1 0.043 0.07 0.043 0.07 0.045 0.088	0.103 0.16 0.119 0.139 0.176 0.14 0.203 0.163 0.166 0.136 0.168 0.25 0.095 0.125 0.172 0.09 0.164 0.183 0.158 0.194 0.084 0.193 0.078 0.153 0.114 0.181	-1.976 -2.261 -2.262 -2.109 -2.098 -2.141 -2.226 -2.074 -2.263 -2.243 -2.243 -2.243 -2.265 -2.187 -2.366 -2.11 -2.138 -2.174 -2.159 -2.236 -2.238 -2.249 -2.238 -2.249 -2.238 -2.115 -2.184 -2.115	1.347 1.941 0.313 -0.722 1.583 -0.165 0.274 0.948 1.691 0.805 0.226 0.9 1.62 1.263 0.575 1.182 0.234 1.213 0.025 0.234 1.341 1.201 1.853 0.696 1.769 0.996 1.085 0.996 1.085 0.996 1.188 0.996 1.996 0	0.261 1.069 -0.906 0.476 1.176 1.022 0.794 0.414 0.872 1.095 0.81 0.416 0.728 0.965 0.679 0.762 1.105 1.036 0.608 0.657 0.434 0.745 1.003 0.361 1.197 0.777 0.777		Up
SGK1 SGBP1 CLEC11A CES1 CF1 KLF7 PHLDB1 ACTN1 STRP4 NHS RECK GGT5 LRCH2 PRDM1 HOXA11-AS1 HEG1 RUNXIT1 BACH2 LSP1 LAMB1 FZRL1 TSP02 ZFHX4 WDR86 PKD2 HOXA3	\$149 8968 934 17475 17474 3782 3545 3568 9209 14949 214 17449 13452 16395 7072 11717 15591 8086 7809 1366 11857 9491 5787 20120 21181 20856 15071 8089	0.519 0.519 0.519 0.519 0.518 0.517 0.517 0.517 0.517 0.516 0.516 0.515 0.515 0.515 0.515 0.515 0.515 0.514 0.514 0.514 0.514 0.514 0.513 0.513 0.513 0.513 0.514 0.514 0.514 0.514 0.514 0.515	0.083 0.062 0.072 0.091 0.072 0.105 0.084 0.086 0.07 0.059 0.087 0.129 0.049 0.065 0.089 0.046 0.084 0.094 0.081 0.1 0.043 0.07 0.04 0.078 0.058 0.093 0.136 0.071 0.106	0.103 0.16 0.119 0.139 0.176 0.14 0.203 0.163 0.166 0.136 0.165 0.125 0.095 0.125 0.095 0.125 0.172 0.09 0.164 0.183 0.188 0.188 0.194 0.084 0.136 0.078 0.153 0.114 0.181 0.266 0.139 0.207	-1.976 -2.261 -2.263 -2.109 -2.098 -2.141 -2.226 -2.074 -2.263 -2.243 -2.224 -2.341 -2.265 -2.117 -2.366 -2.117 -2.138 -2.174 -2.159 -2.236 -2.238 -2.429 -2.033 -2.115 -2.184 -2.115 -2.184 -2.115 -2.184 -2.115 -2.184 -2.115 -2.184 -2.115 -2.184 -2.115 -2.184 -2.115 -2.186 -2.022	1.347 1.941 0.313 -0.722 1.583 -0.165 0.274 0.948 1.691 0.805 0.226 0.9 1.62 1.263 0.575 1.182 1.213 0.025 0.234 1.341 1.201 1.853 0.696 1.769 -0.194 0.996 1.108	0.261 1.069 -0.906 0.476 1.176 1.022 0.794 0.414 0.872 1.095 0.81 0.416 0.728 0.965 0.679 0.762 1.105 0.608 0.608 0.657 0.434 0.745 1.003 0.361 1.197 0.777 0.777 0.777		Up U

C ID	Gene Name	Score (d)	N	D			contrast 3	- Hanta d B andre (0/)	Di
Gene ID FAM89A	6139	0.51	Numerator (r) 0.086	Denominator (s+s0) 0.169	-1.907	1.935	0.227	adjusted P value (%)	Direction Up
HIC1	7872	0.509	0.072	0.142	-2.15	1.438	0.556	0	Up
FAS	6180	0.508	0.057	0.113	-2.239	1.303	0.658	0	Up
NCRNA00241	13204	0.508	0.078	0.153	-2.195	0.619	0.911	0	Up
FAM43A ASPN	6040 1122	0.508 0.508	0.076 0.184	0.15 0.362	-2.146 -1.976	1.388 -0.027	0.574 1.056	0	Up
DIOI	4878	0.507	0.109	0.215	2.139	-0.895	-0.77	0	Up Up
TGFBR2	19249	0.507	0.08	0.157	-1.869	1.999	0.181	0	Up
HMCN1	8005	0.507	0.107	0.21	-2.079	0.199	1.019	0	Up
COL10A1	3961	0.506	0.174	0.344	-1.768	-0.595	1.175	0	Up
C21orf34 KRTCAP3	2296 9459	0.506	0.051	0.101	-2.296	1.042	0.793	0	Up
ITGA11	8711	0.505 0.505	0.097 0.127	0.193 0.252	2.046 -1.952	-1.518 -0.188	-0.469 1.108	0.214 0.214	Up Up
ADAMTS14	273	0.505	0.123	0.244	-2.013	0.011	1.06	0.214	Up
NEFH	13351	0.505	0.107	0.212	-2.131	0.642	0.868	0.214	Up
DST	5189	0.505	0.094	0.187	-2.075	1.433	0.519	0.214	Up
SH3PXD2B	17529	0.504 0.504	0.083 0.059	0.165 0.117	-2.17	0.72 -1.336	0.856 -0.624	0.214 0.214	Up
E4F1 ETS2	5287 5717	0.504	0.059	0.117	2.201 -1.812	2.119	0.103	0.214	Up Up
SCHIP1	17177	0.503	0.1	0.198	-2.109	1.188	0.635	0.214	Up
OLFML2B	13917	0.503	0.084	0.168	-2.129	0.366	0.978	0.214	Up
DZIP1	5276	0.503	0.07	0.14	-2.187	1.045	0.734	0.214	Up
CCDC3 MPZL2	3053 12634	0.502 0.502	0.106 0.102	0.21 0.204	-1.973	1.637 2.126	0.382 0.024	0.214	Up
ZNHIT2	21794	0.502	0.052	0.104	-1.668 2.229	-1.334	-0.64	0.214 0.214	Up Up
CNRIP1	3925	0.502	0.045	0.089	-2.294	1.295	0.69	0.214	Up
JAG1	8774	0.502	0.074	0.147	-2.181	0.773	0.841	0.214	Up
ZC3H12B	21103	0.502	0.04	0.079	-2.311	1.478	0.625	0.214	Up
SPARCL1	18363	0.501	0.129	0.257	-2.023	1.38	0.513	0.214	Up
SSC5D PRKD3	18577 15662	0.501 0.501	0.117 0.077	0.234 0.154	-2.083 -2.025	0.45 1.639	0.92 0.409	0.214 0.214	Up Up
PTPRD	15972	0.501	0.103	0.134	-2.025	0.169	1.016	0.214	Up
CD99	3298	0.499	0.053	0.107	-2.227	0.464	0.99	0.214	Up
SPRY2	18483	0.499	0.1	0.2	-1.991	1.565	0.421	0.214	Up
LOC100130876	10110	0.499	0.104	0.208	-2.107	0.64	0.856	0.214	Up
TMPRSS6 GREM1	19690 7492	0.499 0.499	0.084 0.097	0.167 0.195	2.025 -2.072	-1.564 0.272	-0.439 0.986	0.214 0.214	Up Up
COL15A1	3967	0.499	0.097	0.164	-2.072	1.106	0.679	0.214	Up
C17orf51	2000	0.498	0.078	0.157	-2.155	0.808	0.813	0.214	Up
GNG11	7241	0.498	0.093	0.187	-2.058	1.374	0.534	0.214	Up
TMEM2	19552	0.498	0.056	0.113	-2.029	-0.29	1.19	0.214	Up
ID3 ARHGEF40	8312 965	0.498 0.498	0.068 0.074	0.136 0.149	-2.137 -2.163	1.303 0.749	0.604 0.841	0.214 0.214	Up
FAM20B	6010	0.497	0.057	0.114	2.072	-1.685	-0.415	0.214	Up Up
JAZF1	8786	0.497	0.06	0.12	-2.191	1.12	0.706	0.214	Up
ZNF469	21487	0.497	0.116	0.234	-2.061	0.414	0.923	0.214	Up
RBMS3	16340	0.496	0.042	0.085	-2.304	0.586	0.982	0.214	Up
PYCR2 BEND6	16036 1483	0.496 0.496	0.048 0.04	0.097 0.08	2.105 -2.314	-1.751 0.465	-0.406 1.036	0.214 0.214	Up
PYCRL	16037	0.496	0.056	0.113	2.215	-1.015	-0.762	0.214	Up Up
TARS2	18972	0.495	0.04	0.08	2.228	-1.64	-0.516	0.214	Up
MOXD1	12603	0.495	0.106	0.215	-1.923	1.652	0.35	0.214	Up
GLIPR2	7156	0.495	0.089	0.18	-2.109	0.61	0.869	0.214	Up
ECM2 ACSL4	5316 189	0.495 0.495	0.056 0.053	0.113 0.108	-2.201 -2.204	0.536 0.469	0.947 0.976	0.214 0.214	Up
RAB7L1	16138	0.493	0.053	0.108	-2.204	0.488	0.976	0.214	Up Up
FXYD6	6823	0.494	0.078	0.157	-1.718	2.082	0.068	0.214	Up
Clorf182	2177	0.494	0.061	0.124	1.707	-2.192	-0.018	0.214	Up
WTIP	20938	0.494	0.083	0.168	-2	1.557	0.429	0.214	Up
ITGB1	8727	0.493	0.059	0.12	-2.162	1.215	0.653	0.214	Up
FZD7 ANKRD35	6836 695	0.493 0.493	0.101 0.123	0.205 0.25	-2.04 -1.977	1.276 1.412	0.563 0.475	0.214 0.214	Up Up
ZEB2	21168	0.492	0.063	0.127	-2.173	0.831	0.814	0.214	Up
LRRC32	11774	0.492	0.089	0.182	-2.102	0.885	0.754	0.214	Up
ANTXR2	751	0.492	0.048	0.098	-2.177	1.441	0.569	0.214	Up
HEYL	7849	0.492	0.086	0.175	-2.057	0.262	0.982	0.214	Up
LEPRE1 VCL	9607 20646	0.491 0.491	0.048 0.065	0.097 0.132	-2.104 -1.865	-0.098 1.938	1.152 0.204	0.214 0.214	Up Up
PELI2	14817	0.491	0.081	0.164	-2.107	1.02	0.702	0.214	Up
DUSP1	5217	0.491	0.104	0.211	-2.007	1.361	0.511	0.214	Up
SALL4	17067	0.491	0.115	0.235	-1.935	-0.073	1.053	0.214	Up
CPXM1 ACVR2A	4137 234	0.49 0.49	0.085 0.049	0.174 0.1	-2.034 -2.227	1.348 0.932	0.532 0.801	0.363 0.363	Up
EDN1	5334	0.49	0.049	0.1	-2.227	1.673	0.801	0.363	Up Up
CTSB	4346	0.489	0.076	0.156	-1.904	-0.331	1.141	0.363	Up
C9orf53	2729	0.489	0.121	0.246	-2.048	0.664	0.815	0.363	Up
ATF3	1147	0.489	0.087	0.177	-2.092	0.844	0.766	0.363	Up
FGF7 NTM	6360 13753	0.489 0.488	0.062 0.057	0.127 0.118	-2.143 -1.978	1.087 -0.28	0.694 1.159	0.363 0.363	Up Up
LOC100129940	9999	0.488	0.067	0.138	-2.059	0.13	1.036	0.363	Up
CD36	3255	0.488	0.167	0.342	-1.492	2.094	-0.057	0.363	Up
RASA3	16246	0.488	0.069	0.141	-2.125	0.627	0.871	0.363	Up
SNRNP35	18218	0.488	0.048	0.097	2.04	-1.786	-0.358	0.363	Up
MME NXN	12524 13843	0.488 0.488	0.086 0.061	0.176 0.125	-1.901 -2.14	1.697 0.506	0.32 0.927	0.363 0.363	Up Up
WNT2	20911	0.487	0.075	0.153	-2.019	0.063	1.042	0.363	Up
ITGA1	8709	0.487	0.064	0.132	-2.058	0.1	1.048	0.363	Up
MAP1B	12033	0.487	0.066	0.136	-2.113	1.14	0.657	0.363	Up
PEX5L	14845	0.487	0.07	0.144	2.116	-0.653	-0.855	0.363	Up
COL5A3 SULF1	3993 18774	0.486 0.486	0.092 0.118	0.188 0.244	-1.893 -1.76	-0.24 -0.501	1.098	0.363 0.363	Up Up
FAT1	6188	0.485	0.118	0.212	-1.76	1.267	0.546	0.363	Up
SPOCK1	18453	0.485	0.121	0.25	-1.847	-0.26	1.082	0.363	Up
JAM3	8784	0.485	0.06	0.124	-2.144	0.937	0.756	0.363	Up
FST	6775	0.484	0.135	0.279	-1.957	0.183	0.961	0.363	Up
SPRY1 LIMS3L	18482 9686	0.484 0.484	0.086 0.067	0.179 0.139	-2.009 -2.102	1.332 1.076	0.524 0.677	0.363 0.363	Up Up
ZNF300P1	21390	0.484	0.088	0.139	-2.102	1.203	0.589	0.363	Up
RNF175	16670	0.484	0.046	0.096	-2.089	1.629	0.447	0.363	Up
USP21	20558	0.484	0.048	0.099	2.18	-1.18	-0.676	0.363	Up
PRDM6	15602	0.484	0.061	0.125	-2.016	-0.048	1.085	0.363	Up
SELENBP1 DPT	17293 5137	0.484 0.483	0.122 0.133	0.253 0.276	2.019 -2.003	-0.891 0.554	-0.708 0.835	0.363 0.363	Up Up
PID1	14982	0.483	0.093	0.192	-1.816	1.768	0.247	0.363	Up
MAGEL2	11991	0.482	0.07	0.146	-2.078	1.118	0.647	0.363	Up
FAM195A	5990	0.482	0.056	0.117	2.066	-1.453	-0.506	0.363	Up

G ID		G (1)		P				U . I B I . (0/)	n 1
Gene ID AOC3	Gene Name 770	Score (d) 0.482	Numerator (r) 0.109	Denominator (s+s0) 0.227	-1.872	1.592	0.347	adjusted P value (%) 0.363	Direction Up
LAMAI	9486	0.482	0.056	0.117	-2.147	0.846	0.794	0.363	Up
C5orf13	2477	0.482	0.065	0.135	-2.099	0.52	0.9	0.363	Up
KANK2	8818	0.481	0.067	0.14	-2.068	1.216	0.602	0.363	Up
AKAP13	466	0.481	0.049	0.101	-2.176	1.061	0.722	0.363	Up
TNFRSF10D PTGIR	19723 15922	0.481	0.075 0.063	0.155 0.131	-1.726 -2.096	1.967 0.495	0.119 0.909	0.363 0.363	Up
TSHZ2	20085	0.48	0.074	0.155	-1.944	1.556	0.4	0.363	Up Up
MAMDC2	12007	0.48	0.062	0.13	-2.112	0.75	0.814	0.363	Up
FABP4	5804	0.479	0.125	0.261	-1.372	2.169	-0.15	0.363	Up
WISP1	20897	0.479	0.055	0.114	-2.067	0.131	1.04	0.363	Up
SWAP70 ABCA6	18829 42	0.479 0.479	0.054 0.091	0.112 0.19	-1.574 -2.03	2.249 0.988	-0.076 0.675	0.363 0.363	Up
ADAMTS1	269	0.479	0.101	0.211	-1.933	1.413	0.452	0.363	Up Up
VSNL1	20740	0.479	0.108	0.226	-1.956	1.289	0.514	0.363	Up
LOC541471	11281	0.478	0.083	0.174	-1.619	-0.816	1.186	0.363	Up
KRT17	9319	0.478	0.228	0.477	-1.774	1.583	0.299	0.363	Up
DAP3 CR2	4567 4142	0.478 0.477	0.049 0.098	0.104 0.206	2.162 -0.932	-0.88 2.384	-0.788 -0.47	0.363 0.363	Up Up
D4S234E	4545	0.477	0.091	0.19	-1.441	2.165	-0.112	0.363	Up
PECAM1	14810	0.477	0.067	0.14	-1.884	1.721	0.301	0.363	Up
KRT16P2	9318	0.477	0.217	0.455	-1.729	1.671	0.24	0.363	Up
STARD8	18661	0.477	0.051	0.106	-2.149	0.913	0.768	0.363	Up
ADIPOR1 JAM2	333 8783	0.477 0.477	0.054 0.069	0.114 0.144	2.04 -2.007	-1.473 1.357	-0.484 0.513	0.363 0.363	Up Up
MRPL9	12705	0.477	0.047	0.098	2.174	-0.737	-0.852	0.363	Up
COMP	4020	0.476	0.153	0.32	-1.894	0.096	0.963	0.363	Up
MT1E	12791	0.476	0.107	0.224	-2.006	0.751	0.758	0.363	Up
PARVA	14557	0.476	0.06	0.126	-2.073	1.185	0.618	0.363	Up
ST6GAL2 FAM20A	18617 6009	0.476 0.476	0.083 0.073	0.174 0.154	-1.883 -2.062	-0.183 0.778	1.069 0.776	0.363 0.363	Up
C12orf70	1830	0.476	0.073	0.154	-2.062 -1.987	0.778	0.776	0.363	Up Up
ROR1	16743	0.475	0.055	0.117	-2.118	0.753	0.816	0.363	Up
MXRA7	12902	0.475	0.058	0.121	-2.109	0.818	0.785	0.363	Up
FAT4	6191	0.475	0.037	0.077	-2.236	1.206	0.695	0.363	Up
RND3	16628	0.475 0.474	0.114	0.241	-1.494	2.053	-0.039	0.363	Up
ITGAV C20orf103	8725 2234	0.474	0.072 0.129	0.153 0.272	-2.036 -1.975	1.075 0.716	0.643 0.755	0.381 0.381	Up Up
RUSCI	17002	0.474	0.051	0.107	2.111	-1.161	-0.647	0.381	Up
ITGA5	8716	0.474	0.075	0.159	-2.012	0.343	0.926	0.381	Up
EIF5A2	5468	0.474	0.049	0.104	-2.097	0.29	0.992	0.381	Up
AKR1B15	488	0.473	0.118	0.249	-0.978	2.321	-0.42	0.381	Up
CADM3 IGFBP7	2813 8409	0.473 0.473	0.058 0.082	0.123 0.175	-1.255 -2.007	2.373 1.06	-0.295 0.633	0.381 0.381	Up Up
MAGIX	11996	0.472	0.04	0.084	2.193	-1.162	-0.69	0.381	Up
MT1L	12796	0.472	0.096	0.203	-1.999	0.869	0.706	0.381	Up
CCL14	3132	0.472	0.142	0.3	-1.391	2.087	-0.107	0.381	Up
FAM7A1	6115	0.472	0.046	0.097	-1.947	-0.324	1.161	0.381	Up
TROVE2	20036	0.472	0.045	0.095	2.149	-1.092	-0.696	0.381	Up
PDE2A CLIP4	14730 3822	0.472 0.472	0.088 0.07	0.187 0.149	-1.685 -2.041	1.88 0.972	0.132 0.687	0.381 0.381	Up Up
SPHK2	18419	0.472	0.039	0.083	2.207	-0.97	-0.775	0.381	Up
MMP23B	12540	0.471	0.092	0.196	-1.875	1.504	0.384	0.381	Up
CLDN5	3774	0.471	0.107	0.227	-1.721	1.767	0.196	0.381	Up
PRNP	15688	0.471	0.095	0.202	-1.986	1.004	0.645	0.381	Up
C20orf194 ARHGAP20	2258 918	0.471 0.471	0.054 0.054	0.115 0.116	-2.101 -2.073	0.661 1.16	0.844 0.628	0.381 0.381	Up Up
F2R	5786	0.47	0.057	0.110	-2.089	0.772	0.793	0.381	Up
KRT14	9315	0.47	0.235	0.5	-1.738	1.571	0.285	0.381	Up
USP13	20548	0.47	0.062	0.131	2.06	-0.998	-0.686	0.381	Up
ANXA3	761	0.47	0.143	0.304	-1.289	2.143	-0.184	0.381	Up
NPR2 LMCD1	13642 9727	0.47 0.47	0.071 0.087	0.151 0.184	-2.039 -1.93	0.762 0.111	0.77 0.976	0.381 0.381	Up
CECR5-AS1	3467	0.47	0.087	0.151	2.015	-1.095	-0.624	0.381	Up Up
KLF6	9208	0.469	0.05	0.107	-2.062	1.318	0.558	0.381	Up
LOC150622	10676	0.469	0.06	0.127	-1.046	2.42	-0.424	0.381	Up
HOXA4	8090	0.469	0.057	0.12	-2.024	1.326	0.535	0.381	Up
ITGBLI	8739	0.469	0.117	0.249	-1.903	0.166	0.939	0.381	Up
EFNB2 ZFPM2	5378 21206	0.469 0.469	0.078 0.07	0.167 0.15	-2.007 -2.031	0.989 0.922	0.662 0.702	0.381 0.381	Up Up
ECII	5313	0.469	0.072	0.15	-2.031	-1.158	-0.59	0.381	Up
Clorf27	2201	0.469	0.056	0.119	2.055	-1.168	-0.615	0.381	Up
CXCL12	4398	0.468	0.072	0.155	-2.013	0.996	0.662	0.381	Up
VPS72	20728 9027	0.468 0.468	0.048	0.103	2.096	-1.14 1.442	-0.648 0.477	0.381 0.381	Up
KIAA0408 F3	9027 5790	0.468	0.053 0.119	0.113 0.254	-2.003 -1.895	1.442	0.477	0.381	Up Up
ZNF646	21624	0.467	0.026	0.055	2.23	-1.886	-0.418	0.381	Up
IGF2	8396	0.467	0.066	0.141	-1.99	1.25	0.548	0.381	Up
PEAK1	14806	0.467	0.053	0.114	-2.078	1.01	0.691	0.381	Up
ADH1C C6orf145	324	0.466	0.153	0.328	-1.265	2.126	-0.19 0.253	0.381	Up
C6orf145 PTGFRN	2533 15921	0.466 0.466	0.075 0.07	0.16 0.149	-1.789 -1.983	1.716 0.298	0.253 0.928	0.381 0.381	Up Up
KIF26A	9151	0.466	0.054	0.116	-1.609	2.095	0.005	0.381	Up
KCTD12	8949	0.465	0.074	0.158	-1.984	1.108	0.602	0.381	Up
ADD3	321	0.465	0.104	0.223	-1.869	1.372	0.434	0.381	Up
TSNAX	20094	0.465	0.047	0.102	2.014	-1.467	-0.472	0.381	Up
SPSB1 TMEM43	18490 19608	0.464 0.464	0.067 0.05	0.144 0.108	-2.018 -2.088	0.604 0.698	0.823 0.822	0.381 0.381	Up Up
MFAP4	12347	0.463	0.163	0.353	-1.788	1.434	0.366	0.381	Up
GLIS1	7157	0.463	0.075	0.161	-1.827	-0.228	1.058	0.381	Up
SYNPO	18864	0.463	0.054	0.117	-2.022	1.226	0.574	0.381	Up
KIAA0907	9049	0.463	0.044	0.096	2.062	-1.337	-0.551	0.381	Up
CERCAM NKD2	3536 13486	0.463 0.462	0.061 0.068	0.131 0.147	-1.812 -1.985	-0.37 0.383	1.108 0.895	0.381 0.381	Up Up
ETHE1	5713	0.462	0.056	0.147	-1.983	1.594	0.893	0.381	Up
WISP2	20898	0.462	0.171	0.37	-1.833	0.124	0.919	0.381	Up
SPHK1	18418	0.462	0.067	0.146	-2.008	0.83	0.727	0.381	Up
EFEMP2	5364	0.461	0.073	0.159	-1.928	0.157	0.956	0.381	Up
PTGIS	15923 15939	0.46	0.1 0.155	0.218	-1.716 -1.607	1.675	0.231	0.381	Up
PTN LYSMD1	11921	0.46 0.46	0.155	0.337 0.136	-1.607 1.893	1.752 -1.495	0.142 -0.398	0.381 0.381	Up Up
SCN3B	17192	0.46	0.082	0.178	-1.935	1.129	0.567	0.554	Up
TCEAL7	19092	0.459	0.063	0.137	-1.701	1.857	0.15	0.554	Up
SPIRE1	18445	0.459	0.051	0.112	0.952	-2.427	0.477	0.554	Up
RAB3A NSUN7	16113 13736	0.459 0.458	0.071 0.093	0.154 0.203	1.638 0.986	-1.89 1.524	-0.103 -1.137	0.554 0.554	Up Up
I MOUN/	13/30	0.730	0.073	0.203	0.700	1.324	-1.13/	0.334	Оþ

Gene ID	Gene Name	Score (d)	Numerator (r)	Denominator (s+s0)	contrast 1	contrast 2	contrast 3	adjusted P value (%)	Direction
SLC26A10	17801	0.458	0.063	0.138	-1.88	-0.082	1.027	0.554	Up
LOC100132891	10294	0.458	0.028	0.062	-2.262	0.461	1.01	0.554	Up
PLSCR4	15219	0.458	0.074	0.162	-1.763	1.67	0.258	0.554	Up
TNFRSF18	19731	0.457	0.09	0.197	1.589	-1.863	-0.088	0.554	Up
C6orf174	2545	0.457	0.06	0.131	-2.006	0.912	0.692	0.554	Up
SYNDIG1	18851	0.457	0.13	0.284	-1.833	0.125	0.919	0.554	Up
RECQL	16396	0.457	0.03	0.066	-2.213	0.379	1.017	0.554	Up
CDKN1C	3411	0.457	0.09	0.197	-1.81	1.47	0.364	0.554	Up
PANX2	14505	0.457	0.033	0.073	2.067	-1.614	-0.441	0.554	Up
ITGB3	8732	0.456	0.093	0.204	-1.918	0.441	0.836	0.554	Up
MYO1D	12974	0.456	0.053	0.115	-2.029	0.566	0.844	0.554	Up
C14orf21	1886	0.456	0.037	0.08	2.086	-1.389	-0.542	0.554	Up
CRISPLD2	4183	0.456	0.065	0.142	-1.985	0.885	0.692	0.554	Up
ADAMTS12	271	0.456	0.045	0.098	-1.858	-0.354	1.126	0.554	Up
OTUD7B	14397	0.455	0.055	0.12	1.922	-1.438	-0.436	0.554	Up
CDO1	3421	0.455	0.108	0.238	-1.553	1.845	0.076	0.554	Up
GOLGA7B	7287	0.454	0.064	0.141	-1.822	-0.206	1.047	0.554	Up
MITF	12471	0.454	0.053	0.116	-1.98	0.257	0.943	0.554	Up
AASS	27	0.454	0.057	0.126	-1.935	1.331	0.486	0.554	Up
AKR1C1	489	0.454	0.094	0.208	-1.291	2.1	-0.165	0.554	Up
CD248	3237	0.454	0.066	0.146	-1.969	0.542	0.822	0.554	Up
TP53I3	19830	0.454	0.067	0.147	-1.786	1.625	0.288	0.554	Up
RCAN2	16364	0.454	0.054	0.119	-1.922	1.422	0.442	0.554	Up
POTEF	15389	0.454	0.056	0.123	-1.98	1.149	0.583	0.554	Up
LRRN4CL	11831	0.454	0.072	0.158	-1.84	1.462	0.383	0.554	Up
WNK2	20903	0.453	0.063	0.138	1.97	-1.002	-0.637	0.554	Up
TMEM204	19560	0.453	0.072	0.158	-1.955	0.687	0.756	0.554	Up
LDB2	9574	0.453	0.051	0.113	-2.021	0.94	0.689	0.554	Up
GLIS2	7158	0.453	0.086	0.19	-1.872	0.189	0.914	0.554	Up
TSPAN18	20105	0.453	0.063	0.139	-1.977	0.821	0.714	0.554	Up
HHIPL1	7863	0.452	0.061	0.135	-1.923	0.173	0.947	0.554	Up
EDIL3	5333	0.452	0.118	0.26	-1.388	-0.93	1.109	0.554	Up
CPZ	4139	0.452	0.076	0.168	-1.913	1.108	0.564	0.554	Up
MAP4K5	12066	0.452	0.046	0.101	-2.052	0.801	0.762	0.554	Up
GNMT	7258	0.451	0.065	0.143	0.974	1.572	-1.15	0.554	Up
XG	20957	0.451	0.063	0.139	-1.949	0.372	0.88	0.554	Up
CASKIN1	2915	0.451	0.055	0.123	1.856	-1.544	-0.358	0.554	Up
KLK8	9270	0.451	0.219	0.486	-1.237	2.011	-0.158	0.554	Up
MIPOL1	12462	0.451	0.065	0.144	1.62	-1.873	-0.1	0.554	Up
TMEM109	19451	0.451	0.062	0.137	-1.307	2.171	-0.185	0.554	Up
PCSK7	14699	0.451	0.036	0.081	-2.068	1.339	0.553	0.554	Up
LOXL1	11682	0.451	0.104	0.23	-1.849	0.221	0.889	0.554	Up
COL8A1	4001	0.451	0.129	0.286	-1.749	-0.104	0.967	0.554	Up
PLAC9	15124	0.451	0.071	0.157	-1.908	1.171	0.536	0.554	Up
SNORA16B	18173	0.451	0.053	0.118	1.842	-1.598	-0.329	0.554	Up
C11orf93	1784	0.451	0.043	0.095	-1.68	1.994	0.083	0.554	Up
ZFAND5	21174	0.45	0.046	0.102	-2	0.282	0.944	0.554	Up
BAIAP3	1384	0.45	0.117	0.259	1.841	-1.129	-0.518	0.554	Up
MAP7D3	12072	0.45	0.041	0.091	-2.038	1.241	0.576	0.554	Up
SLC36A1	17880	0.45	0.062	0.139	-1.853	-0.056	1.002	0.554	Up
EMX2OS	5538	0.449	0.079	0.175	-1.915	0.943	0.632	0.554	Up
TBCE	19050	0.449	0.053	0.119	1.83	-1.6	-0.322	0.554	Up
JUN	8810	0.449	0.095	0.211	-1.756	1.479	0.331	0.554	Up
HOXA7	8093	0.449	0.126	0.28	-1.782	1.304	0.416	0.554	Up
PPP1R15A	15492	0.449	0.053	0.118	-1.748	1.754	0.216	0.554	Up
CAPN5	2876	0.449	0.078	0.174	-1.92	0.838	0.677	0.554	Up
ZFP36L1	21192	0.449	0.072	0.16	-1.854	1.333	0.442	0.554	Up
CYHR1	4466	0.449	0.051	0.114	1.947	-1.283	-0.511	0.554	Up
RCBTB2	16367	0.449	0.052	0.115	-1.85	1.566	0.346	0.554	Up
C12orf75	1834	0.449	0.086	0.191	-1.906	0.846	0.666	0.554	Up
CCDC82	3102	0.448	0.074	0.164	-1.905	1.064	0.578	0.554	Up
FKBP9	6419	0.448	0.033	0.073	-2.108	0.293	0.997	0.554	Up
PBX1	14585	0.448	0.059	0.131	1.97	-0.753	-0.738	0.554	Up
DECR2	4722	0.448	0.054	0.12	1.975	-1.013	-0.635	0.554	Up
PRELP	15614	0.447	0.025	0.056	-2.113	1.819	0.383	0.554	Up
GPC6	7333	0.447	0.076	0.17	-1.877	0.255	0.89	0.554	Up
IGFBP6	8408	0.446	0.083	0.186	-1.831	1.279	0.452	0.554	Up
SLIT2	18035	0.446	0.067	0.15	-1.936	0.741	0.725	0.554	Up
PGM5	14896	0.446	0.053	0.118	-1.756	1.713	0.237	0.554	Up
B4GALT3	1352	0.446	0.061	0.138	1.951	-0.744	-0.731	0.554	Up
KRT5	9347	0.446	0.197	0.443	-1.688	1.418	0.32	0.833	Up
MGC50722	12415	0.446	0.067	0.151	1.851	-1.328	-0.443	0.833	Up
SGMS2	17483	0.446	0.057	0.128	-1.931	0.317	0.893	0.833	Up
ALDH1A3	513	0.446	0.106	0.238	-1.403	1.93	-0.038	0.833	Up
CSRP2	4277	0.445	0.084	0.189	-1.865	1.097	0.543	0.833	Up
FHAD1	6379	0.445	0.03	0.068	-1.986	1.746	0.345	0.833	Up
CTHRC1	4325	0.445	0.117	0.263	-1.833	0.339	0.832	0.833	Up
AKR1B1	486	0.445	0.072	0.161	-1.585	1.825	0.101	0.833	Up
TMEM119	19459	0.445	0.099	0.222	-1.809	1.245	0.454	0.833	Up
SLC26A3	17804	0.445	0.085	0.191	-0.704	2.258	-0.539	0.833	Up
ALDH1L2	516	0.444	0.073	0.164	-1.814	-0.007	0.962	0.833	Up
CXCL2	4403	0.444	0.138	0.311	-1.695	1.452	0.31	0.833	Up
CYP2U1	4503	0.444	0.054	0.122	-1.943	1.103	0.582	0.833	Up
SETDB1	17425	0.444	0.038	0.084	1.952	-1.542	-0.41	0.833	Up
MEIS2	12286	0.444	0.065	0.145	-1.92	0.477	0.823	0.833	Up
FMOD	6645	0.444	0.111	0.249	-1.825	1.081	0.529	0.833	Up
ARPC2	1032	0.444	0.046	0.104	-2.006	0.815	0.732	0.833	Up
EXOC8	5753	0.443	0.039	0.088	1.967	-1.42	-0.467	0.833	Up
STX6	18750	0.443	0.048	0.108	1.957	-1.178	-0.559	0.833	Up
CNIH3	3895	0.443	0.079	0.177	-1.887	0.514	0.79	0.833	Up
PEX19	14840	0.443	0.057	0.128	1.952	-0.757	-0.727	0.833	Up
NVL	13837	0.443	0.069	0.156	1.896	-1.021	-0.59	0.833	Up
SOD3	18286	0.442	0.127	0.288	-1.163	2.05	-0.213	0.833	Up
C22orf13	2313	0.442	0.039	0.087	2.015	-0.313	-0.94	0.833	Up
CNTNAP3	3940	0.442	0.082	0.185	-1.775	1.382	0.381	0.833	Up
CLDN8	3777	0.441	0.091	0.207	-1.216	2.066	-0.191	0.833	Up
NR2F1	13676	0.441	0.137	0.312	-1.587	1.625	0.183	0.833	Up
FBXO28	6241	0.441	0.054	0.121	1.95	-0.932	-0.655	0.833	Up
ENPP2	5562	0.441	0.077	0.174	-1.544	1.817	0.083	0.833	Up
RPS6KA3	16898	0.441	0.058	0.133	-1.833	1.4	0.404	0.833	Up
PLD1	15152	0.441	0.048	0.109	-1.976	0.907	0.679	0.833	Up
HSPG2	8245	0.44	0.046	0.104	-1.943	0.23	0.935	0.833	Up
	7120	0.44	0.145	0.329	-1.722	-0.017	0.918	0.833	Up
GJB2									
L3MBTL3	9473	0.44	0.048	0.109	-1.689	1.802	0.165	0.833	Up
L3MBTL3 MRAS	9473 12639	0.44 0.44	0.087	0.197	-1.737	1.43	0.341	0.833	Up Up
L3MBTL3	9473	0.44							Up

Gene ID	Gene Name	Score (d)	Numerator (r)	Denominator (s+s0)	contrast 1	contrast 2	contrast 3	adjusted P value (%)	Direction
COG2	3953	0.44	0.052	0.118	1.933	-1.077	-0.587	0.833	Up
LHFPL2	9644	0.439	0.062	0.142	-1.913	0.864	0.663	0.833	Up
LY96	11899	0.439	0.072	0.163	-1.879	0.966	0.603	0.833	Up
OSGIN2	14363	0.439	0.047	0.107	1.98	-0.668	-0.777	0.833	Up
CDKL5	3408	0.439	0.065	0.147	-1.889	1.03	0.583	0.833	Up
ADPRH	346	0.439	0.058	0.132	-1.915	0.998	0.61	0.833	Up
PYGO2	16044	0.439	0.034	0.077	2.074	-1.06	-0.669	0.833	Up
sep.10	17341	0.439	0.065	0.148	-1.728	1.562	0.283	0.833	Up
EGFL6	5387	0.438	0.125	0.286	-1.821	0.771	0.652	0.833	Up
IQCJ-SCHIP1	8647	0.438	0.066	0.15	-1.768	1.46	0.345	0.833	Up
SPATS2L	18389	0.438	0.07	0.16	-1.831	0.155	0.905	0.833	Up
VEGFB	20656	0.438	0.047	0.108	-1.944	1.105	0.582	0.833	Up
P2RY1	14425	0.438	0.049	0.112	-1.938	1.069	0.593	0.833	Up
SV2B	18822	0.438	0.08	0.183	-1.558	1.754	0.116	0.833	Up
SLAMF9	17652	0.437	0.061	0.141	-1.708	-0.325	1.034	0.833	Up
COL14A1	3966	0.437	0.098	0.224	-1.731	1.363	0.365	0.833	Up
PLEKHH2	15184	0.437	0.051	0.116	-1.949	0.764	0.722	0.833	Up
KLHL12	9226	0.437	0.037	0.085	1.923	-1.508	-0.408	0.833	Up
NPC2	13617	0.437	0.061	0.14	-1.795	1.411	0.379	0.833	Up
COL4A2	3985	0.437	0.073	0.167	-1.874	0.556	0.766	0.833	Up
EBF1	5293	0.436	0.048	0.111	-1.899	1.248	0.501	0.833	Up
LGALS1	9618	0.436	0.075	0.172	-1.858	0.448	0.802	0.833	Up
TWIST1	20277	0.436	0.057	0.13	-1.866	1.211	0.498	0.833	Up
S1PR1	17046	0.436	0.071	0.162	-1.557	1.776	0.106	0.833	Up
DNA2	4986	0.436	0.046	0.105	1.965	-0.862	-0.691	0.833	Up
STK17B	18691	0.435	0.058	0.134	-1.864	1.181	0.509	0.833	Up
KLK4	9266	0.435	0.056	0.128	-1.917	0.611	0.767	0.833	Up
MMP7	12547	0.435	0.195	0.449	-1.766	0.914	0.564	0.833	Up
PKIA	15079	0.435	0.091	0.209	-1.341	1.934	-0.072	0.833	Up
SEMA4G	17316	0.435	0.033	0.077	2.063	-0.581	-0.856	0.833	Up
HYMAI	8289	0.435	0.071	0.162	-1.867	0.904	0.622	0.833	Up
FAM189B	5978	0.435	0.046	0.106	1.867	-1.396	-0.423	0.833	Up
FAM203A	6007	0.435	0.065	0.148	1.889	-0.765	-0.69	0.833	Up
CDH13	3350	0.435	0.067	0.154	-1.837	0.217	0.883	0.833	Up
SDHC	17243	0.435	0.047	0.108	1.931	-1.097	-0.578	0.833	Up
LOC728875	11559	0.435	0.082	0.189	-1.842	0.476	0.782	0.833	Up
GRID1	7502	0.435	0.023	0.053	-2.136	1.658	0.46	0.833	Up
FAM69A	6085	0.435	0.045	0.103	-1.921	0.236	0.921	0.833	Up
PDE1B	14728	0.434	0.043	0.097	-1.888	1.408	0.43	0.833	Up
PRR19	15746	0.434	0.056	0.129	1.816	-1.363	-0.41	0.833	Up
LIXIL	9715	0.434	0.04	0.092	-1.81	1.646	0.293	0.833	Up
PALMD	14494	0.434	0.073	0.167	-1.452	1.873	0.293	0.833	Up
DNM1P46	5067	0.434	0.053	0.107	-1.674	1.698	0.2	0.833	Up
LOC100131826	10220	0.433	0.033	0.123	-1.923	0.379	0.864	0.833	Up
C13orf33	1846	0.433	0.093	0.215	-1.768	1.197	0.451	0.833	Up
GABARAPL1	6854	0.433	0.055	0.126	-1.708	0.79	0.693	0.833	Up Up
ARFGAP2	6854 897	0.433	0.055	0.126	-1.913 2.026	-0.482	-0.877	0.833	
S1PR2	17047	0.433	0.054	0.125	-1.83	1.321	0.434	0.833	Up Up
ACTBL2	204	0.433	0.054	0.123	-1.801	1.321	0.454	0.833	Up Up
ANKH	647	0.433	0.069	0.159	-1.863	0.825	0.652	0.833	Up
EPB41L2	5587	0.432	0.058	0.18	-1.884	0.825	0.632	0.833	
A2M	5587	0.432		0.133		0.975			Up
TPST1	19874	0.432	0.084 0.067	0.195	-1.821 -1.803	0.959	0.576 0.906	0.833 0.833	Up
SYPL2	19874	0.432	0.067	0.155	-1.803 -1.744	1.747	0.906	0.833	Up
									Up
PCDH18	14608	0.432	0.052	0.12	-1.919	0.661	0.748	0.833	Up
MRPL21	12671	0.432	0.06	0.139	1.864	-0.363	-0.839	0.833	Up
LATS2	9526	0.432	0.043	0.1	-1.922	1.192	0.535	0.833	Up
FAM101B	5825	0.432	0.074	0.171	-1.836	0.417	0.803	0.833	Up
CSDC2	4233	0.432	0.042	0.097	-1.895	1.334	0.463	0.833	Up
HAXI	7724	0.431	0.045	0.105	1.949	-0.804	-0.706	0.833	Up
COL7A1	4000	0.431	0.093	0.216	-1.755	0.111	0.883	0.833	Up

Gene ID

CAL

pTC2

G9 6 p0

E6 CTR

TL MP 3

pP TX n the metabHic clu
Numerator (r)

