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Metabolsk profilering av brystkreft ved hjelp av
ex vivo MR spektroskopi

Til tross for tidligere oppdagelse og forbedret behandling er brystkreft fortsatt den
nest hyppigste arsaken til kreftrelatert ded blant kvinner pa verdensbasis. Arlig blir
over 3000 kvinner diagnostisert med brystkreft i Norge. Det forskes mye for a finne
underliggende mekanismer som bidrar til den komplekse heterogeniteten observert i
brystkreft. Dette har fort til oppdagelsen av flere subtyper av brystkreft, inkludert
histologiske og genetiske subtyper, med forskjellige egenskaper og prognose, noe som

forsterker hypotesen om at brystkreft ikke er én, men en samling av flere sykdommer.

Kreftceller ma vaere i stand til & omdanne naeringsstoffer til biomasse samtidig
som energi produseres, noe som krever reprogrammering av sentrale metabolske
prosesser i cellene. Dette fenomenet er foreslatt som et potensielt mal for behan-
dling, samtidig som det kan veare en kilde til biomarkgrer som kan forutsi prognose
og risiko og brukes til & overvake behandlingsrespons. MR metabolomikk er et mye
brukt verktgy som kan identifisere klinisk relevante metabolske markgrer og gi ny
forstaelse for den molekyleere biologien i svulstene. Ez vivo proton hgy-oppl@gsning
MR spektroskopi (HR MAS MRS) er en ikke-destruktiv metode som gir hgyop-
pleselige MR spektra fra biologisk vev: Prgven forblir intakt for videre analyser
som genetiske analyser, genuttrykksanalyser og/eller histopatologi. HR MAS MRS
er mye brukt til a studere sentrale metabolske prosesser som er relatert til kreftpro-
gresjon, inkludert fosfolipidmetabolisme, glykolyse og metabolismen av aminosyrer
og polyaminer. Mer enn 30 metabolitter kan detekteres samtidig i et HR MAS spek-
trum fra brystkreftvev og de metabolske profilene malt ved hjelp av denne metoden
har blitt vist & korrelere med tumorgrad, lymfeknute- og hormonreseptorstatus,

behandlingsrespons og pasientoverlevelse.

For & oppna robuste data med hgy kvalitet krever MR metabolomikk bevissthet
rundt eksperimentelle detaljer. Det er sveert viktig at provene behandles og pre-
pareres pa en optimal mate for a oppna kvalitetssikre resultater. T artikkel T
ble tumorvev fra xenograftmodeller brukt for a vurdere de metabolske endrin-
gene forarsaket av tidsintervallet fra tumorene fjernes frem til de hurtigfryses for
lagring (frysetid-forsinkelse). Studien viste at de metabolske profilene var robuste

for forsinkelser pa opp til 30 minutter. Videre viste den metabolske effekten av
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langvarig MR analyse viktigheten av standardiserte protokoller og begrensning i
analysetid.

I artikkel IT avslgrte analyse av metabolske profiler tre naturlige metabolske
grupper av brystkrefttumorer. Nar gruppene ble kombinerte med data fra genuttrykk-
og proteinuttrykksanalyser, viste de i tillegg forskjeller i nivaet av gener og proteiner
involvert i ekstracellulezer matrix. Forskjellene i genuttrykk kunne ogsa forklare noen
av de metabolske forskjellene observert mellom gruppene. De etablerte genetiske
subtypene var jevnt fordelt blant de tre gruppene, noe som dermed betyr at de
metabolske gruppene kan bidra med tilleggsinformasjon som kan forklare noe av
heterogeniteten observert i brystkreft.

I artikkel III ble de metabolske effektene av neoadjuvant kjemoterapi med eller
uten angiogenesehemmeren bevacizumab undersgkt hos brystkreftpasienter. Ty-
delige metabolske endringer som et resultat av behandlingen ble observert. I tillegg
kunne de metabolske profilene i tumorene ved operasjon skille pasienter som hadde
oppnadd patologisk minimal residual sykdom fra pasienter med ikke-responderende
tumorer. Selv om administrering av bevacizumab ikke viste noe tydelig metabolsk
endring ble det observert at metabolismen av glutation antakelig ble pavirket. Sam-
let viser dette at metabolske profiler kan komplementere andre molekylare niva for
kartlegging av underliggende mekanismer som pavirker patologisk respons, og i til-
legg gi informasjon om tumorens metabolske respons pa behandling.

Totalt sett har arbeidet i denne avhandlingen vist at metabolske profiler bestemt
ved hjelp av MR spektroskopi av tumorvev kan bidra til & karakterisere heterogen-
itet utover genetiske subtyper, sa vel som a bidra med verdifull informasjon under
overvakning av respons pa neoadjuvant behandling. Ved & kombinere metabolsk
data med andre plattformer (f.eks. genuttrykk- og proteinuttrykksanalyser) kan
man finne nye molekylaere mal som kan brukes til a utvikle behandlingsstrategier

som angriper pa flere molekylaere niva.
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Summary

Despite progress in early detection and therapeutic strategies, breast cancer remains
the second leading cause of cancer-related death among women globally. Annually,
more than 3000 women are diagnosed with breast cancer in Norway. Much effort has
been made to find underlying mechanisms contributing to the complex heterogeneity
observed in breast cancer. This has led to the discovery of several subtypes of
breast cancer, for example histological and genetic subtypes, with different traits
and prognosis, supporting that breast cancer is not one disease but in fact multiple

diseases.

Cancer cells must be able to convert nutrients to biomass while maintaining
energy production, which requires reprogramming of central metabolic processes
in the cells. This phenomenon is increasingly recognized as a potential target for
treatment, but also as a source for biomarkers that can be used for prognosis,
risk stratification and therapy monitoring. MR metabolomics is a widely used ap-
proach in translational research, aiming to identify clinically relevant metabolic
biomarkers or generate novel understanding of the molecular biology of tumors.
Ez vivo proton high-resolution magic angle spinning (HR MAS) MR spectroscopy
is a non-destructive and high-throughput technique that provides highly resolved
MR spectra from biological tissue, leaving the sample intact for further analysis,
such as genomics, transcriptomics and/or histopathology. HR MAS MRS is widely
used to study central metabolic processes related to cancer progression, including
choline phospholipids metabolism, glycolysis and metabolism of amino acids, lipids
and polyamines. More than 30 metabolites can be detected and assigned simul-
taneously in a HR MAS spectrum of breast cancer tissue. The metabolic profiles
acquired by HR MAS MRS have shown to correlate to tumor grade, lymph node and

hormone receptor status, treatment response and patient survival in breast cancer.

Generating robust and valid data using MR metabolomics requires close at-
tention to experimental details. For valid interpretation of the results, consistent
sample collection and preparation is crucial. In paper I, tumor tissue from xenograft
models were used to evaluate the metabolic changes caused by the time interval from
surgical removal of a tumor until it is snap-frozen for storage (freezing delay time).
The study showed that the metabolic profile was robust to freezing delay times up

to 30 minutes. Furthermore, the metabolic effect of prolonged MR analysis demon-
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strated the importance of using standardized protocols and limiting the analytical
time.

In paper II, analysis of tumor metabolic profiles revealed three naturally occur-
ring metabolic clusters of breast cancer tumors. When combined with transcrip-
tomic and proteomic data, the clusters showed differences in expression of genes and
proteins involved in the extracellular matrix. Additional gene expression differences
explaining some of the observed metabolic differences between the clusters were also
observed. Interestingly, genetic subtypes were evenly distributed among the three
metabolic clusters, which therefore could contribute additional information beyond
the intrinsic gene sets for understanding breast cancer heterogeneity.

In paper III, the metabolic effects of neoadjuvant chemotherapy with or with-
out the antiangiogenic agent bevacizumab in breast cancer patients were explored.
Distinct metabolic alterations due to treatment could be observed. In addition, tu-
mor metabolic profiles at surgery could discriminate patients achieving pathologcal
minimal residual disease from non-responders. Although bevacizumab administra-
tion did not show any prominent metabolic differences, glutathione metabolism was
found to possibly be affected. Together, this shows that metabolic profile may com-
plement other molecular levels for the elucidation of the underlying mechanisms
affecting pathological response, and may additionally provide information on tumor
metabolic response to treatment.

In conclusion, MR determined metabolic profiles of tumor tissue have been
shown to characterize breast cancer heterogeneity beyond genetic subtypes as well as
to provide valuable information when monitoring response to neoadjuvant chemother-
apy. The approach of combining metabolic data with other platforms (e.g. tran-
scriptomics and proteomics) may further provide targets for investigation of new

treatment strategies at different molecular levels.

X



Symbols & Abbreviations

Symbol
2DG

1

Y

By
ATP
CHKA
CDhP
CPMG
CT
DAG
ECM
ER
HER2
HES
HKs
GLS
GPC
GR
GSEA

IDC
ILC
LMM
LV
MAS
MICE
MRI
MRS
MS
NOESY
NR

Description

2-deoxy-D-glucose

Magnetic momentum of a precessing nucleus
Gyromagnetic ratio

External static magnetic field
Adenosine triphosphate

Choline kinase alpha
Cytidyldiphosphate
Carr-Purcell-Meiboom-Gill pulse sequence
Computed tomography

Diacylglycerol

Extracellular matrix

Estrogen receptor

Human epidermal growth factor 2
Hematoxylin-Eosin-Safron

Hexokinases

Glutaminase

Glycerophosphocholine

Good response

Gene set enrichment analysis

Nuclear spin number

Invasive ductal carcinoma

Invasive lobular carcinoma

Linear mixed model

Latent variable

Magic angle spinning

Multivariate imputation by chained equation
Magnetic resonance imaging

Magnetic resonance spectroscopy

Mass spectrometry

Nuclear Overhauser effect spectroscopy

No response

Page
59
13
13
13
10
54
11
15
62
11
57

34
59
95
11
37
41
13

29
25
17
40
37
13
63
15
37



FFT
FID
PBS
PCA
PCho
pCR
PET
PgR
PLD
PLS-DA
pMRD
pNR
PtdCho
ppm
PQN
RECIST
RF
ROS
RPPA
SAM

T

1

TCA
tCho
TNBC
TNM

TSP
VEGF

Fast fourier transformation

Free induction decay

Phosphate buffered saline

Principal component analysis
Phosphocholine

pathological complete response
Positron emission tomography
Progesteron receptor
PtdCho-spesific phospholipase D
Partial least squares

pathological minimal residual disease
pathological non-responder
Phosphatidylcholine

Parts per million

Probabilistic quotient normalization
Response evaluation criteria for solid tumours
Radio frequency

Reactive oxygen species

Reverse phase protein array
Significance analysis of microarrays
Longitudinal relaxation

Transverse relaxation

Tricarboxylic acid

Total-choline

Triple negative breast cancer

Tumor size (T), degree of spread to lymph nodes (N)

distant metastasis (M)
Trimethylsilyl propionic acid

Vascular endothelial growth factor

xi

38



List of Papers

Paper I

Impact of freezing delay time on tissue samples for metabolomic studies.
Haukaas TH*, Moestue SA*, Vettukattil R, Sitter B, Lamichhane S, Segura R,
Giskegdegard GF, Bathen TF (2016). *Shared first authorship

Frontiers in Oncology 6(17): doi: 10.3389/fonc.2016.00017

Paper 11

Metabolic clusters of breast cancer in relation to gene- and protein
expression subtypes.

Haukaas TH, Euceda LR, Giskegdegard GF, Lamichhane S, Krohn M, Jernstrdé m
S, Aure MR, Lingaerde OC, Schlichting E, Garred @, Due EU, OSBREAC, Mills
GB, Sahlberg KK, Borresen-Dale A-L, Bathen, TF

Submitted to Cancer € Metabolism 2016.

Paper 111

Evaluation of metabolomic changes during neoadjuvant chemotherapy
combined with bevacizumab in breast cancer using MR spectroscopy.
Euceda LR, Haukaas TH, Giskegdegard GF, Vettukattil R, Engel J, Silwal-Pandit
L, Lundgren S, Postma G, Buydens LMC, Bgrresen-Dale A-L, Bathen TF
Submitted to Neoplasia 2016

xii



xiii



CONTENTS CONTENTS

Contents

1 Introduction 1
1.1 Cancer . . . . . . . 1
1.2 Breast Cancer . . . . . . . . ... 3

1.2.1 Etiology and screening . . . . . . ... ... 3
1.2.2  Anatomy and pathology . . . . ... ... ... ... .... 3
1.2.3 Diagnosis and treatment . . . . . . . .. ... 0L 4
1.3 The omics of breast cancer . . . . . . . . . ... ... ... ... 7
1.3.1 Transcriptomics and intrinsic genetic subtypes . . . . . . . . 7
1.3.2  Proteomics and protein expression subtypes . . . . .. . .. 8
1.3.3 Metabolomics and breast tumors metabolism . . . . . . . .. 9
1.4 Magnetic resonance spectroscopy (MRS) . . .. ... .. ... ... 13
1.4.1 MRS acquisition . . . . . ... L0 Lo 14
1.5 High Resolution Magic Angle Spinning MRS . . . . ... ... ... 17
1.5.1 'H HR MAS MRS analysis of breast cancer tissue . . . . . . 17
1.5.2  Pre-processing of MRS spectra. . . . . . ... ... .. ... 19
1.6 Multivariate analysis . . . . . . . ... ... L 23
1.6.1 Principal Component Analysis (PCA). . . . ... ... ... 23
1.6.2 Hierarchical Cluster Analysis . . . . ... ... ... .... 24
1.6.3 Partial Least Squares (PLS) . . .. .. ... .. ... .... 25
1.6.4 Validation of multivariate models . . . . . . . ... ... .. 26
1.7 Linear Mixed Models (LMM) . . ... ... ... ... ... .... 29

2 Aims 31

3 DMaterials and Methods 33
3.1 Patients and xenograft models . . . . . . .. .. oo oL 33

3.1.1 Breast cancer xenograft models . . . . ... ... ... ... 33
3.1.2  Patients cohorts . . . . . ... oo 34
3.1.3 Patient treatment protocols and response measurements . . 37
3.2 'H HR MAS MRS experiments . . . . . . . ... ... ... .... 37
3.2.1 Sample preparation . . . . . .. ..o L 37
3.2.2  Acquisition protocol . . . ... ..o 38
3.3 Spectral pre-processing and analysis . . . . . . ... ... 39

Xiv



CONTENTS CONTENTS

3.3.1 Multivariate analysis . . . . . ... ... oL 39

3.3.2  Univariate and multilevel analysis . . . . . . . .. ... ... 40

3.4 Gene and protein experiments . . . . .. ... 40
3.4.1 Gene expression and genetic subtypes . . . . . .. ... ... 40

3.4.2  Protein expression and proteomic subtypes . . . . . ... .. 41

3.4.3 Analysis of gene expression data . . . . . .. ... ... ... 41

3.4.4 Integrated pathway analysis . . . . . . ... ... ... ... 42

4 Summary of papers 43
4.1 Paper T. . . . . . 43
4.2 Paper IT . . . . . . . o 45
4.3 Paper ITIT. . . . . . . o . o 47

5 Discussion 49
5.1 Metabolic profiles of breast cancer . . . . . . . ... ... ... ... 49
5.2 Methodological considerations . . . . . . ... ... ... ... ... 61

6 Conclusion and future perspectives 69
References 71

XV



LIST OF FIGURES

LIST OF TABLES

List of Figures

1.1 Hallmarks of cancer . . . . . . . ... ... .. ...
1.2 Breast Anatomy . . . . . . ... ... ... ... ..
1.3 The omics cascade . . . . . ... ... ... ...
1.4  Glucose metabolism . . . . .. ... ... ... ...
1.5 Choline metabolism . . . . . .. ... ... ... ..
1.6 The basic principle of magnetic resonance . . . . .
1.7 CMPG sequence . . . . . . .. ... . ... . ...
1.8 Magic Angle Spinning . . . . . ... ...
1.9 'H HR MAS MRS breast cancer spectra . . . . . .
1.10 Principal component analysis . . . . .. ... ...
1.11 Hierarchical cluster analysis . . . .. ... ... ..
1.12 Partial least squares discriminant analysis . . . . .
1.13 Double cross validation . . . . .. .. ... ... ..
3.1 Work flow for xenograft samples paper I . . . . . .
3.2 Tumor preparation paper IT . . . . . ... ... ..
3.3 Flow chart for study participants in paper IIT . . .
3.4 Tllustration of sample preparation . . . . ... . ..
4.1 PaperI,Barplots. . ... ... ... ... .....
4.2 Paper II, Metabolic clusters . . . . ... ... ...
4.3 Paper III, PCA score plots . . . . . ... ... ...

5.1 Summary of metabolic pathways. . . . . . ... ..

List of Tables

3.1 Materials and methods used in paper I-IIT . . . . .

3.2 Tumor response classification criteria (paper III)

3.3 Acquisition parameters . . . . . ... .. ... ...

5.1 Summary of metabolic findings in paper I-IIT . . . .

xvi



LIST OF TABLES LIST OF TABLES

xvii



1 INTRODUCTION

1 Introduction

1.1 Cancer

Cancer is a collection of over 100 diseases where genetic alterations (mutations)
cause cells to grow and divide uncontrollably and lose regulation of important cellu-
lar processes. These characteristics and accumulating mutations can potentially lead
to cancer cells invading nearby or distant areas from the cancer’s primary site [1].
Invasion of distant locations, also known as metastasis, can happen through blood
or lymph vessels and is the main reason for cancer death due to disruption of im-
portant and essential functions of the organs it metastasizes to. Based on the most
recently reported cancer statistics, it was estimated that 14.1 million new cancer
cases were diagnosed in 2012 world wide [2]. The same year, cancer was the leading
cause of 8.2 million deaths.

Although there is huge complexity and variety in characteristics among the dif-
ferent cancer types as well as within distinct cancer types, there has been proposed
six essential alterations necessary for malignant growth [1] illustrated in Figure 1.1a.
During tumor development cancer cells establish characteristics of avoiding apop-
tosis (programmed cell death), they become self-sufficient of growth signals and
insensitive to anti-growth signals, they can potentially invade tissue and metasta-
size, they have limitless replicative potential and they sustain angiogenesis (blood
vessel supply). More recently, two emerging hallmarks were suggested including
deregulation of cellular energetics and avoiding immune destruction as illustrated

in Figure 1.1b [3].
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Self-sufficiency in Emerging Hallmarks

growth signals

Evading Insensitivity to
apoptosis anti-growth signals

Tumor-promoting
Inflammation

Sustained Tissue invasion 2 P
angiogenesis & metastasis Enabling Characteristics

Limitless replicative
potential

Figure 1.1: Hallmarks and enabling characteristics of cancer. a) The six biological
characteristics of cancers acquired during development of human tumors. b) The two
emerging hallmarks and enabling characteristics of cancer. The figure is adapted from [1]

and [3] with permission.
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1.2 Breast Cancer

Breast cancer is the most frequently diagnosed cancer among women worldwide [4]
and in Norway it has been estimated that one out of twelve women will develop
this disease by the age of 75 [5]. Although trends show decreasing mortality in
several countries [4] and almost 90 % of women diagnosed in Norway still are alive
5 years after the diagnosis [5], it is difficult to predict each breast cancer patient’s
outcome. Patients with the same diagnosis of breast cancer may have different
response to treatment, underpinning the need to further characterize breast cancer

heterogeneity.

1.2.1 Etiology and screening

Although there still is a lack of knowledge regarding the direct etiology for develop-
ing breast cancer, known risk factors are hereditary, age, hormonal circumstances
(early menarche, late first-time birth, nulliparity, late menopause, estrogen use be-
fore the age of 35, longterm post-menopausal estrogen therapy), obesity and alcohol
consumption. Factors reducing the risk include early first pregnancy, multiple preg-
nancies, breastfeeding and regular exercise [6,7]. In addition, there are higher inci-
dence rates in developed countries, believed to be due to environmental factors [4]
as well as increased screening [5]. In Norway, all women in the age of 50-69 are
advised to take part in a program with mammography screening every second year
aiming to detect breast cancer at an early stage and thereby reducing the mortality.
This program was gradually implemented within the years of 1995-2005. Based on
a prospective cohort study evaluating the effectiveness of mammography screening,
it was reported that such a program could reduce breast cancer mortality by about
28% [8].

1.2.2 Anatomy and pathology

The female breast consists of fatty tissue, connective tissue, lobes, lobules, ducts and
lymph nodes (Figure 1.2). Each of the 15 to 20 lobes is made up by several small
lobules, the functional unit of the breast which produce milk in nursing women.
These lobes are connected to ducts that transport the milk from the lobule to the
nipple. Lymph nodes and lymph vessels containing immune system cells surround

the breast and contribute to removing waste products.

3
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Chest wall

Figure 1.2: The anatomy of the female breast. The female breast consists of nipple,
areola and lymph nodes (left) and fatty tissue, lobe, ducts and lobules (right). Reproduced

with permission from Terese Winslow LLC.

In some rare cases (less than 1%) the cancer arises from stromal components
(connective tissue) within the breast (i.e. sarcomas) [9], however, breast cancer
normally originates from epithelial cells and are thus called breast carcinomas. The
premalignant changes where the epithelial cells have not broken through the base-
ment membrane, are classified into hyperplasia (atypical or non-atypical) or car-
cinoma in situ. If cancer cells have broken the basement membrane and invaded
surrounding tissue, it is classified as invasive carcinoma [10]. Invasive carcinomas
are the most common type of breast cancer [11], where between 72-80% are inva-
sive ductal carcinomas (IDC) and 5-15% are invasive lobular carcinomas (ILC) [12].
Other important subtypes of invasive breast carcinomas include medullary carci-

noma, mucinous carcinoma, intracystic and tubular carcinoma [11].

1.2.3 Diagnosis and treatment

During the diagnostic process, breast cancer patients in Norway are examined by
three main strategies [10]; clinical examination, image diagnostics and needle biopsy.
This is followed by classification into stage [-1V using the TNM-system where tumor
size (T), degree of spread to lymph nodes (N) and existence of distant metastasis
(M) are considered. TO is used for cases where no primary tumor is classified, Tis

represents carcinoma in situ and T1-T4 reports increasing size of the tumor. NO-

4



1 INTRODUCTION 1.2 Breast Cancer

N3 report the number and location of detected lymph node metastasis and finally,
the status of detected distant metastasis is reported as either M0 (no apparent
metastasis) or M1 (metastasis). Based on the TNM classification, the tumor is

defined as primary operable or inoperable [10].

In addition to finding anatomical features of the tumor, histopathological grade
gives information of the tumor cells degree of differentiation, a measure that has
well-established prognostic value [13]. Grade 1-3 tumors consist of well, moder-
ately and poorly differentiated cancer cells, respectively. The growth and function
of the tumor is a result of several factors. Thus, histopathological examination
also include assessment of the tumor’s expression of estrogen receptor (ER), pro-
gesterone receptor (PgR), human epidermal growth factor 2 (HER2) and, in some
cases, proliferation (by the Ki67 marker). The hormone receptors ER and PgR
are transcription factors depending on binding of their ligand (the hormones estro-
gen and progesterone, respectively) for activation of important proliferation pro-
cesses and production of growth factors [14]. As ER activation also regulates the
PgR-gene, less than 1% of PgR-positive (PgR+) cases are ER-negative (ER—) [15].
Over-expression of ER and/or PgR are found in approximately 70-80% of all breast
cancer cases [16,17], which due to their dependency of hormonal stimuli can be
treated with validated treatment targets, and have a better prognosis than hormone
receptor negative patients [16]. Over-expression of the tyrosine kinase associated
receptor HER2, and amplification of its gene ERBB2, is found in 15-23% of all
breast cancers [18]. HER2 over-expression is associated with aggressiveness and
poorer prognosis, however, targeted anti-HER2 treatment improves the progression
free survival and overall survival [19]. In addition to these well-establish molecu-
lar characteristics, Ki67 is an emerging biomarker for proliferation, present in cells
preparing for division [15].

The main treatment strategy for patients with primary operable tumors is sur-
gical removal of the tumor followed by adjuvant treatment according to clinical
findings. Patients undergoing breast conserving surgery, that have unclear margins
after mastectomy or findings of lymph node involvement are recommended to be
treated with local radiotherapy. Depending on age, hormone receptor-, HER2- and
Ki67 status, the treatment regimen can also include systemic treatment in form of
endocrine treatment for receptor positive cancers, anti-HER2 treatment for HER2-
positive (HER2+) and chemotherapy. Tamoxifen is a well-established anti-estrogen

treatment where an antagonist of estrogen will compete with estrogen for receptor
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binding, and thereby inhibit its activation. For post-menopausal women with ER+
tumors, aromatase inactivator or inhibitor is given, to block the formation of estro-
gen. Patients with HER2+ tumors are given treatment with monoclonal antibody
Herceptin@®)(trastuzumab). This antibody binds to the extracellular domain of the
HER2-receptor resulting in inhibition of cell growth.

Chemotherapy is given to kill rapidly dividing cells by attacking DNA and
therby impair cell division. In general, three different regimens of chemotherapy
are used [10]; CMF combination (cyclophosphamide, metotrexate and fluorouracil),
anthracycline chemotherapy and regimens combining taxanes and anthracycline
chemotherapy. In Norway, the Norwegian Breast Cancer Group have concluded that
the general basis for adjuvant chemotherapy should be anthracycline chemotherapy,
usually by FEC (fluorouracil, epirubicin and cyclophosphamide). Aunti-angiogenic
agents that attacks the formation of new blood vessels into the tumor (i.e. angio-
genesis) are being studied for possible improvement of treatment when included in
existing regimens. The blood supply will give tumors nutrients and oxygen required
to grow beyond a few millimeters in size in addition to anabling metastasis. Due to
this, angiogenesis is an established hallmark of cancer [1] and attractive target for
cancer treatment. One example is bevacizumab, also known as Avastin(®), which
blocks the binding of vascular endothelial growth factor (VEGF) to its receptors [20].

Patients diagnosed with primary inoperable tumors are treated with neoadjuvant
therapy prior to surgery. The treatment regimens discussed above may then be used
pre-surgery to make the tumor operable or to allow for breast conserving surgery.
During or after neoadjuvant treatment, the tumor response can be evaluated by
physicians. The two most commonly used guidelines for assessing the response are
the Response Evaluation Criteria for Solid Tumours (RECIST) and the guidelines
from World Health Organization (WHO) [21]. These guidelines are used to classify
the response into complete response, partial response progressive disease or stable
disease. Studies have shown a association between tumor response and clinical
outcome where pathological complete response where a prognostic indicator for

overall survival, disease-free survival and relapse-free survival [22].
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1.3 The omics of breast cancer

In normal cells, biological processes necessary for cellular function, including DNA
repair, cell cycle, differentiation, growth, proliferation, apoptosis, cell migration and
cell-to-cell contact, are tightly regulated by complex molecular networks. In cancer,
many networks are dysregulated, causing rapid cell proliferation and potentially
metastasis. The loss of control is caused by a multistep process where genetic mu-
tations accumulate, predominantly in somatic cells, making cancer an age-related
genetic disease [23]. Of all breast cancer cases, approximately 5% are due to inher-
ited mutation in tumor suppressor genes BRCA1 or BRCA2. These mutations will
increase the lifetime risk for developing breast and ovarian cancer with over 80%
and 40-60%, respectively [24]. Examples of other important inheritable mutations
increasing the risk of developing breast cancer are TP53 and PTEN.

Both in normal cells and cancer cells, DNA is transcribed into mRNA transcripts
which further can be translated into proteins taking part in molecular pathways and
thus controlling the level of metabolites, which will be described in more detail in
section 1.3.3. Although additional factors, such as epigenetic alterations, affect and
further complicate the flow of this process, the basic principle can be summarized

in Figure 1.3.
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Figure 1.3: Illustration of the omics cascade. The omics flow of information from

DNA and genomics to metabolites and metabolomics

1.3.1 Transcriptomics and intrinsic genetic subtypes

The field of transcriptomics studies gene expression trough measuring the tran-
scripts of DNA called mRNA. Tt has been estimated that between 20 000-25 000
protein coding genes exists within the human DNA [25]. However, which genes are
transcribed into protein coding transcripts at a given time is dependent on sev-

eral factors, e.g. cell type, cell function, epigenetic events and existing mutations.
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Depending on the tumor mRNA levels from a set of intrinsic genes with high inter-
patient and low intra-patient variation before and after treatment of breast cancer
patients, five genetic subtypes have been reported [26,27]. The intrinsic subtypes,
luminal A, luminal B, HER2-enriched, basal-like and normal-like, have characteris-
tic differences in gene expression pattern that correlate with tumor characteristics
and clinical outcome [27]. The frequencies of the subtypes varies among ethnic-
ity and age, but in general, luminal A is the most common subtype followed by
basal-like, HER2-enriched and luminal B [28].

Both of the luminal subtypes are typically hormonal receptor positive with im-
portant differences in the proliferation signature and the rate of relapse-free survival.
Luminal A cancers are considered a good prognosis group because of the associa-
tion with lower expression of proliferating genes and longer relapse-free survival
than luminal B cancers. Although the majority of luminal cases are HER2—, ap-
proximately 9% and 21% of luminal A and luminal B, respectively are HER2+ [29].
Basal-like and HER2-enriched subtypes have been associated with poorer prognosis
and shorter survival times [27]. Most of basal-like cancers are triple negative breast
cancers (TNBC), i.e. ER—/PgR—/HER2—, but also here there are variability with
6-29% being ER+ and 9-13% being HER2+ [27]. An additional rare gene expres-
sion subtype called claudin-low has been suggested [30], with several similarities
to the genetic profile of basal-like, but with lower expression of a set of cell-to-cell
adhesion proteins and higher expression of genes linked to immune system response.
One of the main characteristics of the HER2-enriched subtype is over-expression of
ERBB2 and a group of adjacent located genes, although this is not the case for all
tumors classified within this subtype [28]. The normal-like subtype resembles the
gene expression of tissue samples from normal breast cancer samples. A centroid
based identifier called PAM50 has been developed where prediction analysis of mi-
croarrays (PAM) of 50 genes is used to predict and classify breast cancer into one
of the five subtypes [31].

1.3.2 Proteomics and protein expression subtypes

Proteins are the functional product of genes and become the workers of cellular
pathways and networks controlling cell function as well as cell malignancy [23]. Ge-
netic alterations could possibly affect the activity, function or abundance of proteins
directly. Additionally, protein expression and activity are not solely results of gene

expression level (i.e. mRNA level), but a product of several ongoing processes,
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e.g. post-transcription modification processes. Studies of proteomic profiles within
breast cancer as well as cancer in general may thus further increase the understand-
ing of the complex heterogeneity and pathogenesis [32]. As previously described, the
expression of hormone receptors ER and PgR and expression of HER2 are valuable
targets for current treatment regimens. Further proteomic characterization may
identify new pathological biomarkers and therapeutic targets.

Based on the expression of 171 breast cancer related proteins, six subtypes have
been proposed; basal, Her2, luminal A, luminal A /B, reactive I and reactive IT [33].
These subtypes were found to overlap tightly with the intrinsic genetic subtypes thus
providing information about existing differences at the protein expression level. As
the proteins are measured by reverse phase protein array (RPPA), the subtypes

referred are to as RPPA subtypes.

1.3.3 Metabolomics and breast tumors metabolism

Downstream genomics, transcriptomics and proteomics is metabolomics, a rela-
tively new field that studies small-molecular compounds called metabolites. These
compounds are end products or intermediates of chemical processes needed for cell
viability, e.g synthesis of building blocks, energy production and cell signaling. The
metabolic profile of a cell, tissue or living organism depends on the preceding ‘omcis’
levels as well as environmental factors like diet and drugs [34]. Small alterations in
gene expression levels or in the activity of enzymes could have large impact on the
concentration of metabolites which can be viewed as an amplified output of ongoing
cellular activity [35]. Due to the accumulated alterations within the cancer cells
that contributes to their characteristic uncontrollable growth, they exhibit impor-
tant metabolic differences compared to normal cells. When presenting the emerging
hallmarks of cancer, Hanahan and Weinberg suggested a crucial event of tumor de-
velopment to be deregulation of cellular energetics [3]. Altered metabolic activity
is thus becoming an established characteristic of malignancy. Further elucidation
for better understanding of metabolic reprogramming and changes observed in can-
cer may contribute to revealing dependencies and therapeutic targets (discussed in
more detail in 5.1) [36].

In the following sections, altered glucose, choline and amino acid metabolism in

relation to cancer are introduced.
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Glucose metabolism

Glucose is the main source of energy in living cells. During glycolysis, a small
amount of adenosine triphosphate (ATP), the chemical energy transporter
essential for cellular processes, is formed when glucose is converted to pyruvate. If
oxygen is present, pyruvate can be oxidized in the tricarboxylic acid (TCA) cycle
followed by oxidative phosphorylation to produce ATP. In hypoxic situations, i.e.
low oxygen concentrations, pyruvate is used to make lactate yielding only 2 ATP

molecules per glucose compared to 36 in aerobic conditions.
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Figure 1.4: Glucose metabolism in normal and cancer cells. Glucose enters the
cell and is converted to pyruvate through the process called glycolysis. In normal cells,
pyruvate is converted to acetyl-CoA or lactate depending on the level of oxygen present.
In cancer cells, most of the pyruvate is converted to lactate, independently of the level of

oxygen, an event called the Warburg Effect.

For most cancer cells glucose metabolism is altered and even if oxygen is present,
most of the pyruvate is converted to lactate (Figure 1.4). This characteristic, dis-
covered in the 19507s, is referred to as the Warburg effect [37]. In addition, cancer
cells inside solid tumors often experience hypoxia due to the low blood supply,

causing production of lactate from pyruvate to be the only possibility to make ATP.
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The reduced efficacy to generate ATP has been suggested to be an adaption to
facilitate the uptake and incorporation of nutrients into biomass needed to produce
a new cell [38]. It is also suggested that the production of lactate favors tumor
cells, making them more resistant to the immune system and also by generating
an acidic microenvironment which is hostile to surrounding normal tissue and pro-
motes metastasis [39]. To compensate for the inefficient ATP production, most

tumors have an increased rate of glucose uptake.

Choline metabolism

Choline is an essential organic compound functioning as a precursor for phos-
phatidylcholine (PtdCho), one of the most abundant phospholipid in eukaryotic
cellular membranes [40]. PtdCho is formed de novo from choline by the Kennedy
pathway shown in Figure 1.5. Choline is first transported into the cell and phospho-
rylated to phosphocholine (PCho) by the enzyme choline kinase. PCho is then added
a cytidyldiphosphate (CDP) group forming the high-energy donor CDP-Choline.
To synthesize PtdCho, a lipid anchor such as diacylglycerol (DAG) is used by the
enzyme called DAG-cholinephosphotransferase [40]. The breakdown products of
PtdCho are glycerophosphocholine (GPC) and 1-acylglycerophosphocholine.

Tumor cells grow rapidly and therefore require high production of phospho-
lipids like PtdCho. The abnormal high production of PtdCho from choline and
choline-containing compounds has therefore been studied for examination of cancer
metabolism in several decades [41] and is an emerging metabolic hallmark for tumor

progression [42].

Amino acid metabolism

Although over 300 different amino acids exist, only 20 commonly serve as building
blocks for proteins in the human body [43]. Amino acids also have roles as regulators
or intermediate metabolites for several important metabolic pathways necessary for
cellular maintenance and growth. The anabolic processes that are active during
cancer development thus rely on altered flow of amino acid compared to normal cells.
Although glucose is considered the main energy source in human cells, amino acids
such as glutamine can be utilized to produce ATP through refilling of intermediates
to the TCA cycle. Glutamine is normally considered a non-essential amino acid,

however studies have shown that in rapidly dividing cells, including both normal
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Figure 1.5: Choline metabolism. Choline is transported into the cell and used for
synthesis of PtdCho by choline conversion to first PCho followed by CDP-Choline synthe-
sis. PtdCho can further be catabolized directly to choline or PCho, or to GPC through
acyl-GPC production. Choline metabolism is frequently observed to be altered in can-
cers. PCho: phosphocholine, CTP: cytidyltriphosphate, CDP: cytidyldiphosphate, CMP:
cytidylmonophosphate, PtdCho: phosphatidylcholine, GPC: glycerophosphocholine.

and cancer cells, it is conditional essential [44]. It is important for the biosynthesis
of nucleic acids and can be converted, by glutaminase, to glutamate which further
can be used for production of other amino acids or function as a precursor for the
important antioxidant glutathione [45]. In addition, glutamate is a precursor for
a-ketoglutarate, a TCA intermediate and substrate for dioxygenases (i.e enzymes

that modify DNA and proteins) [44].
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1.4 Metabolic detection through magnetic resonance spec-
troscopy (MRS)*

Magnetic resonance spectroscopy (MRS) can be used to identify and quantify meta-
bolites by using the magnetic properties that some atomic nuclei possess. For nuclei
with an uneven number of protons and/or neutrons, i.e. spin quantum number I # 1,
the nucleus generates the magnetic momentum (p) used in MRS given by u = ~1,
where 7 is the gyromagnetic ratio (unit: MHz/Tesla) dependent on the type of nu-
cleus. Examples of nuclei that all posses this magnetic property and occur naturally
in the body are 'H, '3C, 23Na, 3!P. If such nuclei are placed in an external static
magnetic field (Bg, unit: Tesla) they will orient in 27+1 possible spin states. For
the highly abundant and most commonly used nucleus in MRS, proton (‘H), with
I =1/2 and v = 42.6 MHz/Tesla, there exists two spin states for the nuclei at
equilibrium when placed in a magnetic field; a low energy state where the magnetic
momentum aligns with the applied field and a high energy state where the magnetic
momentum aligns against the applied magnetic field (Figure 1.6). The energy dif-
ferences between these two states are proportional to the strength of the magnetic
field.

The nuclei will spin around its own axis and around the axis of the magnetic
field in an motion called precession. The frequency w of this motion is given by the

Larmor equation: w = v By

*This section is based on [46] unless otherwise stated
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Figure 1.6: The basic principle of magnetic resonance. Atomic nuclei with spin
number 1/2 will orient with or against an applied magnetic field (Bp). The nuclei spin
around their axis creating a magnetic momentum (u) that precess about Bg.The anti-
parallel spin state is referred to as the high energy state (top) while the parallel spin state
has a lower energy state (bottom). With increasing strength of the applied magnetic field,

the difference in energy states (AE) increases.

In the applied magnetic field By, a slight excess of nuclei will align in the low
energy state causing an net magnetization pointing along By’s direction. It is this
magnetization that MR techniques manipulate to get the MR signal. By applying an
external radio frequency (RF) pulse equal or close to the nuclei’s Larmor frequency,
nuclei will excite to the high energy state. When the RF pulse is turned off, the
spins returns back to the original low state through longitudinal (7}) and transverse
(T3) relaxation. At the same time as the relaxation occurs, the nuclei emit energy
that can be detected as a signal called free induction decay (FID). A Fourier trans-
formation of the time dependent FID will result in a frequency dependent spectrum
known as the MR spectrum. Due to slight differences in their chemical environment
caused by metabolites chemical structure and electrons shielding the nuclei from
the magnetic field, peaks will appear at different positions in the spectra, known as

chemical shifts reported in parts per million (ppm).

1.4.1 MRS acquisition

Due to the large amount of water within biological tissues, water suppression is

needed to increase the signal from small metabolites found in much lower con-
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centrations. A variety of pulse sequences exist, but the two most common meta-
bolomics experiments are Nuclear Overhauser Effect Spectroscopy (NOESY) and
Carr-Purcell-Meiboom-Gill (CPMG). These methods use a pre-saturation of water
molecules by exposing the sample to a relatively long, low power RF pulse. CPMG
sequences are additionally designed to decrease the signals from macromolecules
and lipids that cause broad peaks possibly overlapping with important metabolites.
To accomplish this, CPMG experiments take advantage of the short 75 relaxation
large molecules have and filter them out using a long echo-time (TE) prior to the
acquisition. More specific, after pre-saturation of the water signal and a 90 °pulse,
there is a following repeated loop of 180 °pulses with delay 7 between each (Figure
1.7). This loop will refocus and preserve the signals from small molecules with long

T,, consequently reducing signals from macromolecules.

T
RF 90X|_ 180 J

Figure 1.7: Schematic illustration of CPMG pulse sequence. RF: radio frequence, 7:

time delay
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1.5 High Resolution Magic Angle Spinning MRS

The quality of MR spectra is highly dependent on the molecular orientation and their
possibility to reorient. Within semi-solid material (e.g. tissue), molecules are less
mobile leading to anisotropic interactions between nuclei, which give rise to broad
peaks, possibly concealing relevant spectral information [41]. After its discovery, the
use of MRS was thus strictly limited to dissolved or melted solid samples or liquid
samples [47]. Within these samples the anisotropic interactions are averaged out
by the rapid isotropic movement of molecules resulting in MR spectra with narrow
line width. Andrew and Lowe were the first to describe a solution to the problem of
semi-solid samples in 1958 [48,49]. By imposing nuclei motion with rapid spinning
(4-6kHz) of the sample angled 54.7° (the magic angle) to the static magnetic field By
(Figure 1.8), referred to as magic angle spinning (MAS), line broadening is reduced

and MR spectra of high resolution are produced.
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Figure 1.8: Magic angle spinning (MAS). Rapidly spinning the sample at the magic
angle of 54.7° to the magnetic field By produces high resolution spectra with line width

that resemble spectra obtained from liquid samples.

1.5.1 'H HR MAS MRS analysis of breast cancer tissue

FEz vivo high resolution magic angle spinning MR spectroscopy (HR MAS MRS)
gives qualitative and quantitative metabolic information from biological tissue with
minimal sample preparations. It is also a non-destructive technique allowing subse-
quent analysis, for example histopathological examination or gene expression pro-
filing, of the tissue after MRS [50]. Metabolic profiling alone and in combination
with complementary methods is important for assessment of cancer biology, thus

making HR MAS MRS an attractive method [41].
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HR MAS MRS is widely used to study central metabolic processes related to
cancer progression, including glycolysis, choline phospholipid metabolism and amino
acid metabolism. Analyzing breast cancer tissue, 'H HR MAS MRS has identified
more than 30 metabolites [51]. A representative breast cancer spectra is illustrated

in Figure 1.9.
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Figure 1.9: A representative 'H HR MAS MRS breast cancer spectra. Black bars repre-

sents excluded lipid regions.

To explore metabolic changes in relation to alterations in glycolysis and glucose
metabolism, both glucose and lactate are detectable with 'H HR MAS MRS, and
can thus be evaluated. A general hypothesis is that decreasing levels of glucose
reflects that the tumor has an increasing energy demand while the degree of lac-
tate production might indicate whether the glucose is guided towards TCA cycle
or used for aerobic glycolysis. In accordance with a higher energy demand and
thereby higher glucose demand in tumors with actively proliferating cells, a previ-
ous study reported glucose levels to be negatively correlated to proliferation index
(MIB-1) [52]. If glucose is metabolized though aerobic glycolysis, regardless of oxy-
gen availability, lactate will be produced. Lactate has been suggested a key player
for cancer development and metastasis [39] and high levels of this metabolite, to-
gether with high glycine levels, has been associated with poor-prognosis for patients
with ER+ invasive ductal carcinoma [53]. Accumulation of lactate in tissue extracts
analyzed by MRS has previously shown to be correlated to metastasis [54,55]. Fur-
thermore, in a study of patients diagnosed with locally advanced breast cancer,
higher lactate levels prior to treatment start was observed for those who did not

survive (5 year), supporting it as a poor-prognosis marker [56]. Non-survivors also
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had higher levels of choline containing metabolites prior to treatment. These meta-
bolites are associated to the synthesis and degradation of the phospholipid PtdCho,
referred to as choline metabolism (see section 1.3.3), often observed to be altered
in cancers [42]. With HR MAS MRS, several choline metabolites can be detected,
including choline, PCho and GPC. Increased amounts of these metabolites have
been detected when comparing breast cancer tissue to non-involved breast tissue,
both in surgery-excised tissue [51,57] and in core needle biopsies from breast cancer
patients [58]. The altered choline metabolism is also found in xenograft models,
and shown to differ between different breast cancer subtypes [59]. Basal-like tumor
xenografts, which have a more aggressive breast cancer phenotype, are characterized
with higher GPC concentration realtive to PCho than the less aggressive phenotype
of luminal-like xenograft models.

Changes in the levels of several amino acids have also been observed by 'H HR
MAS MRS in breast cancer tumors. Higher levels of glycine has been observed in
tumors larger than 2 cm compared to smaller tumors [57] and a trend of higher
glycine in samples from poor prognosis patients [52]. Additionally, as a response
to neoadjuvant chemotherapy, a significant decrease in glycine levels was found in
samples from long-term survivors (> 5 years) [56,60]. Other amino acids that can
be elucidated using '"H HR MAS MRS are taurine, which have been linked to lymph
node metastasis [57], and glutamine, that were found to be significantly lower in

TNBCs compared to triple positive breast cancer [61].

1.5.2 Pre-processing of MRS spectraf

The acquired HR MAS MRS spectra are highly complex, typically consisting of
thousands of variables. To extract useful information and obtain high quality and
comparable spectra eligible for statistical analysis, different pre-processing opera-
tions are performed to remove irrelevant sources of variance. These operations may
include baseline correction, deletion of irrelevant noise regions, peak alignment, nor-
malization and scaling. Each step is conducted simultaneously on the whole data
set to ensure identical protocol for all samples.

Baseline correction is performed to remove unevenness in what should be a flat
baseline. Without correction, baseline additives will cause errors when performing

statistical tests and during quantification as signal intensities, and thereby metabo-

TThis section is based on [62,63] unless otherwise stated
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lite concentrations, are influenced and will be incorrect. Different algorithms can be
performed on either time domain or frequency domain to correct for uneven base-
line caused by noise, macromolecules or alternations in the first points of the FID.
One of the most common approaches is estimating a base line which is subtracted
from the spectral data. When the optimal baseline is achieved, the next step is of-
ten to remove areas with no metabolic information or areas that contain pollutions
such as chemicals from sample preparation. This can be followed by peak align-
ment which has the intention to correct for chemical shift differences between the
samples, normally caused by changes in pH, temperature, instrumental factors or
molecular interactions. Different approaches can be used, that either align the en-
tire spectra (global alignment) or separate segments (local alignment). Icoshift [64]
is one of the approaches recommended for HR MAS MRS data [65]. Here, user
defined segments of optional sizes are shifted to optimize their cross correlation to
the same segment of a selected reference spectra using Fast Fourier Transformation
(FFT). The reference spectra can be a spectrum from the original data set or can
be generated by the user (e.g. mean or median spectra of the data set). After
alignment, normalization ensures comparable spectra by removing variation in sig-
nal intensities caused by sample size or dilution. Area normalization, where each
variable of the samples is divided by the sum or average of all its variables, can be
considered a standard normalization approach for MRS metabolic data. Examples
of other approaches are range normalization and probabilistic quotient normaliza-
tion (PQN). The latter uses a method where the estimated most probable ‘dilution
factor’ caused by sample size of each spectra is calculated based on comparison to

a reference spectrum [66].

The signal intensities of metabolites are proportional to their abundance within
the sample. Although fluctuations within metabolites of low concentrations might
be of biological importance, their variation might be masked by metabolites of higher
concentrations. The pre-processing step of scaling aims to balance the importance
of each variable making them more comparable. Scaling methods are thus variable-
based, and not sample-based as normalization. Prior to other scaling procedures,
mean centering is often applied. Here, each variable within the data set is divided
by its own mean resulting in a values that vary around zero. Depending on the
nature of the data, following scaling approaches can be autoscaling (dividing each

variable on its standard deviation), pareto scaling (dividing each variable on the
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square root standard deviation) or variable stability scaling (dividing each variable
on its standard deviation and coefficient of variation).

Additional pre-processing operations such as variable selection might also be
included. Since decisions on what pre-processing procedures to include will affect
the result of multivariate analysis, each step should be carefully evaluated and

optimized for the specific data it will be applied to.
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1.6 Multivariate analysis

Analyzing data sets with pre-processed spectral information requires statistical
methods that handle a high number of variables. Additionally, many of the vari-
ables obtained by MR spectroscopy are collinear, ruling out standard statistical
methods. Two approaches are used to extract and maximize the information re-
covery from such data sets; unsupervised and supervised methods. Unsupervised
methods are exploratory, with no other information than the spectral data set as
input. These methods can be used to visualize the data in a few dimensions to
reveal hidden structures or groups within the data set. Supervised methods require
a priori knowledge about the objects, referred to as response variable(s), with ei-
ther categorical or continuous information. The independent variables, i.e. spectral

intensities, are then used to build models that can classify or predict the response.

1.6.1 Principal Component Analysis (PCA)

Principal component analysis is an unsupervised multivariate method that aims to
reduce noise and emphasize systematic data structures. By taking advantage of the
many collinear variables within most multivariate data sets, linear combinations are
used to reduce the number of variables into new variables called principal compo-
nents (PCs). Here, the first PC explains the largest amount of the variance within
the data set, while the following and subsequent PCs explains as much of remaining
variation as possible. The PCs become axes of a new coordinate system and each
sample is given score values to mark their position. Plotting samples in a scores
plot defined by the PCs is a good tool for visualizing high dimensional data, find
underlying patterns and for identifying outliers. Each PC will have a correspond-
ing loading vector which describes how important each of the original variables have
been in construction of the specific PC. Together the score and loading plot will give
new information and help in the interpretation of the data set. Figure 1.10 shows
one example of a PCA score plot and the corresponding first loading. Here, the
samples have been colored according to their PC1 scores (positive or negative). By
observing samples distribution in the scores plot combined with the corresponding
loading plot, variables important for separating the samples in the new coordinate

system (i.e PCs) can be found.
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Figure 1.10: Principal component analysis (PCA) for two groups of patients.
In the score plot (left), similar samples cluster close to each other. The loading plot
(right) shows what variables were important for separating samples on the chosen principal
component, here PC 1. Lac: lactate, Cr: creatine, Gly: glycine, Tau: taurine, PCho:

phosphocholine, Succ: succinate, Ala: alanine.

1.6.2 Hierarchical Cluster Analysis

Hierarchical cluster analysis is an unsupervised method that can be used to find
natural groups of samples within a data set, typically used for genomic and tran-
scriptomic data. Complementary to the score plot from PCA, grouping of samples
is visualized in a dendrogram, also known as a hierarchical tree. This tree is built
with a bottom-up approach and illustrates the grouping of samples according to
their pairwise similarity or dissimilarity. At the initial stage, and bottom of the
dendrogram, all objects are considered individual clusters. After calculating sim-
ilarity measurements between every possible pair of objects, the two closest are
joined by a branch at the first level. For the next and following levels the process is
repeated until only one cluster remains, as illustrated in Figure 1.11. Clusters more
similar to each other will thus be connected by shorter branches than clusters less

similar.

Several metrics for calculating the similarity between objects exists. Common
approaches include Euclidean distance and correlation distance. The Euclidean

distance between two points A(a, b, c) and W (x,y, z) is defined in equation (1)

d(AW) =[(a —2)* + (b—y)* + (c = 2)*]"2 (1)
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Figure 1.11: Dendrogram obtained by hierarchical cluster analysis.

When two objects are joined into a cluster, their new distance measurements to other
clusters are decided by the chosen algorithm, typically single or complete linkage,
or Wards method. Single linkage defines the distance as the distance between the
two closest objects of the two clusters, while complete linkage does the opposite; the
distance is defined as the longest possible distance. Wards method calculates the
variance within each cluster and the total variance summing all cluster variances.
The two clusters that will cause the smallest change in total variance will be fused
into a larger cluster.

The resulting dendrogram can in the final step of cluster analysis be used to
divide the original data set into groups by deciding a cutoff level. All objects linked
by a branch at the cutoff level will belong to one cluster. An alternative approach
is deciding the number of clusters and cutting the dendrogram where this criteria
is fulfilled.

1.6.3 Partial Least Squares (PLS)

Similar to PCA, partial least squares aims to find linear relationships within a mul-
tivariate data matrix, X, to reduce its complexity. However, PLS uses a supervised
approach by including the response variable(s) Y with relevant information, e.g
clinical data or class membership, to construct the descriptive model. The method
aims to find latent variables (LVs) that explains the variation of the data while max-

imizing the covariance between the X and Y. More specifically, the LVs will give
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information about which variables within X that are most important for separating
levels or groups within Y. In cases where Y is a categorical variable, the method is
called PLS discriminant analysis (PLS-DA). Figure 1.12 shows a constructed exam-
ple of PLS-DA discrimination between two groups of samples. The resulting model
consists of new score values for each sample, and loading vectors corresponding to

each LV, and can be interpreted similar to PCA models.
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Figure 1.12: Partial least squares discriminant analysis (PLS-DA) example.
Similar to PCA, the score plot (left) will cluster similar samples close to each other. The
loading plot (right) shows what variables were important for separating samples on the
chosen principal component, here PC 1. The corresponding loading plot shows which
variables were most important for the PC. Gle: glucose, Lac: lactate, Gly: glycine, PCho:
phosphocholine, Glu: glutamate.

1.6.4 Validation of multivariate models

One of the goals when building classification models using methods like PLS-DA
is to find variables important for discriminating groups of samples. Additionally,
the model could potentially be used for predicting the status of new samples. Prior
to such interpretation and classification, proper validation of the model is needed.
If it is over-fitted to the data used to build the model, it will not describe the
population wide relationships between X and Y. To assess the models robustness
and evaluate its performance, common validation approaches include the use of
independent data, cross validation and permutation testing. The preferred method
for validation is using an independent data set, however this is often not possible
due to lack of a validation cohort or a small number of samples. In such cases cross

validation can be used. Here, the cohort is divided into training and test sets. The
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training set is used to build a model that subsequently is used to classify the objects
within the test set. This procedure can be repeated for several training and test
sets, measuring the performance (e.g number of correct and incorrect classifications,
sensitivity and specificity, respectively) based on the predicted classification for
the test sets. The size of the test and training set depends on the cohort. For
small sample cohorts (n=20) leave-one-out cross validation can be used, where each
sample is left out once. However, this could possible lead to an over-fitted model.
For bigger cohorts, the test set can include a specific percentage of samples leaving
the remaining samples within the training set. Further extension of cross validation
to double cross validation can be used to optimize the model. This approach will
have two loops: one outer and one inner loop. The outer loop is identical to the
cross validation structure described above. For each round of outer loop validation,
there is further an inner loop where the training set is divided into an optimization
and second test sets (Figure 1.13). This is repeated for a specific number of times
before a new round of the outer loop is repeated. The inner loop is used to decide
the optimal number of I.Vs in PLS.

|
:

Data B
set

Predict

l Y

g
% Predict
Repeat X times and find
optimal number of LVs
\ )
i
Outer loop

Build PLS model based on training set and predict validation set.
Repeat Y times

Figure 1.13: An illustration of double cross validation. The data is divided into
a training and a test set. In the inner loop, model parameters, here for a partial least
squares (PLS) model, are optimized and used for predicting samples in the test set of the

outer loop. Single cross validation is performed using only the outer loop.

27



1.6 Multivariate analysis 1 INTRODUCTION

Permutation testing is a way of testing whether the model achievements are
better than random classification. This technique permutes, or shuffles, the response
variable Y before building the model. Consequently, the result obtained from this
permuted model represents the result that could be obtained by chance. Comparing
the real- and permuted models classification results will tell whether the real model

can be regarded as significant.
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1.7 Linear Mixed Models (LMM)

In the previous sections, methods to analyze different metabolites or complete spec-
tral profiles simultaneously have been described. Another approach is to build
separate multilevel statistical models for each individual metabolite. Such is the
case with linear mixed-effects models (LMM), which describe relationships between
a particular outcome, e.g. a metabolite concentration, and different categorical or
continuous factors, e.g. response group or sample tumor cell percentage, respec-
tively. These factors are regarded as fixed, because they can affect the outcome
variable but have known, fixed values and therefore one has modeling control over
them. Random effects are also incorporated in LMM, thus the name mixed model.
These take into account the variation that cannot be controlled for experimentally
and arise due to individual patient differences that are unknown, e.g. unrecorded
diet and physical fitness level.

LMM can be applied in a variety of settings, most notably to account for intra-
subject correlation that occurs when multiple observations or measurements are in-
cluded for a single patient. This occurs in longitudinal studies, which are designed
to follow up subjects and remeasure the same variables repeatedly at different time
points. This allows tracking of individual changes in the measured variables with
time. In addition, LMM can handle incomplete data, which is statistically challeng-
ing and is typical in longitudinal studies since it is difficult to obtain measurements

from all patients at every time point [67].
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2 AIMS

2 Aims
Overall aim

The main aim of the thesis work was to further characterize breast cancer through
metabolic profiling using HR MAS MRS.

Specific objectives

e To identify an optimal sample handling protocol for metabolic studies of

tumor tissue with respect to freezing delay time and experiment durability.

e To determine naturally occurring metabolic clusters of primary operable
breast tumors and further integrate the metabolic characteristics with gene

and protein expression data.

e To investigate the metabolic effect of neoadjuvant treatment with respect to

treatment response and the effect bevacizumab treatment.
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3 Materials and Methods

A summary of materials and methods used for the present thesis

3.1

Table 3.1:

Materials and methods used in paper I-1IT

is given in Table

Paper 1 Paper 1T Paper I11
X Human tissue samples n =14 n = 228 n = 270(122 patients)
Materials
Xenograft samples n — 42
Metabolomics 'H HR MAS MRS | 'H HR MAS MRS 'H HR MAS MRS
Proteomics RPPA
Methods Transcriptomics microarray microarray
HES HES HES
Other methods B
Nile Red
PCA PCA PCA
Multivariate analysis Hierarchical cluster analysis | PLS-DA
PLS-DA
. X Integration Integration Integration
Metabolite level calculation X
Imputation
Data analysis -
Longitudinal data analysis LMM LMM

Gene and protein expression

SAM, DAVID, GSEA
PAM50-subtyping
RPPA-subtyping

PAM50-subtyping

Combing data levels

Integrated pathway analysis

and integrated discovery, GSEA: gene set enrichment analysis

'H HR MAS MRS: proton high resolution magic angle spinning MR spectroscopy, RPPA: reverse phase protein array,
HES: hematoxylin-eosin-safron, PCA: principal component analysis, PLS-DA: partial least square discriminant analysis,

LMM: linear mixed model, SAM: significance analysis of microarrays, DAVID: database for annotation, visualization

3.1 Patients and xenograft models

3.1.1

Breast cancer xenograft models

The xenograft models MAS98.06 and MAS98.12 used for paper T was established

as described in [68] by implanting primary breast tumors specimens from patients

into the fat pad of immunodeficient mice.

Passages of tumors to new animals

were conducted when tumors reached a diameter of 15 mm. FEthical guide lines

from European Convention for the Protection of Vertebrates used for Scientific

Purposes were followed during the animal work. Gene expression analysis have

shown that these pre-clinical models have a luminal-like and basal-like phenotype

respectively. Furthermore, these models have been characterized by MRS [59, 69|

showing similarities between metabolic profiles of these models and the profiles
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3.1 Patients and xenograft models 3 MATERIALS AND METHODS

from corresponding patient tumors [59]. Xenografts were established and grown
at the Oslo University Hospital, Radiumhospitalet, and transported from Oslo to
Trondheim prior to HR MAS MRS analysis. The mice were sacrificed by cervical
dislocation and tumors (n=6) were harvested immediately. The tumors were split
into seven before following the work flow illustrated in Figure 3.1. One sample was
analyzed without snap-freezing, while the remaining were exposed to freezing time

delays of 0, 15, 30, 60, 90 and 120 minutes.

Luminal-like Basal-like
xenografts xenografts

,\ n=6 \% i
b\ No N2-freezing -
L I 4 i

I!

.
]

\

600
UltraShield™

T

Minutes in room

temperature
before Na-freezing

Figure 3.1: Study design for evaluating effect of freezing time delay on tissue samples in

paper L.

After HR MAS MRS analysis, samples were immediately frozen and stored (2
years) in liquid nitrogen before sectioning in 4 ul and 10 pl and staining with

hematoxylin-eosin-safron (HES) and Nile Red as described in (21), respectively.

3.1.2 Patients cohorts
All three papers included samples from female patients diagnosed with breast cancer.
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3 MATERIALS AND METHODS 3.1 Patients and xenograft models

For paper I, samples (n—=14) were collected during surgery at St Olav’s Hospital
(Trondheim, Norway) and Molde Hospital (Molde, Norway). Written informed
consent was obtained from all patients and the study was approved by the Regional
Ethics Committee, Central Norway. Immediately after surgical removal the samples
were snap-frozen and stored in liquid nitrogen.

For paper TI, tumor samples (n—228) obtained from the Oslo2 breast cancer
cohort were included. This is a cohort of patients diagnosed with primary operable
disease where patient material (clinical data, tumor material, serum) have been col-
lected at several hospitals in south-eastern Norway. Written informed consent was
obtained from all patients and the study is approved by the Regional Committee for
Medical and Health Research Ethics (REC South East). The samples for paper 11
were collected in the time period 2006-2009 from patients operated at the Oslo Uni-
versity Hospital (Radium Hospital and Ulleval Hospital, Norway). Tumor material
was fresh frozen after surgery and stored at -80 °C. Depending on tumor size, one
sample from each tumor was divided in three (Figure 3.2). The two side parts were
sectioned for hormone receptor analysis and histological evaluation performed by a
pathologist. Sample material from the mid part was used for HR MAS MRS while
the tumor remnants were pooled and used for extraction of RNA (n=201) and/or

protein (n=217) for analysis of gene and protein expression (RPPA) respectively.

/ijz‘fffftb\

-
Side pieces used for
freezing section

RN

DNA
Lysate for
RNA flow protein

Figure 3.2: Flow chart for division of tumor material in paper II.

35



3.1 Patients and xenograft models 3 MATERIALS AND METHODS

For paper ITI, tumor samples (n—=270) obtained from 122 patients (age > 18
years) within the Neo-Ava breast cancer cohort (Neoadjuvant Avastin in Breast
Cancer) were included. This is a randomized phase 2 trial including patients with
large (size > 2.5 ¢cm) and HER2— tumors that followed the neoadjuvant treatment
regimens described below. Written informed consent was obtained from all patients
and the study was approved by Regional Ethics Committee and the Norwegian
Medical Agency. Ultrasound guided core needle-biopsies were harvested at treat-
ments start (TP1) and 12 weeks into treatment (TP2) before surgical removal of
the tumor 25 weeks after TP1 (TP3) (Figure 3.3). The surgeries were performed at
Oslo University Hospital (Radium Hospital and Ulleval Hospital, Norway) and St
Olav’s Hospital (Trondheim, Norway). Tumor material from TP1 was used for eval-
uation of hormone receptors status and histopathological diagnosis. For TP1 and
TP2, a mid part from a first core-needle biopsy was separated for HR. MAS MRS,
before pooling the remnants with a second core-needle biopsy for further molecular
analysis. For the surgical samples taken at TP3, a similar approach as for tumor
preparation in paper 1T was used (Figure 3.2), where the two side parts were sent
for histopathological analysis and a mid part was obtained for HR MAS MRS. The

remnants were pooled and used for molecular analysis.

122 breast cancer patients
(n=270 tumor tissue samples)

I
Neoadjuvant Chemotherapy
|
Randomized
|
With Be\‘gglt:lab
Bevacizumab
(Controls)
‘ Sampling ]
|
¢ v L
Screening 12 weeks surgery
(TP1) (TP2) (TP3)

Figure 3.3: Flow chart for randomized neoadjuvant chemotherapy with or without be-

vacizumab in paper III. Reproduced with permission from Leslie R. Euceda.
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3 MATERIALS AND METHODS 3.2 'H HR MAS MRS experiments

3.1.3 Patient treatment protocols and response measurements

In paper III, all patients received neoadjuvant chemotherapy according to Norwe-
gian guidelines and were randomized to additionally receive bevacizumab. The
chemotherapy regimen consisted of 12 weeks with anthracyclines treatment (four
three-weekly cycles of FEC100; epirubicin 100 mg/m2, 5-fluorouracil 600 mg/m2,
cyclophosphamide 600 mg/m2) followed by 12 weeks of taxane-based therapy (four
three-weekly cycles of paclitaxel 80 mg/m2 or docetaxel 100 mg/m2). For patients
receiving bevacizumab, this was administered in three-weeks cycles (15 mg/kg) dur-
ing the anthracyclines and docetaxel treatment. Due to toxicity issues, docetaxel
treatment was exchanged with paclitaxel for a majority of the patients. For those
receiving bevacizumab, the dose was changed to 10 mg/kg every two-weeks.
Tumor size was measured by radiologist at TP1 using MR imaging (MRI), ul-
trasound and/or mammography and by a pathologist at TP3 when the tumor was
surgically removed. To evaluate response of treatment, two characteristics were
used; pathological tumor diameter at TP3 and response ratio calculated by patho-
logical tumor diameter at TP3/tumor diameter at TP1. In cases where no MRI
was available at TP1, the biggest diameter from ultrasound and/or mammography
was used. To prevent the loss of patients experiencing good treatment response,
but not qualifying for pathological complete response (pCR) where no invasive cells
are detected (in breast nor lymph nodes), a cut-off of tumor diameter < 1 cm was
set to classify pathological minimal residual disease (pMRD). Criteria for response

classification are summarized in Table 3.2.

Table 3.2: Tumor response classification criteria used in paper III

Pathological response Response ratio
Response class Tumor size at TP3 Good response (GR) <0.10
pathological minimal residual <1cm Intermediate response (IR) | <0.10, 0.90>
diasease (pMRD) No response (NR) > 0.90
pathological non-reponder (pNR) | > 1 cm

3.2 'H HR MAS MRS experiments

3.2.1 Sample preparation

For human samples included in paper I, biopsies were kept frozen on an ice block

during preparation (Figure 3.4) and cut to fit leak-proof disposable 30 ul inserts
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(Bruker, Biospin Corp, USA) containing 3 pl of phosphate buffered saline (PBS)
based on DyO with Trimethylsilyl propionic acid (TSP, 1 mM) and sodium formate
(1 mM). The insert were placed in a 4-mm diameter zirconium MAS rotor and

samples analyzed immediately.

Figure 3.4: Sample preparation before HR MAS MRS experiments. The samples
are stored in liquid nitrogen until analysis (left). The samples are kept frozen during

preparation and cut to fit inserts MAS rotors prior to analysis. Photo: Geir Mogen/NTNU

For xenograft samples in paper I and human samples in paper II and III, samples
were kept frozen on a metal block bathed in liquid nitrogen during preparation and
cut to fit leak-proof disposable 30 ul inserts (Bruker, Biospin Corp, USA) containing
3 ul cold sodium formate in DO (24.29 mM). The insert were placed in a 4-mm
diameter zirconium MAS rotor and samples kept -20°C and for maximum 6-8 hours

before the experiments.

3.2.2 Acquisition protocol

Samples were analyzed on a Bruker Avance DRX600 spectrometer (Bruker, Biospin
GmbH, Germany) equipt with a 'H/!3C MAS probe with gradient. Before acquisi-
tion, samples were spun for 5 minutes to allow for temperature acclimation. CPMG
experiments (cpmgpr1D, Bruker) were run using acquisition parameters as specified
in Table 3.3.
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Table 3.3: Acquisition parameters

Paper 1 Paper IT & IIT
Human samples | Xenograft samples | Human samples
Temperature 4°C 5°C 5°C
Spin rate 5 kHz 5 kHz 5 kHz
Relexation delay | 4 s 4s 4s
Delay(7) 1 ms 0.3 ms 0.3 ms
Echo time 273.5 ms 78 ms 78 ms
Number of loops | 136 126 126
Number of scans | 128 64 256

3.3 Spectral pre-processing and analysis

The acquired spectral data was Fourier transformed into 64k real points by multiply-
ing the FID with a 0.30 Hz exponential function. Each spectrum was automatically
phase corrected in TopSpin 3.1 (Bruker Biospin). Spectral data was further pre-
processed in Matlab R2013b (The Mathworks, Inc., Natick, USA); chemical shifts
were referenced to TSP at 0 ppm (human samples, paper I) or formate at 8.46 ppm
(xenograft samples, paper I and human samples, paper II and I1I), additional base-
line correction was achieved by subtracting each spectrum with the lowest value, and
peak alignment was performed using icoshift [64]. Pre-processed spectral data from
human samples were normalized by mean normalization (paper I and II) or PQN
(paper III), while spectral data from xenograft samples (paper I) were normalized

to sample weights.

3.3.1 Multivariate analysis

PCA and PLS-DA were performed in Matlab using PLS toolbox version 7.5.2
(Eigenvector Research, Wenatchee, USA) on mean centered data performed by sub-
tracting the average spectrum from each spectra. Hierarchical cluster analysis (pa-
per IT) was performed on pre-processed spectral data in Matlab using the Statistical
toolbox (Matlab R2013b, The Mathworks, Inc., USA). Euclidean distance was set
as distance parameter and Ward’s method as the clustering distance.

PLS-DA models were validated using double cross validation where each round

of the outer loop divided the data set into a training set consisted of 80 % (paper
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IT) or 90 % (paper I11) of the samples and a test set with the remaining samples. In
the inner loop, the training set was equally divided into a new test and training set
using the same percentages. For each outer loop (repeated in total 20 times) the
inner loop were repeated 20 times. The optimal number of LVs were decided based
on the inner loop, while classification result (sensitivity, specificity and classification
error) were calculated using the performance of the models during the outer loop of
the double cross validation. Permutation testing was performed by building models
on data where the response variable (Y) had been shuffled (paper IT and III). This
was repeated 1000 times before comparing the classification result of the permuted
model with the original model. P-values < 0.01 (paper II) and < 0.05 (paper I1I)

were considered significant.

3.3.2 Univariate and multilevel analysis

Metabolite identification was based on previously published HR MAS MRS analyses
of human breast cancer [51]. Metabolite levels were calculated using integration of
peaks (Matlab). Due to overlapping lipid peaks in the 4.1 ppm lactate region for 116
samples in paper IIT, the levels were imputed. This was performed in R 3.1.1 [70]
using the method of multivariate imputation by chained equation (MICE) [71] and

was validated using a resampling procedure.

LMM was performed in R 3.1.1 using the ‘nlme’ package [72].

3.4 Gene and protein experiments

3.4.1 Gene expression and genetic subtypes

In paper II and III, total RNA was isolated using TRIzol®reagent (Invitrogen,
Carlsbad, CA, USA). The RNA purity and concentration was determined with
a NanoDrop spectrophotometer (Thermo Fisher scientific, Waltham, MA, USA).
Gene expression analysis with 100 ng RNA as input for labeling was performed us-
ing SurePrint G3 Human GE 8x60K (Agilent Technologies) according to the man-
ufacturer’s protocol (One-Color Microarray-Based Gene expression Analysis, Low
Input Quick Amp Labeling, v.6.5, May 2010). For paper II, microarray signals
were log2-transformed, quantile normalized and hospital adjusted. The gene spe-
cific expression was calculated by taking the average of values from probes with

identical Entrez ID. For paper III, all values were log2-transformed and quantile
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normalized before adjustment for batch effect from array design, centre differences
and correlations to RIN value and background signal. For both paper II and III,
the PAM50 subtype algorithm [31] was used to classify samples into luminal A,
luminal B, HER2-enriched, basal-like or normal-like. The claudin-low subtype was

not included within the studies of this thesis and will thus not be further discussed.

3.4.2 Protein expression and proteomic subtypes

In paper II, measurements of protein expression was performed using the high
throughput technique reverse phase protein array (RPPA). Here, protein lysates
from up to 1000 samples are printed in dilutions on slides followed by hybridization
to specific antibodies. This enables direct comparison of the expression of protein
between samples. The expression of breast cancer related proteins were detected
using 150 primary antibodies for protein extracts of 217 samples in paper II. The
samples were diluted in five 2-fold series. Signal intensity was measured using a bi-
otin conjugated secondary antibody and amplified with DakoCytomation-catalyzed
system (Dako, Glostrup, Denmark). MicroViegene software (Vigene Inc., Carlise,
MA) was used to measure spot signal intensities before protein expression was quan-
tified using a standard curve from the serial dilutions. The expression levels were
log2-transformed and normalized by mean centering of the samples for each of the
antibodies.

Samples were classified to their RPPA-subtype using consensus clustering with
an option of 4 or 5 groups. The best fit was 5 groups; luminal, HER2, basal, reactive

I and reactive IT as defined in The Cancer Genome Atlas Network data set [33].

3.4.3 Analysis of gene expression data

In paper II, Significance Analysis of Microarrays (SAM) [73] was performed in R
2.15.2 [70] on expression levels of 21851 genes (found based on 42405 mRNA probes)
to identify differences between the metabolic clusters. To validate the findings, a
total of 100 permutations were performed.

For functional annotation of genes differently expressed between the metabolic
clusters in paper II, Database for Annotation, Visualization and Integrated Dis-
covery (DAVID), an online network analysis tool was used [74]. Additionally,
enrichment of sets of genes were identified using Gene Set Enrichment Analysis
(GSEA) [75].
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3.4.4 Integrated pathway analysis

The online available tool 'Integrated pathway analysis’ in MetaboAnalyst 3.0 soft-
ware (www.metaboanalyst.ca) [76] was used to combine data of differently ex-

pressed genes and metabolites of metabolic clusters in paper II.
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4 Summary of papers

4.1 Paperl

Impact of freezing delay time on tissue samples for metabolomic studies

Metabolic profiling of intact tumor tissue by high resolution magic angle spinning
MR spectroscopy (HR MAS MRS) provides important biological information pos-
sibly useful for clinical diagnosis and development of novel treatment strategies.
However, generation of high-quality data requires that sample handling from surgi-
cal resection until analysis is performed using systematically validated procedures.
In this study, we investigated the effect of post-surgical freezing delay time on global
metabolic profiles and stability of individual metabolites in intact tumor tissue.
Tumor tissue samples collected from two patient derived breast cancer xenograft
models (n=3 for each model) were divided into pieces that were snap-frozen in liquid
nitrogen at 0, 15, 30, 60, 90, and 120 minutes after surgical removal. In addition, one
sample was analyzed immediately, representing the metabolic profile of fresh tissue
exposed neither to liquid nitrogen nor to room temperature. We also evaluated the
metabolic effect of prolonged spinning during the HR MAS experiments in biopsies
from breast cancer patients (n—14). All samples were analyzed by 'H HR MAS
MRS on a Bruker Avance DRX600 spectrometer, and changes in metabolic profiles
were evaluated using multivariate analysis and linear mixed modeling (LMM).
Multivariate analysis showed that the metabolic differences between the two
breast cancer models were more prominent than variation caused by freezing de-
lay time. No significant changes in levels of individual metabolites were observed
in samples frozen within 30 minutes of resection. After this time point, levels of
choline increased whereas ascorbate, creatine and glutathione (GS) levels decreased.
Freezing had a significant effect on several metabolites, but is an essential procedure
for research and biobank purposes. Furthermore, four metabolites (glucose, glycine,
glycerophosphocholine and choline) were affected by prolonged HR MAS experi-
ment time possibly caused by physical release of metabolites caused by spinning or
due to structural degradation processes. In conclusion, the MR metabolic profiles
of tumor samples are reproducible and robust to variation in post-surgical freezing

delay up to 30 minutes.
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Figure 4.1: Impact of freezing delay time on level of (A) ascorbate, (B) choline,

(C) creatine and (D) glutathione. Metabolite integrals from samples subject to 15,

30, 60, 90 and 120 minutes freezing delay time compared with samples frozen immediately

(0 minutes). *

frozen after 0 minutes (*p <0.05, **p <0.01).

and ** indicates that the level is significantly different from the sample
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4.2 Paper II

Metabolic clusters of breast cancer in relation to gene- and protein ex-

pression subtypes

The heterogeneous biology of breast cancer leads to high diversity in prognosis and
response to treatment, even for patients with similar clinical diagnosis, histology
and stage of disease. Identifying mechanisms contributing to this heterogeneity
may reveal new cancer targets or clinically relevant subgroups for treatment strat-
ification. In this study metabolite, protein and gene expression data from breast
cancer patients were combined to examine the heterogeneity at a molecular level.

The study included primary tumor samples from 228 non-treated breast cancer
patients. High resolution magic angle spinning magnetic resonance spectroscopy
(HR MAS MRS) was performed to extract the tumors metabolic profiles further used
for hierarchical cluster analysis resulting in three significantly different metabolic
clusters (Mcl, Mc2 and Mc3). The clusters were further combined with gene and
protein expression data.

The result revealed distinct differences in the metabolic profile of the three meta-
bolic clusters. Among the most interesting differences, Mc1 had the highest levels of
glycerophosphocholine (GPC) and phosphocholine (PCho), Mc2 had the highest lev-
els of glucose and Mc3 the highest levels of lactate and alanine. Integrated pathway
analysis of metabolite and gene expression data uncovered differences in glycoly-
sis/gluconeogenesis and glycerophospholipid metabolism between the clusters. All
three clusters had significant differences in the distribution of protein subtypes clas-
sified by the expression of breast cancer related proteins. Genes related to collagens
and extracellular matrix were downregulated in Mc1 and consequently upregulated
in Mc2 and Mc3, underpinning the differences in protein subtypes within the meta-
bolic clusters. Genetic subtypes were evenly distributed among the three metabolic
clusters and could therefore contribute to additional explanation of breast cancer
heterogeneity.

In conclusion, three naturally occurring metabolic clusters of breast cancer were
detected among primary tumors from non-treated breast cancer patients. The clus-
ters expressed differences in breast cancer related protein as well as genes related to
extracellular matrix and metabolic pathways known to be aberrant in cancer. Anal-
ysis of metabolic activity combined with gene and protein expression provides new

information about the heterogeneity of breast tumors and, importantly, the meta-
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bolic differences infer that the clusters may be susceptible to different metabolically

targeted drugs.
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Figure 4.2: Metabolic subtyping of breast cancer tissue samples using HCA.
(A) The HRMAS 1H MRS spectra for 228 samples was clustered using Euclidean dis-
tance and Wards linkage as similarity measure which separated the samples into three
metabolic clusters (Mc); Mcl, Mc2 and Mc3. (B) Mean spectra for the three metabolic
clusters. (-Glec: [-glucose, Asc: ascorbate, Lac: lactate, Tyr: tyrosine, Cr: creatine, ml:
myoinositol, Gly: glycine, Tau: taurine, sl: scylloinositol, GPC: glycerophosphocholine,
PCho: phosphocholine, Cho: choline, Gsh: glutathione, Gln:; glutamine, Succ: succinate,
Glu: glutamate, Ace: acetate, Ala: alanine. Grey bars indicate removed spectral regions

(containing lipid peaks).
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4.3 Paper III

Evaluation of metabolomic changes during neoadjuvant chemotherapy

combined with bevacizumab in breast cancer using MR spectroscopy

Metabolomics investigates biochemical processes directly, potentially complement-
ing transcriptomics and proteomics in providing insight into treatment outcome.
This study aimed to use magnetic resonance (MR) spectroscopy on breast tumor
tissue to explore the effect of neoadjuvant therapy on metabolic profiles, deter-
mine metabolic effects of the antiangiogenic drug bevacizumab, and to investigate
whether responders could be discriminated from non-responders at the metabolic
level.

The metabolic profiles of 122 tumors from breast cancer patients were deter-
mined by high resolution magic angle spinning MR spectroscopy (HR MAS MRS).
All patients received neoadjuvant chemotherapy, while they were randomized to re-
ceive bevacizumab or not. Biopsies were sampled prior, during, and after treatment.
Multivariate strategies were used to analyze the metabolic profiles. The levels of
16 metabolites were calculated by peak integration and analyzed by linear mixed
models (LMM).

Principal component analysis showed clear metabolic changes as an effect of
chemotherapy, pointing to a decline in glucose consumption and a transition to
normal breast adipose tissue with treatment progression. Partial least squares-
discriminant analysis (PLS-DA) revealed metabolic differences between pathological
minimal residual disease (pMRD) patients and pathological non-responders (pNRs)
after treatment, but not before or during treatment, with an accuracy of 77 % (p
<0.001). Furthermore, metabolic profiles before and after treatment discriminated
patients exhibiting a good response (> 90 % tumor reduction) from those with no
response (< 10 % tumor reduction) with a classification accuracy of 76 % (p=0.001)
and 75 % (p=0.002), respectively. Lower glucose and higher lactate was observed
in the good response group before treatment, while the opposite was observed af-
ter treatment. Bevacizumab-receiving and chemotherapy-only patients could not
be discriminated at any time point. LMM revealed significant differences during
treatment for 11/16 metabolites, while 8/16 metabolites differed between pMRD
and pNRs. A significant interaction between time and bevacizumab for glutathione
revealed higher levels of this antioxidant in chemotherapy-only patients than in

bevacizumab receivers after treatment.
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In conclusion, MR based metabolic profiles reflected changes as an effect of
chemotherapy and successfully discriminated pMRD patients from pNRs after treat-
ment, showing potential for assessment of metabolic response to treatment and

to improve the understanding of underlying mechanisms affecting pathological re-

sponse.
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Figure 4.3: PCA score plot, mean spectra from time points and loading plot.
(A) The scores plot shows a trend in the direction of the arrow with increasing time
point. (B) PQN-normalized mean spectra at each time point. Gray bars indicate removed
spectral regions. (C) The normal-like gene expression subtype is most clearly separated
from the rest in the scores plot, showing a similar distribution as TP3 in A. (D) The
loadings plot indicates higher phosphocholine, glycerophosphocholine, and taurine at TP1
and increasing glucose and lipids with increasing time of treatment and in normal-like
samples. Loadings are colored according to LV1. LumA: luminal A, LumB: luminal B,
Norm-like: normal-like, NA: not available, Glc: glucose, Asc: ascorbate, Lac: lactate, ml:
myo-inositol, Tyr: tyrosine, Cr: creatine, Gly: glycine, Tau: taurine, GPC: glycerophos-
phocholine, PCh: phosphoscholine, Cho: choline, GSH: glutathione, Gln: glutamine, Succ:

succinate, Glu: glutamate, Ala: alanine
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5 Discussion

The main objective of this thesis was to characterize the metabolism of breast
cancer in untreated and treated patients as well as to evaluate the metabolic effects
of sample handling prior to and during HR MAS experiments. Altogether, this work
demonstrates the potential of MR metabolomics in complementing gene and protein
expression data to provide insight into breast cancer heterogeneity and treatment
outcome, at the same time also gaining insight in how to design sample handling
for safe and reproducible measurements.

In paper I, the metabolic effects of sample handling, with a focus on freezing time
delay and prolonged experiment time, were evaluated. Tumor samples snap-frozen
within 30 minutes after excision did not express significant changes in metabolite
levels as measured with 'H HR MAS MRS. However, in the time frame of 60-120
minutes, and prolonged experiment time for 90 minutes, several metabolite levels
were altered. Optimal sample handling protocols are important when designing and
interpreting results from metabolomics studies, such as those conducted in paper
IT and III. Sample handling regimens in these studies were within the time limits
indicated in paper I. In paper II, three naturally occurring metabolic clusters of un-
treated breast cancer were discovered. These were found to have distinct differences
in metabolic profiles and in the distribution of protein subtypes, but no significant
association to the distribution of gene expression subtypes. In paper III, the tu-
mor metabolic responses in patients undergoing neoadjuvant chemotherapy with or
without bevacizumab were evaluated and related to treatment response. Metabolic
effects of the treatment were observed as well as differences in the metabolic profiles
of responders compared to non-responders. Furthermore, a metabolic effect possibly

linked to bevacizumab treatment was observed.

5.1 Metabolic profiles of breast cancer

Metabolic reprogramming is now widely accepted as an independent hallmark of
cancer [3]. Genomic and transcriptomic characterization of breast cancer have
been extensively performed in the past few decades, while the metabolic level has
been less thoroughly explored. Importantly, cancer cells must convert nutrients to
biomass while maintaining energy production, which requires reprogramming of cen-

tral metabolic processes in the cells. This phenomenon is increasingly recognized
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as a potential target for treatment, but also as a source for biomarkers that can
be used for prognosis, risk stratification and therapy monitoring. The metabolic

pathways of interest in the current thesis are summarized in Figure 5.1.
Metabolic characterization of breast cancer

With its limited need of sample preparation and its high reproducibility, HR MAS
MRS can give important metabolic information of cancer samples prior to addi-
tional analysis. This can improve current breast cancer characterization and, when
combined with data from other molecular levels, solve some of the challenges linked
to breast cancer heterogeneity.

A short summary of the main metabolic findings of the current thesis is given
in Table 5.1.

Table 5.1: Summary of metabolic findings in paper I-II1

Summary | Samples n Sample group 1 Metabolites | Metabolites
of results increased decreased
Paper T Basal-like and 14 | Freezing delay > 30 min | Cho Asc, Cr
luminal-like xenografts Freezing delay > 60 min GS
Human samples, 6 Exp. time > 90 min Gle, Gly, Cho GPC
primary operable tumors
Paper 11 Primary operable tumors | 228 | Mcl GPC, PCho ml, Gle, Glu, Ace
Mec2 Gle, Ace Lac, Asc, Tyr,
Gly, GPC, PCho, Ala
Me3 Lac, Gly, Tau, Ala | Gle
Paper 11T Primary inoperable 122 | Neoadjuvant Gle, Lac, Gln Cho, PCho, GPC, Tyr,
tumors, HER2— Chemotherapy Cr
pMRD compared to pNR | Gle, Lac Cho, PCho, GPC, GSH,
Suce, Tyr, Cr
GR compared to NR Gle, Lac, Cho, PCho, GPC,
GSH, Suce, Tau, Tyr, Cr
Bevacizumab GSH
Cho: choline, Asc: ascorbate, Cr: creatine, GS: glutathione (total), Gle: glucose, Gly: glycine, Cho: choline, GPC:
glycerophosphocholine, PCho:phosphocholine, mI: myoinositol, Glu: glutamate, Ace: acetate, Lac: lactate, Tyr:
tyrosine, Ala: alanine, Tau: taurine, pMRD: pathological minimal residual disease, pNR: pathological non-responder,
GSH: glutathione (reduced), GR: good response, NR: no response, Succ: succinate.
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Figure 5.1: An overview of the most relevant metabolites discussed in this thesis. 2DG:2-
deoxy-D-glucose, HKs: hexokinases, G6P: glucose 6-phosphate, 3PG:3-Phosphoglyceric
acid, GSH; reduced glutathione, GSSG: oxidized glutathione, GLS: glutaminase, CHK:
choline kinase, PCho: phosphocholine, CCT: cytidylyltransferase, CHPT1: choline phos-
photransferase 1, PtdCho: phosphatidylcholine, GPC: glycerophosphocholine

o1



5.1 Metabolic profiles of breast cancer 5 DISCUSSION

Glucose metabolism

Cancer cells divide and grow uncontrollably with high demand for energy and molec-
ular building blocks. Although energy production through mitochondrial oxidative
phosphorylation is much more efficient, most cancer cells tend to convert glucose
to lactate regardless of oxygen availability, the phenomenon known as the Warburg
effect. Consequently, an increased glycolytic rate has been observed as a character-
istic of many tumors [77]. This is frequently utilized in tumor detection through
positron emission tomography (PET) [78] where the glucose analog fludeoxyglucose
is injected into cancer patients and used to detect tumors with high glucose uptake.
Among genetic subtypes, luminal-like xenograft tumors express a higher glycolytic
rate compared to the more aggressive and fast growing tumors of basal-like xeno-
grafts [69]. Further exploration of luminal A tumors from patients has revealed
three subgroups within this subtype, with one exhibiting higher energy consump-
tion [50]. Glucose metabolism does not necessarily behave similarly within each
genetic subtype, but could possibly contribute to important characteristics of the
heterogeneity within breast cancer metabolism.

Among the three metabolic clusters described in paper II, Mc2 was characterized
by high levels of glucose indicative of lower glycolytic rate, while Mc3 had evidence
of higher Warburg effect with low levels of glucose and higher levels of lactate
and alanine. The genetic subgroups were evenly distributed among these clusters,
underpinning that metabolic differences may add information on breast cancer het-
erogeneity. Due to its low glucose levels combined with other findings that will
be discussed later, Mc2 was suggested to be a group with less aggressive tumors
compared to Mcl. Lactate has been linked to tumor aggressiveness and metastasis
and has been suggested as a key player in cancer metabolism [39,79|. Expressing
the highest lactate level among the three clusters, Mc3 exhibited metabolic features
associated with aggressiveness. For ER+ breast cancer patients, higher levels of
lactate and glycine have been found to be associated with lower survival rates [53].
The distribution of ER+ patients among the metabolic clusters were found to be
equal, and therefore not the reason for higher lactate in Mc3. No differences in gene
expression among the clusters could explain these metabolic differences in glucose
metabolism, however, significant differences in the distribution of protein expres-
sion subtypes were discovered among the clusters. For Mc2, where high levels of

glucose imply a low proliferative rate, 44 % belonged to RPPA subtype reactive-I,
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known to have features related to stromal activity; this was in accordance with gene
expression findings for this cluster and would be of interest to investigate further.

Although metabolic prediction of treatment response prior to onset of neoadju-
vant treatment in breast cancer patients currently has not been achieved [56,60],
increase in glucose levels during treatment for responders (paper II1) and for 5 year
survivors have been observed [60]. For paper III, the main criteria for evaluation
of treatment was tumor size reduction. Pathological responders’ metabolic profile
after treatment (TP3) showed higher lactate in addition to higher glucose compared
to pathological non-responders (pNR). While high glucose could be explained by a
lower energy demand in accordance with tumor reduction, the high level of lactate
was more unexpected. For many of the samples (116 of 270) lactate levels were
imputed due to overlapping lipid residuals, however, this calculation was validated
using a resampling procedure and is unlikely to have caused the observed increased
lactate levels. This finding could support the suggested dual metabolic effect of
cancer cells, where glucose consumption decreases due to a non-glycolytic pheno-
type caused by lactic acidosis [80], or simply by morphological changes in the cancer
tissue, limiting cell lactate secretion and removal.

When assessing tumor response using the defined response ratio, patients classi-
fied with good response showed a more prominent metabolic shift from lower glucose
and higher lactate prior to treatment towards higher glucose and lower lactate after
treatment compared to patients with no response. This indicated that tumors with
high Warburg effect were targeted more effectively by the current chemotherapy
treatment. Due to the exclusion of the high number of patients with intermediate
response in this comparison (69 of 122 patients), the model was limited by a lower
sample size therefore not valid for prediction, but the glycolytic response of good
responders showed similarities to those observed for long-term survivors of locally
advanced breast cancer [60]. When intermediate response patients were included,
however, increasing lactate correlating with clinically better response ratio was ob-
served, similar to the finding for pathological minimal residual disease. Whether
this increase in lactate is a predictor of poorer outcome for patients in paper III
regardless of good pathological response still needs to be elucidated. If so, previous
findings showed that 5 year survival, but not clinical response to treatment, is pre-
dicted from metabolic profiles measured prior to treatment with lower lactate levels

in 5 year survivors [56].
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Choline metabolism

Suggested as an emerging hallmark of cancer, abnormal choline metabolism has been
associated with proliferation, tumor progression and oncogenic signaling through the
production and degradation of the phospholipid phosphatidylcholine (PtdCho) [42].
This phospholipid is an essential constituent of cellular membranes and consequently
needed during cancer cell proliferation and tumor growth. Normal proliferating
mammary cells do not show the same characteristics [81], linking this feature to
malignancy. The three key intermediates of PtdCho metabolism, choline, phos-
phocholine (PCho), and glycerophosphocholine (GPC) or tCho when summed to-
gether, are detectable using 'H HR MAS MRS and are found to be altered in sev-
eral types of cancer. In breast cancer tissue, these choline containing metabolites
have been found to be expressed at higher levels than in normal or adjacent breast
tissue [52,57,82]. These findings can be correlated with detected upregulation of
expression and activity of specific enzymes in breast cancer, presented in a recent re-
view of choline metabolism in malignant transformation by Glunde et al [42]. More
specifically, several choline metabolism enzymes such as choline kinase o (CHKA)
and PtdCho-specific phospholipase D (PLD) are found to be overexpressed in can-
cer and are associated with altered choline metabolism. The distinct differences in
choline metabolite profiles observed in luminal-like and basal-like xenografts have
also been found to correlate with gene expression differences [59, 83] further sup-
porting the need to combine data levels for better breast cancer stratification.

The results of paper I, where the effect of freezing time delay on cancer meta-
bolites was studied, showed that choline significantly increased in the time interval
of 30-60 minutes at room temperature. For GPC and PCho no significant effect was
observed, however, a trend towards increased levels was observed. Although proper
sample handling whereby samples are stored in liquid nitrogen within 30 minutes
from collection should both be possible and standard for metabolic studies, it is
important to consider this effect while planning and controlling the study design.
Limited time at room temperature will improve the sample quality and enable valid
interpretation of findings related to choline metabolism.

Of the three metabolic clusters obtained in paper 11, Mc1 was found to have sig-
nificantly higher levels of PCho and GPC. Differences in PCho/GPC ratio is a com-
mon metabolic characteristic distinguishing luminal-like and basal-like xenograft
tumors [69], and high PCho has been suggested as a biomarker of breast cancer [84].

While 5 year survivors of locally advanced breast cancer were found to have higher
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levels of tCho compared to non-survivors, their lactate levels were lower [56]. Com-
bined with findings related to glucose metabolism in addition to its gene expression
profile, we hypothesize that patients classified into Mc1 have the worst prognosis of
the three clusters. This hypothesis will be tested once long-term follow up data is
available.

Differences in the gene expression level of choline metabolism related enzymes
have been observed when exploring differences between basal-like and luminal-like
xenograft model [59]. These findings could possibly explain the higher GPC con-
centration relative to PCho observed in basal-like xenograft tumors, which is found
to be a more aggressive phenotype. This suggests that the differences in meta-
bolic profiles together with gene expression data could improve characterization
of breast cancer heterogeneity. Several genes linked to choline metabolism were
found to be down-regulated in the Mcl-tumors compared to the two other clusters.
Although none of these genes code for enzymes directly linked to PCho or GPC
formation, they are involved in PtdCho metabolism. The high tCho observed in
Mec1 has been detected in other breast cancer cohorts in vivo and its reduction
has been used as a marker for response to neoadjuvant therapy measured by in
vivo MRS [77,85,86]. This reduction was in accordance with the findings of paper
ITI, where a general trend was decreased levels of choline, PCho, and GPC with
treatment time. Additionally, levels of choline and PCho were found to be lower
in patients with pathological minimal residual disease compared to non-responders
at the end of treatment. Patients with good or poor prognosis according to TNM
classification system, however, did not show the same difference in tCho levels [52],

in agreement with the metabolic response seen in 5 year survivors [60].
Amino acid metabolism

A number of amino acids are found to be elevated in cancers [41]. Following ab-
normal cell growth there is an increased requirement for energy and building blocks
to support the synthesis of proteins and other important molecular components;
amino acid metabolism can help cancer cells fulfill this need [87]. When glucose
supply is limited or directed towards lactate production, cancer cells can use some
amino acids to refuel the TCA cycle. Glutamine metabolism, where glutamine can
be converted to glutamate, is one possibility to refuel a-ketoglutarate into the TCA
cycle. The conversion from glutamine to glutamate is catalyzed by glutaminase

(GLS), an enzyme that has been found to be overexpressed in several cancer types
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and cancer cell lines [88]. When comparing Mc1 to the two remaining clusters (pa-
per II) significant lower levels of both GLS and glutamate in Mcl tumors were
observed, while no differences in glutamine levels could be detected between the
clusters. This could indicate more glutamate being guided into other pathways, or
simply that glutamine metabolism is less active within these tumors. The latter is
also hypothesized to be a general effect of chemotherapy for patients in paper III,
which was attributed to increased glutamine levels from TP2 to TP3, independent

of response to treatment.

Elevated levels of glycine has repeatedly been linked to tumor aggressiveness and
poor prognosis [52,53,57,89], however, to find its role in breast cancer, this has not
been fully elucidated. Glycine can be synthesized from different routes including
intermediates from the glycolysis pathway and from choline degradation. It can
be used for production of DNA and RNA building blocks as well as the important
antioxidant, glutathione [90]. In paper II, Mc2 patients exhibited lower levels of
glycine than Mc3 patients. Combined with high levels of glucose within Mc2 tumors,
this was found to be in accordance to the assumption that Mc2 is associated with
better prognosis than the two other clusters. Mc3 on the other hand, expressed
higher levels of both glycine and lactate, which for ER+ patients were found to
be related to poor prognosis [53]. Higher expression of genes involved in choline
metabolism, previously suggested to be linked to increased glycine levels [59], could
explain this glycine profile of Mc3. There was no evidence of glycine predicting
pathological treatment response (paper I1T), however, when comparing patients with
good and no response according to response ratio, a trend of higher glycine was
observed for non-responders at the end of treatment. This finding was not further
evaluated in paper III, but underpins the need to evaluate glycine when clinical

survival data becomes available for this cohort.

Glycine, together with glutamate and cysteine, can be directed towards synthesis
of glutathione, whose modulation has been described as a double-edged sword [91].
While important for protection against cancer development by reducing reactive
oxygen species (ROS) and maintaining redox homeostasis, high glutathione levels
have been linked to malignancy in cancer development. It has been hypothesised
that high levels of glutathione could contribute to treatment resistance by reducing
the effectiveness of drugs intended to damage cancer cells [91]. Additionally, cancer
cells with lower levels of glutathione are found to be more sensitive to radiation

therapy, therefore glutathione is important to consider when designing the opti-
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mal treatment regimen. Furthermore, in a chemo-resistant breast cancer cell line,
decreased glutathione levels were suggested to be an essential event in treatment-
induced reduction of their resistant properties [92]. Importantly, glutathione levels
are dependent on sample handling and should only be interpreted in studies were
the samples were frozen within 60 minutes from collection (paper I). After this time
point, its levels were found to be significantly decreased, possibly a result of oxida-
tive stress within the tumors. Decreased glutathione levels were also observed as a
possible effect of bevacizumah observed at the end of treatment (paper IIT). Based
on previous findings, this could indicate that these tumors are less likely to continue
to avoid apoptosis and more likely to be sensitive to chemotherapy. Low levels of
glutathione could indicate that Mc2 patients are more sensitive to chemotherapy

than Mec3, which had the highest glutathione levels of those two groups (paper II).
Metabolism and tumor microenvironment

Emerging evidence suggests that cancer cell progression and metastasis is dependent
on the tumor microenvironment [93]. Cancer cells and their surrounding stroma, in-
cluding blood vessels, cancer-associated fibroblasts, immune cells, fat, extracellular
matrix (ECM) and extracellular molecules, will together affect the tumor microenvi-
ronment with cellular interactions and molecular crosstalk. Although not malignant
themselves, stromal cells within the tumor microenvironment can contribute to the
malignant phenotype of cancer cells, for example through production of growth fac-
tors and cytokines [94]. Metabolic profiling and combination of data from several
omics levels therefore have the potential to unveil biomarkers within tumor microen-
vironment for metastatic disease and new metabolic targets for treatment [95].
The metabolic clusters of paper II exhibited gene expression differences linked
to changes in stromal activity. More specifically, Mc2 and Mc3 had significantly up-
regulated genes compared to Mcl. Gene annotation and enrichment tools showed
that a significant number of these genes were linked to alternations in the ECM,
cell adhesion, and basement membrane. Interestingly, when compared to Mc1, both
of these clusters were also found to have higher amounts of the protein expression-
defined subtypes, reactive I and reactive 11. Since the two ‘reactive’ subtypes are
thought to be produced by stromal/microenvironmental elements [96], this finding
is in accordance with the gene expression characteristics, suggesting a correlation
between metabolic phenotype and stromal activity. The tumor microenvironment is

important for tumor progression, metastasis and redox status. Thus, these charac-
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teristics might be a result of the cancer cells promoting changes in the extracellular

conditions needed for growth [97].

Targeting dependencies in cancer metabolism

All cancer cells exhibit altered metabolism to facilitate the energy demand and syn-
thesis of biomass needed for rapid proliferation. Distinct differences between the
three metabolic clusters in paper II were identified. This is interesting, as thera-
peutic agents that target metabolic dependencies are considered to be a promising
anti-cancer strategy. One of the biggest obstacles for the success of this approach is
the similarity between cancer cells and normal rapid proliferating cells [95]. This is
also an existing well-known challenge in more traditional cancer therapies, resulting
in multiple and undesired side effects. An additional obstacle for successful outcome
when targeting metabolic dependencies is the redundant nature of metabolic path-
ways. Alternative routes for the same metabolic end product might exist, impairing
the effect of targeted drugs [95]. Despite these issues, several drugs that target
metabolic pathways have shown promising results leading to clinical trials [98]. In
fact, some of the conventional drugs against cancer are inhibitors of metabolic en-
zymes, including 5-fluourouracil and methotrexate [97]. After finding evidence of as-
paragine supply dependency in the acute lymphocytic leukemia (ALL) cancer cells,
these patients now benefit from L-asparaginase treatment [99], showing the impor-
tance of metabolic characterization in cancer. Metformin, a drug initially intended
to lower blood glucose levels for type 2 diabetics, has shown anti-neoplastic effects
and has been tested in clinical trials for several cancer types [100], including breast
cancer, where the drug was linked with decreased proliferation [101]. Metformin has
been observed to reprogram tumor cell metabolism, making chemoresistant breast
cancer cells more similar to their chemosensitive counterparts [92], were metformin
not only altered the metabolism of glucose, but was also suggested to reprogram
glutathione metabolism. Since the sensitivity to radiation and chemotherapy has
been found to be associated with glutathione levels in cells and neoplastic tissues,
respectively [91], this link should further be investigated. Metformin, or other drugs
that alter glutathione metabolism, could potentially be used when targeting tumors
found to have high glutathione levels like those observed for the metabolic cluster
Me3.

Me3 had evidence of high aerobic glycolytic activity, observed as low glucose

levels combined with high levels of lactate, a characteristic that is being targeted
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using different approaches [102]. Direct inhibition of glucose metabolism using the
glucose analogue 2-deoxy-D-glucose (2DG) has been extensively studied in cancer
cells, especially in combination with other treatments [103,104]. Although preclin-
ical toxicity issues have been a concern regarding this drug, it has been reported
as well tolerated by patients [105]. By binding to the glucose transporters, 2DG
inhibits glucose uptake and thereby all downstream pathways that rely on glucose
to contribute with intermediates in both glycolysis and mitochondrial oxidative
phosphorylation. Other possible glycolytic targets includes the hexokinases (HKs)
where the use of 3-bromopyruvate (3-BrPA) have been found to induce autophagy

in breast cancer cell lines [106,107].

Altered choline metabolism is considered an attractive cancer therapy target
and was found to be one of the main characteristics of Mcl. One of the key en-
zymes in altered choline metabolism is CHKA [108], the first enzyme in the choline
pathway. Inhibition of this enzyme (RSM-932A) induced antiproliferative effects,
which were detected both in cancer cell lines and xenograft models of human tu-
mors [109]. These promising results combined with low toxicity profiles have led
to the drug being tested in phase I clinical trials [109]. One of the benefits of tar-
geting choline metabolism is the possibility of detecting and monitoring treatment
response by observing the tCho signal using in vivo MRSI [86]. Ez vivo moni-
toring, using HR MAS MRS of fine needle biopsies, could also be valuable tool.
Using this approach, a transient increase in choline containing metabolites has been
found to be an early marker for docetaxel sensitivity in a BRACIT-mutated mice
model [110]. For treatment strategies targeting choline metabolism directly, sev-
eral metabolic enzymes with altered expression and activity could potentially be
used such as choline transporter-like protein 1 (CLT1) and CTP:phosphocholine
cytidylyltransferase (CCT) [42].

Targeting amino acid metabolism has been suggested as a promising strategy in
cancer therapy [111]. Glutamine, with its potential of providing both carbon and
nitrogen to cellular building blocks, is considered to be essential in rapidly dividing
cells [44]. However, with the possibility of de novo synthesis of glutamine together
with a potential supply of glutamine from other glutamine producing cells [112],
information about the variety of and degree of glutamine reprogramming among
cancer subtypes is still lacking. If better characterized, prediction of which tumors
are more likely to benefit from glutamine targeted treatment could be promising [44].

Glutaminase has been found to be upregulated in several types of cancer [113]
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making it a promising target. The glutaminase inhibitor CB-839 is currently being
investigated in phase I trials [114] and could potentially be used for tumors found to
be glutamine dependent. Among the genetic subtypes of breast cancer, basal-like
epithelial cells were found to be more dependent on glutamine supply compared
to luminal-like [112]. Targeted investigation into both gene and protein expression
differences related to glutamine metabolism could possibly clarify these metabolic
differences and predict which are more likely to benefit from targeted treatment.
For the metabolic clusters in paper II, Mcl is reprogrammed in such a way that
the glutamate produced is more rapidly guided towards production of proliferative
building blocks, or simply that glutamine supply of Mc2 and Mc3 tumors is higher,
and converted to glutamate more rapidly due to higher availability of the GLS

enzyme.
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5.2 Methodological considerations

In a research setting, the study design and choice of methods, both at the experi-
mental stage and during data analysis, is important as it can influence the results.

In the following sections, methods used within the current thesis are discussed.
Patients and tumor tissue samples

In this work, both breast cancer xenograft tissue and patient tissue were analyzed.
Samples from the patient-derived xenograft models, MAS98.08 and MAS98.12, were
used to study the metabolic effects of prolonged time at room temperature prior
to freezing (freezing time delay) (paper I) [68]. These models were established by
implementing bulk tumor tissue, harvested from breast cancer patients, directly into
the mammary fat pad of immunodeficient mice. By using direct grafting of tumor
tissue, in contrast to injection of cell lines or using genetically engineered mice, more
of the human tumor characteristics are captured. Additionally, injection into the
mammary fat pad provides a tumor microenvironment that is more similar to the
tumors original surrounding compared subcutaneous injection. Although a tumor
model will never be able to capture all properties and aspects of the human cancer,
it was considered to be good model system for the methodological purpose of paper
I - detecting metabolites affected by sample handling differences. Performing a
similar study using patient material would also be valuable, it could however, be
influenced to a higher degree by tumor heterogeneity. The models used have been
characterized both at the genetic [68] and metabolic [69] level showing small inter-
and intra-tumor variability. Metabolic effects detected in paper I should thus be
representative for the ongoing degradation processes in human tumor tissue caused
by freezing time delay.

Tumor tissue from breast cancer patients can be harvested through needle biop-
sies or during surgery. From the moment blood supply is cut, the tumor is prone
to degradation processes. To minimize metabolic alterations, as well as ischemic
influence on other cellular processes, samples for HR MAS MRS analysis should be
snap-frozen in liquid nitrogen as soon as possible [115]. Although the snap-freezing
might have metabolic consequences [116], as observed in paper I, the alternative
approach of analyzing samples directly after harvesting is often inconvenient. The
human samples utilized in paper I and II were obtained from untreated patients

during final surgery, while samples in paper III were collected prior to, during and
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after neoadjuvant treatment of HER2 negative (HER2—) breast cancer patients.
After surgical removal, samples in paper I were immediately («~ 5 min) snap-frozen
and stored for a maximum of 3 years in liquid nitrogen until HR MAS MRS anal-
ysis. Surgical samples in paper II and III were evaluated by a pathologist within
30-60 minutes prior to storage in -80°C, and stored for a maximum of 5 or 3 years,
respectively. The samples were transferred to storage in liquid nitrogen minimum
6 months prior to analysis. The metabolic effect of long-term storage prior to HR
MAS analysis was found to be insignificant for prostate tissue stored for 3 years at
-80°C [117]. In a more recent study however, significant changes in both breast can-
cer tissue and adjacent healthy tissue were reported after 12 months of storage [118].
Choline increased significantly for both groups while levels of PCho decreased signif-
icantly in ‘healthy’ samples. Despite these findings, metabolic differences between
neoplastic and healthy tissue were considered sufficient for discrimination. The
metabolic changes thought to be related to storage could, however, be influenced
by degradation processes caused by the repeated freezing and thawing (to 5°C in-
side HR MAS MRS magnet) needed to reanalyze the same sample after prolonged

storage.
Tumor size for treatment response assessment

In paper III, exploring the association between metabolic profile and treatment re-
sponse was a major objective. The RECIST criteria are commonly used to assess
treatment response in solid tumors [119]. However, due to the lack of MRI measure-
ments for some patients before treatment, which in addition to computed tomogra-
phy (CT) is a recommended method in the RECIST guidelines, we chose to look into
alternative measures of treatment response. Pathological complete response, where
a total eradication of the invasive cancer cells in the breast and lymph nodes are
achieved, would have been a good option for defining responders and non-responders
in this cohort, especially since pathological complete response is known to be a prog-
nostic factor after neoadjuvant chemotherapy [24]. However, pathological complete
response was only achieved for 20 of 122 patients in our study. If this criterion
was to be used for response assessments, valuable information from the cases where
the tumors had shrunk significantly with treatment, but not fulfilling pathological
complete response criteria, would be lost. Tumor size reduction as a measure of
treatment response may have limitations for the evaluation of drugs that do not

cause tumor shrinkage [120], which is the case for some antiangiogenetic drugs like
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bevacizumab [121]. However, since the main purpose of neoadjuvant chemotherapy
is to make the tumor operable, pathological minimal residual disease (pathological
tumor size < 1 ¢m) was considered a good choice for classifying responders. An
additional response assessment measure was also defined, which described tumor

reduction from treatment onset until final surgery.

Metabolomics analysis

Magnetic resonance spectroscopy (MRS), can be considered one of the two main
approaches employed for metabolic profiling together with mass spectrometry (MS)
[34]. Although neither of these methods can independently identify and quantify
the entire metabolome (i.e all metabolites present within the cell /tissue/organ etc),
they give high quality data, which is valuable for metabolomics studies. MS methods
have high sensitivity, but require more sample preparation, thus reducing its repro-
ducibility. More specifically, prior to analysis, tissue samples have to be extracted,
introducing analytical steps that might lead to loss of metabolic information. In
contrast, HR MAS MRS is a non-destructive technique requiring minimal sample
preparation resulting in data with high specificity and reproducibility. The main dis-
advantage is its relatively low sensitivity (micromolar range compared to picomolar
range for some MS based methods), however, in breast cancer tissue, more than 30
metabolites involved in important cancer related pathways have been detected [51]
and distinctive differences have been characterized between normal adjacent tissue
and cancer tissue (reviewed in [41]).

As described, sufficient tumor material for the HR MAS MRS analysis in paper
IT and IIT were separated from the main sample prior to other molecular analyzes.
HR MAS is non-destructive and allows for further subsequent analysis, and previ-
ous studies report high RNA integrity after HR MAS MRS [122]. However, this
opportunity was not utilized in the current thesis due to the study design involving
collection of a high number of samples which were analyzed using several molecular
platforms. Furthermore, performing HR MAS MRS studies prior to the remaining
methods would be time consuming and lead to logistical challenges due to geo-
graphical distances between the collaborating laboratories in this work. Depending
on the original tumor size and degree of intratumoral heterogeneity, it could be
questioned whether the analyzed part of the tumor is representative of the tumor

as a whole. However, as extraction of DNA, RNA and proteins (if applicable) for
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the combined molecular analysis were performed in closely adjacent material, we

consider the metabolic profiles to be representative.