15 03
15N2
15F3F
3513
15 FD
1588
1500 GigniBcantly diBaZent exUZess

Gene Name

Di 28 metabHic clusteZs L c3 and L c0 Fold Change 715 88 71 5082 71 5 D 71 58NF Denominator (s+s0) Score (d) 8501D adjusted P value (%) 38038 3DF2-3N - . . D2. 3- DD8 8501D - 5 30 - 5ND8 - 5ND0 - 5NF8 - 5D 8 150D 150N 150F 1501D 151. F 1533N 71.5F-0 ACY0 SOHZBD 82. D -- 2D - 5D28 - 5FDD 15N00 15F28 15D 152F 71 52 - D 73 50 82 I AYL E0 F203 - \$F- 8 - \$F23 158NN 1530D 71.5 8N 71.5 2N 71.2 FN 71.5 83 71.5 83 71.5 -0 71.5 2. 71.5 0 71.5 80 I AYL E0 6 SE6 0 CGR SVYF3 TXL G0 S6 TP 3 Ko To A-3 ACY3 S6 r 0 010 35128 1500-1500-15002 15002 15022 1502 1508N D88N - 80N . FN-0N08 381D 82. F - 58N8 - 58N-- 58--- 580N - 5813 - 5 F3 15FD-35I03 15F1-15DN2 15N83 35983 15-F 15808 15 23 35080 0. --FD80 NF. F 2. 11 -202 200N FF2. 2D8N 322. 8 153 -5 28 -5 - 2N0 - 2F0 - 283 - 212 -50. -- 508 - 500F - 5000 I MOMB XIL 3 1533N 15030 71.58.3 71.5838 SRR3 SECI SP011 IL M0 STPR33 RAOR ECI K3X8 71.50F-71.5 N 71.52N0 71.5F1D 71.5F33 71.52N 150NF 15003 151. F 150N 15033 15023 35080 15 F2 15 3D 35018 15 1-1588F 15F13 15-22 15F. D 71.5 FD 3. 0--38D80 153-0 15312 pYMG8 696p30 715230 - F8 - 500 153F8 71.58NO - 501N - 53. 8 - 53NF - 53F8 - 53F8 - 538N - 53- F - 53-71.5 82 71.2 FD 71.5 N8 71.5 F3D 71.5 38 71.5 D 71.5 10 71.5 832 L GYK2 30DDF 33NFD 15N0F 15822 133. F 1330D TEKp0 S31HZB1 SSPSN CY6 Gp I Af 3 Yo MJ L VT9 3FNB 21.. D-N F20F 3F8-0 30.8N 150D 153NN 153DD 153-3 15332 153-3 15030 15DN 15D 158N 15 FN 158N 158N 15N8 SGYp3 6 YYP S2 - 0DF 31- F 38. 8. 2088 3F810 30D2. D8-320N0 FN02 15-1N 15888 151.. 15328 71.5NB2 71.5FN2 71.5F0. 71.5F0. 71.5F.3 71.5 .28 71.5 .0 71.5 .1D pEpR03 SP2F YCG0 L Yr X3 6 RO6 3 RPR I OVPF - \$32 - \$12 - \$1. D - \$1. D - \$1. -- \$1. 2 - \$1. 2 15F--359N8 15 8 15FN2 15FN2 15F0N 15F. 3 1588 1538F 150NN 15020 153FD 15010 153F. 15328 715.. 735213 S. HZB308 0FN - 51 F-15812 15F. 8 1530-71.5 1. 71.5 D8 G311631 3D108 - 51F-153D8 AEG0 AL p3 8D8D 880. 081. FFDF 38012 38. . 1 30- F2 8381 - 51 F - 51 8 0 15 D8 15000 1533D 715 8 71 \$F-2 715 D2 71 \$81F 71 \$080 71 \$21. 71 \$21F 71 \$3-71 \$28 71 \$8. 71 \$8-71 \$8-153DN 150N 150N 1502 1502 151-1502 1503. S 8HZBF0 -SI-. -SI-D -SI---SI2N -SI2--SI0. -SI0. -SI3. -S 15003 35082 15 . . 15 03 1502. 15NN I MGK pT9 2 pEYI L XV3110 C PpVGI2 ESI-S6r3 158 15NN 15D 3.330 15F1F S6r 3 STL p PTS3 Y6 GP3 P9 9 2 SRR0 IMG Gr Ap3 CpON R6 p3T2 P6 SE2 Y6 YYAR2 0. - 2 2N21 15D8D 15D13 71.520-71.5 D0 71.5 2-71.5 - N 71.5F3N 71.52F 71.50D8 -. 2F 3F083 15282 35INN 151NN 150D8 153-0 15010 150N0 15318 153D8 -. 20 2. 13 FFD8 3N0-D-D 321FF 158D8 15NL 35308 15-3N 15- D 15 . F 15DN 15 13 150-150 D 1500N 71 5NI --888 3F0-1 71.5 3D 71.5 DF 71.5F-D 71.5D8N 73.5 N8 71.52.8 71.5D8. 71.5D1-Y6 YYAG 6 pSPP3 pPTXL 2 L K03P0 pMPR 6 Po 3S I RPS-NI. 25 - D 25 - F 25 2D 25 0-25 1F 25 1-25 13 25N 3 15/3 1501D 3- DD-303- N 380. F 20-FF8N 30. 8F 3D8FF 15 ND 15 D2 1580 351 F. 15 N8 15D8. 15 NN 15 D 150 150 15-3 150D 150-150-15.8 1508 L VT. Go MO0 71 5883 71 522-6 YT-S 25N-13D2 71.98F0 71.9F--71.5 3N 71.5822 71.92D8 71.9N1. 73.921F 71.5 2 71.9F-0 N022 o GpK0 C6 P P - 8K 25NF. 25NF 25N8F 25N 8 25N 3 25N2. 25N2. 15N38 158DD 15033 1588 15930 158. 0 151. . 159N 1598 1591D FNV2 ERG8
I KTR8
I MOI 0
L pf T0
PpVGT0
RpS0 3. DN0 F011 FF. -30F2-83-. 32F3D 15-20 15-20 15-2D 15-2DN 15-2DN 15-2DN 15-2DN 15-2DN 15-2DN 15-2DN 25\BN 03.
py9 P3
SATI 0
CC93
RRL E
pCL 8
GAYpжC3
I KTR0
GAL 6 86
GR6 30
GI YpTM. G2T
pY9 S6
K6 S00
pX9 3
P-G02-A DFF2 25/8D 15N -15 F-15 20 15F10 15NIN 152F8 15 DN 15N2 15FD2 15003 71.5002 38FF1 25/83 15300 71.5883 2- DN 3D- D8 32888 3- N-F 3D-10 F3... 3D23D 3N822 15332 25N8 25N1 8 25D N 25D D 25D F 25D F 25DN 25DN 71 50 NN 71 5 2D 71 50 82 71 5F 71 52 DN 71 52 . 0 71 5 23 71 50 F0 158N 15032 15L F 150F 15022 150N 1532-1500. 3NB22 1581N 3D - . . FNF 38F- . 71.5 22 71.5 0. 71.583 25DD 15NFF 25DF0 25D8N 15-13 15FD 1531D 153DN 32FF 150. 15F--15F-71.F0N 2478F 15100 25D8-25D83 71 5D20 73 51. -

Gene ID	Gene Name	Score (d)	Numerator (r)	Denominator (s+s0)	Fold Change	adjusted P value (%)	Direction
LLp3.	3082F 3. D02	25D D 25D 2	15220 1580F	15IN 158-	71.51.D- 71.5DN3	1	4 U 4 U
ERI YGI 31P r ACI S	3. D02 01F8D	25D 2 25D2N	1380F 15	153-	71 5DN3 71 5FN8	1	4 U 4 U
XI Kp2	N-18	25D2D	15F1N	153F2	71 50 D8	1	4 U
pMPRT3	380. D	25020	15828	153-2	71.58N8	1	4 U
9 YE3D	. 23.	2500.	3588N	15-3N	71.5D D	1	4 U
Gr 0K	3NN00	25008	158F8	15380	71.5FF0	1	4 U
pECXG	38. 02	25002	15F. D	15ND	71.5F00	1	4 U 4 U
SIX L MOP3	28FN 30F12	25000 25088	158DD 15002	1588 158. 8	71.588 71.5F03	1	4 U
rST	01F- F	25080	15-8-	153.0	73.213	1	4 U
9 YE3-	. 238	25083	35F32	15-28	71.5D.3	1	4 U
9 YE3Fp0	. 23N	25D18	35812	15-1F	71.501/2	1	4 U
P MS 9 33	81N-	25012	158	15328	71.5-1F	1	4 U
I 6 L N 6	F32.	25D10	15F10	1:3F2	71.581F	1	4 U
pPTXL D	3-DDD	25D13	1583.	153-	71.58FF	1	4 U
YRP2	3FF0N	25F. F	15/8	1503.	73.538-	1	4 U
pTGSY-	3803. 33F. 8	25FN0 25FD	15830 15223	1532.	71.5F-F	1	4 U 4 U
TpS 6 E0 PGE	83N	25FDD	15F33	15L 153FF	71 2. 8 71 2 F0	1	4 U
S6PL2	0N32	25FD2	15-13	131.	73.53. F	i	4 U
YRI 3D8	3FFD1	25FFF	1521N	15IN-	71.5F2D	1	4 U
T6 VR	. 80N	25FF8	158-8	153	71.5FF2	1	4 U
GAYp XR I 3	3D-11	25FF2	15000	13. D	71 2 3N	1	4 U
I 6 Kp-	8NI -	25FF0	15NN	150-	71 S F-2	1	4 U
9 YE- 0p	. 2- F	25F80	1588D	15380	71.5 0-	1	4 U
SOST0	12	25F83	15.2.	1508D	71.5 71.5ED0	1	4 U
SPM3 XEpYXo	2-03 NDF3	25F8 25F	15DFF 1581.	1503 158-	71 FD0 71 52 1 D	1	4 U 4 U
9 TI 0	. 01-	25F	158D	1538.	71.5.1-	1	4 U
GW6 pDI	3NN0.	25F	15D	1531-	73.51.N3	1	4 U
ECI KY0	3. 0	25F-	1588N	1382	71 5 F2-	1	4 U
SSPS2	2182	25F2N	15082	153. F	715.2	1	4 U
GSR2K	3D8. 0	25F22	15818	1532.	71 5 D0	1	4 U
T2L KET2	D2	25F22	152D	151.2	73:530N	1	4 U
Gp6 YST3	3N2F2	25F20	15/23	1500.	71.5 FD	1	4 U
I MOQ3	FD8.	25F0.	15NF8	1502N	71.5F	1	4 U
6 MS 2 To I p	DDI . F- 0	25F00 25F0	15D 0 15FD8	15018 153NF	71.5-3N 71.50.3	1	4 U 4 U
6 Y6 p2	NND	25F3N	15 . D	1532D	71.5 F0	1	4 U
C6 G3	F 0	25F32	15008	15032	71.580F	i	4 U
L 6 TT	30118	25F3	15 02	1508F	73.53 NB	1	4 U
6 XL 3	F	25F10	15008	15038	705828	1	4 U
L I 6 p-	302- D	25F10	35I. F	1521-	71.581N	1	4 U
f I p2F	033. 3	25F10	15FF.	15NF	71.2FD	1	4 U
EGS 00P 2	011F.	25F	15-8N	150D	71.5F80	1	4 U
EGo f 0	011N8	258. 8	15 . N	152N	715-0	1	4 U
GMKp o MO6 2	3NODF NLN	258. 8 258. 3	15203 15DIN	15IN 153. D	71 20D 71 5 2N	1	4 U 4 U
L L p02K	308-1	258N2	15F3N	153.D	71 5D8F	i	4 U
pY9 SP Kp	38F80	258NB	15F20	153DF	715	i	4 U
GpYV0	3N-N2	258F.	15FF8	15NF	71.5-23	1	4 U
L VMBK	30. D0	258F8	152N8	131N	715.D	1	4 U
GTXE2	3NI2F	258F2	15DL	153	71 50 F8	1	4 U
TYYR-ST	33N23	258F0	15 D	15328	71 5 3N	1	4 U
S FHZB-8	0822	258F	1583D	153-8	71.5NFN	1	4 U
SST3-	2320	2588D	15 . N	150N8	71.5DF	1	4 U
SL EL 2 S3G	2ND 0322	2588F 25880	15820 15FF-	158 15ND	71.58NN 71.521.	1	4 U 4 U
6 RO6 2	DF3	25883	15	150NB	73.51. F	1	4 U
o MO6 -	NI. 1	258- F	152F3	15310	71.2.1.	i	4 U
pAS 6 L 3	3-NB1	258- F	15-8D	1530.	71.52	1	4 U
I 0YT3	8DND	258-0	1582-	15383	71.5D8N	1	4 U
I 6 G	F3NI	258-3	15288	1.53	71 50 8.	1	4 U
L AEETD6	30228	25820	15 N0	1532D	73:538	1	4 U
pY9 P 2	38FF0	2580-	1583N	153-D	71.5DF	1	4 U
6 P o 36	200	2580-	15ND- 2510	150-N	71.58	1	4 U
YKp- E4 KKF	3F282 01083	2580 2583D	3510- 15FF8	150. 3 153N	71.58 71.52.82	1	4 U 4 U
APR3	822-	258312	15DF8	1503N	71.5DD0	1	4 U
r GRT3	01D-1	25833	15F. 0	153. D	71.5F. D	1	4 U
L E3O	30D N	2583	15FN0	13	71.508-	1	4 U
STPRN	2DDD	2583	15F2N	153N0	73.52 NF	1	4 U
o XS 3	DND0	2581.	15 F2	15320	71.5F8	1	4 U
CpY30-	D2FD	25	1588-	138N	71 50 13	1	4 U
SSPSNI	2311	25 . N	15FF	15N	71.528	1	4 U
6 P 6 L EG	0F.	25 . D	15FF0	15N	71.58FF	1	4 U
S3Y LWCVD	0323 F2N	25 . F	15F-N 15F-F	15N8 15NR	71.23N 71.23N	1	4 U
I Ж.Ж. 6 YT-6	F2N 8	25 . F 25	15F-F 152FN	153N8 15318	71.2N2 73.51 N	1	4 U 4 U
pYXS9 TA3	38F0D	25 NN	15D	1500F	71.5828	1	4 U
EXL p0	3. 2	25 NF	15DLD	15012	71.50N8	1	4 U
pYATp	38F3-	25 N2	13D	151	71.5 N2	1	4 U
Ao P 0	8-12	25 D0	1581F	153-F	71.52.N8	1	4 U
SpOL 3	-32D	25 D	158-F	1538D	71.58 - 8	1	4 U
GGpR	3N8N2	25 FD	158. F	153D0	71 2. N	1	4 U
CRC33	D0-3	25 F8	158. D	153D0	71.52D	1	4 U
SI o	28F0	25 F3	158D8	15FF	71.50D	1	4 U
XQSJ70So Xp3	NF- D	25-8F	15	150N	71.5F	1	4 U
EpL 0 6 P P 2	3. N82 203	25-8F 25-8	158N 15FN	15D 15. D	71.5-12 71.5-F8	1	4 U 4 U
9 TI 30	. 3. N	25-8 25-0	15-2F	133. D 1330D	71.5F80	1520-	4 U
6 R9 YP 28	F. 8	25-0	15NI 8	1502-	71.5 F2	1.20-	4 U
RXP3	32-8F	25-2N	15F-8	153NN	71 508-	120-	4 U
9 YE8	. 2- D	25 20	3522F	12N	71.5F-N	120-	4 U
EL AL 0116	3. 88-	25-23	15	1323	71 2 88	120-	4 U
I 6 L - 26	F1-1	25-2	15 N8	153-3	71.581N	1:20-	4 U
	010DN	25-2	1 5 F88	153.3	71 50 NN	1520-	4 U
EWXŒ0		25 OF	15F-0	153ND	71 5-3-	120-	4 U
EWXŒ0 S33HZBF	3DND						
EWXE0 S 33HZB F 9 X 0F6	. 383	25 08	152N0	15330	71.5\8.	120-	4 U
EWXŒ0 S33HZBF			152N0 1500F 150 8	15030 150-3 1503N	71.5\8. 71.5 D 71.2\footnote{\square}.	120- 120- 120-	4 U 4 U 4 U

C ID	Gene Name	S (-1)	N	Di(-1-0)	E-ld Channa	adjusted B value (94)	Di
Gene ID ARpp0	88F0	25-3N	Numerator (r) 158-3	Denominator (s+s0) 158N	Fold Change 71:8-2	adjusted P value (%) 1∑0-	Direction 4 U
CYp	D82D	25-38	35I0F	152	71. 5 D	1520-	4 U
pPCIY6	3-D8-	25 1D	15F. D	15018	71 50 20	1520-	4 U
f S 2o 30K WP YNF	03312 01N8F	25 1D 25 1F	15082 1508D	15ID- 150-	71.2. F 71.5.0F	1.20- 1.20-	4 U 4 U
pP A06	3-D21	25 18	15F03	153N0	71.583F	120-	4 U
I TR6	FF3D	25-18	152NF	15332	71.588-	1520-	4 U
p9 P 0	381D8	25-1-	15 - 0	152	71 5 03	1520-	4 U
STP R8 GMP 2	2DD 3N0NF	25-13 252	15D . 15N8	1500 150F	71 FFN 73:50-	1520- 1520-	4 U 4 U
GTS 306 -	3DFFF	252. D	15N	15332	71.58D0	1520-	4 U
6 9 Y3S3	- N	252. F	15FF3	153.8	71.5ND	1520-	4 U
TYS o 0	33D8D	252	150D8	15LN8	71.5.2N	1520-	4 U
ppp3Y386 Y4RO3E3	38 0 3F	25 25. 2	152F. 15F1N	151. 15D	71.5 8D 71.2.1D	1520- 1520-	4 U 4 U
CYXP3	D810	252. 3	15388	151- F	71.5.23	1520-	4 U
GS 6 YR 6 3D	3D8-D	252NN	15F8N	153	71.52.D2	1520-	4 U
o AC3	DNI.	252N	15833	15383	71.583.	150-	4 U
WEX6 ES A6 TD	01. 2N 3. 1. 0	252DN 252DD	15882 15-3	159F- 15923	71.5N 73.53.F3	150- 150-	4 U 4 U
o 6 Kp-	DFN8	252DF	15 - N	15322	71.2-D	120-	4 U
LLA	3080-	252DF	158NN	15D	71.52.2	1520-	4 U
SMI3-63	2. FF	252DF	15F8-	153	71.5F32	150-	4 U
RMr 9 X6 6 1- 1 N	328. N . 10D	252D8 252D2	1502- 152-F	1503N 15312	71.5 02 71.52	1520- 1520-	4 U 4 U
f RI 211p3	032. 1	252F.	158- D	153F0	71.2. F	120-	4 U
P 4 Gp3	803D	252F.	15FF.	15. N	71.52D	1520-	4 U
GRO2	3N0F2	2528.	150N2	15IN	73.5 0-	150-	4 U
6 Yo C6 p0N 6 9 Y3K3	. 0F - NF	2528. 2528N	152D 1581F	15332 15383	71.53.82 71.5.2.	1520- 1520-	4 U 4 U
MP f -	32N -	2528-	15088	15LDF	71.5	120-	4 U
GRS 6	3NB80	252	152	15312	71.5NF-	1520-	4 U
SRER6 p2	2 1	252N 252F	158-8	153F2	71.5 2N	120-	4 U
PRL 3p-F TYXC2	81FD 33D21	252F 252F	152D0 158DN	15330 153D2	71.58-0 71.522F	150- 150-	4 U 4 U
PSR	- F2-	25228	15\28	1508	71 52 02	120-	4 U
9 T9 N	. 0DI	25228	3582F	15 F3	73.5DND	1520-	4 U
S 33 HZB 2 J4 R	3DN- NN31	25220 25208	1521- 15F-3	15l. 3 15l. 2	71.5 - 2 71.5 0-	150- 150-	4 U 4 U
Ro G	32-80	25200	150. F	1.5. 2 15IN	71.5 D0	1.20-	4 U
r XL	01FD2	25203	1583	1538-	71.53 D8	1520-	4 U
6 Tp9 0	8F.	2520	150N0	151N8	73.5830	1520-	4 U
EGo f 2 S MT3N6 3	011NF 2. DI	2523. 2523N	15823 158. 2	15F 15D	71.51 N 71.53 F	1520- 1520-	4 U 4 U
J6 L 0	NDN2	2523F	15-2	15322	71.522	1520-	4 U
f AK3	033FF	2521D	15802	1538N	71.538.	120-	4 U
G3pY3	3D1-F	2521F	15 . D	158	71 F- N	1520-	4 U
Go 2pOP 06 SP 9 R 3S	3D80N 2-33	25210 25213	15 F 15F1-	1532. 153N2	71.523N 71.58DD	1520- 1520-	4 U 4 U
08C8	3D8F8	250	15823	153F3	71.51	1520-	4 U
OS o Xo3	3D8DD	250. 2	15F33	15N8	71.2-D	1582F	4 U
9 SRo N	NN8	250. 0	15 F-	153-3	71.5008	1582F	4 U
L L p0 TMY	3082D 33FD	250N 250ND	15FN0 15008	1501D 15IFN	71.5 - F 71.5D 3	1582F 1582F	4 U 4 U
SRYX63	2. 08	250N8	150D	15IN2	71.2DD	1582F	4 U
L YS0	30F-3	250N-	15F8D	150	71.53 F.	1582F	4 U
pER	38. 2.	250N2	35INN	15220	71.5DD	1582F	4 U
SSRP 0 EYpS 3	23F2 0112N	250N0 250N0	15 N8 15 F.	153-D 153-2	71.5FF. 71.538D	1582F 1582F	4 U 4 U
XP 2	N230	250N	15 0F	152	71.58N8	1582F	4 U
AEo A3	8D82	250N	152DN	15338	73 50 22	1582F	4 U
TMS 381F00	31FDF	250D	152. D	15300	70.5D-F	1582F	4 U
I o 6 P 3 XGTY	F2D NF	2508. 2508.	1501N 15FNF	15IF- 15033	71 5NO 71 5 23F	1582F 1582F	4 U 4 U
6 TMO8	8F-	2508N	121N	151. 8	73.2F8	1582F	4 U
S3-HZB2.	3NF8	2508F	15-0-	1592	71.582N	1582F	4 U
ICI3 pSG9D	F2-3 3-F.	25080 250- N	15010 15023	151F0 151D8	71 50FF 71 5F2.	1582F 1582F	4 U 4 U
pECG0	3- F 38. 0D	250- N 250- F	15023 1521N	151.8	71.5DDF	1582F 1582F	4 U
p9 X6	381D	250-	15F-2	153. N	73.500F	1582F	4 U
SVEo 2	- 828	250-	158F8	15D	71 50 F-	1582F	4 U
AI o 6 0 9 SRL K-	82FF N 0-	2502N 2502N	152N2 158D0	1533N 153DD	71.51 71.52.80	1582F 1582F	4 U 4 U
GYpO	3N8- F	2502N	1 5 F83	15013	71.533.	1582F	4 U
SI o Y2	28F8	2502D	1581D	1538D	71 52 33	1582F	4 U
GVpT0	3NND8	2502F	150DD	151N8	73.51.3	1582F	4 U
CpO2 J6 C3	D.F. NDD	2502F 25028	15F28 152. D	153. F 15302	71.5F-0 71.52.D0	1582F 1582F	4 U 4 U
YpGF9 6 2	3FN N	25022	152ND	150	71.52	1582F	4 U
SAG	28-8	2500N	15 DD	153-N	71.538D	1582F	4 U
XECK3 p6 TL P	ND0D 3	2500D 2500F	152F- 1583-	15332 1538.	71.583F 71.5828	1582F 1582F	4 U 4 U
IfPD	FN2F	2500F	1 5 F2.	153. N	71.583.	1582F	4 U
RY0I 3	32FDF	25008	15 F	150. N	71 5 FF-	1582F	4 U
SMI3863 IOVP3	2. FD FN3N	25008 25002	15 N 15 3.	15380 1532	71 50FD 71 5F0F	1582F 1582F	4 U 4 U
YSKEK0	3F2FD	25002	15-3. 15283	1532	715-D	1382F 1382F	4 U
S 3DHZB3	0111	25003	15·0D	15322	71 50 28	1582F	4 U
J6 f I 3	NDNF	2500	1528F	15333	71 5 30	1582F	4 U
XCI KpF	N-1N	2500 2502N	1582N	1.5FD	71.5 - D	1582F	4 U
pATX0 S9 L E0	3- N3D 2D2-	2503N 25030	15 D2 150	153- D 151. 2	71 202 71 2. 3	1582F 1582F	4 U 4 U
r S6 R	01F- 8	2503	1500D	1500F	71.52.DF	1582F	4 U
L 6 ER0	3032N	2501.	15F33	153.	71.5FD	1582F	4 U
6 QpDp3	NDF 3. F33	2501D 2501F	15·2- 15·02	15328 150NN	71.5 - N 73.500N	1582F 1582F	4 U 4 U
EL AL - 8K GTS 06 3-	3. F33 3DN0.	2501F 2501-	15 02 152NN	150NN 15303	71.51 NF	1582F	4 U
GI Yp0	3D - N	25012	15NO	150D8	715-2	1582F	4 U
96R90	NBN	25012	15-3N	15323	71.5810	1582F	4 U
6 RCpET0 6 REOY0	F22 D83	25010 25013	15F1N 1523	15. 15. D	71 S 2N 71 S D	1582F 1582F	4 U 4 U
CTX3	D8	23013 253. N	15838	15F3	71.5F. N	1382F	4 U
				-	•		-

Gene ID TXO3T	Gene Name . D88	Score (d) 253. D	Numerator (r)	Denominator (s+s0)	Fold Change 71 F2	adjusted P value (%) 1\$2F	Direction 4 U
L 6 pDP 2	301D0	23. D 23. F	15088	15IN	71.5208	1582F	4 U
I 6 E-	F3. 3	253. F	15000	15ID	71.521.	1582F	4 U
6 TP o 36 2	832	253. F	15083	15028	71 SD-2	1582F	4 U
GTI R32	3NI0.	253.8	15830	159F	71.58ND	1582F	4 U
I 6 E3	F3NN	253	15F82	1501-	715-8	1582F	4 U
pSG9 8	3- F. D	253. 2	150D8	15LNF	71 50 3 3	1582F	4 U
GL 6 P.	3NIF0	253.0	1502N	15LD8	71 52	1582F	4 U
S 03HZE- pP A3K	00. F 3- D0N	253N 253NF	150 150DD	15L 0 15LND	71:53-N 71:528	1582F 1582F	4 U 4 U
Ep82X2	3. N21	25NF	15-8.	153	71.5NIN	1382F	4 U
TGp3	33N8D	25N-	15-3	1530.	71.503N	1582F	4 U
EL AL 31.	3 83	253N-	15-22	1532F	73.588D	1582F	4 U
I 2	8D. 1	253N0	15DF	1502.	71.588F	1582F	4 U
I CI D	F2F1	253N	152FN	1533F	71 50 28	1582F	4 U
T6 L 6 -	N	253 DF	152F8	15338	71 53 8 F	1582F	4 U
TS6E	. 82F	253D2	152D8	1533D	71.53.0	1582F	4 U
pT6S.	3830-	253F0	15-2	153-	71 52 8-	1582F	4 U
SMT3F63 EYXL 0.	2. FN 3 8N	253F 25388	15-3N 15-2	15320 150	71 52 03 73 51 12	1582F 1588	4 U 4 U
XI 0	N2. F	25382	15-38	15320	715 00	15/8	4 U
P 6 K0	- 8	253	15-8N	153-8	715030	15/8	4 U
L YCpYI	30F- N	253- N	150. 2	151.2	71.5\28	15/8	4 U
KCR	3811	253-8	1581N	159F3	715 D	15/8	4 U
pPpR	3- DN3	253	158F8	151N	71 5-83	15/8	4 U
YRI 36	3FF82	253	152.	1530-	71 51 82	15N3	4 U
TMS 3113. 1. 2.	312F2	253-2	15 DD	15380	71 5 F- D	15/8	4 U
SGPS0	- 022	253-2	150D0	15IND	71.5.20	15/8	4 U
RL K ERRX0	32822 3. DFF	253-0 253-3	158 15.3	153. 3 150.	71.580D 71.58.	15V8 15V8	4 U 4 U
S2	02N	253-3 253-	15 3 15F- N	150. 1501F	71.5N02	15/8	4 U
J6 L 2	NDN-	252N	152-0	1511.	71 52 02	15/8	4 U
6 SEKTO	01-	252N	15	153-3	71.5F88	15/8	4 U
YS6 R0	3F2F-	2532-	1528F	1533-	71 5 8F	15/8	4 U
GTS 2N6 0	3DN 3	25322	15220	1531F	71.5888	15/8	4 U
L Y6 G	30F2.	25322	158N8	153ND	71 5 03	15/8	4 U
L 6 p3K	30122	25320	15-13	150N	71.53.D8	15/8	4 U
GpYV3 r pG2F	3N-N0 01D88	25320 2530N	1588- 1520	153DD 15310	71.5 82 71.5 N2	15NB 15NB	4 U 4 U
EL AL 33.	3 8.	250N 250N	15F-	15018	71.5FF	15/8	4 U
SEG9	- 282	250N 250N	15D1-	15008	715 OD	15/8	4 U
GpRG0	3N	2530N	15FD0	15038	71.5NIF	15/8	4 U
EL AL - 2	3. F1N	2530F	150FF	15LN8	71.508N	15/8	4 U
RAI L	32282	25308	150N0	151.	71. S F2	15/8	4 U
YKL G3	3F22N	25308	15 D0	15383	71.53 N	15/8	4 U
GP pY	3D0- D	25308	1 5 F3	153.8	71.523F	15/8	4 U
RAIo	32283	250-	15880	153DD	71500	15/8	4 U
L 6 CAT0 ESI D	33 3 3. 332	2502 2502	15 0F 15 1-	1532F 1530.	71.58.12 73.5.23	15V8 15V8	4 U 4 U
6 KS 6 F	-0	2500	15828	153D8	71.51.8	15/8	4 U
L E3L	30D D	2533N	15NL	1508.	71.530.	15/8	4 U
PR6JK8	813N	2533D	1522D	151N	71 50	15/8	4 U
S o 08o	28N8	2533	1 5 F2-	1501-	71 52 22	15/8	4 U
CCE8	DI DO	2531.	1582F	153D0	71 52 22	15N3	4 U
S OS T30	- 2. N	2531F	15 0D	152N	71 50 FD	15/8	4 U
f I p2FT0	033. 2	2531F	1581D	1:3F2	71.588F	15/8	4 U
6 Yo C6 p01 GYpO0	. 3N 3N8- D	251- 2512	15222 15F23	1531D 15012	71 50 . F 71 50 D2	15V8 15V8	4 U 4 U
seUB1	3D2-3	2512	15-8	153-2	715	15/8	4 U
YMKM2	3FD22	25310	1523F	15310	71.58 N2	15/8	4 U
XIN	N828	25I NF	150	15LD	73:53:2-	15/8	4 U
L OY6 8	30. 13	25LN8	15-2	1532.	71 50 DD	15N3	4 U
6 Cp6 E-	- 1-	25I N-	15223	1\$1D	71.SD	15/8	4 U
YGpM2	3F. F2	25I N0	15-18	1523	71.52. F	15/8	4 U
CTENP 0	D8N0 - NN	25I N0	1528D 1500N	1533F 15082	7153-3	15V8 15V8	4 U 4 U
6 9 Y3K38 Go I	- NN 3D881	251 N 251 N	1508D	15082 151N2	70:58:20 73:5NN	15/8	4 U
696p32	- FF	25LDN	150NF	151. 2	71 52 N	15/8	4 U
L AC2	300D8	25ID	15-1N	15322	71 53 08	15/8	4 U
pYRp	38FNN	25ID	158FF	15N	71 50 N8	15/8	4 U
EpL -	3. N88	25IF.	15-82	153-D	71.50	15/8	4 U
6 P YK0	28F	25I F.	15828	153D	71 5N FN	15/8	4 U
6 REOY3	D81	251F8	158-	153DF	71 5 N8	15/8	4 U
46S6	01202	25IF-	15282	1538	71.53.1F	15/8	4 U
f I o O- P 6 S E 3	033NB - 882	25IF- 25IF0	15808 15F0-	150D8 1501-	71.5208 71.5.12	15V8 15V8	4 U 4 U
AI RK0	- 882 82DN	251F0 251F0	15-F0	15383	71.58 N2	15/8	4 U
f S S o S O-	03321	251F0 251F	15830	15FD	71.502	15/8	4 U
p6 TTP	3 1	251 F	152N	1530F	71.52.22	15/8	4 U
L VML 3	30	25188	15212	151	71 52 D8	15/8	4 U
YMY3	3FD-2	25188	150. N	15L N	71 500D	15/8	4 U
6 6 CG	0D	25182	152D8	15303	71 5 F2.	15/8	4 U
9 TI F	. 01N	25182	1523N	151-	71.5 FD	15/8	4 U
Ko To A00	381-	2518	1581N	1:3FD	71.5-2.	15/8	4 U
RE8A XAY0	32D D N20N	251 - 8 251 - 8	1528- 15 - D	1533F 153-D	71 FN0 71 S\08	15V8 15V8	4 U 4 U
pP CI YK	3- D88	251 - 8	1580-	153D0	71.500.	15/8	4 U
L Y6 p0	30F2N	251 - 3	1.2N	15308	73.533.	15/8	4 U
ApCR	88	25123	153. F	151F8	71.5ND	15/8	4 U
LPIXS	3003N	2510D	152	15338	71.5I.3F	15/8	4 U
6 0L	8	2510D	1581F	1SFD	71 50 N	15/8	4 U
SMIF60	2 8	25102	15F38	1501-	71 5 F8	15/8	4 U
6 EI 2	33-D	25102	15 N	153F	71 500N	15/8	4 U
KKMO3	3-31	25100	15N .	150NB	71.5 N	15/8	4 U
6 RCpET-	F28	25100	15ND0	150NN 151ND	71.2N	15/8	4 U 4 U
I o T2	F2N- D-81	25100 25103	150- N 15-1-	15IN0 1532-	73:50 D 71:502 N	15V8 15V8	4 U 4 U
CpY6 Gp3 PPY0	- FD	25103	15-1- 15-3D	152- 152N	71.522-	15/8	4 U
S3QERI-	030-	2513.	152-	1532N 15332	71 5082	15/8	4 U
SP9T8	2-1N	2513.	152.0	152	71.5F8F	15/8	4 U
	002-	25I3N	15F. D	15023	715.N	15/8	4 U
S01HZB12 Spf	- 32.	25I3D	15-D8	1538F	71.5F1N	15/8	4 U

Gene ID	Gene Name	Score (d)	Numerator (r)	Denominator (s+s0)	Fold Change	adjusted P value (%)	Direction
GpMR3	3N-8F	25I3F	15/83	150N0	71.52 - 8	15/8	4 U
TMS 0N22. 0	31D 8 302. D	25l30 25l30	15-3. 15F0N	152.	71.501. 71.502	15/8 15/8	4 U 4 U
L CS 0- 312 STX62	302. D 2N03	25130	152-2	1501. 1593-	71.5302	15N8 15N8	4 U 4 U
RCIY	32-2D	2513	1582N	15D	71 5022	15/8	4 U
C6 6 3 XCI KpD	3D183 N-1.	25I1N 25I1N	350ND 15 . F	15 0N 158F8	71.5DID 71.5812	15\8 35032	4 U 4 U
XC1 KpD S 32HZ€2	N-1. 3N-F	25LLN 25LL8	15 . F 15F13	150	71.5812	35032 35032	4 U 4 U
seUB3	3D2-0	2511-	15 D	1598N	71.522	35032	4 U
S Vp04 3 o TI	-812 D	25l12 25l10	15222 15F83	15933 1503D	71.5018 71.5-82	35032 35032	4 U 4 U
Y6 YK	3F02D	25110	1501F	15IF.	73.51 F-	35032	4 U
L AE	3021-	05	1508	1508	71.5 D8	35032	4 U
P GA 6 P 6 L E G8	83NI 0N2	05 05 . F	152 158. F	15922 159	71 583 71 503	35032 35032	4 U 4 U
I MOR2	FD81	05 . F	150. F 15208	1.35 1.53.1N	71. \$ F80	35032	4 U
pSMTSA0	3- FNN	05 . F	15D12	15028	71.52F	35032	4 U
YRI 2. SSP S81	3FDI0 21FN	05 . 8 05	152F0 150F0	15903 15INN	71 5NI - 71 5 NF	35032 35032	4 U 4 U
TMS 8D088N	330. 2	05.2	15003	15ID	71.508-	35032	4 U
9 T9 D	. 0F.	05.2	35102	152-0	73 2 - D	35032	4 U
AKI 3 T6 EG0	80. 2 . 80F	05 . 0 05 . 3	1523 150D	1531- 151.	71.50D- 71.583N	35032 35032	4 U 4 U
9 YEFS	. 281	05.3	15DN8	150F2	73.53.3	35032 35032	4 U
S2HZBD	0-02	05 NN	152DN	1530D	71 5 88	35032	4 U
GTS 06 2	3DN23 32F- 0	05 ND	15. N	151FF	1513F 715080	35032	4 U 4 U
RpY0 CI pE0	D18-	05 ND 05 NF	152ND 15812	152 158F.	71.51 - N	35032 35032	4 U
9 YEFK	. 2	05 NF	35N2	15 F2	71.5DND	35032	4 U
S. HZB2	0D0.	05 N-	1 5 2-	15030	71.528	35032	4 U
f AK0 P f Xo3	033FN 80DF	05 N 05 N	152 15-33	1538 152N	71.51. D 71.5. OD	35032 35032	4 U 4 U
L Vo 33	30. 20	05 N	15 FD	1520-	71.5DD	35032	4 U
S Y0	- 3- 0	05 DN	15F-3	15038	70510D	35032	4 U
Pf Xp3T GVRpM	80DD 3NNF-	05 DN 05 DD	1523. 152-	1\$1D 1\$3-	71:53- 71:5:0-	35032 35032	4 U 4 U
Apo KF	8F32	05 DF	15-2N	1:33- 1:33- D	71.58N	35032	4 U
XCI 3	N2	05 DF	15F3-	1501F	71.5 1F	35032	4 U
o X 36 SGYp0	DND- - 0DD	05 DF 05 D-	15-1F 15802	1592F 159DF	71.53.3- 71.5 D8	35032 35032	4 U 4 U
T6 L 6 3	NF	05 D0	15230	15318	71 50 80	35032	4 U
f I p2FT3	033. 0	05 FD	15 FN	1598N	71.58 - D	35032	4 U
L L YR3	30881	05 F8	15 F3	15388	73:53-0	35032	4 U
CpX6 Kp3 I XIX63T	D2 F2	05 F8 05 F8	15F-D 1521F	1503N 15312	71 50 8. 73 53 08	35032 35032	4 U 4 U
P AI K3	- D2F	05 F-	15NIN	150D2	71.5FND	35032	4 U
GMS G8	3N0N3	05 F2	1521D	1531-	71.5.3	35032	4 U
9 S EP 30 Go 2p OP 0K	N 3D80.	05 8. 05 8N	15-8 15-2.	1580 15-N	71 500D 71 5-2.	35032 35032	4 U 4 U
GRS6Xp	3N882	05 88	13FD	1518F	71.5\08	35032	4 U
AL O0MG	882N	05 88	15 F8	1598D	71 2 8F	35032	4 U
p0YV3 EKO38	308 3. 1FN	05 8- 05	150 15088	15313 15IND	71 D 71 S 23	35032 35032	4 U 4 U
GMS G0	3.1FN 3N0DN	05 - N	15/8	150D8	71.5 F8	35032 35032	4 U
I 6 p	F3D0	05 - D	1 5 F. 0	15028	71 50 N8	35032	4 U
I 6 L 31D6 o MO6 3376 G3	8N28	05 - F	15F1-	15018	71.5F-N	35032	4 U
9 TI D	NI NF . 01.	05 - 8 05 - 3	15-1- 152N	152D 150.	71 53 0 71 5 0D	35032 35032	4 U 4 U
p6 Yr 6	3-88D	05 -	12D	1530F	71.588N	35032	4 U
L 6 p-9 -	301F8	05 2N	1521F 1500	151-	71.523F	35032	4 U
SMI 26 3 XI 22	2. N2 N83D	05 28 05 28	158	150F0 1501-	71 500F 73 51 - F	35032 35032	4 U 4 U
6 SER3	03-	05 2-	15 N	159F8	71.5822	35032	4 U
S YXQpTP 0	- 3 N2	05 20	152D8	150D	71.58.10	35032	4 U
S YV6 K TXR CM0	-01. . F. F	05 0. 05 0F	3510 1523	152-N 1531F	715-2 735-8	35032 35032	4 U 4 U
S3QERI8	0308	05 02	158-2	159NF	71.5F1N	35032	4 U
JP p0	NDND	05 02	152. F	15928	71 202	35032	4 U
GE6 YP N 6 Yo C6 p31	3NFF3 . 31	05 0 05 3.	150ND 1528.	15L N 15302	71 502N 71 5F- D	35032 35032	4 U 4 U
SVTP	F.	05 3F	150D0	151.2	71.53	35032	4 U
GE9 3DK	3NF. 3	05 38	1.2FN	1590F	71.2.10	35032	4 U
pp6 pP S 2 CR 6 38	38-0- D001	05 3- 05 3-	150D8 15-	151. 2 1592D	71.51 D 71.5FN	35032 35032	4 U 4 U
S3HZB887RKT3	03F2	05 32	158D0	133. F	71.23-	35032	4 U
EA9	3. 3D0	05 30	15	15382	71 5·8F	35032	4 U
S 3 QER I 3 o MO6.	0303 NL -	05 3 05 1.	1523 15-1.	1531D 153-3	71. 5 F3. 71. 5 28	35032 35032	4 U 4 U
GEOD	3ND83	05 1F	1508	15INF	715-2	35032	4 U
S01HZB	008N	05 1-	150N2	15l. D	71 500	35032	4 U
GTI R33 TV. F	3NI0F 33N .	05 1- 05 12	15 - D 15 0.	1598- 159- N	71 S 22 71 S 2N	35032 35032	4 U 4 U
YS 6 R 3	35N . 3F2F2	05 12	15 0. 15F3.	15032	71.5D .	35032 35032	4 U
STXp-	2N00	05 10	15-30	153-0	71 50 3 .	35032	4 U
Y6 GCYp0 EGp6 R3N	3F0F1 01318	05N D 05N 8	15-0 15288	15382 15302	73:5003 71:52DN	35032 35032	4 U 4 U
GpMR0	3N-8D	05N -	1⊻88 1∑-D	1502	71.2	35032 35032	4 U
f L 6 E2	030-2	05N 2	150F-	151.3	71 5DD8	35032	4 U
RSM6 D	323- D	05N 3	158NF	15012	71.5D83	35032	4 U
6 P 6 L EGN J4 R K	0NF NNB3	05NF 05NF	158 152DN	159N 15923	71 S F2. 71 S D-8	35032 35032	4 U 4 U
pp XS	38	05NN8	15-D8	159F2	71 50 NF	35032	4 U
R4 P E. p3	32NI 2	05N0	150D8	151.8	71.58. 0	35032	4 U
TL M0 YCL 6	. D28 3F- N2	05N3 05N3	15-1F 15F02	153-3 1503F	71.5FN8 71.5FDF	35032 35032	4 U 4 U
STAS36	2D 1	05NB	152- D	150	71.52	35032	4 U
SP.2	20.8	05NDF	12.	1532F	71.5NDN	35032	4 U
L OY6 N 6 Sr Y06	30. 12 02-	05NDF 05ND8	158D 150D8	15013 15L F	71 50 82 71 50 N8	35032 35032	4 U 4 U
SFHZBD	08-8	05ND2	152-8	150	71.51.F-	35-F	4 U
YpT03p	3FD 0	05ND2	15-8	158D	73.53 N	35 F	4 U
G6 S G	3DI8N	05ND2	15210	15318	71 508N	35 F	4 U

L OY6 D	Gene Name 30. 10	Score (d) 03ND0	Numerator (r) 1523D	Denominator (s+s0)	Fold Change 715-2	adjusted P value (%)	Direction 4 U
pY4 RA0	30. 10 38NIN	05ND8	150D2	1533 151. 8	71583	35 F	4 U
STS60	2D-0	05ND8	15DF0	150FF	705-8F	35 F	4 U
L MK9 T0K	308FF	05ND	121N	131D	71.22N	35 F	4 U
SSPSNO	2310	05ND	15	158D	71 52 2 F	35 F	4 U
AL XIXR3	8801	05NF.	15	1.53 D0	71532	35 F	4 U
Ap6 G3	88N	05NFD	15 N2	15FN	71.588	35 F	4 U
XEXo 8 pTP 3	ND - 38380	05NFF 05NF8	150N 150DN	151-8 151. D	71 50 D8 71 5 -	35 F 35 F	4 U 4 U
6 ET3	33D	05NF-	15-12	153-3	73.5L. N	35 F	4 U
o EY6 3	NODI	05NF-	1502.	1508N	71.50- D	35 F	4 U
S6pR8	0NDF	05NF0	15	15388	71 50 F-	35 F	4 U
TC6 TG2	. F0-	05NF	152D2	15323	71 5000	35 F	4 U
SXP A6	2DIF	05\8.	158NB	15012	71 588-	35 F	4 U
Ar S 0	8D0D	05N8N	15038	15LD8	71.51.2	35 F	4 U 4 U
6 R9 YP 2D TX6A	DI 1 . DI 0	05\8F 05\8-	15-28 1502-	15380 1508D	71 5 \00 71 5 -	35 F 35 F	4 U
IRPS3	FF88	05\82	15F18	15030	71.5F13	35 F	4 U
TMS 311818. 22	31-F3	05/80	1500-	15LDN	71.5FFD	35 F	4 U
GVP A3	3NN-3	05/83	153	15ID	71580	35 F	4 U
TP K0	. 8D-	05N .	150. F	151-	71 53 8.	35 F	4 U
K2C6 E3	3222	05N .	1580	1.53 N2	71.58-8	35 F	4 U
pP9- pPCIYT	3- DD8 3- D8F	05N N 05N D	15DD8 15D0D	150D0 15088	71.5-2D 71.502D	35 F 35 F	4 U 4 U
pYYO0	38DD8	05N D	1583.	153N0	71.5 DF	35 F	4 U
Gp6 YS	3N2F0	05N D	15FF.	15028	71.533F	35 F	4 U
L AS ML	3002F	- 1/20	1523D	15330	71.583N	35 F	4 U
RI Ж.	32-32	- 420	158D8	15013	71 58 - 0	35 F	4 U
pp6 p06	38-3N	05N-2	152.	152D	71.5022	35 F	4 U
p0YV3- o Gp6 30K	30. N03N	03N 0420	152DD 15-0N	15322 15383	71 <u>5</u> D 71 <u>5</u> 2 DD	35 F 35 F	4 U 4 U
TMS 311321DDF	311	05N2N	150N 1508.	151. 3	71.5F8N	35 F	4 U
EpE3	3. NDF	05\2F	152-2	15303	71.5\8-	35 F	4 U
AEr 3	8D8N	05N2F	1508-	15IN	71.503.	35 F	4 U
GI Yp3	3D-D	05/22	15 D0	152-2	71 F0N	35 F	4 U
SVG	- 80.	05\22	158-D	153. 2	71.5038	35 F	4 U
pTOPS3	3800-	05/20	15213	151F	71.53.23	35 F	4 U
pAY3 pMEAI	3- N0- 382N	05\20 05\20	15- 152	15388 15303	71.52FF 71.58-3	35 F 35 F	4 U 4 U
6 AKp3	2F-	03\20	15DIN	1508	71.52.D8	35 F	4 U
6 RO6 NT0	DFF	05/23	3.53N8	15-3.	71.5F-	35 F	4 U
9 X6 6 3- F0	. 1ND	05/23	15-3.	153-N	71 50 D8	35 F	4 U
I YAL 3	FD2D	05N0N	150D	151.8	71 2 . D	35 F	4 U
TMO	33FNI	05N0N	1.58DF	1501-	71.53. D	35 F	4 U
Y6 KDT3 9 XYYAT	3F32N . 3N0	05\0F 05\08	152DN 152FN	1532- 1532	71 50F3 71 5383	35 F 35 F	4 U 4 U
S3-HZED	3N 0	03\08	152F3	1530N	71.5082	35 F	4 U
PST90	- F0.	05/00	150D2	15L D	715-18	35 F	4 U
9 T9 8	. 0FD	0500	3512-	12FD	73. 5 F-0	35 F	4 U
TVT3	33.12	05NB.	1501N	15ID-	73:23-	35 F	4 U
CTXpY3	D882	05NBN	150.0	151-	71.581F	35 F	4 U
6 SER2	03F	05N3D	150	151-	71.5FNF	35 F	4 U
XEL 06 G3pY0	ND 3D1-D	05\88 05\8-	15F2. 15288	1500D 1500F	71 5D88 71 5-8F	35 F 35 F	4 U 4 U
TMS 22. 80-	33113	05\82	150-3	15INF	71.52.03	35 F	4 U
ECL 8	3. 08.	05/83	153	15183	73:58FF	35 F	4 U
SDHZB1	08N0	05NI 8	152-2	15300	71 50 3 N	35 F	4 U
pT6 CT3	3830F	05NI 2	150N0	15313	71 52 23	35 F	4 U
YAS 9	3F2. 8	05NI 0	1520	1533-	71 50 33	35 F	4 U
L L pD	308- D	05NI 3	35FN	15-3D	71.5-8.	35 F	4 U
S6 SR6 0P3 K6 So 3	0D 2 32F8	05N 05D .	15002 1501N	151N 151D-	15188 7158N	35 F 35 F	4 U 4 U
fIpL0	0301F	05D F	15-18	153-8	71.5838	35 F	4 U
6 P p Yo	2- F	05D F	152-F	1530-	71.5018	35 F	4 U
pTA9 o o 0	383N-	05D F	150N0	15313	71.51.02	35-F	4 U
TYYS 20	33DD-	8 Œ0	1581-	15N	71.5-1.	35 F	4 U
GVR0	3N\-D	0£0 -	1522	153N	71 500-	35 F	4 U
RMESo -	328. 8	- Œ0	152N	152F	71.50 - 0 71.50 E	35 F	4 U
TMS D0N2. 0 GTS D6 31	33820 3D N0	05D 0 05DN	15 OF 15 F0	15380 153FF	71.58F- 71.5838	35 F 35 F	4 U 4 U
SPS3-K	221F	05DNF	153. F	15ID	71.5022	35 F	4 U
pr YT2	3F13N	ACE0	150FN	15L F	15LDF	35 F	4 U
CVpS	DF82	0.5DN3	15003	15ID	71.533.	35 F	4 U
r ACI K	01F8F	051N3	150. 3	151-	71.5 2F	35 F	4 U
6 P XoMQ	220	05DD	15F3D	15000	71.5 1-	35 F	4 U
p6 O3	3-8DI	OCCEO	15-80	153F2	7158.	35 F	4 U
L ACIF Y6 K02	300D 3F1. 0	05DD8 05DD-	15 F 12N	1:9FF 1:9-	73.\$FD2 71.\$2-D	35 F 35 F	4 U 4 U
GTS 0F6 2	3DNI -	05DD	1580D	153.	72.5FN	35 F	4 U
P 6 YS	- 8D2	05DF-	15-1.	153- N	73:330F	35 F	4 U
I 0Y	8DNF	05DF-	1521.	15330	71 50 8 F	35 F	4 U
EL AL 01-	3.8F1	05DF-	152N8	1532.	71.52 - 0	35 F	4 U
SVVY3	- 82.	05DF0	1521N	15333	71.5FF	35 F	4 U
AL O0 GTS 3F6 D	882D 3DF. 8	05DF3 05DF3	150F. 15013	15L D 15LD2	71.5-32 71.51.8-	35 F 35 F	4 U 4 U
P 4 GpF	3DF. 8 802N	05DF3 05D8.	15013 1582N	15112	71.51.8-	35 F 35 F	4 U 4 U
TMS311321NDF	31331	0508.	1582F	153	71.53 N	35 F	4 U
CS R0K	3D8. 1	05D8N	150F-	15L F	71.580.	35 F	4 U
EKS 3P 0	3. 103	05D8D	1.2FD	15322	73:2213	35 F	4 U
fPooS2	0338N	05D8D	1508	151.3	73.5038	35 F	4 U
6 9 Y3K31	- ND	05D8F	1500.	150F-	70:58F2	35 F	4 U
L E3T	30D F	05D8F	158-8	153. N	71.53.D2 71.53.NJ	35 F	4 U
o VL 6 X 6 Yo CAI - 1	N0N . F8	05D8F 05D8F	15-3- 152. F	158 153	71.53 NN 71.53 F8	35 F 35 F	4 U 4 U
9 TI 31	. 18 . 3. F	05D88	152. F 152. 8	153-2	71.5-182	35 F	4 U
SST02	23-0	05088	1501.	15LDF	73.51 FN	35 F	4 U
I 31	8DD	0508-	153	15180	71.500-	35 F	4 U
	3 3	03080	152-8	1530F	71.5NID	051.8	4 U
EL AL 311			15F. D	1508-	71.522N	051.8	4 U
EL AL 311 SMI3D6 3	2. F.	05D N					
EL AL 311 SMT3D6 3 L 6 L PS 0	3011D	05D N	15228	15300	71 S-D	051.8	4 U
EL AL 311 SMI3D6 3						051 . 8 051 . 8 051 . 8	

Gene ID	Gene Name	Score (d)	Numerator (r)	Denominator (s+s0)	Fold Change	adjusted P value (%)	Direction
AI RK3	82DD	05D D	152N8	1S-	71.50FD	051.8	4 U
pTXR3	383. 8	05D F	15D8N	150F3	71 5F0-	051.8	4 U
6 MO3	DD0	05D F	12N	1532N	71.58 - 8	051.8	4 U
I 6 L 016 S 33HZB28	F11. 3DD0	05D F 05D 8	15-13 15-NF	153-F 153DD	71.51. 71.500	05L. 8 05L. 8	4 U 4 U
XEC6 r	ND08	0£D -	15-2F	1538.	71.5F83	051.8	4 U
S 4 O0	-2N2	05D-2	150. D	151N	73.5080	051.8	4 U
CYK31	D-NF	05D-	152.	153-0	71.5FFF	051.8	4 U
YpT03 SST0N	3FD 3 23- D	0502. 0502N	152DD 15N -	152N 1521N	73:50 D- 71:5\82	05L. 8 05L. 8	4 U 4 U
I TYE0	FF02	05D2N	150	151.3	71.5D10	051.8	4 U
KEKP 33	3F2D	05D2N	12N	153-	73 5 F0D	051.8	4 U
I 6 L 3F- 6 ROR	8. 0N 32N-2	05D2F 05D2F	15223 150. D	15303 1531.	71 5D 71 50 N0	05L. 8 05L. 8	4 U 4 U
CCE6 3p	DIDF	05028	15-13	1.31 ·	71.5 DN	051.8	4 U
GTXE0	3NI28	05028	1.2FD	1532-	71 50 ND	051.8	4 U
po Vo Xp	3 F8	0502-	1502N	15IND	73.51 - 3	051.8	4 U
I TJ2F123 Eo GP D6	F832 3. 218	05020 05023	152. F 152-8	153-8 1530F	71.5 71.5F82	05L. 8 05L. 8	4 U 4 U
SERRK3	- 220	05023	1520-	1533.	71.5NIF	051.8	4 U
T6 L K3	3	05023	15012	15ID-	71.53 N8	051.8	4 U
AEG3 r CTT2	8D8F 01FFD	05D2 05D0-	15083 1502-	15L 0 15INF	71.5 D8 71.51 N0	05L. 8 05L. 8	4 U 4 U
ppp3Y32T	38- ND	0500-	152F2	15322	73.53. 2	051.8	4 U
6 KS 6 N		05002	152	1530N	71.58F-	051.8	4 U
6 L METO	F1F	05003	152D8	1532N	71.588	051.8	4 U
9 X6 6 1. 00 S6 YP F	. 183 0N N	05D0 05D8.	15280 152	150. 153- D	71.5N13 71.50N	05L. 8 05L. 8	4 U 4 U
I 6 L 01S	F133	0508.	15 -	1:3F0	71.5 D0	051.8	4 U
L6IK	33.88	0508.	1.2F8	1532-	71.5 NN	051.8	4 U
TMOT0 Tpo R0	33FN2 33DI1	05D8N 05D8N	158-0 150F	150 151. F	71 53 3 2 71 50 - 0	05L. 8 05L. 8	4 U 4 U
EKS 3P 0K	3. 122	05D8N	150D8	151. F 153	71.2DD	051.8	4 U
TMR YI 2	33FDN	05D8F	152N8	153-0	71.58NO	051.8	4 U
XP 3	N231	0508-	158. D	1500	71.5 FN	051.8	4 U
I 6 L F8K PPO-2	F1 NI - D10	05D8- 05D8-	15 10 15 D2	153-N 153D-	73.5F1F 71.50F2	05L. 8 05L. 8	4 U 4 U
XS 6 L 8	N21-	05082	150NF	15318	71.5D D	051.8	4 U
TApY	. F1F	05082	15N2	15IFD	71.58 - 0	051.8	4 U
I TJ- 0D1. ACY2	F8DI 82. N	05D80 05D1N	1522N 15F. 0	15308 15088	71.5 F 71.522.	05L. 8 05L. 8	4 U 4 U
P P O0FK	62. IN - F. 3	05DIN	15230	15338	71.5DFF	051.8	4 U
EI 6 p0K	3. 038	05DLD	3522.	15.8	73.5ND	051.8	4 U
SpAK3	-1	05DI D	15 - D	153F8	71 5FDD	051.8	4 U
I 326 3 TMS 31130D, N2	8DN2 . DF.	05D18 05D10	15 00 15 D0	158F 15F-	71.58 71.53	051.8 051.8	4 U 4 U
pYPL N	38F12	05F. D	15028	15IND	71.52.00	051.8	4 U
KL p0	38	0 5 F. D	150D	15312	71 50 D2	051.8	4 U
SL6op IfP-	2NF- FN22	0.5F. 0	15802 15-0	153 1538F	73.51.88 71.588-	051.8 051.8	4 U 4 U
9 YEF6	. 2- N	05FN 05FNN	15 1.	1522N	735 D	051.8	4 U
L 6 YS9 G	30333	0.FND	12NF	153	71.53.80	051.8	4 U
I L MP	FF- 8	05FNF	15FNN	1508F	71.5228	051.8	4 U
GATp S 30HZB28	3D0. N 3N2-	05FNF 05FN-	152N 15 .	153-8 153N0	73:58DN 71.5 D	05L. 8 05L. 8	4 U 4 U
Gpo 9 3	3N-3N	05FN-	152DN	153-3	71.5 F.	051.8	4 U
TYYS DI	33NB3	05FN2	150. 2	1531.	71 5 D- 0	051.8	4 U
KRS0 SRER3	38F0 2. 20	05FN3 05FD	15202 15023	150 151NF	71.53 N2 71.52 O.	05L. 8 05L. 8	4 U 4 U
CGEp3	D8DN	0.FD8	15D8F	150FD	71.5.2.	051.8	4 U
9 TI N	. 031	05FD8	150. D	15333	71.5832	051.8	4 U
S 32HZB8	3N2D	05FD-	152	153	71.52DF	051.8	4 U
r AREO ECI KY3	01F8N 3. 0- N	05FD- 05FD8	1500F 15222	151N- 1530-	73.5LD 71.5NB3	05L. 8 05L. 8	4 U 4 U
K6 S A3	32F2	0.FD	150F3	15L N	71.58D	051.8	4 U
o GP 3DK3	N3NI	0 5 FF.	15FN2	1508F	725ID	051.8	4 U
r P Y o MO6 F	01F8- NL 0	05FFN 05FFD	1528 15800	15923 158. F	71 FFD 71 5002	05L. 8 05L. 8	4 U 4 U
TMS - 131. D	333F-	05FD	15023	151ND	71.58. F	05L 8	4 U
LLP	30800	05FF-	152. F	153	71.53 NO	051.8	4 U
T6 L 6 0 L E36	ND 30DNN	05FF0 05FF3	15832 15	153. 2	71 580F 71 50 - 2	051.8	4 U 4 U
T6 L K2	30LNN 	05FF3 05FF3	15 15DD8	159FD 150. 3	71:50-2 71:522-	051.8 051.8	4 U 4 U
f RI 803	03808	05FF	15 - D	15FN	71 5-8-	051.8	4 U
GWp6	3DF31	05F8.	152	153-N	71.2.3	051.8	4 U
P XY 6 G2 CTX0	- NND D881	05F8. 05F8.	152-8 1538F	152 1518.	71.50FD 71.5830	05L. 8 05L. 8	4 U 4 U
TYp3	33D28	0.F8N	1508	151	71.53.1D	051.8	4 U
STXS0	2NB2	05F8F	152F.	152.	715	051.8	4 U
SpRA8 PpE	- 332 832D	05F88 05F82	15-8. 15FD2	1.53 D2 1.508-	71.5N 8 71.51	05L. 8 05L. 8	4 U 4 U
L E3A	30D 3	05F82	158N0	1503.	71.51	051.8	4 U
XEC6 D	ND8N	05F82	15 NF	15N2	71.52F-	051.8	4 U
RMES o 2 ERI GI 33	328 3. D-0	05F82 05F80	152D8 150	151	71.582 71.5 D	05L. 8 05L. 8	4 U 4 U
pP A3S	3. D 0 3- D0.	0±80 0±83	150 152N8	151	71.5N D	051.8	4 U
XF3NY3	N-DF	0 5 F8	150.8	15333	71.5FD	051.8	4 U
6 P 6 L EGF	0N-	0.5F8	15028	15IN	71.5018	051.8	4 U
CTC3 6 KSK3	D8 - N - F	05F- F 05F- F	150D0 150-3	15312 151. 3	71 FDN 71 5\8	05L. 8 05L. 8	4 U 4 U
r WI	01DF8	0.F- 2	152N8	151. 5 153- F	71582	051.8	4 U
TC6 TGD	. F0D	0 \$ F- 2	15NI 3	15212	71 5D8N	051.8	4 U
SPo33	22- N 38- F2	05F- 2 05F- 0	152D 15-0N	1:3-2 1:3:F0	71.53.8 73.5 D2	05 18 05 18	4 U 4 U
ppT L VMBA	30. D8	05F-3	1528	15320	71.5FFD	05 18 05 18	4 U
TYL p	33D2-	0 5 F−	15-32	158D	71.5NDD	05 18	4 U
C4 Tp3	DF2N	05F2.	15288	1528	71 502-	05 18	4 U
EI pX AKI -	3. 028 80. F	05F2N 05F2D	152-N 15 . D	1520 153N	71.53.8. 73.58.20	05 18 05 18	4 U 4 U
Eo KG0	3. 0NI	05F2F	15F0N	1502N	71.52 - F	05 18	4 U
I 4 E-	FNID	0£28	150. D	15332	71.58F0	05 18	4 U
R6 L pE	3218F	05F2-	15-1F	1538-	71.23N	05 18	4 U

PATE 1971	Gene ID	Gene Name	Score (d)	Numerator (r)	Denominator (s+s0)	Fold Change	adjusted P value (%)	Direction
PSP-DET 3-F-2	pSP o 3N	3-F1N	05F23	150DF	1318	71.51 - N	05 18	4 U
\$\frac{1}{\text{Local}} \text{ \$\frac{1}{\text{Local}}								
ACREST A-NE GRO. 159N 1518 A-10								
TVO	KARPF	3- N2	0 \$ F0.	153NN	15LD8	71.50	05 18	4 U
Val. (2 37-1 0512 0515 1510								
SECO OID CROW CREEK 150.0 78810 OS 14 U								
GR.6, SILE, N. GR.5 1592- 1592- 1593- 1593- 1594- 1593- 1594- 1593- 1594- 1	6 SEC0	01D	0£00	15DF-	150.0	71.588D	05 18	4 U
Company Page								
SSYRE 10-3 2201-								
TINE	RSYR6110-3	3201-	0£0	152.8	15383	71.51 F	05 18	4 U
Belle Sept 3.188 6978 18-N 1511 72210 6918 440 1516								
\$\frac{1}{2} \text{ \$\frac{1}{2}\$ \$\frac{1								
Secret S		N213	05F3-	15-2	15D	71.2FN	05 18	4 U
## ## ## ## ## ## ## #								
Tell								
Vocal Septe Sept	XEL 0K	ND81	0 5 F1.	1523	1533.	715	05 18	4 U
GPI_ 12E								
PMERE 352N2 6F18 159E 150 7.59E 05 18 4U PMERE 0.00 10								
6 PP.LECK	I 6 L 30. S	8ND	05F1F	150	151. F	70512.	05 18	4 U
FRIF. 0.9FF2								
\$\begin{array}{cccccccccccccccccccccccccccccccccccc								
APRO 8228	XP 0	N233	05F12	15203	15302	71.5 12	05 18	4 U
See Series			05F12	152. F		71 508F	05 18	
Tél. 33MD 0510 133-1510 7512 0518 4U CKOR 97-10 08. N 151NN 151N 15NN 15NN 15NN 15NN 15NN								
KORP3 32N 05.N 15 IN 15N 75 SN 75 SN 05 IS 4 U	T4 L							
p6 p5 p5 p5 p5 p5 p5 p5	K6 R9 3	32N	058. N	15 DN	151N-	73. S F3N	05 18	4 U
Pape								
ppi Ng 38 - 0 05.8 15ND 1533 73.D 05.18 4U 1L p 1 2020 05.8 15ND 151. 73.0N 05.18 4U 1L p 1 2020 05.8 15ND 151. 73.0N 05.18 4U 1L p 1 2020 05.8 15ND 151. 73.0N 05.18 4U 1L p 1 2020 05.8 15ND 15ND 15ND 70.5 2 05.18 4U 1.0 2.0 1.0 2.0 1.0 2.0 1.0 2.0 2.0 1.0 2.0								
Year 1988	ррІ Жр3	380	058.8	150ND	15333	71.51. D	05 18	4 U
SMPS	YRI 3-8							
SCP6								
SHI492	SGP 6	- 020	058.	1583-	13. N	71.5200	05 18	4 U
Rysol								
COYTED IF-F CONN.D 158 1592 151. 7.5N. 0518 4U 970 - 07F 050N 150.3 150.2 15. 7.5N. 0518 4U								
9 19 - 0FF 08N 19.3 1932 75890 0518 4U FKERSP 031F- 08NC 151ID 151D 151N 752N 0518 4U EISON 013F2 05ND 151D 151D 151N 752N 0518 4U 9 TO 020 05NN 1522 158N 75FF 0518 4U 9 TO 020 05NN 1522 15-3 75FF 0518 4U 8 SRAN -33F 05ND 151D 151N 752N 0518 4U 8 SRAN -33F 05ND 151D 151N 752N 0518 4U 8 SRAN -33F 05ND 151D 151N 752N 0518 4U 8 SRAN -33F 05ND 151D 152 150N 75 NO 0518 4U 8 SRAS -1 F 051D 152 150N 75 NO 0518 4U 8 SRAS -1 F 051D 152 150N 75 NO 0518 4U 8 SRAS -1 F 051D 152 150N 75 NO 0518 4U 8 SRAS -1 F 051D 152 150N 75 NO 0518 4U 8 SRAS -1 F 051D 152 150N 75 NO 0518 4U 8 SRAS -1 F 051D 152 150N 151 755F 0518 4U 8 SRAS -1 F 051D 152 150N 151 755F 0518 4U 8 SRAS -1 F 051D 152 150N 151 755F 0518 4U 8 SRAS -1 F 051D 152 150N 151 755F 0518 4U 8 SRAS -1 F 051D 152 150N 151 755F 0518 4U 8 SRAS -1 F 051D 152 150N 151 755F 0518 4U 8 SRAS -1 F 051D 152 150N 151 755F 0518 4U 8 SRAS -1 F 051D 152 150N 151 755F 0518 4U 8 SRAS -1 F 051D 152 150N 151 755F 0518 4U 8 SRAS -1 F 051D 152 150N 151 755F 0518 4U 8 SRAS -1 F 051D 152 150N 151 755F 0518 4U 8 SRAS -1 F 051D 152 150N 151 755F 0518 4U 8 SRAS -1 F 051D 152 150N 151 755F 0518 4U 8 SRAS -1 F 051D 152 150N 152 752 752 0518 4U 8 SRAS -1 F 051D 152N 152 752 752 0518 4U 8 SRAS -1 F 051D 152N 152 752 752 0518 4U 8 SRAS -1 F 051D 152N 152D 153N 153D 153D 153D 153D 153D 153D 153D 153D								
FERSIF 031F								
FISSON 015F2 088N								
9 TO TO								
SPRAN -33F 08N 1380 15.N 7.5N0 05.18 4.U T3FP 3								
STAC21K 2D D OSIN 15 13D 7.5 OSIS 44U								
SYPAS 2DIN OSIF 15F3 15D 73N8 O5 18 4U								
6 pp W PS	T3EP3	F.	058DD	1520.	1530N	73:33 1N	05 18	4 U
6 pMP								
AI S								
PSMISA 3-PND OSID 15F2 15N 715UF O5 18 4U	AI S 6 K3	8283	058D2	150N0	151.	71.5F1F	05 18	4 U
FRI6 SNN 3. DEF								
AYC 8F8D 08FN 1580 158 4U AYC 8F8D 08FN 1580 158 1580 158 4U MOAY3 331 08FF 15-N 1510 73918 0518 4U TX G FP2 08F8 1510D 1511N 73918 0518 4U S O YFT3 2F80 08F6 159F 15-N 1510B 73918 0518 4U EL S O YFT3 2F80 08F6 159F 159F 159F 159F 75.00 0518 4U EL S O YFT3 2F80 159F 159F 159F 75.00 0518 4U EL AL-86 3. F51 08F 157F8 159F 75.00 0518 4U To 1pT0 .F 08F 157F 15 75.00 0518 4U L VMP 30.D 088N 1538 159F 75.00 0518 4U S OST3 -2.8 088N 157F 159F 159F 75.00 0518 4U S OST3 -2.8 088N 157F 159F 159F 75.00 0518 4U AL SR 8332 088N 157F 159F 159F 75.00 0518 4U AL SR 8332 088S 152- 159F 75.00 0518 4U AL SR 8332 088S 152- 150D 75.00 0518 4U X NF N228 088S 152- 150D 75.00 0518 4U X NF N228 088S 152- 150D 75.00 0518 4U X NF N228 088S 151- 159F 75.88 0518 4U X NF N228 088S 151- 159F 75.88 0518 4U AN SORID 30D 088S 150F 159 75.00 0518 4U X NF N228 088S 152- 150D 75.00 0518 4U X NF N228 088S 152- 150D 75.00 0518 4U X NF N228 088S 151- 159F 75.88 0518 4U AN SORID 30D 088S 150F 15 159F 75.88 0518 4U AN SP N228 088S 151- 159F 75.88 0518 4U AN SORID 30D 088S 150F 159 75.88 0518 4U AN SORID 30D 088S 150F 159 75.88 0518 4U AN SORID 30D 088S 150F 159 159 75.88 0518 4U AN SP N228 088S 152- 150D 151- 75.88 0518 4U AN SP N238 0518 4U AN SP N238 058N 150F 151- 153- 72.88 0518 4U AN SP N238 058N 150F 151- 153- 72.88 0518 4U AN SP N238 058N 150F 150F 75.18 0518 4U AN SP N238 150F 150F 75.18 0518 4U AN SP N238 150F 150 151- 75.18 0518 4U AN SP N238 150F 150 151- 75.18 0518 4U AN SP N238 150F 150 151- 75.18 0518 4U AN SP N238 150F 150 151- 75.18 0518 4U AN SP N238 150F 150 151- 75.18 0518 4U AN SP N238 150F 150 151- 75.18 0518 4U AN SP N238 150F 150 151- 75.18 0518 4U AN SP N238 150F 150 151- 75.18 0518 4U AN SP N238 150F 150 151- 75.18 0518 4U AN SP N238 150F 150 151- 75.18 0518 4U AN SP N238 150F 150 151- 75.00 1518 4U AN SP N238 150F 150 151- 75.00 1518 4U AN SP N238 150F 150 1518 4U AN SP N238 150F 150F 150F 150F 150F 150F 150F 150F								
MOAY3 331 OSFF 15-N 1518 758- 05 18 4U So VPT3 2F80 OSF- 18- 1393 7150- 05 18 4U So VPT3 2F80 OSF- 18- 1393 7150- 05 18 4U E6 S3 3N 1N OSF- 1802 1511- 712F 05 18 4U E7 SO ST								
TX CG								
So YP T3								
E6 S3 3N IN 08F0 191F 19N 712 0518 4 U pY03 38DD 08F0 1802 191-1 71SF 0518 4 U EL AL -86 3, F31 08F 19F8 110F 7120D 0518 4 U TolpT0 .F 08F 12F 15- 7120D 0518 4 U CM03D 3N233 088N 1538 13F0 7150D 0518 4 U L VMBP 30. D 088N 159F 151- 712.8 0518 4 U SOST3 -2.8 088N 150F 151- 712.8 0518 4 U RPYC3 320ND 088D 150F 151-8 705C- 0518 4 U AL SR 8832 0888 152- 15D 75 00 0518 4 U AL SR 8832 0888 152- 15D 75 50 0518 4 U XSOERID 030D 0888	So YP T3	2F80	058F-	158-		71.5-0-	05 18	4 U
ELAL - 86 3, F31 0.8F 1.9F8 1.9F 71.20D 0.518 4.U To I p TO	E6 S3							
TolpTo F 0.8F 1.2F 1.5- 7.50D 0.518 4.U GMO3D 3N23 0.88N 15.38 1.S1F0 71.50 0.518 4.U L VMPP 30 D 0.88N 1.51F 1.51- 71.5 R 0.518 4.U SOST3 -2.8 0.88N 1.S1F 1.51- 71.5 R 0.518 4.U RPYC3 320ND 0.88B 1.51F 1.50F 71.5 D 0.518 4.U AL SR 8832 0.888 1.52- 1.5D 71.5 0.0 0.518 4.U L V.X5F N.228 0.888 1.52- 1.5D 71.5 0.0 0.518 4.U S.30ERLD 0.30D 0.888 1.51. 1.51F 71.5 8 0.518 4.U S.30ERLD 0.30D 0.888 1.51. 1.51F 71.5 8 0.518 4.U GR.D6 31B. F 0.880 1.50. F 1.53F 71.5 N 0.518 4.U GR.D6 31B. F 0.880 1.50. F 1.53F 71.5 N 0.518 4.U A. Y.Y N.0D 0.88 1.503 1.50F 7.5 18 0.518 4.U 6 YO. CAI - F- 0.8- 1.51D 1.5F 7.5 18 0.518 4.U AREPP 3 88D 0.8- N 1.50N 1.51. 7.5 N 1.5 D 7.5 N 1.5								
CMOSID 3N23 088N 15.38 1510 7150 0.518 4.0	To I pT0	. F			153-			4 U
SOSTS -2.8 OSSN ISTF ISF ISF TS D OS IS 4 U	GMO3D							
RPYC3 320ND 088D 150F 150-8 708C- 0518 4U AL SR 8832 0888 152- 15D 71500 0518 4U SOURT NEW								
ALSR 8832 0888 152- 15D 7500 0518 4U NNF N28 0888 151: 15F 7588 0518 4U SJQERID 030D 0888 150F 13 7588 0518 4U SJQERID 030D 0888 150F 151 7582 0518 4U SJQERID 030D 0888 150F 151 7582 0518 4U NT-Y N80D 088 1503 150F 7518 0518 4U 6 RNF 12 08- 151D 15F 7518 0518 4U 6 RNF 12 08- 151D 15F 7518 0518 4U AREP 3 88D 08- 151N 159N 151 7518 0518 4U AREP 3 88D 08- N 159N 1515 7538 0518 4U TMS311301 08- F 150D 151- F 158D 752 0518 4U GE9 31 3NNF 08- 8 150 0 153- F 158D 752 0518 4U GE9 31 3NNN 08- 8 150 0 153- F 158D 752 0518 4U GE9 31 3NNN 08- 8 150 0 153- F 158D 752 0518 4U GE9 31 08- N 159N 151 7518 0518 4U GES 6. 3N30 082 15N0 153- F 158D 755 0518 4U LEXE 30DB 1 02- 08-2 15N0 151- T51 050 151 0518 4U GIS. 6. 3N30 082 153 N 1508 752- 0518 4U LEXE 30DN 082N 15NN 15. F 75- 0518 4U ELAL320S 3D 082N 15NN 15. F 75-2 0518 4U SMT863 23 082D 15N 15N 15. F 75-2 0518 4U ELAL320S 3D 082N 15ND 15S F 75. C 0518 4U PPP- 830F 082- 152 15NN 15D 75. S 0518 4U CCTRESO F. ID 082F 15NN 15D 75. S 0518 4U PPP- 830F 082- 152 15NN 15D 75. S 0518 4U CCTNSYO D88F 082- 152 15NN 15D 75. S 0518 4U PPP- 830F 082- 15NN 15D 75. S 0518 4U CCTNSYO D88F 082- 15NN 15D 75. S 0518 4U LED N 15NN 15D 75. S 0518 4U LED N 15NN 15D 75. S 0518 4U CCTNSYO D88F 082- 158 15NN 15D 75. S 050 28D 4U XIMB N 222 082 15NN 15D 75. S 050 28D 4U XIMB N 222 082 15NN 15D 75. S 050 28D 4U XIMB N 222 082 15NN 15D 75. S 050 28D 4U XIMB N 222 082 15NN 15D 75. S 050 28D 4U XIMB N 222 082 15NN 15D 75. S 050 28D 4U XIMB N 222 082 15NN 15D 75. S 050 28D 4U								
S 30ER1 D	AL SR	8832	05888	15-2-	15D	71.5 00	05 18	4 U
CSR DS 318 F 0880 19 F 153 F 71823 05 18 4 U X								
Name	GS R D6							
6 Yo CAL - F. 08 15-N 15.D 7.538 05.18 4U AREPP 3 88DI 08-N 1508N 1513 71838 05.18 4U SOURT0. 08-D 15-F 150D 75312 05.18 4U TMS 311301 08-F 150D 151N 718 05.18 4U GE9 31 3NNF 08-8 150.0 1538 75-F 05.18 4U IL RT2 FF2D 08-2 15F0 15F- 75- 05.18 4U GIS. 6. 3N30 08-2 15N0 15-D 75.D 75.D 05.18 4U GIS. 6. 3N30 08-2 15N0 15-D 75.D 75.D 05.18 4U GIS. 6. 3N30 082.1 15.N 15.F 75-2 05.18 4U L EM. 30DN 082N 15.N 15.F 75-2 05.18 4U SMR63 2.3 082D 15 15ND 1532 750.D 05.18 4U SMR63 2.3 082D 15 15ND 15.F 75-2 05.18 4U C6 TRE30 F. 1D 08-2 15N0 15NN 15ND 75.D 05.18 4U C6 TRE30 F. 1D 08-2F 15NN 15ND 75.N 25D 40.51 4U C6 TRE30 F. 1D 08-2F 15NN 15ND 75.N 25D 4U Ppp- 830F 08-2 15.2 15ND 15NN 15NN 75.2 28D 4U C7 TNS 10 08-2F 15NN 15NN 75.2 28D 4U FRIO. 8 032N 08-2 15.2 15NN 15NN 75.2 28D 4U FRIO. 8 032N 08-2 15.2 15NN 15ND 75.D 28D 4U FRIO. 8 032N 08-2 15.N 15NN 15ND 75.D 28D 4U FRIO. 8 032N 08-2 15.N 15NN 15ND 75.D 28D 4U TREAD 75NN 15NN 15ND 75DD 28D 4U TREAD 75ND 28D 4U TREAD 75NN 15NN 15ND 75DD 28D 4U	Xr- Y	N80D	0588	15203	1530F	715-18	05 18	4 U
AREPP 3								
SOHMEF 0. 08-D 15-F 15BD 7:50.2 05.18 4.U								
GE9 31 3NFNF 08-8 130.0 1538 735-F 0518 4 U IL RT2 FF2D 08-2 15F0 13F- 715- 0518 4 U S0HB1 02 08-2 15F0 13F- 715-D 0518 4 U GFS. 6. 3N30 082. 123N 1508 712 0518 4 U L E3K 30DN 082N 15.N 15.F 713-2 0518 4 U EL AL 320S 3D 082N 15ND 1532 75.D D 518 4 U SMB63 23 082D 15.L 158D 75.8 0518 4 U SMB63 23 082D 15.L 158D 75.8 0518 4 U SMB63 23 082D 15.L 158D 75.0 0518 4 U C6TRE30 F.1D 082P 15N 130D 730B 0518 4 U Ppp- 830F	S OHZE2F	0.	058- D	153-F	15I8D	71.50.2	05 18	4 U
TLRT2								
SOHB 02-								
L E3K 30IN 082N 15. N 15. F 7/3-2 0518 4 U EL AL 320S 3 D 082N 15ND 1532 73. D 0518 4 U SMT863 2 3 082D 15L 158D 73.8 0518 4 U 16 L 2P F128 082D 15M 150D 730DS 0518 4 U C6 TRE30 F, 1D 082P 15N 1533 7450 28D 4 U Ppp- 830F 082- 152. 15IE 75 N 28D 4 U ASL 0 823F 082- 152. 15IE 75 N 28D 4 U CTD\$YO D8F 082- 15 88 15D 75010 28D 4 U P p4p0 8330 0822 15FD 1518 730D 28D 4 U FR10.8 032N 0820 15N 13IE 730D 28D 4 U X1M8 N222 052	S 0HZB 1	02	058-2	15002	152-D	71.5 D8	05 18	4 U
EL AL 320S 3D 082N 15ND 1532 713.D 0518 4U SMT863 23 082D 12 158D 713.8 0518 4U 16 L 2P F128 082D 15TN 15DD 735DB 0518 4U C6 TRE30 F. 1D 082F 15N8 1533 74780 25DD 4U Ppp-								
SMR63 2.3 082D 15 158D 715.8 0518 4U 16 L 2P F128 082D 15FN 13DD 73DD8 0518 4U C6 TRE30 F, 1D 082F 150N8 1533 74580 28D 4U Ppp-								
16 L 2P F128 082D 15PA 13DD 73DDB 05 18 4 U C6 TRE30 F. 1D 082F 15D8 1533 71580 23D 4 U Ppp- 830F 082- 15 2. 15DE 75 N 23D 4 U CT \(\text{SY}\) 088F 082- 15 DE 151N 715. 2 23D 4 U CT \(\text{SY}\) 088F 082- 15 DE 151D 7151D 23D 4 U CT \(\text{SY}\) 088F 082- 15 88 15D 71510 23D 4 U Pp \(\text{PP}\) 0830 0822 15DF 1518 75DN 23D 4 U 4 U FR 10. 8 032PA 0820 15N 15D 75DD 23D 4 U 4 U 15D 75DD 23D 4 U 15DD 75DD 23D 4 U 15DD 75DD 75								
Ppp- 830F 0:82- 15.2. 15:DE 715.N 2:ED 4 U ASL 0 823F 0:82- 1:DD 1:31N 71:S.2 2:ED 4 U CTSPV0 D18F 0:82- 1:5 88 1:SID 71:510 2:ED 4 U PpAp0 8330 0:822 1:DFD 1:S18 75:DN 2:ED 4 U fR10.8 0:32N 0:820 1:SN 1:SID 75:DD 2:ED 4 U X1MG N222 0:82 1:SNN 1:SID 71:S0D 2:ED 4 U L 6p-98 301FF 0:80 1:580 1:S 71:SD 2:ED 4 U	I 6 L 2P	F128	0582D	15FN-	150D	73.50 D8	05 18	4 U
ASL 0 823F 0.82- 1.50E 1.51N 71.5.2 2.8ED 4.U CTby 70 E8 F 0.82- 1.5 88 1.5ED 71.5010 2.8ED 4.U Pp Ap0 8330 0.822 1.5FD 1.518 75.0N 2.8ED 4.U FR 10 8 0.32N 0.820 1.5N 1.5EE 75.0D 2.8ED 4.U X1 MB N22 0.82 1.5NN 1.5ED 71.50D 2.8ED 4.U L 6 p- 9 8 301FF 0.80 1.5N0 1.5S 71.5ES 2.8ED 4.U L 6 p- 9 8 301FF 0.80 1.5N0 1.5S 71.5ES 2.8ED 4.U L 6 p- 9 8 301FF 0.80 1.5N0 1.5S 71.5ES 2.8ED 4.U L 6 p- 9 8 301FF 0.80 1.5N0 1.5S 71.5ES 2.8ED 4.U L 6 p- 9 8 301FF 0.80 1.5N0 1.5S 71.5ES 2.8ED 4.U L 6 p- 9 8 301FF 0.80 1.5N0 1.5S 71.5ES 2.8ED 4.U L 6 p- 9 8 301FF 0.80 1.5N0 1.5S 71.5ES 2.8ED 4.U L 6 p- 9 8 301FF 0.80 1.5N0 1.5S 71.5ES 2.8ED 4.U L 6 p- 9 8 301FF 0.80 1.5N0 1.5S 71.5ES 2.8ED 4.U L 6 p- 9 8 301FF 0.80 1.5N0 1.5S 71.5ES 2.8ED 4.U L 6 p- 9 8 301FF 0.80 1.5N0 1.5S 71.5ES 2.8ED 4.U L 6 p- 9 8 301FF 0.80 1.5N0 1.5S 71.5ES 2.8ED 4.U L 6 p- 9 8 301FF 0.80 1.5N0 1.5N0 1.5S 71.5ES 2.8ED 4.U L 6 p- 9 8 301FF 0.80 1.5N0 1.5N0 1.5S 71.5ES 2.8ED 4.U L 6 p- 9 8 301FF 0.80 1.5N0								
CT\$P\$Y0 D88F 082- 15.88 15D 75.010 25D 4U PpAp0 8330 0822 15FD 1518 75.0D 25D 4U FR10.8 032N 0820 15N 151D 75.0D 25D 4U X1M6 N22 052 15NN 151D 75.0D 25D 4U L6p-9.8 301FF 080. 15080 15 75.2D 25D 4U								
FRIO 8 032N 0820 ISN ISID 750D 28D 4U XIMB N222 0882 ISNN ISID 7180D 28D 4U L6p-9 8 301FF 080 1500 15 712D8 28D 4U	CTXpY0	D88F	0582-	15-88	13D	71 50 10	258D	4 U
XIM6 №22 0:82 1:5NN 1:5ID 7I:50D 2:8D 4 U L 6 p- 9 8 301FF 0:80 1:5080 1:5 7I:2D8 2:8D 4 U								
L 6 p- 9 8 301FF 0580. 15080 153 7152D8 258D 4 U								
6Po3K 202 0380N 153D 1508 715DD 238D 4U	L 6 p- 9 8	301FF	0580.	15080	153	71.52.D8	258D	4 U
	6 P o 3K	202	0580N	1523D	15308	71 2 DD	2.58 D	4 U