Metabolic quantification

Due to the anatomy of the female breast, tumor biopsies obtained from breast cancer
patients might contain fractions of adipose tissue. The aliphatic side chains of fatty
acids within this tissue can give rise to large and broad peaks in MR spectra, poten-
tially overlapping with and influencing signals from important small metabolites. To
limit this effect, HR MAS MRS acquisition within the current thesis was performed
using a CPMG sequence. As previously described, this takes advantage of the short
T, relaxation of larger molecules, like fatty acids, and selectively suppresses their
signal, consequently enhancing signals from small metabolites. Because of small dif-
ferences in T5 relaxation, absolute quantification would be unreliable without proper
and time-consuming 75 measurements. However, the signal intensities and therefore
the metabolite levels, are still comparable between the spectra obtained from the
samples. Thus, spectral integration of metabolite regions were used to obtain the
levels of metabolites identified in the spectra. Overlapping metabolites can cause
inaccuracy in these measurements, but integrals were still considered sufficient when
used in combination with multivariate approaches within the exploratory studies of
this thesis. An alternative approach that could be used to quantify metabolites is
manual peak fitting. Manual peak fitting would better correct for overlapping meta-
bolites than integration, however it would be prone to subjective judgment and for
big sample cohorts it is extremely time consuming. Automatic peak fitting in tools
such as LCModel [123] have been used to quantify metabolites in brain [124] and
prostate tissue [125]. In spite of efforts to develop the same automatic method for
breast tissue in this thesis, problems caused by the broad lipids peaks has limited

its success so far.

An additional alternative to absolute quantification is the use of metabolic
ratios rather than concentrations, typically ratios given relative to creatine lev-
els [110,126,127]. However, since we observed a significant decrease in creatine
levels with freezing time delay (paper I), such ratios should only be used if samples
were frozen within 30 minutes after collection. Other ratios could also give valuable
information, e.g. GPC/PCho or glucose/lactate, but would not carry information

if both metabolites in the ratio increase or decrease simultaneously.
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Pre-processing and multivariate analysis

Prior to quantification and multivariate analysis, appropriate pre-processing meth-
ods are important to obtain valid and interpretable results. In this thesis, established
pre-processing protocols were applied to all data. Baseline correction and alignment
of peaks was visually evaluated before performing normalization, which was done
to minimize the effect from variations in sample size. The choice of normalization
method can largely affect the result and should be carefully chosen. In paper I and
1I, spectral data obtained from breast cancer patients were normalized to equate
areas under the curves after excluding lipid regions. As previously discussed, spec-
tra obtained from patient samples can be largely influenced by fatty acids found
in adipose tissue surrounding the tumor. In contrast, tumor tissue from xenografts
are found to be more homogenous, with lipid droplets distributed inside the tumor.
Lipid regions in spectra from xenografts (paper I) were thus not excluded, but in-
cluded for statistical analysis. The spectra were normalized to sample weight to
account for differences in sample size. In paper III, probabilistic quotient normal-
ization (PQN) [66] was applied. Here, the most probable sample dilution or amount
of sample is calculated. As this method is more robust to variance in individual
metabolites, it was chosen in paper III because many pre-surgery samples were con-
taminated with the local anesthetic lidocaine. Although these regions later were
removed from the spectra, PQN is more robust for analysis of spectra containing

significant amounts of unwanted metabolites.

Absolute quantification enables direct comparisons of metabolic concentrations be-
tween studies, but there are also important benefits using multivariate approaches,
where the entire spectral data are analyzed as a whole. From complex metabolic
data, such statistical methods can be used to extract differences in metabolic profiles
and patterns of several metabolites simultaneously, rather than single metabolites.
Although these approaches are not quantitative, they are valuable for interpretation
as well as validation of complex data. In the current thesis, multivariate methods
were used to identify differences in metabolic features between groups of patients.
PCA was used for exploratory purposes to look for the main differences within each
study sample cohort and to detect outliers. For paper I, unsupervised hierarchical
cluster analysis grouped breast cancer tumors into three metabolic clusters, be-
fore PLS-DA was performed to evaluate the robustness of these groups. In paper

ITI, PLS-DA models were used to identify metabolic differences between different
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groups of patients, e.g. responders versus non-responders. To ensure the quality of
the metabolic clusters in paper IT and the PLS-DA models built in paper III, proper
validation was essential. The optimal choice for validation would always be to use
independent test sets, for many studies, however, including the ones in the current
thesis, sample size was a limiting factor.

Double cross validation was considered to be the best alternative to independent
test sets for validation of multivariate models, thereby also finding the optimal
number of LVs. Here, the models were built using a subset of the samples, 80 %
and 90 % for paper II and paper III, respectively, while the remaining were used
to test each model’s performance. Based on the performance of each model (i.e.
classification results) and whether it performed better than random classification
obtained by permutation tests, each model’s metabolic interpretation was evaluated.
Still, regardless of each model’s performance, it is important to keep in mind that
the model built cannot be any better than the cohort used to build it, meaning that
cohorts that do not represent the real variability within a population may produce
over-optimistic results.

To further investigate how generic findings are, i.e. the metabolic clusters de-
fined in paper I, comparison with data from similar cohorts should be performed.
However, we were not able to identify any published cohort with similar patient
characteristics (primary operable tumor) where both metabolic and transcriptomic
data were made public. There are still relatively few public metabolomics data bases
compared to transcriptomic and proteomic data bases and no general standard for
how to report metabolite values. In addition, journals do not require submission of
metabolic data to the same extent [128]. An obstacle and possible reason for the
establishment of metabolic data bases is the high variety of data structure. Dif-
ferences in metabolic methods, raw data, choice of pre-processing approaches and

quantification make it hard to find ways to design a user friendly data base.
Combining omics

Metabolomics has proven to be an important tool for the identification of new
biomarkers for targeted treatment, treatment evaluation and prediction of cancer
survival [129 132]. Previous studies have also shown the potential and benefit of
combining different omics approaches (e.g. transcriptomics and metabolomics) for
better molecular characterization and stratification of breast cancer [50,133,134].

Breast cancer molecular profiling using combined omics data may thus provide mul-
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tiple targets at different molecular levels and possibly improve breast cancer sub-
typing. Targeting metabolic reprogramming is considered a promising approach for
cancer therapy, and in combination with genetic characteristics could lead to more
effective treatments [95].

In this work, specifically paper II, combined analysis of transcriptomic, pro-
teomic and metabolic data was performed, employing a similar approach to the
discovery of genetic subgroups of breast cancer [26]. Breast tumors were classified
into three metabolic clusters by hierarchical clustering. Although both types of data
are multivariate, their information structure is different. Each data point from gene
expression microarrays represents measurements from a single probe, while when
pre-processed spectra are input, multiple variables together make up the signal
from one metabolite. When applied to gene expression data, two dimensional clus-
tering is frequently performed (i.e. both samples and probes are set to be clustered),
resulting in groups of probes as well as samples. This is a helpful tool for identifying
probes with similar expression profiles within a highly complex data set. Due to the
well-known collinearity of MR spectra, two dimensional clustering of spectral data
would not have the same utility. Despite these differences, the one dimensional clus-
tering approach, as performed in paper II, will help to reduce data complexity and
identify metabolic patterns within the data cohort. Samples clustered together have
important similarities with each other and dissimilarities with samples clustered fur-
ther apart. Established in an unsupervised manner, they thus reflect the metabolic
variety within the data set used for analysis. A similar approach has previously been
used to define metabolic clusters within the genetic subtype luminal A [50]. With a
higher number of samples and a more heterogeneous sample cohort in paper II, the
statistical power is improved from the previously defined metabolic clusters. The
metabolic clusters were combined with available gene expression data for evaluation
of transcriptomic differences using available tools (SAM, DAVID, GSEA) and with
protein expression subgroups (RPPA-subtype). Furthermore, significantly different
expressed genes and metabolites were combined to look for possible biological con-
nections between the two omic levels using online available integrated analysis. The
aim of using this approach was to better understand the underlying mechanisms
for the metabolic phenotype as well as its link to clinical parameters. The findings
emphasizes that the metabolic properties of tumors is a result of a complex network

of pathways that cannot solely be explained by gene and protein expression levels.
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6 Conclusion and future perspectives

In this thesis, MR metabolic profiling of tumor tissue from breast cancer patients was
used to assess metabolic heterogeneity of primary operable tumors and metabolic
response to neoadjuvant chemotherapy within primary inoperable tumors. Further-
more, optimal sample handling for metabolomic studies was evaluated using tissue
samples from xenograft models, as well as breast cancer patients.

The metabolic profile of tumor samples were found to be robust to freezing delay
times of up to 30 minutes prior to sample storage in liquid nitrogen. Longer freez-
ing delay times were found to significantly affect the levels of choline, creatine and
important antioxidants. As MR metabolomics is a widely used approach in trans-
lational research where metabolic profiles can be linked to other disease parameters
and, ultimately, patient outcome, consistent sample collection and preparation is
crucial for valid interpretation of the resulting data. Paper I elucidated the impor-
tance of minimizing both time prior to storage and experimental duration.

In paper II, three novel metabolic clusters of breast cancer were identified and
found to have differences in metabolic pathways known to be aberrant in cancer.
Furthermore, the metabolic clusters were found to express differences in breast can-
cer related proteins as well as genes related to the extracellular matrix. Interestingly,
genetic subtypes were evenly distributed among the three metabolic clusters, thus
metabolomics contribute with additional information beyond the intrinsic gene sets
for understanding breast cancer heterogeneity. Based on previous metabolic find-
ings, one of the clusters was expected to have a worse prognosis. 5-year survival
data will, when available, be used to evaluate the prognostic potential of the clus-
ters. In addition, available data from other platforms including DNA methylation,
copy number aberrations and expression of miRNA could potentially lead to deeper
understanding of the mechanisms for the metabolic reprogramming taking place in
the individual clusters.

In paper IT1, changes in the metabolic profiles as an effect of chemotherapy were
detected. In addition, successful discrimination of responders and non-responders
after treatment was obtained. Together, this shows potential for MR metabol-
omics in providing insight into metabolic response to treatment, and to increase
the understanding of the underlying mechanisms affecting pathological response.
Furthermore, tumors obtained from patients receiving the antiangiogenic drug be-

vacizumab were found to have alterations in glutathione metabolism, a characteristic
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that should be further investigated. In accordance with previous findings, metabolic
prediction of response prior to treatment start was not possible. The metabolic data
should thus be combined with survival data when available. This could further be
used to obtain the prognostic value of metabolic profiles prior to, during and after
neoadjuvant chemotherapy.

Altogether, the findings of this thesis have clarified the metabolic consequences
of sample handling procedures, and contributed to further improvement of charac-
terization of breast cancer metabolism. As the metabolites may serve as phenotypic
markers resulting from both genome and proteome alterations, MR metabolomics
can potentially be used to provide important predictive and prognostic information.
Future studies combining metabolic profiles with data from other platforms could
potentially lead to an improvement in patient stratification and treatment strategies

targeting metabolic pathways.
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Introduction: Metabolic profiling of intact tumor tissue by high-resolution magic angle
spinning (HR MAS) MR spectroscopy (MRS) provides important biological information
possibly useful for clinical diagnosis and development of novel treatment strategies.
However, generation of high-quality data requires that sample handling from surgical
resection until analysis is performed using systematically validated procedures. In this
study, we investigated the effect of postsurgical freezing delay time on global metabolic
profiles and stability of individual metabolites in intact tumor tissue.

Materials and methods: Tumor tissue samples collected from two patient-derived
breast cancer xenograft models (n = 3 for each model) were divided into pieces that
were snap-frozen in liquid nitrogen at O, 15, 30, 60, 90, and 120 min after surgical
removal. In addition, one sample was analyzed immediately, representing the metabolic
profile of fresh tissue exposed neither to liquid nitrogen nor to room temperature. We also
evaluated the metabolic effect of prolonged spinning during the HR MAS experiments in
biopsies from breast cancer patients (n = 14). All samples were analyzed by proton HR
MAS MRS on a Bruker Avance DRX600 spectrometer, and changes in metabolic profiles
were evaluated using multivariate analysis and linear mixed modeling.

Results: Multivariate analysis showed that the metabolic differences between the two
breast cancer models were more prominent than variation caused by freezing delay time.
No significant changes in levels of individual metabolites were observed in samples fro-
zen within 30 min of resection. After this time point, levels of choline increased, whereas
ascorbate, creatine, and glutathione (GS) levels decreased. Freezing had a significant
effect on several metabolites but is an essential procedure for research and biobank
purposes. Furthermore, four metabolites (glucose, glycine, glycerophosphocholine, and
choline) were affected by prolonged HR MAS experiment time possibly caused by physi-
cal release of metabolites caused by spinning or due to structural degradation processes.

Conclusion: The MR metabolic profiles of tumor samples are reproducible and robust
to variation in postsurgical freezing delay up to 30 min.

Keywords: cancer, freezing time delay, HR MAS, metabolic profile, MR spectroscopy, metabolomics, snap-
freezing, degradation
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INTRODUCTION

The field of metabolomics has the potential to fill important gaps
within the knowledge of cancer biology (1). Within this field,
molecular pathways and interactions are studied through the
expression of small molecular compounds called metabolites.
These compounds are intermediates or end products of ongoing
biochemical processes, and the overall metabolic profile repre-
sents a unique fingerprint of the cellular state at a specific time
point. Metabolites constitute the final level in the -omics cascade,
downstream to genomics, transcriptomics, and proteomics,
reflecting the combined effect of all the upstream molecular levels
(2). However, the metabolic snapshot obtained from a tumor tis-
sue specimen depends on additional factors, such as the tumor
microenvironment and the polyclonality frequently observed in
cancer, which introduces additional complexity for the interpre-
tation of the metabolic information. Nevertheless, metabolic pro-
filing of intact fresh frozen tissue is gaining popularity in clinical
research, as it potentially can identify novel prognostic or predic-
tive metabolic biomarkers or explore the abnormal biochemical
activity aiming to identify novel therapeutic approaches.

Metabolomic studies using high-resolution magic angle
spinning MR spectroscopy (HR MAS MRS) enables investiga-
tion of tumor tissue with minimal sample preparation, thus
limiting loss of information through tissue extraction and
maintaining high reproducibility (3). HR MAS MRS is also a
non-destructive technique (4) shown to retain histopathological
characteristics (5) and high RNA quality (6) of analyzed tissue.
This technology has been used to discriminate between tumor
and normal tissues in several cancers (7), but is increasingly
used to explore the role of metabolomics in patient stratification
for personalized oncology (8-10). In these studies, biobanks
have been established after collecting tumor tissue from large
patient cohorts and the association between metabolic charac-
teristics and disease outcome has been investigated. The quality
of data from such studies requires a high degree of analytical
accuracy and precision, as well as highly standardized and
validated protocols for sample collection, storage, and handling
prior to analysis.

One of the critical points during sample collection, especially
in a clinical setting, is the time period from blood supply cutoff
during surgical resection until the sample is frozen for storage
(freezing delay time). This interval may vary depending on
the difficulty of the surgical procedure and the required tissue
processing procedures, while cellular enzymatic and chemical
reactions will take place and potentially cause alterations in the
tissue metabolomic profile. Therefore, it is important to assess the
susceptibility of these profiles to systematic variability resulting
from sample handling and analysis. The main objective of this
study was to investigate the metabolic effects of freezing delay
time, aiming to validate the sample collection protocols normally
used in biobanking for MR metabolomics studies. To minimize
the impact of inter- and intratumor variability, tumor tissue was
obtained from two well-characterized breast cancer xenograft
models (11, 12). Furthermore, we describe the metabolic effects
of snap-freezing tumor samples and the degradation pattern
caused by prolonged HR MAS MRS acquisitions using human

breast cancer samples. Finally, sample collection and handling
procedures that ensure optimal data quality in metabolomic
studies of cancer tissue are suggested.

MATERIALS AND METHODS

Tissue Samples

Animal Model

The two orthotopic xenograft models MAS98.12 and MAS98.06
were established by direct transplantation of biopsy tissue from
primary mammary carcinomas in immunodeficient SCID mice
and thereafter passaged as previously described (11). These models
have been characterized by unsupervised hierarchical clustering
of intrinsic genes (13, 14) to represent basal-like (poor prognosis)
and luminal-like (better prognosis) breast cancer phenotype
respectively (11), and they also have distinct metabolic profiles
(12, 15). Mice carrying xenograft tumors [basal-like (n = 3) and
luminal-like (n = 3)] were sacrificed by cervical dislocation and
tumor tissue was harvested and snap-frozen in liquid nitrogen
according to the protocol below. All procedures and experiments
involving animals were approved by the National Animal Research
Authority and carried out according to the European Convention
for the Protection of Vertebrates used for Scientific Purposes.

Patient Material

Breast cancer tissue samples from 14 female patients undergoing
surgery at St. Olav’s Hospital (Trondheim, Norway) and Molde
Hospital (Molde, Norway) were included in the study. Patients
were chosen without any other prior clinical information. The
biopsies were snap-frozen immediately after excision during the
surgical procedure and further stored in liquid nitrogen until
subsequent analyses. All patients have signed a written informed
consent, and the study was approved by the Regional Ethics
Committee, Central Norway.

Experimental Design and HR MAS MRS

Experiments

Effect of Freezing Delay Time

One tumor from each mouse was divided into pieces and left at
room temperature for 0, 15, 30, 60, 90, and 120 min, prior to snap-
freezing in liquid nitrogen. This procedure covers both realistic
and extreme freezing time delays, which could occur in tissue
harvesting procedures during breast cancer surgery. In addition,
one sample was analyzed immediately after excision representing
the metabolic profile of the tumor tissue without exposure to
liquid nitrogen or freezing. The total number of samples analyzed
for this study was 42.

Before HR MAS MRS experiments, 3 pL cold sodium for-
mate in D,O (24.29 mM) was added to a leak-proof disposable
30-pL insert (Bruker, Biospin GmbH, Germany) as a shimming
reference. Tissue samples were cut to fit the insert (mean sample
weight 9.8 mg) on a dedicated work station designed to keep the
samples frozen (16) during preparation. The insert containing the
frozen sample was placed in a 4-mm diameter zirconium rotor
(Bruker, Biospin GmbH, Germany) and kept at —20°C for 6-8 h
before the experiments to minimize degradation.
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HR MAS MRS experiments were performed on a Bruker
Avance DRX600 spectrometer (Bruker, Biospin GmbH, Germany)
equipped with a "H/"*C MAS probe with gradient aligned with the
magic angle (Bruker, Biospin GmbH, Germany). Samples were
spun at 5000 Hz and experiments run at 5°C. The samples were
allowed 5 min temperature acclimatization before shimming and
spectral acquisition.

Spin-echo spectra were recorded using a Carr-Purcell-
Meiboom-Gill (cpmg) pulse sequence (cpmgprlD; Bruker,
L4 = 126). T, filtering was obtained using a delay of 0.6 ms
between each 180° pulse to suppress macromolecules and lipid
signals and enhance signal from small molecules. This resulted in
a total echo time (TE) of 77 ms. The total number of scans (NS)
were 64 over a spectral width of 20 ppm (-5 to 15 ppm) with an
acquisition time of 3.07 s.

Degradation during Prolonged HR MAS MRS
Analysis

Frozen human breast cancer tissue samples were cut to fit a leak-
proof 30-pL disposable insert (mean sample weight: 8.8 mg)
added 3 pL of phosphate-buffered saline (PBS) based on D,O
with trimethylsilyl propionate (TSP, 1 mM) and sodium formate
(1 mM). The insert was placed in a 4-mm diameter zirconium
rotor (Bruker, Biospin GmbH, Germany). Spin-echo experi-
ments (cpmgprlD; Bruker, L4 = 136) were run with 2 ms delay
between 180° pulses, TE of 273.5 ms, spectral width of 20 ppm
(=5 to 15 ppm) and NS of 256 scans (17). To evaluate the effect
of prolonged HR MAS MRS experimental time, data acquisition
was repeated after 1.5 h. The sample was kept spinning (5000 Hz)
within the magnet at 5°C in this time interval.

Data Preprocessing and Statistical
Analysis
The FIDs were multiplied by a 0.30 Hz exponential function
and Fourier transformed into 64k real points. Phase correction
was performed automatically for each spectrum using TopSpin
3.1 (Bruker). Further preprocessing of the HR MAS spectra was
performed in Matlab R2013b (The Mathworks, Inc., USA). Due
to unavailability of a stable internal reference, human spectra
were referenced to the TSP peak (0 ppm) while xenograft spectra
were referenced to formate (8.46 ppm). Baseline correction was
achieved by setting the minimum value of each spectrum to 0
and subtracting the lowest value. Peak alignment was performed
using icoshift (18). The spectral region of interest in the human
samples (2.89-4.73 ppm), which excludes the main lipid peaks,
was normalized to equal total mean area, while the total spectral
region (0.62-4.70 ppm) was normalized to sample weight in the
xenograft spectra. In human tissue, lipid signals mainly originate
from adipose tissue, and the lipid peaks may be very dominant
in samples with low tumor content. Thus, the normalization
accounts for differences in sample size and tumor cell content,
the latter not necessary in xenograft samples with homogenous
distribution of cancer cells.

To find underlying structure and main differences in the data-
set, the unsupervised multivariate method principal component
analysis (PCA) was used. PCA is a powerful method to decrease

the complexity of collinear multivariate data, such as MR spectra,
into a few principal components (PCs). PCA was performed
(using PLS_Toolbox 7.5.2, Matlab, Eigenvector Research, Inc.,
Wenatchee, WA, USA) on xenograft spectra and human breast
cancer spectra to explore the metabolic variation within samples
exposed to increasing delays in postsurgical freezing and pro-
longed experiment time respectively.

For both cohorts, metabolite assignment was based on
previous published data from HR MAS MRS analyses of breast
tumors (19). Furthermore, metabolite levels were determined by
integrating fixed spectral regions (performed in Matlab R2013b)
corresponding to the metabolites of interest and used for uni-
variate analysis. For metabolites with baseline strongly affected by
closely resonating lipids, a linear baseline ranging from the first to
the last point of the integral area was used.

Linear mixed models (LMM), an extension of linear regression,
can be used to model data where several measurements from the
same object are available. LMM accounts for both fixed and ran-
dom effects in the modeling of the metabolite levels. Fixed effects
are those that are of particular interest, e.g., effect of freezing delay
time, while random effects are often not of interest but cannot be
adjusted for prior to the modeling, e.g., effects originating from
between subjects variation. In the current study, freezing delay
time as well as type of xenograft model (basal-like or luminal-
like) were set as fixed effects (continuous and categorical variable
respectively), while xenograft subject was set as an random effect
(without interaction term). The modeling was performed in R
(20) using the “nlme” package (21).

Paired t-test was used to find time points were the metabolic
levels had changed compared to baseline and to evaluate the effect
of snap-freezing. Wilcoxon signed-rank test were performed to
test the effect of prolonged experiment time on metabolite levels
in human tumor tissue.

To adjust for the multiple metabolites tested, calculated p
values were corrected for using The Benjamini Hochberg false
discovery rate (FDR) in Matlab R2013b (The Mathworks, Inc.,
USA), and the differences were considered statistically significant
for adjusted p-values <0.05.

Histopathology and Nile Red Staining
Histopathological analysis was performed in order to evaluate
the presence of viable tumor tissue and mobile lipid droplets in
each individual xenograft sample. After HR MAS MRS analysis,
samples were immediately frozen in liquid nitrogen. About 4
and 10 pm frozen sections were stained with hematoxylin-
eosin-saffron (HES) and Nile Red as described in Ref. (22),
respectively.

RESULTS

Effect of Freezing Delay Time in Xenograft

Tumor Tissue

To examine the metabolic effect of delayed freezing, samples from
the same xenograft tumor were left in room temperature for 0,
15, 30, 60, 90, and 120 min prior to freezing. A PCA score plot
of the spectra from all 42 samples revealed a clear separation of
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basal-like and luminal-like xenograft model samples (Figure 1A).
The variability between samples was predominantly attributed
to the lipid content (PC1), whereas the levels of taurine, glyc-
erophosphocholine, and phosphocholine (PC2) contributed to
discrimination between the two xenograft models (Figure 1B).

A trajectory PCA score plot suggests that freezing delay time
had no systematic effect on metabolic profiles (Figure 1C).

The Impact of Freezing Delay Time on
Individual Metabolites in Xenograft
Samples

The LMM result for glucose was excluded due to non-normally
distributed residuals. The percentage change in levels of 15
metabolites measured by HR MAS MRS in samples subject to
increasing delays before freezing (n = 36) are shown in Table 1.
After adjusting p-values for multiple testing, LMM revealed that
three metabolites were significantly affected by type of xenograft
model (basal-like and luminal-like) and four metabolites were
significantly affected by delayed freezing (Table 2).

Figure 2 illustrates the change in average level of ascorbate,
choline, creatine, and glutathione (GS) with increasing freezing
delay time. The levels of ascorbate, creatine, and GS decreased
with time. Both ascorbate and creatine levels decreased with
approximately 30% within the 120 min time frame, while levels
of GS were approximately 40% lower. The choline levels increased
with time, reaching a level approximately 110% higher than base-
line at freezing delay time of 120 min.

Ascorbate, choline, and creatine levels were significantly dif-
ferent from baseline sample (frozen immediately) after 60 min
freezing delay time while the same was observed for GS levels
after 90 min (Figure 2).

Metabolic Effect of Freezing

Immediately snap-frozen samples (0 min, n = 6) were compared
to samples analyzed directly after excision (not frozen, 0 min,
n=6). A clear effect of freezing compared to unfrozen tissue was
seen for 12 of 16 metabolites (Figure 3). Increased levels were
observed for all of these metabolites after snap-freezing.

Histopathology

Visual inspection of HES-stained sections of xenograft samples
analyzed by HR MAS MRS confirmed that the samples pre-
dominantly consisted of viable tumor tissue without significant
necrosis or fibrosis. No adipose tissue or normal mammary
gland tissue was observed. Due to the observed heterogeneity in
lipid content of samples obtained from the same xenograft, we
examined whether the lipids detected were located in adipose
cells lining the tumor or in lipid droplets within the tumor. Visual
inspection of the Nile Red stained histological sections showed
good correlation between lipid signal intensity in spectral data
and the amount of lipid detected by Nile Red staining (Figures S1
and S2 in Supplementary Material). The lipids were also observed
to be located inside tumors and were therefore considered to
represent mobile lipids in the cancer cells and not adipose tissue
adjacent to the tumors. No systematic difference in lipid content
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FIGURE 1 | PCA of MR spectra from xenografts tumors exposed to variable freezing delay time, (A) score plot with samples colored by xenograft
type, (B) loading plots for PC1 (identifying lipid content as the most significant contributor to variability) and PC2 (identifying the metabolic
difference between xenograft models as the second most significant contributor to variability), (C) PCA trajectory score plot. Samples from the same
animal are connected with colored lines and numbered according to freezing delay time: (1) not frozen, (2) O min, (3) 15 min, (4) 30 min, (5) 60 min, (6) 90 min, and
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TABLE 1 | Metabolic effect of freezing delay time.

Metabolite ppm 15 min 30 min 60 min 90 min 120 min
Glucose 4.65 22 +107% -8+ 19% 31 +41% 6 + 50% 26+ 71%
Ascorbate 4.53 -18 +37% -15+20% -25+17% -31+22% —31+24%
Lactate 4.13 4 +44% 10 +24% 12 £ 29% 16 +27% 19 + 45%
Tyrosine 3.99 -8 +32% -10+£21% -13+19% -15 +22% —17 +£29%
Glycine 3.55 -7 +45% —4+£22% -5+ 25% 1+45% 6 +62%
Myoinositol 3.53 12 + 49% 11 £19% 26 + 28% 26 +27% 43 +64%
Taurine 3.42 -7 +38% -7 +15% -8+ 16% -8 +20% -4+ 31%
Glycerophosphocholine 3.23 -9+ 22% -10 = 18% -3+25% 0+ 34% 28 + 40%
Phosphocholine 3.22 -19 +24% -7 +16% 1+32% 7 +25% 34 +63%
Choline 3.21 6+72% 20+ 31% 56 + 44% 62 + 49% 111+ 111%
Creatine 3.03 -16+31% -19 +18% —28 +22% —25 +22% —29 + 26%
Glutathione (GS) 2.55 -18 +32% -19 +15% —24 +25% -35 + 18% -37 +26%
Succinate 2.41 -5+ 35% -13+22% -2+ 33% -13 +29% -15+ 38%
Glutamine 2.44 5+ 49% -1 +40% 28 + 55% -1+22% 7 +54%
Glutamate 2.37 —-10 + 35% =11 +17% -20+17% -16 + 25% -14 +37%
Alanine 1.49 =7 +42% 9+ 40% 2+42% 17 +72% 23 + 108%

Percentage (average + SD) increase or decrease of metabolite level in samples exposed to freezing delay time compared to samples frozen immediately after tumor collection.

TABLE 2 | LMM-results reporting the effect of xenograft model and freezing delay time on levels of 15 metabolites.

Metabolite Xenograft model Freezing time delay

Adj. p-value Est. effect SD Adj. p-value Est. effect Sh
Ascorbate 0.628 1.6 2.2 0.037* -1.2 0.4
Lactate 0.849 -2.5 12.2 0.281 4.5 3.0
Tyrosine 0.059 128.3 33.4 0.343 -71 5.6
Glycine 0.649 -9.4 16.9 0.838 1.2 2.8
Myoinositol 0.373 -4.8 3.9 0.072 2.7 1.1
Taurine 0.025* 240.9 37.9 0.838 -2.2 7.0
Glycerophosphocholine 0.017* —477.3 56.6 0.255 23.9 14.6
Phosphocholine 0.040" 470.3 94.3 0.255 22.7 13.8
Choline 0.068 43.5 12.5 0.002 16.2 3.7
Creatine 0.059 -41.6 10.3 0.037* -8.4 3.0
Glutathione (GS) 0.649 —4.1 7.3 0.005 -6.0 1.6
Succinate 0.112 8.7 3.1 0.301 -1.0 0.7
Glutamine 0.194 12.3 6.2 0.838 0.3 0.9
Glutamate 0.322 -20.9 14.4 0.348 -3.7 3.1
Alanine 0.194 17.1 8.4 0.838 0.4 1.6

The estimated effect (Est. effect) reports each fixed factors (i.e., xenograft model or freezing time delay) influence on metabolite levels. Adjusted p-values in bold indicates that the
level is significantly different from the sample frozen after O min (*adjusted p < 0.05, **adjusted p < 0.01).

due to delayed freezing time was observed. While Figure S1 in
Supplementary Material shows a pattern of decreasing Nile
Red signal with increased delay before freezing, Figure S2 in
Supplementary Material shows an example where the same pat-
tern was not observed.

Degradation during Prolonged HR MAS
Analysis

Repeated HR MAS MRS analysis of 14 human breast cancer samples
was performed with 1.5 h interval to observe the metabolic effect
of prolonged time in the magnet. The levels of glucose, glycine,
glycerophosphocholine, and choline were found to significantly
change from the first to the second acquisition (Table 3). While
glucose, glycine, and choline increased, levels of glycerophospho-
choline decreased with prolonged experiment time. A PCA score

plot of all spectra showed that the metabolic variation between
samples was higher than variation in spectra obtained from the
same sample (Figure S3 in Supplementary Material).

DISCUSSION

In this study, we evaluated the metabolic effect of freezing delay
time, snap-freezing in liquid nitrogen and prolonged experimen-
tal time using HR MAS MRS. The results show that levels of HR
MAS MRS visible metabolites in breast tumors are not subject to
significant degradation if snap-frozen within 30 min after surgi-
cal excision.

Principal component analysis showed that differences in lipid
content explained most of the variance between the samples
from the two different breast cancer xenograft models. This was
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from the sample frozen after 0 min (*p < 0.05, **p < 0.01).

A ascorbate B choline
20% 250%
0% - o « % 200%
0
o 150% . "
100%
-40%
50%
60
60% o _ I
-80% -50%
-100% -100%
Omin  15min  30min  60min  90min 120 min Omin  15min  30min  60min  90min 120 min
c creatine D glutathione
20% 20%
0% { = * * 0% | = %
*
20% 20% I
-40% -40%
-60% -60%
-80% -80%
-100% -100% .
0 min 15min 30min  60min  90min 120 min 0 min 15 min 30min -~ 60min 90 min 120 min

FIGURE 2 | Impact of freezing delay time on level of (A) ascorbate, (B) choline, (C) creatine, and (D) glutathione. Metabolite integrals from samples
subject to 15, 30, 60, 90, and 120 min freezing delay time compared with samples frozen immediately (O min). * and ** indicates that the level is significantly different
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FIGURE 3 | Metabolic effect of snap-freezing. Percentage change in metabolite levels measured in frozen samples relative to samples not frozen prior to HR
MAS MRS analysis. * indicates that the level is significantly different from the sample not frozen (*adjusted p < 0.05).

further examined by histopathological staining of frozen sec-
tions with Nile Red, which showed no correlation between lipid
content and freezing delay time. Hence, the variability explained
by lipid content most likely reflects tumor heterogeneity rather

than the sample handling conditions. Furthermore, PCA clearly
discriminated between samples from the two xenograft models
(i.e., basal-like or luminal-like breast cancer subtype). Basal-like
xenografts had higher levels of glycerophosphocholine, while
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TABLE 3 | Metabolic effect of prolonged experiment time.

Metabolite ppm 15h Adj. p-value
Glucose 4.65 21 +20% 0.006™*
Ascorbate 4.53 -4 +6% 0.078
Lactate 4.15 0+7% 0.903
Tyrosine 3.98 3+6% 0.08
Glycine 3.56 8+7% 0.006™
Myoinositol 3.54 7Tx11% 0.08
Taurine 3.42 0+5% 0.903
Glycerophosphocholine 3.23 -15+12% 0.001**
Phosphocholine 3.22 -4 +6% 0.08
Choline 3.21 11 +£13% 0.011*
Creatine 3.03 0+6% 0.903

Percentages (average + SD) were calculated relative to the metabolite levels (integrals)
from the initial experiment. Adjusted p-values in bold indicates that the level is
significantly different from the sample frozen after O min (*adjusted p < 0.05, **adjusted
p <0.01).

luminal-like xenografts had higher levels of phosphocholine and
taurine, in accordance with previously published data from these
xenograft models (15). The same metabolic differences between
the xenograft models were observed in LMM.

Discrimination between the two xenograft models based on
overall metabolic profile did not depend on freezing delay time.
Furthermore, no significant changes in individual metabolite lev-
els were observed at 30 min past tumor excision. At 60 min, levels
of three metabolites had significantly changed from baseline
measurements. Thus, samples should be frozen within 30 min of
resection, which in general should be sufficient when obtaining
tissue biopsies during surgical procedures. Ascorbate, choline,
creatine, and GS were the only metabolites exhibiting significant
changes within the time frame (0-120 min) used in the current
study. For the majority of metabolites, no systematic dependency
on freezing time delay was observed, suggesting that intratumor
heterogeneity is the predominant source of variability.

Ascorbate, also known as vitamin C, and GS are important
antioxidants in animal cells that, together with other antioxidants,
are responsible for eliminating reactive oxygen species (ROS)
from oxidative stress (23, 24). As a consequence of high ROS
levels in cancer cells, GS levels are often elevated compared to
normal tissue (25). GS has also been reported to be increased in
estrogen receptor (ER) negative tumors compared to ER-positive
(26). ROS levels can increase as a consequence of ischemia,
potentially leading to oxidative damage. It is therefore plausible
that the decreased levels of GS and ascorbate reflect oxidative
stressed caused by prolonged ischemia. Ascorbate levels obtained
from samples frozen 60, 90, and 120 min after excision were sig-
nificantly lower than the levels from samples frozen immediately.
The same was observed for GS levels at 90 and 120 min of freezing
delay. Consequently, biological interpretation of the levels of these
antioxidants should only be considered if the experimental design
of the study includes a controlled freezing delay time of <30 min.

The levels of choline increased with increasing freezing delay
time. Although not significant, a similar trend was observed
for the choline-containing metabolites phosphocholine and
glycerophosphocholine, suggesting that ischemia affects
choline metabolism. Studying the effect of hypoxia in human

MDA-MB-231 breast cancer cell and tumors, Jiang et al. detected
higher concentrations of total choline-containing metabolites
(tCho; composed of phosphocholine, glycerophosphocholine,
and free choline), mainly contributed by phosphocholine, in
hypoxic regions (27). Altered choline metabolism is considered
an emerging hallmark in malignant transformation (28). A major
component of mammalian cell membranes, phosphatidylcholine
(PtdCho), is synthesized from choline, thus making choline and
choline-containing intermediates essential for the increased pro-
liferation observed in tumor cells. Several ex vivo breast cancer
studies using HR MAS MRS have detected increased concentra-
tions of choline, phosphocholine, and glycerophosphocholine
in tumor tissue compared to non-involved breast tissue (19, 29,
30). Differences in tCho have been found to have predictive value
for the 5-year survival of breast cancer patients receiving neo-
adjuvant chemotherapy (31) and higher choline concentrations
have been found in core needle biopsies from patients that are
ER- and/or PgR-negative compared to ER- and/or PgR-positive
patients (10). Delays in freezing time up to 30 min had no sig-
nificant impact on choline levels. While choline levels at 60 and
90 min delay were significantly increased, this was not observed
at 120 min (p = 0.065), probably due to variability within these
last measurements. However, because of the biological relevance
of choline metabolism in cancer, this trend of increasing levels
with freezing delay time emphasize the importance of reporting
and controlling sample handling to limit possible effects.

Levels of creatine significantly decreased as a result of
prolonged time before freezing, where 60 min was found to be
the first time point significantly different from samples frozen
directly after exiting. Creatine is involved in energy storage
through formation of phosphocreatine and thus functions as a
carrier of energy within cells. Decreasing levels of creatine (or
phosphocreatine) could be suggestive of energy depletion caused
by ischemia. Several studies use creatine for calculation of meta-
bolic ratios to allow for comparable quantities between samples
(10, 32-34) and in studies of breast cancer tissue, higher level of
this metabolite have been correlated to ER-positive (35) and PgR-
positive tumors (15). As the tendency of decreasing levels is seen
from the initial time point, it is important to keep the time before
freezing minimal to allow the usage of ratios involving creatine.

Rapid metabolic phenotyping in operating theaters of unfrozen
tissue has been proposed to facilitate real-time diagnostics and
further aid decision making during surgery (36). To evaluate the
metabolic effect of snap-freezing, tumor tissue was analyzed by
HR MAS MRS without any exposure to liquid nitrogen and com-
pared to tissue from the same xenografts that were immediately
frozen after excision. Freezing was found to significantly increase
the level of 12 metabolites. In previous studies, the freezing of rat
kidney and liver tissue has reportedly led to increased amounts
of amino acids (37, 38) and decreased contents of choline, glycer-
ophosphocholine, glucose, myoinositol, trimethylamine N-oxide
(TMAO), and taurine (38) using HR MAS MRS. The increased
levels of multiple metabolites observed in the current study might
be caused by intracellular lysis releasing metabolites. Metabolites
bound to cellular molecules or compartments are more restricted
and thus less MR-visible. If these metabolites are released as a
consequence of freezing, HR MAS MRS will detect higher levels
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than in unfrozen tissue as found here. The findings underpin that
studies of fresh and frozen tissue are not directly comparable.
Although the effect of freezing was significant for the majority
of metabolites, we believe that analyzing fresh tissue samples is
neither feasible nor optimal in the current clinical and research
setting. Care must therefore be taken not to compare metabolic
information obtained in unfrozen samples with data from frozen
biobank tissue.

We also examined the effect on the metabolic profile of
prolonged HR MAS MRS analysis. After the first acquisition, the
sample was kept spinning inside the magnet and reanalyzed after
1.5 h. The level of four metabolites was found to differ signifi-
cantly from the initial acquisition. Glucose, glycine, and choline
were found to increase with time, while glycerophosphocholine
decreased. Similar effects on glycine, choline, and glycerophos-
phocholine levels have been observed in lung cancer tissue (39)
and in brain tumor tissue (40) supporting the current findings. As
Rocha et al. describe, the changes might be caused by spinning
effects causing release of bound metabolites or due to ongoing
metabolic activity (39). Importantly, these metabolic effects
should be considered for quantitative two-dimensional HR MAS
MRS studies where long acquisition time is required.

In conclusion, this study confirms that HR MAS MRS metabolic
profiles are robust to metabolic changes due to delayed freezing
within a timeframe of 30 min. This allows biological interpretation
of metabolic profiles, including metabolites involved in protection
against ROS formation/oxidative stress, such as GS and ascorbate,
as well as evaluation of the levels of creatine and choline-containing
metabolites. Within the 30 min freezing delay time window, the
effect of structural or biochemical degradation on metabolic pro-
files is insignificant. A clear effect of freezing was observed for most
of the detected metabolites. However, this step in sample handling
is considered essential for biobanking and research purposes. The
study also identified moderate metabolic consequences of pro-
longed HR MAS experiment time, and thus, the protocol should
be designed to keep experiment time to a minimum.
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Supplementary Figure 2: Example lipid heterogeneity within samples from the same tumor (A) Xenograft
HR MAS spectra (2.1 - 0.8 ppm) from freezing time delay of 0, 30 and 60 minutes (B) The samples corresponding
Nile Red fluorescent-stained images showing lipid droplets within the tumor samples.
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Abstract

Background: The heterogeneous biology of breast cancer leads to high diversity in prognosis and
response to treatment, even for patients with similar clinical diagnosis, histology and stage of disease.
Identifying mechanisms contributing to this heterogeneity may reveal new cancer targets or clinically
relevant subgroups for treatment stratification. In this study we have merged metabolite, protein and gene

expression data from breast cancer patients to examine the heterogeneity at a molecular level.

Methods: The study included primary tumor samples from 228 non-treated breast cancer patients. High
resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS) was performed to
extract the tumors metabolic profiles further used for hierarchical cluster analysis resulting in three
significantly different metabolic clusters (Mcl, Mc2 and Mc3). The clusters were further combined with

gene and protein expression data.

Results: Our result revealed distinct differences in the metabolic profile of the three metabolic clusters.
Among the most interesting differences, Mc1 had the highest levels of glycerophosphocholine (GPC) and
phosphocholine (PCho), Mc2 had the highest levels of glucose and Mc3 the highest levels of lactate and
alanine. Integrated pathway analysis of metabolite and gene expression data uncovered differences in
glycolysis/gluconeogenesis and glycerophospholipid metabolism between the clusters. All three clusters
had significant differences in the distribution of protein subtypes classified by the expression of breast
cancer related proteins. Genes related to collagens and extracellular matrix were downregulated in Mcl
and consequently upregulated in Mc2 and Mc3, underpinning the differences in protein subtypes within
the metabolic clusters. Genetic subtypes were evenly distributed among the three metabolic clusters and

could therefore contribute to additional explanation of breast cancer heterogeneity.

Conclusions: Three naturally occurring metabolic clusters of breast cancer were detected among primary
tumors from non-treated breast cancer patients. The clusters expressed differences in breast cancer related
protein as well as genes related to extracellular matrix and metabolic pathways known to be aberrant in

cancer. Analyses of metabolic activity combined with gene and protein expression provides new



information about the heterogeneity of breast tumors and, importantly, the metabolic differences infer that

the clusters may be susceptible to different metabolically targeted drugs.

Key Words: Metabolomics, HR MAS MRS, breast cancer subgroups, metabolic cluster, extracellular

matrix



Background

Breast cancer accounts for 25% of newly diagnosed cancers and 15% of cancer deaths among women
worldwide [1]. It is a heterogeneous disease [2] with high diversity in prognosis and response to treatment.
Identification of underlying mechanisms contributing to this heterogeneity may reveal new cancer targets

and clinically relevant subgroups and has thus been the focus of many recent studies [3-5].

Searching for genetic features causing the variation in breast cancers, Perou et al. used gene expression
analyses followed by hierarchical clustering and defined naturally occurring molecular subtypes [4, 6].
These subtypes are named basal-like, luminal A, luminal B, Erb-B2+ (Her2 enriched), and normal-like,
and are found to be associated with tumor characteristics and clinical outcome; patients with basal-like
tumors having the shortest and luminal A the longest relapse-free survival [6]. A centroid based method
called prediction analysis of microarrays 50 (PAMS50), which uses the expression of 50 genes to classify

breast cancer into these five intrinsic subtypes was later established and is now broadly implemented [7].

Proteins are the ultimate cellular effectors of pathways and networks within cells, tissues and organisms.
Although protein levels are dependent on mRNA expression, not all mRNA will be translated into protein
and further protein levels are also influenced by protein stability. In a study by Myhre et al. only 22 of 52
quantified breast cancer related proteins were found to correlate with mRNA expression levels [8] and
similar low levels of correlation have been seen in large scale studies [9, 10]. Protein expression subtypes
of breast cancer could give further understanding of underlying mechanisms causing heterogeneity [11].
Based on the expression of 171 breast cancer- associated proteins detected by reverse phase protein array
(RPPA), six breast cancer subtypes, called RPPA-subtypes, have been defined [5]. Four of these
subgroups were in high accordance with the gene expression profiles of the PAMS50 subtypes and named
accordingly; Basal, Her2, Luminal A and Luminal A/B. In addition, two new subgroups were defined;
reactive [ and reactive 11, based on expression of proteins possibly produced by the surrounding

microenvironment.



The chemical processes controlled by proteins involve metabolites as intermediates or end- products. In
metabolomics, metabolite levels are measured to gather the final downstream information of ongoing
cellular processes. Which processes are active at a specific time point, is strongly influenced by
environmental factors like diet and drugs as well as disease state. Well-established metabolic differences
have been observed when comparing cancer cells to normal cells. Cancer cell energy production
frequently depends on increased glycolysis and production of lactate from glucose regardless of access to
oxygen, in contrast to normal cells which produce pyruvate and lactate in aerobic conditions [12]. Also, to
produce macromolecules/biomass, mitochondrial metabolism is reprogrammed [13]. Altered metabolism
has therefore been included as one of the emerging hallmarks of cancer [14]. In breast cancer, metabolic
differences between cancer tissue and normal adjacent tissue have been studied by the magnetic resonance
spectroscopy (MRS) method high resolution magic angle spinning (HRMAS) MRS [15]. Using this
technique, metabolic profiles and biomarkers predicting long-term survival for locally advanced breast
cancer [16], node involvement of patients with infiltrating ductal carcinoma [17] and 5-year survival for

ER positive patients [18] have been identified.

Merging transcriptomics and metabolomics led to the discovery of three luminal A subgroups with distinct
metabolic profiles and significant differences within gene set expression in a study by Borgan et al. [19].
The aim of the current study was to establish clusters of breast cancer based on the metabolic expression
using an approach similar to Borgan et al., but in a larger cohort of patients including all PAMS0
subgroups. This approach reveals the main metabolic differences between untreated breast tumors. In
addition, the combination of the metabolic clusters with transcriptomics and protein expression data
provide an opportunity for information gain from each -omics technology, giving further characterization

of the defined metabolic clusters.



Methods

Patients and tissue samples

Primary breast carcinoma samples from 228 patients at the Oslo University Hospital (Radium Hospital
and Ulleval Hospital) were collected in the time period 2006 — 2009 as part of the Oslo2 study. The study
is approved by the Norwegian Regional Committee for Medical Research Ethics (Biobank approval
1.2006.1607), and all patients have given written consent for the use of material for research purposes.
The samples were fresh frozen after surgery and stored at -80°C. The tumors were divided into smaller
pieces depending on their size and one of them was selected for this study. The samples were cut into
three sections where the edges of the two outer pieces were used for histological evaluation and an
adequate part of the mid pieces were used for HR MAS MRS experiments to obtain metabolic profiles.
The remnants of all three pieces were pooled and cut into smaller pieces with scalpel, and depending on
the size of the tumor divided into fractions used for extraction of DNA, RNA and protein. Due to high
lipid content, HR MAS MRS was performed on a second piece from the same tumor for 13 of the
samples. A total of 228 samples were analyzed by MR spectroscopy, of which 201 and 217 were analyzed
for gene expression by arrays and protein expression using RPPA, respectively, leaving a total of 191

samples analyzed by all three methods. Patient and tumor characteristics are shown in Table 1.

HR MAS MRS Spectra

HR MAS MRS spectra were acquired from tissue samples (mean sample weight: 7.3 mg) on a Bruker
Avance 111 600MHz/54 mm US (Bruker, Biospin GmbH, Germany) equipped with a 1H/13C MAS probe
with gradient aligned with the magic angle (Bruker, Biospin GmbH, Germany). Spin-echo spectra were
recorded using a Carr-Purcell-Meiboom-Gill (cpmg) pulse sequence (cpmgprld; Bruker). For
experimental details and information about data processing, see Additional file 1.

43 samples were excluded from the original sample cohort of 271 samples due to large lipid content. The
spectral region between 1.40 and 4.70 ppm was chosen for further analysis excluding lipid peaks at 4.36-

4.27,2.88-2.70,2.30-2.20, 2.09-1.93 and 1.67-1.50 ppm. After removal of the lipid residuals, the spectra



were mean normalized to account for differences in tumor cell percentage and sample weight, as it can be

assumed that most of the lipid signals from breast samples do not originate from cancer cells.

Protein experiments and protein expression subtyping

Protein levels were determined using Reverse Phase Protein Array (RPPA), a platform were single protein
levels can be measured across a series of samples simultaneously [20]. 150 primary antibodies were used
to detect breast cancer related proteins (Additional file 2, Add. Table 1). For analytical details, see

Additional file 1.

The samples underwent consensus clustering with an option for 4 or 5 groups. The best fit on consensus
clustering identified 5 groups, luminal, HER2, basal and reactive I and II subsets as defined in The Cancer

Genome Atlas Network data set [5].

mRNA expression profiling and gene expression subtyping

Total RNA was isolated with TRIzol (Invitrogen, Carlsbad, CA, USA). Expression of mRNA was
measured using SurePrint G3 Human GE 8x60K (Aglient Technologies) according to the manufactory’s
protocol (One-Color Microarray-Based Gene expression Analysis, Low Input Quick Amp Labeling, v.6.5,
May 2010) and 100 ng RNA was used as input for labeling. Arrays were log2-transformed, quantile
normalized and hospital adjusted [21]. Values corresponding to probes with identical Entrez ID were

averaged to form a single expression value per gene.

The PAMS50 subtype algorithm [7] was used to assign a subtype label to each sample as previously

described [22].

Statistical analysis

Subgrouping with cluster analysis of metabolic data

Hierarchical cluster analysis (HCA) was performed with Euclidean distance as the distance parameter and

Ward’s method (furthest inner square distance) as the clustering distance (Statistical toolbox, Matlab



R2013b, The Mathworks, Inc., USA) on the preprocessed metabolic spectra. Similar spectra based on the
distance measures cluster together. The dendrogram was cut to give three clusters. To evaluate the

robustness of the three HCA clusters, Partial Least Square Discriminant analysis (PLS-DA) model, using
the cluster group for classification was carried out and classification accuracy was evaluated. For details,

see Additional file 1.

Analysis of metabolic profiles

Metabolite assignments were performed based on literature values [23] and metabolite levels were
calculated as the integral of fixed regions corresponding to the metabolite of interest. Kruskal-Wallis test
was performed to compare metabolite levels between clusters. Calculated p values were corrected for
multiple testing by The Benjamini Hochberg false discovery rate (FDR) in Matlab, and the differences

were considered statistically significant for adjusted p < 0.05.

Analysis of subtype and clinical distributions

Differences in the distributions of RPPA and PAMS50 subtype as well as that of other clinical
characteristics of the tumors between the different metabolic clusters were tested for significance using
Fisher’s Exact Test for Count Data (R 2.15.2). Calculated p values were corrected for multiple testing by
The Benjamini Hochberg FDR, and the differences were considered statistically significant for adjusted p

<0.05.

Analysis of gene expression data

Significance Analysis of Microarrays (SAM) was used to identify differentially expressed gene between
the metabolic clusters [24]. SAM analysis was performed using 21851 genes from 42405 mRNA probes.
The expression analysis was performed in R 2.15.2 [25] with the cluster group as the dependent variable
and a total of 100 permutations. T-statistics/Wilcoxon statistics were calculated using multiclass
comparisons and two-class unpaired tests while comparing two clusters. The differences were considered

statistically significant for adjusted p <0.01.



DAVID, an online network analysis tool [26], was used to search for biological functions within gene sets.
DAVID was performed on the gene list over for each of the class comparisons produced by SAM. Official
gene symbol was selected as gene identifier. The Functional Annotation Clustering report of this software
reports similar annotations together, where the member of a cluster have similar biological meaning due to

sharing of similar gene members.

Gene Set Enrichment Analysis (GSEA) was used to identifying sets of genes that were enriched in the
metabolic clusters [27, 28]. During each cluster comparison genes were ranked depending on calculated

absolute signal to noise-ratio (eq.1), where p and ¢ are the mean and standard deviation, respectively.

abs(M) (eq. 1)

optop

High absolute signal to noise -ratio will represent genes that are more likely to be “class markers” in the

comparison because of high difference in expression.

The gene set C5 (Gene Ontology (GO) gene sets) available from the Molecular Signatures Database
(MSigDB) [29] from The Broad Institute was chosen for evaluation of enrichment. 1004 (of 1454) gene
sets from this data base passed the filtering of lacking any gene from the expression data followed by
minimum and maximum size of 15 and 500 genes, respectively. For each comparison, 1000 permutations

on phenotypes were performed and FDR cutoff was set to 25% (recommended in the manual).

Integrated Pathway Analysis

To combine transcriptomics and metabolic data the ‘Integrated pathway analysis’ tool in MetaboAnalyst
3.0 software was used [30]. Genes with adjusted p < 0.05 from SAM analysis and metabolites differently
expressed between the clusters were used as input. Pathways with p values < 0.05 were interpreted as

significant.
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Results

Three main metabolic clusters of breast cancer
From the spectral data of 228 breast tumors, hierarchical clustering gave a dendrogram divided in three
metabolic clusters (Mc) (Figure 1A) Mc1, Mc2 and Mc3. The mean spectra of the clusters are illustrated

in Figure 1B.

Prediction of the metabolic clusters by PLS-DA resulted in a model with two valid latent variables LVs
(Figure 2A). The clusters Mc1 and Mc2 were well separated in the score plot of LV1 and LV2, while most
Mc3 samples had low values of LV2. Classification accuracy was found to be 91.1%, 88.7% and 69.9%,
respectively, for the three clusters. Permutation testing showed that all three clusters had significantly
different metabolic profiles (p <0.001). The regression vectors for each of the clusters (Figure 2B)
indicate each metabolite’s influence on the cluster prediction. The regression vector for Mc1 showed that
high levels of glycerophosphocholine (GPC) and phosphocholine (PCho) and low levels of lactate (Lac),
taurine (Tau) and alanine (Ala) were important for the class prediction result. For Mc2, high levels of B-
glucose (B-Glc) were important as well as low levels of Lac, creatine (Cr), glycine (Gly), Tau, GPC, PCho
and Ala. Mc3 had a regression profile with low -Glc, GPC and PCh levels, and high Lac, Gly, Tau, Cr
and Ala levels. Univariate comparison of metabolite levels between the three clusters revealed that 15 out
of 18 metabolites analyzed were found to be significantly different (adjusted p < 0.05) between at least
two of the clusters (Table 2). Combination of metabolic cluster labels and heatmap of metabolite fold

change further illustrate this (Figure 3).

Clinical parameters (tumor size, histology, grade, node status, hormone receptor status) were analyzed for
differences in distribution among the metabolic clusters. Only histology was found to be significantly
different between the clusters (adjusted p = 0.0144), where 11 of 21 lobular tumors and all ductal

carcinoma in situ (DCIS) (n = 4) were classified as Mc2 (Table 1).
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Protein expression subtype (RPPA) distribution differs between the three metabolic clusters

The metabolic clusters were investigated for differences in distribution of PAMS50- and RPPA subtypes.
While PAMS50 subtypes did not show increased frequency of occurrence in any of the metabolic clusters,
(Figure 3C, adjusted p = 0.138), RPPA distribution was significantly different (Figure 3D, adjusted p =
1.43E-04) with only 9% of the RPPA reactive I and II samples being classified as Mc1, and 44% of Mc2
samples subtyped as reactive 1. The complete distribution of PAMS50- and RPPA subtypes is listed in

Table 3.

SAM reveals only one metabolic cluster to have differences in gene expression

SAM was performed to identify expression differences between the metabolic clusters. Of the 21851
genes, multiclass SAM showed that 696 were differently expressed between the metabolic clusters with
adjusted p < 0.01 (Figure 3E, Additional file 2, Add. Table 2). Further investigation through two-class
SAM revealed that Mc2 and Mc3 did not have significant differences in mRNA expression, while they
had 413 and 617 genes upregulated, respectively, compared to Mc1 (Additional file 2, Add. Table 3 and 4,
respectively). Out of these, 277 genes were found in both comparisons and upregulated compared to Mcl.
DAVID software was used to investigate the biological interactions between genes that were found to be

significantly differentially expressed between the metabolic clusters.

A total of 404 of the 413 significant genes from SAM between Mc1 and Mc2 were identified by DAVID.
Functional Annotation Clustering resulted in 117 clusters (Top 10 in Additional file 2, Add. Table 5),
where the clusters with the highest enrichment scores were linked to signaling, extracellular region and

cell adhesion.

A total of 653 of the 671 significant genes from SAM between Mc1 and Mc3 were identified by DAVID.
Functional Annotation Clustering resulted in 236 clusters (Top 10 in Additional file 2, Add. Table 6),
where the clusters with the highest enrichment scores were linked to extracellular matrix (ECM), cell

adhesion and basement membrane.
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Enrichment analysis shows gene expression differences to be related to extracellular matrix (ECM)
activity

Since Mc1 was found to have a gene expression pattern different from both Mc2 and Mc3 and these two
clusters lacked statistically significant gene expression differences, Mcl was compared to Mc2 and Mc3
combined in GSEA. This resulted in 146 of the gene ontology gene sets altered in Mc1 compared to Mc2
and Mc3 (Additional file 2, Add. Table 7). Gene sets with the highest significance were classified with
functions within collagen, ECM and integrin binding. None of the gene ontology sets were significantly
different when comparing Mc2 to Mc1 combined with Mc3, but 44 gene sets were significantly enriched
when comparing Mc2 to Mc1 alone, with gene ontology terms relevant to ECM dominating the result
(Additional file 2, Add. Table 8). 11 gene sets were significantly altered between Mc3 and Mcl combined
with Mc2 (Additional file 2, Add. Table 9) and also here ECM related findings were reported. 114 gene
sets were significantly different between Mc1 and Mc3, while none were significant between Mc2 and

Mc3 (results not shown).

Joint analysis of gene and metabolite expression shows differences in metabolic pathways
Integrated Pathway Analysis resulted in 12 significantly different metabolic pathways (p value < 0.05)
between Mcl and Mc2 (Additional file 2, Add. Table 10). The most significant pathway was ‘Tyrosine
metabolism’ with 8 hits of genes and metabolites, but also ‘D-Glutamine and D-glutamate metabolism’,
‘Glycolysis / Gluconeogenesis’ (Figure 4A) and ‘Glycerophospholipid metabolism’ (Figure 4B) were
among the significant pathways. Integrated Pathway Analysis resulted in 4 significantly different
metabolic pathways (p value < 0.05) between Mc1 and Mc3 (Additional file 2, Add. Table 11). The most
significant pathway was ‘Glycerophospholipid metabolism” with 9 hits, succeeded by ‘D-Glutamine and

D-glutamate metabolism’.
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Discussion

In the present work, metabolite, protein and gene expression data from 228 breast tumors were combined
to search for new insight into the heterogeneity of breast cancer. MR metabolite data was used to derive
naturally occurring metabolic clusters, which were further combined with data from the proteomics and
transcriptomics levels. We identified three significantly different metabolic clusters, Mc1, Mc2, and Mc3,
with significant differences in gene expression and protein expression profiles, but not within PAMS50
subgroups. The metabolic clusters could therefore contribute with additional information beyond the

intrinsic gene sets for understanding breast cancer heterogeneity.

Of the three metabolic clusters, Mc1 was on a separate branch in the dendrogram indicating that the
metabolic profile of this cluster was the most different. This cluster is defined by significantly higher
levels of GPC and PCho, two choline-containing metabolites involved in the synthesis and degradation of
phosphatidylcholine (PtdCho), a major component of cell membranes [31]. Altered choline metabolism
has been considered an emerging hallmark for malignant transformations, and has been detected in several
cancer types including breast cancer [32]. PCho in particular has been suggested a biomarker of breast
cancer [33]. Both GPC and PCho are confirmed elevated in tumor tissue compared to adjacent non-
involved tissue from breast cancer patients [17] and a higher GPC/PCho-ratio has been reported in ER
negative tumors [34, 35]. The latter was also observed for our cohort (results not shown), however, there
was no significant difference in ER status between the three metabolic clusters. Thus, the high level of
GPC and PCho is not resulting from differences in the distribution of estrogen receptor (ER) status.
Interestingly, integrated pathway analysis showed that ‘Glycerophospholipid metabolism’ was the most
significant pathway, when comparing Mc1 to Mc2. This metabolic pathway had eight hits including the
metabolites GPC and PCho and genes LCAT, LPCAT2, PPAP2A4, PPAP2B, PLDI and AGPAT4.
Downregulation of the expression of these genes in Mc1 indicate a less active degradation of PtdCho
causing an accumulation of GPC and PCho, thus explaining the higher levels of GPC and PCho in Mcl.

Furthermore, LPCAT?2 is involved in the reaction where the GPC precursor (acyl-GPC) is converted into

14



PtdCho. Lower expression of this gene may explain why the GPC precursor is directed to the production
of GPC instead of PtdCho. The same hits were obtained when Mc1l was compared to Mc3. In addition,
PLA2GS, one of the enzymes degrading PtdCho to acyl-GPC, is downregulated in Mcl compared to Mc3,

further supporting that Mcl has an altered PtdCho metabolism.

For Mc1 compared to Mc2 through integrated pathway analysis, ‘D-glutamine and D-glutamate
metabolism’ has only two hits, but comes out as significant because of the small number of genes and
metabolites within this pathway. Interestingly, the gene GLS which catalyzes the conversion of glutamine
to glutamate is downregulated in Mcl, the cluster with lowest levels of glutamate. Glutamine metabolism
is considered a therapeutic target as some cancer cells exhibit high uptake and addiction to this
nonessential amino acid [36]. Since there were no differences in glutamine levels of Mc1 and Mc2, less
glutamate in Mc1 could indicate that more glutamine is directed towards other metabolic pathways
necessary for proliferation, glutathione needed for reducing power or further that glutamate is rapidly

metabolized in cells through the TCA cycle or other mechanisms.

The distribution of protein subtypes (RPPA) was significantly different between the metabolic clusters,
whereas no significant differences in the distribution of PAMS50 subtypes were found. Thus, the metabolic
difference between Mc1, Mc2 and Mc3 is not a result of intrinsic subtypes and might therefore contain
additional information for understanding breast cancer heterogeneity. Among the tumors clustered in Mcl1,
12% were classified as RPPA-reactive (either I or II) while 49% were classified as RPPA-luminal. The
reactive RPPA subtypes have a characteristic protein expression pattern probably produced by the
microenvironment [5], indicating less microenvironmental activity within Mc1. Mcl1 also had
downregulation of several genes involved in processes within the ECM of the stroma compared to both
Mc2 and Mc3. As ECM changes can drive cancer behavior [37], these genetic differences between Mc1
and Mc2 might be of prognostic relevance. In fact, differences in expression of ECM-related genes have
been used to stratify breast carcinomas into four groups, where the subgroup ECM1 have the worst

prognosis [38]. ECM-classification was not performed on this cohort. However, 34 of 43 genes that
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clustered with a tendency of being downregulated in ECM1 and ECM2 were also found to be
downregulated in Mc1. In addition, only 5 of 46 genes reported to be downregulated in ECM2 compared
to ECM1 were downregulated in Mcl (results extracted from SAM analyses, Additional file 2, Add. Table
5-6). These results support the contention that Mc1 tumors have an ECM signature similar to the reported
ECM2 tumors. ECM2 did not show significant difference in disease outcome compared to ECM3 and

ECM4, but had better prognosis than ECM1 tumors [38].

Mc2 has a metabolic profile with significant higher glucose level and at the same time lower levels of
most of the other metabolites compared to one or both of the remaining clusters. High glucose level could
reflect lower glucose consumption, inferring a lower demand for energy within these tumors. ‘Glycolysis /
Gluconeogenesis’ came out as a significant pathway when Mc1 was compared to Mc2 during integrated
pathway analysis with two metabolite hits and five gene hits. For the most significant metabolite, glucose,
the levels are higher in Mc2 compared to Mc1. Glucose is the main source of energy for mammalian cells,
either through aerobic glycolysis (production of lactate even in the presence of oxygen) or tricarboxylic
acid (TCA) cycle and oxidative phosphorylation. For normal proliferating cells and cancer cells, which
both have an increased energy demand, a glycolytic switch is often observed (higher glycolytic rate) [12].
The increased glycolysis is followed by fermentation of the pyruvate to lactate (Warburg effect), in
contrast to the conversion of acetyl CoA through the TCA cycle that occurs in normal non-proliferating
cells. Increased glucose consumption is commonly used in tumor detection using a glucose analogue and
positron emission tomography (PET) [39] and has shown to correlate with poor prognosis and tumor
aggressiveness [12]. However, not all breast cancers are detected by PET. Here we expect lower
sensitivity in detection of Mc2 tumors due to the possible difference in glycolytic rate. None of the genes
with hits in ‘Glycolysis / Gluconeogenesis’ for the comparison of Mc1 and Mc2 could directly explain the
high glucose levels of Mc2 tumors, but altered expression of the genes indicate pyruvate being guided
towards the TCA cycle rather than lactate production. Two of the alternative fates of pyruvate showed

significantly higher levels (alanine) or levels approaching significance (lactate, adjusted p = 0.056),
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supporting a higher glycolytic rate in Mc1 and that the pyruvate produced is not directed to metabolism in
the TCA cycle. The significantly lower acetate levels in Mclcompared to Mc2 could be linked to
ALDHI1A43 and ALDH? downregulation, since the enzymatic product of these genes catalyzes the

reversible reaction where acetaldehyde is converted to acetate.

Both DAVID and GSEA showed that many of the genes found to be downregulated in Mc1 and
consequently upregulated in Mc2 were related to ECM activity. Mc2 had the highest percentage of RPPA-
reactive I with 44% of Mc2 tumors classified as this protein subtype, also related to stromal changes.
Together with the metabolic finding, this implies that Mc2 tumors have cancer cells with low proliferating
rate and at the same time ongoing changes within the ECM of the stroma. Mc2 tumors also had a higher
frequency of lobular and ductal carcinoma in situ, indicating metabolic differences between histological

subtypes of breast cancer which should be further investigated.

Mc3 has the highest lactate levels of all three clusters and higher glycine level than Mc2. These
metabolites have been related to poor prognosis in ER positive patients [18] and higher levels of glycine is
also associated with poor prognosis in a study irrespective of ER status [40]. Although the ER-positive
patients are equally distributed among our reported metabolic clusters, Mc3 expressed higher levels of
both of these metabolites compared to Mc2. Moestue et al. detected differences in the expression of genes
involved in choline degradation that could explain higher glycine concentrations in the poor-prognosis
basal-like breast cancer xenograft model compared to luminal-like [41]. Five of the genes described by
Moestue et al. were significantly upregulated in Mc3 compared to Mcl; AGPAT4, PPAP2B, PPAP24,
LCAT and PLD1. Of these, LCAT and PLD] are directly involved in choline metabolism. LCAT catalyze
the conversion of PtdCho to acyl-GPC while PLD] catalyzes the conversion of PtdCho to choline. Higher
GPC levels, but no difference in choline levels in Mc3 compared to Mc1 indicates that a higher amount of
GPC is converted to choline in Mc3, and further contributing to higher glycine levels through choline

degradation.
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Mc3 share similarities with a previously reported metabolic subgroup of luminal A tumors with
significantly lower levels of glucose, higher levels of alanine and nearly significantly higher lactate levels
[19]. In Mc3 we also see a significant higher level of lactate. Since one of the main sources of alanine is
pyruvate, which also is the source for lactate, it appears that Mc3 is a cluster with a switch in glycolytic

activity.

The majority of Mc3 tumors were classified as RPPA-luminal, similar to Mc1. In contrast to Mc1, Mc3
had a higher percentage of RPPA—reactive Il tumors, probably linked to changes in stromal content. Also
gene expression wise this was observed by significantly different gene expressions linked to ECM activity
and the gene expression profile of Mc3 was found similar to the previously reported ECM3 or ECM4

subtypes [38].

In this study, information flow between the transcriptomics, proteomics and metabolomics levels is
illustrated; at the transcriptomics level only one of the metabolic clusters shows difference in gene
expression compared to the two others, while at the proteomics level there is difference between all three
clusters. Combining these findings, Mcl1 is expected to have the worst prognosis due to the distinct gene
expression profile and the alterations in both glycerophospholipid metabolism and evidence of increased
glycolytic rate. However, this has to be validated when 5-years follow-up of this cohort is available. The
main metabolic characteristics, especially of Mc1 and Mc3, have been proposed as treatment targets that
could improve the therapeutic effect [42]. Cancer therapy targeting choline kinase alpha (CHK-a), the
enzyme responsible for PCho production from choline, cause tumor growth arrest and apoptosis in
preclinical models [43], while treatment targeting glycolytic enzymes in combination with chemotherapy
has been shown to re-sensitize cancer cells that had become resistant to treatment [42]. Metabolic
classification as illustrated here could therefore be relevant for developing a more targeted treatment plan.

Importantly, the prognostic value of the clusters should be evaluated once 5-year follow-up is available.
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Conclusion

We have here identified three metabolic clusters of breast cancer, also characterized with differences at
the proteomic and transcriptomic level. The metabolic clusters are not reflecting the intrinsic genetic
subtypes and may give important additional information for understanding breast cancer heterogeneity.
Gene enrichment analysis revealed diverse ECM characteristics among these clusters in accordance with
RPPA-subtyping. The approach of combining information from several -omics levels in the same tumor
shows promise in improving the understanding of breast cancer heterogeneity potentially leading to more

patient specific treatment.
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Tables

Table 1. Patient and tumor characteristics

Total
Number of patients 228
Age (years)

Mean (range) 55.5(31.8-81.1)

Clinical classification

Histology
Ductal 186
Lobular 21
Medullary 0
Ductal carsinoma in situ
(DCIS)
Metaplastic 1
Mucinous 4
Tubular 4
Mixed 2
Papillary 0
NA 6
Primary tumor
Tx or NA 9
TO 0
pTis 4
Tl 113
T2 93
T3 9
T4 0
Grade
1 31
I 93
11 97
NA 7
Node status
NO 133
N1 (mi) 8
N1 59
N2 14
N3 8
NA 6
Receptor status
HER2+ 26
HER2- 192
ER+ 178
ER- 40
PR+ 155
PR- 63
NA 10
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Table 3: Distribution of PAMS50 and RPPA subtype among the metabolic
clusters. Values in brackets are each subtype’s percentage distribution
within the metabolic clusters.

Metabolic cluster

PAMS0 subtype Total Mcl Mc2 Mc3
Luminal A 85 19 (35) 18 (43) 48 (46)
Luminal B 56 23 (42) 5(12) 28 (27)

Basal 24 6(11) 5(12) 13 (13)
Her2-enriched 22 50) 7(17) 10 (10)
Normal-like 14 24) 7(17) 5(5)

NA 27 4 15 8
Total 201 55 42 104

RPPA subtype
Reactive | 43 4(7) 24 (44) 15 (14)
Reactive 11 36 309 8 (15) 25(23)

Basal 47 16 29) 8 (15) 23 (21)
Her2 18 509) 4(7) 9(8)
Luminal 73 27 (49) 11 (20) 35(333)
NA 11 3 3 5
Total 217 55 55 107

NA: not available
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Figure legends

Figure 1: Metabolic subtyping of breast cancer tissue samples using HCA. (A) The HRMAS 1H MRS
spectra for 228 samples was clustered using Euclidean distance and Wards linkage as similarity measure
which separated the samples into three metabolic clusters (Mc); Mc1, Mc2 and Mc3. (B) Mean spectra for
the three metabolic clusters. B-Glc; B-glucose, Asc; ascorbate, Lac; lactate, Tyr; tyrosine, Cr; creatine, ml;
myoinositol, Gly; glycine, Tau; taurine, sl; scylloinositol, GPC; glycerophosphocholine, PCho;
phosphocholine, Cho; choline, Gsh; glutathione, Gln; glutamine, Succ; succinate, Glu; glutamate, Ace;

acetate, Ala; alanine. Grey bars indicate removed spectral regions (containing lipid peaks).

Figure 2: Results from PLS-DA of metabolic clusters. (A) Score plot of the two first latent variables
explaining 42.2% of the X-variance and 28.2% of the Y-variance; (B) Regression vectors for the three

metabolic clusters (Mc)

Figure 3: Main differences between metabolic subtypes (A) Metabolic cluster label from hierarchical
clustering with Euclidean distance and Wards linkage of HR MAS MR spectra of samples. The samples
clustered in three groups called Mc1, Mc2 and Mc3. (B) Fold change in expression levels of (1)
scylloinositol, (2) GPC, (3) PCho, (4) creatine, (5) ascorbate, (6) taurine, (7) GSH, (8) tyrosine, (9) lactate,
(10) glutamate, (11) succinate, (12) glutamine, (13) glycine, (14) alanine, (15) choline, (16) myoinositol,
(17) acetate, (18) glucose. Blue regions in the heat map represent decreased levels while red levels
represent increased metabolite levels. (C) PAMS50-subtypes (D) RPPA-subtype (E) Gene expression
levels (quantile normalized, log 2 transformed) for the 277 overlapping significant genes (SAM, adjusted

p <0.01) between Mcl and Mc3. The genes have been clustered.

Figure 4: Illustration of metabolic pathways reported to have altered gene and metabolite
expression by Integrated Pathway Analysis (MetaboAnalyst) (A) Result within
‘Glycolysis/Glutaminolysis’ genes and metabolites differently expressed in metabolic cluster (Mc) Mc2

compared to Mcl. Adapted from KEGG ID: hsa00010. LDHB: lactate dehydrogenase B;
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ADH1A/ADH1B/ADHIC: Alcohol dehydrogenase 1A/ 1B/ 1C; ALDH1A3: Aldehyde dehydrogenase 1
family member A3; ALDH2: Aldehyde dehydrogenase 2 family; ACSS1: Acetate CoA ligase; TCA cycle:
trucarboxylic acid cycle.

(B) Result within ‘Glycerophospholipid metabolism’ of genes and metabolites differently expressed in
Mc1 compared to Mc2. Adapted from KEGG ID: hsa00564. CHKA: Choline kinase alpha; PCYT1A:
Phosphate cytidyltransferase 1; CEPT1: Choline/ethanolamine phosphotransferase 1; PLA2GS:
phospholipase A2; LCAT: Lecithin-cholesterol acyltransferase; LPCAT2: Lysophosphatidyl-choline
acyltransferase; PC-PLD: Phospholipase D; Lyso-PLA1: Lysophospholipase I; GPC-PDE: Glycerophos-
phocholine phosphodiesterase; PLC: Phospholipase C; PLD1: Phospholipidase D1; PPAP2A, PPAP2B:

phosphatidate phosphatase LPIN; AGPAT4: 1-acylglycerol-3-phosphate O-acyltransferase.
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Figure 3

Nt
Available
. 1 ) -4 2 0 2 4
Metabaolite expression —— -

(fold change) Reactive 1 Gene expression
= Luminal B Reactive I (log2-transformed)
Basal-like Basal-like
Her2-enriched Her2-enriched
Normal-like Luminal

Not Available Not Available



Figure 4

A

Sttt

CREELELEELELE LG EEEEEESELELLE

L LAt AL EL LD Lttt
CECTECTTas

Glycolysis

LSt Lt ettt

eSS S BRSNS DD

D isssmsastiisssssiiies s
CEEECETLXTLCTCcE §EEEEETETTETITELTTTTALITEE &

32



Additional Information to:

Metabolic clusters of breast cancer in relation to gene- and protein

expression subtypes

Tonje H. Haukaas , Leslie R. Euceda, Guro F. Giskeadegérd, Santosh Lamichhane, Marit Krohn, Sandra
Jernstrom, Miriam R. Aure, Ole C. Lingjarde, Ellen Schlichting, @Qystein Garred, Eldri U. Due, The Oslo
Breast Cancer Consortium (OSBREAC), Gordon B. Mills, Kristine K. Sahlberg, Anne-Lise Borresen-

Dale, Tone F. Bathen

Additional Authors

The Oslo Breast Cancer Research Consortium (OSBREAC)

Vessela N Kristensen'**, Torill Sauer®”, Elin Borgen®, Olav Engebraten”*’, @ystein Fodstad”’, Rolf
Kéresen®'?, Bjorn Naume**, Gunhild Mari Melandsmo>™"", Hege G Russnes'*'2, Therese Serlie'?, Helle

Kristine Skjerven'®, Britt Fritzman'*

'Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
’K.G. Jebsen Centre for Breast Cancer Research, Institute for Clinical Medicine, University of Oslo, Oslo,
Norway. *Department of Clinical Molecular Biology and Laboratory Science (EpiGen), Division of
Medicine, Akershus University Hospital, Lorenskog, Norway. “Department of Pathology, Akershus
University Hospital, Lerenskog, Norway. Institute of Clinical Medicine, Faculty of Medicine, University
of Oslo, Oslo, Norway. *Department of Pathology, Division of Diagnostics and Intervention, Oslo
University Hospital, Oslo, Norway. 'Department of Tumor Biology, Institute for Cancer Research, Oslo
University Hospital, Oslo, Norway.*Department of Oncology, Division of Surgery and Cancer and

Transplantation Medicine, Oslo University Hospital, Oslo, Norway. Institute of Clinical Medicine,



Faculty of Medicine, University of Oslo, Oslo, Norway. '*Department of Breast- and Endocrine Surgery,
Division of Surgery, Cancer and Transplantation, Oslo University Hospital, Oslo, Norway."'Department
of Pharmacy, Faculty of Health Sciences, University of Tromsg, Tromsa, Norway. 12Depal’tment of
Pathology, Oslo University Hospital, Oslo, Norway."*Breast and Endocrine Surgery, Department of Breast

and Endocrine Surgery, Vestre Viken Hospital, Drammen, Norway.'*@stfold Hospital, @stfold, Norway

Email: Vessela N Kristensen v.n.kristensen@medisin.uio.no — Torill Sauer Torill.sauer@medisin.uio.no —

Elin Borgen ebg@ous-hf.no — Olav Engebraten Olav.engebraten@medisin.uio.no — Qystein Fodstad

Opystein.Fodstad@rr-research.no — Rolf Karesen rolf.karesen@medisin.uio.no — Bjern Naume

bjorn.naume@medisin.uio.no — Gunhild Mari Malandsmo Gunhild.Mari.Malandsmo(@rr-research.no —

Hege G Russnes Hege.russnes@rr-research.no — Therese Serlie therese.sorlie@rr-research.no — Helle

Kristine Skjerven Helle.skjerven@vestreviken.no — Britt Fritzman Britt.Fritzman@so-hf.no

Additional Methods

HR MAS MRS acquisition and data processing. Before HR MAS MRS experiments, 3 pL cold sodium
formate in D20 (24.29mM) was added to a leak-proof disposable 30uL insert (Bruker, Biospin GmbH,
Germany) as a chemical shift reference. Tissue samples were cut to fit the insert on a dedicated work
station designed to keep the samples frozen [1]. The insert containing the frozen sample was placed in a 4-
mm diameter zirconium rotor (Bruker, Biospin GmbH, Germany) and kept at -20 °C for maximum 8 hours
before the experiments. Samples were spun at 5000 Hz and experiments run at 5 “C. The samples were
allowed 5 minutes temperature acclimatization before shimming and spectral acquisition. Spin-echo
spectra were recorded using a Carr-Purcell-Meiboom-Gill (cpmg) pulse sequence (cpmgprld; Bruker)
with 4s water suppression prior to a 90° excitation pulse. T2 filtering was obtained using a delay of 0.6 ms
between each 180° pulse to suppress macromolecules and lipid signals and enhance signal from small
molecules. This resulted in an effective TE of 77 ms. A total of 256 scans over a spectral region of 12 kHz
was collected into 72k complex data points with an acquisition time of 3.07 s. The FIDs were multiplied

by a 0.30 Hz exponential weighting function and Fourier transformed into 64k real points. Phase



correction was performed automatically for each spectrum using TopSpin 3.1 (Bruker). Further
preprocessing of the HR MAS spectra were performed in Matlab R2013b (The Mathworks, Inc., USA).
Chemical shifts were referenced to the creatine peak at 3.92 ppm. Baseline correction was performed
using asymmetric least squares [2] with parameters A = 1e7 and p = 0.0001, and baseline offset was
adjusted by setting the minimum value of each spectrum to zero by subtracting the lowest value. Peak

alignment was performed using icoshift [3].

Reverse Phase Protein Array (RPPA). Tumor tissue was lysed by homogenization in lysis buffer
containing proteinase inhibitors and phosphatase inhibitors. The tumor lysates were diluted in 1.33 mg/ml
concentration as assessed by bicinchonic acid assay (BCA) and boiled in 1% SDS and 2-mercaptoethanol.
Supernatants were manually diluted in five serial 2-fold dilutions with lysis buffer. The samples were
spotted onto and immobilized on nitrocellulose-coated FAST slides. The slides were probed with 151
primary antibodies (Supplementary Table 1) in appropriate dilutions. The signal intensity was captured by
a biotin conjugated secondary antibody and was amplified by Dako Cytomation-catalysed system (Dako,
Glostrup, Denmark). Slides were scanned, analyzed and quantitated using MicroVigene software
(VigeneTech Inc., Carlise, MA, USA) to generate spot signal intensities. These were then processed by
the R package SuperCurve /version 1.01. The protein concentrations were derived from the supercurve for
each sample by curve fitting, log2-transformed, and the relative concentrations were normalized by

median centering of the samples for each of the antibodies [4].

Statistical analysis. PLS-DA was performed on mean centered spectra using double cross validation [5].
The model was built on randomly chosen training samples (80 % of the spectra) and used to predict the
class of the remaining independent test samples (20 % of the spectra). This was repeated 20 times before
average classification results were calculated. To validate that the result is not achieved simply by random
predictions, permutation testing was performed. Here Y-data (class labels for the samples) are permutated
to resemble random classification. For each permutation 20 random training and test sets are chosen as

described for the PLS-DA model. This was repeated 1000 times before the error distribution was



compared with the classification error for the original data. P values < 0.01 were considered significant.
PCA and PLS-DA were performed in Matlab using PLS Toolbox 7.5.2 (Eigenvector Research, Inc.,

Wenatchee, USA).
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Add. Table 1: Antibodies used for reverse phase protein array (RPPA)

RPPA Antibody Company Catalog # Dilution used Validation status Species
14-3-3_epsilon Santa Cruz sc-2395 250 C- use with caution Mouse
4E-BP1 CST 9452 100 V - validated Rabbit
4E-BP1_pS65 CST 9456 250 V - validated Rabbit
53BP1 CST 4937 400 C- use with caution Rabbit
A-Raf pS299 CST 4431 100 NA Rabbit
ACC _pS79 CST 3661 200 V - validated Rabbit
ACCl1 Epitomics 1768-1 300 C- use with caution Rabbit
AIB1 BD 611105 100 V - validated Mouse
Akt CST 9272 250 V - validated Rabbit
Akt pS473 CST 9271 100 V - validated Rabbit
Akt pT308 CST 9275 50 V - validated Rabbit
alpha-Catenin Calbiochem CA1030 750 V - validated Mouse
AMPK_alpha CST 2532 200 C- use with caution Rabbit
AMPK_pT172 CST 2535 100 V - validated Rabbit
Annexin_I Invitrogen 71-3400 90000 V - validated Rabbit
AR Epitomics 1852-1 50 V - validated Rabbit
B-Raf Santa Cruz sc-5284 500 NA Mouse
Bak Epitomics 1542-1 50 C- use with caution Rabbit
Bax CST 2772 300 V - validated Rabbit
Bel-2 Dako MO0887 50 V - validated Mouse
Bel-X Epitomics 1018-1 100 C- use with caution Rabbit
Bel-xL CST 2762 50 V - validated Rabbit
Beclin Santa Cruz sc-10086 200 V - validated Goat
beta-Catenin CST 9562 800 V - validated Rabbit
Bid Epitomics 1008-1 50 C- use with caution Rabbit
Bim Epitomics 1036-1 50 V - validated Rabbit
c-Jun_pS73 CST 9164 50 C- use with caution Rabbit
c-Kit Epitomics 1522 50 V - validated Rabbit
c-Met CST 3127 500 C- use with caution Mouse
c-Met_pY1235 CST 3129 500 C- use with caution Rabbit
c-Myc CST 9402 200 C- use with caution Rabbit
C-Raf Millipore 05-739 1000 V - validated Rabbit
C-Raf _pS338 CST 9427 300 C- use with caution Rabbit
Caspase-3_active Epitomics 1476-1 200 C- use with caution Rabbit
Caspase-7_cleavedD198 CST 9491 50 C- use with caution Rabbit
Caspase-8 CST 9746 250 C- use with caution Mouse
Caspase-9_cleavedD330 CST 9501 250 C- use with caution Rabbit
Caveolin-1 CST 3238 500 V - validated Rabbit
CD31 Dako MO0823 50 V - validated Mouse
CDK1 CST 9112 250 V - validated Rabbit
Chkl CST 2345 100 C- use with caution Rabbit
Chk1_pS345 CST 2348 50 C- use with caution Rabbit
Chk2 CST 3440 300 C- use with caution Mouse
Chk2_pT68 CST 2197 150 C- use with caution Rabbit
cIAP Millipore 07-759 250 V - validated Rabbit
Claudin-7 Novus NB100-91714 1000 V - validated Rabbit
Collagen_VI Santa Cruz sc-20649 250 V - validated Rabbit
COX-2 Epitomics 2169-1 150 C- use with caution Rabbit
Cyclin_B1 Epitomics 1495-1 500 V - validated Rabbit
Cyclin_D1 Santa Cruz sc-718 150 V - validated Rabbit
Cyclin_E1 Santa Cruz sc-247 150 V - validated Mouse
DIJ-1 Abcam ab76008 10000 C- use with caution Rabbit
Dvi3 CST 3218 1000 V - validated Rabbit
E-Cadherin CST 4065 750 V - validated Rabbit
cEF2 CST 2332 100 V - validated Rabbit
eEF2K CST 3692 250 V - validated Rabbit
EGFR Santa Cruz sc-03 350 C- use with caution Rabbit
EGFR_pY1068 CST 2234 50 V - validated Rabbit
EGFR_pY1173 Epitomics 1124 50 C- use with caution Rabbit
EGFR_pY992 CST 2235 50 V - validated Rabbit
elF4E CST 9742 250 V - validated Rabbit
ER-alpha Lab Vision RM-9101-S 200 V - validated Rabbit
ER-alpha_pS118 Epitomics 1091-1 150 V - validated Rabbit
ERCC1 Lab Vision MS-671-PO 100 C- use with caution Mouse
FAK Epitomics 1700-1 75 C- use with caution Rabbit
Fibronectin Epitomics 1574-1 5000 C- use with caution Rabbit
FOXO3a CST 9467 50 C- use with caution Rabbit
FOXO3a_pS318_S321 CST 9465 75 C- use with caution Rabbit
GAB2 CST 3239 250 V - validated Rabbit
GATA3 BD 558686 100 V - validated Mouse
GSK3_pS9 CST 9336 250 V - validated Rabbit
GSK3-alpha-beta Santa Cruz sc-7291 2000 V - validated Mouse
GSK3-alpha-beta pS21_S9 CST 9331 250 V - validated Rabbit
HER2 Lab Vision MS-325-P1 250 V - validated Mouse
HER2 pY1248 R&D AF1768 350 NA Rabbit




RPPA Antibody Company Catalog # Dilution used Validation status Species
HER3 Santa Cruz sc-285 250 V - validated Rabbit
HER3_pY1298 CST 4791 250 C- use with caution Rabbit
IGF-1R-beta CST 3027 250 C- use with caution Rabbit
IGFBP2 CST 3922 50 V - validated Rabbit
INPP4B Santa Cruz sc-12318 250 C- use with caution Goat
IRS1 Millipore 06-248 2000 V - validated Rabbit
INK2 CST 4672 50 C- use with caution Rabbit
K-Ras Santa Cruz sc-30 75 C- use with caution Mouse
MAPK pT202_Y204 CST 4371 100 V - validated Rabbit
MEK1 Epitomics 1235-1 5000 V - validated Rabbit
MEKI1 _pS217_8221 CST 9121 500 V - validated Rabbit
MIG-6 Sigma ‘WHO0054206M 1 100 V - validated Mouse
Mrell CST 4847 250 C- use with caution Rabbit
MSH2 CST 2850 50 C- use with caution Mouse
MSH6 SDI 2203.00.02 1000 C- use with caution Rabbit
N-Cadherin CST 4061 50 V - validated Rabbit
NF-kB-p65_pS536 CST 3033 100 C- use with caution Rabbit
NF2 SDI 2271.00.02 500 C- use with caution Rabbit
Notchl CST 3268 50 V - validated Rabbit
Notch3 Santa Cruz sc-5593 600 C- use with caution Rabbit
P-Cadherin CST 2130 50 C- use with caution Rabbit
p21 Santa Cruz sc-397 100 C- use with caution Rabbit
p27 Epitomics 1591-1 50 V - validated Rabbit
p27_pT157 R&D AF1555 500 C- use with caution Rabbit
p27_pT198 Abcam ab64949 75 V - validated Rabbit
p38_MAPK CST 9212 100 C- use with caution Rabbit
p38 pT180_Y182 CST 9211 50 V - validated Rabbit
p33 CST 9282 2500 V - validated Rabbit
p70S6K Epitomics 1494-1 750 V - validated Rabbit
p70S6K_pT389 CST 9205 50 V - validated Rabbit
p9ORSK pT359 S363 CST 9344 50 C- use with caution Rabbit
PARP_cleaved CST 9546 50 C- use with caution Mouse
Paxillin Epitomics 1500-1 500 V - validated Rabbit
PCNA Abcam ab29 500 V - validated Mouse
PDK1_pS241 CST 3061 500 V - validated Rabbit
PI3K-p110-alpha CST 4255 150 C- use with caution Rabbit
PI3K-p85 Millipore 06-195 10000 V - validated Rabbit
PKC-alpha Millipore 05-154 1000 V - validated Mouse
PKC-alpha_pS657 Millipore 06-822 750 V - validated Rabbit
PR Epitomics 1483-1 200 V - validated Rabbit
PRAS40_pT246 Biosource 441100G 1000 V - validated Rabbit
PTCH SDI 2113.00.02 1000 C- use with caution Rabbit
PTEN CST 9552 750 V - validated Rabbit
Rabl1 CST 3539 250 V - validated Rabbit
Rab25 Covance Custom 2500 C- use with caution Rabbit
Rad50 Millipore 05-525 100 C- use with caution Mouse
Rad51 Chem Biotech na7l 125 C- use with caution Mouse
Rb CST 9309 200 V - validated Mouse
Rb_pS807_S811 CST 9308 250 V - validated Rabbit
S6_pS235_S236 CST 2211 3000 V - validated Rabbit
S6_pS240_S244 CST 2215 2000 V - validated Rabbit
She_pY317 CST 2431 50 NA Rabbit
Smac CST 2954 250 V - validated Mouse
Smadl Epitomics 1649-1 250 V - validated Rabbit
Smad3 Epitomics 1735-1 750 V - validated Rabbit
Smad4 Santa Cruz sc-7866 50 V - validated Mouse
Snail CST 3895 100 C- use with caution Mouse
Src Millipore 05-184 200 V - validated Mouse
Src_pY416 CST 2101 125 C- use with caution Rabbit
Src_pY527 CST 2105 250 V - validated Rabbit
STAT3_pY705 CST 9131 50 V - validated Rabbit
STATS5-alpha Epitomics 1289-1 250 V - validated Rabbit
Stathmin Epitomics 1972-1 150 V - validated Rabbit
Syk Santa Cruz sc-1240 250 V - validated Mouse
Tau Millipore 05-348 100 C- use with caution Mouse
TAZ _pS89 Santa Cruz sc-17610 75 C- use with caution Rabbit
Tuberin Epitomics 1613-1 500 C- use with caution Rabbit
VASP CST 3112 50 C- use with caution Rabbit
VEGFR2 CST 2479 5000 V - validated Rabbit
XIAP CST 2042 50 C- use with caution Rabbit
XRCCl1 CST 2735 50 C- use with caution Rabbit
YAP Santa Cruz sc-15407 300 V - validated Rabbit
YAP pS127 CST 4911 350 C- use with caution Rabbit
YB-1 SDI 1725.00.02 200 V - validated Rabbit
YB-1 pS102 CST 2900 150 V - validated Rabbit




Add. Table 2: Significantly different expressed genes between the three metabolic clusters

Gene ID Gene Name Score (d) Numerator (r) Denominator (s+s0) contrast | contrast 2 contrast 3 adjusted P value (%) Direction
CALDI 2825 0.8 . 173 -3.427 1.454 1.225 0 Up
TAGLN 18949 0.774 0.168 0218 3239 1689 1031 0 Up
FERMT2 6321 0.772 0.1 0.13 3384 1624 1134 0 Up
NNMT 13555 0.764 0.163 0214 3207 0811 1369 0 Up
CTGF 4323 0.749 0.168 0.224 -3.148 1.414 1.094 0 Up
GPX8 7474 0.74 0.138 0.186 3146 0.877 1309 0 Up
MRC2 12641 0.74 0.146 0.198 -3.081 0.466 1441 0 Up
RUNX2 17000 0.739 0.086 0.116 2988 0457 1765 0 Up
CLMP 3830 0.737 0.136 0.184 -3.137 0.946 1277 0 Up
DPYSL3 5150 0.737 0.16 0217 3108 1192 1162 0 Up
GEM 7035 0.735 0.146 0.199 3.047 1907 0.841 0 Up
COLISAI 3970 0.729 0.128 0175 -3.082 0.576 1397 0 Up
TSHZ3 20086 0.715 0.118 0.165 -3.019 0.472 1.406 0 Up
NEXN 13395 0.712 0.098 0137 3014 1352 1101 0 Up
PTRF 15990 0.712 0.078 0.109 3201 1178 1217 0 Up
MSRB3 12776 0.705 0.141 02 2.98 1426 1 0 Up
CYR61 4528 0.701 0.164 0.234 -2.891 1.727 0.831 0 Up
PLS3 15215 0.7 0.136 0.195 2866 1989 0.712 0 Up
ACTA2 202 0.699 0.163 0233 2862 1832 0.774 0 Up
TIMP2 19344 0.698 0.141 0202 2,948 0.79 1238 0 Up
SRPX2 18547 0.698 0.142 0.203 -2.897 0.414 1.365 0 Up
GFPT2 7054 0.697 0.123 0177 2877 0.188 1446 0 Up
CNN2 3901 0.691 0.141 0204 2.9 1308 1016 0 Up
TCF4 19112 0.689 0.108 0.157 2975 1219 1081 0 Up
VCAN 20645 0.686 0.157 0.229 -2.846 0.518 1.296 0 Up
TGFBIII 19244 0.684 0.104 0152 2958 135 1019 0 Up
FAP 6172 0.684 0.161 0236 2795 0311 1353 0 Up
LMODI 9739 0.68 0.075 0111 3 1753 0.879 0 Up
FBLN2 6199 0.678 0.163 0.241 -2.843 1.027 1.089 0 Up
LOXL2 11683 0.677 0.138 0204 2746 0.09% 1413 0 Up
LIMS2 9684 0.676 0.093 0138 2851 1956 0.718 0 Up
COL3AI 3983 0.675 0.18 0266 2742 03 1329 0 Up
S100A10 17025 0.674 0.117 0.173 -2.872 1.458 0.93 0 Up
DACT3 4555 0.674 0.139 0206 2852 1184 1.03 0 Up
GSN 7558 0.673 0.104 0.155 2808 1934 0.704 0 Up
NIDI 13456 0.672 0.129 0.192 -2.847 0.754 1.201 0 Up
ANGPTL2 633 0.671 0.134 0.199 2799 0.461 1294 0 Up
SLIT3 18036 0.666 0.142 0213 238 0.736 1183 0 Up
PDLIM4 14775 0.666 0.087 0.13 2831 1921 0.721 0 Up
ISM1 8696 0.666 0.152 0.228 -2.763 1.56 0.831 0 Up
FSTL1 6776 0.662 0.143 0.217 -2.789 0.862 1.127 0 Up
SNAIR 18133 0.662 0.09% 0.145 2879 0.945 1141 0 Up
MIR100HG 12463 0.661 0.13 0.197 2804 1207 0.995 0 Up
PDGFRB 14755 0.66 0.115 0.174 -2.782 0.46 1.285 0 Up
MRVII 12739 0.659 0.114 0173 2806 1.449 0.899 0 Up
LOX 11680 0.658 0.141 0214 2678 0.176 1345 0 Up
PLK3 15203 0.656 0.085 0.129 2877 1.408 0.952 0 Up
TPM4 19855 0.656 0.101 0.153 -2.787 0.43 1.301 0 Up
SPARC 18362 0.652 0.155 0238 2,665 03 1288 0 Up
CSorf62 2509 0.648 0.12 0.185 2742 1.445 0.867 0 Up
PODN 15296 0.648 0.099 0.153 2807 1128 1029 0 Up
SKAP2 17634 0.648 0.095 0.147 -2.714 1.876 0.677 0 Up
RARRES2 16240 0.646 0.152 0236 2698 1339 0.886 0 Up
GLTSD2 7182 0.646 0.079 0123 2809 0.442 1307 0 Up
SHOX2 17566 0.644 0.092 0.143 2807 0.931 1.109 0 Up
EMILIN1 5520 0.644 0.108 0.168 -2.719 0.45 1.256 0 Up
PODNLI 15297 0.644 0.098 0152 279 1059 1048 0 Up
MGC24103 12397 0.643 0.142 0.22 2654 0.376 1252 0 Up
EGRI 5396 0.64 0.177 0276 2557 1817 0.618 0 Up
ANXA1 754 0.639 0.129 0.203 -2.627 1.735 0.688 0 Up
TMEM200A 19554 0.638 0.086 0135 2793 0.878 1123 0 Up
MXRAS 12901 0.637 0092 0.145 2737 0.52 1237 0 Up
DKK3 4932 0.636 0.1 0.158 2746 1188 0.972 0 Up
SERPINF1 17400 0.635 0.129 0.203 -2.692 1.101 0.979 0 Up
PDLIM7 14777 0.635 0.092 0.145 2763 L1s 0.997 0 Up
GPRI24 7367 0.635 0.104 0.163 2735 0.947 1064 0 Up
RNF144A 16633 0.634 0.089 0.14 2,705 0.352 1288 0 Up
PRKCDBP 15652 0.631 0.11 0.175 -2.701 1.204 0.942 0 Up
COLSAI 3991 063 0.102 0.162 2595 0.076 1342 0 Up
CNNI 3900 0.629 0.185 0295 2424 2015 0.468 0 Up
VIM 20673 0.629 0.099 0.157 2711 0.82 1102 0 Up
ZEBI 21166 0.628 0.107 0.171 -2.675 0.629 1.161 0 Up
HTRA3 8272 0.628 0.119 0.189 243 0352 1427 0 Up
IGFBP3 8405 0.628 0.115 0.184 2676 0.879 1.06 0 Up
POSTN 15383 0.627 0.179 0285 2532 0.246 1239 0 Up
ITPRIP 8761 0.627 0.094 0.151 -2.719 0.975 1.044 0 Up
NDN 13282 0.626 0111 0177 263 1566 0.759 0 Up
MYL9 12956 0.624 0.125 0201 2618 1423 081 0 Up
NOX4 13603 0.624 0.093 0.149 2514 -0.195 1.408 0 Up
COL1A2 3973 0.623 0.17 0.273 -2.522 0.25 1.233 0 Up
HTRAI 8270 0.623 0.156 0251 2577 0.524 1151 0 Up
SCGS 17165 0.623 011 0177 2643 0.597 1157 0 Up
PALLD 14490 0.623 0.078 0.126 -2.732 0.661 1.178 0 Up
COLS5A2 3992 0.621 0.167 0269 2453 0024 1307 0 Up
LTBP2 11867 0.621 0.093 0.15 2691 1199 0.939 0 Up
DSE 5180 0.62 0.088 0.142 2657 0.425 1234 0 Up
DZIPIL 5277 0.618 0.071 0.115 -2.708 0.406 1.268 0 Up
FEZ1 6326 0.618 0.075 0.121 -2.688 1.629 0.764 0 Up
ARHGAP28 926 0.616 0.082 0133 2,665 0.486 1213 0 Up
TUBB6 20251 0.615 0.122 0.198 2613 0.979 0.986 0 Up
TRPC1 20038 0.613 0.09 0.147 -2.659 0.822 1.074 0 Up
SERPING1 17402 0.611 0.08 0131 2,669 1367 0.859 0 Up
cis 2133 0.611 0.118 0193 2595 1088 0.933 0 Up
THY1 19311 061 0.121 0.198 2477 0.081 1277 0 Up
CHADL 3589 0.609 0.127 0.209 2.555 -1.338 -0.811 0 Up
RHOJ 16542 0.609 0.092 0152 2578 1622 0.709 0 Up
FOXO1 6712 0.609 0.077 0127 247 2137 0.443 0 Up
TNSI 19782 0.609 0.074 0122 2,69 1263 0912 0 Up
DACTI 4553 0.608 0.126 0.208 -2.559 0.64 1.095 0 Up
GASI 6942 0.608 013 0215 2554 1265 0.84 0 Up
AEBPI 364 0.608 0.154 0254 2502 0431 1149 0 Up
DCN 4634 0.606 0.157 0.26 253 0.849 0.995 0 Up
TNFAIP6 19715 0.606 0.13 0214 -2.484 0.235 1.219 0 Up
GADD4SB 6883 0.605 0.099 0.163 2597 1238 0.873 0 Up

AKAP12 465 0.605 0.104 0.172 -2.435 1.928 0.509 0 Up




PRICKLE1
MYLK
PCSKS

COLIAT
TPM2
EGR2

BGN
FBNI

BHLHE41
CDHI1

UHMK1

SFRP2
MARVELDI
EMPI
CYsl1
LHFP
ADAMTS6
MMP14
PTPN21
PDLIM3
EHD2
PRKD1
RPUSDI
CAV2
SPON1

Clorfl5-NBL1
COL6A2
PLXDC1

LuM
ADAMI12
SVEP1
FOXF2
LCAT
SERPINHI

SH3PXD2A
HIFIA
Cl2o0rf34
SLC2A14

Gene Name

15627
12958
14697
3972
19853
5397
1500

15712
16502
12410
12218
17342
3100
5366
15868
2163
3995
15224
11879

Score (d)

0.604
0.604
0.604
0.604
0.602
0.602
0.601
0.601
0.6

Numerator () Denominator (s+s0) contrast 1 contrast 2
2628 0.497
0.137 0.226 -2.538 1.167
0.138 0229 2473 1599
0.054 0089 2788 0.801
0.165 0273 2415 0.113
0.109 0.181 -2.573 0.928
0.127 0.21 -2.449 1.711
0.103 0172 2562 0.633
0.108 0179 244 0.01
0.133 0.222 -2.455 1.614
0.089 0.148 2533 0.262
0061 0.102 2512 2131
0.148 0246 2303 0261
0.101 0.17 -2.565 1.098
0.12 02 2536 0914
0094 0.157 2527 1556
0.122 0205 2,496 0.478
0.108 0.181 -2.537 0.663
0.133 0223 2506 0.765
0.123 0206 252 0.847
0.062 0.104 2,687 0.932
0.115 0.194 -2.511 1.193
0.098 0.166 2527 0.556
0.114 0192 2516 1092
0.121 0.204 -2.445 0.285
0.106 0.179 -2.462 1.594
0.05 0085 2704 -1.656
0.059 0.1 2664 1387
0.126 0213 -2.49 0915
0.146 0.248 -2.399 0.274
0.074 0127 2447 1.901
0.12 0205 245 1386
0.06 0.102 2,609 0418
0.114 0.194 -2.387 1.693
0.072 0123 2294 0496
0.128 0219 2453 0.919
0.083 0.143 2516 0.611
0.103 0178 2283 0253
0.088 0152 2516 0.868
0.09 0.154 -1.891 2.587
0.164 0.283 -2.412 0.85
0.103 0179 2362 0.038
0.105 0.182 225 2,007
0.118 0204 2414 0.447
0.112 0.194 -2.431 1.293
0055 0.095 2571 027
0125 0216 236 0218
0.098 0171 2366 1706
0.103 0.179 2317 1.817
0.087 0151 2486 1178
0.073 0127 2467 161
0065 0113 2397 -1.956
0.064 0.111 -2.24 2.289
0.165 0287 2382 0.714
0.121 0211 2402 0.517
0125 0218 2314 167
0.098 0.171 -2.45 1.117
013 0228 2271 0048
0045 0078 2,686 0.6
0.157 0276 2064 0558
0.081 0.143 -2.449 1.422
0.065 0113 2542 0.752
0043 0075 2691 0.561
0.071 0.125 2481 1387
0.136 0.24 -2.071 2112
0.101 0179 214 0485
0.071 0124 2492 0.635
0.09 0.159 2443 0.794
0.114 0.201 -2.394 1.102
0.071 0126 2496 0.891
0.051 0.09 2515 -1752
0.115 0205 2375 0.605
0.118 0.21 -2373 0.745
0.066 0118 2454 0.392
0.155 0276 2294 0.379
0.072 0.128 -2.384 0.16
0.066 0.118 -2.433 1.539
0.059 0.105 2,446 1638
0.069 0124 2,469 0.878
0.113 0203 2207 0.128
0.084 0.151 -2.322 1.628
0.065 0117 2298 0177
0.067 0.12 242 1464
0.065 0.116 2473 0.775
0.045 0.08 -2.562 0.361
0.107 0193 2356 0.772
0123 0222 2212 1686
0.063 0.114 -2.25 -0.303
0.107 0193 2298 1412
0.082 0.148 2314 0.16
0.082 0.149 2393 0.966
0.078 0.142 -2.337 1.517
0.182 0331 2048 1891
0.052 0094 2512 0.635
0.1 0.182 2333 1175
0.103 0.188 -2.303 0.393
0.145 0264 2281 0.61
011 02 2093 1944
0085 0.154 2374 0.876
0.083 0.151 -2.362 0.583
0.097 0178 2336 -1.068
0.08 0.147 2358 0.54
0.05 0092 2484 0.462
0.133 0.243 -2.288 0.767
0.113 0207 2304 1061
0.102 0.186 2319 0.667

contrast 3 adjusted P value (%) Direction

1189 0 Up
0.871 0 Up
0.662 0 Up
1151 0 Up
1231 0 Up
0.986 0 Up
0.604 0 Up
1099 0 Up
1286 0 Up
0.647 0 Up
1234 0 Up
0468 0 Up
1324 0 Up
0913 0 Up
0.972 0 Up
0.708 0 Up
1127 0 Up
1.074 0 Up
1016 0 Up
0.991 0 Up
1045 0 Up
0.846 0 Up
L1112 0 Up
0.89 0 Up
1.178 0 Up
0.658 0 Up
0761 0 Up
0.849 0 Up
0.947 0 Up
1.158 0 Up
0.526 0 Up
0.736 0 Up
1.211 0 Up
0.579 0 Up
1414 0 Up
0.926 0 Up
1.084 0 Up

131 0 Up
0.98 0 Up
0045 0 Up
0.932 0 Up
1234 0 Up
0.379 0 Up
1096 0 Up
0.764 0 Up
1.251 0 Up

116 0 Up
0.562 0 Up
0.492 0 Up
0.839 0 Up
0.655 0 Up
0478 0 Up
0.26 0 Up
0.971 0 Up
1061 0 Up
0.549 0 Up
0.845 0 Up

122 0 Up
1178 0 Up
1317 0 Up
0.721 0 Up

1.04 0 Up
1196 0 Up
0.752 0 Up
0.242 0 Up
1327 0 Up
1062 0 Up
0971 0 Up
0.821 0 Up
0.96 0 Up
0623 0 Up
1.011 0 Up
0.954 0 Up

L14 0 Up

1.06 0 Up
1196 0 Up
0.665 0 Up
0.632 0 Up
0.951 0 Up
1.219 0 Up
0.57 0 Up
1287 0 Up
0.689 0 Up
0.995 0 Up
1209 0 Up
0.934 0 Up
0.489 0 Up
1.312 0 Up
0.645 0 Up
1159 0 Up
0.875 0 Up
0.624 0 Up
0319 0 Up
1072 0 Up
0.759 0 Up
1.059 0 Up
0.96 0 Up
0.322 0 Up
0.901 0 Up
1.014 0 Up
0.804 0 Up
1029 0 Up
1127 0 Up
0.901 0 Up
0.79 0 Up
0.957 0 Up




Cl10orf10
Cl4orf37
CLIP3
HABP4
IKBIP
Cllorf96
CACNA2D1

LRP1
MFAPS
ETVI
PSMB4
COLI16A1
CSRPI
COL8A2
FOXQI
PPAPDCIA
KIRREL

SCAMP3
SCARNA17
PPPIRI6A
CLDNI1
NITI
MTIX
ARRDC3

ARHGAP39
SGK1
SGIP1

CLEC11A
CES1
CFI
KLF7

LOC645676

Gene Name
4039
1681
1892
3821
7685
8438
1787
2793
9087
4674
14687
17466
12111
16018
12065
17666
3874
1562
7537
15442
9198
2582
12972

12005

Score (d)
0.545
0.545
0.545
0.545
0.545
0.545
0.544
0.543
0.542
0.542
0.542
0.541
054
0.54
0.54
0.538
0.538
0.538
0.537
0.537
0.537
0.537
0.536
0.536
0.536
0.536
0.536
0.535
0.535
0.534
0.534
0.534