C ID	C N	E (4)	Normanda (n)	Di(-1-0)	F-ld Ch	adjusted P value (%)	Dimention
Gene ID TKo	Gene Name . 80.	Score (d) 0580N	Numerator (r) 15010	Denominator (s+s0)	Fold Change 71 \$F23	28D	Direction 4 U
YG43	3F. FN	0580N	1538N	15IF2	71 5NN	258D	4 U
TYYS 2K	33DN-	0580D	153D8	15IFN	71 5D0D	25D	4 U
Y6 G6 2 P XM0	3F0- F - ND	05802 05800	1528- 152-N	153- 1532N	71.51 N 71.5FND	258D 258D	4 U 4 U
f GWXL -	03N2-	05803	15-2	153D8	71.58D2	2.8D	4 U
WKp8	01DN2	05803	15-80	15D	71.5 F3	258D	4 U
pECXY	38.00	0583N	1521F	15303	71.52D8	258D-	4 U
KARP - GGS 8P	3- N8 3N8DID	0583D 0583D	153- 158F0	1518F 15002	73.5 71.5080	2:8D 2:8D	4 U 4 U
P R6 GA3T2	818D	0583D	15 - N	150DN	71.5 8	2.8D	4 U
6 YGX	318F	0583F	150.	15338	71 2 ND	258D	4 U
pTA9 o C3 ETY-	383D8 3. 2NI	05838 0583-	1521N 150F.	1500 151D	71 52 80 71 50 F.	2:8D 2:8D	4 U 4 U
ETA-	3. 2FN	0583-	15030	15IN	71.2F8	2.8D	4 U
ACI TF	82ND	05832	15DIN	150N0	71 52 8.	2.8D	4 U
SMpf0	- 12.	05833	15 N	153.3	71.53.0	258D-	4 U
SP AI AL p3	20. N 82F2	05833 05833	15082 15F0D	15313 1508	71.53D 71.508	2:8D 2:8D	4 U 4 U
SMT-60	2. N8	0581.	15D	153	71 500.	258D	4 U
6 YpS0	3120	0581.	1508N	15312	71.5 D8	258D	4 U
p6 pTR AI RK2	3-830 82D	0581N 0581D	1502N 1520	15L 8 1530D	73.50F 71.5002	2:8D 2:8D	4 U 4 U
9 YE3F	. 23D	0581D	15DD	1521D	73.5 F0	2.8D	4 U
E4 GS 8	010D2	0581D	152D8	158	71 50 F2	258D	4 U
YSR3	3F2D-	0581F	15-12	153F3	715-8	258D-	4 U
KRS3 616p3T3	38F3 2DI	0581- 0581-	150N2 150	1532 153D	73.51 D 71.52	2:8D 2:8D	4 U 4 U
6 P 6 L 30	0- D	05812	150. 0	153D	71 53 03	2.8D	4 U
TMS 3NF.	330F-	05810	15-20	153D2	715 . F	258D	4 U
SF L 6 pYA0	0830 301. D	0.58 0.58	150F 152- N	1531- 1532.	71 5D83 71 5F08	2:8D 2:8D	4 U 4 U
XF9	N8-0	05s 05 . D	1503-	151NF	71.5DF.	28D	4 U
Y4 RO0	3DI11	05	150F0	15318	153D2	258D	4 U
9 TI 8	. 01D	05	15F1-	150-0	73.5 DD	25D	4 U 4 U
L I CAN pECAY-	30281 38. 3F	05 05	158D0 15-1F	1500. 153F2	71.2F8 71.5-10	2:8D 2:8D	4 U 4 U
or SR3	NONI	05.0	150N	15372 1533F	71.5 F-	2.8D	4 U
ERRE2	3. DD8	05.3	150D	1531N	71 50 13	258D	4 U
066M	DFN0 F18-	05.3 05.	153 1523-	15lN 1530F	73.2ND 71.2D8	2:8D 2:8D	4 U 4 U
I 6 L 6 L VT0	30	05 N	1523- 153F	150F 151F-	71.5DF8	28D	4 U
6 TP o 0	83D	05 N	15 D8	153. 3	71.5FN	258D	4 U
o MO6 8	NI . 3	05 N	15 0N	153D0	71.5812	258D	4 U
SST3. LAXG0	232D 300NF	05 NN 05 NN	15NF0 1523N	152-D 1530N	73.5F3F 71.51.32	2:8D 2:8D	4 U 4 U
L L p2	308- F	05 ND	15FDD	150D0	71.58F-	2.8D	4 U
KT9	380.	05 ND	1582-	15038	705IF-	2.8D	4 U
G3116 0 pYX\$ 9 TA0	3DI23 38F0N	05 ND	15D - 15 08	1523. 153D8	71 58 20 71 5 0N	2:8D 2:8D	4 U 4 U
CY6 L P 0	D-DN	05 N8 05 N2	1521.	150-	73:33FF	2.8D	4 U
GEMR3	3ND8D	05 N	152DD	15380	71.5 - D	258D	4 U
STPR3-	2DF1	05 D	15022	151	7351D	25D	4 U
RSYR61108FK CpRL K	32038 D280	05 DD 05 DF	152- F 150ND	153- 1533F	71.5\2D 71.5\08	2:8D 2:8D	4 U 4 U
EL AL 320A	3 DF	05 DF	1500	15IN	151	2.8D	4 U
Eo V3	3. 233	05-D2	15 D	153.0	71.53.D0	258D	4 U
pCI SD	3- NN2 08NB	05 D8 05 D	152F3 15:03	153-F 153D8	71 5 F0N 73 5 3 . D	2:8D 2:8D	4 U 4 U
L AI 0S	300D0	05 D	1522F	1532F	71.58F.	2.8D	4 U
SSPSN6	2331	05 F.	150.8	150	71.501D	2.8D	4 U
6 P 6 L 02	08F	05 F.	152D	15188	73 51 00	258D-	4 U
GAGR3 6 P 6 L EG	3D-31 0ND	05 FN 05 FN	1523- 15-	150D 15F0	71 5 33 71 20.	2:8D 2:8D	4 U 4 U
YRI 3FF	3FFF-	05-FF	1501-	15LN2	73 51 22	258D	4 U
6 S GT3	3ND	05 F8	15.2.	153DN	71 5 80	258D	4 U
po TP 6 2 pL So T3	3N 3802.	05 F- 05 F-	1528- 153-0	153 1518N	71.50N 73.5.3	258D 258D	4 U 4 U
KSTFK	3-8-	05 F- 05 F2	1520D	158N 15322	73:53 2.	250 250	4 U 4 U
SRX62	2N 8	05-F0	152.8	153F3	71 50 8-	258D	4 U
GTS 086 0D YX69 -	3DDD- 3F8N2	05 F0 05 F3	15-1- 1523D	153F- 1530.	71 500. 70 51 38	2:8D 2:8D	4 U 4 U
L S 6 L	303DN	05-F3 05-F3	152.0	1530.	715 - F	250 250	4 U 4 U
K6 EI 2	3-10	05-8N	150.	153N	71.5 1D	258D	4 U
C6 K6 Y6 pT3	FN8-	05-8D	1521D	1508	71.51	258D-	4 U
6 YCT4 3 ATEP 3	. 1N 8833	05-88 05-8-	150. N 15210	15303 15302	71 %22 71 5 28	2:8D 2:8D	4 U 4 U
Eo KG3	3. 0D	05-82	152F	153-D	715-3	258D	4 U
pSP o K3N	3-F2N	05-80	153	15ID	71 5\83	258D	4 U
9 P ATS 0 I S AY 3 6	N FN FODF	05-83 05-83	150D0 15823	15333 1503D	71.53.18 73.5D-F	2:8D 2:8D	4 U 4 U
TMS D200D0	33F	05-83	3512-	15 00	71. S F88	2.8D	4 U
EL KXL 3	3 1N	05-8	152D0	15380	71.5DDF	258D	4 U
SP9 T3 L VM 6	2-1- 30. ND	05 05 - F	15008 15008	15L 0 15L 0	71.501. 71.501D	2:8D 2:8D	4 U 4 U
6 S 6 6 0	30. ND 33F	05 - F	152. 8	151. 0 153F3	715-8-	250 250	4 U 4 U
SoR3	2F-3	05	1523N	152	73 51 1.	258D	4 U
SP938	22N0	05 - 0	153N	15I-N	71.5 - N	258D-	4 U
9 To T0. TMS 88-010	. 0-3 330N	05 - 3 05 2.	1521D 1508	1530F 15312	71.50.2 71.5FN2	2:8D 2:8D	4 U 4 U
f RI - F.	03- ND	05-2N	158-N	15008	71.528-	2.8D	4 U
CYAL 3	D . 0	05-2D	15 0N	153DF	71 52 03	258D	4 U
9 YE38 pp6 p0K	. 23F 38-3.	05·28 05·28	35138 152.	15-3D 159F	71 5D8- 71 53	- 23D - 23D	4 U 4 U
S-HZB.	0- F.	05-28 05-28	1502-	15L F	73:53 IN	- £3D - £3D	4 U 4 U
I KR3	F010	05-22	15-1.	1SFN	71.51.F2	- 523D	4 U
6 TP o 36 3	833	05-22	15280	153-8	71.5F-F	- 523D	4 U
TMS 3113238- 3 AV6 0	313N- 8DD0	05·23 05·23	15-2 158-8	153N0 1500-	71. S F83 71. S N	- 23D - 23D	4 U 4 U
CLIC	D01F	05-23	15 1D	15FD	71.58. N	- 523D	4 U
EL AL 321	3 D1	05-23	15 . F	1501-	71.5 . F	- 23D	4 U
S 6 Gp-	0. 02	05-0.	152N	1532.	71.583-	- 2 3D	4 U

Gene ID GEO30	Gene Name 3ND2.	Score (d) 05-0.	Numerator (r) 1503	Denominator (s+s0) 15IND	Fold Change 715 D	adjusted P value (%) - 23D	Direction 4 U
pTEp	38003	05 0.	15.2	153DD	715 08	- 23D	4 U
K6 S A0	32F-	05 0N	15880	1500D	71 50 2-	- 2 3D	4 U
YASQT	3F2. F	05 0N	1532D	1518D	71.53.00	- 523D	4 U
C6 GF CMTXL -	F N D0. 2	05 0D 05 02	15 1. 15232	15F. 150.	71 2 F3 71 2 -D	- 23D - 23D	4 U 4 U
pTORS3	38022	05-03	150N	1533.	71 50 82	- 23D	4 U
REI-	32D83	05-3.	15-02	1.53D8	71.5D	- 23D	4 U
pRTXpYp2	380FD	05-3.	15802	1503F	72.522.	- 23D	4 U
S RER6 p2K	2 3	05-3.	153. N	15IN0	715.	- 523D	4 U
L GR P GC2	30DD0 83N-	05 3N 05 3N	1528 15FD-	153-8 150D	71.53 DD 73.500N	- 23D - 23D	4 U 4 U
PIR68	- NI -	05-3N 05-3N	15020	15L F	73:331D	- £3D - £3D	4 U
XECK2	ND20	05-3F	15-8	15NF	71502	- 23D	4 U
ETY31	3. 2DD	05-3F	150D8	1533-	73.2.8	- 23D	4 U
6 Tp9 2	8DI	05-3F	1521-	150F	715-8	- 23D	4 U
TMS3113.02DN SEX	312FF -20F	05-38 05-3-	159DF 1523.	151D2 15320	73:53 D8 71:21 N	- 23D - 23D	4 U 4 U
6 QpD	ND8	05-3-	152. 2	153F2	71.2. D	- 23D	4 U
CTG	D8 D8	05-30	150	1300	71.5-2.	- 23D	4 U
S 6 L 9 0R 3	0N-N	05-30	1 5 F3-	15088	71 5 N1 8	- 23D	4 U
S O2S T3	-2.0	05-33	15 F.	13	71.\$F2D	- 23D	4 U
Y6 KDK XEC 6 8	3F32D ND8F	05·3 05·3	15 - 152	15N2 153-2	71 50 F0 71 50 8	- 23D - 23D	4 U 4 U
4 KA0A0	01282	05-1.	150	15300	71.5N	- 23D	4 U
RpY3	32F-3	05-1N	150F2	131.	71 50 80	- 23D	4 U
KL pF	38	05 1N	152N0	1538.	71 502-	- 23D	4 U
LI6p8	302- N 0- 0-	05-18	1583N	15038 1533N	71.20F	- 23D	4 U 4 U
S2HZBN LXEI	0- 0- 30- D8	05·18 05·1-	150N2 15020	153N 151. F	71.5.3D 71.51.13	- 23D - 23D	4 U 4 U
MII L TOK	32. 3D	05-12	152NF	15F3	71520	- 23D - 23D	4 U
YRI 381	3FF8.	05-12	1508	150.8	71 5 D- 3	- 2 3D	4 U
pECI Y	38. 01	05-	15002	151. 2	71.50 - D	- 23D	4 U
9 S R J 30 GTS 3 F 6 0	NN 2 3DF. 1	052 052. N	152FN 15833	15382 15032	71 FFN 73 50 2 F	- 23D - 23D	4 U 4 U
XIRCY3	N2D0	0.2. N	150N2	1533N	71.522N	- £3D - £3D	4 U
RS YR 6 11230	32081	052. N	152-3	153-0	71 50 NB	- 523D	4 U
S XK0	2D10	052.0	15 F	153.0	71.5 N2	- 523D	4 U
GCSP 6 P.O.CF	3D-D1 D0.	052. 0 052. 3	1522- 1581N	153- 15030	71.51 N 71.52	- 23D - 23D	4 U 4 U
6 R9 GF R6 6 T6 P T3	D0. 32120	052. 3 052.	1581N 1592D	15030 1518D	71.228N	- 23D - 23D	4 U 4 U
SP0-	202-	0.2.	15 N	15.3	73:5012	- 23D - 23D	4 U
SML L P F	- 13F	052N	15022	15I. D	73.5D-0	- 523D	4 U
SPDK	20N8	052NF	1521.	1530.	70.5\BF	- 523D	4 U
PLP MPf0	F. 32N 0	052N8 052N2	1503 15832	15INN 15038	71 52 8. 71 53	- 23D - 23D	4 U 4 U
Eo KG-	3. 0N0	0.2.N2	15F. F	150. 0	71.50 N2	- £3D - £3D	4 U
I 6 Kp8	8NI 8	052N	1583D	1503D	71 50 - F	- 23D	4 U
p4 YC	3F11F	02D	1533	15I-F	71 50 13	- 23D	4 U
p6 TL 0	30	052D0	153. 2	15INB	71.5 NO	- 23D	4 U
GE2C6 T0 6 RMB	3NF31 D22	052D0 052D	1502 15 02	151. D 153DN	71.5018 71.5FN	- 23D - 23D	4 U 4 U
WTG	01. 13	02D	152. 2	15FF	71. 5 F22	- 23D	4 U
pL Ap6 3	380-3	052F.	15 D0	13	71.503D	- 523D	4 U
GMS G2	3N0D	052FD	15 08	15N	71.5013	- 523D	4 U
TMS 311323 NOF	31001 30DFF	052F8 052F8	1500- 1530F	15l. 8 15l82	71.53F 71.5.2	- 23D - 23D	4 U 4 U
L GT2 p6 L Y3	3 D	0.2F8	15 - N	153N	71.5 F.	- £3D - £3D	4 U
ERS	3. D81	052F8	1 5 F0-	150F-	71.5-3F	- 23D	4 U
6 9 Y3S2	1	052F-	15F0	150F0	73.FFN	- 23D	4 U
SP0-N	202D	052F-	15222	153-3	71.SF.	- 23D	4 U
CJK8 GTS M06 3	D802 3NI3N	052F2 052F0	15210 152D8	150N 158D	73.5N2- 73.53N	- 23D - 23D	4 U 4 U
TpOR	33D82	0.2F0	152N	158F3	71.5 DF	- £3D - £3D	4 U
S MTN6 0	- 110	052F3	15.8	1503	71.53F3	- 23D	4 U
XI3Y3	N- N0	052F3	152DF	1538.	71.5\83	- 23D	4 U
Yo MQ	3F8- 2 33NN	052F 052F	1503- 1520D	151.3	71.51.02	- 23D - 23D	4 U 4 U
6 Ep33K TMS 311818NI F	33NN 31-8-	052F	1520D 15	152. 15.	71.52. 71.58.12	- 23D - 23D	4 U 4 U
S6 Œ	0. 2-	0.2F	15082	131D	71.501D	- 23D	4 U
6 Sr Y3S	022	0528.	15033	151.	71 52 0-	- 523D	4 U
TMS 311320N 3	310	0528.	152-	1518D	71.53.	- ∑3D	4 U
L MS G3 ER 6 p	308D8 3. DL	0528. 0528.	1508 150D	1531F 151DF	73 Sl . 3 71 Sl . 2	- 23D - 23D	4 U 4 U
po TP K3	3	0.28N	15080	131D	15IN	- £3D - £3D	4 U
L 6 CAP - K	33. NF	0528N	158-3	1502	71.5 D0	- 523D	4 U
o GP 3DK33	NBN0	0528N	152	153-F	71.53 IN	- 23D	4 U
GpGK3	3N 1	0528N	152-8	153-F	71.2-D	- 23D	4 U
EGp6 R33 6 P 6 L EG3N	011. N 0DD	0528D 0528F	153 15. 2	15IN0 1501.	71.50 71.508	- 23D - 23D	4 U 4 U
9 pR6 2	. 0. 2	05288	153D8	15D	71.5F1.	- 23D	4 U
PEP3	83.2	05288	152DN	153F3	71.5 N	- 23D	4 U
SMI363	2. D0	05280	15F8N	150N	71.52 NB	- 523D	4 U
L 6 I S 6 TS YT	33. 80 0N0-	05280 05283	150D0 1508N	153F 1533	71 5 8- 71 2 - F	- 23D - 23D	4 U 4 U
S6 18 Y1 GVE33	0N0- 3NND8	05283 052	1508N 1502D	1533	73.2F0	- 23D - 23D	4 U 4 U
SMI86 0	20	052	15F02	150F8	71.5D	- 23D - 23D	4 U
PoYG0	- N-3	052	1500	151	735 1D	- 523D	4 U
RpV0Y	32F8D	052	15218	152	73.53NN	- 23D	4 U
L E06	30D .	052-N	15 DF	15012	71.50.3	- 23D	4 U
C6 KYA GAYpXR A3	FND8 3D2. D	052- N 052- N	15D 150- F	152F 15318	71 5 F00 71 5 2 F	- 23D - 23D	4 U 4 U
GVRL	3NF2	0.2- N 0.2- D	15V0.	15282	71.5N-3	- £3D - £3D	4 U
ECI K2	3. 0- F	0Σ-D	15.3	1501.	71.5F0N	- 23D	4 U
So T3	2F0N	052- F	1508F	151.	73.220F	- 23D	4 U
L 6 I I	33. 8F	052-8	1508	152N	715 - 0	- 23D	4 U
GEV9 3 SMYXR	3NDF1 -1	052-8 052-8	15 08 1521F	150 152	73.5-0F 71.5-D2	- 23D - 23D	4 U 4 U
	3D21D	052-2	1583F	1500	71.5D. N	- £3D - £3D	4 U
GAL 6 2P							
	- 0N8 03F22	0∑-3 0∑-	15080 15 FN	1521- 150	73.51 NF 73.53 8D	- 23D - 23D	4 U 4 U

Gene ID	Gene Name	Score (d)	Numerator (r)	Denominator (s+s0)	Fold Change	adjusted P value (%)	Direction
4 o L 9 3	01-F8	7-50DF	715-3-	15L D	71. 5 F3.	35 F	P Hwn
So 6 P T	28N	7- 50	71.5DF8	15N	71 5 6 7 1	35 F	P Hwn
Yp4 GP 3	3F. 3-	7- SD	715-2.	15318	71.58D	35 F	P Hwn
pGL P -	38NFN	7- 53FF	71.520.	15ID	71. 5 F	35 F	P Hwn
YpYP 0	3FN8F	7- 51 -	71.5238	15LDN	71.5DN0	051.8	P Hwn
9 YES 6 p2	8.	725 82	71. SF - 3	15F0	71.58NN	051.8	P Hwn
pVSY0	3F12F	725 2D	71 52 08	15LN2	71.5DF0	051.8	P Hwn
S 3HZBN0	03DD	725 2F	715-20	1533	715 D	051.8	P Hwn
pGL K-	38N-D	72.5N2	71.52F-	151	71.5 OF	05 18	P Hwn
EL pYGGF	3. F. 1	725N 0	71.5888	153-8	71.5N1.	05 18	P Hwn
GRYRp28	3N03N	725D D	71.520-	15IND	71 5 28	258D	P Hwn
TMS 0N 2.	31N 1	72. F 8D	71.5D1 -	153.0	735-0-	258D	P Hwn
RXE3	32-DF	725F1.	71.52	15L D	71 5 F2N	258D-	P Hwn
TVGL P3	33.03	725F18	715-3.	1533F	71.5D1-	258D	P Hwn
E6 YG0	3N D0	72.58D0	71.50F0	15LD2	71.5.23	258D	P Hwn
S3HZBD	0023	72.588-	71.5 N-	1532F	71.5 FN	258D-	P Hwn
GS 6 L p2	3D80N	72.588	71.522-	151	71.583D	258D	P Hwn
ERI YGI 3N	3. D23	72.58- D	71 SF 2N	13N	73.53	258D	P Hwn
f RI F-F	03F0-	72.58 - 2	71.53 D-	151	71.5DFN	258D	P Hwn

CALDI G NC2 6 6 G F Np 6 E 2 CRL18AI MPNG F 2 DXY SLU FAOL6 CFOM OMM-2 FSHZU OXE8 SNNE2 CLG X MAX BCA6 LREL2 6 PE6 FIG X2 LRE	2825 12-71 1U555 13 U93. -U21 515. 18979 7U2U 3.57 28- 3737 18573	50825 50811 50853 50878 50-8 50633 505UB 50523	. (B7- . (BUB . (921 . (791 . (B23 . (BU	. 0.28 . 0.77 . 0 . 0.85 . 0.28	4 (0.85 4 (079 4 (0723 4 (0552 4 (0721)	• • •	p T p T p T p T
66 G F Np 6 E 2 CRL18AI MPNG F 2 DXYSLU FAOL6 CFOM OMM 2 FSHZU OXES SNNE 2 CLG X MAX BCA6 LREL 2 6 P E 6 FIG X2	1U555 13 U93. -U21 515. 18979 7U2U 3.57 28- 3737	50853 50878 50-37 50-8 50633 506UB	. 0921 . 0791 . 0523 . 05U	. 01 - . 0 85 . 01 28	4 0723 4 0552	· ·	р Т р Т
Np 6 E2 CRL18AI MPNG F2 DXYSLU FAOL6 CFOM OMF2 FSHZU OXE8 SNXE2 CLG X MAX BCA6 LREL2 6 F1G X2	13 L93. -L21 515. 18979 7LPU 3. 57 28- 3737	50878 50-37 50-8 50633 506UB	. 0791 . 0523 . 05U	. 0 85 . 0 28	4 0552		p T
CRL18A1 MPNGF2 DXYSLU FAOL6 CFOM OMF2 FSHZU OXE8 SNNE2 CLGX MAX BCA6 LREL2 6 PE6 FIGX2	U93. - U21 515. 18979 7 U2U 3. 57 2 8- 3737	50-37 50-8 50533 505UB	. 0823 . 05U	. 0128			p i
MPNG F2 DXYSLU FAOL6 CFOM OMF2 FSHZU OXE8 SNXE2 CLGX MXX BCA6 LREL2 6 PE6 FIG X2	- U21 515. 18979 7 U2U 3. 57 2 8- 3737	50 - 8 50533 505UB	. OSU				
DXYSLU FAOL6 CFOM OMMF2 FSHZU OXE8 SNXE2 CLG X MAX BCA6 LREL2 6 PE6 FIG X2	515. 18979 7U2U 3. 57 2 8- 3737	50533 505LB		. 0 97	4 0/15		p T p T
FAOL6 CFOM OMF2 FSHZU OXE8 SNXE2 CLGX MAX BCA6 LREL2 6 PE6 FIG X2	18979 7U2U 3. 57 2 8- 3737	505LB	. 0837	. 0153	4 07. 7		рТ
CFOM OMF2 FSHZU OXE8 SNXE2 CLGX MAX BCA6 LREL2 6 PE6 FIG X2	7UDU 3. 57 2 8- 3737		. 0835	. 0158	4 0.87	•	рT
FSHZU OXE8 SNXE2 CLG X MAX BCA6 LREL2 6 PE6 FIG X2	3. 57 2 8- 3737		. 089-	. 01 - 2	4 0.8		p T
OXE8 SNXE2 CLGX MAX BCA6 LREL2 6 PE6 FIGX2	3737	505.3	. OB 1	. 0129	4 0738		p T
SNXE 2 CLG X MAX BCA6 LREL2 6 PE6 FIG X2		505.2	. 0-37	. 0122	4 0.37		рT
CLG X MAX BCA6 LREL2 6 PE6 FIG X2	18573	50737	. 0B32	. 0171	4.07.8		рT
MAX BCA6 LREL2 6 PE6 FIG X2		50758	. 0812	. 0179	4 0 U9		p T
BCA6 LREL2 6 PE6 FIG X2	UBU	50753	. OB58	. OLU9	4 ŒU9		p T
LREL2 6 PE6 FIG X2	- 132	50.B-	. 0927	. 0132	4 (81-		p T
6 PE 6 FIG X2	2 75	50U-5	. 0895	. 01 - 3	4 0 97		p T
FIG X2	11-8U	50.75	. 0897	. 0179	4 0 29		p T
	1U.95	50.U-	. 0525	. 0 98	4 OU -		рТ
LRE	19U77	50297	. 089	. 0179	4 071.2		p T
CDITI	11-8.	5021.2	. 0811	. 0155	4 0 83	·	p T
CRLUA1	U98U	502U	10 UI	. 0193	4 0 71	÷	p T
XFNM	1599.	50185	. 0725	. 0 82	4 0.21	÷	p T
PG ILI6 1	552.	501.87	. 0 19	. 0119	4 0713	•	p T
A6 OXFL2 SLIFU	- UU 18. U-	501 - 5 501 -	. 08- U . 0899	. 01.78	4 0728 4 072-	•	p T
XDOMNV	17355	50171	. 0 58	. 0128	4 071-	•	p T
	1233-		. 087-	. 0175		•	p T
G SNVU SXANC	18U-2	50171 5017	. 0892	. 0137	4 0ULU 4 0788	•	p T p T
6 ID1	180-2 1U75-	50L/ 50LL2	. 0892	. 0171	4 0/88	•	p T
DACFU	7555	50 83	. 08.5	. 0173	4.00-2	•	p T
MVL6 2	- 199	50 83	. 0893	. 013-	4 0717		p T
6 RE7	1U.U	50 - 3	. 05U	. 01	4 0889		p T
C6 6 2	U9. 1	50 53	. 055U	. 0179	4 0.78	•	p T
FOM/III	19277	50 29	. 0555	. 011	4 0.57	•	рT
FCM	19112	50 18	. 058-	. 0113	4 0U -		p T
HFNAU	8232	50 . 8	. 0 39	. 0I U-	4 081-		p T
G OC271. U	12U93	50 . U	. 081	. 01 - 2	4.0778		p T
XDLIG 3	17333	70991	. 0799	. 01	4.05.7		p T
FXG7	19855	70988	. 0535	. 0115	4.0525		p T
FG PG 2 A	19557	70931	. 0739	. 0 9-	4 077-		рT
GENA5	129. 1	709	. 0527	. OI	4 0559		рΤ
OLF8D2	3182	70958	. 0752	. 0 91	4.0777		p T
SHRE2	135	7095-	. 0511	. 01. U	4 0.93		p T
CRL5A1	U991	7095	. 0583	. 0119	4 B-2		p T
OPG	3. U5	7095	. 052U	. 017-	4.0172		p T
XALLD	1779.	7097-	. 077U	. 0 9	4 05U-		p T
I6 HVA	853U	709LB	. 0873	. 0132	410232		p T
S6 AI2	181W	7092	. 05U7	. 01 . 8	4 0.23		p T
MSFL1	- 33-	709. 9	. В99	. 01 - U	4 07-8		p T
XRD6 L1	15293	709.8	. 05U7	. 01. 9	4 058		p T
CRL1A2	U93U	70882	. 093-	. 12	4 0818		p T
CRL5A2	U992	70881	. 09-7	. 0198	4 0827		p T
ZPV1	211	7083U	. 0 . 8	. 0125	4 0.75	·	p T
N6 M 77A	15U	70831	. 051	. 01. 5	4 0.B5	·	p T
XRD6	1529-	708-8	. 05U8	. 0l 11 . 0l . 7	4 (U-	•	p T
DSP	518.	70875	. 05. U		4 0752	•	p T
SCO5 FHY1	131-5 19UI 1	708U- 70828	. 0·2U . 0·9-	. 0129 . 0177	4 0282 4 082	•	p T p T
DZIXIL	5233	70828	. 07. 3	. 0.87	4 075-	•	p T
F6 MAIX-	19315	7082-	. 07. 3	. 0155	4 0/3- 4 089U	•	p T
APVXI	U-7	70811	. 0881	. 018U	4 03. 3	•	p T
XRSF6	15U8U	708. 5	10 2-	. 0217	4 08. U	•	рT
XLKU	152. U	70891	. 077-	. 0 9U	4 0119		рT
VO6	15	70B87	. 0582	. 0122	4 0 87	•	рТ
HFNA1	823.	70882	. 0888	. 018-	4 0799		рT
G IN1HO	127- U	70838	. OB	. 0173	4 ŒLB		рT
DACF1	755U	70B	. 031U	. 01.5	40.U		рT
CDH11	UU78	70878	. 051	. 01. 3	4 0 1		рT
FPAD1	19159	7087-	. 071	. 0 8-	4 05U7		рT
SPNXI6 M	137	70875	. 0 99	. 0173	4 (23-		p T
ACFA2	2. 2	708U8	. 08. 2	. 01 - 9	4 (2-9		p T
Mv6 1	- 2. 2	708U7	. 0 21	. 01 U1	4 0 1-		p T
FNXC1	2 U8	70BL2	. 05. U	. 01	4 027		p T
IOMVXU	87. 5	708UI	. 0 U9	. 01 U.5	4 0.03		p T
NHOAX28	92-	70827	. 07	. 0 99	4 0719		p T
IFXNIX	83-1	70822	. 0519	. 011	4 0.1.2		p T
LG RD1	93U9	70819	. 0.81	. 0 81	4 0138		p T
S1 A1.	13. 25	70812	. 0 1	. 0129	4 (295		p T
OXN127	3U-3	70811	. 0531	. 0121	4 027	•	p T
BIG CRL1A1	2 3U U932	703. U 70-95	. 0551	. 0113 . 02. 2	4 02-9 4 099U		p T
FHVS2	1928.	70.95	. 0979 . 08U5	. 02. 2	4 0990 4 0892		p T
ADAG FS-	287	70-9	. 0U1-	. 0 - 8	4 0 2	•	p T p T
CYN-1	7528	70-7	. 001- . 082U	. 013-	4 013	•	p T
DKKU	7528 79U2	70-7	. 082U	. 0.13-	4 0.55		p I p T
XNKCDVX	15-52	70 U8	. 0589	. 0123	4 0.52	•	p T
XNNE I	15-32	70 U		. 0123	4 0.52	•	
XNNE I XLSU	15337	70 CU	. 0·95 . 0·51	. 015	4 05 / 4 02 - 2		p T p T
LAG A7	9789	70-1-	. 0775	. 01/1	4 0712	•	
GANBPLD1	1212.	70-15	. 059-	. 0129	4 0/12	•	p T p T
GGXI7	1212. 125U2	70 . 7	. 0813	. 01.5-	40-1	•	
LIG S2	9-87	70 . U	. 0779	. 0.93	4 0151	•	p T
MVI6	- U89	70.0	. 0/79	. 017U	4.07	•	р Т р Т
G NBII	123U9	70593	. 0595	. 0129	4 07	•	p T
C5orf- 2	25. 9	70593	. 0 21	. 0LL5	4 (2-9	•	рТ

Gene ID	Gene Name	Score (d)	Numerator (r)	Denominator (s+s0)	Fold Change	adjusted P value (%)	Direction
DC6	7- U7	70539	. 0831	. 019	4 0.81		p T
ISG 1	8-9-	70539	. 037	. 01 - 9	4 (2-		рT
XCSK5	17-93	7053U	. OU 2	. 0	4 0.29		p T
NANNPS2	1-27.	70558	. 08	. 0135	4 0221		p T
KC6 G V7	8927	70553	. 0.93	. 015U	4 0 73		p T
SNXE	1857-	70575	. 0 39	. 0179	4 01 - 3		pТ
A6 FENI	35.	70577	. 0 . 9	. OI U7	4 0 31		рТ
ISLN	8-97	70572	. BU9	. 01 - U	4 0713		p T
G G X19	125U-	70525	. 0U7U	. 0 3-	4 01.3		p T
FXG 2	1985U	70518	. 0599	. 01 U.2	4 072-		рT
CYS1	7529	70518	. 0 31	. 0179	4 0791		p T
XDLIG 7	17335	705.3	. 0718	. 0 9U	4 0223		p T
SPNXI6 O1	137. 2	7079U	. 0718	. 0 9U	4 02. 7		p T
LFVX2	118-3	70785	. 0793	. 0111	4 0235		рT
XXAXDCU	15727	70733	. 0.72	. 0 3-	4 OU 2		p T
G YL9	1295-	70731	. 0-77	. 0177	4 0.11-		pТ
XXIC	15779	70731	. 055-	. 0127	4 0518		p T
CRL- AU	U99-	707-8	. 0597	. 01 UU	4 051		p T
GENA8	129. U	707	. 0 83	. 0157	4 0783		p T
OS6	3558	707-	. 0799	. 0112	4 0 1U		p T
CMH	U5-2	70752	. 057-	. 012U	4 (2	-	рТ
Fp VV-	2. 251	7077-	. 0	. 01.5	4 0.5-		p T
GGX2	125UB	70777	. 0 89	. 01.55	4 0759		p T
CRL- A1	U997	707U5	. 035	. 01 - 9	4 0 75		p T
XNICKLP1	15-23	70725	. B23	. 01 - 7	4 071U		рТ
SXR61	1875-	70718	. 0921	. 02. 9	4 0753		рТ
GPOU	12235	70712	. 073	. 01 . 3	4 (295		рТ
C1S	21UU	707. U	. 0 U	. 0177	4 0257		p T
MOM	- U71	707. 1	. 0272	. 0 55	4 051U		p T
G DMC	12218	70.8-	. 0.93	. 0 91	4 0157		pТ
NVG S1	1- UL8	70.85	. 0788	. 01 1 1	4 @28		рT
ADAG 12	273	70.87	. 0712	. 0 97	4 0533		pТ
SLC2AU	138UI	70.32	. 0255	. 0 58	4 023		p T
M6 1	79	70J-9	. 089	. 02. 7	4 0957		p T
OAS1	- 972	70U-7	. 0-85	. 0153	4 0.5-		pТ
G OC7297	1271.	70.59	. 0533	. 0LL2	4 08U5		p T
xdT0L1	13U72	70.53	. 0799	. 0115	4 07. U		p T
SOCD	1373.	70.5U	. 07-9	. 01 . 8	4.0515		p T
F6 S1	19382	70.52	. 0.9U	. 0 9	4 0 UU		p T
LIG S1	9-8U	70U7U	. 0.7	. 0 38	4 0781		рT
Lp G	11839	70.72	. 088U	. O. U	4 0 U5		рT
PBC2	5323	70.U	. 025U	. 0 58	4 0285		p T
LCAF	95U-	70.2	. 0LB9	. 0 88	4 0218		p T
MPZ1	- U2-	70.1-	. 0LB7	. 0 83	4 0.0		рT
FVE15	19 8	70.117	. 0291	. 0 - 3	4 (288		p T
PMHA2	5U-	70U 5	. 0.91	. 0 91	4.0 - 5		p T
CIN	21UI	70U U	. 0-12	. 0172	4.0275		p T
SMNX2	13778	70U 1	. 09. 7	. 021	4 07		p T
Clorf1546 VL1	21- U	70293	. 0.5	. 0151	4 079U		p T
CLIXU	U821	7029	. 0.35	. 0 83	4.02-7		p T
A6 EA1	357	70289	. 0 U	. 0173	4.0 - 9		p T
6 ID2	1U753	70288	. O.J. 2	. 0 87	4 0 5U		p T
KIAA17-2	9. 83	70288	. 0738	. 0111	4 075		рT
CRXZ2	7. U9	70282	. 0-2	. 0175	4 05U8	•	рT
XXAXDC1A	15721	70281	. 0853	. 02	410 5U	•	рT
OADD75V	- 88U	7028	. 0522	. 0122	4 028U		рT
AOXAF7	7. 7	70239	. 0.1-	. 0 87	4 023-		p T
XG PXA1	15271	7023U	. 0588	. 01 U.8	4 0513	·	рT
NHRu	1-572	70259	. 0753	. 01 . 3	4 0 93	•	p T
SPNXI6 H1	137. U	7025-	. 0 52	. 015U	4.08.7	•	рT
CRL- A2	U995	70257	. 0 53	. 0157	4.05-U	•	рТ
NME 8	1-731	70279	. 0.B5	. 0 88	4 0 17	•	рT
XLEDC1	15227	70279	. 0.8	. 0 89	4 0728	•	рТ
ANSI	1.5-	702UI	. 0LB5	. 0 89	4 089-	•	рТ
BOLLU	2 3	70225	. 0283	. 0 - 8	4 0.2-	•	
XCRLCP	2 3 17- 83	70225 70227	. 0532	. 0 - 8 . 0LU5	4 0.2-	•	p T
XDOMNA	17-83	70219	. 0.99	. 01	4 0/52 4 02U5	•	рТ рТ
						•	
CRL12A1	U9-7	70218	. 081U	. 019U	4 (853	•	p T
D6 AuV5	5. 18	7021-	. 0.59	. 0 85	4 0.83	·	p T
G MAX5	12U78	7021U	. BU	. 013U	4 08-9	·	p T
IKVIX	87U8	7021U	. 0288	. 0 - 8	4 0517	÷	p T
6 D6	1U282	702. 8	. 0558	.0100	4 (21	•	p T
V6 C2	15-2	70195	. 07. 7	. 0 9-	4 0781	·	p T
HIM A	3837	70195	. 07-5	. 0111	4 (233	·	p T
XNNE 2	15335	70191	. 05-9	.01U	4 0 19		p T
CYFHU	75U5	7018-	. 0522	. 0125	4 01 - 8		рT
XDOMNL	1735-	70185	. 0815	. 0195	4 0.83		p T
NAV2U	1 92	70181	. 0791	. 0113	4.08.1	•	p T
XDX6	17381	7018	. 0597	. 0172	4 052-	•	p T
C17orfUB	1892	70139	. 0729	. 01. U	4 0789	-	p T
LNXI	113U5	70139	. 0288	. 0 - 9	4 0235	-	рТ
SPG A5A	13UI3	70135	. 0-1	. 017-	4 (293	-	рT
CRL8A2	7 2	7013	. 0.95	. 01 - 3	4 0 29		рТ
SKAX2	13- U7	7013	. 0755	. 01. 9	4 0 89		рТ
G AX7K7	12 5	70157	. 0.25	. 0 38	4 0.98		p T
XED6	123	7015U	. 0 - 8	. 01 - 1	4 B. 9		p T
DAV2	7579	70173	. 077-	. 01. 3	4 0139		p T
ASX6	1122	70LLB	10 58	. 025-	4 992		p T
CCDC8.	Ul	70LU-	. 0 . 3	. 0173	4 0272		pТ
SLC2A17	13829	70LU-	. 0757	. 011	4 (23		pТ
G ANCKS	12111	70IU	. 07	. 01 1 U	4 0.91		p T
PHD2	57. U	70129	. 07-	. 0111	4 (253		p T
DLC1	79U-	70128	. O.J	. 0 37	4.0178		p T
	118	70123	. OLBU	. 0 8-	4 0215		p T
XBNLU							
XBNLU 6 AXILU	1U	70125	. 0.1.9	. 0 82	4 02UU		p T

Gene ID CLPC11A	Gene Name UB82	70L19	Numerator (r)	Denominator (s+s0)	Fold Change 4 058	adjusted P value (%)	Direct p T
XHLDVI	17979	70119	. 0.7	. 0 8U	4 0277	•	p T
C3orf1.	2582	701.3	. 0772	. 01 . 8	4 05-9		p T
PONI	5U9-	701.5	. 08U.5	. O. U	4 0 UI	:	p T
SHUXE D2A XXMVXI	13528 15772	70L 2 70L 2	. 07- 7 . 0.B5	. 0l 1U	4 0.28	:	p T
XLEDC2	15772	701. 2 70. 9U	. 0521	. 0 91 . 0 23	4 07UU 4 0 21	•	p T p T
LHM	9-72	70 92	. 0539	. 0171	4.01.3	•	рT
PFB1	5318	70 89	. 0281	. 0 - 9	4 0.73		рT
OEYLF2	3-7-	70 59	. 035	. 0191	4 0 13	•	p T
SLM6 11	18. 2- 12958	70.58	. 07-3	. 0115	4 01 82	•	p T
G YLK KINNPL	9182	70 5- 70 5-	. 0.38 . 0.99	. 01 - 3 . 0 98	4 01 - 5 4 0273	•	p T p T
RLMG L2V	1U913	70 55	. 0781	. 0119	4 0 77	•	p T
CFSK	7U5U	70 75	. OBUS	. 0182	4 0789		рT
FSXR2	2. 12.	70 71	. 0.1.5	. 0 8U	4 0 17	•	p T
IFOA11	8311	70.7	. (BUI	. 0181	4 0955	:	p T
XNDG 1 M6 DC1	15591 55	70 LB 70 U-	. 0783	. 0l 21 . 0l	4 0787 4 0831	•	p T p T
C1WF6 M5	2125	70 U7	. 057	. 0LU7	4.0		p T
CRL1. A1	U9- 1	70 2-	. 0937	. 0272	41073		p T
CAC6 A2D1	239U	70 25	. 0292	. 0 3U	4 02U8		p T
ADAGFS17	23U	70 27	. 0312	. 0133	4 0817		p T
SOIXI C9orf125	13737 2-87	70 18 70 . 8	. 0713	. 01 . 7 . 01 . U	4 0 L2 4 0157		рТ
p ACA	2. U2U	70	. 0.87	. 0 9-	4 02. 7		p T p T
PCG 2	5UI-	70.7	. 0.117	. 0 38	4 OLBU		p T
M/L6 5	- 2	70.2	. 0-12	. 015U	4. 01 U9		p T
HG C6 1	8 5	U0995	. 0-12	. 015U	4.0555		p T
FGPG75A	19-1. 3792	L0987 L0939	. (BU . (659	. 0185	4 07-8	:	p T
ONPG I MREM2	97	LU939	. 0285	. 017	4 032U 4 0U 7		p T p T
SXR62	18753	L093	. 0U-2	. 0 91	4 0753	•	рT
C11orf9-	1383	U09-5	. 055	. OI U9	4 021U		pТ
6 PMH	1U.51	U0959	. 0593	. 0151	4 0.19	•	p T
VP6 D-	178U	U95-	. 022-	. 0 53	4 05-5	•	p T
NPCK SSC5D	1- U95 18533	U952 U973	. 0.1-7 . 0	. 0 92 . 01-9	4 0.B3 4 0785	•	p T p T
AKAX12	7-5	U97-	. 073	. 0119	40-8		рТ
LPXNP1	93	U977	. 0235	. 0 3	40		рT
ADAG FS5	28U	U972	. 0 . 5	. 0157	4 0LU9	•	p T
CRL1-A1	U9-8	U972	. 0715	. 01. 5	4 0.17	:	p T
KDPLC2 XNKD1	89-8 15	L09L8 L09L5	. 0.52 . 0.55	. 0 89 . 0 9	4 0729 4 0188	•	p T p T
ANL7C	99-	U923	. 0518	. 011.2	4 02. 2	•	p T
ACF6 1	217	U925	. 073	. 012	4 0789		рT
DDN2	7-37	U0919	. 0715	. 01	4 0.2-	•	p T
HREA114AS1	8. 8- 2. 911	U9. 3	. 0571 . 07UI	. 0LU8	4 0788 4 0 75	:	p T
Q 6 F2 XFXND	15932	U09. 2 U09. 2	. 0592	. 0l 1 . 0l 52	4 0519	-	p T p T
XFOIN	15922	U89-	. 0.55	. 0 91	4 0595		p T
CMHNU	U5-5	U89	. 0757	. 0113	4 0135		рT
HAVX7	3-85	U888	. OU 8	. 0 95	4 01		p T
FGPG2	19552	U888	. 0.21	. 0 8U	4 05-8		p T
LAG VI 6 CN6 A 271	9791 1U2. 7	L0888 L0883	. 022U . 07U-	. 0 53 . 0 12	4 0U 1 4 0I 3		p T p T
SSX6	1858U	U839	. 0525	. 011.5	4 021.2		p T
ONX	35LB	U83-	. 1997	. 027U	4 0 71		p T
XNRS1	15312	U832	. OU 2	. 0 9U	4 0 9-		p T
IFOA1	83. 9	U83	. O.B	. 0 9-	4 0777		p T
CD99 CPS1	LE98 LE75	U8-9 U8-3	. OLI U . O75U	. 0 38	4 (1.99 4 (1.1		p T
CCDC8	U 99	U8	. 05U8	. 0119	4 013-	•	p T p T
GF1G	12393	U08-5	. OB- 8	. 0199	4 0 31		рT
XNDG -	152	U0851	. 0.79	. 0 91	4 (BU8		p T
VHLHP71	15. 3	U851	. 0.79	. 01 - 9	4 0 93		p T
SXRCK1 PON2	1875U 5U93	U873 U875	. 0 95 . 0 . U	. 0181	4 08. 2 . 0 11	•	p T p T
CGFGU	U837	LOS LOS	. 07-3	. 0122	4 0L9U	•	p T
HPYL	3879	UBU5	. 0797	. 0129	4 0823		p T
C6 6 1	U9	U8UI	. 0815	. @ 1U	4.0179		p T
FQ ISF2	2. 238	U823	. O . U	. 0153	4 0187		p T
LRC1 12997.	9999	U82 U8. 3	. 0.88	. 01. 1	4 05	•	p T
LSXI ACSL7	11853 189	U8. 3 U8	. 0.1-8 . 0.1-2	. 0 93 . 0 39	4 0 9U 4 0199	•	p T p T
CRL5AU	U99U	U8	. 052-	. 0LL8	4 0895	•	p T
SHUXE D2V	13529	U8. 7	. 07-	. 0121	4 05		рT
SALL7	13 3	UB	. 0 - 7	. 0135	4 09U8	÷	p T
SRVX	1823-	UB99	. 028	. 0 37	4.0158		p T
IFOA5 CFSV	831- 7U7-	UB99 UB95	. 07U . 07LB	. 0.1U . 0.15	4 05- 4 0 - 2	•	p T p T
Q ISXI	2. 893	UB9U	. 0017	. 0 8U	4 0 97		рТ
NVG SU	1- U7.	UB91	. ŒU8	. 0 - U	4 0139		рT
ML6 A	13	UB9	. 0015	. 0 8U	4 02-9		p T
Z6 M-9	21783	UB88	. 0 -	. 0137	4 0 12		p T
KLM8	92. 9	UB8-	. 0.88	. 01. 2	4 0758	÷	рТ
LNNCU2 C9orf5U	11337 2329	UB85 UB85	. 0782	. 0123	4 0.78 4 0725		р T p T
LNCH2	11313	UB85	. 0271	. 0 - 7	4 0/25		p T
CRGX	7. 2.	UB3U	. 0838	. 02UU	4 08.9		рT
MSF	- 335	UB	. OB3-	. (2	4 05	•	p T
Q ISX2	2. 898	UB	. 0982	. O2-1	4 0559		p T
ZMU	21191	UB-U	. 05UI	. 0171	4 0 85		p T
SBPXI uDX2	18827 8383	UB-2 UB-1	. 0.2- . 07UI	. 0 83 . 0115	4 0 - 4 077	•	p T p T
MREWI	-319	UB-	. 08-5	. 02. 7	4 0799		p T

13173 1-118 1-27- 1185U 9323 315- 21181 18-13 1.297 5118 8.9 8337 18337 57-8 181 11-82 1187U 111-82 1187U 1173 2.953 111/52 253	UB58 UB58 UB58 UB57 UB77 UB77 UB72 UBUB UBUB UB25 UB22 UB19 UB18 UB18 UB18 UB18 UB18 UB18 UB18 UB18	. 657 . 0771 . 0.85 . 0.29 . 0799 . 0798 . 0798 . 0733 . 01-1 . 0573 . 0588 . 07.3 . 0-8 . 028U . 0715	. 0.77 . 0.13 . 0. U . 0.88 . 0.00 . 0.00 . 0.00 . 0.00 . 0.00 . 0.28 . 0.70 . 0.25 . 0.58 . 0.9 . 0.8	4 0/28 4 0/31 4 0/85 4 0/821 4 0/75- 4 0/11- 4 0/258 4 0/35 4 0/10- 4 0/10- 6		PT PT PT PT PT PT PT PT
1-27- ILB5U 9323 315- 21181 18-13 1. 297 51U8 8. 9 8337 18337 57-8 18U 11-82 1U73 2. 953 1U752	UB53 UB55 UB73 UB72 UBUB UBU- UB25 UB25 UB25 UB19 UB18 UB13 UB18	. 0.85 . 0.29 . 0799 . 0798 . 0798 . 0733 . 01 . 0673 . 0588 . 07.3 . 08	. Q. U . 0 88 . Q. U . Q. U . Q. 28 . 0 7 U . Q. 1 . Q. 58 . Q. 9 . Q. 8 . 0 3-	4 0185 4 0821 4 075- 4 021- 4 0258 4 0635 4 07U 4 01-7 4 018U 4 07.7		p T p T p T p T p T p T p T p T p T
1UB5U 9323 315- 21181 18-13 1. 297 51UB 8. 9 8337 18337 57-8 18U 11-82 1UB7U 1173 2. 953 1UF52	UB55 UB73 UB72 UBU UBU UB25 UB25 UB25 UB19 UB18 UB13 UB.8 UB.8	. 0.29 . 0799 . 0798 . 0798 . 0733 . 01-1 . 0873 . 0888 . 07.3 . 0-8 . 028U	. 0 88 . a W . a W . a 28 . 0 7U . c. 1 . a 58 . a . 9 . a 8	4 0821 4 075- 4 0.11- 4 0258 4 0835 4 07U 4 01-7 4 018U 4 07.7		pT pT pT pT pT pT pT pT pT
9323 315- 21181 18-13 1. 297 51UB 8. 9 8337 18337 57-8 18U 11-82 1UF7U 1173 2. 953 1UF52	UB73 UB72 UBUB UBUJ UB25 UB25 UB25 UB22 UB19 UB18 UB18 UB13 UB.8 UB.8	. 0799 . 0798 . 0798 . 0733 . 01-1 . 0873 . 0588 . 07. 3 . 0-8 . 028U	. Q W . Q W	4 075- 4 001- 4 0258 4 0335 4 07-U 4 01-7 4 018U 4 07.7		p T p T p T p T p T p T p T
315- 21181 18-13 1. 297 51UB 8. 9 8337 18337 57-8 18U 11-82 1U87U 1173 2. 953 1U752	UB72 UB1B UBU UB25 UB25 UB22 UB19 UB18 UB13 UB.8 UB.8 UB.3	. 0798 . 0798 . 0733 . 01-1 . 0873 . 0688 . 07.3 . 0-8 . 028U	. a UU . a UU . a U28 . 0 7 U . 02. 1 . a 5 8 . a . 9 . a 8 . 0 3 -	4 (U1- 4 (258 4 (335 4 (7) U 4 (01-7 4 (018) U 4 (07-7		p T p T p T p T p T p T
21181 18-13 1.297 51UB 8.9 8337 18337 57-8 18U 11-82 1UB7U 1173 2.953	UBUB UBU5 UB25 UB25 UB19 UB18 UB13 UB. 8 UB. 8 UB. 8	. 0798 . 0733 . 01-1 . 0873 . 0688 . 07.3 . 0-8 . 028U	. 0 LU . 0 28 . 0 7U . 02. 1 . 0 58 . 0 . 9 . 0 8	4 (258 4 (835 4 (7) U 4 (1-7 4 (1) 8 U 4 (7) 7		p T p T p T p T p T
18-13 1. 297 51UB 8. 9 8337 18337 57-8 18U 11-82 1UB7U 1173 2. 953 1U752	UBU- UB25 UB25 UB22 UB19 UB18 UB13 UB.8 UB.8	. 0733 . 01-1 . 0873 . 0688 . 07. 3 . 0-8 . 028U	. 0.28 . 0.7U . 02.1 . 0.58 . 01.9 . 0.8 . 0.3-	4 0835 4 07U 4 01-7 4 018U 4 07.7	: : :	p T p T p T p T
1. 297 51 LB 8. 9 8337 18337 57-8 18U 11-82 1L87U 1173 2. 953 1U752	UB25 UB25 UB22 UB19 UB18 UB13 UB. 8 UB. 8	. 01 - 1 . 0873 . 0588 . 07. 3 . 0 - 8 . 028U . 0715	. 0 7U . 12. 1 . 0 58 . 0 . 9 . 0 8 . 0 3-	4 07U 4 01-7 4 018U 4 07.7	• •	р Т р Т р Т
51UB 8. 9 8337 18337 57- 8 18U 11- 82 1UB7U 1173 2. 953 1U752	UB25 UB22 UB19 UB18 UB13 UB.8 UB.8 UB.8	. 0373 . 0588 . 07. 3 . 0 - 8 . 028U . 0715	. 02. 1 . 01.58 . 01. 9 . 01.8 . 0.3-	4 01 - 7 4 01 8 U 4 07 . 7		p T p T
8337 18337 57-8 18U 11-82 187U 1173 2. 953 1U/52	UB19 UB18 UB13 UB. 8 UB. 8 UB. 8	. 07. 3 . 0 - 8 . 028U . 0715	. 01 . 9 . 01 8 . 0 3-	4 07. 7		рT
18337 57-8 18U 11-82 1U87U 1173 2. 953 1U752	UB18 UB13 UB. 8 UB. 8 UB. 3	. 0 - 8 . 028U . 0715	. 018 . 0 3-			
57-8 18U 11-82 1U87U 1173 2. 953 1U752	UB 13 UB . 8 UB . 8 UB . 3	. 028U . 0715	. 0 3-	4 0075	•	рT
18U 11-82 1U87U 1173 2. 953 1U/52	UB. 8 UB. 8 UB. 3	. 0715			•	p T
11-82 1U87U 1173 2. 953 1U752	UB. 8 UB. 3			4 0U	•	p T
1U87U 1173 2. 953 1U752	UB. 3	. WY/	. 0112	4 0535	•	p T
1173 2. 953 1U752		0.77	. 01 -	4 0 U	•	p T
2. 953 1U752		. 00.77 . 0731	. 0 9U . 0128	4 078- 4 019-	•	p T
1U752	UD-9	. 0.5-	. 0 93	4 0791	•	p T p T
	UD-88	. 0252	. 0 - 8	4 0257	•	рT
	UD-83	. 0L8U	. 01 . 7	4 0297		рT
211-8	UD-33	. 0.72	. 0 9U	409		рT
83U9	UD-33	. 0 32	. 018U	4.0522		p T
7 1	UD 37	. 0372	. 02. 2	4 0959		pТ
9-5	UD-3U	. 07. 8	. 0111	4 02.1		pТ
	U0-3	. 0232	. 0 37	40-2		pТ
12398	UD - 9	. 058	. 0158	40-3		pТ
12932			. 0 85	4 0212		p T
5U-7	LD 59	. 0722	. 0115	4 0788		p T
					•	p T
					•	p T
					•	p T
					•	p T p T
					•	p I p T
						рT
11-95						рT
2733	U) U)	. OU -	. 01. 1	4 0587		рT
113U	UD-U8	. 0782	. 01 L2	4 01 1U		рT
L228	U0-U5	. 0.1.7	. 0 92	4 01		pТ
1879.	UD 27	. OLBU	. 01 . U	4 07-		pТ
129. 2	U0 2	. 00.17	. 0 83	4 0717		pТ
15959	UD 18	. 07- U	. 0128	4 0132		p T
2	UD-12	. 0728	. 0118	4 ŒLB		p T
				4 0283		p T
					•	p T
					•	p T
					•	p T p T
					•	p T
						рT
						рT
						рT
-U.	U0533	. 0.27	. 0 9	4 0 85		рT
- 312	U053	. 0.1.2	. 0 9U	40		pТ
9	U053	. 07. 1	. 0112	4 0 89		p T
2. 85-	U05-3	. OB. 3	. 0198	4 ŒW		рT
212	U05-5	. 0.35	. 01 . 5	4 07. 2		pТ
11281	U05-7	. 0752	. 0123	4 031		p T
12391	U.S-	. 0587	. 01 - 7	4.01.2	•	p T
					•	рT
					•	p T
					•	p T
					•	p T
					•	p T p T
						рT
138. 1	U0573	. 0U-5	. 01. U	4.07-U		рT
1-37U	U0575	. 01. 5	. 0 8-	4 0257		p T
7U25	U672	. 0 - 3	. 0188	4 0927		p T
15. 31	U0572	. 0.57	. 01	4 0LU		p T
1388.	TOP CT	. 0.59	. 01 . 2	4 0529		pТ
3158	UBUS	. 0795	. 017	4 05U7		p T
12731	U6U2	. OLI U		4 0.1 8		p T
					•	p T
					•	p T
					•	p T
					•	p T p T
					•	p I p T
						p T
						рT
						рT
1-999	U0517	. 05. 9	. 0175	4 0 95		pТ
838-	U0512	. 0.112	. 0 89	4 021.5		pТ
82UU	U05. 3	. 05-7	. 01 - 1	4 01 U9		pТ
1U78-	U05	. 0.8-	. 01 1	4 0783		p T
L9-3	U05. 5	. 0725	. 0121	4 01		pТ
LZLB	U05. 7	. 0.31	. 01	4 0U		p T
38. 9	Ub. 2	. 07. 7	. 0115	4 02.2		p T
12937	U05. 2	. 0297	. 0 87	4 0577		рT
538-	L0799	. 0.11 2	. 0 89	4 02-5	•	pТ
	U0793	. 0725	. 0121	4 0189		p T
					•	p T
					•	p T p T
	7 1 9-5 229- 12398 12932 5U-7 17337 8312 13 2U7 111. 123 -719 11-95 2733 113U U228 1879. 129. 2 159599 2 9198 U38 -115 9228 15921 18851 13133 1U9- 3.32 -U3129 2.85- 212 11281 12391 92.7 978- 12 1281 12391 92.7 978- 12 150 1533 8387 138.1 1-37U 7025 15.31 1388.3 11-37U 7025 15.31 1388.1 11-37U 7025 15.31 1388.3 11-37U 7025 15.31 11388.3 11-37U 7025 15.31 11388.3 11-37U 7025 11281 117725 11999 838- 82UU 1078- 109-3	7 1	71 U 37	7 1 U37	7 1	71. 1 0 37

Gene ID	Gene Name	Score (d)	Numerator (r)	Denominator (s+s0)	Fold Change	adjusted P value (%)	Direction
ZCUH12V	211. U	U0735	. 019-	. 0 5-	4 0 82	•	p T
AVCA- GF1L	72 1239-	U07-1 U075-	. 0739 . 0517	. 0LU8 . 0L79	. 0 19 4 0l	•	p T p T
ANAXU	883	U075-	. 0.B2	. 01 . 8	4.01	•	p T
ADAGFS12	231	U0751	. 025-	. 0 37	4 091		рT
XNKCA	15-79	U0751	. 077-	. 0129	40.5		p T
MAS	- 18.	U0772	. 029	. 0 87	4 0 U		p T
VG XI	1571	U0771	. 019-	. 0 53	4 0898	•	pТ
ORLOA3V	3283	U077	. O.J. 3	. 01. 3	4 0558		p T
CLIX7	U822	U077	. OLBU	. 01. 8	4.01.7	•	p T
LOALS1	9-18	U0723	. 072U	. 0127	4 05 1 U	•	p T
C2. orfl. U GPIS2	22U7 1228-	U0725 U0713	. 03. 3 . 0U-7	. 02 . 01. 3	4 0519 4 01-	•	p T p T
MAG 7UA	7.	U071-	. 0.BU	.01.9	4 0I -	•	рТ
KA6 K2	8818	U071U	. 0.7	. 01	4 0221	•	рТ
AKAXIU	7	U0712	. 025-	. 0 35	4 0198		p T
SLAG M9	13-52	U07	. 0.51	. 01. U	4 083U	-	рT
HSXO2	8275	U07. 2	. (2- U	. 0 33	4 0729		рT
FGPG7U	198	LIL199	. 0238	. 0 82	4 0.115	. 013	p T
POML-	5U83	UU.9-	. 0 35	. 0199	4 0293	. 013	pТ
C1. orf1.	1-81	UU.95	. 053-	. 013	4 0 82	. 013	рT
G AOPL2	11991	UU9U	. 0U-U	. 01. 3	4 0281	. 013	p T
MAF7	- 191	LILB9	. 0189	. 0 5-	4 0115	. 013	p T
HIC1 C2. orf197	3832 2258	UUL8- UUL85	. 0U79 . 0U 1	. 0l . U . 0 89	4 0277 4 0U 1	. 013 . 013	p T p T
IDU	8UI 2	LILB5	. 0.1.9	. 01	4 0259	. 013	рT
CECL12	7U98	UU.87	. 0.8	. 0112	4 0123	. 013	рT
SXAFS2L	18U89	UU.82	. 07. 7	. 0119	4 023U	. 013	рT
G G XI I	12529	UU.81	. 081-	. 0271	410-3-	. 013	рT
FXSF1	19837	UUB8	. 0.85	. 0117	4 051	. 013	рT
G AXI V	12. UU	UUB2	. 0.71	. 01. 1	. 0 . U	. 013	рT
LRC11UI82-	1. 22.	UUB2	. 0231	. 0 8	4 07. 7	. 013	p T
A6 FEN2	351	LOLB	. ŒU	. 0 3	4 0 73	. 013	p T
KLK7	92	UU-	. 0.1 9	. 0 92	4 0 78	. 013	p T
XPAK1	178	UU.59	. 028	. 0 8U	4 0 93	. 013	p T
ANHOAX2. DRCK11	918 5. 87	UUU51 UUU73	. 0238 . 0.55	. 0 8U . 01	4 0 8U	. 013 . 013	p T
SXPCC1	187. 7	UU/3	. 02-1	. 0 38	4 0272	. 013	р T p T
SXHK1	18718	UU7	. 00-7	. 01. 9	4 071-	. 013	рT
6 p AK1	1UB-3	LULLIS	. OU U	. 0 91	4 0 58	. 013	рT
FGPG2.7	195	uuu	. 0.95	. 0119	4 O.B3	. 013	p T
CRL3A1	7	UU.29	. 05U5	. 01 - 1	4 052U	. 013	рT
MZD3	- 8U-	UU.25	. 05. 1	. 0151	4 019U	. 013	pТ
HRGPNI	8. 32	UUL21	. 127U	. 0 3U	4 05. 1	. 013	p T
DSF	5189	UU.21	. 0752	. 01 U-	40.3	. 013	p T
ADAG 19	251	UU.2	. 0232	. 0 82	4 0 U8	. 013	p T
06 011	3271	UU18	. 0751	. OLU-	4 0 1	. 013	p T
SMNX7 VACH2	13779 1U-	UUUU	. 058 . 019	. 0135	4 0297 4 0 - U	. 013 . 013	p T
VACH2 LRC288	1. 952	LOLI 1 LOLI 9	. 0159 . 0159	. 0 53 . 0 78	4 0521	. 013	p T
FIG XU	1. 952 19U75	UUL 9	. 058	. 0135	4 0	. 013	p T p T
PM6 V2	5LB8	UU -	. 0712	. 0125	4 0711	. 013	рT
IFOV1	8323	UU 7	. 0U U	. 0 92	4.02-7	. 013	рT
MAG 1. 1V	5825	UUUU	. 0718	. 0123	4.05.7	. 013	рT
X7HAU	177U-	UUU U	. 023	. 0 82	4 0928	. 013	p T
ANXC2	1. U2	U293	. 025	. 0 3-	4 07L2	. 013	рТ
SOK1	13735	U293	. 0722	. 0128	40	. 013	p T
Z6 MJ . XI	21U9.	U292	. 077U	. OLU5	4 0LUI	. 013	p T
KCFD12 MRSV	8979 3-	U0291 U0291	. 0.B-	. 0l 17 . 0229	4 0 2-	. 013 . 013	p T
G G XI U	3- 125Ul	U291 U29	. 085U . 0877	. 0229	. 0 95 4 081U	. 013	p T p T
SLIF2	18. U5	U289	. OU 5	. 0111	4 0239	. 013	рт
PD6 NA	5UB	U28-	. 0.1	. 0 97	4 0592	. 013	p T
CDN1	U72U	U281	. 0223	. 0 - 9	4 025-	. 013	рT
LZFS1	119U7	U238	. 0221	. 0 - 8	4 0735	. 013	рT
CDH1U	U.S.	U233	. 0LBU	. 0113	4 078-	. 013	рT
MAG-9A	85	U232	. 0258	. 0 39	4 0273	. 013	p T
IOM/X3	87. 9	U232	. 0723	. OLUI	4 0297	. 013	p T
VG XN2	155-	U0231	. 02. 5	. 0 - U	4 0.38	. 013	p T
XLE6 C1	152UU	U0231	. (U-	.011	4 0559	. 013	p T
XN6 X SPC21A	15-88 1323.	U23 U23	. 0798 . 0.72	. 01.52	4 0LUI 4 0531	. 013 . 013	p T
SPC2UA C12orf35	1323. 18U7	U2	. 00/2	. 01 . 5 . 01 7	4 0531 4 0.B7	. 013	p T p T
SFOCU	180/	U2	. 0/58 . 02UI	. 0.7	4 0.37	. 013	p T p T
CNISXLD2	718U	U2-2	. 007-	. 01	4.07.1	. 013	p T
XLPKHO2	1513-	U253	. 0258	. 0 39	4 0522	. 013	p T
IFOAB	8325	U25-	. OLB 5	. 0115	4 0722	. 013	p T
CRL7A2	U985	U025	. 07. 3	. 0125	4 au	. 013	p T
FSXA6 18	2. 1. 5	U279	. 0.71	. 01. 5	4 0.25	. 013	p T
LDV2	9537	U2278	. 0231	. 0 8U	40-1	. 013	p T
AH6 AK2	7UI	U273	. 0755	. 017	4 08U2	. 013	p T
Dp SXI	5213	U27-	. 05	. 0157	4 0 27	. 013	p T
CXEG 1	71LB	U0275	. 0717	. 0128	4 0132	. 013	p T
XLD1	15152	U027U	. 025-	. 0 39	4 0.2-	. 013	p T
DDE7U	73. 2	U0272	. 0781	. 0178	4 028U	. 013	p T
C-orf137	2575	U0271	. 0.19	. 0 98	. 0 1-	. 013	p T
PG E2RS	55U8	UDU8	. 0717	. 0128	4 02. 8	. 013	рТ
KLKXI PDILU	923U 5UU	UOLU UOLU	. 0.5- . 0.18	. 01 1 . 0191	4 0852 41 0289	. 013 . 013	p T
PG XI	5529	U228	. 077-	. 01U8	4 0 15	. 013	p T p T
CCDC88A	Ul 1.	U225	. 0292	.09	4 0192	. 013	рT
CDK6 1A	U7. 9	U225	. ŒUU	. 0 32	4 0.5	. 013	рT
LHMNL2	9-77	U219	. 0.1.7	. 01. 7	4 018	. 013	рT
XCDH18	178	U213	. 0285	. 0 89	4 0 8U	. 013	рT
		U2. 9	. @33	. 0 8-	40.3	. 013	рT
XLPKHH2 SXANCL1	15187 18U-U	U2. 9	. 0 19	. 019U	4 0 9U		p T

Gene ID CCNL1	Gene Name Ul9-	Score (d) U2. 9	Numerator (r)	Denominator (s+s0)	Fold Change 4 0528	adjusted P value (%)	Direction p T
A6 KH	- 73	U2. 3	. 0/2- . 0.B	. 011-	4 0135	. 013	p T
XP6 K	17822	U2. 3	. 0258	. 0 8	4 05U5	. 013	pТ
LRC328835	11559	U2	. 07- U	. 0175	4 02U	. 013	p T
XANBA CAX6 5	17553 283-	LD199 LD199	. OU - . 0718	. 0 9- . 0LUI	4 028- 4 0191	. 013 . 013	p T p T
XRFPM	15U89	UI 98	. 0282	. 0 88	4 02-U	. 013	рT
IOM	8U9-	U0197	. 0.25	. 01. 2	4.0117	. 013	p T
p C6 2	2. 7U-	U019U	. 0735	. 0179	4 059-	. 013	p T
SY6 XR	188-7	U019U	. 0232	. 0 85	4 0LU8	. 013	p T
M6 DC7 XLAF	58 15128	U019U U019	. 0.13 . 0813	. 0 99 . 025-	4 0117 4 0079	. 013	p T p T
uAG 2	838U	UII9	. 0.1.2	. 01. 7	. 0 . U	. 013	рT
IMMR 1	8UU	UI 8-	. 02. 2	. 0 - 7	4 0212	. 013	рT
MAF1	- 188	UI 87	. 05. 9	. OI -	4 0IU	. 013	рТ
LRC1 283221	1. U83	1.018	. OLBU	. 0113	4 09. 3	. 013	рT
N6 M35	13.	U0139	. 021	. 0	4 011-	. 013	p T
NME 2 LNNC13	1-7-5 11359	U0133 U013-	. 0U18 . 0537	. 01 . 01.81	4 0.7 4 0752	. 013 . 013	p T p T
BS6 L1	2. 37.	U013-	. 052-	. 01	4 0291	. 013	рT
LY9-	11899	U01 - 3	. 0.37	. 0118	4. 01 - 3	. 0.117	p T
GF1V	12389	U0I - 5	. 0732	. 0179	4.0 87	. 0.17	p T
XHACFN2	179	U01 - U	. (2-2	. 0 8U	4.0139	. 0.17	рT
SXNY2 KLM	1878U 92. 8	U01 - 1 U01 5 5	. 0751 . 0273	. 017U . 0.38	. 0 U 4 OLUB	. 0.117 . 0.117	p T
PM6 V1	5LB3	U0151	. 0.5	. 0111	4 0179	. 0.17	p T p T
CXZ	71U9	U017-	. 01.8-	. 012U	4 0.118	. 0.17	рT
XYOR 1	17U	U0175	. (2	. 0 85	4 0.83	. 0.117	p T
FHVS1	19239	LOLUS	. 0.92	. 0125	4.05U3	. 0.117	p T
SXNY1	18782	UOLU7	. 072	. 0LU7	4.01.1	. 0.17	p T
ADAG FS1 A6 OXF2	2-9 -U	U01 U2 U01 U1	. 0732 . 0.99	. 0151	4 011- 4 09. 8	. 0.117 . 0.117	p T p T
NHRW	1-57U	UIU	. 022-	. 0 32	4 0 81	. 0.17	рТ
CAB2	2977	UI 29	. 027-	. 0 39	. 0 88	. 0.17	рT
XCSK3	17-99	U0123	. 0138	. 0 53	4 02-1	. 0.117	рT
CCDC82	Ul. 2	U0121	. O.B-	. 012	4.0113	. 0.17	рТ
XLAC9	15127	U0115	. 0.52	. 01 1U	4 0 35	. 0.17	p T
G S6 CYX2p 1	12332 75. U	UOL UOL. U	. 0.58	. 0115	4 02. 7 . 0 . 1	. 0.117 . 0.117	p T p T
A6 KNDU5	- 95	UI. 2	. 0582	. 0188	4 0 58	. 0.17	рT
G PFN6 L	12U 9	U0 9-	. 0.27	. 01. 5	4 087	. 0.117	рT
G MOP8	12U5.	U0 97	. 057	. 0135	4 029	. 0.17	p T
OAS-	- 978	U0 97	. 0.B8	. 0122	4 025-	. 0.17	p T
CM DCLK2	L5-8 7-29	LD 9 LD 89	. 0.81 . 0257	. 012U	4 0 27 4 0.11	. 0.117 . 0.117	p T
6 PMG	1U.5U	LD 85	. 02-	. 0 82 . 0 87	4 05. 1	. 0.17	p T p T
NOS2	1-5.2	U0 81	. 0525	. 0131	403	. 0.17	рT
NRCK2	1-3U-	U0 81	. 0277	. 0 39	4 12-	. 0.117	pТ
HYG AI	8289	TO 8	. 0.B2	. 0121	4 0 - 3	. 0.117	pТ
BG XI MUA1	2 85 538U	U0 8 U0 38	. 0.9 . 0.83	. 0123	4 08-2 4 0722	. 0.117 . 0.117	p T p T
HREA7	8. 9.	U0 33	. 023-	. 0 9	4 0/22	. 0.17	рТ
SFK13V	18-91	U0 3U	. 0283	. 0.9U	4.0.15	. 0.17	рT
LRC7. 1. 93	111-7	U0 - U	. 12. 7	. 0 - 3	4 071U	. 0.17	pТ
ANNDCU	1. 7-	U0 - 1	. 00-7	. 0119	4.01.7	. 0.17	pТ
LRC1 1289. 5	9881 13. UU	U0 - 1 U0 -	. 0113 . 07U5	. 0 U8 . 0172	4 0U-1	. 0.17	p T
S1 A7 F6 MSM 1	19372	U0 -	. OLU	. 0 33	4 0775 4 0.95	. 0.117 . 0.117	p T p T
HREAU	8. 89	LO 59	. 0737	. 0155	. 0 U	. 0.17	p T
N6 M 22	1U9	U0 57	. 0.112	. 01 . 2	4 0292	. 05- U	p T
H19	3U	U0 5U	. 0557	. 0182	4 0LL2	. 05- U	рT
6 NX2	1UB11	U0 5U	. (2	. 0 - 8	4 08U7	. 05- U	p T
MG RD OAVANAXL1	75 -857	U0 52 U0 51	. 0553 . 029-	. 018U . 0.93	4 0 81 4 0 55	. 05-U . 05-U	p T p T
GGX3	12573	U0 51	10 1-	. OUU	4 02-8	. 05- U	рТ
QFIX	2. 9U8	U0 5	. OLB8	. 0127	4 0291	. 05- U	рT
FSHZ2	2 85	U0 7-	. ŒŒ	. 01 . 9	. 0 79	. 05- U	рТ
ACFVL2	2. 7	U0 72	. 0.29	. 01 . 8	4 022-	. 05- U	p T
SC6 UV	13192	U0 71	. 0712	. OLU-	4 012	. 05- U	p T
Sp LM2 D6 AuV7	18335 5. 13	U0 71 U0 71	. 05U8 . 028	. 0133	4 08 4 078-	. 05-U . 05-U	p T p T
VACP2	1U-7	U0 7	. 055	. 0181	4 0229	. 05- U	рT
MSC6 1	- 3- 5	LO L9	. 0755	. 01.5	4 07-8	. O5- U	p T
XNKDU	152	U0 U8	. 0.77	. 011U	4.01-9	. 05- U	p T
ORLIG 7	329U	LO LB	. OULU	. 01 . U	4 0.73	. 05- U	p T
XHLDAU FQ SO1	17978 2. 28.	LO LB	. 0.21 . 0297	. 01 . 0 93	4 01-9 4 083	. 05-U . 05-U	р Т р Т
NASL11V	1-2-3	UO U	. 0759	. 0151	4 071U	. 05- U	p T
MU	539.	U0 U2	. 053-	. 019	4 0139	. 05- U	p T
CRL7A1	U987	U0 U	. 0.9-	. 01 U1	4 078	. O5- U	p T
CAB1	297U	U0 29	. 075U	. 01.5	. 0 79	. 05- U	рT
BPOMV	2 5-	U0 27	. 0271	. 0 8	4 019	. 05- U	p T
ANSP XLAp	1. 52 15129	UD 18 UD 18	. 0281 . 0579	. 0 9U . 0 82	4 0875 4 0839	. 05-U . 05-U	p T
XLAp VCAF1	15129 17UI	U0 18	. 0.79	. 01.82	4 0839	. 05- U . 05- U	p T p T
WKI	157	UQ IU	. 0225	. 0.35	4 0138	. 05- U	рT
SYDP1	18871	U0	. 0153	. 0 52	4 02. 2	. 05- U	p T
M6 DCUV	53	U0.7	. 0231	. 0 9	4 0.58	. 05- U	p T
G AX3DU	12. 32	U0.2	. O. U	. 0 - 8	4 0 5-	. 05- U	p T
CSNX2	7233	U0.1	. 0725	. 0172	4 0199	. 05- U	p T
RLMG L2A	1U91-	U U	. 02U9 . 07-	. 0.8	4 0 U	. 05- U	p T
GRED1 CDKL5	12 U U7. 8	20999	. 0/- . 0.U.2	. 015U . 0111	4 0 Ul 4 07. U	. 05-U . 05-U	p T p T
LAFS2	952-	20999	. 021U	. 0 31	4 0198	. 05- U	рT
CCDCU	U 5U	20995	. 07-5	. 0155	. 0 2-	. 05- U	рT
DAXKU	753.	20995	. 0257	. 0 85	4 09-3	. O5-U	pТ

Gene ID CDK-	Gene Name UJ99	Score (d) 2099	Numerator (r) . 0793	Denominator (s+s0)	Fold Change 4 0138	adjusted P value (%)	Direction p T
DRCK7	5. 83	2099	. 0299	. 0I	4 071-	. 05- U	рт
ADXNH	U7-	20988	. Œ	. 01	4 0 77	. 05- U	рT
GGD	12522	2098-	. 0LB 1	. 0127	4.01.8	. O5- U	p T
NMXL14AS1	1-75U	20982	. 021.5	. 0 39	4 0287	. 05-U	p T
FOM/N1 LXH6 2	19278 113	20981 20933	. 0235 . 0225	. 0 92 . 0 35	4 079- 4 0 3U	. 05 - U . 05 - U	p T p T
LRC7. 11-7	111-8	2093-	. 02UU	. 0 38	4 0.BU	. 05- U	рТ
CLD6 11	LB58	2093U	. 0577	. 018U	. 0 U2	. 05- U	p T
LAG C1	979-	209-8	. 0.38	. 0123	4 0719	. O5- U	рT
IOM/X-	87. 8	209-7	. 0.95	. a w	4 0 - 2	. 05- U	p T
GGP	12527	209-7	. 0U-U	. 0122	. 017	. 05- U	p T
LNNC15 S1 A2	1135- 13. UI	20953 20953	. 031 . 0315	. 027 . 0272	410UIU 4.0U81	. 05 - U . 05 - U	p T p T
Op LXI	3- U8	2095U	. OU 7	. 01 . U	4 0 55	. 05- U	рT
Z6 M521	21525	2095U	. 07. U	. 01 U-	4 0.1	. 05- U	рT
FGPG119	19759	20979	. 0737	. 01 - 1	4 @ U	. O5- U	p T
6 AG XF	1U 5-	20978	. 0.85	. 0LUI . 0.98	4 0251	. 05 - U	p T
KDPLC1 LRC1129U93	89-3 9972	20978 20973	. 029 . 0229	. 0 38	4 0581 4 05-7	. 05 - U . 05 - U	p T p T
MRELI	-3.5	20975	. 0.1.5	. 0117	4 0U-7	. 05- U	рT
Op CY1VU	3- U	20977	. 0212	. 0 32	4 0781	. O5- U	рT
KIAA. 7. 8	9. 23	209U9	. 0279	. 0 85	. 0 - 7	. O5- U	p T
CILX	UB11	209U8	. 08UB	. 0285	4 07-	. 05- U	p T
OLIXNI 6 NXI	315U 1UB1.	209U- 209U-	. 027 . 028U	. 0 82 . 0 93	4 02U5 4 0173	. 05 - U . 05 - U	p T p T
XDLIG2	1733U	209U-	. 015U	. 0 52	4 0523	. 05- U	рT
MLu723. 9	- 53.	209UU	. Œ-8	. 0 92	4 01-	. 0358	p T
LPXNPL1	98	209UU	. 0753	. 015-	4 0I U-	. Ø58	p T
A2G	5	20912	. 07U-	. 0179	4 0111	. 0858	p T
CDKL1	U7. 7 UJ-	20929 20928	. 0221 . 0599	. 0 35 . 02. 7	4 0183	. 0858 . 0858	p T
ADG MLu7113.	- 55.	20928	. 0133	. 0 -	4 0298 4 0191	. 0558	p T p T
PD6 1	5UU7	2092-	. 073U	. 01 - 1	4 0 97	. 0858	рT
AMAXIL1	LB.	20925	. 0231	. 0 92	4 028-	. 0358	p T
FGPG213	19532	20927	. 0.2	. 011	4 0885	. 0358	p T
CAND-	2898	2092	. 0.2-	. 0111	4 0 51	. 0858	p T
CAXZV ACFV	2891 2. U	2092 20919	. 01 U- . 01 97	. 0 73 . 0 - 3	4 0728 4 0 58	. 0858 . 0858	p T p T
ADC	U 1	20913	. 0258	. 0 89	4 051-	. 0558	рТ
VACP1	IU U	20915	. 1219	. 0 82	4 0772	. 0358	p T
FQ ISF1	2. 233	20915	. 0238	. 0 95	4 0133	. Ø58	p T
PXV71L2	5583	20917	. Œ	. 0l . U	4.0 - 5	. 0558	p T
XAE 1 MZD1	1753. - 829	20912 209. 9	. 0758 . 0L8-	. 01.53 . 01.UU	4 0 . 9 4 023	. 0858 . 0858	p T p T
OX6 G V	3L52	209. 8	. 02-1	.09	4 02. 1	. 0558	рT
NAVUL1	1-119	209.3	. OLU-	. 0 81	4.0778	. 0358	p T
ADDU	U21	209.3	. 078U	. 01	4 0 72	. 0358	p T
HSXA12V	8218	209	. 0.57	. 0122	4 0LB	. 0558	p T
ICAG 7 M2NL1	8U U 5383	209. 7 209. 7	. 021 . 0334	. 0 32 . 011-	4 0197 4 0 81	. 0858 . 0858	p T p T
OLI2	315.	209. U	. 011.5	. 0 7-	4 0U -	. 0558	p T
LRC11U727.	1. U7.	209. 1	. 0LB3	. OLU	41 01 1 1	. 0358	p T
6 I6 u2	1U7-2	209	. 0.8	. 0l Ul	4 05. 2	. Ø58	p T
A6 E A2XU	3	209	. 0.73	. 012	4 0U-9	. 0558	p T
XIFE2 X7HA2	15. 59 177U5	20898 20897	. 0.27 . 02-8	. 0112	4 0 55 4 0 - 1	. 0858 . 0858	p T p T
RDZ7	1U897	20897	. 025-	. 0 89	4 05. 2	. 0858	рT
A6 KNDUB	3	20892	. O.U.7	. 0115	4 0.98	. 0358	рT
OXE3	373U	20891	. 0.12	. 01 . 8	4 0.9	. 0858	p T
NR VR 1	1-3UI	20888	. 0219	. 0 3-	4 07	. 0558	p T
CSDC2	72UU	2088-	. 0199	. 0 - 9	4 0711	. 0858	p T
MRS GMAX2	35 12U77	20882 20838	. 0 U2 . 0788	. 0219 . 01-9	. 0 91 4102. 8	. 0858 . 0858	p T p T
PVM	529U	20833	. O2U-	. 0 82	. 0 28	. 0858	рT
AASS	23	2083-	. 0235	. 0 9-	4 0215	. Ø58	pТ
SF5	18-15	20832	. (D-7	. 0 92	4 07-7	. 0558	p T
MKVX3 LRC-751	- 713 11U83	208-8 208-3	. 0U13 . 0U5U	. 0111 . 012U	4 0751 4 071	. 0858 . 0858	p T
XDP1V	17328	208-3 208-U	. 0195	. 0.20	. 0 51	. 0558 . 0558	p T p T
G G X2UV	1257.	208- U	. 071U	. 0177	4.0137	. 0558	p T
LRC1 1U 33-	199	208-1	. 0198	. 0 - 9	4 0232	. 0358	p T
NAV3V	1- 1UB	20858	. 077-	. 01.5-	4 028	. 0858	p T
CSNXI	723-	20853	. ŒU	. 0 81	4 0 2U	. 0558	p T
FOM/I C1WF6 M	19273 212-	2085- 2085-	. 077 . 022U	. 0157	4 0922 4 0979	. Ø58 . Ø58	p T p T
SFR61	18313	2085-	. 0.23	. 0115	4 025-	. 0558	p T
MG 6 LU	LB	20857	. 0151	. 0 5U	4 0.73	. 0558	рT
6 RFCHU	1L597	2085U	. 0.113	. 0111	4 OU -	. 0358	p T
SACS	13. 58	2085	. 02-1	. 0 92	4 0 83	. 0558	p T
ARCU	33. 21-	20879	. 0735 . 0279	. 01 - 3 . 0 83	. 0 91 4 072-	. 0858	p T
ACF6 U DKMZX58- K152.	7912	20873 20873	. 0133	. 0 83	4 0/2- 4 0U	. 0858 . 0858	р Т p Т
MVL6 1	- 198	20872	. 0773	. 01-53	4 023-	. 0558	p T
DSPL	5181	20871	. 0.75	. 0121	4 0.55	. 0858	p T
SHUKVXI	13523	2087	. 12-	. 0 92	4.0122	. Ø58	p T
FNR	2 U7	208UB	. OLBU	. 0l Ul	4 05UB	. Ø58	p T
XFHIN	15929	208U7	. 01. 9	. 0 U8	4 0 89	. 0558	p T
PONU SPNXI6 P1	5U98 13U93	208U7 208UI	. 059	. 02. 8	4 0172 4 02-2	. 0858	p T
SPNXI6 P1 XLRD2	13U93 152. 9	208UI 208U	. 021.2 . 071.9	. 0 82 . 0155	4 02-2 4 052U	. 0858 . 0858	р Т р Т
FGPG158	195. 2	20823	. 0518	. 018U	4 0 LB	. 0558	p T
A6 EA2	358	20823	. 0.72	. 0121	4 018U	. Ø58	рT
MG R2	U9	20823	. OB. 1	. 0278	. 0 - 5	. 0358	p T
LNCH1 DXYSL2	1131- 5179	20825 2082U	. 0157 . 0.U	. 0 55 . 0 13	4 0.91 4 01. U	. 0858	p T p T
						. 0558	

Gene ID G G XU	Gene Name 1257-	Score (d) 20822	Numerator (r)	Denominator (s+s0) . (£2-	Fold Change 4 0737	adjusted P value (%)	Directio
HREA3	1257- 8. 9U	20822	. 0588	. 022- . 02. 9	4 0/3/	10 9-	p T p T
GF1A	12388	20821	. au-	. 01 U	4 0 25	10 9-	p T
NRVRU	1-3UU	20819	. 02. U	. 0 32	4 0 13	10 9-	p T
6 DPL1	11239	20819	. 0182	. 0 - 5	4 (LB-	10.9-	p T
KNF13 6 CKAX5L	9U19 1UIU3	20813 2081-	. 09-2 . 0121	. 0.72 . 0 7U	4 011 4 0017	10 9- 10 9-	p T p T
NCA6 2	1-U-7	20815	. 0252	. 0 89	4 0 29	10 9-	рT
LNN6 7CL	118UI	20811	. 0.2U	. 0115	. 0 75	10 9-	рT
LRC28U8-3	1. 8U7	208. 9	. 072	. 01.5	4 0 71	10 9-	рT
DRCK-	5. 89	208. 8	. 02-1	. 0 9U	4 0.11	10 9-	p T
AKFU	5. 2	208	. 0.5-	. 0123	4 0191	10 9-	p T
F6 MSM2A C1UbrfUU	1932- 187-	208 208. 7	. 0758 . 075	. 01 - U . 01 -	4 078- 4 01-	10 9- 10 9-	р Т р Т
CASF	29U7	208.7	. 021.5	. 0 87	4 01 19	10 9-	рТ
XNICKLP2	15-28	20893	. 0.53	. 0128	4 (2	10 9-	p T
N6 M75	155	2039-	. 02-7	. 0 97	4 0199	10 9-	p T
FGPG1U2P	1973-	20897	. 0015	. 011U	4 (288	10 9-	p T
ZMKU-L1	21192	20892	. O.U.B	. 0121	4 0115	10 9-	p T
G YR5A XFXNO	12981 15935	20889 2088-	. 0277 . 017-	. 0 83 . 0 52	4 08 4 0272	10 9- 10 9-	p T
CSDA	72U2	20885	. 073-	. 0131	4 0227	10 9-	p T p T
F6 MNSM A	193UU	20882	. 0212	. 0 3-	4 0517	10 9-	рT
CDC17V	W -	2088	. 01 - 8	. 0 - 1	4 0 58	10 9-	рT
G RVKL2V	125	2039	. 027-	. 0 89	4 0 31	10 9-	p T
Z6 M5U2	215UU	2037	. 0238	. 01	4 0.2	10 9-	рT
DXX7	512-	203U	. 07. 1	. 01.75	4 0.5-	10 9-	p T
C8orf7 FVE5	2- U9 19. 33	203U 203	. 087 . 0158	. Œ- 3 . 0 53	4 0 4 0.9-	10 9- 10 9-	p T
HSUSFUA1	81	2083	. 01-8	. 0 - 1	4 0588	10 9-	p T p T
A6 R-	3U9	208-9	. 017U	. 0 52	4 0117	10 9-	p T
XPCAG 1	1781.	203-3	. 0233	. 01	. 0152	10 9-	p T
FOM/U	1927-	20B-3	. 0751	. 01 - U	4 079U	10 9-	p T
C6 F6 AXU	U97.	208-5	. 0.32	. OI U.5	. 0 18	10 9-	p T
CIWF6 M	2121 2123	208-7 208-2	. 0272	. 0 88	4 02-7	10 9- 10 9-	p T
C1WF6 M8 DIR2	7839	208-2 208-	. (2 . (2-3	. 0 35	4 0115 4 029U	10 9-	р T p T
PYA2	5332	2059	. 0783	. 0133	4 (2LB	10 9-	p T
G MAX7	12U73	20859	. OB L 2	. 02-5	40.8	10 9-	рT
HAS2	331.	2035-	. 0173	. 0 5U	4 0.77	10 9-	рT
G YR 1P	12935	20355	. 028U	. 01 . U	4 0.5	10 9-	p T
CCDCU	U 53	20857	. 0198	. 0 32	4 0.71	10 9-	p T
HREA9	8. 97	2085	. 0.U.8 . 025-	. 012U	4 011-	10 9-	p T
p SF MHAD1	2. 599 - LB9	20878 20878	. 01U	. 0 9U . 0 73	4 0257 4 013-	10 9- 10 9-	p T p T
SC6 2V	1319.	2087-	. 02. 9	. 0 3-	4 021	10 9-	p T
6 F 5 P	1UB73	20371	. 02-U	. 0 9-	4 (252	10 9-	p T
S6 AI1	181U2	2037	. 0.112	. 0117	4 0799	10 9-	p T
CRNI6	7. 79	2087	. 02-1	. 0 95	4 0 83	10 9-	p T
AFXI IV	1188 18-1.	2087 2087	. OLI 9 . O22-	. 0l 1U	4 0.11	10 9- 10 9-	p T
SFUOAL2 KNF5	9U73	208U8	. 08-7	. 0 82 . 0.11-	4 0187 4 0 - 5	10 9-	p T p T
6 KEU2	1U5. U	208U5	. 0.8	. 01 U9	410129	10 9-	рT
ACRF9	1-3	20BU7	. 0257	. 0 9U	4 021	10 9-	рT
S1XN2	13. 73	208UU	. 0255	. 0 9U	4 0 7-	10 9-	p T
DND7	51-1	208UI	. 0.9-	. 0175	410 28	10 9-	p T
VHG F2	15. 9	20BUI	. 021.5	. 0 8-	4 0 - 2	10 9-	p T
PFHP1 XANX7	531U 17551	2(B29 2(B29	. 0277 . 01-7	. 0 9 . 0 -	4 0775 4 0U U	10 9- 10 9-	p T
OuC1	312-	20829	. 0LB9	. U - . U U9	4 0539	10 9-	p T p T
XNPLX	15-17	20823	. 01. 8	. 0 7	. 0 59	10 9-	p T
NALV	1-195	2032-	. 0275	. 0 9	4 05	10 9-	рT
GF1H	12397	20327	. O.I 3	. 011U	4 012	10 9-	p T
CH25H	U585	20827	. 07-8	. 0132	. 0 13	10 9-	p T
KNF17	9UI 5	2032U	. 098-	. 0.1-2	4 0 95	10 9-	p T
CHN6 A3 A6 E A8L2	U-3 3	2082U 2082	. 022 . 09UI	. 0.81	4 0U-5 4 0288	10 9- 10 9-	p T
ORLOA8P	3289	20819	. 0252	. 0.9U	4 018	10 9-	p T p T
SPNXI6 P2	13U98	20318	. 07. 1	. 0178	4 0.9-	10 9-	рT
KNF1-X2	9U18	2031-	. 083	. 0.2	4 0 L2	10 9-	p T
Clorf57	2211	20315	. 02U9	. 0 88	4 0I U	10 9-	p T
CC6 R	UI 39	2031U	. 08UI	. 0.1 -	4 0783	10 9-	p T
CDK6 1C	U711	20312	. 07	. 0178	4 0 75	10 9-	p T
HSD13V11 SLC1- A3	8182 13-95	20312 203. 8	. 0.12 . 018	. 0l 18 . 0	4 0 UI . 0 53	10 9- 10 72	p T p T
NXS- KAU	1-898	203.8	. 01-8 . 02-8	. 0 99	. 0 U2	10 72	p T p T
CRL17A1	U9	203. 8	. 077U	. 01 - 7	4 0 92	10 72	p T
6 PDD9	IU.5.	203.8	. 0297	. 01. 9	4 (277	10-72	p T
ANHOPM	9-7	203.5	. O2U7	. 0 8-	4 0178	10.72	p T
KA6 K7	882.	203.1	. 0595	. 022	4 0 12	10 72	p T
MLIXIL	- U99	20.99	. 02. 8	. 0 33	4 0778	10.72	p T
OSFXI G PM0A	3538	20.98	. 052U . 02-U	. 0197 . 0 98	4 0 51	10 72 10 72	рТ
G PM2A LNX12	122-9 113U8	20 9- 20 92	. 02- U . 001-	. 0/98	4 027U 4 0531	10 72	p T p T
XCDHOA8	17-52	20-92	. 019-	. 0 3U	4 01U	10 72	рт
IWCu4SCHIXI	8-73	20-91	. 0291	. 01. 8	4 01 12	10 72	рT
XID1	17982	20-91	. 0.31	. 0I U8	. 0 . U	10 72	p T
GPCRG	122U-	20 89	. 02. 9	. 0 38		10-72	p T
CFIM	7L2-	20 83	. 0292	. 01. 9	4 0193	10-72	p T
IFOV-	83U-	20-8-	. 05U8	. 02	4 02-7	10 72	p T
CYLD	77-9	20-8-	. 0215	. 0 8	. 0 5-	10-72	p T
KLM9	9211	20 8U	. 0U-1	. 01 U7	4 0179	10.72	p T
XDP3V Z6 M88.	1737- 2138U	20 82 20 81	. 0227 . 0217	. 0 8U . 0 8	4 0179 4 0.51	10 72 10 72	p T p T
F6 C	1931.	20-81	. 058	. 021-	4 0.13	10 72	p T p T
					4 0532	10 72	P 1