Numerator () Denominator (s+s0) contrast 1 contrast 2
2267 0319
0.121 0.222 -2.207 1.553
0.076 0139 2359 0.505
0.067 0123 2407 0.697
0073 0133 2355 136
0.05 0.092 -2.273 -0.35
0.106 0.196 2288 1218
0051 0094 2438 0311
0085 0.156 2328 0.584
0.076 0.14 -2.366 0.907
0.1 0185 2276 0.409
0.056 0.104 2418 1324
0082 0.152 2315 0.463
0.062 0.114 -2.355 0.292
0.058 0.108 2425 0.771
0.06 0112 234 155
0.089 0.166 23 117
0.071 0.132 -2327 0.388
0177 0329 2214 1026
0065 0122 2329 0.302
0.069 0128 2308 1462
0.077 0.144 -2.289 0.325
0.062 0.116 235 1394
0052 0097 2436 1237
0.069 0129 2316 1397
0.054 0.1 -2.419 1.244
0.09 0.169 2183 -0.003
0.116 0217 22 0.255
0.077 0.144 -2252 1.526
0.06 0.112 -2.361 0.434
0086 0.162 2291 L11s
0086 0.161 226 0.36
0.162 0303 -1.938 1941
0.143 0268 2222 0.953
0.051 0096 2424 0.588
0127 0238 2155 0.142
0.05 0.094 2436 0.683
0.054 0.101 2241 -1.867
0.076 0.143 2318 0.886
0059 0.11 2094 2,087
0.121 0.227 -2.158 0.151
0.146 0275 2197 1097
0.149 0281 2113 0.084
0.072 0135 2318 0.694
0.066 0.124 -2.294 0.316
0.065 0124 2343 0.789
0.1 0.189 2103 1697
0.155 0293 -1.846 2,036
0.055 0.104 2362 -1.284
0.107 0202 22 127
0074 0.141 2214 -1543
0.131 0.25 -1.985 1833
0.055 0.104 2313 -1.522
0.113 0214 2199 1189
0082 0.157 2113 174
011 021 222 0.803
0.093 0.178 -2.208 1.295
0.141 0269 2073 -0.001
0.137 0261 2165 0.458
0.072 0137 2131 1763
0.067 0.127 -1.767 2.352
0.084 0.161 2253 0.756
0.119 0229 219 0.613
0.077 0.148 2265 0.668
0.076 0.146 -2.169 1.591
0.116 0223 -L118 2.569
0.125 0.24 2038 1676
0.055 0.105 235 -1.031
0.099 0.19 -2.218 0.848
0.062 0.12 2278 1329
0.094 0.181 219 1235
0.131 0252 217 0.607
0.069 0.132 -2.282 0.674
0.174 0335 -1.91 1835
0.054 0.103 232 1347
0.083 0.16 -1.976 1.941
0.062 0.119 -2.261 0313
0.072 0139 2265 0722
0.091 0176 2109 1583
0.072 0.14 -2.098 -0.165
0.105 0.203 -2.141 0.274
0.084 0.163 2226 0.948
0.086 0.166 2074 1691
0.07 0.136 2263 0.805
0.059 0115 2243 0.226
0.087 0.168 222 0.9
0.129 0.25 2024 162
0.049 0.095 -2.341 1.263
0.065 0.125 -2.265 0.575
0.089 0172 2187 1182
0.046 0.09 2366 1213
0.084 0.164 =211 0.025
0.094 0183 2138 0.234
0.081 0158 2174 1341
0.1 0194 2,159 1201
0.043 0.084 -2.236 1.853
0.07 0136 2238 1.085
0.04 0078 2429 0.696
0.078 0.153 2033 1769
0.058 0.114 -2.115 -0.194
0.093 0181 2184 0.936
0.136 0266 2115 1108
0.071 0.139 2,186 1324
0.106 0.207 -2.022 1.616
0.054 0.107 2295 -1013
0.13 0256 -1653 2.146

contrast 3 adjusted P value (%) Direction

.07 0 Up
0.54 0 Up
1044 0 Up
0.991 0 Up
0.69 0 Up
1.343 0 Up
0.718 0 Up
1164 0 Up
0.995 0 Up
0.885 0 Up
1038 0 Up
0744 0 Up
1037 0 Up
1.128 0 Up
0.971 0 Up
0.612 0 Up
0.744 0 Up
1.074 0 Up
0.756 0 Up
1109 0 Up
0.63 0 Up
1.079 0 Up
0.68 0 Up
0788 0 Up
0.661 0 Up
0.777 0 Up
1156 0 Up
1061 0 Up
0.575 0 Up
1.073 0 Up
0.762 0 Up

105 0 Up
0.241 0 Up
0.79 0 Up
1045 0 Up
1082 0 Up
1.012 0 Up
0431 0 Up
0.868 0 Up
0.264 0 Up
1.081 0 Up
0.719 0 Up
1083 0 Up
0.945 0 Up
1.086 0 Up
092 0 Up
0.427 0 Up
0.154 0 Up
-0.731 0 Up
0.651 0 Up
0548 0 Up
031 0 Up
-0.609 0 Up
0.683 0 Up
0415 0 Up
0.85 0 Up
0.645 0 Up
1097 0 Up
0.96 0 Up
0415 0 Up
-0.016 0 Up
0.886 0 Up
0911 0 Up
0.928 0 Up
0.504 0 Up
0446 0 Up
0.401 0 Up
0826 0 Up
0.831 0 Up
0.668 0 Up
0.662 0 Up
0.902 0 Up
0.935 0 Up
0.269 0 Up
0.683 0 Up
0.261 0 Up
1.069 0 Up
0906 0 Up
0476 0 Up
1.176 0 Up
1022 0 Up
0.794 0 Up
0414 0 Up
0.872 0 Up
1.095 0 Up
081 0 Up
0416 0 Up
0.728 0 Up
0.965 0 Up
0.679 0 Up
0.762 0 Up
1.105 0 Up
1036 0 Up
0.608 0 Up
0.657 0 Up
0.434 0 Up
0.745 0 Up
1003 0 Up
0.361 0 Up
1.197 0 Up
0.777 0 Up
0.671 0 Up
0.621 0 Up
0.416 0 Up
0805 0 Up
0.008 0 Up




NCRNA00241
FAM43A
ASPN
DIO1
TGFBR2
HMCNI
COLI10A1
C2lorf34
KRTCAP3
ITGATL
ADAMTS14
NEFH
DST
SH3PXD2B

LOC100130876
TMPRSS6
GREM1
COLI5A1
Cl7orf51
GNG11
TMEM2
1D3
ARHGEF40

LOC100129940
CD36

SULF1
FATI
SPOCK1
JAM3
FST
SPRY1
LIMS3L
ZNF300P1
RNF175
usp21
PRDM6
SELENBP1
DPT
PID1
MAGEL2
FAMI95A

Gene Name
6139
7872
6180

Score (d)
051
0.509
0.508
0.508
0.508
0.508
0.507
0.507

Numerator () Denominator (s+s0) contrast 1 contrast 2
0.0 1907 1935
0.072 0.142 =215 1.438
0057 0113 2239 1303
0.078 0153 2195 0.619
0076 0.15 2,146 1388
0.184 0.362 -1.976 -0.027
0.109 0215 2139 0895

0.08 0157 -1.869 1999
0.107 021 2079 0.199
0.174 0.344 -1.768 -0.595
0.051 0.101 229 1.042
0097 0193 2,046 -1518
0.127 0252 -1952 0,188
0.123 0.244 -2.013 0.011
0.107 0212 2131 0.642
0.094 0.187 2075 1433
0.083 0.165 217 072
0.059 0.117 2201 -1.336
0.067 0133 -1812 2119
0.1 0.198 2109 1188
0.084 0.168 2129 0.366
0.07 0.14 -2.187 1.045
0.106 021 1973 1637
0.102 0204 -1.668 2126
0.052 0.104 2229 -1.334
0.045 0.089 -2.294 1.295
0074 0.147 2181 0.773
0.04 0079 2311 1478
0.129 0257 2023 1.38
0.117 0.234 -2.083 0.45
0077 0.154 2025 1639
0.103 0206 2,049 0.169
0.053 0.107 2227 0.464
0.1 0.2 -1.991 1.565
0.104 0208 2107 0.64
0084 0.167 2025 -1564
0.097 0.195 -2.072 0.272
0.082 0.164 213 1106
0078 0157 2155 0.808
0093 0.187 2058 1374
0.056 0.113 -2.029 -0.29
0.068 0136 2137 1303
0074 0.149 2163 0.749
0057 0114 2072 -1.685
0.06 0.12 -2.191 1.12
0.116 0234 2061 0414
0042 0085 2304 0.586
0.048 0097 2105 -1.751
0.04 0.08 -2314 0.465
0.056 0113 2215 -1015
0.04 0.08 2228 164
0.106 0215 1923 1652
0.089 0.18 -2.109 0.61
0.056 0113 2201 0.536
0053 0.108 2204 0.469
0.078 0.158 2118 0.488
0.078 0.157 -1.718 2.082
0.061 0124 1.707 2192
0083 0.168 2 1557
0.059 0.12 2162 1215
0.101 0.205 -2.04 1.276
0.123 0.25 1977 1412
0.063 0127 2173 0.831
0.089 0.182 2102 0.885
0.048 0.098 2177 1.441
0.086 0175 2057 0.262
0.048 0097 2104 0098
0.065 0132 -1.865 1938
0.081 0.164 -2.107 1.02
0.104 0211 2007 1361
0.115 0235 1935 0073
0.085 0174 2034 1348
0.049 0.1 2227 0.932
0112 0228 -1874 1673
0.076 156 1904 0331
0.121 0246 2,048 0.664
0.087 0.177 -2.092 0.844
0062 0127 2143 1087
0057 0118 1978 028
0.067 0138 2,059 0.13
0.167 0.342 -1.492 2.094
0.069 0.141 2125 0.627
0048 0097 2.04 -1.786
0.086 0.176 -1.901 1.697
0.061 0125 214 0.506
0.075 0153 2019 0.063
0.064 0132 2058 0.1
0.066 0.136 -2.113 1.14
0.07 0.144 2.116 -0.653
0092 0.188 -1.893 024
0118 0244 -1.76 0501
0.103 0.212 -2 1.267
0.121 0.25 -1.847 026
0.06 0124 2144 0.937
0135 0279 -1.957 0.183
0.086 0.179 -2.009 1.332
0.067 0139 2102 1076
0088 0.182 2031 1203
0046 0.096 2,089 1629
0.048 0.099 2.18 -1.18
0.061 0125 2016 0048
0.122 0253 2019 0891
0.133 0276 2,003 0.554
0.093 0.192 -1.816 1.768
0.07 0.146 2078 1118
0056 0117 2,066 -1453

contrast 3 adjusted P value (%) Direction

0.227 0 Up
0.556 0 Up
0.658 0 Up
0911 0 Up
0.574 0 Up
1056 0 Up
077 0 Up
0.181 0 Up
1019 0 Up
1175 0 Up
0.793 0 Up
-0.469 0214 Up
1.108 0214 Up

1.06 0214 Up
0.868 0214 Up
0.519 0214 Up
0.856 0214 Up
0.624 0214 Up
0.103 0214 Up
0.635 0214 Up
0.978 0214 Up
0.734 0214 Up
0.382 0214 Up
0.024 0214 Up
064 0214 Up
0.69 0214 Up
0.841 0214 Up
0.625 0214 Up
0.513 0214 Up
092 0214 Up
0.409 0214 Up
1016 0214 Up
0.99 0214 Up
0.421 0214 Up
0.856 0214 Up
-0.439 0214 Up
0.986 0214 Up
0.679 0214 Up
0813 0214 Up
0.534 0214 Up

119 0214 Up
0.604 0214 Up
0.841 0214 Up
0415 0214 Up
0.706 0214 Up
0923 0214 Up
0.982 0214 Up
-0.406 0214 Up
1036 0214 Up
-0.762 0214 Up
0516 0214 Up
035 0214 Up
0.869 0214 Up
0.947 0214 Up
0976 0214 Up
0923 0214 Up
0.068 0214 Up
-0.018 0214 Up
0429 0214 Up
0.653 0214 Up
0.563 0214 Up
0475 0214 Up
0814 0214 Up
0.754 0214 Up
0.569 0214 Up
0.982 0214 Up
1152 0214 Up
0.204 0214 Up
0.702 0214 Up
0.511 0214 Up
1.053 0214 Up
0.532 0363 Up
0.801 0363 Up
0316 0363 Up
1.141 0363 Up
0815 0363 Up
0.766 0363 Up
0.694 0363 Up
1159 0363 Up
1036 0363 Up
-0.057 0363 Up
0.871 0363 Up
0358 0363 Up
032 0363 Up
0.927 0363 Up
1.042 0363 Up
1.048 0363 Up
0.657 0363 Up
-0.855 0363 Up
1.098 0363 Up
1133 0363 Up
0.546 0363 Up
1.082 0363 Up
0.756 0363 Up
0.961 0363 Up
0.524 0363 Up
0.677 0363 Up
0.589 0363 Up
0.447 0363 Up
0.676 0363 Up
1.085 0363 Up
-0.708 0363 Up
0.835 0363 Up
0.247 0363 Up
0.647 0363 Up
-0.506 0363 Up




Gene ID Gene Name Score (d) Numerator () (s+s0) contrast 1 contrast 2 contrast 3 adjusted P value (%) Direction
AOC3 770 0.482 1 0227 1872 1592 0.347 0363 Up
LAMAIL 9486 0.482 0.056 0.117 -2.147 0.846 0.794 0.363 Up
Csorfl3 2477 0482 0.065 0135 2099 0.52 09 0363 Up
KANK2 8818 0.481 0.067 0.14 2068 1216 0.602 0363 Up
AKAPI3 466 0481 0.049 0.101 2176 1061 0.722 0363 Up
TNFRSF10D 19723 0.481 0.075 0.155 -1.726 1.967 0.119 0.363 Up
PTGIR 15922 048 0.063 0131 209 0.495 0.909 0363 Up
TSHZ2 20085 048 0.074 0155 1944 1556 04 0363 Up
MAMDC2 12007 048 0.062 0.13 2112 0.75 0.814 Up
FABP4 5804 0.479 0.125 0.261 -1.372 2.169 -0.15 Up
WISPI 20897 0479 0.055 0114 2067 0.131 1.04 Up
SWAP70 18829 0479 0.054 0112 -1574 2249 0076 Up
ABCAG 42 0479 0.091 0.19 2.03 0.988 0.675 Up
ADAMTSI1 269 0.479 0.101 0211 -1.933 1.413 0.452 Up
VSNLI 20740 0479 0.108 0226 -1.956 1289 0.514 Up
LOC541471 11281 0478 0.083 0174 -1619 0816 1186 Up
KRTI7 9319 0478 0.228 0477 1774 1583 0.299 Up
DAP3 4567 0.478 0.049 0.104 2.162 -0.88 -0.788 Up
CR2 4142 0477 0.098 0206 0932 2384 047 Up
D4S234E 4545 0477 0.091 0.19 -1.441 2.165 <0112 Up
PECAMI 14810 0.477 0.067 0.14 -1.884 1.721 0.301 Up
KRT16P2 9318 0.477 0.217 0.455 -1.729 1.671 0.24 Up
STARDS 18661 0477 0.051 0.106 2149 0913 0.768 Up
ADIPORI 333 0477 0054 0114 2.04 1473 -0.484 Up
JAM2 8783 0477 0.069 0.144 2,007 1357 0.513 Up
MRPL9 12705 0.477 0.047 0.098 2.174 -0.737 -0.852 Up
comp 4020 0476 0.153 0.32 -1.894 0.09% 0.963 Up
MTIE 12791 0476 0.107 0224 2,006 0.751 0.758 Up
PARVA 14557 0.476 0.06 0.126 -2.073 1.185 0.618 Up
ST6GAL2 18617 0.476 0.083 0.174 -1.883 -0.183 1.069 Up
FAM20A 6009 0476 0073 0.154 2062 0.778 0.776 Up
C120rf70 1830 0475 0.072 0152 1987 0.129 0.999 Up
RORI 16743 0475 0.055 0117 2118 0.753 0.816 Up
MXRA7 12902 0.475 0.058 0.121 -2.109 0.818 0.785 Up
FAT4 6191 0475 0.037 0077 2236 1206 0.695 Up
RND3 16628 0475 0.114 0241 -1.494 2,053 0039 Up
ITGAV 8725 0.474 0.072 0.153 -2.036 1.075 0.643 Up
C200rf103 2234 0474 0.129 0272 1975 0.716 0.755 Up
RUSCI 17002 0474 0.051 0.107 2111 -1161 0647 Up
ITGAS 8716 0474 0.075 0.159 2012 0.343 0.926 Up
EIF5A2 5468 0.474 0.049 0.104 -2.097 0.29 0.992 Up
AKRIBIS 488 0.473 0.118 0.249 -0.978 2321 -0.42 Up
CADM3 2813 0473 0.058 0123 -1255 2373 0295 Up
IGFBP7 8409 0473 0.082 0175 2007 1.06 0.633 Up
MAGIX 11996 0.472 0.04 0.084 2.193 -1.162 -0.69 Up
MTIL 12796 0472 0.09 0203 1999 0.869 0.706 Up
cCLi4 3132 0472 0.142 0.3 -1391 2,087 0107 Up
FAM7AL 6115 0472 0046 0097 1947 0324 1161 Up
TROVE2 20036 0.472 0.045 0.095 2.149 -1.092 -0.696 Up
PDE2A 14730 0472 0.088 0.187 -1.685 1.88 0.132 Up
CLIP4 3822 0472 0.07 0.149 2041 0.972 0.687 Up
SPHK2 18419 0472 0.039 0083 2207 097 0775 Up
MMP23B 12540 0.471 0.092 0.196 -1.875 1.504 0.384 Up
CLDN5 3774 0.471 0.107 0.227 -1.721 1.767 0.196 Up
PRNP 15688 0471 0.095 0202 -1.986 1004 0.645 Up
C200rf194 2258 0471 0.054 0115 2,101 0.661 0.844 Up
ARHGAP20 918 0.471 0.054 0.116 -2.073 1.16 0.628 Up
F2R 5786 047 0.057 0121 2089 0.772 0.793 Up
KRT14 9315 047 0.235 0.5 1738 1571 0.285 Up
USPI3 20548 047 0.062 0131 2.06 0998 0686 Up
ANXA3 761 0.47 0.143 0.304 -1.289 2.143 -0.184 Up
NPR2 13642 047 0.071 0151 2039 0.762 0.77 Up
LMCD1 9727 047 0.087 0.184 193 0111 0.976 Up
CECR5-AS1 3467 047 0.071 0.151 2015 -1.095 0624 Up
KLF6 9208 0.469 0.05 0.107 -2.062 1.318 0.558 Up
LOC150622 10676 0.469 0.06 0127 -1.046 242 0424 Up
HOXA4 8090 0.469 0.057 0.12 2024 1326 0.535 Up
ITGBL1 8739 0469 0.117 0249 -1.903 0.166 0.939 Up
EFNB2 5378 0.469 0.078 0.167 -2.007 0.989 0.662 Up
ZFPM2 21206 0.469 0.07 0.15 2031 0.922 0.702 Up
ECII 5313 0.469 0.072 0153 2 -1158 059 Up
Clorf27 2201 0469 0.036 0.119 2055 -1.168 0615 Up
CXCL12 4398 0.468 0.072 0.155 -2.013 0.996 0.662 Up
VPST2 20728 0.468 0.048 0.103 2,09 114 0648 Up
KIAA0408 9027 0.468 0.053 0113 2,003 1442 0477 Up
3 5790 0.468 0.119 0254 -1.895 1258 0.494 Up
ZNF646 21624 0.467 0.026 0.055 223 -1.886 -0.418 Up
IGF2 8396 0.467 0.066 0.141 -1.99 125 0.548 Up
PEAKI 14806 0.467 0.053 0114 2078 101 0.691 Up
ADHIC 324 0.466 0.153 0.328 -1.265 2.126 -0.19 Up
Céorfl45 2533 0.466 0.075 0.16 -1.789 1.716 0.253 Up
PTGFRN 15921 0.466 0.07 0.149 -1.983 0.298 0.928 Up
KIF26A 9151 0.466 0.054 0.116 -1.609 2,095 0.005 Up
KCTDI12 8949 0.465 0.074 0.158 -1.984 1.108 0.602 Up
ADD3 321 0.465 0.104 0.223 -1.869 1.372 0.434 Up
TSNAX 20094 0.465 0.047 0.102 2014 -1.467 0472 Up
SPSBI 18490 0.464 0.067 0.144 2018 0.604 0.823 Up
TMEM43 19608 0.464 0.05 0.108 -2.088 0.698 0.822 Up
MFAP4 12347 0.463 0.163 0353 -1.788 1434 0.366 Up
GLISI 7157 0.463 0.075 0.161 -1827 0228 1058 Up
SYNPO 18864 0.463 0.054 0117 2022 1226 0.574 Up
KIAA0907 9049 0.463 0.044 0.096 2.062 -1.337 -0.551 Up
CERCAM 3536 0.463 0.061 0131 1812 037 1108 Up
13486 0.462 0.068 0.147 -1.985 0.383 0.895 Up
ETHEI 5713 0.462 0.056 0.121 -1.899 1594 0.36 Up
‘WISP2 20898 0.462 0.171 0.37 -1.833 0.124 0.919 Up
SPHK1 18418 0.462 0.067 0.146 2008 0.83 0.727 Up
EFEMP2 5364 0.461 0.073 0.159 1928 0.157 0.956 Up
PTGIS 15923 046 0.1 0218 -1.716 1675 0.231 Up
PTN 15939 0.46 0.155 0.337 -1.607 1.752 0.142 Up
LYSMDI 11921 0.46 0.063 0136 1.893 -1.495 0398 Up
SCN3B 17192 046 0.082 0178 1935 1129 0.567 Up
TCEALT 19092 0.459 0.063 0137 -1.701 1857 0.15 Up
SPIRE1 18445 0.459 0.051 0.112 0.952 -2.427 0.477 Up
RAB3A 16113 0.459 0.071 0.154 1638 -1.89 0103 Up
NSUN7 13736 0458 0.093 0203 0.986 1524 1137 Up




Gene ID Gene Name Score (d) Numerator () (s+s0) contrast 1 contrast 2 contrast 3 adjusted P value (%) Direction
SLC26A10 17801 0.458 0.138 188 0082 1027 0554 Up
LOC100132891 10294 0.458 0.028 0.062 -2.262 0.461 1.01 0.554 Up
PLSCR4 15219 0458 0.074 0.162 -1763 167 0.258 0554 Up
TNERSFI8 19731 0457 0.09 0197 1,589 -1.863 0088 0554 Up
Céorf174 2545 0457 0.06 0131 -2.006 0912 0.692 0554 Up
SYNDIG1 18851 0.457 0.13 0.284 -1.833 0.125 0.919 0.554 Up
RECQL 16396 0457 0.03 0.066 2213 0.379 1017 0554 Up
CDKNIC 3411 0457 0.09 0.197 -1.81 147 0.364 0554 Up
PANX2 14505 0457 0.033 0073 2,067 -1614 0441 0554 Up
ITGB3 8732 0.456 0.093 0.204 -1.918 0.441 0.836 0.554 Up
MYOID 12974 0.456 0.053 0115 2029 0.566 0.844 0554 Up
Cl4orf21 1886 0456 0.037 0.08 2,086 -1389 0542 0554 Up
CRISPLD2 4183 0456 0.065 0.142 -1.985 0.885 0.692 0554 Up
ADAMTSI2 271 0.456 0.045 0.098 -1.858 -0.354 1.126 0.554 Up
OTUD7B 14397 0.455 0.055 0.12 1922 -1.438 0436 0554 Up
3421 0455 0.108 0238 -1553 1845 0.076 0554 Up
7287 0454 0.064 0.141 -1822 0206 1047 0554 Up
12471 0.454 0.053 0.116 -1.98 0.257 0.943 0.554 Up
27 0454 0057 0126 1935 1331 0.486 0554 Up
489 0454 0.094 0208 1291 21 0,165 0554 Up
3237 0454 0.066 0.146 -1.969 0.542 0.822 0554 Up
19830 0.454 0.067 0.147 -1.786 1.625 0.288 0.554 Up
16364 0454 0.054 0.119 1922 1422 0.442 0554 Up
15389 0454 0.056 0123 -1.98 1149 0.583 0554 Up
11831 0454 0.072 0.158 -1.84 1462 0.383 0554 Up
20903 0.453 0.063 0.138 1.97 -1.002 -0.637 0.554 Up
19560 0453 0.072 0158 -1.955 0.687 0.756 0554 Up
9574 0453 0.051 0113 2021 0.94 0.689 0554 Up
7158 0453 0.086 0.19 1872 0.189 0914 0554 Up
20105 0.453 0.063 0.139 -1.977 0.821 0.714 0.554 Up
7863 0452 0.061 0135 1923 0173 0.947 0554 Up
5333 0452 0.118 0.26 -1388 093 1.109 0554 Up
4139 0452 0.076 0.168 1913 1108 0.564 0554 Up
12066 0.452 0.046 0.101 -2.052 0.801 0.762 0.554 Up
7258 0451 0.065 0.143 0974 1572 -L1s 0554 Up
20957 0451 0.063 0.139 -1.949 0.372 0.88 0554 Up
2915 0.451 0.055 0.123 1.856 -1.544 -0.358 0.554 Up
9270 0.451 0.219 0.486 -1.237 2.011 -0.158 0.554 Up
12462 0451 0.065 0.144 162 -1873 0.1 0554 Up
19451 0451 0.062 0137 -1307 2171 -0.185 0554 Up
14699 0.451 0.036 0.081 -2.068 1.339 0.553 0.554 Up
11682 0451 0.104 023 -1.849 0.221 0.889 0554 Up
4001 0451 0.129 0286 -1.749 0104 0.967 0554 Up
15124 0451 0.071 0.157 -1.908 1171 0.536 0554 Up
SNORAI16B 18173 0.451 0.053 0.118 1.842 -1.598 -0.329 0.554 Up
Cliorf93 1784 0451 0.043 0095 -1.68 1994 0.083 0554 Up
ZFANDS 21174 045 0.046 0.102 2 0.282 0.944 0554 Up
BAIAP3 1384 045 0.117 0259 1.841 -1.129 0518 0554 Up
MAP7D3 12072 0.45 0.041 0.091 -2.038 1.241 0.576 0.554 Up
SLC36A1 17880 045 0.062 0139 -1853 0056 1.002 0554 Up
EMX208 5538 0.449 0.079 0175 -1915 0.943 0.632 0554 Up
TBCE 19050 0.449 0.053 0.119 183 1.6 0322 0554 Up
JUN 8810 0.449 0.095 0.211 -1.756 1.479 0.331 0.554 Up
HOXA7 8093 0.449 0.126 0.28 -1782 1304 0416 0554 Up
PPPIRISA 15492 0.449 0.053 0118 -1.748 1754 0216 0554 Up
CAPNS 2876 0.449 0.078 0174 192 0.838 0.677 0554 Up
ZFP36L1 21192 0.449 0.072 0.16 -1.854 1.333 0.442 0.554 Up
CYHRI 4466 0.449 0.051 0114 1.947 1283 0511 0554 Up
RCBTB2 16367 0.449 0.052 0115 -185 1566 0.346 0554 Up
Cl20rf75 1834 0.449 0.086 0.191 -1.906 0.846 0.666 0554 Up
CCDC8R2 3102 0.448 0.074 0.164 -1.905 1.064 0.578 0.554 Up
FKBP9 6419 0.448 0.033 0073 2108 0.293 0.997 0554 Up
PBXI 14585 0.448 0.059 0131 197 0753 0738 0554 Up
DECR2 4722 0448 0.054 0.12 1975 -1.013 0635 0554 Up
PRELP 15614 0.447 0.025 0.056 -2.113 1.819 0.383 0.554 Up
GPC6 7333 0.447 0.076 017 -1877 0.255 0.89 0554 Up
IGFBP6 8408 0.446 0.083 0.186 -1831 1279 0.452 0554 Up
SLIT2 18035 0.446 0.067 0.15 -1936 0.741 0.725 0554 Up
PGMS 14896 0.446 0.053 0.118 -1.756 1.713 0.237 0.554 Up
BA4GALT3 1352 0.446 0.061 0138 1.951 0744 20731 0554 Up
KRTS 9347 0.446 0.197 0443 -1.688 1418 032 0833 Up
MGC50722 12415 0.446 0.067 0.151 1.851 -1328 0443 0833 Up
SGMS2 17483 0.446 0.057 0.128 -1.931 0317 0.893 0.833 Up
ALDHIA3 513 0.446 0.106 0238 -1.403 193 0038 0833 Up
CSRP2 4277 0.445 0.084 0.189 -1.865 1097 0.543 0833 Up
FHADI 6379 0445 0.03 0068 -1.986 1746 345 0833 Up
CTHRC1 4325 0.445 0.117 0.263 -1.833 0.339 0.832 0.833 Up
AKRIBI 486 0.445 0.072 0.161 -1.585 1825 0.101 0833 Up
TMEMI19 19459 0.445 0.099 0222 -1.809 1245 0454 0833 Up
SLC26A3 17804 0.445 0.085 0.191 0704 2.258 0539 0833 Up
ALDHIL2 516 0.444 0.073 0.164 -1.814 -0.007 0.962 0.833 Up
CXCL2 4403 0.444 0.138 0311 -1695 1452 031 0833 Up
cyp2uUl 4503 0.444 0.054 0122 1943 1103 0.582 0833 Up
SETDBI1 17425 0.444 0.038 0.084 1.952 -1.542 -0.41 0.833 Up
MEIS2 12286 0.444 0.065 0.145 -1.92 0.477 0.823 0.833 Up
FMOD 6645 0.444 0111 0249 -1825 1081 0.529 0833 Up
ARPC2 1032 0444 0.046 0.104 2006 0.815 0.732 0833 Up
EXOC8 5753 0.443 0.039 0.088 1.967 -1.42 -0.467 0.833 Up
STX6 18750 0.443 0.048 0.108 1.957 1178 0559 0833 Up
CNIH3 3895 0.443 0.079 0177 -1.887 0.514 0.79 0833 Up
PEX19 14840 0.443 0.057 0128 1.952 0757 0727 0833 Up
NVL 13837 0.443 0.069 0.156 1.896 -1.021 -0.59 0.833 Up
SOD3 18286 0442 0.127 0288 -1163 205 20213 0833 Up
C220rf13 2313 0442 0.039 0087 2015 0313 094 0833 Up
CNTNAP3 3940 0442 0.082 0.185 1775 1382 0.381 0833 Up
CLDNg 3777 0.441 0.091 0.207 -1.216 2.066 -0.191 0.833 Up
NR2F1 13676 0.441 0.137 0.312 -1.587 1.625 0.183 0.833 Up
FBXO28 6241 0.441 0.054 0121 195 0932 0655 0833 Up
ENPP2 5562 0441 0.077 0174 -1544 1817 0.083 0833 Up
RPS6KA3 16898 0.441 0.058 0.133 -1.833 1.4 0.404 0.833 Up
PLDI 15152 0.441 0.048 0.109 -1976 0.907 0.679 0833 Up
HSPG2 8245 044 0.046 0.104 1943 023 0.935 0833 Up
GIB2 7120 0.44 0.145 0329 1722 0017 0918 0833 Up
L3MBTL3 9473 0.44 0.048 0.109 -1.689 1.802 0.165 0.833 Up
MRAS 12639 044 0.087 0.197 1737 143 0.341 0833 Up
APOD 846 044 0.181 0413 0431 2.145 0638 0833 Up




Gene Name Score (d) Numerator () (s+s0) contrast 1 contrast 2 contrast 3 adjusted P value (%) Direction
3053 44 2 0118 . 1077 0587 0833 Up
9644 0.439 0.062 0.142 -1.913 0.864 0.663 0.833 Up
11899 0439 0.072 0.163 -1.879 0.966 0.603 0833 Up
14363 0439 0.047 0.107 198 0668 0777 0833 Up
3408 0439 0.065 0.147 -1.889 1.03 0.583 0833 Up
346 0.439 0.058 0.132 -1.915 0.998 0.61 0.833 Up
16044 0439 0.034 0077 2074 -1.06 0669 0833 Up
17341 0439 0.065 0.148 1728 1562 0.283 0833 Up
5387 0438 0.125 0286 -1821 0.771 0.652 0833 Up
8647 0.438 0.066 0.15 -1.768 1.46 0.345 0.833 Up
18389 0438 0.07 0.16 -1831 0.155 0.905 0833 Up
20656 0438 0.047 0.108 1944 1105 0.582 0833 Up
P2RY1 14425 0438 0.049 0112 1938 1069 0.593 0833 Up
SV2B 18822 0.438 0.08 0.183 -1.558 1.754 0.116 0.833 Up
SLAMF9 17652 0437 0.061 0.141 -1.708 0325 1034 0833 Up
COLI4AI 3966 0437 0.098 0224 1731 1363 0.365 0833 Up
PLEKHH2 15184 0437 0.051 0.116 -1.949 0.764 0.722 0833 Up
KLHL12 9226 0.437 0.037 0.085 1.923 -1.508 -0.408 0.833 Up
NPC2 13617 0437 0.061 0.14 -1.795 1411 0.379 0833 Up
COL4A2 3985 0437 0.073 0.167 -1874 0.556 0.766 0833 Up
EBFI 5293 0436 0.048 0111 -1.899 1248 0.501 0833 Up
LGALSI 9618 0.436 0.075 0.172 -1.858 0.448 0.802 0.833 Up
TWISTI 20277 0436 0.057 0.13 -1.866 1211 0.498 0833 Up
SIPRI 17046 0436 0.071 0.162 -1557 1776 0.106 0833 Up
DNA2 4986 0436 0.046 0.105 1.965 0862 0691 0833 Up
STK17B 18691 0.435 0.058 0.134 -1.864 1.181 0.509 0.833 Up
KLK4 9266 0435 0.056 0128 1917 0.611 0.767 0833 Up
MMP7 12547 0435 0.195 0449 -1.766 0914 0.564 0833 Up
PKIA 15079 0435 0.091 0209 -1341 1934 20072 0833 Up
SEMA4G 17316 0.435 0.033 0.077 2.063 -0.581 -0.856 0.833 Up
HYMAI 8289 0435 0.071 0.162 -1.867 0.904 0.622 0833 Up
FAMI89B 5978 0435 0.046 0.106 1.867 -139% 0423 0833 Up
FAM203A 6007 0435 0.065 0.148 1.889 0765 0.69 0833 Up
CDHI3 3350 0.435 0.067 0.154 -1.837 0.217 0.883 0.833 Up
SDHC 17243 0435 0.047 0.108 1.931 -1.097 0578 0833 Up
LOC728875 11559 0435 0.082 0.189 -1842 0476 0.782 0833 Up
GRIDI 7502 0.435 0.023 0.053 -2.136 1.658 0.46 0.833 Up
FAM69A 6085 0435 0.045 0103 1921 0.236 0.921 0833 Up
PDEIB 14728 0434 0.042 0097 -1.888 1.408 043 0833 Up
PRRI9 15746 0434 0.036 0129 1.816 -1363 041 0833 Up
LIXIL 9715 0.434 0.04 0.092 -1.81 1.646 0.293 0.833 Up
PALMD 14494 0.434 0.073 0.167 -1.452 1.873 0.011 0.833 Up
DNMIP46 5067 0434 0.053 0123 -1.674 1698 02 0833 Up
LOCI00131826 10220 0433 0.048 0.11 1923 0.379 0.864 0833 Up
Cl3orf33 1846 0.433 0.093 0.215 -1.768 1.197 0.451 0.833 Up
GABARAPLI 6854 0433 0.055 0126 1913 0.79 0.693 0833 Up
ARFGAP2 897 0433 0.035 0081 2026 0482 0877 0833 Up
SIPR2 17047 0433 0.054 0125 -1.83 1321 0434 0833 Up
ACTBL2 204 0.433 0.069 0.159 -1.801 1.24 0.452 0.833 Up
ANKH 647 0432 0.069 0.16 -1.863 0.825 0.652 0833 Up
EPB41L2 5587 0432 0.058 0133 -1.884 0.975 0.602 0833 Up
A2M 5 0432 0.084 0.195 -1821 0.959 0.576 0833 Up
TPST1 19874 0.432 0.067 0.155 -1.803 0.118 0.906 0.833 Up
SYPL2 18871 0432 0.04 0092 -1.744 1747 0217 0833 Up
PCDHIS 14608 0432 0.052 0.12 -1919 0.661 0.748 0833 Up
MRPL21 12671 0432 0.06 0.139 1.864 0363 0839 0833 Up
LATS2 9526 0.432 0.043 0.1 -1.922 1.192 0.535 0.833 Up
FAMI01B 5825 0432 0.074 0171 -1836 0417 0.803 0833 Up
Cspe2 4233 0432 0.042 0097 -1.895 1334 0.463 0833 Up
HAX1 7724 0431 0.045 0.105 1.949 0804 -0.706 0833 Up
COL7A1 4000 0.431 0.093 0.216 -1.755 0.111 0.883 0.833 Up




Add. Table 3: G;

ly diBdZnt exUkssed genes between the metabHic cluste L ¢3 and L c0

Gene ID Gene Name Score (d) Numerator (r) (s+s0) Fold Change adjusted P value (%) Direction
CAL Di28 891D 1303 130D 71588 1 4U
pT@ 38038 -530 13NN 13N 71982 1 4U
@ 6p0 3DF2- - N8 1¥3F 130F 7nsD 1 4U

E6 CTR 3N-. - N0 353 191D TIRNF 1 4U

TL MP3 L. - \F8 15FD 15. F ns-- 1 4U

pPTXL - 3-8 -D8 188. 133N TF-0 1 4U
ACY0 82.D -328 130 13D 712-D 1 4U

SOHBD --2D - ¥DD 1¥28 1382F B2 1 4U

TAYL EO F203 -¥-8 18NN 130D 715 8N 1 4U

6SE60 010 -¥23 35128 130- TI¥F2N 1 4U
CR B8N -3N8 1¥D 13-D TIRFN 1 4U

SVYF3 -80N - 3N 35103 1902 71583 1 4U
™ Q@ .FN -B-- 1¥1- 1822 TIR83 1 4U

S6TP3 0ND8 - 80N 19N 132 75-0 1 4U

Ko To A-3 381D -3813 1383 13N 752, 1 4U
ACY3 82.F -5F3 3383 198N 750 1 4U
S6r0 0.-- -52. 15-F 13 TL¥80 1 4U

IMOM3 FD30 -528 1808 133N nR.3 1 4U
XL 3 N F -5 1523 1930 TIR38 1 4U
SRR3 2.11 -2N) 3980 19N TIIF- 1 4U
SECI -202 -2F0 15 F2 1903 TSN 1 4U
SPO11 200N -283 153D 15 F 72N 1 4U
1L MO FF2. -212 3918 1IN TF¥ID 1 4U

STPR33 28N -9.- 151- 1933 T¥33 1 4U
RAOR 322.8 -98 188F 1323 72N 1 4U

ECIK3X% 3.0-- -90F 1¥13 18-0 715 FD 1 4U
PYMEB 38080 -900 1522 1312 71230 1 4U

696p30 -F8 -390 1¥.D 18F8 TN 1 4U

L GYK2 30D0F -9IN 13NF 13.F 71582 1 4U
TEKpO 33NFD -38.8 1822 130D TIRFD 1 4U

S31HA31 3FN8 - 3NF TN 13NN R 1 4U

SSPSN 21.. -3N8 1D 130D TI¥3D 1 4U

CY6 Gp DN - 3F8 18N 18-3 71538 1 4U
TAf3 F20F - 38N 15FN 1832 D 1 4U
YoM 3F8-0 -383 13N 18-3 7510 1 4U
LVTY 30. 8N -3-F 13N 19030 71832 1 4U
SGYp3 -0DF -3- 151N 15 . TINB2 1 4U

6YYPS2 31-F -30 1888 1328 TFN 1 4U

pEpRO3 38.8. -3832 1¥-- 138F TF0. 1 4U
SP2F 2088 -312 33N 19NN 7R3 1 4U
YCQ 3F810 -3.D 138 1920 7328 1 4U

LYr® 30r2. -3.D 1¥N 13FD 75.0 1 4U

6RO63 8- -5 - 13N 1910 751D 1 4U
RPR 320ND -5.2 1¥.3 13F. ns.. 1 4U

TOVPF FN2 -SIF. 188 1328 B3 1 4U

S. HAB08 OFN- -SIF- 1812 130- 751, 1 4U

@11631 3D108 -SIF- 1¥.8 1308 75 B 1 4U
AEQ) 8D -SF 1518 133D 738 1 4U
AL p3 880. -5180 1300 13DN NF-2 1 4U

SSHAFO 081. -8-. 1303 13DN 7512 1 4U
TMGK FFDF -5-D 3982 123 TRIF 1 4U
pT92 38012 -5-- 15.. 1302 71980 1 4U
pEYI 38..1 -512N 1503 181- 21 1 4U

LX31loC 30-F2 -52- 132. 13N TRIF 1 4U

PpVGI2 8381 -50. 13N 193. 75 3- 1 4U
ESI- 3.330 -5108 1¥1F 138 728 1 4U
S6r3 0.-2 =50 138D 13NN s, 1 4U
STL p 2Nl -510 1013 13D n3-F 1 4U
PTS3 -.2F -53. 1282 151NN 7120- 1 4U

Y6GP3 3F083 -53. 35NN 13903 73D 1 4U
P992 -.20 -5138 1808 13-0 752 1 4U
SRRO 2.13 25.8 1IN 1910 75-N 1 4U
IMG FFD8 25.- 3308 1N TIFIN 1 4U
Gr Ap3 3NND- 25. 153N 1318 T2F 1 4U
CpON DD 23 ND 1¥.D 1308 TIB 1 4U

R6p3T2 321FF 25N 15.F 1380- TINI- 1 4U

P6SE2 -888 25F. 1IN 13.D 7153D 1 4U

Y6 YYAG) 3F0-1 238N 1513 190N TR0F 1 4U
6pSPP3 NI 25-D 138. 191D 7¥F-D 1 4U
pPTX 2 3-ID> 23-F 1¥ND 13D TIIBN 1 4U

L K03P0O 303-N 252D 1512 130 BN 1 4U
pMPR 380. F 250- 1880 13-3 7.8 1 4U

6Po03S 20- 25 1F 35lF. 19D 738 1 4U

ITRPS- FF8N 251- 15N 130- TDI- 1 4U
LVT. 30. 8F 2313 138. 13.8 TIR83 1 4U

Go MOO 3D8FF 2N3 15NN 1308 722 1 4U

6YT-S . F 23NN 1¥D 132 TIBFO 1 4U

0 KO N22 23\, 1388 1933 TF-- 1 4U

C6PP-8K FNN 23\ 180D 138 715 3N 1 4U
ERGB 3. DN 238F 1520 1330 322 1 4U

TKTR8 Fo11 2N 8 132D 13.0 723 1 4U

IMOT0 FF. - 2N3 12DN 15 . TINIL. 1 4U

L pfTO 30F2- 23\ 130F 13N BRIF 1 4U

PpVGIo 83-. 23D 180D 138 732 1 4U
RpS0O 32F3D 238N 15 1IN 131D TNF-0 1 4U
03. DFF2 238D IN- 1903 71302 1 4U

pYOP3 38FF1 2383 15F- 1300 TIR83 1 4U

SATIO 2-IN 258 1520 1332 TIONN 1 4U
Gac93 3D B 2NI8 1¥10 138N 752D 1 4U
RRL E 32888 2D N ININ 1932 71982 1 4U
pCL8 3-NF 2D D 12F8 15.F ¥ 1 4U

GAYpRC3 3D 10 2D F 15 DN 130F TI2DN 1 4U

TKTRO F3.. 210 1NN 1922 720 1 4U

GAL 6 86 323D 23N 1¥2 13DN 7523 1 4U
GR60 3N322 298 I8IN 182- TIOFO 1 4U
A Yp- 3D-. 230D 1NFF 190. 7522 1 4U

™ QT . FNF 29¥0 1513 131D 7150. 1 4U

pY9S6 38F- 29BN 1¥D 13DN 7R3 1 4U

K6So00 32FF 23RF 19. 151DD TIFON 1 4U
p®3 3-.N 298- 1¥-- 1308 71320 1 4U

P-(G02-A -8-8 2383 1¥- 13D8 BI. - 1 4U




Gene ID Gene Name Score (d) Numerator (r) (s+s0) Fold Change adjusted P value (%) Direction
LLp3. 3082F DD 15N EEDY 1 4U
ERIYG 31P 3.2 2D2 1R0F 13- DN 1 4uU
r ACIS 01F8D 292N 15.. 1822 TFN 1 4U
XTKp2 N8 292D 1FIN 13F2 RED] 1 4U
pPMPRT3 380.D 2920 1828 18-2 TR 1 4U
9 YE3D .23, 290. 388N 153N 7DD 1 4U
G 0K 3NN0 2908 18F8 13880 TFFO 1 4U
PECXG 38.02 25902 1£.D 13\D 71F00 1 4U
SIX 28FN 2900 18D 13888 7188 1 4U
L MOP3 30F12 2988 1902 18.8 71F03 1 4U
rST OIF-F 2980 158- 1500 BRA3 1 4U
9 YE3- .238 2983 3§32 1528 103 1 4U
9 YE3Fp0 23N 2918 3812 151F LB 1 4U
PMS9 33 8IN 2912 18 1828 N5 1F 1 4U
16LN6 F32. 2910 1510 18F2 NRIF 1 4U
pPTXL D 3-I0D 2913 183. 1$- 7IBFF 1 4U
YRP2 3FFON 2F.F 138 193. B38- 1 4U
PTG Y- 3803. 25N 1830 192, NF-F 1 4uU
TpS6 EO 33F.8 2§D 1923 15, 712.8 1 4U
PGE 83N 250D 1933 1SFF 72F0 1 4uU
S6PL2 032 2§12 1513 181, BS.F 1 4U
YRI3D8 3FEDI 2FFF 121N 15N 7F2D 1 4U
T6 VR 80N 2FF8 18-8 1$-. TIFF2 1 4U
GAYpXRI3 D11 2¥F2 1900 18.D 723N 1 4U
16 Kp- 8NI- 25F0 13N 19- NF-2 1 4U
9 YE-Op L2-F 2§80 188D 1380 715 0- 1 4U
SOSTO -2 25§83 152. 198D 75 -- 1 4U
SPMB 2-03 288 19FF 193 7IFD 1 4uU
EpY¥H N3 2F-. 181 13- 721D 1 4U
9TIO .01- 25-. 18D 188, 751- 1 4U
GW6 pDI 3NN 2§-- 120 181- BIN 1 4U
ECIKY0 3.0-. 2%- 188N 1882 7F2- 1 4uU
SSPS2 2182 2§2N 1982 18.F 5.2 1 4U
GSR2K 38,0 2§22 1818 182. 71200 1 4U
T2L KET2 -2 2§22 122D 13.2 BION 1 4U
G6YST3 3NF2 2§20 1303 1900. 715 FD 1 4U
1MOQ3 FIB. 250. 198 192N NF. - 1 4U
6 M52 i 25§00 1D0 1918 753N 1 4U
Tolp JF-0 250 1518 I3NF 79,3 1 4U
6Y6p2 ND 2¥3N 15.D 182D 715 F0 1 4U
C6G F.-0 2§32 1908 1932 TIROF 1 4U
L6TT 30118 253 1502 198F BIN 1 4U
633 --F 2§10 1908 1938 0R28 1 4U
L16p- 302-D 2§10 35 F 121- TRIN 1 4U
£1p2F 033.3 2§10 1FF. 18NF TI2FD 1 4U
EGS00P2 O11F. 2F 158N 130D TF80 1 4U
EGf0 0118 28.8 15.N 182N 750 1 4U
GMKp 3NODF 28.8 1203 15N 7120D 1 4U
0MO62 NIN 28.3 1DIN 13.D 752N 1 4U
LLp02K 308-1 28N 13N 1800 TIIRF 1 4U
pY9SPKp 38F80 28N 1520 1SDF 75- 1 4U
GYVO INN 28F. 1FF8 I8N 7523 1 4U
L VMBK 30.10 2RF8 1288 181N 75.D 1 4U
G2 3NI2F 28F2 1D 13.. TIDF8 1 4U
TYYR-ST 33N3 28F0 15D 1828 7153N 1 4U
SFHA- 8 0822 28F 183D 1$-8 TINEN 1 4u
SST3- 2320 288D 15.N 19N TIF 1 4U
SLEL?2 2N 288F 1820 188 TIBNN 1 4U
S3G 0322 2880 1FF- 13N\D 2. 1 4U
6RO62 F3 2883 15.. 19N BI.F 1 4U
0MO6 - N1 28-F 12F3 1810 721 1 4U
pAS6L 3 3-N1 28-F 158D 180. ne.. 1 4U
10YT3 8DND 28-0 182- 1983 TIIBN 1 4U
16G F3NI 28-3 1288 18 7198, 1 4U
L AEETDS 30228 2820 15N 182D B3 1 4U
pYOP2 38FF0 280- 183N 13-D TIF 1 4U
6P036 200 280- 13D 19-N e 1 4U
YKp- 3F282 280 3510- 19.3 7R 1 4U
E4 KKF 01083 283D 1FF8 18N 71282 1 4U
APR3 822- 2832 19¥8 103N 71900 1 4U
r RT3 01D 1 2833 1.0 13.D 7NF.D 1 4U
L E30 300N 283 1¥N) 18.- 7198- 1 4U
STPRN 200D 283 1F2N 13N BINF 1 4U
0383 DN 281 15F2 1820 TFS 1 4U
CpY30- 2D 25.. 18- 188N 71913 1 4U
SSPSNI 2311 25.N 1FF 18N 7128 1 4U
6P6LEG OF. 25.D 15F0 1SN TIRFF 1 4U
S3Y 0323 25.F 1$-N 1388 723N 1 4U
[XOR F2N 25.F 1¥-F 18N8 12N 1 4U
6YT-6 .8 25.- 12FN 1818 BIN 1 4U
PY$9 TA3 38FOD 25NN 1D 190F 71828 1 4U
EX p0 3.2-- 25N 1DID 1912 BN 1 4U
pYATp 38F3- 25N 13D 18- 75N 1 4U
AoPO 8-12 2500 IRIF 18-F 72N 1 4U
SpOL 3 -32D 25D I18-F 138D 78-8 1 4U
AR 3NN 25FD IR8.F 1300 72N 1 4U
CRC33 -3 25F8 18.D 1800 722D 1 4U
Slo 28F0 25F3 1808 1SFF 719D 1 4U
QSIS0 %3 NE-D 258F 15-- 180N nEF.. 1 4U
EpL 0 3,882 25 8F I8N 18D 7512 1 4U
6PP2 203 258 1N 18.D 715 F8 1 4U
9TI30 L3N 25-0 152F 130D 71F80 120- 4U
6R9YP28 F.8 25- 1NI8 192- N5 F2 120- 4U
R®3 32-8F 252N 1¥-8 [ENNN 7198- 120- 4U
9 YE§ .2-D 2520 320F 12N NF-N 120- 4U
EL AL 0116 3. 88- 2523 15-. 1823 71288 120- 4U
16L-26 Fl-1 252 1588 18-3 TRIN 120- 4U
EWGEO 010DN 252 1588 18.3 TN 120- 4U
S33HBF Eb ) 25 0F 15-0 1SND 7153- 120- 4U
9 X 0F6 .383 2508 12N 1830 T3, 120- 4U
oMO6 D N2 2502 130F 19-3 715D 120- 4uU
1GET3 FIXF 2500 1D8 193N TIRF. 120- 4U




Gene ID Gene Name Score (d) Numerator (r) (s+s0) Fold Change adjusted P value (%) Direction
ARpp0 88F0 253N - 138N nR-2 120- 4U
CcYp %2D 2538 3510F 2 1D 120- 4U
pPCIY6 3-I%- 251D 1£.D 1918 71920 120- 4U
£$20 30K 03312 251D 1982 15D N2 F 120- 4U
WP YNF 01NSF 25 1F 138D 19- 715 0F 120- 4U
PP A06 321 2518 1503 13N TIR3F 120- 4U
1TR6 FF3D 2518 19N 1832 7188- 120- 4U
pIPO 38108 251- 15-0 182 71503 120- 4U
STPRS 20D 2513 1D 190 NFFN 120- 4U
Qw2 3NONE 29.. 1308 19F B30- 120- 4U
G306 - 3DFFF 22.D 12N 1832 LEDY 120- 4uU
69Y3S3 -N 22.F 1¥F3 18.8 713D 120- 4U
TYS00 338D 29.- 1918 1588 752N 120- 4U
pPP3Y386 38-.0 29.- 19F. 131, 715 8D 120- 4U
Y4RO3E3 3F... 22.2 1FIN 18D 721D 120- 4U
9% X) 10 29.3 1988 15-F 7523 120- 4u
G856 YR6 3D 308-D 29NN BN 18.- 7202 120- 4U
0AC3 NI 29N 1833 1983 7R3, 120- 4U
WE¥ 01.2N 29N 1882 18F- AN 120- 4U
ESA6 TD 3.1.0 220D 15-3 1823 BIF3 120- 4U
06Kp- IFN8 290F 15-N 1822 712-D 120- 4U
LLA 3080- 220F [EON 18D 7n2.2 120- 4U
SMT3-63 2. FF 291F 18- 13.- 7NF32 120- 4U
RM 328.N 2918 192- 193N 71502 120- 4U
9%61-1N . 10D 2902 12-F 1812 12 120- 4U
fRI211p3 032. 1 29F. 18-D 13F0 N2LF 120- 4U
P4Gp3 803D 29F. 1¥F. 18.N 712D 120- 4U
@RO2 3NDF2 298. 19N 15N B 0- 120- 4U
6 Yo C6 pON . OF 298 120 1832 71382 120- 4U
69 Y3K3 N 298N I1R1F 1383 752, 120- 4U
MPf- 32N- 298- 19088 15I0F 75 .- 120- 4U
GRS6 38380 28-. 12-- 1812 TIRNE- 120- 4U
SRER6 p2 2.-1 29N 18-8 18F2 752N 120- 4U
PRL 3p-F 81FD 222F 1200 1830 7NR-0 120- 4U
TYX2 3321 290F [EDN 1802 792F 120- 4U
PSR -F2- 2228 1308 198 71202 120- 4U
9TON .oDI 2928 3R2F 15F3 BIND 120- 4u
S33HB2 3N 2220 121- 15.3 75-2 120- 4U
J4R NG 1 2208 1$-3 18.2 715.0- 120- 4U
RoG 32-80 2200 19.F 15N 7500 120- 4U
X 01FR 2203 183 188- 738 120- 4U
6Tp90 8F. 220 19N 1588 BR30 120- 4U
EGof2 O1INF 293. 1823 18F TN 120- 4U
SMT3NG 3 2.Di 293N 18.2 18D TSF 120- 4U
J6LO NN 293F 15-2 1822 722 120- 4U
£AK3 033FF 221D 1802 138N 7138 120- 4U
GpY3 3DI-F 291F 15.D 138 NF-N 120- 4U
Go2pOP 06 3IRON 2210 I5F 182. 723N 120- 4U
SPIR3S 233 2213 1F1- 13N LEDY 120- 4U
et 3DBF8 29.. 1823 18F3 7. - 120- 4U
GSo¥3 380D 29.2 1533 18N8 712-D 1R2F 4uU
9SRoN N8 29.0 15F- 18-3 71908 1R2F 4U
LLpo 3082D 29N 1¥N) 191D N5-F 1R2F 4U
™Y 33FD 29ND 1908 1SIFN 103 1R2F 4U
SRY¥3 2,08 29N 19D 15N 712D I1R2F 4U
L YS0 30F-3 29N 158D 19 TSF. 1R2F 4U
PER 38.2. 29N 35NN 1220 71D 1R2F 4uU
SSRPO 23F2 29N 150 18-D TFF. 1R2F 4U
EYpS3 012N 29N ISF. 18-2 738D 1R2F 4U
®2 N30 29N 15.0F 182 RN 1R2F 4U
AEo0 A3 8082 29N 12N 1338 B2 1R2F 4U
TMS 381F00 31FDF 29D 12.D 1800 DDF 1R2F 4U
106P3 F2D 298. 1DIN 151F- ENY 1R2F 4U
XGTY NF. - 298. 1FNF 1933 TR3F 1R2F 4U
6 TMO8 8F- 298N 121N 15.8 B 1R2F 4uU
S3- HAB2. 3NF8 298F 150- 132 TIRN 1R2F 4U
1c13 F2-3 2980 1910 151F0 TDFF I1R2F 4U
pS®D 3-F.. 29-N 1923 1508 NF2. 1R2F 4U
PECQ 38.0D 29-F 121N 15.8 TP 1R2F 4U
P9 % 381D 29- 15-2 18.N BROF 1R2F 4U
SVEo2 -828 29- 18F8 13D TIDF- 1R2F 4U
Al060 82FF 292N 128 183N 78-- 1R2F 4U
9SRL K- No0- 292N 1800 13D 71280 1R2F 4U
GYpO 3N8-F 292N 1583 1913 733, IR2F 4U
SToY2 28F8 292D 181D 138D 71233 182F 4U
GVpTO 3NB 292F 190D 15\8 B3 1R2F 4U
Cpo2 DF. 202F 1528 18.F NF-0 1R2F 4U
16C3 ND 2928 12.D 13802 71200 1R2F 4U
YpGF9 62 3FNN 2922 1280 180 ne.. 1R2F 4U
SAG 28-8 290N 150D 13-N 738D 1R2F 4U
JECK3 NOD 290D 19F- 1832 TIR3F 1R2F 4U
p6 TL P 3--.- 290F 13- 188, 71828 1R2F 4U
1fPD FNOF 290F 192, 18.N 7R3, 1R2F 4U
RYOI3 32FIF 2908 15F 19.N TFF- 1R2F 4U
SMT386 3 2.FD 2908 15N 1380 TIDFD 1R2F 4U
10VP3 FN3N 2902 153, 182 TFOF 1R2F 4U
YSKEKO 3F2FD 2903 1283 181, 75-D 1R2F 4U
S3DHAR3 o111 2903 150D 1822 71928 1R2F 4U
J6113 NN 290 198F 1833 71530 1R2F 4U
XCTKpF NIN 290 182N 1SFD 75-D 1R2F 4U
PATX 3-ND 293N 1512 18-D 71202 1R2F 4U
S9L E0 202- 2930 19.. 13.2 2.3 1R2F 4U
rS6R OIF-8 293 190D 190F TNRUF 1R2F 4U
L 6 ERO 3032N 291. 1$33 13. NFD 182F 4U
6Qpip3 NF 291D 152- 1828 75-N 1R2F 4U
EL AL - 8K 3.F33 291F 1502 [EON BIN 1R2F 4U
GTS06 3- 3DN. 291- 12\ 13803 TSN 1R2F 4U
A Ypo 3D--N 2912 13N 1908 7152 1R2F 4U
96R90 N8N 2912 153N 1823 NR10 1R2F 4U
6RCpETO F22 2910 IFIN 13. TIB2N 1R2F 4U
6 REOY0 %3 2913 123 15.D 7120 1R2F 4U
CcTX D3-. 28.N 1838 18F3 NFN 1R2F 4U