Gene ID SOCV	Gene Name 137-9	Score (d) 20-35	Numerator (r) . (257	Denominator (s+s0) . 0 95	Fold Change 4 (L98	adjusted P value (%)	Direction p T
G AMV	11955	20 35	. 0297	. 011	4 019-	10 72	рT
Z6 M 99	21U	20-37	. 01 U.B	. 0 51	4.0171	10 72	p T
LRC1 5. 58	1. 757	20 3U	. 0725	. 0159	4 0722	10 72	pТ
KLM.	919-	20-32	. OUI -	. 0118	4. 0I - 2	10 72	p T
ORLOA-L1.	3281	20-31	. O.I	. 0117	4 0528	10 72	p T
ONID1	35. 2	20 - 9	. 01	. 0 7	. 0 21	10 72	p T
CDHN2	U.B.	20 - 8	. 0227	. 0 87	4.05-5	10 72	p T
SLCU8A2	13891	20 - 3	. 02U5	. 0 88	4.01.1	10 72	p T
PGE2 6 RFCH7	55LB 1LB95	20 - 3 20	. 0213 . 0.18	. 0 81	4 0171 4 0 . 8	10 72 10 72	p T
NCVFV2	1-U-3	20	. 0225	. 0 85	.03	10 72	p T p T
RDZ2	1U892	20 - 7	. 0525	. 0193	4 013-	10 72	рT
LRC328 1	115	20 - 1	. 0.81	. 017U	4 079U	10 72	рT
6 N6 1	1LB. 8	20-1	. 0.1.2	. 0125	4 ŒU9	10 72	рT
SXAFA9	18U85	20 - 1	. 0LU2	. 0 5	4 0.28	10 72	p T
G NAS	12- U9	20-59	. 0.87	. 0177	. 0 - 3	10 72	pТ
XFX6 17	15957	20-59	. OU 2	. 01 U-	4 0232	10 72	p T
up 6	881.	20-53	. 071U	. 015-	. 0 82	10 72	pТ
NRNA	1-375	20-53	. ŒU8	. 0 9	4 02. U	10 72	pТ
CILX2	UB12	20-5-	. 0738	. 018	4 0878	10 72	p T
BDN	2 57	20-5U	. 029U	. 01 1	4 0.97	10 72	рT
F6 MAIX8	1931-	20-73	. 0232	. 01 . U	4.0 - 2	10 72	рT
CDH2	U.5-	20-73	. 0785	. 018U	410 18	10 72	рT
NASD1	1-251	20 7U	. 05-	. 0212	4.01-	10 72	p T
p VP2W2XI	2. USU 18 2	20 U 20 U	. 02U9 . 01 - 2	. 0 91	4.01.5	10·72 10·72	p T
SG AD9					. 0 8U		p T
EYLF1 D6 AuC18	2. 99- 5. U2	20 U7 20 U7	. 02U . 0139	. 0 83	4 0U 8 4 0 - 8	10·72 10·72	p T p T
LRC7 7-7	3. UZ 111UI	20 U/ 20 U	. 0139	. 0 37	4 0 - 8	10 72	p I p T
XPN1	17827	20-28	. 0.79	. 01 UU	4 0 8U	10 72	рТ
Np 6 E l	1-998	20-2-	. 0297	. 0112	4 032U	10 72	рT
MAG 2. C	11	20-25	. 0.28	. 0125	4 0 9-	10 72	p T
LANX-	9513	20-25	. 0.1.5	. 0128	4.0188	10 72	рT
Xp NO	1	20 2U	. 0128	. 0 79	4 07. 7	10 72	pТ
MAVX5	58. 5	20-21	. 07Ul	. 01 - 7	4 0 UB	10 72	pТ
C1Ubrf15	18LB	20-18	. 0.117	. 012	4 0 81	10 72	p T
ADAG FSL2	289	20-13	. 0231	. 01 . 7	4 0935	10 72	pТ
PHDU	57. 7	20-13	. 0193	. 0 35	4 0.29	10 72	pТ
SDC1	1322-	20-15	. 0778	. 0131	4 0813	10 72	p T
FSC22DU	29	20-15	. 0.2U	. 012U	4.01-7	10 72	p T
XC6 E	17-87	20-15	. OLU	. 0 88	4 0U 9	10 72	p T
MAG 7UV CHSF 12	71 U-39	20-11 20-11	. Œ-8 . Œ. 2	. 01. U . 0.33	4 0U 1 4 0IU	10·72 10·72	p T p T
NC6 1	1- LB7	20 1	. 0.17	. 012	4 012U	10 72	рT
MAG 89A	- 1U9	20.9	. 0.1.7	. 0128	. 01-7	10 72	рT
CECL2	77. U	20.3	. 0598	. (229	. 0 8	10 72	p T
GIAF	127U	20	. 07 - 8	. 018	4.051-	10 72	p T
KC6 ul 5	889-	20.5	. 0112	. 0 7U	4 BW	10 72	pТ
6 XHXU	1U-2-	20. U	. O. U	. 0 38	4 OU -	207	pТ
LRC119.9U9	1. U U	20.1	. 0.73	. aw	4 0193	207	pТ
IM1-	8UL5	20599	. 0.27	. 0127	4.0151	207	pТ
PG ILI6 2	5521	20598	. 0.1.5	. 0129	4 0 UU	207	p T
CXP	7. 98	20598	. 0525	. 02. 2	4 019U	207	p T
LRC11U	15	20593	. 0 - 8	. 0253	4 0293	207	p T
IL7N	8523	20597	. 0275	. 0 95	4 0 3U	207	p T
CRE3A1 ZCCHC11	7. 39 21121	2059U 20592	. 0759 . 021-	. 0133 . 0.8U	4 0183 4 01UU	207 207	p T
C-orf175	25UU	20592	. OU 1	. 011-	4 0 88	207	p T p T
XLAOL1	1512-	20589	. 0212	. 0 82	40.2	207	рT
AMAXI	U-8	20589	. 018-	. 0 32	4 05	207	рT
CSXO7	72-8	20588	. OLL9	. 0I UI	4 052	207	рT
CD99XI	w.	20588	. 0212	. 0 82	4 0895	207	рT
A6 KS-	329	20583	. 0713	. OI - 1	4.0 - 3	207	рT
p VFD2	2. 717	20583	. 0213	. 0 87	410 U9	207	рT
G AOPH1	1199.	20585	. 0.12	. 0113	4 (225	207	p T
FX5UU	198U	20585	. (239	. 01 . 8	4 01	207	pТ
CHSF11	U-38	20585	. 02-7	. 01 . 2	4 0 79	207	p T
ANHOAXI.	91.	2058U	. 0237	. 01	4 0253	207	p T
ORXC	3U.	2058	. 0189	. 0 3U	4 075U	207	p T
C9orfU	231-	2058	. 0181	. 0 3	4 0525	207	p T
KAF6 AL1	88U	20539	. 0277	. 0 95	4 07. 3	207	p T
VACH1	1U-5	20539	. 01 - U	. 0 - U	4 0219	207	p T
LVH IODCC7	9529 8U9U	20539 20539	. 01 - 9 . 0295	. 0 - 5 . 0117	4 0J 5 4 0I 72	207 207	р Т р Т
FFC2U	2. 153	20539	. 02U9	. 0.17 . 0.9U	4 01/2	207	p I p T
HRRKU	8. 38	20538	. 0271	. 0 97	4 0219	207	рТ
P6 FXD1	553.	20533	. (2. 1	. 0 38	4 0139	207	p T
RLMG L1	1U915	20533	. 013-	. 0 - 8	4 02U8	207	рT
LG 6 A	93UI	2053-	. 021-	. 0 87	4 0.5-	207	рT
G YH9	12977	2053-	. 02. 8	. 0 81	4 0U U	207	p T
HIBPX2	39-7	2053-	. 128U	. 01 1	4 07-	207	рT
XAXXA	1751-	20535	. 0292	. 0117	4 08	207	p T
MHRDU	- U83	20531	. 07. 7	. 0153	4 0.72	207	pТ
CLPCUV	LB93	205-8	. OLB8	. 0173	40.9	207	p T
ADCY3	UI7	205-3	. @ 3U	. 01	4 05. 2	207	pТ
FOM/N2	19279	205-U	. 029-	. 0115	. 01 U7	207	p T
IL11	8751	205-	. 02 U	. 0 9	41029U	207	p T
ANPO	89.	205-	. 0815	. 0.18	4 0LU	207	p T
Q DN- U	2. 8UB	2055-	. 0132	. 0 - 3	4 0 11	207	p T
VHLHP22	15. 7	20555	. 0.5	.0113	. 0 . 8	207	p T
AS6 S	111U	20557	. OU 1	. 0118	4 0798	207	p T
OAL6 FL2 Q IXM	- 919 2 802	20557	. 01.8-	. 0151	4 012	207	p T
UTAN	2. 892 1837-	20579 20579	. Œ. 3 . Œ98	. 0 81	4 0131 4 0U-1	207 207	p T
			. UL 70	. ULIJ			рT
SFE2 GF2A	12399	20578	. 0.9-	. 01.55	4 0 37	207	p T

	Dp SX Z6 MU8 AMAXIL2 V6 IXIL 6 XC2 OAVNV2 XNNSL XCDHV17 ME 6 U KC1, 5, 35, 3 LRC175-97 CLIC7 p6 CSV CLD65 LRC-5U 35 CX6 P8 FMQ PNG6 BCL XCDHV1- XXDHV1- XXDHV1- XXDHV1- XXDHV1- XXDHV1- XXDHV1- XXDHV1- XXDLC F6 AX KNF72X CU67-7 FSXA6 2 OLO1 XLPKHO1 SY62 FGP G113 NAXQV SLCU9A1U CU6753 ZSQ 1G7 XLSCN7 NAXOPM2 CVY923C1 FVC1D2 ANSV 6 IXAL7 VFVD19	5218 217-9 181 15 11U-13 -8-8 15359 17-U7 -31. 1. 5U7 172 1815 2. 791 1837 11787 711- 19215 5-3. 27- 17-U- 929 155UU 193. 9 9U7- 2723 2. 1. 3 3178 15135 18873 19758 1-225 139. U 272U 218U7 15219 1-228 7788	26578 2657- 2657U 2657U 2657U 2657 2657 2651L2 26529 26528 2652 26518 26518 26518 26518 26518 26518 26518 26518 26518 26518 2651 2051 2051 205. 1 2059 20799 207993 2079- 20797 20797 20797 20797 20799U 2079 20783 20783	. 0.8U . 0.85 . 0.12 . 0.15 . 0.23 . 0.15 . 0.22 . 0.10 . 0.22 . 0.10 . 0.11 . 0.12 . 0.82 . 0.11 . 0.12 . 0.83 . 0.80 . 0.73 . 0.9 . 0.53 . 0.10 . 0.70 . 0.39 . 0.2 . 0.77 . 0.40 . 0.778 . 0.20 . 0.778 . 0.20 . 0.778 . 0.20 . 0.778 . 0.20 . 0.778 . 0.20 . 0.778 . 0.20 . 0.778 . 0.20 . 0.778 . 0.20 . 0.778 . 0.20 . 0.778 . 0.20 . 0.778 . 0.20 . 0.778 . 0.20 . 0.778 . 0.20 . 0.778 . 0.20 . 0.778 . 0.20 . 0.778 . 0.20 . 0.319 . 0.339 .	. 0.51 . 0.3U . 0.1U . 0.9U . 0.9 . 0.2 . 0.9 . 0.19 . 0.88 . 0.97 . 0.27 . 0.12 . 0.52 . 0U . 0.27 . 0.35 . 0.1U . 07 . 0.99 . 0.59 . 0.39 . 0U . 0.1U . 0.10 . 0.53 . 0.32 . 0.8 . 0.99 . 0.10 . 0.10 . 0.88 . 0.99 . 00 . 0.88	. 0 72 4 ŒLB 4 Œ17 4 0 2 4 Œ11U 4 Œ559 4 Œ15 4 Œ13 4 Œ11 4 Œ13 4 Œ11 4 Œ18 4 Œ55 4 Œ57 4 Ū 29 . 0 5- 4 Œ B 4 Ѿ51 4 Ū - 9 4 Ѿ7 4 Ū 29 . 0 7 2 Ū 4 Ѿ7 4 Ѿ93 4 Ѿ51 4	207 207 207 207 207 207 207 207 207 207	PT P
	AMAXIL2 V61XLL 6 5XC2 OAVNV2 XNNSL XCDHV17 MRE6U KC1. 5. 35. 3 LRC175-97 CLIC7 p6 C5V CLD65 CK6 P8 FMG PNG6 BCL XCDHV1-ANHOAXII XXCDHV1-ANHOAXII XXOLUC F6 AX KNF72X CU675 F6 AX KNF72X CU676-7 F5XA6 2 OLO1 SY6 2 F6 P6 113 NAX2V SLCUPAIU CU6753 ZSQ 167 XLSCN7 NAXOPM2 CYY23C1 FVC1D2 ANSV 6 DXL7 FVC1D2 ANSV 6 DXL7 FVC1D2 ANSV	UB1 15 1U-13 -8-8 153559 17-U7 -31. 1. 5U7 172 UB15 2. 791 UB37 11787 711- 192U5 5-3. 27- 17-U 929 155UU 193. 9 9U7- 2723 2. 1. 3 3178 15135 18873 19758 1-225 139. U 272U 218U7 15219 1-528 7788	2(677 267 U 267 U 267 U 267 U 267 U 267 U 268 U	. GLE . @U5 . @33 . @5 @33 . @5 @28 . @5U . @22 . @UB . @AU . @5 @82 . @11 . @83 . @8U . @1 @73 . @85 . @73 . @9 @73 . @9 @73 . @9 @73 . @9 @78 . @70 . @78 . @2 @18 . @31 . @39	. Q UI . 0 9U . 0 . 9 . 02 . 0 9 . Q UP . 0 88 . 0 97 . Q 27 . Q . 2 . 0 52 . Q - U . Q 27 . 0 35 . Q 1 U . 0 - 7 . 0 99 . Q 59 . 0 39 . 0 - U . Q 12 . 0 53 . 0 32 . 0 8 . 0 99 . Q 0 88 . 0 99 . Q 0 88 . 0 - 9	4 (217 4 0 2 4 (011) 4 (559 4 (815) 4 (213) 4 (011) 4 (511) 4 (055) 4 (055) 4 (055) 4 (055) 4 (077) 4 0 29 . 0 55- 4 (0.18) 4 (0.25) 4 (0.17) 4 (0.18) . 0 72 4 (0.17) 4 (0.18) . 0 72 4 (0.17) 4 (0.18) . 0 72 4 (0.19) 4	207 207 207 207 207 207 207 207 207 207	PT PT PT PT PT PT PT PT PT PT PT PT PT P
LRR	6 XC2 OAVNV2 XNNSL XNNSL XCDHV17 MRE 6 U RC15, 35, 3 LRC175-97 CLIC7 p6 C5V CLD6 5 LRC-5U 35 CX6 P8 FMI PNG 6 BGC BCC BCC BCC BCC CWCP8 FMI PNG 6 BCC CUD47 SV61 SV61 SV61 SV62 FG AX KNF72X CUb47-7 FSXA6 2 OIL01 JL.PKHO1 SV62 FG G113 NAX2V SLCUPAIU CUb473 ZSQ1G7 XLSCN7 NAX0PM2 CYY23C1 FVC1D2 ANSV 6 DXAL7 VFVD19	1U-13 -8-8 15359 17-U7 -31. 1.5U7 172 U815 2.791 U837 11787 711- 192U5 5-3. 27- 17-U- 929 155UU 193.9 9U7- 2723 2.1.3 3178 15135 18873 19758 1-225 139.U 272U 218U7 15219 1-528 7788	2067 20612 20612 20612 20629 20628 2062 20618 20618 20613 2061 2061 206. 8 206. 7 206. U 206. 2 206. 1 20799 20799 20797 20797 20797 2079 2079	. 033 . 035 . 028 . 0.5U . 0222 . 0UB . 0.1U . 025 . 0.82 . 0711 . 0.112 . 0.83 . 0.80 . 0.73 . 0.85 . 0.73 . 0.95 . 0.10 . 0.73 . 0.95	. 0. 9 . 0 - 2 . 09 . 0 19 . 0 88 . 0 97 . 0 27 . 0 35 . 0 11 . 0 - 7 . 0 99 . 0 35 . 0 10 . 0 59 . 0 39 . 0 - U . 0 12 . 0 32 . 0 32 . 0 32 . 0 39 . 0 - U . 0 39 . 0 - U . 0 39 . 0 39 . 0 - U . 0 39 . 0 3	4 0 1 U 4 0559 4 0815 4 0213 4 01 U 4 0511 4 0 98 4 0555 4 0893 . 0 87 4 0 7 4 0 29 . 0 5- 4 0 08 4 0251 4 0 -9 4 0.75 4 0 18 - 0 72 4 0 07 4 0 19 4 0 17 4 0 19 4 0 17 5 0 10 6 0 10 7	207 207 207 207 207 207 207 207 207 207	PT P
LRRIL	OAVNV2 NONSL XCDHV17 ME6 U XCL 5. 35. 3 LRC175-97 CLIC7 P6 CSV CLD6 5 LRC-5U 35 CX6 P8 FMG BCL XCDHV1- ANHOAXU XOAUCC F6 AX KNF72X CUbrF-7 FSXA6 2 OLO1 SY6 2 FGPG 113 NAX2V SLCUPAIU SLCUPAIU SCUPFT SICONOM SLCUPAIU SY6 2 FGPG 113 NAX2V SLCUPAIU CUbrF3 XSQLC SLCUPAIU CUbrF3 NAX0PM CYX23C1 FVC1D2 ANSV 6 DAL7 VFVD19	-8-8 15359 17-U7 -31. 1.5U7 172 U815 2.791 U837 11787 711- 192U5 5-3. 27- 17-U 929 155UU 193.9 9U7- 2723 2.1.3 3178 15135 18873 19758 1-225 139.U 272U 218U7 15219 1-528 7788	267 265U 265U 26529 26528 2652 26518 26518 26518 26518 26518 265. 8 265. 7 265. U 265. U 265. U 265. 1 269. 1 269. 1 269. 1 269. 2 2799 2799 2799 2799 2799 2799 2799 27	. 0.5 0.28 . 0.5U . 0.22 . 0.18 . 0.10 . 0.5 0.82 . 0.71 . 0.12 . 0.83 . 0.80 . 0 0.73 . 0.9 0.53 . 0.0 . 0.73 . 0.9 0.53 . 0.0 . 0.70 . 0.70 . 0.70 . 0.70 . 0.70 . 0.78 . 0.20 . 0.78 . 0.20 . 0.78 . 0.20 . 0.78 . 0.20 . 0.78 . 0.20 . 0.78 . 0.20 . 0.218 . 0.31 . 0.39	. 0 - 2 . 0 9 . 0 19 . 0 88 . 0 97 . 0 27 . 0 12 . 0 52 . 0 - U . 0 27 . 0 35 . 0 11U . 0 - 7 . 0 99 . 0 5 . 0 59 . 0 39 . 0 - U . 0 12 . 0 53 . 0 32 . 0 8 . 0 99 . 0 5	4 0559 4 0815 4 0213 4 0111 4 0511 4 0 98 4 0555 4 0893 . 0 87 4 0 7 4 0 29 . 0 5- 4 0.B 4 0.51 4 0 -9 4 0.75 4 0.B 0 72 4 0.77 4 0.99 4 0.77 4 0.99 4 0.79 4 0.79 4 0.79 4 0.79 4 0.79 4 0.79 4 0.79 4 0.79 4 0.79 4 0.79 5 0.79 6 0.79 7 0.	207 207 207 207 207 207 207 207 207 207	PT P
	NNNSL XCDHV17 MRE6 U XC1. 5. 35. 3 IRC175-97 CLIC7 P6 CSV CLIC65 IRC-5U 35 CX6 P8 FMM PNG6 BCL XCDHV1- ANHOAXII XXXMLC F6 AX KNF72X CUbrf-7 FSXA6 2 OLO1 XLPKHO1 SY62 FGPG113 NAXEV SLCUPAIU CUbrf3 XSQU CUbrf3 XSQU CUbrf4 TFSXA6 2 OLO1 XLPKHO1 SY62 FGPG113 NAXEV SLCUPAIU CUbrf3 XSQU CYX23C1 FVC1D2 ANSV 6 DXAL7 VFVD19	15359 17- U7 -31. 1. 5U7 -31. 1. 5U7 172 U815 2. 791 U837 11787 711- 192U5 5-3. 27- 17- U4 929 155UU 193. 9 9U7- 2723 2. 1. 3 3178 15135 18873 19758 1-225 139. U 272U 218U7 15219 1-228 7788	20512 20529 20528 2052 20518 20513 2051 2051 2051 205. V 205. V 205. U 205. U 205. 1 205. 1 20799 20799 20799 20797 20797 20797 20797 20797 20790 20799 20797 20797 20790 20793 20795 20797 20790 20793 2079	. 028 . 0.5U . 022 . 0.1B . 0.11 . 0.5 0.82 . 0.11 . 0.12 . 0.83 . 0.80 . 0.73 . 0.85 . 0.73 . 0.9 0.53 . 0.9 0.53 . 0.9 0.53 . 0.9 0.53 . 0.9 0.53 . 0.9 0.53 . 0.9 0.53 . 0.9 0.53 . 0.9 0.53 . 0.9 0.53 . 0.9 0.53 . 0.9 0.53 . 0.9 0.53 . 0.9 0.53 . 0.9 0.53 . 0.9 0.53 . 0.9 0.53 . 0.9 0.53 . 0.9 0.53 . 0.9 0.	.09 .019 .088 .097 .027 .0.2 .0.52 .0-U .027 .035 .011U .0-7 .099 .05 .059 .039 .0-U .012 .053 .032 .08 .099 .008	4 (815 4 (213 4 (1011) 4 (10511) 4 (1051) 4 (1055) 4 (1055) 4 (1057) 4 (1057)	207 207 207 207 207 207 207 207 207 207	PT P
	XCDHV17 MRE6U MRE6U CL1. 5. 35. 3 LRC175-97 CL1.C7 p6 C5V CLDc5 CXCP8 FMI PNG6 BCL XCDHVI- ANHOAXU XOULC F6 AX KNF72X CUbr6-7 FSXA6 2 OLO1 SY62 F6PG113 NAX2V SLCUPAIU SLCUPAIU SLCUPAIU SLCUPAIU SLCUPAIU SLCUPAIU SLCUPAIU SLCUPAIU SLCUPAIU CLORES SLCUPAIU	17- U7 -31. 1. 5U7 172 U815 2. 791 U837 711- 192U5 5-3. 27- 17- U4 929 155UU 193. 9 9U7- 2723 2. 1. 3 3178 15135 18873 19758 1-225 139. U 272U 218U7 15219 1-5228 7788	26EUI 26E29 26E28 26E2 26E18 26E18 26E18 26E18 26E1 26E1 26E1 26E. 2 26E. U 26E. U 26E. U 26E. 1 26P99 26P99 26P99 26P99 26P97 26P97 26P97 26P97 26P9U 26P9 26P983 26P83	. 0.5U . 0.22 . 0.10 . 0.25 . 0.82 . 0.71 . 0.112 . 0.83 . 0.80 . 0.73 . 0.9 . 0.73 . 0.9 . 0.73 . 0.9 . 0.73 . 0.9 . 0.73 . 0.9 . 0.73 . 0.9 . 0.73 . 0.9 . 0.73 . 0.9 . 0.73 . 0.9 . 0.73 . 0.9 . 0.73 . 0.9 . 0	. Q L9 . 0 88 . 0 97 . 0 27 . 0 . 2 . 0 . 52 . 0 - U . 0 27 . 0 . 35 . 0 1 U . 0 - 7 . 0 99 . 0 . 59 . 0 39 . 0 - U . 0 L2 . 0 . 53 . 0 . 32 . 0 . 8 . 0 99 . 0 0 88 . 0 - 9	4 @13 4 @U 4 @518 4 0.98 4 @555 41@93 . 0.87 4 0.79 4 0.29 . 0.55 4 0.8 4 @51 4 0.9 4 0.75 4 0.8 . 0.72 4 0.77 4 0.99	207 207 207 207 207 207 207 207 207 207	PT PT PT PT PT PT PT PT PT PT PT PT PT P
	MREG U SCL. 5, 35, 3 LRCL175-97 CLICT P6 CSV CLDG5 LRC-5U 35 CX6 P8 FM0 PNG6 BCL XCDHVI- ANHOAXII XXXLC F6 AX KNF2X CUbrf-7 F5XA6 2 OLOI XV62 FGPG 113 NAXEV SLCUPAHU SV62 FGPG 113 XXXLC SLCUBR TX XXLC SLCUBR TX XX	-31. 1.5 U7 1 17 U815 2. 791 U837 11787 711- 19215 5-3. 27- 17-14 929 15510 193.9 90.7- 2723 2. 1. 3 3178 15135 18873 19758 1-225 139. U 27210 218107 15219 1-528 7788	2(629) 2(628) 2(628) 2(618) 2(618) 2(611) 2(611) 2(61) 2(65) 2(65) 2(65) 1(65) 2(65) 1(67) 2(67)	. 022 . 01B . 0.11U . 025 0.82 . 0711 . 0.12 . 0.83 . 0.80 . 0 073 . 0.85 . 0.05 . 0.73 . 0.9 0.53 . 0.0U . 0.70 . 0.70 . 0.78	. 0 88 . 0 97 . 0 27 . 0 . 2 . 0 52 . 0 - U . 0 27 . 0 35 . 0 11U . 0 - 7 . 0 99 . 0 5 . 0 59 . 0 39 . 0 - U . 0 12 . 0 8 . 0 99 . 0 8 . 0 99 . 0 . 0 8	4 0 U I 4 0 11 1 4 0 98 4 0 98 4 0 95 5 4 10 99 3 .0 87 4 0 0 7 4 0 29 .0 5 -4 0 B 4 0 0 51 4 0 -9 4 0 0 75 4 0 0 B0 72 4 0 7 4 0 29 5 4 0 19 3 4 0 10 10 10 10 10 10 10 10 10 10 10 10 1	207 207 207 207 207 207 207 207 207 00-7 00-	PT PT PT PT PT PT PT PT PT PT PT PT PT
	LRC175-97 CLIC7 p6 CSV CLIC6 5 LRC-5U 35 CX6 P8 FM1 PNG6 BCL XCDHVI- ANHOAXU XOOLCC F6 AX KNF72X CUbrE-7 FSXA6 2 OLOI SY6 2 FGPG 113 NAX2V SLCUPAIU CUbrE3 XSQLG 7 XLSCN7 NAXOPM CYX23CI FVCID2 ANSV 6 IXAL7 VFVD19	1 72 UB15 2. 791 UB37 11787 711- 192U5 5-3. 2 7- 17- U4 929 155UU 193. 9 9U7- 2723 2. 1. 3 3178 15135 18873 19758 1- 225 139. U 272U 218U7 15219 1- 228 7788	2052 20518 20518 20518 20513 2051 205.8 205.7 205.U 205.2 205.1 20799 20799 20799 20797 20797 20797 2079U 2079 20793 2079 20790 20790 20793 20797 20797 20797 20797 20797 20790 20793 207983 20783	. Q.I.U . Q.5 Q.82 . Q.11 . Q.12 . Q.83 . Q.8U . Q.73 . Q.5 Q.73 . Q.9 Q.53 . Q.U . Q.7U . Q.39 . Q.C . Q.78 . Q.C . Q.18 . Q.31 . Q.39	. 0.27 . 0.2 . 0.52 . 0U . 0.27 . 0.35 . 0.1U . 07 . 0.99 . 0.5 . 0.59 . 0.39 . 0U . 0.1U . 0.12 . 0.53 . 0.32 . 0.8 . 0.99 . 0	4 0.98 4 0555 40693 . 0.87 4 0.7 4 0.29 . 0.5- 4 0.8 4 0251 4 0.9 4 0.75 4 0.8 0.72 4 0.7 4 0.99 4 0.99 4 0.90 9 0.27 9 0.027 9 0.027	207 207 207 207 207 207 207 207 20-7 100-7	PT PT PT PT PT PT PT PT PT PT PT PT PT
	CLIC7 p6 C5V CLD65 LRC-5U 35 CCM6 P8 FM1 PNG6 BCL XCDHVI- ANHOAXU XXXXXI XXXXI CUnf-7 F5XX62 OLO1 XLPKHO1 XLPKHO1 XXQV SLCUB-13 XXQV SLCUB-13 XXQV SLCUB-13 XXQV SLCUB-10 CUnf3 ZSQ 1G7 XLSCN7 XXXXPM CYX23C1 FVC1D2 ANSV 6 DXAL7 VFVD19	UNIS 2. 791 UB37 11787 711- 192US 5-3. 27- 17-U- 929 155UU 193. 9 9U7- 2723 2. 1. 3 3178 15135 18873 19758 1-225 139. U 272U 218U7 15219 1-228 7788	2618 2613 261 261 261 261 265 7 265. U 266. U 266. 1 269. 1 269. 1 269. 2 269. 2 269. 2 269. 2 269. 2 269. 2 269. 2 269. 2 269. 2 269. 2 269. 2 269. 2 269. 2 269. 2 269. 3 269. 3 269. 3 269. 3 269. 3 269. 3 269. 3 269. 3	. @5 @82 . @711 . @112 . @83 . @8U . @ @73 . @85 . @73 . @9 @53 . @19 @153 . @19 @20 . @78 . @28 . @28 . @28 . @28 . @28 . @28 . @28 . @28 . @28 . @28 . @28 . @31 . @39	. Q . 2 . Q 52 . Q - U . Q 27 . Q 35 . Q 1U . Q - 7 . Q 99 . Q 59 . Q 39 . Q - U . Q 12 . Q 53 . Q 32 . Q 8 . Q 99 . Q . S	4 0555 410893 .0 87 4 0 7 4 0 29 .0 5- 4 0.8 4 0251 4 0 -9 4 0.75 4 0.80 72 4 007 4 0.99 4 0.99 4 0.99 4 0.90 2 0 27 4 0.9	207 207 207 207 207 207 207 101-7	PT PT PT PT PT PT PT PT PT PT PT PT
	p 6 CSV CLD6 5 CLD6 5 CX6 P8 FMM PNG 6 BCL CVP14 CNCHVI- ANHOAXII XXXLCC F6 AX KNF72X CUbrF 7 FSXA 6 2 OLD 1 LLPKHOI SY6 2 F6 PG 113 NAX2V SLCUPAIU CUbrF 3 XSC 1 CUbrF 3 XSC 2 CHOFF 7 SXA 6 2 OLD 1 LLPKHOI SY6 2 F6 PG 113 NAX2V SLCUPAIU CUbrF 3 XSC 1 CHOFF 3 XSC 1 CHOFF 3 XSC 1 XSC	2. 791 UB37 11787 711- 192U5 5-3. 27- 17-U- 929 155UU 193. 9 9U7- 2723 2. 1. 3 3178 15135 18873 19758 1-225 139. U 272U 218U7 15219 1-5219 1-5218	2618 2613 261 261 265. 8 265. 7 265. U 265. 2 265. 1 20799 20799 20797 20797 20797 20797 20797 20797 207983 20783	. 0.82 . 0711 . 0.012 . 0.83 . 0.88U . 0 . 0.73 . 0.9- . 0.153 . 0.17 . 0.70 . 0.70	. 0.52 .0U .0.27 .0.35 .0.1U .07 .0.99 .0.55 .0.59 .0.39 .0U .0.12 .0.83 .0.32 .0.88 .0.99	41093 . 0 87 4 0 77 4 0 29 . 0 5- 4 0.8 4 0251 4 0 -9 4 0.75 4 0.8- . 0 72 4 0.97 4 0.99 4 0.93 4 0.93 6 0.93	207 207 207 207 207 101-7 101-7 101-7 101-7 101-7 101-7 101-7 101-7 101-7	PT PT PT PT PT PT PT PT PT PT PT PT
: A	CLD6 5 LRC-5U 35 LCX6P8 FMI PNG6 BCL XCDHVI- ANHOAXII XXXLCC F6 AX KNF2X CUbrf-7 F5XA6 2 OLOI SV62 FGPG1I3 NAX2V SLCUPAIU CUbrf3 ZSQ IG 7 XAX0PM CYX23CI FVCID2 ANSV 6 DAL7 VFVD19	UB37 111787 711- 192L5 5-3. 27- 17-U 929 155UU 193. 9 9U7- 2723 2. 1. 3 3178 15135 18873 19758 1-225 139. U 272U 218U7 15219 1-5219 1-528 7788	2(613 2(61) 2(61) 2(61) 2(65, 8) 2(65, 7) 2(65, U) 2(65, U) 2(65, 1) 2(69) 2(6	. 0711 . 0112 . 0183 . 028U . 01 0273 . 0.85 . 0.773 . 0.9 0.53 . 0.U . 0.77U . 0.39 . 02 . 0278 . 02-U . 0218 . 0331 . 039 . 039	. 0 - U	. 0 87 4 0 7 4 0 29 . 0 5- 4 0.B 4 0.51 4 0 - 9 4 0.75 4 0.B- . 0 72 4 0.72 4 0.75 4 0.93 4 0.93 4 0.93 4 0.93 4 0.9 4 0.9	207 207 207 207 44-7 44-7 44-7 44-7 44-7 44-7 44-7 44	PT PT PT PT PT PT PT PT PT PT PT PT
: A	LRC-5U 35 CX6 P8 FMM PMG 6 BCL XCDHVI- ANHOAXU XXMLCC F6 AX KNF72X CUbrf-7 FSXA6 2 OLO1 XL-PKHO1 SY6 2 FGPG 113 NAX2V SLGUPAIU CUbrf3 ZSQ1G7 XL-SCN7 NAXOPM CYY23C1 FVC1D2 ANSV 6 DXAL7 VFVD19	11787 711- 192L5 5-3. 27- 17- U- 929 155UU 193. 9 9Ur- 2723 2.1. 3 3178 15135 18873 19758 1-225 139. U 272U 218U7 15219 1-228 7788	2051 205.8 205.7 205.U 205.U 205.1 205.1 205.1 20799 20799 20793 2079- 20797 20797 20797 20797 20797 207983 20783	. 0.12 . 0.83 . 0.80U . 0.73 . 0.85 . 0.73 . 0.9- . 0.53 . 0.10 . 0.77 . 0.39 . 0.27 . 0.78 . 0.21 . 0.31 . 0.31	. 0.27 . 0.35 . 0.1U . 0 - 7 . 0.99 . 0.5 . 0.59 . 0 - U . 0.1U . 0.53 . 0.32 . 0.8 . 0.99 . 0	4 0 7 4 0 29 . 0 5- 4 (0.8 4 (0.5) 4 0.75 4 0.03- . 0 72 4 0.07 4 (0.95 4 (0.93) 4 (0.93) 4 (0.94) 4 (0.94) 6 (0.94) 6 (0.94) 7 (0.94) 7 (0.94) 8 (0.94) 8 (0.94) 8 (0.94) 8 (0.94) 9 (207 207 207 101-7 101-7 101-7 101-7 101-7 101-7 101-7 101-7	PT PT PT PT PT PT PT PT PT PT PT
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	FMI PNG6 BCL XCDHVI- ANHOAXII XOXLCC F6 AX KNF72X CUbrf-7 FSXA62 OLO1 XLPKHO1 XLPKHO1 XLPKHO1 SLCUBALIU CUbrf53 ZSQ1G7 XLSCN7 NAXDPM2 CYX23C1 FVC1D2 ANSV 6 DXAL7 VFVD19	192US 5-3. 27- 17-U 929 155UU 193. 9 9U7- 2723 2. 1. 3 3178 15135 18873 19758 1-225 139. U 272U 218U7 15219 1-228 7788	2(6. 8 2(6. 7) 2(6. U) 2(6. U) 2(6. 2) 2(6. 1) 2(799) 2(799) 2(799) 2(797) 2(797) 2(797) 2(797) 2(798) 2(798) 2(798) 2(798)	. 08U . d . d	.01U .0-7 .099 .05 .059 .039 .0-U .012 .053 .032 .08 .099 .0	. 0 5- 4 UB 4 U51 4 0 - 9 4 U.75 4 U.8- . 0 72 4 U7 4 U95 4 U93 4 UB 4 U9 4 UB 4 U9 4 UB	207 UB - 7 UB - 7	PT PT PT PT PT PT PT PT PT PT PT
A :: : : : : : : : : : : : : : : : : :	PNG 6 BCL XCDHVI- ANHOAXII XOOLCC F6 AX KNF72X CUbrf-7 FSXA6 2 OLO1 XLPKHO1 SY6 2 F6 PG 1113 NAX2V SLCUPAIU CUbrf3 ZSQ 1G 7 XLSCN7 NAXOPM2 CYY23C1 FVC1D2 ANSV 6 DXL7 VFVD19	5-3. 27- 17-U-929 155U 193.9 9U7- 2723 2.1.3 3178 15135 18873 19758 1-225 139. U 272U 218U7 15219 1-228 7788	265. 7 265. U 265. U 265. 2 265. 1 267. 1 26	. d- . @73 . dB5 . d 73 . d 9- . d 53 . d U . d 7U . d 39 . @ . @	.0-7 .099 .05 .059 .039 .0-U .012 .053 .032 .08 .099 .0	4 U.B 4 U.51 4 0 - 9 4 U.75 4 U.B- . 0 72 4 U.97 4 U.99 4 U.99 4 U.93 4 U.B 4 0 9 . 0 27 4 0 7.8	.un - 7 .un - 7	PT PT PT PT PT PT PT PT PT PT
A	BCL XCDHVI- ANHOAXII XXXLCC F6 AX KNF2X CUbrf-7 F5XA6 2 OLOI XVPX EFBPG 113 NAX2V SLCUPAHU CUbrf3 ZSQ 1G 7 XAX0PM CYX23CI FVCID2 ANSV 6 DALT VFVD19	27- 17-U 929 155UU 193. 9 9U7- 2723 2. 1. 3 3178 15135 18873 19758 1-225 139. U 272U 218U7 15219 1-228 7788	205. U 205. U 205. 2 205. 1 20799 20799 20799 20797 20797 20797 2079U 2079 20783 20783	. 073 . 085 . 073 . 09- . 0153 . 010 . 017U . 039 . 02 . 0278 . 02-U . 018 . 031 . 039	. 0 99 . 0 5 . 0 59 . 0 39 . 0 - U . 0 L2 . 0 53 . 0 32 . 0 8 . 0 99 . 0	4 (251 4 0 - 9 4 (0.75 4 (0.8- . 0 72 4 (0.77 4 (295 4 (0.93) 4 (20.18) 4 (0.19) 0 0 27 4 (0.78)	.u 7 .u 7 .u 7 .u 7 .u 7 .u 7 .u 7 .u 7 .u 7 .u 7	PT PT PT PT PT PT PT PT PT
A	XCDHVI- NNHOAXII XXXXII XXXXII XXXXII XXXXII XXXII XXX	17- U 929 155UU 193. 9 9UF- 2723 2. 1. 3 3178 15135 18873 19758 1-225 139. U 272U 218U7 15219 1-528 7788	205. U 205. 2 205. 1 205. 1 205. 1 20799 20799 20793 2079- 20795 20797 2079U 2079 20783 20783	. 0.85 . 0.73 . 0.9- . 0.53 . 0.10 . 0.70 . 0.29 . 0.27 . 0.278 . 0.2-U . 0.18 . 0.31 . 0.39	. 0.5 . 0.59 . 0.39 . 0 - U . 0.12 . 0.53 . 0.32 . 0.8 . 0.99 . 0	4 0 - 9 4 0.75 4 0.8- . 0 72 4 007 4 0295 4 0193 4 0218 4 0 0 9 . 0 27 4 07. 8	.u-7 .u-7 .u-7 .u-7 .u-7 .u-7 .u-7 .u-7	pT pT pT pT pT pT pT pT pT pT
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ANHOAMI XOMEC F6 AX KNF72X CUbrF7 FSXA6 2 OLOI SY6 2 F6 PG 113 NAX2V SLCUPAIU CUbrF3 XAX2V SLCUPAIU CUbrF3 XAX2V SLCUPAIU CUbrF3 AXXV AXXPM CYX23CI FVCID2 ANSV 6 IXAL7 VFVD19	929 155.U 193. 9 9.Ur- 2723 2. 1. 3 3178 15135 18873 19758 1-225 139. U 272U 218.U7 15219 1-5219 1-788	265. 2 265. 1 265. 1 26799 26799 26799 26795 26797 26797 26790 26790 26792 26793 26793 26793 26793 26793	. 0.73 . 0.9- . 0.053 . 0.U . 0.39 . 02 . 02.78 . 02-U . 0.18 . 0.31 . 0.39	. 0 59 . 0 39 . 0 - U . 0 12 . 0 53 . 0 32 . 0 8 . 0 99 . 0	4 0.75 4 0.B- 0 72 4 017 4 0295 4 0193 4 021B 4 0 9 0 0 27 4 07.8	u - 7 u - 7	pT pT pT pT pT pT pT pT pT
1 1	F6 AX KNF72X CUnft-7 FSXA6 2 OLO1 XLPKHO1 SY62 FGPG113 NAX2V SLCU9AIU CUnft3 ZSQ1G7 XLSCN7 NAXOPM CYY23C1 FVC1D2 ANSV 6 DXAL7 VFVD19	193. 9 9UJ- 2723 2. 1. 3 3178 15135 18873 19758 1-225 139. U 272U 218U7 15219 1-228 7788	205. 1 20799 20799 20793 2079- 20795 20797 20797 2079U 2079 20783 20783	.0153 .01U .017U .0139 .02 .0278 .02-U .018 .0131	. 0 - U . 0 12 . 0 53 . 0 32 . 0 8 . 0 99 . 0 . 0 88 . 0 - 9	. 0 72 4 077 4 0295 4 0193 4 0218 4 0 9 . 0 27 4 07. 8	.ua - 7 .ua - 7	p T p T p T p T p T p T p T
1 1 1	KNF22X CUbrf-7 FSNA62 OLOI XLPKHOI SV62 FGPG113 NAX2V SLCUPAHU CUbrf53 ZSQ1G7 XAX0PM2 CYX23CI FVC1D2 ANSV 61DAL7 VFVD19	9U7- 2723 2. 1. 3 3178 15135 18873 19758 1-225 139. U 272U 218U7 15219 1-228 7788	20799 20793 20793 2079- 20795 20797 20790 2079 2079 20783 20783	. GU . G 7U . G 39 . C . C 78 . C - U . C 18 . G 31 . G 39	. 0 L2 . 0 53 . 0 32 . 0 8 . 0 99 . 0 . 0 88 . 0 - 9	4 017 4 0295 4 0193 4 021B 4 09 . 0 27 4 07. 8	1.00 - 7 1.00 - 7 1.00 - 7 1.00 - 7 1.00 - 7 1.00 - 7	p T p T p T p T p T p T
1 1 1	CUbrf-7 FSXA6 2 OLO1 SLPKHO1 SY6 2 FGPG 113 NAX2V SLCUBAIU CUbrf53 ZSQ 1G7 XLSCN7 NAXOPM CYX3C1 FVC1D2 ANSV 6 DXAL7 VFVD19	2723 2. 1. 3 3178 15135 18873 19758 1-225 139. U 272U 218U7 15219 1-228 7788	20799 20793 2079- 20795 20797 20797 2079U 2079 20783 20783	. 017U . 0139 . 02 . 0278 . 02-U . 0218 . 0131 . 0139	. 0 53 . 0 32 . 0 8 . 0 99 . 01 . 0 88 . 0 - 9	4 (£95 4 (£193 4 (£18 4 (£19 . 0 27 4 (7. 8	ua - 7 ua - 7 ua - 7 ua - 7 ua - 7 ua - 7	p T p T p T p T p T
1 1	FSXA6 2 OLO1 XLPKHO1 SY6 2 FG PG 113 NAX2V SLCUPAHU CUbrf53 ZSQ 1G 7 XLSCN7 NAXOPM2 CYY23C1 FVC1D2 ANSV 6 DXAL7 VFVD19	2. 1. 3 3178 15135 18873 19758 1-225 139. U 272U 218U7 15219 1-228 7788	20793 2079- 20795 20797 20797 2079U 2079 20783 20783	. 0139 . 02 . 0278 . 02-U . 0218 . 0131 . 0139	. 0 32 . 0 8 . 0 99 . 0 . 0 88 . 0 - 9	4 0193 4 02LB 4 0 9 . 0 27 4 07. 8	ua - 7 ua - 7 ua - 7 ua - 7 ua - 7	p T p T p T p T
1 1	OLOI XLPKHOI SY62 FGPG113 NAX2V SLCL9AIU CUbrt53 ZSQ1G7 XLSCN7 NAX0PM CYX23CI FVCID2 ANSV 61XAL7 VFVD19	3178 15135 18873 19758 1-225 139. U 272U 218U7 15219 1-228 7788	2079- 20795 20797 20797 2079U 2079 20783 20783	. 02 . 0278 . 02-U . 0218 . 0131 . 0139	. 0 8 . 0 99 . 0 . 0 88 . 0 - 9	4 (PLB 4 (1 9 . 0 27 4 (7. 8	COL - 7 COL - 7 COL - 7 COL - 7	р Т р Т р Т
1	SY62 FGPG113 NAX2V SLCU9A1U CUstfS3 ZSQ1G7 XLSCN7 NAXDPM CYX23C1 FVC1D2 ANSV 61XAL7 VFVD19	18873 19758 1-225 139. U 272U 218U7 15219 1-228 7788	20797 20797 2079U 2079 20783 20783	. (2-U . (218 . 0131 . 0139	. 0 . 0.88 . 0 - 9	. 0 27 4 07. 8	U01 - 7 U01 - 7	p T p T
:	FGPG113 NAX2V SLCU9A1U CU5rfS3 ZSQ1G7 XLSCN7 NAXOPM CYX23C1 FVC1D2 ANSV 61XAL7 VFVD19	19758 1-225 139. U 272U 218U7 15219 1-228 7788	20797 2079U 2079 20783 20783	. 0218 . 0131 . 0139	. 0 88 . 0 - 9	4 07. 8	U01 - 7	
:	NAX2V SLCU9A1U CUstf33 ZSQ 1G 7 XLSCN7 NAXOPM2 CYX23C1 FVC1D2 ANSV 61XAL7 VFVD19	1- 225 139. U 272U 218U7 15219 1- 228 7788	2079U 2079 20783 20783	. 0131	. 0 - 9			рΤ
:	SLCUAIU CU:rf33 ZSQ:IG7 XLSCN7 NAXOPM CYX23C1 FVC1D2 ANSV 61XAL7 VFVD19	139. U 272U 218U7 15219 1-228 7788	2079 20783 20783	. 0139				
:	CUbrf53 ZSQ IG 7 XLSCN7 NAXOPM2 CYX23C1 FVC1D2 ANSV 61XAL7 VFVD19	272U 218U7 15219 1-228 7788	20783 20783		. 0 32	4 0J-2 4 05LD	UII - 7	p T p T
:	ZSQ IG7 XLSCN7 NAXOPM CYX23C1 FVC1D2 ANSV 6 IXAL7 VFVD19	218U7 15219 1-228 7788	20783		. 0 3-	. 0 23	U01 - 7	рT
:	NAXOPM2 CYX23C1 FVC1D2 ANSV 6 IXAL7 VFVD19	1-228 7788		. 00.78	. 017	4 0231	UOI - 7	p T
::	CYX23C1 FVC1D2 ANSV 6 IXAL7 VFVD19	7788	20783	. 0.1 1	. 0121	. 0 UI	U0I - 7	p T
	FVC1D2 ANSV 6 IXAL7 VFVD19		2078-	. 0159	. 0 - 7	4 0 72	U01-7	p T
	ANSV 6 IXAL7 VFVD19	19. 21	20787 20787	. 0LB5 . 027U	. 0151	4 0795 4 052-	U01 - 7 U01 - 7	p T p T
	6 IXAL7 VFVD19	1. 5.	2078U	. 0131	. 0 - 9	4 0 82	U01-7	p T
		1U73.	2078U	. 0.L.8	. 01 U-	4 (BU9	U0I - 7	p T
	ZVFV1	1-71	20782	. 0117	. 0 7-	4 0895	U0I - 7	p T
		21	20781	. 02. 1	. 0 81	4 0 U9	U0I - 7	p T
	MLNF2 XDOMA	2U	20781	. 013	. 0 - 8	4 0158	U01 - 7 U01 - 7	p T
	xdT0L	1735. 13U71	20781 20738	. 022 . 0232	. 0 89 . 0l 1	4 0193 4 0219	UII - 7	p T p T
	XFOIS	1592U	2073U	. 07	. 01 - 2	. 0 - 9	U0I - 7	p T
	XAVXC7L	17778	20732	. 0228	. 0 92	4 0 98	U0I - 7	p T
	NAVAC1	1-177	2073	. 019	. 0 33	4 (9. 1	U0I - 7	p T
	CF6 6 V1 FHSD3A	7U.2 19U 5	207-9 207-3	. (2U9 . (27-	. 0 93 . 0I	4 0.29 4 0.82	U01 - 7 U01 - 7	p T
	BXSU	2. 315	207-5	. 02. 8	. 0 87	4 0182	UII - 7	p T p T
	XFFO1IX	1599-	207-7	. 0182	. 0 37	4 05U5	U0I - 7	p T
	FCPAL3	19. 92	207-2	. Q U	. 0 9U	4 0125	U0I - 7	p T
	CH6 1	U-71	207-1	. (2	. 01 . 8	408	U0I - 7	p T
	CE orf53 XXXINIUL	77LB 15783	207-1 20758	. 02-2 . 0271	. 01 . 0 98	. 0 31 4 075-	U01 - 7 U01 - 7	p T p T
	MLuU . Ul	-51U	20758	. 0235	. 0112	40.1	U01 - 7	p T
	LOALS3	9-23	20758	. 0 . 5	. 127-	4 0.29	U0I - 7	p T
	MY6	- 823	2075-	. 0UIU	. 0123	4 0 83	U0I - 7	p T
	ZCCHC9	211UB	20755	. 012-	. 0 51	4 ŒUI	U01 - 7	p T
	Q DN71 SXO2.	2. 813 18717	20757 20757	. 019 . 0222	. 0 33	4 0585 4 0133	U01 - 7 U01 - 7	p T p T
	OLS	3135	2075U	. 02U9	. 0 98	4 0131	U01 - 7	p T
	SFE3	18351	2075U	. 0133	. 0 32	4 0 22	U0I - 7	p T
	IL1-	87-2	2075	. 0157	. 0 - U	4 01 - 3	U0I - 7	p T
	XXAX2V	15719	20779	. 0.23	. 01 U7	40	U0I - 7	p T
	SFG 6 2 SLC2. A1	1831. 1332.	20773 2077-	. 0731	. 019U . 0 81	4 052 41 01 7 1	UOI - 7 UOI - 7	p T p T
	ID1	1332. 8UL	20/7- 2077U	. 0199	. 01-9	410171	tur-7 tur-7	p I p T
	XXXINI5A	15792	20772	. 02. 3	. 0 85	4 0 93	U01 - 7	p T
	G AF 6 U	121U9	20771	. 0728	. 0135	4 0958	U0I - 7	p T
	A6 OXFL7	- U.5	2077	. 0583	. 027	. 0 31	U0I - 7	p T
	XOG 5	1789-	2077	.021	. 0 8-	. 0 8	U01-7	p T
	CCDC1. 2A NASONM2	2982 1-258	207U9 207U9	. (253 . (229	. 01. 5	4 (2U) 4 (7	U01 - 7 U01 - 7	p T
	HPCQ 2	38. 8	207U-	. 0297	. 0121	4 0728	UI - 7	p T p T
	XXAX2A	15718	207U-	. 023U	. 0112	. 011.09	U0I - 7	p T
	ACAA2	11-	207U5	. 0289	. 0119	4 0 - U	U0I - 7	p T
	CLIX2	U82.	2071.5	. 01 - U	. 0 - 3	4 07	U0I - 7	p T
	G YL12V CRO-	12978 U953	207U7 207U7	. 013U . 0121	. 0 31	4 0B. U 4 0L2U	UOL-7 UOL-7	p T
I P	RC1 12398U	93-9	20/0/	. 0121	. 0.8	4 0.5U	UI-7 UI-7	p T p T
	RC1 128252	98. 1	207U2	. 0LB8	. 015-	4 (229	U0I - 7	рТ
	IL1NAX	8787	207U2	. 0223	. 0 97	4 0.5	U0I - 7	p T
	LIE 1L	9315	207U	. 01 - 3	. 0 - 9	. 0 . 8	U0I - 7	p T
	CNYAV	72. 9	20729	. 0 87	. 0282	. 0 71	U0I - 7	p T
	LNNC8A	1181U	20729	. 0191	. 0 39	4 0535	U01-7	p T
	ZYE ML6 C	21873 19	20723 2072U	. 025U . 017-	. 01. 7	4 0278 4 07-3	U01 - 7 U01 - 7	p T
	KLHL28	19 927.	20/20	. 01 /- . 019-	. 0 -	4 0/- 3 4 0859	tui-7 tui-7	р Т р Т
	**L11L40	8. 92	20718	. 071.2	. 0138	4 0 11	UII - 7	p T
		5783	20713	. 0175	. 0 -	4 0725	U0I - 7	p T
	HREA- PLKU	U9-2	20717	. OLU7	. 0 93	410 37	U0I - 7	p T
I	HREA- PLKU CRL11A1	11. 5U 15221	2071U	. 0.12	. 0129	4 072U	U0I - 7	p T
	HREA- PLKU		20712 207. 9	. 0LI 7 . 0239	. 012-	40.8	UOL-7 UOL-7	р Т р Т

Gene ID REF	Gene Name 1771-	Score (d) 207. 9	Numerator (r) . 0138	Denominator (s+s0)	Fold Change 4 GU8	adjusted P value (%)	Direction
LRC1 129-35	99-9	207. 8	. 02. 3	. 0 37 . 0 8-	4.01-U	L0I - 7	p T p T
ADAG FS9	283	207. 8	. 0.1 9	. 0128	4 0 2-	U01 - 7	рT
XLA2O5	1511U	207.5	. 02. 1	. 0 87	4 073-	70718	p T
ANL15	988	207. 7	. 021U	. 0 89	4 0225	70718	p T
VAO2	1U-9	207. U	. OU 5	. 0123	4 0887	70718	p T
XCDH3 OYXC	17-11 3-5U	207. U 207. 1	. 0299 . 01 - U	. 0127	4 0 7- . 0137	70718 70718	p T p T
FFC3A	2. 18U	207. 1	. 0219	. 0 91	4 0212	70718	рT
XDP7DIX	173LB	207. 1	. 0132	. 0 32	4 028	70718	рT
A6 EA5	3- U	207	. 0221	. 0 92	4 0177	70718	pТ
F6 6 I2	193	20.98	. 0519	. (21-	. 0 97	70718	рT
G ALL CCI6	12 5 UI25	20.98 20.98	. 07. U . 01.77	. 01 - 8 . 0 -	. 0 73 4 055U	70718 70718	p T
Q VX5	2. 38U	20.98	. 01.77 . 0.1.9	. 01-71	4 050	70718	p T p T
FFC28	2. 1- U	2009-	. 011.2	. 0 55	4 0.21	70718	рT
CRL13A1	U9-9	20.9-	. 0577	. @23	4 0 77	70718	p T
CECN3	7715	20.9-	. 0.9U	. 01 - 7	4 0875	70718	pТ
SRCSU	18239	20.97	. 0.1-7	. 0152	4 0 U	70718	p T
SALL1 Z6 M35	13 7 2153.	20U9U 20U92	. 0 93 . 01 - 8	. 0 71	4 07-9 4 0	70718 70718	p T p T
CALp	28U9	20092	. 02	. 0111	410 U9	70718	p T
SOFV	13797	20.91	. 018	. 0 35	4.01-7	70718	рT
CAC6 A1C	2385	20.91	. 0187	. 0 33	4 0 99	70718	p T
6 AALADL1	1U U2	20.91	. 0111	. 0 7-	4 01	70718	pТ
CLPC2V	LB9U	20.9	. (232	. 0117	4 0119	70718	p T
SLCU8A5 XFXNV	13897 159-9	20.88 20.83	. 0273 . 0229	. 0l . U . 0 9-	41029U 4 0 29	70718 70718	p T p T
G YL12A	12973	20.83	. (2U	. 0 99	4 07 L2	70718	p I p T
CHSYU	U-9U	20.83	. 0I UI	. 0 55	4.0.21	70718	рT
Z6 M555	21579	20.8-	. 0187	. 0 33	4 07 LB	70718	pТ
XXG 1K	15732	20.87	. 0.5U	. 0178	4 0825	70718	p T
XIQ IL7 SYXL2	15 7 18831	20.8U 20.82	. 0235 . 0155	. 0115	4 0 89 4 0137	70718 70718	p T
ADAGFS1-	235	20.82 20.B8	. 0.2-	. U - S . OLUB	4 0535	70718	p T p T
C- orf2. 7	255U	20.B8	. 0.21	. 0 51	. 0 . 2	70718	p T
G A6 1A1	12. 17	20.88	. 0.18	. 0129	4 011	70718	pТ
C1orf12U	2173	20.38	. 013	. 0 31	4 0283	70718	pТ
PDA2N	5U22	20.85	. 0135	. 0 37	4 0129	70718	p T
KIAA. 922 IL8	9. 51 85U5	20.B5 20.B7	. 025- . 01 U7	. 01 . 8 . 0 5-	4 0.12 4 01-9	70718 70718	p T p T
LPXNPL2	99	20LBU	. 0LB8	. 0159	4 0 U7	70718	p T
XHC2	1791U	20LB2	. 017U	. 0 -	4 0.19	70718	рT
SLCU5V7	138-7	2014 9	. 0183	. 0 39	4 077U	70718	p T
XLK2	152. 2	2011-9	. 0712	. 0137	4 0.98	70718	pТ
PBI2A	5328	201.8	. 0282	. 0119	4 027-	70718	p T
ADAG FS1. O6 XFAV	23. 32-7	20U - 20U -	. 01.9 . 01.88	. 017U . 0 39	4 0UU 4 0U U	70718 70718	p T p T
NAV27	19U	20U-U	. 0221	. 0 9U	4 059U	70718	рT
SFAND9	182	20U-2	. 0LU7	. 0 53	4 0175	70718	рT
C6 F6 1	U9U2	200-1	. 1212	. 0 9	4 @13	70718	pТ
OAS3	- 979	201	. 022-	. 0 9-	4 0177	70718	p T
Q LS CNPVUL2	2. 9. 1 7153	20.59 20.59	. OULU . OZU	. 0LL2 . 0.98	4 (293 4 (281	70718 70718	p T p T
KX6 AU	929U	20.59	. 015-	. 0	4 071.5	70718	p T
FVE 18	19 9	20.58	. 0152	. 0 - 5	4.0 - 5	70718	рT
GGXI.	12528	20.5-	. 07-5	. 0198	4 0 91	70718	pТ
XNDG 8	15 U	20.55	. 013	. 0 32	. 0 75	70718	рT
CYXIVI	7738	20.51	. 0757	. 019U	4.01-9	70718 70718	p T
LRC1 288-15 VUOALFL	1. 7 1U.2	20.5 20.5	. 02. 8 . 021.B	. 0 89 . 01. 1	4 0 83 4 0898	70718	p T p T
SLCU9A17	139. 7	20.78	. 0182	. 0 38	4 0852	70718	рT
CRNR1C	7. 52	20.73	. 022U	. 0 95	4 0.22	70718	рT
LRC28UJ92	1. 395	2007-	. 0.7-	. 0178	. 0 . 2	70718	p T
D6 G 1X7-	5 3	2007-	. 02. 3	. 0 88	. 017U	70718	p T
NAVUI ANNDC7	1-1.2 1.73	20.75 20.77	. 0728 . 0.11	. 018U . 01U2	4 0 77 4 0 18	70718 70718	p T p T
MLu225U	- 75-	20077	. 0.83	. 01-5	4 0.58	70718	рT
LAG VU	9797	20.71	. 0558	. 02U8	. 0 U9	70718	pТ
HPY1	3873	20.7	. 0.12	.aw	4 0.1.5	70718	pТ
XF6	159U9	2019	. 05-3	. 0272	. 0 38	70718	p T
06 02 CVV5NII	3277 77511	2011	. 0139 . 0155	. 0 33	. 0 79 4 07. 3	70718 70718	рT
CYV5NU DLE5	775U 79- 2	20.L2 20.L2	. 0.55 . 0.29	. 0 - 3	4 0/. 3 4 05U9	70718 70718	p T p T
SLC27AU	13351	20UI	. 05. 1	. 0215	4 0 52	70718	p T
NOL1	1-739	20.UI	. 0232	. 0113	. 01 . 1	70718	рT
ABXN1A	1U 8	20.28	. 013U	. 0 37	4 0 3-	70718	pТ
XDP2A	173U	20.28	. 0.13	.01U-	. 0223	70718	p T
SRE 13 G YH1.	18UI 1 129UI	20.28 20.28	. O.I - . OI 97	. 0LUI . 0.87	. 01. U 4. 05U-	70718 70718	p T p T
LRC-7U-5.	11UJ	20.23	. 07. 9	. 013-	4 011	70718	p T
DPXDC3	739U	20.25	. ŒW	. 01	410 73	70718	рT
Z6 M/2U	21753	20.25	. 121U	. 0 92	4 12-	70718	pТ
SLC1-AU	13-91	20.27	. 0.97	. 01-9	410.72	70718	p T
CC6 D2 KIM2- V	UI-U 9152	20.2U 20.22	. 028 . 0155	. 0121	. 0 28 4101. 2	70718 70718	p T p T
MHL2	- U8U	20.22	. 0.27	. U - 3 . ULU9	4 02. 1	70718	p I p T
FFCUB	2. 135	20.2	. 01-9	. 0 3U	4 0.15	70718	рT
LRN	11-39	20.2	. OI U.B	. 0 59	4 0 92	70718	pТ
Cp V6	7U-9	20.19	. 0 82	. 0 U5	4 0 U7	70718	p T
AFXI. A	1187	20.13	. 0189	. 0 82	4 0852	70718	p T
CRL1UA1 CAG K26 1	U9-5 2878	20U1- 20U1-	. 0U 8 . 07- 1	. 01 UU . 01 99	4 0555 4 0.57	70718 70718	p T p T
HAXL6 U	33. 2	2001-	. 05U	. 0229	4 0.1.2	70718	p T
G XZLU	12- U5	20.115	. 0139	. 0 33	4 OUB	70718	pТ
C5orf7-	2793	20UI U	. 0.2	. OI U8	4 088U	70718	p T

Gene ID	Gene Name	Score (d)	Numerator (r)	Denominator (s+s0)	Fold Change	adjusted P value (%)	Direction
DRCK5	5. 88	20.12	. 021	. 0 91	4 05-	70718	рT
LRC28UI7U	1.383	20.12	. 0l 1U	. 0 79	4 (289	70718	p T
NAI17	1-192	20.1	. 0251	. 01. 9	41 02 2	70718	p T
SDXN	13273	20U 9	. OLBU	. 01 - 1	. 019-	70718	p T
ORLOA8A	3288	20U 8	. 0279	. 01 . 8	407	70718	p T
MAG 79A	57	20U 8	. ŒUU	. 01. 1	4 0 21	70718	pТ

SP PIK KEYWORDS Signal 139 3.60E-19 1.40E-12	Add. Table 5: Statisticall	y over-represented annotation	terms, according to DAVID, of differently expressed genes between	en metabolic cluster Mc1 and Mc2
UP SEQ. FEATURE OOTERM C.FAT SP PR RETWORDS SP SP SP RETWORDS SP SP SP RETWORDS SP SP RETWORDS SP SP SP RETWORDS SP SP RETWORDS SP SP RETWORDS SP SP SP RETWORDS SP SP SP RETWORDS SP S	Annotation Cluster 1			
GOTEMA_CC_FAT Supplement 1,606-18 4,006-12 1,606-18 4,006-12 1,606-18 4,006-12 1,606-18 4,006-12 1,606-18 1,				
SP_PR_KEYWORDS Secreted Signature Secreted Secreted Signature Secreted Sign				
GOTERM CC_FAT SAME SAME				
SP_PR_KEYWORDS disulfice bond 113 5.001-12 7.301-12 1.701-10 1.				
UP_SEQ_FEATURE disulfice boad 160 2.001-11 170-62 170-72 170-				
SPPIR_KEYNORDIS Spread S				
PSC PEATURE Sprosylation sinch-linked [GENAc.] 129 176-176 8-186-176		GOTERM_CC_FAT	extracellular space	
Part				
GOTERM_CC_FAT extracellular matrix 34 44661 23 7061-11 3061-18 3061-18 3076-14 3061-18 3076-14 3		UP_SEQ_FEATURE		
GOTERM_CC_FAT SP.PR_KEYWORDS GOTERM_CC_FAT proteinaceous extracellular matrix 2.6 2.70%-1.1 2.70%-0.5	Annotation Cluster 2	COTEDM CC FAT		
SP-PIR KEYWORDS				
GOTERM, CC_FAT proteinaceous extracellular matrix 31 7.30%-11 4.50%-05 4.50%				
Manotation Cluster 3				
GOTERM_BP_FAT Cell adhesion 46 8.80E-1 9.00E-10 5.20E-08 7.20E-09 7.20E-				
COTEM_BF_FAT Septembors S	Annotation Cluster 3		Enrichment Score: 8.78	Count P_Value Benjamini
Manotation Cluster 4		GOTERM_BP_FAT	cell adhesion	46 8.80E-11 9.00E-0
Manotation Cluster GOTERM_BP_FAT Seculature development 2.5 5.066-59 5.796-50 5.796-5				
GOTERM_BF_FAT GOTERM_BF_FA	A 1 (C) 1	SP_PIR_KEYWORDS		
COTERM BP FAT Solication COTERM BP FAT Cognition of Social Solication Coloration Colorati	Annotation Cluster 4	COTEDM DD FAT		
COTERM BP FAT Diod vessel mophogenesis 20 200-07 309-05 300-05	1			
Monotation Cluster 5	1			
Amoutation Cluster 5 Enrichment Score 6.23 Count P Value Benjamin Farrichment Score 6.23 GOTERM BP FAT regulation of cell migration 19 3,606-08 3.05-06 3.05-0				
GOTERM BF_FAT regulation of cell migration 22 160E-09 8.10E-07	Annotation Cluster 5			
GOTERM BF FAT regulation of cell motion 19 2.80E-07 4.10E-05 4.00E-05 4.00		GOTERM_BP_FAT	regulation of locomotion	
GOTERM BF FAT positive regulation of comotion 13 1 1 1 1 2 2 2 2 2 2	1			
GOTERM BP FAT positive regulation of cell migration 1 2 601-05 3-30E-05 Annotation Cluster 6 Inchiment Score: 6.11 Count Value Benjamin Count Co	1			
Manotation Cluster 6				
Manotation Cluster 6				
GOTERM BP FAT regulation of infammatory response 33 6.06E-12 120E-05 200E-05 200E-05	Annotation Cluster 6	GOTERM_BP_FAT		
GOTERM BP FAT regulation of inflammatory response 3 9 0.00E-07 2.00E-04 2.00E-05 3.90E-05 3.90	Amotation Cluster 0	GOTERM BP FAT		
GOTERM BP FAT negative regulation of defense response 7 5.066-05 3.096-05 3.				
Marciation Cluster 7 Enrichment Score: 5.56 Count Paris Paris Paris Paris Paris Paris P				
Manotation Cluster 7		GOTERM_BP_FAT	negative regulation of inflammatory response	7 5.10E-05 3.90E-0
Part				
GOTERM_MF_FAT polysaccharide binding 18 8.00E-08 4.00E-05 4.00E-05 GOTERM_MF_FAT glycosaminoglycan binding 17 1.20E-07 3.00E-05 3.		GOTERM_BP_FAT		
GOTERM_MF_FAT glycosaminoglycan binding 18 8.00E-08 4.00E-05 GOTERM_MF_FAT glycosaminoglycan binding 17 1.20E-07 3.00E-05	Annotation Cluster 7	COTEDM ME EAT		
GOTERM_MF_FAT bepart binding 17 2.00E-07 3.00E-05 SP_PIR_KEWORDS bepart binding 12 2.00E-05 1.80E-05 SP_PIR_KEWORDS GOTERM_MF_FAT carbohydrate binding 2 5.00E-05 1.80E-05 SP_PIR_KEWORDS carbohydrate binding 2 5.00E-05 1.80E-05 SP_PIR_KEWORDS carbohydrate binding 2 5.00E-05 1.80E-05 SP_PIR_KEWORDS carbohydrate binding 2 7.40E-05 SP_PIR_KEWORDS COTERM_MF_FAT cytoskeletan c				
Annotation Cluster 10 FAT heparin binding 12 2.20E-05 1.60E-02				
SP_PIR_KEYWORDS heparin-binding 9 5,00E-04 2,00E-02 2,0E-02 2,				
Carbohydrate binding				
GOTERM_CC_FAT actin cytoskeleton Cytoskeletal protein binding SP_PIR_KEYWORDS GOTERM_MF_FAT actin cytoskeletal protein binding SP_PIR_KEYWORDS GOTERM_MF_FAT actin cytoskeletal protein binding SP_PIR_KEYWORDS GOTERM_MF_FAT actin binding SP_PIR_KEYWORDS SOTERM_MF_FAT actin binding SP_PIR_KEYWORDS SOTERM_MF_FAT Cytoskeleton organization SP_Value SP_PIR_MEY SOTERM_MF_FAT Cytoskeleton organization SP_Value SP_PIR_MEY SOTERM_MF_FAT Cytoskeleton organization SP_Value SP_PIR_MEY SOTERM_MF_FAT actin filament-based process SP_Value SP_PIR_MEY SOTERM_MF_FAT actin filament-based process SP_VALUE SOTERM_MF_FAT SOTERM_MF				
GOTERM_MF_FAT cytoskeletal protein binding 18 1.016-05 7.40E-04 2.00E-05	Annotation Cluster 8		Enrichment Score: 5.22	Count P_Value Benjamini
SP_PIR_KEYWORDS QOTERM_MF_FAT actin-binding 18 1,300-05 6,500-04 6,500-05 7,000-03 Annotation Cluster 9 Enrichment Score: 4.96 Count P_Value Benjamin Annotation Cluster 9 GOTERM_BP_FAT optoskeleton organization 2.7 4,400-05 4,700-04 4,700-04 Annotation Cluster 10 Enrichment Score: 4.96 Count P_Value Benjamin Annotation Cluster 10 Enrichment Score: 4.2 Count P_Value Benjamin Annotation Cluster 10 Enrichment Score: 4.2 Count P_Value Benjamin Annotation Cluster 10 Enrichment Score: 4.2 Count P_Value Benjamin Annotation Cluster 10 Enrichment Score: 4.2 Count P_Value Benjamin Annotation Cluster 10 EGF-like Calcium-binding, conserved site 14 1,600-0 7,900-0 INTERPRO EGF-like calcium-binding, conserved site 14 1,600-0 7,900-0 INTERPRO EGF-Like type as partate/asparagine hydroxylation conserved site 14 3,600-0 7,900-0 INTERPRO EGF-like domain 18 3,600-0 7,900-0				
Annotation Cluster 9 Enrichment Score: 4.96 Count P Value Benjamin Value Count P Value				
Annotation Cluster 9				
GOTERM_BP_FAT cytoskeleton organization 27 4,40E-06 4,70E-04 4,0E-06 4,70E-04 4,0E-07 4	Annotation Cluster 0	GOTERM_MF_FAT		
Softer	Almotation Cluster 9	GOTERM RP FAT		
Annotation Cluster 10 Enrichment Score: 4.2 Count P Value Benjamin Flast Count P Value P Value	1			
Annotation Cluster 10				
INTERPRO EGF-like calcium-binding 14 1.40E-07 9.10E-05 INTERPRO EGF-like calcium-binding, conserved site 14 1.40E-07 9.10E-05 INTERPRO EGF-type aparate/asparagine hydroxylation conserved site 14 1.60E-07 5.20E-05 SMART EGF-CA 14 1.60E-07 5.20E-05 SMART EGF-CA 14 1.60E-07 5.20E-05 SMART EGF-CA 14 3.60E-06 7.90E-04 INTERPRO EGF-like, type 3 17 4.90E-06 7.90E-04 SP_PIR_KEYWORDS EGF-like domain 18 5.10E-06 2.90E-04 SP_PIR_KEYWORDS EGF-like region, conserved site 21 6.00E-06 7.90E-04 INTERPRO EGF-like region, conserved site 21 6.00E-06 3.10E-05 3.40E-03 UP_SEQ_FEATURE domain:EGF-like 3; calcium-binding 7 9.60E-05 2.00E-02 INTERPRO EGF calcium-binding 7 9.60E-05 2.00E-02 INTERPRO EGF calcium-binding 9 1.50E-04 1.30E-02 SMART EGF EGF calcium-binding 9 1.50E-04 1.30E-02 UP_SEQ_FEATURE domain:EGF-like 5; calcium-binding 6 8.90E-04 9.40E-02 UP_SEQ_FEATURE domain:EGF-like 6; calcium-binding 5 1.60E-03 1.20E-01 UP_SEQ_FEATURE domain:EGF-like 6; calcium-binding 5 1.60E-03 1.20E-01 UP_SEQ_FEATURE domain:EGF-like 6; calcium-binding 5 4.40E-04 4.00E-02 UP_SEQ_FEATURE domain:EGF-like 6; calcium-binding 5 4.40E-03 2.00E-01 UP_SEQ_FEATURE domain:EGF-like 6; calcium-binding 5 4.40E-03 2.00E-01 UP_SEQ_FEATURE domain:EGF-like 7; calcium-binding 6 6.10E-03 2.00E-01 UP_SEQ_	Annotation Cluster 10			
INTERPRO			EGF-like calcium-binding	14 1.40E-07 9.10E-0
SMART EGF_CA 14 1.10E-06 1.80E-04 INTERPRO EGF 14 3.60E-06 7.90E-04 INTERPRO EGF-like, type 3 17 4.90E-06 7.90E-04 SP_PIR_KEYWORDS egf-like domain 18 5.10E-06 2.90E-04 INTERPRO EGF-like region, conserved site 21 6.00E-06 7.80E-04 INTERPRO EGF-like 1 16 3.10E-05 3.40E-03 UP_SEQ_FEATURE domain:EGF-like 3; calcium-binding 7 9.60E-05 2.00E-02 INTERPRO EGF calcium-binding 9 1.50E-04 1.30E-02 SMART EGF 16 2.40E-04 1.90E-02 SMART EGF 16 2.40E-04 1.90E-02 SMART EGF 16 2.40E-04 1.90E-02 UP_SEQ_FEATURE domain:EGF-like 2 9 4.40E-04 1.90E-02 UP_SEQ_FEATURE domain:EGF-like 3; calcium-binding 6 8.90E-04 9.40E-02 UP_SEQ_FEATURE domain:EGF-like 6; calcium-bindin	1			
INTERPRO	1			
INTERPRO	1			
SP_PIR_KEYWORDS egf-like domain 18 5.10E-06 2.90E-04 INTERPRO EGF-like region, conserved site 21 6.00E-06 7.80E-04 INTERPRO EGF-like region, conserved site 16 3.10E-05 3.40E-03 UP_SEQ_FEATURE domain:EGF-like 1 12 3.60E-05 1.00E-02 UP_SEQ_FEATURE domain:EGF-like 3; calcium-binding 7 9.60E-05 2.00E-02 SMART EGF calcium-binding 9 1.50E-04 1.90E-02 SMART EGF 16 2.40E-04 1.90E-02 UP_SEQ_FEATURE domain:EGF-like 2 9 4.40E-04 1.90E-02 UP_SEQ_FEATURE domain:EGF-like 4 7 1.20E-03 1.10E-01 UP_SEQ_FEATURE domain:EGF-like 6; calcium-binding 5 1.60E-03 1.20E-01 UP_SEQ_FEATURE domain:EGF-like 6; calcium-binding 5 1.60E-03 1.20E-01 UP_SEQ_FEATURE domain:EGF-like 2; calcium-binding 5 1.60E-03 1.20E-01 UP_SEQ_FEATURE domain:EGF-like 2; calcium-binding <				
INTERPRO	1			
INTERPRO				
UP_SEQ_FEATURE domain:EGF-like 1 12 3.60E-05 1.00E-02 UP_SEQ_FEATURE domain:EGF-like 3; calcium-binding 7 9.60E-05 2.00E-02 INTERPRO EGF calcium-binding 9 1.50E-04 1.30E-02 SMART EGF 16 2.40E-04 1.90E-02 UP_SEQ_FEATURE domain:EGF-like 2 9 4.40E-04 4.20E-04 UP_SEQ_FEATURE domain:EGF-like 5; calcium-binding 6 8.90E-04 9.0E-02 UP_SEQ_FEATURE domain:EGF-like 6; calcium-binding 5 1.60E-03 1.20E-01 UP_SEQ_FEATURE domain:EGF-like 6; calcium-binding 5 1.60E-03 1.20E-01 UP_SEQ_FEATURE domain:EGF-like 4; calcium-binding 5 4.40E-03 2.00E-01 UP_SEQ_FEATURE domain:EGF-like 2; calcium-binding 6 6.10E-03 2.30E-01 UP_SEQ_FEATURE domain:EGF-like 2; calcium-binding 6 6.10E-03 2.30E-01 UP_SEQ_FEATURE domain:EGF-like 2; calcium-binding 4 1.70E-02 4.10E-01				
INTERPRO		UP_SEQ_FEATURE	domain:EGF-like 1	12 3.60E-05 1.00E-0
SMART EGF 16 2.40E-04 1.90E-02 UP_SEQ_FEATURE domain:EGF-like 5; calcium-binding 9 4.40E-04 6.20E-02 UP_SEQ_FEATURE domain:EGF-like 5; calcium-binding 6 8.90E-04 9.40E-02 UP_SEQ_FEATURE domain:EGF-like 4 7 1.20E-03 1.10E-01 UP_SEQ_FEATURE domain:EGF-like 6; calcium-binding 5 1.60E-03 1.20E-01 UP_SEQ_FEATURE domain:EGF-like 2; calcium-binding 5 4.40E-03 2.00E-01 UP_SEQ_FEATURE domain:EGF-like 2; calcium-binding 6 6.10E-03 2.30E-01 UP_SEQ_FEATURE domain:EGF-like 2; calcium-binding 6 6.10E-03 2.30E-01 UP_SEQ_FEATURE domain:EGF-like 2; calcium-binding 6 6.10E-03 2.30E-01				
UP_SEQ_FEATURE domain:EGF-like 2 9 4.40E-04 6.20E-02 UP_SEQ_FEATURE domain:EGF-like 5; calcium-binding 6 8.90E-04 9.40E-02 UP_SEQ_FEATURE domain:EGF-like 6; calcium-binding 7 1.20E-03 1.10E-01 UP_SEQ_FEATURE domain:EGF-like 6; calcium-binding 5 1.60E-03 1.20E-01 UP_SEQ_FEATURE domain:EGF-like 2; calcium-binding 5 4.40E-03 2.00E-01 UP_SEQ_FEATURE domain:EGF-like 2; calcium-binding 6 6.10E-03 2.00E-01 UP_SEQ_FEATURE domain:EGF-like 7; calcium-binding 4 1.70E-02 4.10E-01				
UP_SEQ_FEATURE domain:EGF-like 5; calcium-binding 6 8.90E-04 9.40E-02 VP_SEQ_FEATURE domain:EGF-like 6; calcium-binding 5 1.60E-03 1.20E-01 VP_SEQ_FEATURE domain:EGF-like 4; calcium-binding 5 1.60E-03 1.20E-01 VP_SEQ_FEATURE domain:EGF-like 4; calcium-binding 5 4.40E-03 2.00E-01 VP_SEQ_FEATURE domain:EGF-like 2; calcium-binding 6 6.10E-03 2.30E-01 VP_SEQ_FEATURE domain:EGF-like 7; calcium-binding 4 1.70E-02 4.10E-01 VP_SEQ_FEATURE domain:EGF-like 9; calcium-binding 4 1.70E-02 4.10E-01 VP_SEQ_FEATURE VP_SEQ	1			
UP_SEQ_FEATURE domain:EGF-like 4 7 1.20E-03 1.10E-01 UP_SEQ_FEATURE domain:EGF-like 6; calcium-binding 5 1.60E-03 1.20E-01 UP_SEQ_FEATURE domain:EGF-like 4; calcium-binding 5 4.40E-03 2.00E-01 UP_SEQ_FEATURE domain:EGF-like 2; calcium-binding 6 6.10E-03 2.30E-01 UP_SEQ_FEATURE domain:EGF-like 7; calcium-binding 4 1.70E-02 4.10E-01				
UP_SEQ_FEATURE domain:EGF-like 6; calcium-binding 5 1.60E-03 1.20E-01 UP_SEQ_FEATURE domain:EGF-like 4; calcium-binding 5 4.40E-03 2.00E-01 UP_SEQ_FEATURE domain:EGF-like 2; calcium-binding 6 6.10E-03 2.30E-01 UP_SEQ_FEATURE domain:EGF-like 7; calcium-binding 4 1.70E-02 4.10E-01				
UP_SEQ_FEATURE domain:EGF-like 4; calcium-binding 5 4.40E-03 2.00E-01 UP_SEQ_FEATURE domain:EGF-like 2; calcium-binding 6 6.10E-03 2.30E-01 UP_SEQ_FEATURE domain:EGF-like 7; calcium-binding 4 1.70E-02 4.10E-01				
UP_SEQ_FEATURE domain:EGF-like 2; calcium-binding 6 6.10E-03 2.30E-01 UP_SEQ_FEATURE domain:EGF-like 7; calcium-binding 4 1.70E-02 4.10E-01				
UP_SEQ_FEATURE domain:EGF-like 7; calcium-binding 4 1.70E-02 4.10E-01				
			domain:EGF-like 10; calcium-binding	

Add. Table 6: Statistically over-represented annotation terms, according to DAVID, of differently expressed genes between metabolic cluster Mc1 and Mc3