Gene ID Gene Name Score (d) Numerator (r) (s+s0) Fold Change adjusted P value (%) Direction
T03T 28.D EDY 15N TF2 1R2F U
L6pDP2 30100 28.F 1988 15N 71208 1R2F 4U
16E- F3.3 28.F 1900 15D 2. £ 4U
6TP0362 832 28.F 1983 1928 D2 1R2F 4U
GITR32 3NI0. 28.8 1830 18F TIRND 1R2F 4U
16E3 F3NN 28.- 1582 191- 7158 1R2F 4U
pS@8 3-F.D 28.2 1008 15N 71933 1R2F 4U
GL6P. 3NIFO 28.0 102N 1508 7n%-- 1R2F 4U
SO3HR- 00.F 28N 19. - 15.0 T38-N 1R2F 4U
pPA3K 3-DON 23N 190D 15ND 7128 1R2F 4U
Ep82x 3Nl 28N 158. 18-~ TININ 1R2F 4U
63 33D 28N 153 180. TIDIN 1R2F 4U
EL AL 31. 3.-83 28N 1522 182F BRD 1R2F 4U
12 8D 1 28N 19F 192, TIRSF 1R2F 4U
1CID F2F1 28N 12FN 183F 71928 1R2F 4U
T6L G- .-N 28DF 19F8 1838 7IS8F 1R2F 4U
TS6E . 82F 2802 1208 183D 7138.0 1R2F 4U
pT6S. 3830- 28F0 15-2 13- 7198- 1R2F 4U
SMT3F6 3 2. FN 28F 153N 1820 71203 1R2F 4U
EYX 0. 3..8N 2888 15-2 19. . B2 138 4U
XT10 N.F 2882 1538 1820 71500 138 4U
P6KO -8-. 28-. 158N 18-8 71930 138 4U
L YCpYI 30F-N 28-N 19.2 15.2 71508 138 4U
KCR 3811 28-8 IRIN 18F3 75D 138 4U
pPpPR 3-D% 28-- 18F8 1SN 71583 138 4U
YRI3--6 3FF82 28-- 12, 130- 7382 138 4U
TMS3113. 1.2, 312F2 28-2 150D 1880 7F-D 138 4U
S@S0 022 28-2 1900 151ND 71520 138 4uU
RLK 32822 28-0 1. 18.3 TIR0D 138 4U
ERRX 3. IFF 28-3 153 19. 718, 138 4U
s2 02N 28- 1F-N 191F N2 138 4U
J6L2 NN 282N 12-0 181. 71202 138 4uU
6 SEKTO 01- 282N 15-- 18-3 TIF88 138 4U
YS6 RO 3F2F- 282- 128F 183- 715 8F 138 4U
GIS2N6 0 3IN 3 2822 1920 IS1F 71888 138 4uU
LY6G 30F2. 2822 18N8 13\D 71503 138 4U
L 6p3K 30122 2820 1513 BN LEDY 138 4U
GYV3 INND 2820 18- 180D 7582 138 4U
r p@F 01088 280N 120 1810 75N 138 4U
EL AL 33. 3.-8. 280N 1¥- 1918 TFF 138 4U
SE® 282 280N 19D1- 1908 715.0D 138 4U
GRA 3N-. 280N 1§00 1938 TN 138 4U
ELAL-2 3.FIN 280F 1DFF 15\8 TIDEN 138 4U
RAIL 32282 2808 19N 151, nF2 138 4U
YKL B 3F22N 2808 1500 13883 BN 138 4U
G@PpY 300-D 2808 153 18.8 723F 138 4U
RAlo 32283 280- 1880 13D 7190 138 4U
L 6 CATO 33..3 2802 15.0F 182F NR12 138 4U
ESID 3.332 2802 151- 150. B523 138 4U
6KS6F -0 2800 1828 1308 74,8 138 4U
LE3L 30D D 283N [EYH 1908. 7130. 138 4U
PR6JKS 813N 283D 122D I8IN 9. 138 4U
S0080 28N8 283 192- 191- 1222 138 4U
CCE8 DI 281. 182F 1300 7222 138 4U
SOST30 -2.N 281F 150D 182N TIDFD 138 4U
f1p2FTO 033.2 231F 181D 13F2 TIRSF 138 4u
6 Yo C6p0l 3N 281- 1922 181D 9. F 138 4U
GYpOo 38-D 2812 1523 1912 792 138 4U
selsB1 3m2-3 2812 15-8 18-2 75 .- JEN] 4U
YMKM2 3F22 2810 193F 1810 LEN 138 4U
XN 828 25INF 19-- 15D BI2- 158 4U
LOY68 30.13 258 152 182. 719D 138 4U
6Cp6 E- -1 25N 1923 181D GEDY 138 4U
YoM 3F.F2 251N 1518 1823 N2LF 138 4U
CTENPO BN 251N 128D 183F 718-3 138 4uU
69 Y3K38 BN 25N 190N 1982 0820 138 4U
@l 30881 25N 198D 15N BN 138 4U
696p32 -FF 251N 1N 13.2 TI22N 138 4U
LAC2 30008 25D 151N 1822 71308 138 4U
pYRp 38FNN 25D IRFF 1SN LENNS 138 4U
EpL - 388 25IF. 1582 13-D 19 138 4U
6P YKO 28F 25IF. 1828 18D TIREN 138 4uU
6REOY3 81 251F8 18- 18DF 7150 158 4U
4656 01202 25IF- 1282 1838 NSIF 138 4U
flo0- 0338 25IF- 1808 1808 71208 138 4U
P6SE3 -882 25F0 150- 191- 7512 138 4U
AIRKO 82IN 2510 15 F0 1883 TR 138 4U
£SS0S0- 03321 25IF 1830 13FD 730 138 4U
p6 TTP 3o 1 25IF 12N 180F 1222 138 4U
LVML3 30... - 25188 1212 15, 71208 158 4U
YMY3 3FD 2 25188 19.N 15.N 710D 138 4U
66GG oD 25182 1208 1503 TNF2. 138 4uU
9TIF L0IN 25182 123N 181- 715 FD 138 4U
Ko To A00 381- 2518 IRIN 1SFD 752, 138 4U
RESA 32DD 251-8 198- 183F NFN 138 4U
Y0 NON 25-8 15-D 18-D TIN08 138 4U
pPCIYK 3-I%8 251-8 180- 1800 7130. 138 4U
L Y6p0 30F2N 251-3 12N 1808 B33 138 4U
ApCR 88.. 25123 18.F 151F8 718D 138 4U
LPI® 3003N 2510D 12-. 1838 783F 138 4U
60L 8 2510D IRIF 18FD TN 138 4uU
SMTF6 0 2.8 25102 138 191- TI5F8 138 4U
6EI2 33-D 25102 15N 18F TIDON 138 4U
KKMO3 3-31 25100 1N [EON) 75N 138 4U
6RCpET- F28 25100 1300 [EON TN 138 4U
loT2 2N 25100 19-N 15N BID 138 4uU
CpY6 3 D3l 25103 151- 182- TIIN 138 4U
PPYO -FD 2510 153D 182N 7122- 138 4U
S3QERI- 030- 2513. 19- 1832 71982 138 4U
SPOTS 2-1N 2513. 12.0 182 TFSF 138 4U
SOIHA 12 002- 253N 1£.D 1923 75N 138 4U
Spf 32, 253D 1518 188F TFIN 138 4U




Gene ID Gene Name Score (d) Numerator (r) (s+s0) Fold Change adjusted P value (%) Direction
GMR3 3NBF 2513F 19N 72-8 138 U
TMSON22. 0 31D 8 25130 153. 182 71 138 4U
L CS0-312 302.D 25130 150N 191. 71302 138 4U
ST¥2 2N03 25133 19-2 183- 7138- 138 4U
RCIY 32-2D 2513 182N 18D 702 138 4U
@63 3DIg3 251N 39ND 150N 7DD 138 4U
XCTKpD N1 251N 15.F 13F8 NR12 3932 4U
S32HAR2 INF 25118 1513 19 e 3932 4U
selB3 3m2-0 2511- 15D 188N 7122 3932 4U
SVpo43 -812 2512 1222 1833 7918 3932 4U
oTI D.. 25110 1583 193D 71582 3932 4U
Y6 YK 3F02D 25110 19IF 15IF. BIF- 3932 4U
L AE 3021- 05 198 198 71518 3932 4U
PGA 83NI 05.. 2. 1822 71383 3932 4U
6P6LEG one 05.F IR.F 18.. 71303 3932 4U
IMOR2 FIB1 05.F 1208 181N 71F80 3932 4U
pSMTS A0 3-FNN 05.F 1912 1928 T2F 3932 4U
YRI2. 3FDIO 05.8 12F0 1503 TN 3932 4U
SSPS8l 21FN 05.- 10F0 15NN 75N 3932 4U
TMS SDD8SN 330.2 05.2 19003 15D 719%8- 3932 4U
9T9D . OF. 05.2 35102 12-0 B2-D 3932 4U
AKI 3 80.2 05.0 123 181- 7DD 3932 4U
T6 EQ . 80F 05.3 19D 151, LESN 3932 4U
9 YEFS .281 05.3 18 19F2 B33 3932 4U
S2HARD 0-02 05NN 12N 130D 715 88 3932 4U
GI'S062 303 05 \D 18.N 15IFF 1513F 3932 4U
RpYO 32F-0 05 ND 128D 182 71980 3932 4uU
CIpEO DIs- 05 \F 1812 ISF. 713-N 3932 4U
9 YEFK 2. 05 \F 32N 15F2 TIIND 3932 4U
S. HAR2 on. 05N 152- 1930 7198 3932 4U
£ AKO 033FN 05N 19-- 1838 713.D 3932 4U
Pf$3 80DF 05N 1533 132N 715 0D 3932 4U
L Vo33 30.20 05N 15 FD 120- 70 3932 4U
SY0 -3-0 05 DN 1¥-3 1938 310D 3932 4U
PfOp3T 80D 05 DN 193. 181D 73- 3932 4U
GVRpM 3N 05 DD 12- 183- 715.0- 3932 4U
ApoKF 8F32 05 DF 152N 18-D TIRN 3932 4u
X13 N. - 05 IF 193- 191F N5 1F 3932 4U
0X36 DD 05 DF 15 1F 182F 7183- 3932 4U
SGYp0 -0rD 05D 1802 180F 71518 3932 4U
T6L 63 N 05 D0 1230 1818 71980 3932 4U
f1p2FT3 033.0 05 FD 15FN 188N 78-D 3932 4U
LLYR3 30881 05 F8 15F3 1888 B3-0 3932 4U
CpX Kp3 I2-- 05 F8 1$-D 193N 7198, 3932 4U
IXp3T 2. 05 F8 121F 1812 B308 3932 4U
PAIK3 -I2F 05 F- ININ 1902 TFND 3932 4U
QB® 3NN 05 F2 121D 181- 753 3932 4U
9SEP30 N-. 058 158 1880 710D 3932 4U
Go2pOP 0K 3130, 05 8N 152, 18-N 752, 3932 4U
@RS6% 3N882 05 88 1FD 1518F T1N08 3932 4U
AL OOMG 882N 0588 158 188D 728F 3932 4U
pOYV3 3--08 05 8- 19.. 1813 7120 3932 4U
EKO38 3. 1FN 05-. 19088 15ND 71323 3932 4U
[ev el 3NN 05-N 138 198 715 F8 3932 4U
16p F3D0 05-D 1F.0 1928 ENNS 3932 4U
1613106 8N28 05-F 1¥1- 1918 TF-N 3932 4U
0MO6 3376 G NINE 05-8 151- 182D 71330 3932 4U
9TID .01, 05-3 12N 180. 715 0D 3932 4U
p6Yr 6 3-88D 05 - 12D 180F LESN 3932 4U
L6p-9- 301F8 052N 121F 181- TNR3F 3932 4U
SMT263 2N 0528 190 19F0 7IR0F 3932 4U
X22 83D 0528 18, 191- BI-F 3932 4U
6SER3 03- 052- 15N 1SF8 71822 3932 4U
SYXpTPO -3 0520 1208 180D 7NR10 3932 4U
SYV6K -0l 05 0. 350 12-N 752 3932 4U
TRCM) E.F 05 OF 123 I81F B5-8 3932 4U
S3QERIS 0308 0502 18-2 13NF TFIN 3932 4U
IPpo 0502 12.F 1928 71202 3932 4U
GE6 YPN 3NFF3 050 198D 15.N 702N 3932 4U
6YoC6p31 .31 05 3. 198, 1502 7NF-D 3932 4U
SVTP --F. 05 3F 1000 13.2 3. - 3932 4U
GE9 31K 3N 3 0538 12FN 180F 71210 3932 4U
pp6pPS2 38-0- 05 3- 19008 15.2 75D 3932 4U
CR6% Dol 05 3- 15 182D TFN 3932 4U
S3HBSRKT3 03F2 0532 1800 18.F 7193- 3932 4U
EA9 3.3 0530 15-- 1882 715 8F 3932 4U
S3QERI3 0303 053 123 181D TF3. 3932 4U
o MO6. NI. - 05 1. 151, 18-3 7128 3932 4U
GEOD 3NB3 05 IF 198 15NF 7n5-2 3932 4U
SOIHB. - 008N 05 1- 19N 15.D 7190 3932 4U
GITR33 3NIOF 05 1- 15-D 188- 1322 3932 4U
TV.F 33N 0512 150. 13-N 722N 3932 4U
YS6R3 3F2F2 0512 193, 1932 0. 3932 4U
STX- 2N00 0510 1530 18-0 793, 3932 4U
Y6 GCYpO 3FOF1 0N D 15-0 13882 B3 3932 4U
EGp6 R3N 01318 0N 8 1288 1802 TN 3932 4U
GMRO 3N-8D ON - 12-D 130 7n2.. 3932 4U
fL6E2 030-2 0N 2 19F- 15.3 71908 3932 4U
RSM6 D 323-D 0N 3 I8N 1912 71983 3932 4U
6P6LEGN ONF (NN 18-~ JEN NF2. 3932 4U
J4RK NNB3 ONE 12N 1823 D8 3932 4U
pps 38--. 08 1518 1SF2 TN 3932 4U
R4PE. p3 32N12 03D 1908 15.8 8.0 3932 4U
TL M) .28 (NN 15 1F 18-3 TFN 3932 4U
YCL 6 3F-N [(5SN] 1502 193F TNFIF 3932 4U
STAS36 D1 (NN 12-D 130 2. - 3932 4uU
SP.2 20.8 OSNDF 12, 182F TINN 3932 4U
LOY6N 30.12 ONF 18D 1913 71982 3932 4U
65t Y06 02- ON® 1908 15.F EN 3932 4U
SFHAD- 08-8 (550} 12-8 180 TSF- 35F 4U
YpTO3p-- 3FD 0 0NR 158 188D BN 35F 4u
@SG 3DISN (55} 1210 1818 TIDEN 3SF 4U




Gene ID Gene Name Score (d) Numerator (r) (s+s0) Fold Change adjusted P value (%) Direction
LOY6D 30. 10 03D 23D 133 7152 35F 4U
pY4RA0 38NIN 0B 1002 15.8 7R3 35F 4U
STS60 2D0 0B 1950 19FF 05 8F 35F 4U
L MK9 TOK 308FF 03D 12IN 131D 722N 35F 4U
SSPSN) 2310 03D 15-. 188D TR2F 3SF 4U
AL XIR3 8801 OSNE. 15.- 1300 732 35F 4U
Ap6 G 88N 0S\FD 15N I8FN 7188 3SF 4U
XEX 8 ND- ONFF 130N 15-8 LED 35F 4U
pTP3 38380 0SNF8 [EDN 15.D 75 - 35F 4U
6ET3 33D ONF- 1512 18-3 B3N 35F 4U
0EY63 NDI ONE- 192. 108N 79-D 35F 4u
S6pR8 ONIF 0\FO 15-- 1888 TIDF- 3SF 4U
TC6 TR . Fo- (5N 1202 1823 71500 35F 4U
S® A6 2DIF 058. 18N 1912 71 88- 3SF 4U
Ar SO 800D 038N 19038 1518 75,2 35F 4U
6R9YP2D DIl 03BF 1528 1380 71300 35F 4U
THA .DI0 038- 192- 198D 75- 3SF 4U
IRPS3 FF88 0382 1F18 1930 NFI13 35F 4U
TMS311818. 22 31-F3 0380 190- 15N TIFFD 3SF 4U
GVPA3 3NN 0383 1. 15D TR0 35F 4uU
TPKO 8D 0N 19.F 181- 738 3SF 4U
K2C6 E3 3222 0N 180 13N 7R-8 35F 4U
pP9- 3-8 0NN 1908 1900 752D 35F 4U
pPCIYT 3-IRF 0N-D 190D 1988 792D 3SF 4U
pYYOO 38008 0N-D 183, 13N 715 IF 35F 4uU
G6YS 3N2FO 0N-D 1 FF. 1928 TNS3F 3SF 4U
L ASML 3002F 0N-- 123D 1830 TIB3N 35F 4U
RIX 32-32 ON-- 1803 1913 78-0 35F 4U
pP6 P06 38-3N 0N-2 12. 182D 1922 3SF 4U
pOYV3- 3--0. 0N-0 1200 1922 1D 35F 4U
0Gp6 30K N3N 0N 150N 1883 712D 3SF 4U
TMS311321D0F 311.. 030N 1908 15.3 TIFEN 35F 4U
EpE3 3. NF 0S0F 12-2 13803 7138- 3SF 4U
AEr 3 SIBN 030F 18- 15N 793, 35F 4U
aYp3 3D-D 02 1500 122 TIFON 35F 4U
SV@ -80. 0302 18-D 18.2 71938 35F 4U
pTOPS3 3800- 0300 1213 IS1F 71823 35F 4U
pAY3 3-N- 0300 15- 1888 TIRFF 3SF 4U
PMEAL 382N 0300 12-- 1803 LES 35F 4U
6 AKp3 2F- 0300 1DIN 198 71208 3SF 4U
6RO6 NTO IFF 0303 38N 153. ES 35F 4U
93 63-FO0 L1 0303 153. 13-N 7B 35F 4U
1YAL 3 FI2D 0NN 19D 15.8 712.D 3SF 4U
T™O 33ENL 0NN IRIF 191- 71%.D 35F 4u
Y6 KDI3 3F32N 0NF 120N 182- TDF3 3SF 4U
9 XYAT 3N 038 12FN 182 71383 35F 4U
S3-HRD 3NO 008 12F3 180N 71982 3SF 4U
PST90 -Fo. 030 1902 15.D 71518 35F 4U
9198 . OFD 0N 3512- 12FD BF-0 35F 4U
VI3 33.12 038. 1DIN 15D B3- 3SF 4U
CTHY3 382 03N 19.0 181- TNRIF 35F 4U
6 SER2 03F 038D 19. - 181- NFNF 3SF 4U
EL 06 ND-. 0388 152, 190D 71988 35F 4U
GpY0 3DI-D 058- 1988 1S0F 715 8F 35F 4U
TMS 22. 80- 33113 0382 19-3 15NF 71203 35F 4U
ECL S8 3.08. 033 18-~ 15183 BRFF 35F 4U
SDHAB | 08N 0NI8 12-2 1800 TIDIN 3SF 4uU
pT6CT3 3830F 0NI2 19N 1813 71223 35F 4U
YAS9 3F2.8 0NI0 120 183- 71933 3SF 4U
LLpD 308-D 0NI3 3BEN 153D 758, 35F 4U
S6SR60P3 on2 0N 1902 15N 15188 35F 4U
K6S03 32F8 0D 1DIN 15D TIRN 3SF 4U
fIpLO 0301F 0D F 1518 18-8 71838 35F 4U
6PpYo 2-F 0DF 19-F 180- 1918 3SF 4U
pTA9000 383N 0D F 19N 1813 7502 35F 4U
TYYS20 33m 0D 8 181- I8N 751 3SF 4U
GVRO 3ND 0D - 122 183N 7190- 35F 4U
RMESo- 328.8 0D - 19N 192F 719-0 35F 4U
TMSDON2. 0 33820 0D 0 15.0F 1880 7IRE- 3SF 4U
GISDS 31 30N 03N 15 F0 1SFF 71838 35F 4U
SPS3-K 221F 0INF 18.F 13D 1922 3SF 4U
prYT2 3FI3N 0IN- 1DFN 15, F 151DF 35F 4uU
cvps IF82 098 1903 15D 71383 35F 4U
r ACIK O1FSF (5o 19.3 181- 7152F 35F 4U
6PYMQ 220 03D 1$3D 1900 751- 35F 4U
p603 3-8DI 05D 1580 18F2 LES 3SF 4U
L ACIF 300D 0318 I5F I1SFF BFR 35F 4U
Y6 K02 3F1.0 05D 12N 13- 712-D 3SF 4U
GISOF62 3INI- 03D 180D 13. 2FN 35F 4U
P6YS -8I2 0SF- 151, 18-N BIOF 35F 4U
10Y SDNF 0SF- 121. 1830 TIDSF 35F 4U
EL AL 01- 3. 8F1 O0SF- 1288 182, 712-0 35F 4U
SVVY3 -82. 0SFO 121N 1833 TFF 3SF 4U
AL 00 882D 03F3 19F. 15.D 7532 35F 4U
GIS3F6 D 3IF.8 0F3 1913 1502 758- 3SF 4U
P4GF 802N 03B. 182N 18.8 7n9-- 35F 4U
TMS31132INDF 31331 058. 182F 18, - TSN 35F 4U
GSROK 308. 1 0T8N 19F- 15.F 71R0. 3SF 4U
EKS3P0 3.103 038D 12FD 1822 BRA3 35F 4U
fPo0S2 0338N 038D 198 15.3 B3 3SF 4U
69 Y3K31 -\ O0IBF 190. 19F- DRF2 35F 4U
LE3T 30DF 0IRF 18-8 18.N TSI 35F 4U
oVL6X NN O0IBF 153- 188 FEN 35F 4U
6YoCAI-1 .F8 0SB 12.F 1$-- TISF8 35F 4uU
9TI3I 3.F 088 12.8 18-2 7582 3SF 4U
SST02 23-0 0388 191, 151DF BIFN 35F 4U
131 8D 0SB- 18-~ 15180 790- 3SF 4U
EL AL 311 3.--3 0380 12-8 180F TINID 05.8 4U
SMT3D6 3 2.F 0DN 1£.D 198- 722N 05.8 4U
L6LPSO 3011D 0D N 1228 1800 713-D 05.8 4U
PA693 3-NIF 0D 1230 183- 7190- 05.8 4U
EWGE3 010DD 0DD 12F0 1820 71820 0.8 4U




Gene ID Gene Name Score (d) Numerator (r) i (s+s0) Fold Change adjusted P value (%) Direction

AIRK3 82D 0D D 12N8 18- TIDFD 05.8 4U
pTR3 383.8 0D F 13BN 19F3 TF0- 03.8 4U
6 MO3 o 0D F 12N 132N TR-8 05.8 4U
16L 016 F11. 0D F 1513 13-F 715, 03.8 4U
S33HAR 3000 0D 8 15N 130D 710 05.8 4U
JEC6T N8 0D - 152F 1388. TF3 03.8 4U
S400 -2N 0D 2 19.D 131N BIBO 05.8 4U
CYK31 DN 0D 12. 18-0 TI¥FF 05.8 4U
YpTO3 3FD 3 032. 120D 132N BID 03.8 4U
SSTON 23-D 02N IN- 121N TINB2 05. 8 4U
I TYEO FF02 032N 19-. 15.3 TDI0 03.8 4U
KEKP 33 3F2D 02N 12N 13- BFOD 05.8 4U
16L3F-6 8. 0N 032F 1223 13803 nD. 05.8 4U
ROR 32N2 0I2F 19.D 131. TN 03.8 4U
CCE6 3p DIDF 0328 1513 18-F 715 DN 05.8 4U
GIE0 3NI128 0328 12FD 182- TIOND 03.8 4U
po Vo 3-.F8 032- 102N 15IND Bi-3 05.8 4U
I TI2F123 F832 0320 12.F 18-8 n5-- 03.8 4U
EoGPDp 3.218 0323 12-8 130F TI¥82 03.8 4U
SERRK3 -220 0323 120- 183, TINF 05.8 4U
T6L K3 -3 0323 1912 15D N3N 03.8 4U
AEG SDBF 032 1983 15.0 738 05.8 4U

r CTT2 01FFD 030- 192- 15INF TSN 03.8 4U
ppp3Y32T 38-ND 030- 12F2 1822 BI.2 05.8 4U
6KS6N -- 0302 12-. 180N TIRF- 03.8 4U
6L METO FIF 0303 128 132N TIR8 03.8 4U
92%61.00 L183 030 1280 130. TINI3 05.8 4U
S6 YPF ONN 038. 12.. 13-D TN 03.8 4U
16L01S F133 03B 15- 13F0 75D 05. 8 4U
L6IK 33.88 038. 12F8 182- 75NN 03.8 4U
TMOTO 33FN2 0IBN 18-0 19 T332 05.8 4U
Tpo RO 33D11 03BN 19F 15.F 79-0 051.8 4U
EKS3P 0K 3.122 0IBN 19D 13 712D 03.8 4U
TMRYI 2 33FDN 03BF 128 18-0 TIBN) 05.8 4U
»3 N3l 0338- 18.D 190 715 FN 03.8 4U
16L F8K FIN 03B- 1510 13-N BFIF 05.8 4U
PPO-2 -DI0 03B~ 1512 13D TIDF2 03.8 4U
¥6L8 N1- 0382 1IN 1318 7DD 05.8 4U
TApY . FIF 0382 13N 15IFD 7R-0 03.8 4U
1TJ-0DI. F8DI 0380 122N 1308 7NSF 03.8 4U
ACY2 82.N 0DIN 1.0 1988 722, 05.8 4U
PP OOFK -F.3 0DIN 1230 1838 TII¥F 03.8 4U
EI6 pOK 3.038 0DID 322. 15.8 BND 05.8 4U
SpAK3 -1 01D 15-D 18F8 TFDD 03.8 4U
13263 8D\ 0DI8 1500 138F nRy. - 03.8 4U
TMS31130D N2 . DF. 0310 1300 151F- ns.. 05.8 4U
pYPLN 38F12 0F.D 1928 15IND 71200 03.8 4U
KL pO 38-- 0F. D 19D 1812 TR 05.8 4U
SL6op 2NF- 0F.0 1802 13.- B5188 03.8 4U
I1fP- N2 0FN 150 138F TIR8- 05.8 4U
9 YEF6 .2-N OFNN 151, 122N BID 05.8 4U
L6YS9G 30333 0FND 12N 18-- 71380 05.8 4U
1L MP FF-8 OFNF 1NN 198F 7228 05.8 4U
GATp 300.N OFNF 12N 18-8 BIIN 03.8 4U
S30HAR 3N2- 0FN- 15. 13N 75D 05. 8 4U
G093 3N3N OFN- 12N 18-3 TI5F. 03.8 4U
TYYSDI 33N83 0FN2 19.2 131, D0 03.8 4U
KRS0 38F0 0FN3 1202 130 TSN 05.8 4U
SRER3 2.20 0F¥D 1923 15N 7120. 03.8 4U
CGEp3 BDN 08 198F 19FD 752, 05.8 4U
9TIN 031 0FD8 19.D 1833 TIR32 03.8 4U
S32HA38 3ND 0FD- 12.. 138-. TIR0F 05.8 4U
r AREO 01F8N 0FD 190F 15N BD 03.8 4U
ECIKY3 3.0-N 0F¥D3 1222 130- 713 03.8 4U
K6 SA3 32F2 0FD 19F3 15.N TRD 05.8 4U
oGP 3DK3 NN OFF. 1¥N 198F 23D 03.8 4U
rPY 01F8- OFFN 128 1823 TI¥FD 05.8 4U
oMO6 F N. 0 O0FFD 13800 18.F 71902 03.8 4U
TMS-131.D 333F- 0FFD 1923 15IND NR.F 03.8 4U
LLP 30800 OFF- 12.F 18-, 73N 03.8 4U
T6L 60 .-ND 0FF0 1832 18.2 TIROF 05.8 4U
L E36 30D\N 0FF3 15-- 18FD -2 05.8 4U
T6 L K2 - 0FF3 1398 19.3 T22- 03.8 4U
fRI803 03808 0FF 15-D I3FN 75 8- 05.8 4U
GXp6 3DF31 0F8. 12. - 13-N 2.3 03.8 4U
PX6 @2 -N\D 0F8. 12-8 132 TIDFD 05.8 4U
CTX D81 058, 138F 1518. T30 051.8 4U
TYp3 33128 0F8N 198 1. - 731D 03.8 4U
STX0 2882 0F8F 12F. 182. n5-. 05.8 4U
SpRA8 -332 0588 158. 132 TN 03.8 4U
PpE 832D 0F82 1¥2 198- 7al-. 05. 8 4U

L E3A 30D 3 0582 13N) 193. 73 . 03.8 4U
EC6D NN 0F82 15N 13N2 TIRF- 05.8 4U
RMES02 328.- 0582 1208 18- TR2 05.8 4U
ERIG 33 3.D0 0¥80 19-. 18. - 75D 031.8 4U
pPA3S 3-10. 0583 12N 18-8 TIND 05.8 4U
X3NY3 NIF 058 19.8 1833 TF¥D 03.8 4U
6P6LEGF 0N 0F8 1928 15N IR 05. 8 4U
CTC3 D3-N 0F-F 1900 1812 TFIN 03.8 4U
6KSK3 -F 0¥-F 19-3 15.3 7138 03.8 4U
rWI 01DF8 0F-2 12N8 18-F TR2 05.8 4U
TC6 TGD .FoD 0F-2 1N13 1212 TIIBN 03.8 4U
SPo33 22-N 0F-2 12D 18-2 3.8 0518 4U
ppT 38-F2 0F-0 150N 13F0 B2 0518 4U

L VMBA 30.8 0F-3 128 1320 TI¥FFD 0518 4U
TYL p 3302 0F- 1532 138D TIND 0518 4U
C4Tp3 DF2N 0F2. 1288 13828 T2~ 0518 4U
ElpX 3.028 032N 12-N 1820 738, 0518 4U
AKI - 80.F 052D 15.D 13N BRB20 0518 4U
Eo KQ) 3. 0Nl 0F2F 1¥0N 192N TN2-F 0518 4U
14E- FNID 0§28 19.D 1832 TIBFO 0518 4U

R6L pE 3218F 0F2- 15 1F 138- TI23N 0518 4U




Gene ID Gene Name Score (d) Numerator (r) (s+s0) Fold Change adjusted P value (%) Direction
pSPO3N 3-FIN 0523 DIF 1318 73-N 05 18 U
IVR FNOD 0F2 151D 1388 7153- 0518 4U
pSPoKF 3-F-2 0F2 190D 15INF NF-. 0518 4U
K6 L KX 32N 0F2 15N 1200 DFFF 0518 4U
KARPF 3N 050. 13NN 158 9. 0518 4U
63 . FIF 0F0F 15 1F 198- 7IIFD 0518 4U
£VO 03N-D 0502 12FF 132, TN 0518 4U
YKL @ 3F2-1 0502 191, 15N 71512D 0518 4U
6SECO 01D 0500 19F- 19.0 7IR8D 0518 4U
pYL EO 38FN3 0503 1923 15NN 02AB 0518 4U
GBR.6 308N 0503 1SF- 151F2 BI-N 0518 4u
C6 TRETO F3 050 15.. 18.3 71583 0518 4U
RSYR6110-3 3201- 050 12.8 1883 TSF 0518 4U
PRLE 3800F 0F3F 3828 152- 7 RF8 0518 4U
T8 F-21 0F3F 120D 1808 7582 0518 4U
ERI 6 %F 3.8 0F3F 18-N 191, 723D 0518 4U
X6L0 i3 03 15-2 18D TIRFN 0518 4U
RYORO 32IBF 0530 190D IS1F BN 0518 4uU
S6 8 0.0- 0530 19-- 1820 TN 0518 4U
pTSTO 383-D 0533 103D 15N T2F 0518 4U
3L 0K N%I 0F1. 123 183, 75- 0518 4U
6SGI- 3N 0F1. 18- 15.D 73N 0518 4U
Y6 Gp3 3FOF2 0F1. 1583 1802 715 F- 0518 4U
6PL 2F OFIN 1923 19-0 TIRF. 0518 4U
16L30.8 SN2 OFIF 19-. 15.F 0312, 0518 4U
PMGER 382N 0F18 19%F 19. 7198- 0518 4U
6P6LE®R UN] 0F1- 19038 15N 732D 0518 4uU
fRIF.. 03FF2 0F12 1SF8 151F2 72N 0518 4U
®0 N33 0F12 1203 1802 7512 0518 4U
6R90 E-D 0F12 12.F 1880 TIDSF 0518 4U
APRO 8228 010 1380 1230 BR20 0518 4U
S6SR63S [N 0510 19-- 151, - 75 F3 0518 4U
T4L 3N 0F10 1D1- 19D 1212 0518 4U
K6R93 32N 08.N 15IN 13N BFN 0518 4U
ci@ N 08.N 19PN 19.F TIDF- 0518 4U
p6KpS-T 3---N 08.D [EDNN 1833 712D 0518 4U
ApK-3T0 88ND 08. F 12-8 1822 71908 0518 4U
ppl Xp3 38--0 0%. 8 19N 1833 713.D 0518 4U
YRI3-8 3FF88 08.2 19N 181. TN 0518 4U
LLp3- 30820 0%. 1808 1912 71900 0518 4U
SMT36 0 2,12 08. 1903 19N 7n2-2 0518 4U
SGP6 -020 0%. 13- 18.N 71200 0518 4U
YMKM- 3FI2- 0%. 120D 180F 75-8 0518 4U
S8HAB2 0-ID 08N 120 1502 TN 0518 4U
R¥6T- 32-DI 0NN 121- 183D TIRF8 0518 4U
COVTEO IF-F 08ND 158 1983 7128D 0518 4U
EJp3 3.288 0SNF 19022 13. TN 0518 4U
9T9- . OFF 08N 19.3 1832 71880 0518 4U
f KEK3F 031F- 08N IFIF 1928 DN 0518 4U
EESON 013F2 08N 130D ISEN TIIEN 0518 4U
SP8. 20D (53N 152- ISFN TFI- 0518 4U
9ToTO .020 08N 12F2 18-3 TFIF 0518 4U
SPRAN -33F 08N 19080 15.N 12N 0518 4U
STAS2K 2DD 0RDN 15-. 18D 719 0518 4U
T3EP3 .-F. 080D 120. 130N BIIN 0518 4U
SPAS 2DIN 0KDF 153 18D LENNS 0518 4u
6R9 YPSD BF 0SDF 1588 13\N DRF2 0518 4U
6 pMP NF 088 352 15 DI 0518 4U
AIS6K3 8283 082 10N 131, NFIF 0518 4U
CYYp3 %-3 08D0 1530 18F e 0518 4U
PSMISA 3-FND 0800 15F2 1SN 7SIF 0518 4U
ERI6 %N 3. IBF 08D0 128N 182. 2.8 0518 4U
ASGY 823D 0SF. 122N 1820 BIN 0518 4U
AYC 8FSD 0SFN 1380 1518. 71520 0518 4U
MOAY3 3--31 ORFF 15-N 1318 BI- 0518 4uU
™ @ PN 08F8 190D I8IN 1918 0518 4U
SoYPT3 2F80 0SF- 18- 1933 715.0- 0518 4U
E6S3 3NIN 0KF0 19DIF 15N 2. 0518 4U
pYYO3 380D 08F0 1802 191- TNSF 0518 4U
EL AL -86 3.F31 08F 1558 19F 7120D 0518 4U
TolpT0 JF-- 0SF 12F 13- 7190 0518 4U
GVO3D 3833 088N 1538 18F0 7190 0518 4uU
L VMBP 30.D 088N 1DFF 1381- 712.8 0518 4U
SOST3 -2.8 088N 1¥IF 19F- 715D 0518 4U
RPYC3 320ND 088D 150F 19-8 D3- 0518 4U
AL SR 8832 0888 152- 18D 715 00 0518 4U
N XF N28 0888 151, 1SF 71588 0518 4U
S3QERID 030D 0888 108F 3 BN 0518 4U
GRS 308, F 0880 19.F 183F 71823 0518 4U
X-Y NBOD 088 1203 1S0F 71518 0518 4U
6 RMF . 0%-. 130D 15IF. 71208 0518 4U
6 Yo CAI- F- 0%-. 19-N 15.D 71938 0518 4U
AREpP3 88D 08-N 108N 1813 71838 0518 4U
SOHRF --0. 08-D 18-F 158D 192 0518 4U
TMS31130. .- 1 08-F 19D I8IN 758 0518 4U
GE931 3NENE 08-8 19.0 1838 BI-F 0518 4U
ILRT2 FF2D 08-2 1SF0 131F- 75 - 0518 4U
SOHAB | 02-. 08-2 13 12-D 7518 0518 4U
GIS. 6. 3NI30 0%2. 123N 1508 7n9-. 0518 4U
L E3K 30DN 082N 15.N 18.F 7n3-2 0518 4U
EL AL 3208 3.-D 082N 19N 1832 79.D 0518 4U
SMT86 3 2.3 082D 12.. 188D 73.8 0518 4U
16L 2P F128 082D 1¥N 19D BIB 0518 4U
C6 TRE30 F. 1D 0%2F 198 1833 7IF80 28D 4U
Ppp- 830F 082- 152, 1802 TN5N 28D 4U
ASL O 823F 082- 1902 131N 73.2 28D 4U
CTHY0 DBSF 082- 1588 13D 71910 28D 4U
PpAp0 8330 0822 1DFD 1818 BIN 28D 4U
fRI0.8 032N 0820 1SN 1502 BID 28D 4U
XIMB N22 082 13NN 15D 7130D 28D 4U
L6p-98 301FF 0%0. 19080 &) 71208 28D 4U
6P03K 202 080N 123D 1808 712D 28D 4U




Gene ID Gene Name Score (d) Numerator (r) (s+s0) Fold Change adjusted P value (%) Direction
TKo ~80. 0R0N 15N NF23 28D U
YG43 3F.FN 080N 188N 15F2 TN 28D 4U

TYYS2K 33N 080D 1308 15N 7190D 28D 4U
Y6Go2 3F0-F 05802 198- 13- 7SN 28D 4U
PXD -\ 0800 12-N 182N TFND 28D 4U
FGWX - 03N- 0803 152 1808 TR 28D 4U
WKp8 010 0803 1580 13D 7N5F3 28D 4U
PECY 38.00 083N 121F 1803 7208 28D 4U
KARP- 3N 083D 18- 1518F BS-. 28D 4U
aas8P 3NIDD 083D 1RF0 1902 71980 28D 4U
PR6 GA3T2 818D 083D 15-N [ELN 7158 28D 4u
6 YGX 318F 083F 19. 1838 712D 28D 4U
pTA90C3 38318 0838 121N 1800 71280 28D 4U
ETY- 32N 083- 19F. 181D TIDF. 28D 4U
ETA- 3.2FN 083- 19030 15N TI2F 28D 4U
ACITF 82D 0832 1DIN 1N 7198. 28D 4U
SMpf 0 -12. 0833 15N 18.3 7138.0 28D 4U
SP.. 20.N 0833 19082 1813 713D 28D 4U
ALAL p3 82F2 0833 1F0D 198 7198 28D 4U
SMT-60 2.8 081. 12D 18- 7190 28D 4U
6YpS0 3120 081. 108N 1812 71518 28D 4U
p6pTR 3-830 0RIN 102N 15.8 BIF 28D 4U
AIRK2 820 081D 120 130D 71902 28D 4U
9 YE3F .23D 081D 190 121D B5FO 28D 4U
E4GS8 o10m 081D 1208 138 TR 28D 4U
YSR3 3F2D 081F 1512 133 75-8 28D 4U
KRS3 38F3 081- 1N 1832 BID 28D 4U
616p3T3 201 081- 19. - 183D 7n2.- 28D 4U
6P6L 30 0-D 0812 19.0 183D 71303 28D 4U
TMVS--3NE. 330F- 0810 1520 1802 75.F 28D 4U
SF 0830 08 19F 181- 71983 28D 4U

L 6 pYAO 301.D 08 12-N 182. 71§08 28D 4U
X9 N8-0 05.D 13- 15N TIF. 28D 4U
Y4RO0 3D 05.- 19F0 1818 1802 28D 4U
9TI8 01D 05. - 1¥1- 19-0 B5ID 28D 4U
LICAN 30281 05.- 1800 1900. TI2F 28D 4U
PECAY- 38.3F 05.- 15 1F 18F2 7510 28D 4U
or SR3 NN 05.0 19N 183F 75 F- 28D 4U
ERRE2 3,008 05.3 19D 1IN 1913 28D 4U
066M FN) 05.3 18.. 15N BIND 28D 4U
16L-.6 Fl8- 05. 193- 180F 728 28D 4U
L VTO . 05N 1SF 151F- 71968 28D 4U
6TP00 83D 05N 1518 18.3 TFN 28D 4U
oMO6 8 N3 05N 150N 1800 7R12 28D 4U
SST3. 232D 05NN 18¥0 12-D BFIF 28D 4U
L A 300N 05NN 123N 130N 7532 28D 4U
LLp2 308-F 05\D 1D 190 7IREF- 28D 4U
KT9 380. 05\D 182- 1938 DIF- 28D 4U
G160 3DI23 05ND 19- 193, 71820 28D 4U
PY9 TAO 38FON 0518 1508 1808 715 0N 28D 4U
CY6L PO DIN 05N 121. 180- BIFF 28D 4uU
GEMR3 3NBD 05N 120D 1380 715-D 28D 4U
STPR3- 20F1 05D 1922 151, - BID 28D 4U
RSYR6 1108FK. 32038 050D 12-F 13- 730D 28D 4U
CpRLK 280 05 DF 19N 183F 71208 28D 4U
EL AL 320A 3.-IF 05 DF 190 15N 151, 28D 4U
EoV3 3.233 052 15D 18.0 7300 28D 4U
pCl 3N 0518 1253 18-F TIFON 28D 4U
SD 08N3 05D 1503 1808 B3.D 28D 4U

L ALOS 30000 05D 192F 182F TR, 28D 4U
SSPSNG 2331 05F. 19.8 130 7DID 28D 4U
6P6L 02 08F 05F. 132D 15188 B00 28D 4U
GAGR3 3D31 05 FN 193- 130D 71533 28D 4U
6P6LEG 0ND 05 FN 15 18F0 7120. 28D 4U
YRI3FF 3FFF- 05 FF 191- 15N B2 28D 4U
6SGT3 3D 05 F8 152, [ELN 71580 28D 4U
PoTP62 3-.-N 05 F- 198- 18-- TION 28D 4U
pLS0T3 3802. 05 F- 18-0 158N BI3 28D 4U
KSTFK 3-8- 05F2 120D 1822 B32. 28D 4U
SRX%2 2N 8 05 F0 12.8 19F3 7198- 28D 4U
GTS086 0D 30D 05 FO 151- 13F- 7190, 28D 4U
YX$9- 3FSN 05F3 123D 180. 0338 28D 4U
LS6L 303IN 05F3 12.0 138. 75-F 28D 4U
K6 EI2 3-10 058N 19. 183N 715 1D 28D 4U
C6K6Y6pT3 FN8- 058D 121D 1508 7. - 28D 4U
6YCT43 JIN 0588 19.N 1803 7822 28D 4U
ATEP3 8833 058- 1210 1802 71528 28D 4U
EoKG 3.0D 0582 19F 13-D 753 28D 4U
pSPOK3N 3-F2N 0580 1. - 15D 71383 28D 4U
9PATSO NFN 0583 1900 1833 71318 28D 4U
ISAY36 FOLF 0583 1823 193D BDF 28D 4U
TMS 20000 33F-. 0583 352- 1500 7IF88 28D 4U
EL KX 3 3.-IN 058 1200 1880 TOF 28D 4U
SPOT3 2-1- 05-. 1908 15.0 D1 28D 4U
LVM6 30.\D 05-F 1908 15.0 7DD 28D 4U
65660 33F 05-F 12.8 18F3 7158- 28D 4U
SoR3 2F-3 05-- 193N 1$2 Bl 28D 4uU
SP938 22N 05-0 123N 15-N 715-N 28D 4U
9To T0. 0-3 05-3 121D 180F 79.2 28D 4U
TMS88-010 330N 052. 198 1812 NFR 28D 4U
fRI-F. 03-ND 052N 18-N 1908 7198- 28D 4U
CYAL3 D.0 052D 150N 1SDF 71203 28D 4U
9 YE38 L23F 0528 35138 153D 719B- -23D 4U
pp6 pOK 38-3. 0528 12, 1SF 3. -23D 4U
S-HAB. 0-F. 0528 1902- 15.F BIIN -23D 4U
1KR3 F010 0522 151, I1SEN LED -23D 4uU
6TP0363 833 0522 1280 18-8 NF-F -23D 4U

TMS3113238-3 313N 0523 15-2 13N ¥ -23D 4U
AV60 8000 0523 18-8 190- 79N -23D 4U
cLic DIF 0523 151D 1SFD RN -23D 4U

EL AL 321 3.-DI 0523 15.F 191- 5. F -23D 4U
S6 G- 0.02 05.0. 122N 182. 7R3- -23D 4U




Gene ID Gene Name Score (d) Numerator (r) (s+s0) Fold Change adjusted P value (%) Direction

GEO30 3ND. 050. 1 15N 75D -23D U
pTEp 38003 05.0. 152 130D 71508 -23D 4U
K6 SA0 32F- 050N 1880 190D 792- -23D 4U
YASQT 3F2.F 050N 182D 1518D 71300 -23D 4U
C6GF F.-N 050D 151, 1SF. T2F3 -23D 4U
CMTX - .2 0502 1232 130. 712-D -23D 4U
pTORS3 38022 0503 19N 183, 71982 -23D 4U
REI- 32083 053. 1502 1308 NP - -23D 4U
PRTHYp2 380FD 053. 1802 193F 792 -23D 4U
SRER6 p2K 2.-3 053. 13.N 15N 5. -23D 4U
LR 30000 053N 198 18-8 713D -23D 4u
PGC2 83N 053N 1¥D 19D BN -23D 4U
PIR6S -NI- 053N 1920 15. F BIID -23D 4U
JECK2 N20 05 3F 158 I8N D02 -23D 4U
ETY31 3,200 05 3F 1918 183- B2.8 -23D 4U
6Tp92 8DI 053F 121- 180F 715-8 -23D 4U
TMS3113. 02DN 312FF 0538 I1SIF 152 BIB -23D 4U
SEX -20F 053- 193, 1820 72N -23D 4U
6QpD NX 053- 12.2 182 712.D -23D 4U
CTG DBI8 0530 19. - 1800 752, -23D 4U
S6L90R3 ONN 0530 193- 1988 N8 -23D 4U
S028T3 -2.0 0533 I5E. 18.- 7F2D -23D 4U
Y6 KIK 3F32D 053 15- 1SN TIFO -23D 4U
JEC68 NBF 053 19-- 18-2 7198 -23D 4U
4KAOAO 01282 051. 19. - 1800 TN -23D 4U
RpY3 32F-3 05 IN 19F2 131, 71980 -23D 4U
KL pF 38-. 05 IN 12N 188. 7192- -23D 4U
L16p8 302-N 0518 183N 1938 7120F -23D 4U
S2HARN 0-0- 0518 1 183N 715 3D -23D 4U
LI 30-18 051- 19020 15.F 7513 -23D 4U
MTIL TOK 32.3D 0512 12N 18F3 7120 -23D 4U
YRI381 3FF8. 0512 198 19.8 D3 -23D 4U
pECIY 38.01 05 19002 13.2 719-D -23D 4U
9SRI30 N2 02.. 12FN 1882 TIFFN -23D 4U
GIS3F60 3IF. 1 02.N 1833 1932 BRF -23D 4uU
XRCY3 Nm 02.N 1 183N 722N -23D 4U
RSYR6 11230 32081 02.N 12-3 18-0 BN -23D 4U
SXKO 2D10 02.0 I5F 18.0 75N -23D 4U
acsp 3D-DI 02.0 192- 18- LEN -23D 4uU
6RIGF . 02.3 IBIN 19030 12 -23D 4U
R66T6PT3 32120 02. 132D 158D T128N -23D 4U
SPO- 202- 02. 1SN 153 B2 -23D 4U
SMLLPF -13F 02N 19022 15.D BDO -23D 4U
SPDK 208 02NF 121. 130. DIBF -23D 4U
PLP -.F 02N8 193 15NN 7198 -23D 4U
MPfO 32N0 02N 1832 19038 n3-. -23D 4U
EoKG 3.0N 02N IF.F 19.0 LEN -23D 4U
16 Kp8 SNI8 02N 183D 193D N9-F -23D 4U
p4YC 3F1IF 02D 183 15-F 7913 -23D 4U
p6TLO 3--.0 0200 18.2 1588 715N -23D 4U
GE2C6T0 3NE3L 0200 192 15.D D18 -23D 4U
6RM3 2 02D 1502 13N TFN -23D 4U
WTG 01.13 02D 12.2 1SFF NF2 -23D 4uU
pL Ap63 380-3 0SF. 1500 18.. 793D -23D 4U
GBQ@ 3ND 02FD 1508 13N N913 -23D 4U
TMS311323N0F 31001 02F8 100- 15.8 TSF -23D 4u
L GI2 300FF 02F8 130F 15182 7152 -23D 4U
p6L Y3 3--.D 02F8 15-N 1SN T5F. -23D 4U
ERS 3.1 02F8 150- 19F- 715 3F -23D 4U
69Y3S2 -1 0RF- 150 19F0 BFFN -23D 4U
SPO-N 202D 02F- 1922 18-3 e -23D 4U
CIKS 302 02F2 1210 130N BI- -23D 4U
GISMI6 3 3NI3N 02F0 1208 188D BIN -23D 4u
TpOR 33082 02F0 12N 18F3 75 IF -23D 4U
SMINs 0 -110 02F3 15.8 193 LB -23D 4uU
X3Y3 NN 02F3 120F 138, 71383 -23D 4U
YoMQ 3F8-2 02F 13- 15.3 7502 -23D 4U
6 Ep33K 33N 02F 120D 192, 72, -23D 4U
TMS3118I8NIF 31-8- 02F 15-. 13. NR12 -23D 4U
S6GE 0.2- 02F 1982 181D 7DD -23D 4U
6Sr Y38 022 028. 19033 13. 7120- -23D 4U

TMS311320N 3 310. - 028. 182- 158D 3. -23D 4U

LMSG 30808 028. 198 IS1F B33 -23D 4U
ER6p 3.0l 028 13D 15I0F 4.2 -23D 4U

poTPK3 3. 028N 19080 181D 15N -93D 4U

L6CAP-K 33N 028N 18-3 192 71500 -23D 4U
0GP3IK33 NN 028N 12-- 18-F TSIN -23D 4U

B3 3N 028N 12-8 13-F 712-D -23D 4U

EG6 R33 011N 028D 1. - 15N 713D -23D 4U

6P6L EGN oDD 028F 15.2 191, 71208 -23D 4U
9pR62 0.2 0288 1308 15D TNFL -23D 4U
PEP3 83.2 0288 12N 19F3 75N -23D 4U

SMT363 2. 0280 18N 19N BN -23D 4U
L6l 33.80 0280 1900 183F 7158- -23D 4U

S6TSYT OND- 0283 108N 133 N9-F -23D 4U
GVE33 3NNR 02-. 192D 1813 BLFO -23D 4U

SMT86 0 2.0 02-. 1502 19F8 GED -23D 4U

Po Y@0 -N3 02-. 190 1. - B51D -23D 4U
RpVOY 32F8D 02-. 1218 132 BIN -23D 4U
L E06 30D 02-N 15IF 1912 9.3 -23D 4U
C6KYA FNB 02-N B 122F TF00 -23D 4U

GAYpRA3 32D 02-N 19-F 1818 TI22F -93D 4uU

GVRL 3NN2 02-D 1. 1282 N3 -23D 4U
ECIK2 3.0-F 02-D 15.3 191, TIFON -23D 4U
SoT3 2FON 02-F 108F 181 BROF -23D 4U
L6ll 33.8F 02-8 1208 132N 75-0 -23D 4U
GEV93 3NFI 02-8 1508 1388 B50F -23D 4U
SMYR -1- 02-8 121F 182 752 -23D 4U

GAL 62P 321D 02-2 183F 190 DN -23D 4U
SGEF -0 02-3 1980 121- BIN -23D 4U
fRIFFO 03F22 032- 15FN 19 BISD -23D 4u




Gene ID Gene Name Score (d) Numerator (r) (s+s0) Fold Change adjusted P value (%) Direction
40L93 01-F8 ZIF 753- 15.D TF3. 35F PHwn
So6PT 28N 79-. 71TF8 I8N 71F08 3SF P Hvn
Yp4@P3 3F.3- 73D 752, 1818 7IRD 35F P Hwn
pGLP- 38NN 7 SFF 7120. 150 NF.. 35F PHwn
YpYPO 3FNSF 73- 71238 15N 1IN 0.8 P Hvn
9 YES6p2 .-8. 2582 NF-3 18F0 TIBN 05.8 P Hvn
pVSYO 3FI2F 252D 71208 15N 7RO 05.8 P Hvn
S3HABND 03ID 5 2F 71520 183 75D 05.8 P Hvn
PAL K- 38N-D 2N 712F- 131. - 715 0F 0518 PHwn
EL pYGF 3F 1 2N0 71888 18-8 TN 0518 PHvn
GRYRp28 3ND3N 29D 7120- 151ND 7128 28D P Hwvn
TMSON-. 2. 3IN 1 2FD 71DI- 18.0 B50- 28D P Hvn
RE3 32-IF 2FL. n%-. 15.D TIF2N 28D P Hvn
TVG P3 33.03 DFI8 753, 183F NDI- 28D P Hvn
E6 YQ) 3NDD 2R 7190 152 7523 28D P Hvn
S3HBD 0023 2RS- N8N 182F TISFN 28D P Hvn
6L p2 3IBON AN 7122- 1. - TIB3D 28D PHvn
ERIYGI 3N 3123 2R-D 7F2N 1SN BS. - 28D P Hvn
fRIF-F 03F0- 2R-2 718D 18- TLIEN 28D P Hvn




Add. Table 4: SJ gifhcgal y Jfdrdgade Trdxxd i dedxys b ddgydh dacs ot G nlyeg G nU
D

Gene ID Gene Name Score (d) Numerator (r) (s+s0) Fold Change adjusted P value (%) Direction
CALDI1 2825 5025 . B7- .028 4 (B5 . pT
GNC2 12-71 5®11 . BB .77 4079 . pT
66GF 11555 5853 L021 L0- 4 0723 . pT
Np 6 E2 13... 5B78 L0791 .085 4 (552 . pT
CRLISAI w3. 5037 .(B23 .028 40721 . pT
MNG F2 -1 50-8 .U L0097 4 15 . pT
DXYSLU 515. 50633 . (837 L0153 4.0.7 . pT
FAOL6 18979 5068 . (835 L058 4 (B7 . pT
CFOM TRU 5023 . (B9- L0-2 4. 08 . pT
OMKF2 3.57 56.3 .1 L0129 4 (0738 . pT
FSHZU 2..8- 56.2 L0637 L0122 4 (B7 . pT
OXES8 3737 50037 . (32 L0171 4.0.8 . pT
SNXE2 18573 50758 . B12 L0079 4 0B . pT
CLGX WU 50753 . (B58 e 4 2B . pT
MX -132 508- L 027 L0132 4 B1- . pT
BCA6 2.-75 5005 . (895 L0-3 4097 . pT
LREL2 11-8U 5075 . (897 L079 4029 . pT
6PE6 1aws S0 . (625 .098 4 - . pT
FIGX2 19ur17 5@97 . B9 L0779 4 072 . pT
LRE 11-8. s@e LB11 L0155 4083 . pT
CRLUAL WsuU 5@U 1nu L0093 4071 . pT
XFNM 1599. 5085 .25 .082 4 ae1 . pT
PGILI6 1 552. 50187 .019 L019 40713 . pT
A6 OXFL2 -Ww 50-5 .B-U L0178 4 0728 . pT
SLIFU 18. U 50- . (399 .55 4. 072- . pT
XDOMV 17355 50071 .058 .028 4.071- . pT
G SNVU 1233- 50071 . (B7- L075 4 UIU . pT
SXANC 18U-2 5007 . (892 L0137 4 (788 . pT
61D1 1075- soe . (B25 Lo71 4071 . pT
DACFU 7555 5083 .5 .a73 4 U2 . pT
MWL6 2 -199 5083 . (B93 L03- 4 0717 . pT
6RE7 10U 50-3 e L0 - 4 (B89 . pT
C662 w.1 5053 . (B5U L0079 4 78 . pT
FOWII1 19277 5029 . (655 Lot 4 057 . pT
FCM 19112 5018 . (58- L013 4 - . pT
HFNAU 8232 50.8 L0639 L0 4 B1- . pT
GOC271. U 1213 50.U .®1 L0-2 4 0778 . pT
XDLIG 3 17333 7091 . 799 Lo 4.6.7 . pT
FXG7 19855 7088 . (B35 L01s 4 (625 . pT
FGPG2.. A 19557 7031 L0739 .09- 4 077- . pT
GENAS 129.1 70-- . (627 L0 - 4 (559 . pT
OLF8D2 3182 7058 L0752 L0091 4 0777 . pT
SHRE2 135-- 7M5- L1l L0.U 4 (03 . pT
CRL5A1 WI1 705 . (683 .19 4 (B-2 . pT
OoPG 3. 705 . (B2U L07- 40072 . pT
XALLD 1779. 107- .@7U .09 4 GV . pT
16 HVA 853U 7®WB .®B73 L0132 4@32 . pT
S6 AI2 181U 702 LU L0 8 4 (23 . pT
MFLI -33- 70.9 .99 L0-U 4.07-8 . pT
XRD6 L1 15293 70.8 .U L0 9 4 (68 . pT
CRLI1A2 W3u 7(882 .®3- L@ 4 (B18 . pT
CRL5A2 W92 7881 L0-7 L0198 4 827 . pT
ZPV1 211-- 783U .0.8 L0125 4 75 . pT
N6 M77A 1--5U0 7(®31 .61 L0Ls 4 (B5 . pT
XRD6 1529- 7(8-8 . BB Lot 4 U . pT
DSpP 518. 7875 .6.U L7 4 0752 . pT
SCO5 131-5 TG .62U L0129 4 (282 . pT
FHY1 19ur1 728 .09- .77 4 (B2 . pT
DZIXIL 5233 7828 L0.3 .087 4 075- . pT
F6 MAIX- 19315 7(82- . ®7- L0ISs 4 B9U . pT
APVX1 U7 TB11 . (881 .0I8U 4 ®.3 . pT
XRSF6 158U 7®.5 102- .@17 4.3.U . pT
XLKU 152.U 7391 L7 .09U 4019 . pT
Vo6 15.. 7(B87 . (582 L0122 4087 . pT
HFNAI 823. 7382 . (888 L 018- 4 0799 . pT
GINIL..HO 127-U 7338 . .a73 4 @B . pT
DACF1 755U 7B-- .B1U .05 40.U . pT
CDHI1 wrs 7(B78 .61 .03 401 . pT
FPADI 19159 T®7- .71 .08- 4 (5U7 . pT
SPNXI6 M 137.. 1B75 .099 La73 4 @3- . pT
ACFA2 2.2 7B .B.2 L0-9 4 @-9 . pT
W6 1 -2.2 TBU7 .021 Lou 401- . pT
FNXC1 2. W8 7B .6.U L0 - 4.@7 . pT
IOMWXU 87.5 7@uU 0w .o 4 0 . pT
ANHOAX28 92- 7327 L07-- .099 40719 . pT
TFXNIX 83-1 7(B22 .19 Lol 4 (U2 . pT
LGRDI 93 7819 .81 .081 40138 . pT
SI.. Al 13.25 7612 .01 L0129 4 @95 . pT
OXN127 3U3 TB11 . (B31 Lo21 4 @7 . pT
BIG 2.-3U 7B.U .51 L013 4 @-9 . pT
CRLIA1 w32 7095 .®79 @2 4 ®9U . pT
FHVS2 1928. 769 . B L0138 4 (892 . pT
ADAGFS- 287 76-9 La- .0-8 402 . pT
CYN-1 7528 70-7 . ®2U L03- 403 . pT
DKKU 792 7053 .67 L0- 4 (55 . pT
XNKCDVX 15-52 7018 . (B89 L0123 4 (52 . pT
XNNE 1 15337 70 WU .095 .05 4 67 . pT
XLSU 15215 7627 .051 La71 4 @-2 . pT
LAG A7 9789 70-1- L0775 .09- 40712 . pT
GANBPLDI 1212. 7015 . (69- L0129 4 -1 . pT
GGX17 12512 70.7 .B13 L0s- 40-9 . pT
LIGS2 9-87 70.U .79 .093 40051 . pT
MVI6 -89 70.2 L0653 L0170 40.- . pT
GNBII 123 7693 . (695 L0129 4 @99 . pT

C5orf-2 25.9 7693 L0621 0B 4 @-9 . pT




Gene ID Gene Name Score (d) Numerator (r) D (s+s0) Fold Change adjusted P value (%) Dir
DC6 7-U7 7639 . (B831 .09 4 (81 pT
ISG 1 8-9- 7639 . (B37 L0-9 4 @- pT

XCSKS 17-93 763U LaI2 0-- 4 (029 pT

NANNPS2 1-27. 7658 L@ L0135 4 @21 pT

KC6GV7 8927 7653 L0693 L0I5U 4073 pT
SNXE 1857- 7675 .039 L0079 40-3 pT

A6 FENI 35. 7677 .0.9 .o 4031 pT
ISLN 8-97 7672 .BW L0-U 40713 pT

GGXI9 125U 7625 LU L03- 40.3 pT
FXG2 1985U 7618 . (599 ey 4 072- pT
CYS1 7529 7618 .031 .79 40791 pT

XDLIG7 17335 76.3 L0718 .09U 4 @23 pT

SPNXI6 O1 137.2 709U L0718 .09U 4@.7 pT

LFVX2 118-3 70785 . 793 Lot 4 @35 pT

XXAXDCU 15727 70733 .72 .03 4 U2 pT
GYL9 1295- 70731 L0677 .77 4 - pT
XXIc 15779 70731 . (B5- L0127 4 (518 pT

CRL-AU wo- 707-8 . (597 Lo 4 B51 pT

GENAS 129.U 707- - .083 L057 4 0783 pT
0Ss6 3558 707- L0799 L012 4010 pT
CM 5-2 70752 . (7- .02U 4 @. - pT

Fp VV- 2.251 T07- L0-- .05 4 (5- pT
GGxX2 12518 7077 .089 L0ss 4 0759 pT

CRL-Al w7 707 .5 L0-9 4075 pT

XNICKLP1 15-23 70025 . (23 L0-7 4 071U pT

SXR6 1 1875- 70718 .®21 .@.9 40753 pT
GPOU 12235 70712 .3 L0 3 4 @95 pT
C18 21 700. U 0U .77 4 @57 pT
MM -U1 700. 1 .@72 .55 4 B1U pT

GDMC 12218 708- .3 L0091 40057 pT

NVGS1 1-UB 7085 . 788 Lot 4 @28 pT

ADAG 12 273 7087 L0712 .097 4 (533 pT

SLC2AU 138Ul 7082 . @55 .058 4 @3 pT
M1 --79 7009 . B9 @7 4 ®57 pT
OAS1 -972 707 .085 L0s53 4 (B- pT

GOC7297 1271. 7059 . (633 ey 4 (BLB pT
xdT0i 1 13072 7053 L0799 L01s 4.0.U pT
SOCD 1373. 705U L07-9 L0 8 4 (15 pT
F6S1 19382 7052 .U .09 40W pT
LIGS1 9-8U 707U L .038 4 0781 pT
Lp G 11839 7072 . (B8U .@.U 401 pT
PBC2 5323 70U .@5U .058 4 (285 pT
LCAF 95U 7ae . B9 .088 4 @18 pT
MZ1 -2- 7a- . aB7 .083 4 U pT

FVEI15 19.-8 707 . @91 .0-3 4 (288 pT

PMIA2 S5U- s L1 .091 40-5 pT
CIN 21U v L0112 La72 4 @75 pT
SMNX2 13778 7ar 0.7 .@1 4 07-- pT

Clorfl546 VL1 21-U 7@93 .05 L0s1 4 079U pT
CLIXU w21 @9 . (B5 .083 4 @-7 pT
A6EAIL 357 7289 .0U La73 40-9 pT
61D2 1753 7288 o) .087 405U pT
KIAA17-2 9.83 7@88 (738 Lo 4075 pT
CRXZ2 7B @82 .02 L075 4 (BB pT
XXAXDCIA 15721 @81 (853 L@ 410 5U pT
OADD75V -88U @8 (522 L0122 4 @8U pT

AOXAF7 7.7 @39 Mo .087 4 @3- pT

XGPXAl 15271 7@3U (88 0B 4 (513 pT
NHRu 1-572 @59 53 L0 3 4093 pT

SPNXI6 H1 137.U 7@5- 052 L0sU 46.7 pT

CRL-A2 W95 @57 L0653 L0157 4 6-U pT
NME 8 1-731 @79 . (B5 .088 4017 pT

XLEDC1 15227 @79 LB .089 4 0728 pT
ANSI 1.5- 7@u . (B5 .089 4 (B9- pT

BOLLU 2.--3 7@25 . @83 .0-8 4 02- pT

XCRLCP 17-83 @27 . (632 0B 4 (752 pT

XDOMNA 17357 @19 .099 L0-- 4 @B pT

CRLI2A1 w-7 @18 .®1U .0ou 4 (B53 pT

D6 AuVs 5.18 T@1- . 59 .085 4 (B3 pT

GMAXS 12078 7@1U .U L0130 4 (8-9 pT
TKVIX 878 T@1U . (288 .0-8 4 617 pT
6D6 182 7@. 8 . (558 Lo 4 @1 pT
V6 C2 15-2 70195 L7 .09 4 0781 pT
HIMA 3837 70095 L0-5 L0l 4 @33 pT

XNNE2 15335 70091 . (B-9 LU 4019 pT

CYFHU 756 7018- (522 L0125 40-8 pT

XDOML 1735- 70185 .B15 L0195 4 (B3 pT

NAV2U 1-.92 70181 L0791 L3 4 ®.1 pT
XDX6 17381 708 . (597 L0172 4 (52- pT

C170rflB 1892 70139 729 L0.U 4 0789 pT
LNXI 1136 70139 . (288 .0-9 4 @35 pT

SPG ASA 1313 70035 .01 L07- 4 @293 pT

CRL8A2 7.2 7003 095 L0-3 4029 pT

SKAX2 13- 703 755 L0 9 4089 pT

G AXTK7 12.-5 70057 .aes .038 4 (D8 pT
XED6 1-.23 705U .0-8 L0-1 4 8.9 pT
DAV2 7579 70073 L077- L0L3 40139 pT
ASX6 1122 708 1058 . @5- 4 M2 pT

CCDCS. ul.. 700 .0.3 La73 4 @72 pT

SLC2A17 13829 700 L0757 Lo 4. @3 pT

G ANCKS 12111 700U L07-- L0y 4 091 pT
PHD2 57.U 70129 .- Lot 4 @53 pT
DLC1 790 70128 LI - .037 40078 pT

XBNLU 1-.18 70023 .U .08- 4 @15 pT

6 AXILU 1u-- 70125 ey .082 4 W pT

ONASX 3787 70122 L 07-- Lou 40121 pT




Gene ID Gene Name Score (d) Numerator (r) D (s+s0) Fold Change adjusted P value (%) Direction
CLPCIIA B82 70019 01 L07- 4 (68 pT
XHLDV1 17979 7011 -7 .08U 4 @77 pT
C3orfl. 2582 7003 L0772 .08 4 (5-9 pT
PONI 5W- 70. 5 . BB .@.U 40U pT
SHUXED2A 13528 70.2 L0-7 L0y 4 (28 pT
XXMVXI 15772 700. 2 . (B85 L0091 4 T pT
XLEDC2 15225 709U .21 L0123 4021 pT
LHMK 9-72 7092 .39 L071 40.3 pT
PFBI1 5318 7089 . @81 .0-9 4 73 pT
OEYLF2 3-7- 7059 . (B35 091 4013 pT
SLM 11 18.2- 7058 L0-3 L01s 40182 pT
GYLK 12958 70 5- .038 L0-3 4.00-5 pT
KINNPL 9182 70 5- L9 .098 4 @73 pT
RLMG L2V 113 7055 . 781 .09 4077 pT
CFSK TBU 7075 . BB 082 4 0789 pT
FSXR2 2.12. 7071 . UB .08U 4017 pT
IFOATIL 8311 707 .Ul L0i81 4 M55 pT
XNDG 1 15591 70 B . 783 L0221 4 0787 pT
M DC1 --55 ynes .03 L0-- 4 B31 pT
CIWF6 M 2125 7007 .7 Lo 4.0 pT
CRLI. Al W-1 70 2- .37 .72 4073 pT
CAC6 A2D1 239U 7025 . (@292 .03U 4 2B pT
ADAGFS17 23U 7027 .B12 .33 4 B17 pT
SOIXI 13737 7018 L0713 .07 4012 pT
CYorf125 2-87 70.8 L0712 L0 U 4057 pT
pACA 2. 12U 70. - .87 .09- 4@.7 pT
PCG2 sul- 70.7 Lan7 .038 4 (BU pT
MWL6 5 -2.. 70.2 L0112 L0sU 400 pT
HGC6 1 8.5 upos L0612 L05U 4 (555 pT
FGPGT5A 19-1. ups7 .BU L08s 4.07-8 pT
ONPG 1 3792 un39 . (559 .07 4 B2U pT
MEM --97 up3 . @85 .032 407 pT
SXR62 18753 up3 U2 L0091 4 0753 pT
Cllorf- 1383 up-5 .5 0w 4 @1U pT
6 PMI 1us1 ups9 . (593 Los1 4 19 pT
VP6 D- 178U ups- . (@2- .053 4 (-5 pT
NPCK 1-15 ups2 L7 .092 4 (B3 pT
SSCSD 18533 w73 L0-- L0-9 4 (0785 pT
AKAXI2 71-5 u7- .3 L09 40-8 pT
LPXNP1 9-.3 un77 . @35 .03 40-- pT
ADAGFS5 28U w72 .05 L0157 400 pT
CRLI-Al W-8 w72 L0715 LS 4017 pT
KDPLC2 89-8 W . 052 .089 4 0729 pT
XNKD1 15-- s . (55 .09 4 0188 pT
ANL7C 99- 23 .18 Lo 4 ®@.2 pT
ACF6 1 217 up2s .03 L02 4 (789 pT
DDN2 7-37 w19 .15 L0 - 4 (2- pT
HREAI114AS1 8.8- w. 3 L6571 .0 4 (0788 pT
Q6F2 2.911 w. 2 Lo Lo 4075 pT
XFXND 15932 . 2 . (692 L0152 4 (519 pT
XFOIN 15922 UR9- .55 L0091 4 (695 pT
CMINU B-5 uR9 .57 .03 4035 pT
HAVX7 3-85 UBS88 L8 .095 40.- pT
FGPG2 19552 URBss .zl .08U 4 (5-8 pT
LAGVI1 9791 URs8 . @2U .053 401 pT
6CN6 A.. 271 1ne. 7 uns3 Nvjes Lo12 403 pT
SSX6 1858U UB39 .25 0B 4 @2 pT
ONX 358 UR3- .07 .@7U 4071 pT
XNRS1 15312 UR32 L2 09U 4.09- pT
IFOA1 83.9 UB3 .aB .09 4 0777 pT
CD99 298 Us-9 .wu .038 4 (D9 pT
CPS1 575 UR-3 75U L3 40.1 pT
CCDC8 u99 UR-- . BB 0w 4.013- pT
GF1G 12393 UB-5 .(B-8 L0099 4031 pT
XNDG - 15-.2 UBs1 L9 .091 4 BB pT
VHLHP71 15.3 URs1 L0679 L0-9 4093 pT
SXRCK1 1875U uR73 .095 L0811 4.(8.2 pT
PON2 53 UR75 .0.U L053 a1 pT
CGFGU 837 UBB L07-3 L0122 4 OU pT
HPYL 3879 UBLS L0197 L0129 4 (823 pT
C661 w.. uzul .B15 . 21U 40079 pT
FQISF2 2.238 un23 .0.U L053 4 0187 pT
LRCI..12997. 9999 un2 . (B8 Lot 4. - pT
LSXI 11853 UR. 3 U8 .093 409U pT
ACSL7 189 UR. - L2 .039 40099 pT
CRL5AU WU URB. - . (B2- 0w 4 (B95 pT
SHUXE D2V 13529 Us. 7 .- Lo21 4 .- pT
SALL7 13.-3 uB L0-7 L0135 4 OB pT
SRVX 1823- UB99 .@8 .037 4 0158 pT
IFOAS 831- UB99 .U LU 4 (- pT
CFSV Tur- UB95 e L01s 40-2 pT
QISX1 2.893 uBoU L7 .08U 4097 pT
NVG SU 1-ur. UB91 2B .0-U 40139 pT
M6 A --13 uB9 .as .08U 4 @-9 pT
Z6M-9 21783 UB88 .0~ L037 4012 pT
KLM 92.9 UBS- . (B8 L0L2 4 (758 pT
LNNCL2 11337 UB8S L0782 L0123 4 78 pT
CYorf5U 2329 UBS85 .0-9 .033 4 0725 pT
LNCH2 11313 UBS8s . @71 .0-7 4 @53 pT
CRGX 7.2. UB3U . (838 LW 4 8.9 pT
MF -335 UB- - . (B3- L@ - 4 .- pT
QIsxX2 2.898 UB-- .82 .@-1 4 (659 pT
ZNKU 21191 Us-uU .U La71 4085 pT
SBPXI1 18827 UB-2 . ae- .083 4.0- pT
ubXx2 8383 UB- 1 Lorul L01s 4017 pT
MEW -319 UB- .B-5 @7 40799 pT




Gene ID Gene Name Score (d) Numerator (r) D (s+s0) Fold Change adjusted P value (%) Direction
SCANG6 A13 13173 UB58 .67 .77 40128 pT
NAV3L1 1- 18 UBS8 .71 Lo3 40731 pT
NASAU 1-27- UBs3 . (BS L0.U 4 0185 pT
6FG 15U UB5S .9 .088 4 21 pT
LGCDI 9323 UB73 L0799 L0 4 075- pT
OLIXN2 315- UB72 . 0798 Lo 4 U1- pT
ZMIE7 21181 uB3 . 0798 Lo 4 @58 pT
SF-OAL2 18-13 B L0733 L0128 4 (B35 pT
LRCI. . 112891 1.297 uB2s L0-1 07U 4 07U pT
DXF 51 UB25 .B73 @1 4.0-7 pT
AXCDDI1 8.9 UB22 . (588 .58 4 018U pT
uAO1 8337 UB19 .03 L9 4.0.7 pT
Sp LM 18337 UBI8 .0-8 .08 4 ®75 pT
PIMA2 57-8 uB13 . 28U .03- 4 W pT
C12orf3. 18U UB. 8 .15 Lo12 4 (635 pT
LRELI 11-82 UB. 8 .97 L0l- 40U pT
6E6 17U UB. 3 .77 .09U 4 078- pT
AFMJ 1173 w92 .31 .028 4.019- pT
EO 2.953 w9 . (B- .093 40791 pT
6 HS 10752 w88 . @52 .0-8 4 @57 pT
BPOMC 2.-53 w83 . (BU L0L7 4 @97 pT
ZPV2 211-8 w33 L 72 .09U 409 pT
IFOVL1 831 w33 .032 L08U 4 (622 pT
CRL8AI 7.1 w37 .(B72 @2 4 M59 pT
ANHOPM. 9-5 w3U L07.8 L0l 4@ 1 pT
C2lorfl7 229- w3 . (@232 .037 40-2 pT
GFIE 12398 w-9 .8 .08 40-3 pT
GYRIV 12932 w-7 L2 .085 4 @12 pT
PMG X2 507 w59 L0722 L01s 4 (788 pT
XDLIGU 17337 w58 L07-3 .028 4.0-3 pT
IFOVU 8312 ws3 . (B2- .77 4 0718 pT
SLCI2A7 13--- ws- . @92 .08 4 019U pT
ACBN2A 207 wss .@-7 .032 4 @2 pT
LRCI.. 1U 83- 111, w73 . (638 L0059 4 @33 pT
GAGDC2 12..3 w73 L 72 .097 403U pT
MV -719 w72 . 0I88 .052 4 (0755 pT
LXCAF2 11-95 ww . @31 .037 40072 pT
C5orflU 2733 ww LU Lol 4 (587 pT
LNIOU 113U W . (782 .o 4010 pT
CD2.. 28 w B ey .092 40.- pT
SXSVI 1879. w27 . (BU 0L U 4 07- pT
GENA3 129.2 w2 L7 .083 40717 pT
XFX621 15959 w18 .-U .028 40132 pT
Cl13orf51 2... w12 L0728 .08 4 @B pT
KLM2 9198 wil L7 .097 4 (283 pT
CPLM ur3s w.8 7= .09- 40W pT
MG 3AT -115 w.3 L@-1 .032 4 073U pT
LAY6 9528 w . ap9 Lot 4 @18 pT
XFOM6 15921 w .8 L 4 (598 pT
SY6 DIO1 18851 Up99 . B7- @3 4 BUU pT
SCHIX1 13133 Up87 L. 8 .72 40121 pT
NPCWL 1- - Ups L0311 .Q78 4 (D8 pT
OOF5 3.32 up33 L 075 L0128 4 007 pT
MOM -U. Up33 .7 .09 4085 pT
MERI -312 Usp3 e 09U 40.- pT
MG2. A -..9 Us3 L1 Lo12 4089 pT
QDNS- 2.85- Uusp-3 .B.3 L0198 4 W pT
ZMKG 2 212.- Up-5 . (B5 LS 4.0.2 pT
LRC571731 11281 Us-7 L0752 L0123 4 331 pT
GF1P 12391 Usp- . (587 L0-7 40.2 pT
KLM 92.7 Up59 L0731 Lo 40077 pT
LAGAI 978- Up53 L3 .08- 4 RU pT
G AXTKS 12.-- Ups- . @79 .03 4 (5- pT
CPNCAG WU Up57 .73 .098 4 (B32 pT
DZIX1 523- Up52 . (B2 L0 S 4 @9 pT
OLIS1 3153 ups L0729 L0121 4 079- pT
UAGU 8387 uss .aR2 L0091 4 @75 pT
SLC2-Al. 138.1 Us73 L5 L0.U 4.07-U pT
NRNI 1-370 Up75 LIS .08 4 @57 pT
CFHNCI 725 Up72 L0-3 L0188 4 27 pT
XKD2 15.31 Up72 .57 Lo 400 pT
SLCU Al 1388. UsU- .59 L0 2 4 (629 pT
OLIS2 3158 Uss L0795 .07 4 6U7 pT
GIFM 12731 us2 .U .08- 4.0U8 pT
6 XN2 1672 Up2- (B8 Lo 4 @5- pT
Ouv2 312. Up2- . BU . 4 M78 pT
ZMA6 D5 21137 Urp22 .@-U .035 40152 pT
OXC- 30U us19 L7 L0127 4 (583 pT
C6 NIX1 w25 Us19 .@23 .0-5 40075 pT
C6 THU 89S Ubl- .71 L0125 4 D9 pT
SOG 82 1378U Us17 .- .09U 4 073U pT
SFANDS 18--1 up17 .@3U .038 40139 pT
X2NY1 17725 up17 . @52 .032 40-1 pT
Np6EIF1 1-999 Us17 L6.9 .75 4095 pT
uAZM 838- Upi12 w2 .089 4 @B pT
HSXV2 82U us. 3 L6-7 L0-1 400 pT
6 KD2 1078- Usb. - . 0B Lo 4 (783 pT
CRLI5A1 w-3 Usb. 5 725 Lo21 400 pT
CD278 jeec Us. 7 . (B1 L0 - 4 WU pT
HPO1 38.9 us. 2 L0 L01s 4@.2 pT
GYRID 12937 Us. 2 . @97 .087 4 (677 pT
MN 538- ur99 L2 .089 4 @-5 pT
XPLI2 17813 un93 L0725 Lo21 4 0189 pT
ALDHIL2 51- urou L0721 Lo21 4 (U pT
LIGSWL 9-8- urs9 .51 L0l 4 @79 pT
HHIXL1 38-U ur3s .5 Lot 40.5 pT




Gene ID Gene Name Score (d) Numerator (r) D (s+s0) Fold Change adjusted P value (%) Direction
ZCWHI12V 211.U ur3s L09- L05- 4082 pT
AVCA- 72 -1 L0739 [Lh83] Q19 pT
GFIL 1239- urs- .B17 L079 40.- pT
ANAXU 883 urs- (B2 L0 8 4097 pT
ADAGFSI12 231 ursi1 . @5- 037 4 ®1 pT
XNKCA 15-79 wrsi . 077- 029 40.5 pT
MS -18. un72 .@9 087 40U pT
VGXI 1571 w7l L019- .053 4 (B98 pT
ORLOA3V 3283 wr7 U3 L3 4 (558 pT
CLIX7 822 w7 . BU .08 4.0.7 pT
LOALSI1 9-18 un23 . 2U L0027 4 (G1U pT
C2.orfl. U privy ur2s .B.3 L@ 4 619 pT
GPIS2 1228- uri3 L7 L3 4.00- pT
MG 7UA -7 uri- . (BU .09 4.0- pT
KA6 K2 8818 uriu L7 Lo 4 @21 pT
AKAXIU 7-- uri2 . @5- .035 40098 pT
SLAGM 13-52 ur. - L B1 L0 U 4 B3U pT
HSX02 8275 ur. 2 .@-U 033 4 0729 . pT
FGPGT7U 19-.8 uw9 . @38 082 4 15 .03 pT
POM.- 5183 urp- .035 L0099 4 @93 .03 pT
Cl. orfl. 1-81 uws L (3- L03 4082 L03 pT
GAOPL2 11991 uu LU L0 3 4 @81 .03 pT
MF7 -191 UILB9 L0189 .05 40015 .03 pT
HICI 3832 ULB- .79 .U 4 @77 .03 pT
C2. orf197 2258 UIBS L 089 401 L03 pT
DU su12 ULBS JesY Lo 4 @59 .03 pT
CECLI2 T8 ULB7 LB 12 40123 .03 pT
SXAFS2L 18189 ULB2 L7 L019 4 @3U .03 pT
GGXI1 12529 Bl (@Bl . @71 410 3- L03 pT
FXSF1 19837 uLss .85 Lo17 4 61 .03 pT
GAXIV 12. W0 u1B2 L7 Lot .0.U .03 pT
LRCI. . 1U182- 1.22. U1B2 . @31 .08 4.00.7 .03 pT
A6 FEN2 351 B e .03 4073 L03 pT
KLK7 92-- uLs- L9 .092 4078 L03 pT
XPAKI1 178. - U159 .@8 .08U 4093 .03 pT
ANHOAX2. 918 uis1 . @38 .08U 408U .03 pT
DRCKI11 5.87 w73 . (55 L0 - . .03 pT
SXPCC1 187.7 a7t L@-1 .038 4 @72 L03 pT
SXHK1 18718 u7 L7 .09 4 071- .03 pT
6p AK1 18-3 uum .u L0091 4058 .03 pT
FGPG2.7 195-. o .5 L019 4 (B3 L3 pT
CRL3A1 7. w9 .6 L0-1 4 (52U L03 pT
MD3 -8U uies LB 1 .01 4. 019U .03 pT
HRGPNI 8.32 urel .@7U .03U 406.1 .03 pT
DSF 5189 el L0752 L0 40.3 L3 pT
ADAG 19 251 ue .@32 .082 40 W L03 pT
06011 3271 uuig .51 L0U 401 .03 pT
SMNX7 13779 uuu .8 L0135 4 @97 .03 pT
VACH2 1U-- uul .09 .053 40-U L3 pT
LRC28-.-8 1.952 uu 9 L0159 078 4 (521 L03 pT
FIGXU 19U75 uu9 .8 .35 40-- .03 pT
PM V2 51B8 uu - L0712 L0125 40711 .03 pT
IFOVI 8323 uu 7 LU .092 4 @-7 L3 pT
MG . 1V 5825 uu U L0718 L0123 4.7 L03 pT
XTHAU 1770 uuu .@3 .082 4 028 .03 pT
ANXC2 1.2 ue93 .@5 .03 4 072 .03 pT
SOK1 13735 ueo3 L0122 L0128 40.- L3 pT
76 M. X1 210. ue92 L 77U 0B 4 00U L03 pT
KCFDI12 8979 uzeol . (B- Lo17 4.02- .03 pT
MRSV --3- upol .B5U . @29 .095 .03 pT
GGXIU 125U1 uz9 . ®77 . @2- 4 ®1U L3 pT
SLIF2 18. 5 ues9 LWUs L0 4 @39 L03 pT
PD6 NA suB ues- N 097 4 (692 .03 pT
CDNI 72U uesl1 . @23 .0-9 4 @5- .03 pT
LZFS1 11907 un38 . @21 .0-8 4 0735 L3 pT
CDHIU us. ue33 . (BU L3 4 078- L03 pT
MG-9A -.85 ue32 . (@58 .039 4 @73 .03 pT
1owx3 87.9 ure32 L0723 Lou 4 @97 .03 pT
VG XN2 155- ure3i .@.5 .0-U 4 (B8 .03 pT
XLE6 Cl 1520 ue3l Moy Lo 4 (559 L03 pT
XN6 X 15-88 ue3 . 798 L052 40U .03 pT
SPC2UA 1323. ue3 La72 L0 s 4 (31 .03 pT
C120rf35 18U7 ue-- 758 .07 4 (0B7 .03 pT
SFOCU 18-8. ue-u .eu .031 4 (B7 L03 pT
CNISXLD2 718U ue-2 L 7- Lo - 4.00.1 .03 pT
XLPKHO2 1513- ues3 . (@58 .039 4 (622 .03 pT
IFOAB 8325 ues- . (BS L01s 4 0722 .03 pT
CRL7A2 wss ues L0.3 L0125 4 U L03 pT
FSXAG6 18 2.1.5 ue79 Nt L0Ls 4 (25 L03 pT
LDV2 9537 ue78 . @31 .08U 40-1 .03 pT
AH6 AK2 Tul ure73 . 755 .07 4 (BL2 .03 pT
Dp SXI 5213 up7- .6 057 4027 03 pT
CXEG1 7138 ue7s L0717 L0128 40132 L03 pT
XLD1 15152 ur7u . (@5- .039 4 (2- .03 pT
DDE7U 73.2 ur72 L0781 .a78 4 @8U .03 pT
C-orfl37 2575 ue71 L9 .098 LQl- L3 pT
PGE2RS 5518 uzs Lo717 L0128 4@.8 L03 pT
KLKXI 923U Jesien . (5- Lot 4 (B52 .03 pT
PDILU SUU wu L0118 L091 4@89 .03 pT
PG X1 5529 up28 L077- 0B 4015 L3 pT
CCDC88A ull. ue2s . @92 .09 40192 L03 pT
CDK6 1A .9 ue2s Noive) .032 4. 05 .03 pT
LHMKL2 9-77 uei9 ey .07 408 .03 pT
XCDHI18 17-.8 uei3 . @85 .089 408U L3 pT
XLPKHH2 15187 ue. 9 .@33 .08- 40.3 L03 pT
SXANCLI1 18U-U ue. 9 L0119 a9ou 4090 .03 pT




Gene ID Gene Name Score (d) Numerator (r) D (s+s0) Fold Change adjusted P value (%) Dir
CCNLI ui9- ue. 9 L 072- 0w 4 (B28 L03 pT
A6 KH -73 ue. 3 .aB L0o- 4035 .03 pT
XP6 K 17822 ue. 3 . @58 .08 4 (LB .03 pT
LRC328835 11559 uz L0-U L07s 4 RU L3 pT
XANBA 17553 w99 LU - .09- 4 @8- L03 pT
CAX65 283- w99 L718 Lou 40091 .03 pT
XRFPM 15189 w98 . (282 .088 4 @-U .03 pT
oM 81D- wio7 .aes L0L2 40017 L3 pT
pC62 2. 70 wiou .(735 L0179 4 (59- L03 pT
SY6 XR 188-7 wiou . (@32 085 4 018 .03 pT
M DC7 --58 wiou .3 .099 40017 .03 pT
XLAF 15128 wo . (®B13 . @5- 4 079 L3 pT
uAG2 838U w9 e L0L7 .0.U L03 pT
IMMR T sUU wis- .@.2 .0-7 4 @12 .03 pT
MF1 -188 wis7 L6.9 L0 40U .03 pT
LRCI. . 283221 1. 183 w8 . BU L3 40.3 L3 pT
N6 M35 1--3. wi39 @1 L0-- 401- L03 pT
NME2 1-7-5 wi33 L8 Lo 4. .03 pT
LNNC13 11359 wi3- . (537 .o81 4 0752 .03 pT
BS6L1 2.37. wi3- L (B2- L0l-- 4 @91 .03 pT
LY9- 11899 wi-3 . (B7 18 4.0-3 L7 pT
GF1V 12389 -5 L0732 a79 4087 L7 pT
XHACFN2 179. - wi-u .@-2 08U 40139 .7 pT
SXNY2 1878U wi-1 .51 70 QU L7 pT
KLM 92.8 wiss .@73 .038 4 018 L7 pT
PM VI 51B3 wis1 .5 Lot 40079 L7 pT
cxz 71H wi7- . (B- 02u 4 W18 a7 pT
XYORI1 1-.70 w75 . @-- 085 4 (B3 a7 pT
FHVS1 19239 wis L2 025 4 (51B L7 pT
SXNY1 18782 ww .02 auwr 40.1 L7 pT
ADAGFSI 2-9 e L0732 Las1 401- .7 pT
A6 OXF2 -u wiu . P9 L0123 40.8 a7 pT
NHRW 1-57U wiu . @2- .032 4081 L7 pT
CAB2 2977 w29 .@7- .039 .088 L7 pT
XCSK3 17-99 wi23 . 038 .053 4 @-1 a7 pT
CCDC82 u.2 wi21 . (B- .02 40013 a7 pT
XLACY 15127 wiis (B2 L0y 4035 L7 pT
GS6 12332 wl. - . (B8 L01s 4@.7 L7 pT
CYX2p 1 75.U w.u (@3- .089 0.1 a7 pT
A6 KNDUS -95 . 2 . (582 088 4058 a7 pT
GPFN6 L 1209 wo9- .ae7 L0Ls 4 ®7 L7 pT
GMOP8 1215, w97 .67 L0135 4 @9 L7 pT
OAS- -978 w97 . (B8 L0122 4 @5- Lan7 pT
CM B-8 w9 . (B1 L02U 4027 L7 pT
DCLK2 7-29 w89 . @57 .082 4.l L7 pT
6 PMG 1UBU w8s L@ .087 461 L7 pT
NOS2 1-5.2 w 81 . (625 L0311 403 .an7 pT
NRCK2 1-30 w81 . @77 .039 4 @- L7 pT
HYG AI 8289 ws (B2 L0121 40-3 L7 pT
BGXI 2.-85 w8 Ny L0123 4 (B-2 L7 pT
MUAL 538U w38 . (B3 L0122 4 0722 L7 pT
HREA7 8.9. w33 . @3- .09 . a7 pT
SFKI13V 18-91 w 3u . @83 .09U 4015 L7 pT
LRC7.1.93 111-7 w-u @7 .0-3 4 071U L7 pT
ANNDCU 1.7- w-1 L7 Lo19 40.7 a7 pT
LRCI..1289.5 9881 w-1 L03 0w 401 a7 pT
SI.. A7 13. W w- .07 L0172 4 0775 L7 pT
Fo MM 1 19372 w - e .033 4 (95 L7 pT
HREAU 8.89 w59 L0737 .55 QU L7 pT
N6 M22 1--» w57 L2 L0 2 4 @92 .B-U pT
H19 3--U w su . (657 L0182 4 0 .6-U pT
6NX2 111 w 5U L@ .0-8 4 BU7 L6-U pT
MGRD --75 w52 . (653 L08U 4081 .B-U pT
OAVANAXL1 -857 ws1 . (@9- .093 4055 .6-U pT
GGX3 12573 wsl1 101- e 4 @-8 .6-U pT
QFIX 2.9 ws . (B8 L0127 4 @91 L6-U pT
FSHZ2 2..85 w7- e .09 Q79 .B-U pT
ACFVL2 2.7 w72 .ae9 .08 4 @2- .6-U pT
SC6 WV 13192 w71 .12 e 4012 .6-U pT
SpLM 18335 w71 LB L0133 4 ®. - L6-U pT
D6 Auv7 5.13 w71 .@8 .092 4 078- .B-U pT
VACP2 17 w7 .5 .o81 4 @29 .6-U pT
MC6 1 -3-5 ww . 755 .05 4.07-8 L6-U pT
XNKDU 15--2 ww .77 L01u 4.00-9 L6-U pT
ORLIG7 329U ww LU L0uU 4 73 LB-U pT
XHLDAU 17978 ww .ae1 L0 - 40-9 .6-U pT
FQSO1 2.28. ww . @97 .093 4 (B3 L6-U pT
NASLI1V 1-2-3 w v L0759 L0151 4 071U L6-U pT
o) 539. ww . (3- .09 40139 .B-U pT
CRL7A1 we7 wu .- Lou 4078 .6-U pT
CABI1 297U w29 . 75U .05 Q79 L6-U pT
BPOMW 2.-5- w27 . @71 .08 4009 .6-U pT
ANSP 1.52 w18 . @81 .09U 4 B75 L6-U pT
XLAp 15129 w8 . B79 082 4 (B39 .6-U pT
VCAF1 1701 w17 .- .08 4 (B-9 .6-U pT
WKI 1-.57 w 1u . @25 .035 40138 .6-U pT
SYDP1 18871 w.- L053 .052 4@.2 L6-U pT
M DCWV --53 w.7 . @31 .09 4 (B8 .6-U pT
G AX3DU 12.32 w.2 .@.U .0-8 405- .6-U pT
CSNX2 7233 w.1 L0125 L0172 40199 .6-U pT
RLMG L2A 1W1- u sy .08 4 BW L6-U pT
GREDI 12-.U u .- L0sU 4Qu .B-U pT
CDKLS5 .8 2099 . e Lot 4.07.U .6-U pT
LAFS2 952- 20098 .@Iu .031 40098 .6-U pT
CCDhCU usu 2095 .05 L0155 .02 L6-U pT
DAXKU 753. 2095 . @57 .085 4 ®-3 .B-U pT




Gene ID Gene Name Score (d) Numerator (r) D (s+s0) Fold Change adjusted P value (%) Dir
CDK- un9 209 L0793 S0-- 40138 L6-U pT
DRCK7 5.83 209 . @299 Lo 4.071- .B-U pT
ADXNH ur- 2088 . Lo 4077 .6-U pT
GGD 12522 208- . B1 027 4008 .6-U pT
NMKL14AS1 1-75U 2082 .2 039 4 (287 L6-U pT
FOMVNI 19278 2081 . @35 092 4. 079- .6-U pT
LXH6 2 113.. 2033 . @25 035 403U L6-U pT
LRC7.11-7 111-8 203- e 038 4 (BU .6-U pT
CLD6 11 (B58 203U .77 08U o L6-U pT
LAGC1 979- 20-8 . (B8 023 40719 .6-U pT
IOWX- 87.8 20-7 . aps aw 40-2 .6-U pT
GGP 12527 20-7 LU L0122 07 .6-U pT
LNNCI5 1135- 2053 .1 .@7 400U L6-U pT
S1.. A2 13.U 2053 .B15 .@72 4 0B1 .6-U pT
OpLX1 3-B 205U L7 .U 4055 .6-U pT
Z6 Mp21 21525 205U L. U au 4. .6-U pT
FGPG119 19759 2079 L0737 L0-1 4 RU L6-U pT
6 AGXF 1us- 2078 . (BS Loun 4 @51 .B-U pT
KDPLCI 89-3 2078 .@9 .098 4 (681 .6-U pT
LRCI.. 12903 9972 2073 . @29 .038 4 (5-7 L6-U pT
MELI -3.5 2075 .U L017 407 L6-U pT
Op CY1VU 3-u 2077 .@12 .032 4 0781 .B-U pT
KIAA. 7.8 9.23 20 @79 .085 Q-7 .6-U pT
CILX WB11 2018 . BB . @85 4 07- .6-U pT
OLIXNI 315U 200 . @7 .082 4 @5 L6-U pT
6 NXI 131, 200 . 28U .093 40073 .B-U pT
XDLIG 2 1733U 200 L0sU .052 4 (623 .6-U pT
M.u723.9 -53. 200U .@-8 .092 4.0l- . (B58 pT
LPXNPL1 9-.8 20U L0753 L015- 4 00U (B58 pT
A2G 5 20 LU L0079 40011 (B58 pT
CDKLI1 u.7 2029 . @21 .035 40183 B58 pT
ADG W 2028 . 599 @7 4 @98 B58 pT
M.u7113. -55. 2028 L0133 Q- 4091 . (58 pT
PD6 1 sur 202- .73U L0-1 4097 . (58 pT
AMAXIL1 B. 2025 . @31 .092 4 @8- . (B58 pT
FGPG213 19532 2027 .ae Lol 4 (B85 . (B58 pT
CAND- 2898 202 . ae- L0 4051 . (58 pT
CAXZV 2891 202 pcyes 073 4 (728 . (58 pT
ACFV 2.U 2019 L0197 .0-3 4058 . (B58 pT
ADC ul 2013 . @58 .089 4 (1- . (B58 pT
VACP1 10U 2015 s .082 4 0772 . (58 pT
FQISF1 2.233 2015 . @38 .095 40133 . (58 pT
PXV71L2 5583 2017 . L0 U 40-5 . (B58 pT
XAE1 1753. 2012 L0758 L053 40.9 . (B58 pT
MDI -829 20.9 . OB Lo 4.@3 . (58 pT
OX6 GV 3152 20.8 L@-1 .09 4@ 1 . (58 pT
NAVULI 1-119 20.3 .U L0381 4 0778 . (B58 pT
ADDU w1 20.3 . 78U L0l-- 4072 . (B58 pT
HSXA12V 8218 20. - . (57 L0122 4 018 . (B58 pT
ICAG7 suU 20.7 L@l .032 40197 . (58 pT
MNLI 5383 20.7 e Lo- 4081 . (B58 pT
OLI2 315. 20.U .0t .Q7- 4 - . (B58 pT
LRCI. . 1U727. 1.u. 20. 1 (B3 LU 410011 . (58 pT
6162 107-2 20 .08 Lau 4 (5.2 . (58 pT
A6 EA2XU 3-. 20 .73 .02 4 W9 . (B58 pT
XIFE2 15.59 2898 .ae7 Lo2 4055 . (B58 pT
XTHA2 17706 2897 .@-8 .092 4 B-1 . (B58 pT
RDZ7 1897 20897 . @5- .089 4.2 . (58 pT
A6 KNDWB 3. 2892 ey Lo1s 4 (D8 . (B58 pT
OXE3 373U 291 L2 .08 4 0p . (B58 pT
NRVR1 1-3U1 2888 .@19 .03- 4.0-- . (B58 pT
CSDC2 72 2(88- L0199 .0-9 40711 . (58 pT
MRS --35 2(882 .0 . @19 L0091 . (B58 pT
GMX2 12u717 2838 . 788 L0-9 4@. 8 . (B58 pT
PVM 529U 2(833 e .082 .028 . (B58 pT
AASS 23 2(83- . @35 .09- 4 @15 . (58 pT
SF5 18-15 2(832 .@-7 .092 4.07-7 . (B58 pT
MVX3 -713 2(8-8 .an3 Lot 40751 . (B58 pT
LRC-751-- 1183 28-3 . BU L02U 4071 . (B58 pT
XDP1V 17328 28-U L0195 .0-8 .51 . (58 pT
GGXw 1257. 28-U L71u .77 40037 . (B58 pT
LRCI..1U 33- 1..99 28-1 L0198 .0-9 4 @32 . (B58 pT
NAV3V 1-138 2858 L7 L0ls- 4 @8 . (B58 pT
CSNX1 723- 2(853 .@U .08l 402U . (58 pT
FOMWI 19273 2(85- .7 L0157 4 022 . (B58 pT
CIWF6 M 212- 2(8S5- .@2U .038 4 ®79 . (B58 pT
SFR6 1 18313 285- .ae3 L01s 4 @5- . (B58 pT
MG 6 LU --B 2(857 L0s1 .05U 4 073 . (58 pT
6 RFCHU 1597 205U L3 Lo 4 0- . (58 pT
SACS 13.58 2®5 .@-1 .092 4083 . (B58 pT
ARCU 33. 2879 . 735 L0-3 L0091 . (B58 pT
ACF6U 21- 2(873 . @79 .083 4 072- . (58 pT
DKMZX58-K152. 7912 2873 L0133 L0-2 4 - . (58 pT
MWL6 1 -198 2872 .73 .53 4 @3- . (B58 pT
DSPL 5181 2R71 .75 Lo21 4 (B5 . (B58 pT
SHIKVXI 13523 287 . @- .092 40122 . (B58 pT
FNR 2. 2(8LB . (BU Lou 4 (518 . (58 pT
XFHIN 15929 2807 L0 9 0w 4089 . (B58 pT
PONU 58 2807 .9 .@.8 40072 . (B58 pT
SPNXI6 P1 1313 26Ul .er .082 4 @-2 . (58 pT
XLRD2 152.9 2BU RusY L0I5s 4 (52U . (58 pT
FGPG 158 195.2 2823 .18 L08U 4018 . (B58 pT
A6EA2 358 2123 .72 Lo21 4 018U . (B58 pT
MG R2 --B 2(823 LB 1 . @78 Q-5 . (58 pT
LNCH1 1131- 20825 L0157 .55 4 091 . (58 pT
DXYSL2 5179 202U (o) Lo3 4.0.U0 . (B58 pT




Gene ID Gene Name Score (d) Numerator (r) D (s+s0) Fold Change adjusted P value (%) Direction
GGXU 1257- 2(822 0B . @2- 4 0737 109- pT
HREA3 8.9U 221 . (588 .@.9 4073 109- pT
GFIA 12388 2121 L0~ .0u 4025 109- pT
NRVRU 1-3W 2(819 .@.U .032 4013 109- pT
6 DPLI 1239 2819 L0182 .0-5 4 (B- 109- pT
KNF13 ou9 213 .®-2 .2 401 109- pT
6 CKAXSL jluge: 2B1- L0221 Q70 4 17 109- pT
NCA62 1-U7 2015 . @52 .089 4029 109- pT
LNN6 7CL 118Ul 211 ey L01s Q75 109- pT
LRC2818-3 1.8U7 28.9 .2 .05 4071 109- pT
DRCK- 5.89 2.8 .@-1 .09U 401 109- pT
AKFU 5.2 2(8. - . 0B- L0123 4091 109- pT
F6 MNSM2A 1932- 2(8. - (0758 L0-U 4 078- 109- pT
ClWrflUu 187- 2.7 NUA) L0 4.0- 109- pT
CASF 29U7 2393 . @B .087 40019 109- pT
XNICKLP2 15-28 293 . (B3 L0128 4 @ 109- pT
N6 M75 1--55 2(9- .@-7 .097 40199 109- pT
FGPG IL2P 1973- 2897 .as Lou 4 @288 109- pT
ZMKU- L1 21192 2892 . B Lo21 4015 109- pT
GYRSA 12981 2(B89 . @77 .083 4 B 109- pT
XFXNO 15935 208- L07- .052 4 @72 109- pT
CSDA 7212 2(B85 . 73- L0311 4 @27 109- pT
F6 MNSM A 193W0 2(882 .@12 .03 4 (617 109- pT
CDC17V wl - 28 L0-8 0-1 4058 109- pT
GRVKL2V 125-- 2039 .@7- .089 4031 109- pT
76 M2 215W 237 . (@38 Lo 4 (02 109- pT
DXX7 512- 233U L1 .75 4 (B- 109- pT
C8orf7 2- 2B3U .®7 .@-3 40.- 109- pT
FVES 19.33 23 L0158 .053 4 0p- 109- pT
HSIBFUAL 81-- 23 L0-8 0-1 4 (688 109- pT
A6R- 3B 2B-9 L07U .052 40017 109- pT
XPCAG 1 1781. 2B-3 . @33 L0 L0152 109- pT
FOWU 1927- 2(-3 L0751 L0-U 4 079U 109- pT
C6 F6 AXU w7. 26-5 (B2 .o 018 109- pT
CIWF6 M 2121 2B-7 . @72 .088 4 @-7 109- pT
CIWF6 M 2123 2(8-2 L@ - .035 40015 109- pT
DIR2 7839 20- .@-3 .093 4 @9U 109- pT
PYA2 5332 2059 0783 L0133 4 @B 109- pT
GMX7 12073 259 . B2 .@-5 40.8 109- pT
HAS2 331. 2(B5- L0073 .05U 4 77 109- pT
GYRIP 12935 2055 . @8U 0L U 4 (0B 109- pT
CCDCU us3 2057 L0198 .032 4 W71 109- pT
HREA9 8.97 235 OB L02u 401- 109- pT
p SF 2.599 278 . (@5- .09U 4 @57 109- pT
MIADI -89 278 .0u 073 4.003- 109- pT
SC62V 1319. 207- @9 L03- 4 @1 109- pT
6 F5P 173 2371 .@-U .09 4 @52 109- pT
S6 All 1812 207 L2 Lo17 4 0799 109- pT
CRNI6 7.79 267 L@-1 .095 4083 109- pT
AFXI1V 1188 267 L9 L0y 4.1 109- pT
SFUDAL2 18-1. 237 . (@2- .082 4 0187 109- pT
KNF5 ou73 218 . B-7 .- 40-5 109- pT
6 KEUR 1. U 265 LB 0w 410129 109- pT
ACRF9 1-3 2BU7 @57 .09U 4 @1 109- pT
SIXN2 13.73 2BW . @55 09U 407- 109- pT
DND7 51-1 26U .- La7s 41028 109- pT
VHGF2 15.9 26U @B .08- 40-2 109- pT
PFHP1 531U 2029 .@77 .09 4 0775 109- pT
XANX7 17551 20829 L0-7 L0- 4 MU 109- pT
OuCl 312- 229 . B9 0w 4 (639 109- pT
XNPLX 15-17 2023 .08 .7 .59 109- pT
NALV 1-195 202- . @75 Q9 4 6 109- pT
GFIH 12397 2827 L3 Lou 4012 109- pT
CH25H B85 2827 L07-8 L0132 Q13 109- pT
KNF17 ouls 22U . ®8- W2 40095 109- pT
CHN6 A3 U-3 22U .@2 .081 405 109- pT
A6 EASL2 3-- 22 oul L2 4 @288 109- pT
ORLOASP 3289 2319 . @52 .09U 408 109- pT
SPNXI6 P2 1308 218 L1 L0178 4 (- 109- pT
KNF1-X2 9uI8 201- .(®3 .2 4012 109- pT
Clorfs57 2211 2B15 . 2w .088 400 109- pT
CC6R U39 2B1U . ®U L- 4 0783 109- pT
CDK6 1C uri 212 N L078 4075 109- pT
HSDI13V11 8182 212 .2 L018 40U 109- pT
SLCI1-A3 13-95 2.8 Lo L0-- L0353 1672 pT
NXS-KAU 1-898 23.8 .@-8 .099 .o 1672 pT
CRLI17A1 W-- 2.8 70 L0-7 4092 1672 pT
6 PDD9 1UB. 2.8 @97 L9 4 @77 1672 pT
ANHOPM 9-7 26.5 @u7 .08- 4078 1672 pT
KA6 K7 882. 2.1 . (595 .@2 4012 1672 pT
MLIXIL -9 2099 .@.8 .033 4 0778 1672 pT
OSFXI1 3538 2098 . (2U L0197 4051 1672 pT
GPMA 122-9 20.9- .@-U .098 4 @7U 1672 pT
LNX12 11318 2092 La- Lo18 4 (31 1672 pT
XCDHOAS 17-52 2091 09 .03U 400 1672 pT
TWCWSCHIXI 8-73 2091 . @91 L0 8 40012 1672 pT
XID1 17982 2091 .(B1 0B Q.U 1672 pT
GPCRG 1220 2089 .@.9 .038 . 1672 pT
CFIM 7e- 2083 . @92 ) 40193 1672 pT
IFOV- 83U 20 8- LB L@ 4 @-7 1672 pT
CYLD 77-9 208- .@15 .08 .05 1672 pT
KLM 9211 208U LR .o 40079 1672 pT
XDP3V 1737- 2082 . @27 .08U 40079 1672 pT
76 M88. 2138U 2081 .@17 .08 4 051 1672 pT
F6C 1931. 208 . (8 L@1- 40013 1672 pT
MRSL2 --38 20:3- L0.uU Los1 4 (632 1672 pT