Add. Table 6: Statistical	ly over-represented annotation	terms, according to DAVID, of differently expressed genes betwee	n metabolic cluster Mc1 and Mc3
Annotation Cluster 1		Enrichment Score: 39.49	Count P_Value Benjam
	SP_PIR_KEYWORDS	signal	270 8.60E-56 3.90
	UP SEQ FEATURE	signal peptide	270 3.10E-55 6.70
	SP_PIR_KEYWORDS	extracellular matrix	77 4.20E-54 9.60
	GOTERM CC FAT	extracellular matrix	90 3.40E-50 1.10
	GOTERM_CC_FAT	proteinaceous extracellular matrix	86 5.30E-49 8.50
	GOTERM_CC_FAT	extracellular region part	132 5.90E-41 6.30
	SP_PIR_KEYWORDS	Secreted	166 3.00E-40 4.60
	GOTERM_CC_FAT	extracellular region	191 1.40E-37 1.10
	SP_PIR_KEYWORDS	glycoprotein	272 5.90E-33 6.70
	GOTERM_CC_FAT	extracellular matrix part	42 4.00E-29 2.60
	UP SEQ FEATURE	glycosylation site:N-linked (GlcNAc)	251 8.10E-27 8.70
	SP PIR KEYWORDS	disulfide bond	197 1.20E-25 1.10
	UP_SEQ_FEATURE	disulfide bond	192 3.90E-25 2.80
Annotation Cluster 2	01_020_12:110102	Enrichment Score: 29.11	Count P Value Benjam
Annotation Cluster 2	COTERM DR EAT		
	GOTERM_BP_FAT	cell adhesion	
	GOTERM_BP_FAT	biological adhesion	98 1.60E-33 1.80
	SP_PIR_KEYWORDS	cell adhesion	61 2.00E-22 1.50
Annotation Cluster 3		Enrichment Score: 19.86	Count P_Value Benjam
	GOTERM_CC_FAT	extracellular matrix part	42 4.00E-29 2.60
	GOTERM_CC_FAT	basement membrane	27 2.90E-18 1.60
	SP_PIR_KEYWORDS	basement membrane	17 2.20E-14 9.20
Annotation Cluster 4		Enrichment Score: 17.3	Count P_Value Benjam
	GOTERM BP FAT	extracellular matrix organization	34 2.50E-23 1.90
	GOTERM_BP_FAT	extracellular structure organization	36 1.50E-18 4.70
Annatation Cl. 1 C	GOTERM_BP_FAT	collagen fibril organization	
Annotation Cluster 5		Enrichment Score: 15.2	Count P_Value Benjam
	GOTERM_BP_FAT	vasculature development	47 4.80E-21 2.70
	GOTERM_BP_FAT	blood vessel development	44 5.30E-19 2.40
	GOTERM_BP_FAT	blood vessel morphogenesis	34 2.70E-13 6.60
	GOTERM_BP_FAT	angiogenesis	25 2.40E-10 2.80
Annotation Cluster 6		Enrichment Score: 11.76	Count P_Value Benjam
	GOTERM CC FAT	extracellular matrix part	42 4.00E-29 2.60
		extracellular matrix structural constituent	28 1.00E-18 5.80
	GOTERM_MF_FAT		
	SP_PIR_KEYWORDS	hydroxylation	24 2.10E-17 1.30
	GOTERM_CC_FAT	collagen	19 4.50E-17 2.10
	SP_PIR_KEYWORDS	collagen	25 2.50E-15 1.30
	INTERPRO	Collagen triple helix repeat	23 4.60E-14 5.40
	SP_PIR_KEYWORDS	trimer	14 2.60E-13 9.90
	SP PIR KEYWORDS	triple helix	14 4.50E-12 1.50
	SP PIR KEYWORDS	hydroxylysine	14 4.50E-12 1.50
	UP SEQ FEATURE	region of interest:Triple-helical region	12 3.80E-11 1.30
	SP_PIR_KEYWORDS	hydroxyproline	14 6.50E-11 2.00
	SP_PIR_KEYWORDS	pyroglutamic acid	9 1.00E-04 1.30
	GOTERM_CC_FAT	anchoring collagen	5 2.20E-04 2.90
	UP_SEQ_FEATURE	domain:VWFA 1	5 1.50E-03 5.70
	UP_SEQ_FEATURE	domain:VWFA 2	5 1.90E-03 6.70
Annotation Cluster 7		Enrichment Score: 11.42	Count P Value Benjam
	GOTERM_BP_FAT	skeletal system development	50 5.60E-19 2.10
	GOTERM BP FAT	bone development	21 7.20E-09 7.10
	GOTERM BP FAT	ossification	20 1.30E-08 1.20
A t-ti Clt R	GOTEKM_BF_FAT		
Annotation Cluster 8	COMPRIA DR FAM	Enrichment Score: 11.3	
	GOTERM_BP_FAT	cell motion	55 7.40E-15 2.10
	GOTERM_BP_FAT	cell migration	37 5.60E-12 9.60
	GOTERM_BP_FAT	localization of cell	37 1.20E-10 1.70
	GOTERM_BP_FAT	cell motility	37 1.20E-10 1.70
Annotation Cluster 9	·	Enrichment Score: 10.46	Count P_Value Benjam
	INTERPRO	EGF-like calcium-binding, conserved site	28 7.10E-18 5.90
	INTERPRO	EGF-like region, conserved site	45 7.40E-17 4.60
	INTERPRO	EGF-like calcium-binding	27 8.10E-17 3.10
	SP PIR KEYWORDS	egf-like domain	38 6.20E-16 3.80
	INTERPRO	EGF-type aspartate/asparagine hydroxylation conserved site	
	INTERPRO	EGF calcium-binding	22 1.60E-14 2.70
	INTERPRO	EGF-like, type 3	34 1.80E-14 2.50
	SMART	EGF_CA	27 7.60E-14 1.50
	INTERPRO	EGF	25 6.90E-12 7.20
	INTERPRO	EGF-like	31 9.30E-12 8.60
	UP_SEQ_FEATURE	domain:EGF-like 3; calcium-binding	14 7.00E-11 2.20
	UP_SEQ_FEATURE	domain:EGF-like 2; calcium-binding	16 2.60E-10 6.90
	UP SEQ FEATURE	domain:EGF-like 1	22 2.80E-10 6.80
		domain:EGF-like 5; calcium-binding	
	UP_SEQ_FEATURE		
	UP_SEQ_FEATURE	domain:EGF-like 4; calcium-binding	12 4.00E-09 7.80
	SMART	EGF	31 8.40E-09 8.40
	UP_SEQ_FEATURE	domain:EGF-like 6; calcium-binding	9 8.00E-07 1.30
	UP_SEQ_FEATURE	domain:EGF-like 4	11 1.60E-05 1.80
	UP SEQ FEATURE	domain:EGF-like 2	13 2.70E-05 2.70
	UP_SEQ_FEATURE	domain:EGF-like 3	12 2.90E-05 2.70
i		domain:EGF-like 7; calcium-binding	7 1.90E-04 1.10
Annotation Classes 10	UP_SEQ_FEATURE		
Annotation Cluster 10	IID GEO EE CATTE	Enrichment Score: 9.06	Count P_Value Benjam
l	UP_SEQ_FEATURE	domain:VWFC	12 1.00E-12 4.40
l	INTERPRO	von Willebrand factor, type C	13 5.10E-09 3.90
1	SMART	VWC	13 1.30E-07 6.40

Add. Table 7: Gene set enrichment analysis (GSEA) result for Ge NAME		logy (GO) gen	e sets. Metaboli NES				DANIZ ATMA	V LEADING EDGE
COLLAGEN	SIZE 23	0.7818	2.0623	NOM p-val 0.0011	FDR q-val 0.0020	FWER p-val 0.0070	RANK AT MA 2064	X LEADING EDGE tags=70%, list=9%, signal=77%
EXTRACELLULAR MATRIX	96	0.6880	2.0895	0.0000	0.0020	0.0050	2225	tags=49%, list=10%, signal=54%
PROTEINACEOUS_EXTRACELLULAR_MATRIX	94	0.6915	2.1008	0.0000	0.0025	0.0040	2225	tags=49%, list=10%, signal=54%
EXTRACELLULAR_MATRIX_PART	55	0.7282	2.1274	0.0000	0.0040	0.0040	2129	tags=51%, list=10%, signal=56%
INTEGRIN_BINDING CELL_SUBSTRATE_ADHESION	30 37	0.7220 0.6891	1.9686 1.9336	0.0000	0.0080 0.0109	0.0270 0.0420	3129 3380	tags=63%, list=14%, signal=74% tags=57%, list=15%, signal=67%
EXTRACELLULAR_MATRIX_STRUCTURAL_CONSTITUE NT	26	0.6938	1.9012	0.0000	0.0110	0.0550	1226	tags=46%, list=6%, signal=49%
CELL_MATRIX_ADHESION	36	0.6843	1.9120	0.0000	0.0110	0.0470	3380	tags=56%, list=15%, signal=66%
CELL_MATRIX_JUNCTION	16	0.7306	1.8324	0.0000	0.0257	0.1290	2484	tags=56%, list=11%, signal=63%
BASEMENT_MEMBRANE	35	0.6546	1.8215	0.0010	0.0268	0.1380	2684	tags=43%, list=12%, signal=49%
TRANSMEMBRANE_RECEPTOR_PROTEIN_KINASE_ACT	61	0.6166	1.0115	0.0000	0.0276	0.1540	3983	4400/ list-100/ sissel-600/
IVITY AXON_GUIDANCE	51 22	0.6166 0.6824	1.8115 1.7839	0.0000	0.0276 0.0323	0.1540 0.1990	933	tags=49%, list=18%, signal=60% tags=27%, list=4%, signal=28%
BASAL LAMINA	19	0.6938	1.7897	0.0020	0.0330	0.1900	2684	tags=42%, list=12%, signal=48%
SKELETAL_DEVELOPMENT	99	0.5846	1.7745	0.0000	0.0338	0.2130	2762	tags=37%, list=13%, signal=43%
REGULATION_OF_CELL_MIGRATION	27	0.6465	1.7558	0.0000	0.0393	0.2490	2952	tags=44%, list=14%, signal=51%
BASOLATERAL_PLASMA_MEMBRANE	31	0.6225	1.7124	0.0000	0.0539	0.3680	2798	tags=42%, list=13%, signal=48%
BLOOD_COAGULATION ADHERENS JUNCTION	42 21	0.6010 0.6590	1.7209 1.7162	0.0000	0.0543	0.3420 0.3610	3903 2484	tags=48%, list=18%, signal=58% tags=48%, list=11%, signal=54%
HEMOSTASIS	47	0.5966	1.7230	0.0000	0.0556	0.3340	3903	tags=47%, list=18%, signal=57%
COAGULATION	43	0.5950	1.7030	0.0000	0.0570	0.4060	3903	tags=47%, list=18%, signal=57%
SULFURIC_ESTER_HYDROLASE_ACTIVITY	16	0.6727	1.6963	0.0010	0.0584	0.4200	3141	tags=50%, list=14%, signal=58%
LIPID_HOMEOSTASIS	16	0.6690	1.6824	0.0010	0.0611	0.4790	3348	tags=44%, list=15%, signal=52%
ANATOMICAL_STRUCTURE_FORMATION WOUND HEALING	52 53	0.5763 0.5772	1.6844	0.0000	0.0618	0.4690 0.4610	5237 4715	tags=52%, list=24%, signal=68% tags=51%, list=22%, signal=65%
BONE REMODELING	28	0.6094	1.6632	0.0010	0.0623	0.5410	3983	tags=39%, list=18%, signal=48%
TISSUE_REMODELING	29	0.6081	1.6635	0.0000	0.0691	0.5410	3983	tags=38%, list=18%, signal=46%
EXTRACELLULAR_REGION_PART	322	0.5296	1.6665	0.0000	0.0696	0.5260	4482	tags=39%, list=21%, signal=49%
REGULATION_OF_BODY_FLUID_LEVELS	56	0.5625	1.6467	0.0000	0.0728	0.6060	4183	tags=45%, list=19%, signal=55%
TRANSMEMBRANE_RECEPTOR_PROTEIN_TYROSINE_K INASE_ACTIVITY	43	0.5705	1.6498	0.0000	0.0750	0.5920	3856	tags=42%, list=18%, signal=51%
POSITIVE REGULATION OF CELL DIFFERENTIATION	23	0.6161	1.6470	0.0000	0.0751	0.6060	2762	tags=43%, list=13%, signal=50%
GLYCOSAMINOGLYCAN_BINDING	30	0.5890	1.6322	0.0040	0.0806	0.6740	3108	tags=40%, list=14%, signal=47%
HOMEOSTASIS_OF_NUMBER_OF_CELLS	19	0.6164	1.6235	0.0071	0.0826	0.7060	1949	tags=37%, list=9%, signal=40%
POLYSACCHARIDE_BINDING	32	0.5863	1.6326	0.0020	0.0830	0.6730	3108	tags=38%, list=14%, signal=44%
CELL_MIGRATION MUSCLE DEVELOPMENT	92 89	0.5447 0.5369	1.6261	0.0000	0.0830 0.0831	0.6990 0.7460	2952 5238	tags=35%, list=14%, signal=40% tags=46%, list=24%, signal=60%
RUFFLE	27	0.5885	1.6170	0.0000	0.0839	0.7460	3309	tags=37%, list=15%, signal=44%
TISSUE DEVELOPMENT	135	0.5301	1.6127	0.0000	0.0840	0.7360	5011	tags=42%, list=23%, signal=54%
ATP_DEPENDENT_HELICASE_ACTIVITY REGULATION OF CYTOSKELETON ORGANIZATION A	22	0.6085	1.6190	0.0050	0.0844	0.7200	6660	tags=68%, list=30%, signal=98%
ND_BIOGENESIS	28	0.5915	1.6140	0.0010	0.0849	0.7330	2952	tags=36%, list=14%, signal=41%
HEPARIN_BINDING	22	0.5979	1.6041	0.0020	0.0870	0.7710	3108	tags=41%, list=14%, signal=48%
ACTIN_BINDING	72	0.5291	1.5901	0.0000	0.0880	0.8240	4089	tags=38%, list=19%, signal=46%
CELL_CORTEX_PART REGULATION_OF_ORGANELLE_ORGANIZATION_AND_	23	0.5909	1.5937	0.0030	0.0885	0.8110	3160	tags=35%, list=14%, signal=41%
BIOGENESIS	37	0.5654	1.5914	0.0010	0.0886	0.8210	2952	tags=32%, list=14%, signal=37%
PROTEIN_COMPLEX_BINDING	54	0.5464	1.5850	0.0010	0.0887	0.8400	3232	tags=39%, list=15%, signal=46%
REGULATION_OF_RESPONSE_TO_EXTERNAL_STIMULU								
ANGIOGENESIS	15	0.6496	1.5822	0.0092	0.0895	0.8460	3525	tags=53%, list=16%, signal=64%
ANGIOGENESIS EXTRACELLULAR REGION	44 423	0.5509 0.5050	1.5856 1.5985	0.0010	0.0899	0.8380 0.7930	5625 4482	tags=52%, list=26%, signal=70% tags=37%, list=21%, signal=45%
MUSCLE CELL DIFFERENTIATION	20	0.6121	1.5939	0.0061	0.0904	0.8090	5130	tags=60%, list=23%, signal=78%
INTEGRIN_COMPLEX	19	0.6200	1.5960	0.0040	0.0908	0.8040	4500	tags=58%, list=21%, signal=73%
ACTIN_POLYMERIZATION_AND_OR_DEPOLYMERIZATI								
ON NEURON_PROJECTION	23 19	0.5846 0.6090	1.5773 1.5706	0.0010 0.0060	0.0924	0.8600 0.8780	2848 5094	tags=35%, list=13%, signal=40%
CALMODULIN BINDING	25	0.5821	1.5712	0.0030	0.0933	0.8760	7178	tags=58%, list=23%, signal=75% tags=64%, list=33%, signal=95%
SODIUM CHANNEL ACTIVITY	16	0.6191	1.5722	0.0061	0.0950	0.8740	1909	tags=38%, list=9%, signal=41%
VASCULATURE_DEVELOPMENT	51	0.5379	1.5645	0.0010	0.0975	0.9000	5188	tags=49%, list=24%, signal=64%
KINASE_INHIBITOR_ACTIVITY	25	0.5854	1.5627	0.0040	0.0978	0.9010	3734	tags=40%, list=17%, signal=48%
ECTODERM_DEVELOPMENT PROTEIN KINASE INHIBITOR ACTIVITY	79 24	0.5307 0.5865	1.5594 1.5561	0.0050 0.0050	0.0990 0.1004	0.9090 0.9140	5011 3734	tags=42%, list=23%, signal=54% tags=42%, list=17%, signal=50%
ENERGY RESERVE METABOLIC PROCESS	15	0.5865	1.5537	0.0030	0.1004	0.9140	5542	tags=42%, list=17%, signal=50% tags=60%, list=25%, signal=80%
ACTIN FILAMENT BINDING	23	0.5747	1.5501	0.0030	0.1009	0.9250	4089	tags=48%, list=19%, signal=59%
NEGATIVE_REGULATION_OF_DNA_BINDING EXTRACELLULAR_STRUCTURE_ORGANIZATION_AND_	16	0.6063	1.5511	0.0112	0.1018	0.9240	4951	tags=56%, list=23%, signal=73%
BIOGENESIS	29	0.5641	1.5443	0.0261	0.1046	0.9410	2999	tags=41%, list=14%, signal=48%
ACTIN_CYTOSKELETON	122	0.4982	1.5355	0.0000	0.1114	0.9560	3302	tags=30%, list=15%, signal=35%
CARBOHYDRATE_BIOSYNTHETIC_PROCESS ORGAN MORPHOGENESIS	45 136	0.5400 0.4979	1.5369 1.5320	0.0030 0.0000	0.1115 0.1137	0.9540 0.9580	5302 6037	tags=44%, list=24%, signal=59% tags=48%, list=28%, signal=66%
METALLOENDOPEPTIDASE_ACTIVITY	27	0.5639	1.5297	0.0131	0.1144	0.9600	5134	tags=44%, list=23%, signal=58%
STRUCTURAL_CONSTITUENT_OF_CYTOSKELETON	55	0.5283	1.5242	0.0030	0.1187	0.9670	5240	tags=44%, list=24%, signal=57%
EPIDERMIS_DEVELOPMENT TRANSMEMBRANE RECEPTOR PROTEIN SERINE THR	70	0.5233	1.5215	0.0060	0.1205	0.9680	5011	tags=40%, list=23%, signal=52%
EONINE_KINASE_SIGNALING_PATHWAY	47	0.5270	1.5184	0.0020	0.1226	0.9710	5843	tags=49%, list=27%, signal=67%
SERINE HYDROLASE ACTIVITY	44	0.5325	1.5073	0.0020	0.1352	0.9810	2788	tags=30%, list=13%, signal=34%
SULFUR_COMPOUND_BIOSYNTHETIC_PROCESS	16	0.5972	1.4970	0.0215	0.1419	0.9870	2772	tags=31%, list=13%, signal=36%
PHOSPHORIC_DIESTER_HYDROLASE_ACTIVITY	39	0.5283	1.4978	0.0020	0.1428	0.9870	4367	tags=41%, list=20%, signal=51%
CORTICAL_CYTOSKELETON NEGATIVE REGULATION OF BINDING	19	0.5744	1.4985	0.0071	0.1439	0.9850	3160	tags=32%, list=14%, signal=37% tags=53%, list=23%, signal=68%
NEGATIVE_REGULATION_OF_BINDING METALLOPEPTIDASE ACTIVITY	17 46	0.5775 0.5251	1.4941 1.4996	0.0153 0.0010	0.1441 0.1444	0.9880 0.9850	4951 5789	tags=53%, list=25%, signal=68% tags=46%, list=26%, signal=62%
MYOBLAST_DIFFERENTIATION	17	0.5818	1.4862	0.0295	0.1479	0.9900	3890	tags=47%, list=18%, signal=57%
GROWTH_FACTOR_BINDING	32	0.5301	1.4874	0.0220	0.1480	0.9900	5197	tags=50%, list=24%, signal=66%
DENDRITE	16	0.5891	1.4885	0.0163	0.1486	0.9900	4156	tags=44%, list=19%, signal=54%
GENERATION_OF_A_SIGNAL_INVOLVED_IN_CELL_CEL L_SIGNALING	27	0.5619	1.4894	0.0151	0.1490	0.9900	5004	tage=44% liet=22% signal=50%
L_SIGNALING REGULATION OF INTRACELLULAR TRANSPORT	22	0.5552	1.4894	0.0151	0.1490	0.9900	5004 4825	tags=44%, list=23%, signal=58% tags=41%, list=22%, signal=52%
RAS_GTPASE_ACTIVATOR_ACTIVITY	26	0.5449	1.4743	0.0130	0.1628	0.9920	6320	tags=46%, list=29%, signal=65%
RECEPTOR_COMPLEX	56	0.5100	1.4702	0.0040	0.1630	0.9940	4969	tags=45%, list=23%, signal=58%
SERINE_TYPE_PEPTIDASE_ACTIVITY	43	0.5200	1.4686	0.0100	0.1635	0.9940	2788	tags=28%, list=13%, signal=32%
STRUCTURAL_CONSTITUENT_OF_MUSCLE PROTEIN PROCESSING	32 45	0.5360 0.5146	1.4709 1.4720	0.0090 0.0020	0.1639 0.1640	0.9930 0.9930	5250 4954	tags=44%, list=24%, signal=58% tags=36%, list=23%, signal=46%
ENDOPEPTIDASE ACTIVITY	45 111	0.5146	1.4720	0.0020	0.1640	0.9930	4954 5238	tags=36%, list=23%, signal=46% tags=35%, list=24%, signal=46%
	45	0.5127	1.4631	0.0070	0.1687	0.9950	8005	tags=62%, list=37%, signal=98%
HELICASE_ACTIVITY		0.5187	1.4584	0.0050	0.1723	0.9960	681	tags=18%, list=3%, signal=18%
	40	0.5167						
PROTEASE_INHIBITOR_ACTIVITY								
PROTEASE_INHIBITOR_ACTIVITY REGULATION_OF_MYELOID_CELL_DIFFERENTIATION	18	0.5734	1.4591	0.0234	0.1731	0.9950	1949	tags=33%, list=9%, signal=37%
PROTEASE_INHIBITOR_ACTIVITY REGULATION_OF_MYELOID_CELL_DIFFERENTIATION PATTERN_BINDING								tags=33%, list=9%, signal=37% tags=42%, list=22%, signal=54%
HELICASE_ACTIVITY PROTEASE_INHIBITOR_ACTIVITY REGULATION_OF_MYELOID_CELL_DIFFERENTIATION PATTERN BINDING PEPTIDASE_ACTIVITY REGULATION_OF_SECRETION AMINE_BIOSYNTHETIC_PROCESS	18 38	0.5734 0.5131	1.4591 1.4517	0.0234 0.0110	0.1731 0.1774	0.9950 0.9970	1949 4908	

NAME	SIZE	ES	NES	NOM p-val	FDR q-val	FWER p-val	RANK AT MAX	LEADING EDGE
OXIDOREDUCTASE_ACTIVITY_ACTING_ON_NADH_OR								
_NADPH	25	0.5327	1.4416	0.0221	0.1921	0.9990	6672	tags=64%, list=31%, signal=92%
NEGATIVE_REGULATION_OF_CELLULAR_COMPONENT								
ORGANIZATION_AND_BIOGENESIS	26	0.5243	1.4385	0.0190	0.1958	0.9990	2745	tags=31%, list=13%, signal=35%
POSITIVE_REGULATION_OF_TRANSCRIPTION_FROM_R		0.4000	1 4255	0.0040	0.1000	1 0000	1266	250/ 11 - 200/ 11 1 420/
NA_POLYMERASE_II_PROMOTER	57	0.4909	1.4355	0.0040	0.1998	1.0000	4266	tags=35%, list=20%, signal=43%
TRANSPORT_VESICLE	29	0.5150	1.4181	0.0180	0.2030	1.0000	4937	tags=38%, list=23%, signal=49%
REGULATION OF NUCLEOCYTOPLASMIC TRANSPORT	19	0.5413	1.4151	0.0322	0.2031	1.0000	4825	tags=37%, list=22%, signal=47%
DNA HELICASE ACTIVITY	22	0.5435	1.4325	0.0332	0.2036	1.0000	6302	tags=55%, list=29%, signal=77%
ELECTRON CARRIER ACTIVITY	75	0.4780	1.4185	0.0020	0.2040	1.0000	5315	tags=44%, list=24%, signal=58%
NEGATIVE REGULATION OF TRANSCRIPTION FROM								
RNA POLYMERASE II PROMOTER	78	0.4714	1.4165	0.0000	0.2042	1.0000	7409	tags=46%, list=34%, signal=70%
KERATINOCYTE_DIFFERENTIATION	15	0.5781	1.4152	0.0462	0.2048	1.0000	6886	tags=53%, list=32%, signal=78%
TUBE_DEVELOPMENT	18	0.5542	1.4104	0.0445	0.2050	1.0000	1962	tags=33%, list=9%, signal=37%
COPPER_ION_BINDING	15	0.5645	1.4189	0.0324	0.2052	1.0000	1565	tags=27%, list=7%, signal=29%
NUCLEOTIDE_BIOSYNTHETIC_PROCESS	19	0.5430	1.4090	0.0456	0.2056	1.0000	4828	tags=42%, list=22%, signal=54%
MEMBRANE FUSION	27	0.5163	1.4128	0.0320	0.2058	1.0000	3927	tags=37%, list=18%, signal=45%
TRANSFORMING GROWTH FACTOR BETA RECEPTOR	26	0.5007	1.4200	0.0120	0.2062	1.0000	7.120	+560/ 1i-+-240/ -i1-040/
_SIGNALING_PATHWAY PROTEIN BINDING BRIDGING	36 59	0.5086 0.4886	1.4288 1.4106	0.0130 0.0070	0.2063 0.2065	1.0000	7420 7526	tags=56%, list=34%, signal=84% tags=46%, list=34%, signal=70%
REGULATION OF CELL DIFFERENTIATION	55	0.4880	1.4106	0.0070	0.2003	1.0000	2911	tags=29%, list=13%, signal=33%
PROTEIN DNA COMPLEX ASSEMBLY	37	0.4901	1.4111	0.0040	0.2070	1.0000	8969	tags=68%, list=41%, signal=114%
CONTRACTILE FIBER PART	23	0.5362	1.4196	0.0332	0.2076	1.0000	1468	tags=26%, list=7%, signal=28%
SERINE TYPE ENDOPEPTIDASE ACTIVITY	39	0.5094	1.4268	0.0190	0.2080	1.0000	2788	tags=28%, list=13%, signal=32%
RESPONSE_TO_HYPOXIA	27	0.5217	1.4289	0.0100	0.2083	1.0000	7014	tags=59%, list=32%, signal=87%
AXONOGENESIS	43	0.5047	1.4210	0.0070	0.2087	1.0000	3671	tags=30%, list=17%, signal=36%
ACTIN_FILAMENT	17	0.5527	1.4200	0.0515	0.2088	1.0000	4742	tags=35%, list=22%, signal=45%
RNA_DEPENDENT_ATPASE_ACTIVITY	15	0.5695	1.4246	0.0483	0.2099	1.0000	7365	tags=73%, list=34%, signal=111%
ENZYME_INHIBITOR_ACTIVITY	115	0.4685	1.4211	0.0000	0.2107	1.0000	4713	tags=34%, list=22%, signal=43%
REGULATION_OF_ANATOMICAL_STRUCTURE_MORPH		0.5241	1 4000	0.0272	0.2110	1 0000	2025	250/ 11 - 140/ 1 - 1 400/
OGENESIS CELL CELL ADHESION	23 81	0.5341	1.4227	0.0272	0.2119 0.2120	1.0000	3035	tags=35%, list=14%, signal=40%
CELL PROJECTION PART	18	0.5419	1.4215	0.0020 0.0406	0.2174	1.0000	6050 6415	tags=44%, list=28%, signal=61% tags=56%, list=29%, signal=79%
POSITIVE_REGULATION_OF_RNA_METABOLIC_PROCE	10	0.5117	1.5700	0.0100	0.2171	1.0000	0113	ango 5070, not 2570, signal 7570
SS	102	0.4592	1.3983	0.0010	0.2175	1.0000	4266	tags=32%, list=20%, signal=40%
ENZYME LINKED RECEPTOR PROTEIN SIGNALING P								,,
ATHWAY	135	0.4501	1.3957	0.0000	0.2175	1.0000	4274	tags=34%, list=20%, signal=42%
CELL_JUNCTION	76	0.4747	1.3998	0.0050	0.2183	1.0000	6471	tags=47%, list=30%, signal=67%
NEGATIVE_REGULATION_OF_TRANSCRIPTION	167	0.4474	1.4007	0.0000	0.2183	1.0000	7227	tags=43%, list=33%, signal=64%
BIOGENIC_AMINE_METABOLIC_PROCESS	16	0.5563	1.4015	0.0427	0.2184	1.0000	4828	tags=44%, list=22%, signal=56%
CELLULAR_MORPHOGENESIS_DURING_DIFFERENTIAT	40	0.4000	1 2007	0.0000	0.2106	1 0000	2025	
ION LEADING EDGE	49 42	0.4909 0.4842	1.3987 1.3966	0.0090 0.0190	0.2186 0.2191	1.0000 1.0000	3035 3309	tags=27%, list=14%, signal=31% tags=29%, list=15%, signal=34%
PHOSPHOLIPID BINDING	39	0.4973	1.3900	0.0190	0.2191	1.0000	4460	tags=38%, list=20%, signal=48%
POSITIVE REGULATION OF TRANSCRIPTIONDNA DEP	3)	0.4773	1.3723	0.0240	0.2224	1.0000	4400	tags=3676, fist=2076, signal=4676
ENDENT	100	0.4568	1.3902	0.0010	0.2253	1.0000	4266	tags=32%, list=20%, signal=40%
ANATOMICAL STRUCTURE MORPHOGENESIS	356	0.4361	1.3832	0.0000	0.2258	1.0000	5963	tags=39%, list=27%, signal=53%
CELL SURFACE	72	0.4643	1.3855	0.0040	0.2264	1.0000	7241	tags=49%, list=33%, signal=72%
RESPONSE_TO_WOUNDING	178	0.4479	1.3821	0.0080	0.2264	1.0000	6311	tags=41%, list=29%, signal=57%
RECEPTOR_SIGNALING_PROTEIN_SERINE_THREONINE								
_KINASE_ACTIVITY	34	0.4972	1.3887	0.0150	0.2267	1.0000	5214	tags=41%, list=24%, signal=54%
ACTIN_CYTOSKELETON_ORGANIZATION_AND_BIOGE								
NESIS	101	0.4543	1.3869	0.0010	0.2268	1.0000	3500	tags=30%, list=16%, signal=35%
POSITIVE_REGULATION_OF_JNK_ACTIVITY POSITIVE REGULATION OF TRANSCRIPTION	18 120	0.5382 0.4520	1.3834	0.0455 0.0010	0.2271 0.2273	1.0000	4705 6739	tags=44%, list=22%, signal=57% tags=43%, list=31%, signal=62%
TUBE MORPHOGENESIS	15	0.4520	1.3856	0.0010	0.2278	1.0000	1962	tags=33%, list=9%, signal=37%
TOBE_MORI HOGENESIS	13	0.5557	1.5050	0.0402	0.2276	1.0000	1702	tags=3370, 11st=770, signal=3770
REGULATION OF TRANSCRIPTION FACTOR ACTIVITY	36	0.4904	1.3838	0.0200	0.2278	1.0000	4951	tags=39%, list=23%, signal=50%
CELL PROJECTION	98	0.4512	1.3749	0.0040	0.2311	1.0000	2978	tags=27%, list=14%, signal=31%
GTPASE_ACTIVATOR_ACTIVITY	56	0.4723	1.3791	0.0100	0.2311	1.0000	6484	tags=45%, list=30%, signal=63%
DNA_DEPENDENT_ATPASE_ACTIVITY	19	0.5307	1.3755	0.0676	0.2316	1.0000	4923	tags=47%, list=23%, signal=61%
EXTRACELLULAR_SPACE	233	0.4436	1.3766	0.0000	0.2326	1.0000	3568	tags=28%, list=16%, signal=33%
NEGATIVE_REGULATION_OF_MULTICELLULAR_ORGA								
NISMAL_PROCESS	30	0.5084	1.3773	0.0311	0.2329	1.0000	4878	tags=40%, list=22%, signal=51%
REGULATION_OF_ANGIOGENESIS	25	0.5071	1.3756	0.0302	0.2330	1.0000	5625	tags=44%, list=26%, signal=59%
NEGATIVE REGULATION OF CELL DIFFERENTIATION	27	0.5095	1.3679	0.0340	0.2434	1.0000	1501	to on=269/ list=79/ signs!=299/
NEGATIVE_REGULATION_OF_CELL_DIFFERENTIATION REGULATION OF NEUROTRANSMITTER LEVELS	27	0.5095	1.3679	0.0340	0.2434	1.0000	1501 4964	tags=26%, list=7%, signal=28% tags=45%, list=23%, signal=59%
TRANSCRIPTION INITIATION FROM RNA POLYMERAS	22	0.5237	1.505/	0.0473	0.2403	1.0000	7704	ш _Б , -т., и, им-23 /0, Signat=39/0
E II PROMOTER	18	0.5264	1.3646	0.0487	0.2470	1.0000	5685	tags=56%, list=26%, signal=75%
			1.5010	0.0107	0.2170	1.0000	2002	mgo 2070, not 2070, ngudi-7070

_ ;	
c_2	
Σ	
÷	
≥	
ē	
mpa	
ΞI	
2	
35	
ķ	
-	
Mc1	
ว	
ste	
ä	
olic	
ŏ	
tal	
vlet	
~:	
sets.	
Se	
e	
g	
0	
ŭ	
۳	
<u>60</u>	
걸	
ĭ	
Ontc	
9	
9	
r Gene (
or Gene (
ılt for Gene (
sult for Gene (
alt for Gene (
 A) result for Gene (
EA) result for Gene (
EA) result for Gene (
s (GSEA) result for Gene (
SEA) result for Gene (
lysis (GSEA) result for Gene (
nalysis (GSEA) result for Gene (
lysis (GSEA) result for Gene (
malysis (GSEA) result for Gene (
nt analysis (GSEA) result for Gene (
shment analysis (GSEA) result for Gene (
nt analysis (GSEA) result for Gene (
enrichment analysis (GSEA) result for Gene (
set enrichment analysis (GSEA) result for Gene (
ne set enrichment analysis (GSEA) result for Gene (
ene set enrichment analysis (GSEA) result for Gene (
ne set enrichment analysis (GSEA) result for Gene (
Gene set enrichment analysis (GSEA) result for Gene (
e 8: Gene set enrichment analysis (GSEA) result for Gene (
ible 8: Gene set enrichment analysis (GSEA) result for Gene (
e 8: Gene set enrichment analysis (GSEA) result for Gene (
dd. Table 8: Gene set enrichment analysis (GSEA) result for Gene (
d. Table 8: Gene set enrichment analysis (GSEA) result for Gene (

	1			l			00 00 0100 01
	SIZE ES	۱	NOM p-va	=	FWEK p-val	KANK AI MAA	LEADING EDGE
		. 4	0.0000	0.0110	0.0110	2319	tags=60%, list=11%, signal=6/%
NO	16 0.7521	_	0.0000	0.0360	0.0460	1814	tags=56%, list=8%, signal=61%
ADHERENS_JUNCTION 21	1 0.6979	9 1.8518	0.0000	0.0620	0.1030	1814	tags=48%, list=8%, signal=52%
PROTEINACEOUS EXTRACELLULAR MATRIX 94	4 0.5694	1.7481	0.0050	0.0954	0.2720	5379	tags=55%, list=25%, signal=73%
EXTRACELLULAR MATRIX 9	9695.0 9	5 1.7493	0.0050	0.1095	0.2680	3162	tags=45%, list=14%, signal=52%
COLLAGEN _ 23	3 0.6382	2 1.7129	0.0384	0.1243	0.3630	6011	tags=78%, list=28%, signal=108%
ACTIVITY		4 1.7532	0.0010	0.1253	0.2550	3358	tags=45%, list=15%, signal=53%
EXTRACELLULAR MATRIX STRUCTURAL CONSTITUENT 2	6 0.6175	5 1.7028	0.0051	0.1254	0.3980	2994	tags=50%, list=14%, signal=58%
EXTRACELLULAR MATRIX PART 5	55 0.5969	9 1.7696	0.0130	0.1265	0.2220	5379	tags=58%, list=25%, signal=77%
GROWTH FACTOR BINDING 3	2 0.6009	9 1.6675	0.0010	0.1309	0.5230	5615	tags=66%, list=26%, signal=88%
HESION	7 0.5911	1 1.6695	0.0000	0.1383	0.5160	3072	tags=46%, list=14%, signal=53%
LIPID_HOMEOSTASIS	6599:0 9	9 1.6505	0.0020	0.1391	0.5820	2598	tags=44%, list=12%, signal=50%
IDASE_ACTIVITY	39 0.5827	7 1.6553	0.0000	0.1393	0.5630	3056	tags=36%, list=14%, signal=42%
	35 0.5880	0 1.6724	0.0060	0.1458	0.4990	5379	tags=54%, list=25%, signal=72%
OF DNA_BINDING		2 1.6274	0.0031	0.1503	0.6830	3270	tags=44%, list=15%, signal=51%
RANE	1 0.5887	7 1.6307	0.0000	0.1532	0.6660	1814	tags=35%, list=8%, signal=39%
\.		0 1.6203	0.0000	0.1541	0.7100	3056	tags=34%, list=14%, signal=40%
		5 1.6153	0.0010	0.1541	0.7320	3878	tags=43%, list=18%, signal=52%
SERINE_TYPE_PEPTIDASE_ACTIVITY 43	3 0.5853	3 1.6741	0.0000	0.1565	0.4930	3056	tags=35%, list=14%, signal=40%
	7 0.5537	7 1.6083	0.0000	0.1582	0.7580	2123	tags=36%, list=10%, signal=40%
	36 0.5787	7 1.6323	0.0000	0.1606	0.6600	3072	tags=44%, list=14%, signal=52%
MENT	70 0.5423	_	0.0010	0.1666	0.8300	3565	tags=37%, list=16%, signal=44%
	9009'0 6	5 1.5887	0.0030	0.1711	0.8270	2527	tags=42%, list=12%, signal=48%
IN_TYROSINE_KINASE_ACTIVITY		_	0.0040	0.1735	0.8050	3358	tags=40%, list=15%, signal=47%
REGULATION_OF_MAPKKK_CASCADE 19		_	0.0091	0.1757	0.8230	3372	tags=42%, list=15%, signal=50%
OF_BINDING		_	0.0061	0.1798	0.8970	3270	tags=41%, list=15%, signal=48%
COPMENT		_	0.0000	0.1826	0.8690	4652	tags=47%, list=21%, signal=60%
		_	0.0010	0.1857	0.8950	2123	tags=35%, list=10%, signal=39%
		_	0.0010	0.1924	0.8950	2123	tags=36%, list=10%, signal=39%
		_	0.0020	0.2059	0.9310	3173	tags=34%, list=15%, signal=40%
TON		_	0.0040	0.2068	0.9260	5410	tags=45%, list=25%, signal=60%
ACTIVATION_OF_PROTEIN_KINASE_ACTIVITY 24	_	_	0.0071	0.2084	0.9700	2429	tags=38%, list=11%, signal=42%
		_	0.0010	0.2102	0.9640	2625	tags=34%, list=12%, signal=38%
TY	_	_	0.0020	0.2134	0.9700	5182	tags=44%, list=24%, signal=58%
	_	_	0.0080	0.2156	0.9640	4851	tags=42%, list=22%, signal=54%
	6 0.5194	4 1.5323	0.0010	0.2168	0.9560	2123	tags=34%, list=10%, signal=37%
PROTEIN_KINASE_INHIBITOR_ACTIVITY 24	4 0.5736	5 1.5351	0.0030	0.2175	0.9530	5182	tags=46%, list=24%, signal=60%
TRANSFORMING_GROWTH_FACTOR_BETA_RECEPTOR_SIGNALING_PATHWAY	6 0.5409	1.5151	09000	0.2186	0.9780	7287	tags=58%, list=33%, signal=87%
TRANSMEMBRANE RECEPTOR PROTEIN SERINE THREONINE KINASE SIGNALING PATHWAY	7 0.5338	8 1.5276	0.0010	0.2205	0.9620	7287	tags=57%, list=33%, signal=86%
	2 0.5553	3 1.5352	0.0040	0.2242	0.9530	2760	tags=41%, list=13%, signal=46%
EXTRACELLULAR REGION PART 32	2 0.4756	5 1.5086	0.0030	0.2281	0.9810	6443	tags=46%, list=29%, signal=64%
	53 0.5178		0.0020	0.2328	0.9810	2935	tags=38%, list=13%, signal=43%
STRUCTURE_ORGANIZATION_AND_BIOGENESIS				0.2359	0.9840	4817	tags=48%, list=22%, signal=62%
LIPID_TRANSPORT 2	8 0.5511	1.4774	0.0080	0.2488	0.9940	7203	tags=54%, list=33%, signal=80%

Add. Table 9: Gene set enrichment analysis (GSEA) result for Gene Ontology (GO) gene sets. Metabolic cluster Mc3 was compared with Mc1 and Mc2.

Add. 1able 9: Gene set enrichment analysis (GSEA) result for Gene Untology (GO) gene sets. Metabolic cluster Mc3 was compared with Mc1 and Mc2.	rO) gene se	ts. Metabo	ilic cluster	. Mc3 was con	pared with Mc1	and Mc2.	
NAME	SIZE	ES	NES	NOM p-val	FDR q-val	FWER p-val	FWER p-val RANK AT MAX LEADING EDGE
EXTRACELLULAR_MATRIX_PART	55	55 0.7515	2.1854	0.0000	0.0020	0.0040	1682 tags=47%, list=8%, signal=51%
COLLAGEN	23	0.8417	2.2165	0.0000	0.0040	0.0040	1682 tags=70%, list=8%, signal=75%
EXTRACELLULAR_MATRIX	96	0.6787	2.0428	0.0000	0.0055	0.0170	1682 tags=43%, list=8%, signal=46%
PROTEINACEOUS_EXTRACELLULAR_MATRIX	94	0.6836	2.0553	0.0000	0.0063	0.0160	1682 tags=43%, list=8%, signal=46%
INTEGRIN_BINDING	30	0.7168	1.9587	0.0000	0.0098	0.0330	2692 tags=50%, list=12%, signal=57%
EXTRACELLULAR_MATRIX_STRUCTURAL_CONSTITUENT	26	0.7268	1.9400	0.0000	0.0113	0.0440	1997 tags=54%, list=9%, signal=59%
BASEMENT_MEMBRANE	35	0.6598	1.8425	0.0000	0.0345	0.1170	703 tags=31%, list=3%, signal=32%
BASAL_LAMINA	19	6999.0	1.7255	0.0000	0.1232	0.3500	703 tags=32%, list=3%, signal=33%
CELL_MATRIX_ADHESION	36	0.5977	1.6720	0.0000	0.1718	0.5340	2695 tags=39%, list=12%, signal=44%
CELL_SUBSTRATE_ADHESION	37	0.5963	1.6740	0.0010	0.1877	0.5230	2695 tags=38%, list=12%, signal=43%
PROTEASE_INHIBITOR_ACTIVITY	40	0.5840	1.6425	0.0000	0.2111	0.6390	1497 tags=20%, list=7%, signal=21%

Add. Table 10: Integrated pathway analysis result from comparison of the metabolic clusters Mc1 compared to Mc2

Pathway Total Tymsine metabolism						
Tymsine metaholism	_ E	Total Expected Hits P.Value Metabolite hits	lits	P.Value M.		Gene hits
Thomas memorate	80	1.9872	8	8 0.00066125 L-Tyrosine	Tyrosine	AOC3, ALDH1A3, AOX1, ADH1C, MAOA, MAOB, PNMT
Glycerolipid metabolism	72	1.7885	7	0.0017364		AKRIBI, AKRIBIO, ALDH2, AGPAT4, PPAP2A, PPAP2B, PNLIPRP3
Fatty acid metabolism	83	2.0617	7	0.003944		ACSL4, ACSL1, ACAA2, ADH1A, ADH1B, ADH1C, ALDH2
Glycolysis / Gluconeogenesis	91	2.2604	7	0.0065727 Be	0.0065727 Beta-D-glucose, Acetate	ADHIA, ADHIB, ADHIC, ALDH2, ALDH1A3
Ether lipid metabolism	51	1.2668	5	0.0078844		LPCAT2, ENPP2, PLD1, PPAP2A, PPAP2B
Glycerophospholipid metabolism 11	19	2.956	œ	0.0082917 GI	0.0082917 Glycerophosphocholine, Phosphocholine	LCAT, LPCAT2, PPAP2A, PPAP2B, PLD1, AGPAT4
Arachidonic acid metabolism 10	00	2.484	7	0.010899		CYP2U1, ALOX5, GPX3, GGT5, PTGS2, PTGIS, AKR1C3
Nicotinate and nicotinamide metabolism	39	0.96876	4	0.014869		AOXI, NNMT, NAMPT, NTSE
D-Glutamine and D-glutamate metabolism	6	0.22356	7	0.01955 Glutamate	utamate	GTS
Phenylalanine metabolism	29	0.72036	Э	0.033755 L-Tyrosine	Pyrosine	AOC3, ALDH1A3
Drug metabolism - cytochrome P450	27	3.1547	7	0.035916		AOXI, ALDH1A3, ADH1A, ADH1B, ADH1C, GSTP1, FMO2
Mucin type O-Glycan biosynthesis	32	0.79488	ж	0.043479		ST3GAL2, GALNTL2, GALNT12

Add. Table 11: Integrated pathway analysis result from comparison of the metabolic clusters Mc1 compared to Mc3

Add. I able 11: Integrated pathway analysis result from compariso	on or the meta	metabolic clusters Mc1 compared to Mc3	ci compa	red to IMC3		
Pathway	Total	Expected	Hits	s P.Value Metabolite hits		Gene hits
Glycerophospholipid metabolism	119	2.5977	6	0.0009 Glycerophospho	choline, Phosphocholine	LCAT, PLA2G5, LPCAT2, PPAP2A, PPAP2B, PLD1, AGPAT4
Ether lipid metabolism	51	1.1133	5	0.0045		PPAP2A, PPAP2B, PLA2G5, PLD1, LPCAT2
D-Glutamine and D-glutamate metabolism	6	0.19646	2	0.0153 Glutamate		STD
Glycosaminoglycan biosynthesis - chondroitin sulfate	14	0.30561	2	0.0360		XYLTI, CHSY3

Paper III

Is not included due to copyright