Gene ID Gene Name Score (d) Numerator (r) D (s+s0) Fold Change adjusted P value (%) Dir
socv 137-9 2035 . @57 .095 4 (98 1672 pT
G AW 11955 2035 . @97 Lol 4.09- 1672 pT
Z6 M99 21--U 2037 .o .051 40071 1672 pT
LRCI..5.58. - 1.757 203U L0125 L0159 4 0722 1672 pT
KLM. 919- 20:32 L= L018 4.00-2 1672 pT
ORLOA-LI. 3281 2031 LI Lo17 4 (628 1672 pT
ONID1 35.2 20-9 L0 - .07 .021 1672 pT
CDHN2 UB. 20-8 . @27 .087 4 (6-5 1672 pT
SLCIBA2 13891 20-3 .2 .088 40.1 1672 pT
PGE2 558 20-3 . @13 L0381 40071 1672 pT
6 RFCH7 11595 20-- LI L0- 40.8 1672 pT
NCVFV2 1-U3 20-- . @25 .85 .03 10672 pT
RDZ2 1892 20-7 . (625 L0193 403 1672 pT
LRC328.-1 115. - 20-1 . (B1 .a7u 4. 079U 1672 pT
6N6 1 108. 8 20-1 . e L0125 4 2B 1672 pT
SXAFA9 18185 20-1 Lo .Q5 4 (28 1672 pT
GNAS 12-W 20:59 . (B7 .77 .0-3 1672 pT
XFX6 17 15957 2059 L2 e 4 @32 1672 pT
up 6 881. 2053 .U L0s- .082 1672 pT
NRNA 1-375 2053 . 2B .09 4@ U 1672 pT
CILX2 B12 205- (738 .08 4 B78 1672 pT
BDN 2.-57 205U . @%U Lo 4. 07 1672 pT
F6 MAIXB 1931- 2073 . @32 L0.U 40-2 1672 pT
CDH2 Us- 2073 . 0785 L08U 4018 1672 pT
NASD1 1-251 207U .- .@12 401- 1672 pT
p VP2W2XI1 2. U 200 . 2w L0091 4.0.5 1672 pT
SG AD9 18.-2 200 L0-2 .0-2 .Q8U 1672 pT
EYLF1 2.99- 20607 .@U .083 408 1672 pT
D6 AuC18 5. 2007 L0139 .0-8 40-8 1672 pT
LRC7..7-7 1 20U L0197 .037 4097 1672 pT
XPNI 17827 2028 .79 Lo 408U 1672 pT
Np6E1 1-998 202- . @97 Lo2 4 (B2U 1672 pT
MG2.C - 11 2025 .28 L0125 409- 1672 pT
LANX- 9513 20:25 .U L0128 4 0188 1672 pT
Xp NO 1-..- 202U L0128 Q79 4.00.7 1672 pT
MVXS 58.5 2021 .ou L0-7 40 1672 pT
Cllorfl5 181 2018 L7 L02 4081 1672 pT
ADAGFSL2 289 20:13 . @31 L7 4 M35 1672 pT
PHDU 57.7 2013 L0193 .035 4 029 1672 pT
SDC1 1322- 2015 L0778 Lo31 4 (B13 1672 pT
FSC22DU 2..-9 2015 .U L0120 4.00-7 1672 pT
XC6E 17-87 20:15 .@U .088 409 1672 pT
MG 7TV -7 2011 .@-8 L0.U 401 1672 pT
CHSF12 U39 2011 .@.2 .033 400 1672 pT
NC6 1 1-B7 201 L7 L02 402U 1672 pT
MAG 89A -1W 20.9 L7 L0128 L0-7 1672 pT
CECL2 77.U 20.3 . (598 . @29 .08 1672 pT
GIAF 127U 20.- L07-8 .08 4 (1- 1672 pT
KC6uls 889- 20.5 L012 .Q70 4 BW 1672 pT
6 XHXU 1U-2- 206.U .@.uU .038 4 - 20 pT
LRCI..19.91 1.UGU 201 .73 Lo 40093 200 pT
IM1- 8Ub 20699 .ae7 L0027 40051 200 pT
PGILI6 2 5521 20698 .U L0129 4 0wJ 20 pT
CxXp 7.98 20598 . (625 @2 4 09U 20 pT
LRCI..1U... 1...5 20593 .0-8 . @53 4 @93 200 pT
IL7N 8523 20697 . @75 .095 403U 200 pT
CRE3AI 7.39 269U L0759 L0133 40183 20 pT
ZCCHCI11 21121 20692 L@1- .08U 4 0lwJ 20 pT
C-orfl75 25W 20669 Lot Lo- 4088 200 pT
XLAOLI 1512- 20589 .@12 .082 40.2 200 pT
AMAXI U8 20689 L0I8- .032 4 6 20 pT
CSX07 72-8 20588 ey Lau 4 (52 20 pT
CD99X1 wl. 2(p88 .@12 .082 4. (B9S 200 pT
A6KS- 329 20583 .13 L0-1 40-3 200 pT
p VFD2 2.717 20583 . @13 .087 4000 20 pT
GAOPH1 1199. 20685 L2 L3 4 (225 20 pT
FXsUuu 198U 20585 . @39 L0 8 4.0 200 pT
CHSF11 U38 20585 .@-7 L0 2 4079 200 pT
ANHOAXI. 91. 208U . @37 L0 - 4 @53 200 pT
ORXC 3U. 2058 L089 .03U 4 075U 20 pT
C9orfU 231- 2058 L 0i81 .03 4 (625 200 pT
KAF6 AL1 88U 20639 . @77 .095 4.07.3 200 pT
VACHI 105 20539 L0-U .0-U 4 2B 200 pT
LVH 9529 20639 L0-9 Q-5 405 20 pT
10DCC7 8WU 20639 . @95 Lo17 40072 200 pT
FFC2U 2.153 20639 .2 .09U 4 0099 200 pT
HRRKU 8.38 2538 . @71 .097 4 2B 200 pT
P6 FXD1 553. 2033 L@ .038 40139 20 pT
RLMG LI 115 2033 L013- .0-8 4 @WB 20 pT
LG6A 93Ul 2053- .@1- .087 4 (B- 200 pT
GYH9 12977 20p3- .@.8 L0381 4 WU 200 pT
HIBPX2 39-7 2063- . @8U L 4.07- 20 pT
XAXXA 1751- 20635 . @92 L017 4 ®. - 20 pT
MIRDU -183 20531 L7 L0s53 4 72 200 pT
CLPCWV 1B93 205-8 . (B8 La73 40.9 200 pT
ADCY3 u7 205-3 .@3U L0 - 4.5.2 20 pT
FOMVN2 19279 20-U . @9- L01s Laur 20 pT
IL11 8751 20- .@U .09 4@oU 200 pT
ANPO 89. 205- .®15 . 4 00U 200 pT
QDN-U 2.8 2055- L0132 .0-3 4011 20 pT
VHLHP22 15.7 20655 .5 .0wB .0.8 20 pT
AS6S 111U 20657 LIt Lo18 4 0798 200 pT
OAL6 FL2 -919 20657 . (B- .51 4012 200 pT
QIXM 2.892 20679 @3 .081 4031 20 pT
SFE2 1837- 20679 . @98 L013 401 20 pT
GF2A 12399 20678 . (- .55 4037 200 pT




Gene ID Gene Name Score (d) Numerator (r) D (s+s0) Fold Change adjusted P value (%) Dir
Dp SX- 5218 20578 . BU L0s1 072 20 pT
Z6 MB 217-9 2067- 085 .03U 4 @B 200 pT
AMAXIL2 B1 20677 e Lou 4 @17 200 pT
V6 IXUL 15-- 267U .2 .09U 402 20 pT
6XC2 1013 2667 .@33 L0L9 401U 20 pT
OAVNV2 -8-8 20667 L0s- .0-2 4 (659 200 pT
XNN5SL 15359 20612 . (@28 .09 4 (B15 200 pT
XCDHVI17 17-U7 2601 .U LW 4 @13 20 pT
ME6U =31, 20629 . @22 .088 4 00U 20 pT
LRCI..5.35.3 1.5U7 20528 .@WB 097 4 611 200 pT
LRC175-97 1.-72 202 .U L0027 4098 200 pT
CLICT W15 20518 . @5- L0 2 4 (655 20 pT
po6CsvV 2.791 20518 .82 L0152 41893 20 pT
CLD6 5 37 206613 L0711 L0-U .0 87 200 pT
LRC-5U 35 11787 2061 L2 L0027 407 200 pT
CX6 P8 711- 201 L83 .035 4029 20 pT
FMKI 19216 205. 8 . @8U L0y .05 20 pT
PNG6 5-3. 26.7 S0- .0-7 4038 -7 pT
BCL 2.-7- 26.U . @73 .099 4 @51 wi-7 pT
XCDHVI- 17-U 266.U . (BS .05 40-9 wi-7 pT
ANHOAXU 929 2(5.2 L073 L0359 4 75 w-7 pT
xXxxxucc 155W 20. 1 L 009- .039 4 (B- wi-7 pT
F6 AX 193.9 20. 1 .0i53 .0-U Q72 wi-7 pT
KNF72X our- 20199 (oS Lo 4.07 wi-7 pT
Clorf-7 2723 20799 L07U .053 4 @295 w-7 pT
FSXA62 2.1.3 20793 L0139 .032 40193 wi-7 pT
OLO1 3178 2079- @ .08 4 @B wi-7 pT
XLPKHO1 15135 20795 . @78 .099 409 wi-7 pT
SY62 18873 20197 .@-U L0 - .027 w-7 pT
FGPG113 19758 20097 . @18 .088 4.00.8 wi-7 pT
NAX2V 1-225 209U L0311 .0-9 4 W2 wi-7 pT
SLCWAIU 139.U 2019 L0139 .032 4 (L2 wi-7 pT
Clorf53 272U 20783 L0188 L03- .023 wi-7 pT
ZSQIG7 218U7 20783 .78 L7 4 @31 w-7 pT
XLSCN7 15219 20783 Lot L0211 .au wi-7 pT
NAXOPM 1-228 2078- L0059 .0-7 4072 wi-7 pT
CYX23C1 7788 20787 . (B5 L0151 4 0795 wi-7 pT
FVvCiD2 19.21 20787 .@7U .098 4 (2- w-7 pT
ANSV 1.5. 2008U L0311 .0-9 4082 wi-7 pT
6 IXAL7 1073. 2008U . B e 4 B wi-7 pT
VFVD19 1-71 20782 L017 .07 4 (89S wi-7 pT
ZVFV1 21.-. 20781 @1 .081 40W w-7 pT
M.NF2 --2U 20781 La3 .0-8 40158 wi-7 pT
XDOMA 1735. 20781 .@2 .089 40093 wi-7 pT
xdT0l. 13U71 20738 . @32 Ll 4 @19 wi-7 pT
XFOIS 1592U 2073U .o L0-2 .0-9 w-7 pT
XAVXCTL 17778 20732 . (@28 .092 4098 wi-7 pT
NAVACI 1-177 2073 .09 .033 40.1 wi-7 pT
CF66V1 702 207-9 s .093 4 (29 wi-7 pT
FHSD3A 19us 207-3 .@7- Lo 40182 w-7 pT
BXSU 2.315 200-5 .@.8 .087 4 @8- wi-7 pT
XFFO1IX 1599- 200-7 L0182 .037 4 (LB wi-7 pT
FCPAL3 19.92 200-2 .@U .09U 40125 w-7 pT
CH6 1 U71 207- 1 L@-- L0 8 408 w-7 pT
CEorf53 77WB 200-1 .@-2 L0 - .031 wi-7 pT
XXXINIWL 15783 20758 . @71 .098 4 075- wi-7 pT
MauU-. Ul -51U 20758 . @35 L2 40.1 w-7 pT
LOALS3 9-23 20758 .65 .@7- 4 (29 w-7 pT
M6 -823 2005- .U L0123 4083 wi-7 pT
ZCCHC9 2118 20055 L02- .051 4 U wi-7 pT
QDN71 2.813 20057 .09 .033 4 (585 wi-7 pT
SX02. 18717 20757 . @22 .09 4033 w-7 pT
OLS 3135 205U .2 098 40031 wi-7 pT
SFE3 18351 205U L0033 .032 4022 wi-7 pT
1L1- 87-2 2075 L0157 .0-U 40-3 wi-7 pT
XXAX2V 15719 20079 .23 Lo 40.- w-7 pT
SFG62 1831. 20073 L0731 .0ou 4 (62 wi-7 pT
SLC2. Al 1332. 2017- L0199 L0381 4071 wi-7 pT
D1 8Ul. 20070 .12 L0-9 4017 wi-7 pT
XXXINISA 15792 20072 @3 .085 4093 wi-7 pT
GAF6U 121 20071 L0728 L35 4 M58 wi-7 pT
A6 OXFL7 -5 2007 . (583 .@7 .031 wi-7 pT
XOG 5 1789- 2007 .@1 .08 .08 wi-7 pT
CCDCI. 2A 2982 200 . @53 LS 4 W w-7 pT
NASONM 1-258 200 . (@229 .097 4.07-- wi-7 pT
HPCQ2 38.8 200 . @97 L0211 4 0728 wi-7 pT
XXAX2A 15718 200 .@3U Lo2 L0w wi-7 pT
ACAA2 11- 207 . @89 .19 40-U wi-7 pT
CLIX2 2. 207 L0-U .0-3 4.07-- wi-7 pT
GYLI2V 12978 20007 L03U .031 43B.U wi-7 pT
CRO- Ws3 20007 Lo21 .05 42U wi-7 pT
LRCI. . 12398U 93-9 2072 L0197 .08 4 05U wi-7 pT
LRCI. . 128252 98.1 2072 . (B8 L015- 4 229 w-7 pT
ILINAX 8787 202 . @23 .097 4. (5 wi-7 pT
LIEIL 9315 200U L0-3 0-9 .0.8 wi-7 pT
CNYAV 72.9 20729 .087 . @82 Q71 wi-7 pT
LNNCSA 1181U 20729 L0191 .039 4 (535 w-7 pT
ZYE 21873 20723 .@5U L0 7 4 @78 wi-7 pT
M.6C --19 202U L07- .0- 4.07-3 wi-7 pT
KLHL28 927. 20721 L09- .081 4 (B59 wi-7 pT
HREA- 8.92 20718 Lo L0138 4011 w-7 pT
PLKU 5783 2013 L0175 Q- 4 0725 wi-7 pT
CRLI11A1 W-2 20017 .U .093 41037 wi-7 pT
LRCUB519- 11. 5U 201U L2 L0129 4 012U w-7 pT
XLFX 15221 20712 L7 L012- 40.8 w-7 pT
SINXA 13-1. 200.9 . @39 L0- Q15 wi-7 pT




Gene ID Gene Name Score (d) Numerator (r) D (s+s0) Fold Change adjusted P value (%) Dir
REF 1771- 207.9 L0138 .037 4 BB w-7 pT
LRCI..129-35 99-9 200.8 .@.3 .08- 4.0-U wi-7 pT
ADAGFS9 283 200.8 .19 .028 402- wi-7 pT
XLA205 15110 200.5 @1 .087 4 073- 70718 pT
ANLIS 988 200.7 .@Iu .089 4 @25 70718 pT
VAO2 109 200.U LaIs L0123 4 (B87 70718 pT
XCDH3 17-11 200. U . @99 L0027 407- 7018 pT
OYXC 3-5U 207. 1 L0-U .0-8 L0137 70718 pT
FFC3A 2. 18U 207. 1 .@19 L0091 4 @2 70718 pT
XDP7DIX 1738 200. 1 L0132 .032 4 @8 70718 pT
AGEAS 3-U 20 . @21 .092 40077 7018 pT
F6612 193-- 2008 .19 .@1- .97 70718 pT
GALL 12..5 2008 LU L0-8 Q73 70718 pT
CcCI6 ui2s 2098 L0077 .- 4 (65U 7018 pT
QVXs 2.38U0 20p3 s La71 409- 70718 pT
FFC28 2.1-U 209- Lo .55 4 021 70718 pT
CRLI3AI w-9 20- .77 .@23 4077 70718 pT
CECN3 7715 209- .U L0-7 4 (B75 70718 pT
SRCSU 18239 2097 L7 L0152 40U 70718 pT
SALL1 13.-7 200U .093 .07 4 .07-9 70718 pT
76 MB35 2153. 2092 L0-8 .03 40.- 70718 pT
CALp 28 2091 . (@-- Lot 40WB 70718 pT
SOFV 13797 2091 Lo .035 4.0-7 70718 pT
CAC6 AIC 2385 2091 L0187 .033 4099 70718 pT
6 AALADL1 1w 2091 NURE .07 40.- 70718 pT
CLPC2V WB9U 209 . (@32 Lo17 40019 70718 pT
SLCUBAS 13897 2088 . @73 L0.U 4@oU 70718 pT
XFXNV 159-9 20183 . @29 .09 4029 7018 pT
GYLI2A 12973 2083 e .099 4 (72 70718 pT
CHSYU U9u 20183 Lo .055 4021 70718 pT
Z6 M55 21579 2(B- L0187 .033 4 0718 70718 pT
XXG 1K 15732 2087 .U .a78 4 (B25 70718 pT
XIQIL7 15.-7 208U . @35 L01s 4089 70718 pT
SYXL2 18831 2082 L0I55 .0-5 40137 70718 pT
ADAGFSI- 235 2088 .- .o 4 (635 70718 pT
C-orf2. 7 255U 20B8 Lo21 .051 .0.2 7018 pT
GA6 1Al 12.17 2088 L8 L0129 401 70718 pT
Clorfl2U 2173 2038 .03 .031 4 (283 70718 pT
PDA2N 512 20B5 L0135 .037 40129 70718 pT
KIAA. 922 9.51 20B5 . @5- .08 4 12 7018 pT
L8 8516 2087 Law .05- 4.00-9 70718 pT
LPXNPL2 9-.9 208U . (B8 L0159 4007 70718 pT
XHC2 17910 2082 L07U .0- 4 19 70718 pT
SLCWVT 138-7 2019 083 .039 4 077U 70718 pT
XLK2 152.2 2009 L0712 L0137 4 (D8 70718 pT
PBI2A 5328 20U-8 . @82 L019 4 @7- 70718 pT
ADAGFSI. 23. 20 - s .a7u 4 U 70718 pT
06 XFAV 32-7 20 - . 0i88 .039 4 MU U 7018 pT
NAV27 1-. 90 20U . @21 .09U 4 B9U 70718 pT
SFAND9 18--2 2002 Lo .053 4075 70718 pT
C6F6 1 we 2041 .@12 .09 4 @13 70718 pT
OAS3 -979 20 . (@2- .09 40077 7018 pT
QLS 2.9.1 20 LU Lo 4 @293 70718 pT
CNPVUL2 7153 2059 .@U .098 4 @81 70718 pT
KX6 AU 929U 2059 L 0s- L0-- 4 075 70718 pT
FVE18 19.-9 2058 052 .0-5 40-5 70718 pT
GGXI. 12528 205 L0-5 L0198 4091 70718 pT
XNDG 8 15-.U 2055 .03 .032 Q75 70718 pT
CYX1v1 7738 2051 .757 a9ou 4.0-9 70718 pT
LRCI..288-15 1.7.- 205 .@.8 .089 4083 70718 pT
VWALFL e 205 . @B Lo 4 (898 70718 pT
SLCWAIL7 139.7 20078 L0182 .038 4 (B52 70718 pT
CRNRIC 7.52 20073 . @2U 095 4 (022 70718 pT
LRC28UD2 1.395 2007- L7 .a78 .0.2 70718 pT
D6 G 1X7- 5.-3 2007- @3 .088 L0170 70718 pT
NAVU 1-1.2 20075 0728 .0I8U 4077 70718 pT
ANNDC7 1.73 20077 N Lo 4018 70718 pT
M.2250 -75- 20072 . (B3 L0-5 4 (B8 70718 pT
LAG VU 9797 20071 . (558 .2’ 0w 70718 pT
HPY1 3873 2007 L2 L0 4 (b 70718 pT
XF6 1591 200 .(-3 .@72 .038 70718 pT
0602 3277 200U L0139 .033 Q79 7018 pT
CYV5NU 775U 202 055 .0-3 4.00.3 70718 pT
DLES 79-2 200 .29 L0171 4 (5L 70718 pT
SLC27AU 13351 20U L1 . @15 4052 70718 pT
NOL1 1-739 200 . (@32 Lo13 Lot 70718 pT
ABXNIA s 2028 L03U .037 403- 70718 pT
XDP2A 173U 2028 L3 L0 .@23 70718 pT
SRE13 18Ul 2028 LU= Loun 0L U 70718 pT
GYHI. 129U1 2028 L0197 .087 4 GU 70718 pT
LRC-7U-5. 11U 2023 L0.9 L03- 4001 7018 pT
DPXDC3 739U 2025 e La 41073 70718 pT
76 M2U 21753 2025 .@Iu .092 4 @- 70718 pT
SLCI-AU 13-91 2027 .7 L0-9 472 70718 pT
CC6 D2 u-u 202U .@8 Lo21 .028 70718 pT
KIM-V 9152 2022 L0I55 .0-3 4100. 2 70718 pT
MHL2 -WBU 2021 .ae7 0w 4@ 1 70718 pT
FFCWB 2.135 202 L0-9 .03U 4 15 70718 pT
LRN 11-39 202 .o .059 4092 7018 pT
Cp V6 709 2019 .082 0B 4007 70718 pT
AFXI. A 1187 2013 L0189 .082 4 (B52 70718 pT
CRLITAT Ww-5 201 LI Lo 4 (655 70718 pT
CAGK26 1 2878 201 L0-1 L0099 4 057 7018 pT
HAXL6 U 33.2 20015 .U . @29 4 02 70718 pT
GXZLU 12-15 20015 L0139 .033 4 (B 70718 pT
C5orf7- 2793 201U .z 0w 4 BYU 70718 pT




Gene ID Gene Name Score (d) Numerator (r) D i (s+s0) Fold Change adjusted P value (%) Direction

DRCKS 5.88 2012 L@l .091 4 (B5- 70718 pT
LRC28UI7TU 1.383 2012 La1u 079 4 289 70718 pT
NAI17 1-192 200 . @51 .09 4@2 70718 pT
SDXN 13273 209 . (BU L0-1 019 70718 pT
ORLOASA 3288 20U 8 .@79 L0 8 407 70718 pT
MG 79A -.57 20U 8 W 0.1 4021 70718 pT




Add. Table 5: Statistically over-represented annotation terms, according to DAVID, of differently expressed genes between metabolic cluster Mc1 and Mc2

Annotation Cluster 1 Enrichment Score: 12.55 Count P Value B ini
SP_PIR_KEYWORDS signal 139 3.60E-19 1.40E-16
UP_SEQ_FEATURE signal peptide 139 6.30E-19 9.00E-16
GOTERM_CC_FAT extracellular region part 71 1.60E-18 4.00E-16
SP_PIR_KEYWORDS Secreted 83  6.40E-14 1.30E-11
GOTERM_CC_FAT extracellular region 99  6.70E-14 8.30E-12
SP_PIR_KEYWORDS disulfide bond 113 5.50E-12 7.30E-10
UP_SEQ_FEATURE disulfide bond 109 2.30E-11 1.70E-08
GOTERM_CC_FAT extracellular space 43 7.10E-09 3.50E-07
SP_PIR_KEYWORDS glycoprotein 137 1.30E-08 1.00E-06
UP_SEQ _FEATURE glycosylation site:N-linked (GlcNAc...) 129 1.70E-07 8.40E-05
Annotation Cluster 2 Enrichment Score: 10.65 Count P Value  Benjamini
GOTERM_CC_FAT extracellular region part 71 1.60E-18 4.00E-16
GOTERM_CC_FAT extracellular matrix 34 4.40E-12 3.70E-10
SP_PIR_KEYWORDS extracellular matrix 26 2.70E-11 2.70E-09
GOTERM_CC_FAT proteinaceous extracellular matrix 31 7.30E-11 4.50E-09
GOTERM_CC_FAT extracellular matrix part 11 3.90E-04 6.40E-03
Annotation Cluster 3 Enrichment Score: 8.78 Count P Value B ini
GOTERM_BP_FAT cell adhesion 46 8.80E-11 9.00E-08
GOTERM_BP_FAT biological adhesion 46 9.10E-11 6.20E-08
SP_PIR_KEYWORDS cell adhesion 27  5.90E-07 3.90E-05
Annotation Cluster 4 Enrichment Score: 7.45 Count P Value ini
GOTERM_BP_FAT vasculature development 25 1.60E-09 6.70E-07
GOTERM_BP_FAT blood vessel development 23 2.50E-08 7.50E-06
GOTERM_BP_FAT angiogenesis 17 1.70E-07 2.90E-05
GOTERM_BP_FAT blood vessel morphogenesis 20  2.20E-07 3.50E-05
Annotation Cluster 5 Enrichment Score: 6.23 Count P_Value  Benjamini
GOTERM_BP_FAT regulation of locomotion 22 1.60E-09 8.10E-07
GOTERM_BP_FAT regulation of cell migration 19 3.60E-08 9.30E-06
GOTERM_BP_FAT regulation of cell motion 19 2.80E-07 4.10E-05
GOTERM_BP_FAT positive regulation of locomotion 13 1.60E-06 2.00E-04
GOTERM_BP_FAT positive regulation of cell migration 11 2.60E-05 2.30E-03
GOTERM_BP_FAT positive regulation of cell motion 11 6.00E-05 4.30E-03
Annotation Cluster 6 Enrichment Score: 6.11 Count P Value  Benjamini
GOTERM_BP_FAT regulation of response to external stimulus 23 6.00E-12 1.20E-08
GOTERM_BP_FAT regulation of inflammatory response 13 9.60E-08 2.00E-05
GOTERM_BP_FAT negative regulation of defense response 9  9.20E-07 1.20E-04
GOTERM_BP_FAT negative regulation of inflammatory response 7 5.10E-05 3.90E-03
GOTERM_BP_FAT negative regulation of response to stimulus 11 7.20E-05 4.90E-03
GOTERM_BP_FAT negative regulation of response to external stimulus 8  1.10E-04 6.00E-03
Annotation Cluster 7 Enrichment Score: 5.56 Count P _Value  Benjamini
GOTERM_MF_FAT polysaccharide binding 18 8.00E-08 4.00E-05
GOTERM_MF_FAT pattern binding 18 8.00E-08 4.00E-05
GOTERM_MF_FAT glycosaminoglycan binding 17 1.20E-07 3.00E-05
GOTERM_MF_FAT heparin binding 12 2.20E-05 1.60E-03
SP_PIR_KEYWORDS heparin-binding 9  5.00E-05 1.80E-03
GOTERM_MF_FAT carbohydrate binding 20 5.00E-04 2.30E-02
Annotation Cluster 8 Enrichment Score: 5.22 Count P _Value  Benjamini
GOTERM_CC_FAT actin cytoskeleton 22 1.20E-06 5.10E-05
GOTERM_MF_FAT cytoskeletal protein binding 30 4.40E-06 7.40E-04
SP_PIR_KEYWORDS actin-binding 18 1.30E-05 6.50E-04
GOTERM_MF FAT actin binding 22 1.90E-05 1.90E-03
Annotation Cluster 9 Enrichment Score: 4.96 Count P _Value  Benjamini
GOTERM_BP_FAT cytoskeleton organization 27 4.40E-06 4.70E-04
GOTERM_BP_FAT actin cytoskeleton organization 18  1.10E-05 1.10E-03
GOTERM_BP_FAT actin filament-based process 18 2.60E-05 2.40E-03
Annotation Cluster 10 Enrichment Score: 4.2 Count P Value  Benjamini
INTERPRO EGF-like calcium-binding 14 1.40E-07 9.10E-05
INTERPRO EGF-like calcium-binding, conserved site 14 1.40E-07 9.10E-05
INTERPRO EGF-type aspartate/asparagine hydroxylation conserved site 14 1.60E-07 5.20E-05
SMART EGF_CA 14 1.10E-06 1.80E-04
INTERPRO EGF 14 3.60E-06 7.90E-04
INTERPRO EGF-like, type 3 17 4.90E-06 7.90E-04
SP_PIR_KEYWORDS egf-like domain 18 5.10E-06 2.90E-04
INTERPRO EGF-like region, conserved site 21 6.00E-06 7.80E-04
INTERPRO EGF-like 16 3.10E-05 3.40E-03
UP_SEQ_FEATURE domain:EGF-like 1 12 3.60E-05 1.00E-02
UP_SEQ_FEATURE domain:EGF-like 3; calcium-binding 7 9.60E-05 2.00E-02
INTERPRO EGF calcium-binding 9  1.50E-04 1.30E-02!
SMART EGF 16 2.40E-04 1.90E-02
UP_SEQ_FEATURE domain:EGF-like 2 9  4.40E-04 6.20E-02
UP_SEQ_FEATURE domain:EGF-like 5; calcium-binding 6 8.90E-04 9.40E-02
UP_SEQ_FEATURE domain:EGF-like 4 7 1.20E-03 1.10E-01
UP_SEQ_FEATURE domain:EGF-like 6; calcium-binding 5 1.60E-03 1.20E-01
UP_SEQ_FEATURE domain:EGF-like 4; calcium-binding 5 4.40E-03 2.00E-01
UP_SEQ_FEATURE domain:EGF-like 2; calcium-binding 6 6.10E-03 2.30E-01
UP_SEQ_FEATURE domain:EGF-like 7; calcium-binding 4 1.70E-02 4.10E-01
UP_SEQ_FEATURE domain:EGF-like 10; calcium-binding 3 2.80E-02 5.00E-01




Add. Table 6: Statistically over-represented annotation terms, according to DAVID, of differently expressed genes between metabolic cluster Mc1 and Mc3

Annotation Cluster 1 Enrichment Score: 39.49 Count P Value B ini
SP_PIR_KEYWORDS signal 270 8.60E-56 3.90E-53
UP_SEQ_FEATURE signal peptide 270 3.10E-55 6.70E-52
SP_PIR_KEYWORDS extracellular matrix 77  4.20E-54 9.60E-52
GOTERM_CC_FAT extracellular matrix 90  3.40E-50 1.10E-47
GOTERM_CC_FAT proteinaceous extracellular matrix 86  5.30E-49 8.50E-47
GOTERM_CC_FAT extracellular region part 132 5.90E-41 6.30E-39
SP_PIR_KEYWORDS Secreted 166 3.00E-40 4.60E-38
GOTERM_CC_FAT extracellular region 191 1.40E-37 1.10E-35
SP_PIR_KEYWORDS glycoprotein 272 5.90E-33 6.70E-31
GOTERM_CC_FAT extracellular matrix part 42 4.00E-29 2.60E-27
UP_SEQ_FEATURE glycosylation site:N-linked (GlcNAc...) 251  8.10E-27 8.70E-24
SP_PIR_KEYWORDS disulfide bond 197 1.20E-25 1.10E-23
UP_SEQ _FEATURE disulfide bond 192 3.90E-25 2.80E-22
Annotation Cluster 2 Enrichment Score: 29.11 Count P _Value  Benjamini
GOTERM_BP_FAT cell adhesion 98  1.40E-33 3.20E-30
GOTERM_BP_FAT biological adhesion 98  1.60E-33 1.80E-30
SP_PIR_KEYWORDS cell adhesion 61  2.00E-22 1.50E-20
Annotation Cluster 3 Enrichment Score: 19.86 Count P Value B ini
GOTERM_CC_FAT extracellular matrix part 42 4.00E-29 2.60E-27
GOTERM_CC_FAT basement membrane 27  2.90E-18 1.60E-16
SP_PIR_KEYWORDS t membrane 17 2.20E-14 9.20E-13
Annotation Cluster 4 Enrichment Score: 17.3 Count P Value B ini
GOTERM_BP_FAT extracellular matrix organization 34 2.50E-23 1.90E-20
GOTERM_BP_FAT extracellular structure organization 36 1.50E-18 4.70E-16
GOTERM_BP_FAT collagen fibril organization 14 3.40E-12 7.00E-10
Annotation Cluster 5 Enrichment Score: 15.2 Count P_Value  Benjamini
GOTERM_BP_FAT vasculature development 47 4.80E-21 2.70E-18
GOTERM_BP_FAT blood vessel development 44 530E-19 2.40E-16
GOTERM_BP_FAT blood vessel morphogenesis 34 2.70E-13 6.60E-11
GOTERM_BP_FAT i i 25  2.40E-10 2.80E-08
Annotation Cluster 6 Enrichment Score: 11.76 Count P _Value  Benjamini
GOTERM_CC_FAT extracellular matrix part 42 4.00E-29 2.60E-27
GOTERM_MF_FAT extracellular matrix structural constituent 28 1.00E-18 5.80E-16
SP_PIR_KEYWORDS hydroxylation 24 2.10E-17 1.30E-15
GOTERM_CC_FAT collagen 19 4.50E-17 2.10E-15
SP_PIR_KEYWORDS collagen 25  2.50E-15 1.30E-13
INTERPRO Collagen triple helix repeat 23 4.60E-14 5.40E-12
SP_PIR_KEYWORDS trimer 14 2.60E-13 9.90E-12
SP_PIR_KEYWORDS triple helix 14 4.50E-12 1.50E-10
SP_PIR_KEYWORDS hydroxylysine 14 450E-12  1.50E-10
UP_SEQ_FEATURE region of interest:Triple-helical region 12 3.80E-11 1.30E-08
SP_PIR_KEYWORDS hydroxyproline 14 6.50E-11 2.00E-09
SP_PIR_KEYWORDS pyroglutamic acid 9  1.00E-04 1.30E-03
GOTERM_CC_FAT anchoring collagen 5  2.20E-04 2.90E-03
UP_SEQ_FEATURE domain:VWFA 1 5 1.50E-03 5.70E-02
UP_SEQ_FEATURE domain:VWFA 2 5 1.90E-03 6.70E-02
Annotation Cluster 7 Enrichment Score: 11.42 Count P _Value  Benjamini
GOTERM_BP_FAT skeletal system development 50  5.60E-19 2.10E-16
GOTERM_BP_FAT bone development 21 7.20E-09 7.10E-07
GOTERM_BP_FAT ossification 20 1.30E-08 1.20E-06
Annotation Cluster 8 Enrichment Score: 11.3 Count P Value B ini
GOTERM_BP_FAT cell motion 55 7.40E-15 2.10E-12
GOTERM_BP_FAT cell migration 37  5.60E-12 9.60E-10
GOTERM_BP_FAT localization of cell 37 1.20E-10 1.70E-08
GOTERM _BP_FAT cell motility 37 1.20E-10 1.70E-08
Annotation Cluster 9 Enrichment Score: 10.46 Count P Value  Benjamini
INTERPRO EGF-like calcium-binding, conserved site 28  7.10E-18 5.90E-15
INTERPRO EGF-like region, conserved site 45 7.40E-17 4.60E-14
INTERPRO EGF-like calcium-binding 27  8.10E-17 3.10E-14
SP_PIR_KEYWORDS egf-like domain 38  6.20E-16 3.80E-14
INTERPRO EGF-type aspartate/asparagine hydroxylation conserved site 25  1.30E-14 2.60E-12
INTERPRO EGF calcium-binding 22 1.60E-14 2.70E-12
INTERPRO EGF-like, type 3 34 1.80E-14 2.50E-12
SMART EGF_CA 27  7.60E-14 1.50E-11
INTERPRO EGF 25 6.90E-12 7.20E-10
INTERPRO EGF-like 31 9.30E-12 8.60E-10
UP_SEQ_FEATURE domain:EGF-like 3; calcium-binding 14 7.00E-11 2.20E-08
UP_SEQ_FEATURE domain:EGF-like 2; calcium-binding 16 2.60E-10 6.90E-08
UP_SEQ_FEATURE domain:EGF-like 1 22 2.80E-10 6.80E-08
UP_SEQ_FEATURE domain:EGF-like 5; calcium-binding 13 1.10E-09 2.40E-07
UP_SEQ_FEATURE domain:EGF-like 4; calcium-binding 12 4.00E-09 7.80E-07
SMART EGF 31 8.40E-09 8.40E-07
UP_SEQ_FEATURE domain:EGF-like 6; calcium-binding 9  8.00E-07 1.30E-04
UP_SEQ_FEATURE domain:EGF-like 4 11 1.60E-05 1.80E-03
UP_SEQ_FEATURE domain:EGF-like 2 13 2.70E-05 2.70E-03
UP_SEQ_FEATURE domain:EGF-like 3 12 2.90E-05 2.70E-03
UP_SEQ _FEATURE domain:EGF-like 7; calcium-binding 7 1.90E-04 1.10E-02
Annotation Cluster 10 Enrichment Score: 9.06 Count P Value  Benjamini
UP_SEQ_FEATURE domain:VWFC 12 1.00E-12 4.40E-10
INTERPRO von Willebrand factor, type C 13 5.10E-09 3.90E-07
SMART VWC 13 1.30E-07 6.40E-06




Add. Table 7: Gene set enrichment analysis (GSEA) result for Gene Ontology (GO) gene sets. Metabolic cluster Mc1 was compared with Me2 and Mc3.

NAME SIZE ES N NOMp-val __FDR g-val _FWER pval_RANK AT MAX LEADING EDGE
COLLAGEN 23 0.7818 20623 0.0011 0.0020 2064 tags=70%, list=9%, signal=77%
EXTRACELLULAR_MATRIX 96 0.6880 2.0895 0.0000 0.0020 0.0050 2225 tags=49%, list=10%, signal=54%
PROTEINACEOUS_EXTRACELLULAR_MATRIX 9% 06915 2.1008 0.0000 0.0025 0.0040 2225 tags=49%, list=10%, signal=54%
EXTRACELLULAR MATRIX PART 55 0.7282 21274 0.0000 0.0040 0.0040 2129 tags=51%, list=10%, signal=56%
INTEGRIN_BINDING 30 07220 1.9686 0.0000 0.0080 0.0270 3129 tags=63%, list=14%, signal=74%
CELL_SUBSTRATE_ADHESION 37 0.6891 19336 0.0000 0.0109 0.0420 3380 tags=57%, list=15%, signal=67%
EXTRACELLULAR_MATRIX_STRUCTURAL CONSTITUE

NT 26 0.6938 1.9012 0.0000 00110 0.0550 1226 tags=46%, list=6%, signal=49%
CELL MATRIX_ADHESION 36 0.6843 19120 0.0000 00112 0.0470 3380 tags=56%, list=15%, signal=66%
CELL_MATRIX_JUNCTION 16 0.7306 1.8324 0.0000 00257 0.1290 2484 tags=56%, list=11%, signal=63%
BASEMENT MEMBRANE 35 0.6546 1.8215 0.0010 0.0268 0.1380 2684 tags=43%, list=12%, signal=49%
TRANSMEMBRANE_RECEPTOR PROTEIN_KINASE ACT

IVITY 51 0.6166 18115 0.0000 0.0276 0.1540 3983 tags=49%, list=18%, signal=60%
AXON_GUIDANCE 2 0.6824 1.7839 0.0000 00323 0.1990 933 tags=27%, list=4%, signal=28%
BASAL LAMINA 19 0.6938 1.7897 0.0020 0.0330 0.1900 2684 tags=42%, list=12%, signal=48%
SKELETAL DEVELOPMENT 99 05846 1.7745 0.0000 0.0338 02130 2762 tags=37%, list=13%, signal=43%
REGULATION OF CELL MIGRATION 27 0.6465 17558 0.0000 0.0393 02490 2952 tags=44%, list=14%, signal=51%
BASOLATERAL PLASMA_MEMBRANE 31 06225 17124 0.0000 0.0539 03680 2798 tags=42%, list=13%, signal=48%
BLOOD_COAGULATION 42 0.6010 1.7209 0.0000 0.0543 03420 3903 tags=48%, list=18%, signal=58%
ADHERENS_JUNCTION 21 0.6590 1.7162 0.0000 0.0549 03610 2484 tags=48%, list=11%, signal=54%
HEMOSTASIS 47 05966 1.7230 0.0000 0.0556 03340 3903 tags=47%, list=18%, signal=57%
COAGULATION 43 05950 1.7030 0.0000 0.0570 0.4060 3903 tags=47%, list=18%, signal=57%
SULFURIC_ESTER_HYDROLASE_ACTIVITY 16 0.6727 1.6963 0.0010 0.0584 0.4200 3141 tags=50%, list=14%, signal=58%
LIPID_HOMEOSTASIS 16 0.6690 1.6824 0.0010 0.0611 0.4790 3348 tags=44%, list=15%, signal=52%
ANATOMICAL STRUCTURE_FORMATION 52 05763 1.6844 0.0000 0.0618 0.4690 5237 tags=52%,
WOUND_HEALING 53 05772 1.6865 0.0000 0.0623 04610 4715 tags=51%, list=
BONE_REMODELING 28 0.6094 1.6632 0.0010 0.0668 05410 3983 tags=39%, list=18%, signal=48%
TISSUE_REMODELING 29 0.6081 1.6635 0.0000 0.0691 05410 3083 tags=38%, list=18%, signal=46%
EXTRACELLULAR REGION PART 322 0529 16665 0.0000 0.0696 05260 4482 tags=39%, list=21%, signal=49%
REGULATION_OF BODY_FLUID_LEVELS 56 05625 1.6467 0.0000 00728 0.6060 4183 tags=45%, list=19%, signal=55%
TRANSMEMBRANE_RECEPTOR_PROTEIN TYROSINE K

INASE_ACTIVITY 43 05705 1.6498 0.0000 0.0750 0.5920 3856 tags=42%, list=18%, signal=51%
POSITIVE_REGULATION_OF CELL_DIFFERENTIATION 23 0.6161 1.6470 0.0000 00751 0.6060 2762 tags=43%, list=13%, signal=50%
GLYCOSAMINOGLYCAN_BINDING 30 0.5890 1.6322 0.0040 0.0806 0.6740 3108 tags=40%, list=14%, signal=47%
HOMEOSTASIS_OF NUMBER OF CELLS 19 0.6164 1.6235 0.0071 0.0826 0.7060 1949 tags=37%, list=9%, signal=40%
POLYSACCHARIDE BINDING 32 0.5863 16326 0.0020 0.0830 0.6730 3108 tags=38%, list=14%, signal=44%
CELL_MIGRATION 92 05447 1.6261 0.0000 0.0830 0.6990 2952 tags=35%, list=14%, signal=40%
MUSCLE_DEVELOPMENT 89 05369 16113 0.0000 0.0831 0.7460 5238 tags=46%, list=24%, signal=60%
RUFFLE 27 0.5885 16170 0.0000 0.0839 0.7260 3309 tags=37%, list=15%, signal=44%
TISSUE_DEVELOPMENT 135 05301 16127 0.0000 0.0840 07360 5011 tags=42%, list=23%, signal=54%
ATP_DEPENDENT HELICASE_ACTIVITY 2 0.6085 1.6190 0.0050 0.0844 0.7200 6660 tags=68%, list=30%, signal=98%
REGULATION_OF_CYTOSKELETON ORGANIZATION A

ND_BIOGENESIS 28 05915 16140 0.0010 0.0849 0.7330 2952 tags=36%, list=14%, signal=41%
HEPARIN_BINDING 2 05979 16041 0.0020 0.0870 0.7710 3108 tags=41%, list=14%, signal=48%
ACTIN_BINDING 72 05291 1.5901 0.0000 0.0880 0.8240 4089 tags=38%, list=19%, signal=46%
CELL_CORTEX_PART 23 0.5909 1.5937 0.0030 0.0885 08110 3160 tags=35%, list=14%, signal=41%
REGULATION_OF ORGANELLE ORGANIZATION AND_

BIOGENESIS 37 05654 15914 0.0010 0.0886 0.8210 2952 tags=32%, list=14%, signal=37%
PROTEIN_COMPLEX_BINDING 54 0.5464 1.5850 0.0010 0.0887 0.8400 3232 tags=39%, list=15%, signal=46%
REGULATION_OF RESPONSE_TO_EXTERNAL STIMULU

s 15 0.6496 15822 0.0092 0.0895 0.8460 3525 tags=53%, list=16%, signal=64%
ANGIOGENESIS 44 05509 15856 0.0010 0.0899 0.8380 5625 tags=52%, list=26%, signal=70%
EXTRACELLULAR REGION 423 05050 1.5985 0.0000 0.0901 0.7930 4482 tags=37%, list=21%, sign
MUSCLE_CELL DIFFERENTIATION 20 0.6121 1.5939 0.0061 0.0904 0.8090 5130 tags=60%, list=23%, signal="
INTEGRIN_COMPLEX 19 0.6200 15960 0.0040 0.0908 0.8040 4500 tags=58%, list=21%, signal=73%
ACTIN_POLYMERIZATION_AND_OR_DEPOLYMERIZATI

ON 23 0.5846 15773 0.0010 0.0924 0.8600 2848 tags=35%, list=13%, signal=40%
NEURON_PROJECTION 19 0.6090 1.5706 0.0060 0.0933 0.8780 5094 tags=58%, list=23%, signal=75%
CALMODULIN_BINDING 25 05821 15712 0.0030 0.0944 0.8760 7178 tags=64%, list=33%, signal=95%
SODIUM_CHANNEL_ACTIVITY 16 06191 15722 0.0061 0.0950 0.8740 1909 tags=38%, list=9%, signal=41%
VASCULATURE_DEVELOPMENT 51 05379 1.5645 0.0010 0.0975 0.9000 5188 tags=49%, list=24%, signal=64%
KINASE_INHIBITOR ACTIVITY 25 05854 1.5627 0.0040 0.0978 0.9010 3734 tags=40%, list=17%, signal=48%
ECTODERM_DEVELOPMENT 79 05307 15594 0.0050 0.0990 0.9090 5011 tags=42%, list=23%, signal=54%
PROTEIN_KINASE_INHIBITOR_ACTIVITY 24 0.5865 1.5561 0.0050 0.1004 09140 3734 tags=42%, list=17%, signal=50%
ENERGY_RESERVE METABOLIC_PROCESS 15 0.6309 1.5537 0.0082 0.1009 09160 5542 tags=60%, list=25%, signal=80%
ACTIN_FILAMENT BINDING 23 05747 1.5501 0.0030 0.1009 09250 4089 tags=48%, list=19%, signal=59%
NEGATIVE REGULATION_OF DNA BINDING 16 0.6063 15511 0.0112 0.1018 0.9240 4951 tags=56%, list=23%, signal=73%
EXTRACELLULAR_STRUCTURE_ORGANIZATION_AND_

BIOGENESIS 29 0.5641 1.5443 0.0261 0.1046 09410 2999 tags=41%, list=14%, signal=48%
ACTIN_CYTOSKELETON 122 04982 1.5355 0.0000 01114 09560 3302 tags=30%, list=15%, signal=35%
CARBOHYDRATE BIOSYNTHETIC PROCESS 45 0.5400 15369 0.0030 0.1115 0.9540 5302 tags=44%, list=24%, signal=59%
ORGAN_MORPHOGENESIS 136 04979 1.5320 0.0000 0.1137 0.9580 6037 tags=48%, list=28Y%, signal=66%
METALLOENDOPEPTIDASE_ACTIVITY 27 05639 1.5207 0.0131 0.1144 0.9600 5134 tags=44%, list=23%, signal=58%
STRUCTURAL CONSTITUENT OF CYTOSKELETON 55 05283 15242 0.0030 0.1187 0.9670 5240 tags=44%, li
EPIDERMIS_DEVELOPMENT 70 05233 15215 0.0060 0.1205 0.9680 5011 tags=40%, list=23%, signal=52%
TRANSMEMBRANE_RECEPTOR_PROTEIN_SERINE THR

EONINE_KINASE_SIGNALING PATHWAY 47 05270 15184 0.0020 0.1226 0.9710 5843 tags=49%, list=27%, signal=67%
SERINE_HYDROLASE_ACTIVITY 44 05325 15073 0.0060 0.1352 0.9810 2788 tags=30%, list=13%, signal=34%
SULFUR_COMPOUND_BIOSYNTHETIC_PROCESS 16 05972 1.4970 0.0215 0.1419 0.9870 2112 tags=31%, list=13%, signal=36%
PHOSPHORIC DIESTER_HYDROLASE_ACTIVITY 39 0.5283 1.4978 0.0020 0.1428 0.9870 4367 tags=41%, list=20%, signal=51%
CORTICAL CYTOSKELETON 19 05744 1.4985 0.0071 0.1439 0.9850 3160 tags=32%, list=14%, signal=37%
NEGATIVE REGULATION_OF_BINDING 17 05775 1.4941 0.0153 0.1441 0.9880 4951 tags=53%, list=23%, signal=68%
METALLOPEPTIDASE_ACTIVITY 46 05251 1.4996 0.0010 0.1444 0.9850 5789 tags=46%, li

MYOBLAST DIFFERENTIATION 17 0.5818 1.4862 0.0295 0.1479 0.9900 3890 tags=47%,

GROWTH_FACTOR BINDING 32 0.5301 14874 0.0220 0.1480 0.9900 5197 tags=50%,

DENDRITE 16 05891 1.4885 0.0163 0.1486 0.9900 4156 tags=44%, li
GENERATION_OF A SIGNAL INVOLVED_IN_CELL CEL

L SIGNALING 27 05619 1.4804 0.0151 0.1490 0.9900 5004 tags=44%,

REGULATION_OF INTRACELLULAR TRANSPORT 2 0.5552 14797 0.0190 0.1556 09910 4825 tags=41%,
RAS_GTPASE_ACTIVATOR_ACTIVITY 26 05449 1.4743 0.0130 0.1628 0.9920 6320 tags=46%, li
RECEPTOR_COMPLEX 56 05100 1.4702 0.0040 0.1630 0.9940 4969 tags=45%, li
SERINE_TYPE_PEPTIDASE ACTIVITY 43 0.5200 1.4686 0.0100 0.1635 0.9940 2788 tags=28%, list=13%, signal=32%
STRUCTURAL CONSTITUENT OF MUSCLE 32 05360 14709 0.0090 0.1639 0.9930 5250 tags=44%, list=24%, signal=58%
PROTEIN_PROCESSING 45 05146 1.4720 0.0020 0.1640 0.9930 4954 tags=36%, list=23%, signal=46%
ENDOPEPTIDASE_ACTIVITY 11 04832 1.4645 0.0000 0.1681 0.9940 5238 tags=35%, list=24%, signal=46%
HELICASE_ACTIVITY 45 05127 1.4631 0.0070 0.1687 0.9950 8005 tags=62%, list=37%, signal=98%
PROTEASE_INHIBITOR ACTIVITY 40 05187 14584 0.0050 0.1723 0.9960 681 tags=18%, list=3%, signal=18%
REGULATION_OF MYELOID_CELL DIFFERENTIATION 18 05734 1.4591 0.0234 01731 0.9950 1949 tags=33%, list=9%, signal=37%
PATTERN_BINDING 38 05131 14517 0.0110 0.1774 0.9970 4908 tags=42%, list=22%, signal=54%
PEPTIDASE_ACTIVITY 164 04698 14527 0.0000 0.1777 0.9970 5789 tags=37%, list=26%, signal=49%
REGULATION_OF_SECRETION 33 05276 14532 0.0120 0.1789 0.9960 5004 tags=42%, list=23%, signal=55%
AMINE_BIOSYNTHETIC_PROCESS 15 0.5867 1.4486 0.0346 0.1810 0.9970 8286 tags=80%, list=38%, signal=129%




NAME SIZE ES NES NOM p-val__FDR g-val _FWER p-val RANK AT MAX LEADING EDGE
OXIDOREDUCTASE_ACTIVITY_ACTING_ON_NADH_OR

| NADPH 25 05327 1.4416 0.0221 0.1921 0.9990 6672 tags=64%, list=31%, signal=92%
NEGATIVE_REGULATION_OF_CELLULAR_COMPONENT

| ORGANIZATION_AND_BIOGENESIS 26 05243 1.4385 0.0190 0.1958 0.9990 2745 tags=31%, list=13%, signal=35%
POSITIVE_REGULATION_OF_TRANSCRIPTION_FROM R

NA_POLYMERASE_II_PROMOTER 57 0.4909 1.4355 0.0040 0.1998 1.0000 4266 tags=35%, list=20%, signal=43%
TRANSPORT_VESICLE 29 05150 1.4181 0.0180 02030 1.0000 4937 tags=38%, list=23%, signal=49%
REGULATION_OF NUCLEOCYTOPLASMIC_TRANSPORT 19 05413 14151 0.0322 02031 1.0000 4825 tags=37%, list=22%, signal=47%
DNA_HELICASE_ACTIVITY 2 05435 1.4325 00332 02036 1.0000 6302 tags=55%, list=29%, signal=77%
ELECTRON_CARRIER_ACTIVITY 75 0.4780 1.4185 0.0020 02040 1.0000 5315 tags=44%, list=24%, signal=58%
NEGATIVE_REGULATION_OF TRANSCRIPTION_FROM _

RNA_POLYMERASE Il PROMOTER 78 04714 1.4165 0.0000 02042 1.0000 7409 tags=46%, list=34%, signal=70%
KERATINOCYTE_DIFFERENTIATION 15 05781 1.4152 0.0462 02048 1.0000 6886 tags=53%, list=32%, sign
TUBE_DEVELOPMENT 18 05542 1.4104 0.0445 02050 1.0000 1962 tags=33%, list=9%, signa
COPPER_ION_BINDING 15 05645 1.4189 0.0324 02052 1.0000 1565 tags=27%, list=7%, signal
NUCLEOTIDE BIOSYNTHETIC_PROCESS 19 05430 1.4090 00456 02056 1.0000 4828 tags=42%, list=22%, signal=54%
MEMBRANE_FUSION 27 05163 1.4128 0.0320 02058 1.0000 3927 tags=37%, list=18%, signal=45%
TRANSFORMING_GROWTH_FACTOR_BETA_RECEPTOR

| SIGNALING_PATHWAY 36 0.5086 1.4288 0.0130 0.2063 1.0000 7420 tags=56%, list=34%, signal=84%
PROTEIN_BINDING BRIDGING 59 04886 1.4106 0.0070 0.2065 1.0000 7526 tags=46%, list=34%, signal=70%
REGULATION_OF_CELL_DIFFERENTIATION 55 0.4901 1.4189 0.0040 02070 1.0000 2911 tags=29%, list=13%, signal=33%
PROTEIN_DNA_COMPLEX_ASSEMBLY 37 04978 14111 0.0171 02071 1.0000 8969 tags=68%, list=41%, signal=114%
CONTRACTILE_FIBER_PART 23 05362 1.4196 00332 02076 1.0000 1468 tags=26%, list=7%, signal
SERINE_TYPE_ENDOPEPTIDASE_ACTIVITY 39 0.5094 1.4268 0.0190 02080 1.0000 2788 tags=28%, list=
RESPONSE_TO_HYPOXIA 27 05217 1.4289 0.0100 0.2083 1.0000 7014 tags=59%,

AXONOGENESIS 43 05047 1.4210 0.0070 02087 1.0000 3671 tags=30%, list=
ACTIN_FILAMENT 17 05527 1.4200 0.0515 02088 1.0000 4742 tags=35%, list=22%, signal=45%
RNA_DEPENDENT ATPASE_ACTIVITY 15 0.5695 1.4246 0.0483 0.2099 1.0000 7365 tags=73%, list=34%, signal=111%
ENZYME_INHIBITOR_ACTIVITY 115 04685 14211 0.0000 02107 1.0000 4713 tags=34%, list=22%, signal=43%
REGULATION_OF _ANATOMICAL_STRUCTURE_MORPH

OGENESIS 23 05341 14227 0.0272 02119 1.0000 3035 tags=35%, list=14%, signal=40%
CELL_CELL_ADHESION 81 04783 1.4215 0.0020 02120 1.0000 6050 tags=44%, list=28%, signal=61%
CELL_PROJECTION_PART 18 05419 13966 0.0406 02174 1.0000 6415 tags=56%, list=29%, signal=79%
POSITIVE_REGULATION_OF _RNA_METABOLIC_PROCE

ss 102 04592 1.3983 0.0010 02175 1.0000 4266 tags=32%, list=20%, signal=40%
ENZYME_LINKED_RECEPTOR_PROTEIN_SIGNALING P

ATHWAY 135 04501 13957 0.0000 02175 1.0000 4274 tags=34%, list=20%, signal=42%
CELL_JUNCTION 76 04747 1.3998 0.0050 02183 1.0000 6471 tags=47%, list=30%, signal=67%
NEGATIVE REGULATION_OF TRANSCRIPTION 167 04474 1.4007 0.0000 02183 1.0000 7227 tags=43%, list=33%, signal=64%
BIOGENIC_AMINE METABOLIC_PROCESS 16 05563 1.4015 0.0427 02184 1.0000 4828 tags=44%, list=22%, signal=56%
CELLULAR_MORPHOGENESIS_DURING_DIFFERENTIAT

ION 49 0.4909 1.3987 0.0090 02186 1.0000 3035 tags=27%, list=14%, signal=31%
LEADING EDGE 42 0.4842 1.3966 0.0190 02191 1.0000 3309 tags=29%, list=15%, signal=34%
PHOSPHOLIPID_BINDING 39 04973 13925 0.0240 02224 1.0000 4460 tags=38%, list=20%, signal=48%
POSITIVE_REGULATION_OF_TRANSCRIPTIONDNA_DEP

ENDENT 100 04568 1.3902 0.0010 02253 1.0000 4266 tags=32%, list=20%, signal=40%
ANATOMICAL STRUCTURE MORPHOGENESIS 356 04361 13832 0.0000 02258 1.0000 5963 tags=39%, list=27%, signal=53%
CELL_SURFACE 72 0.4643 13855 0.0040 02264 1.0000 7241 tags=49%, list=33%, signal=72%
RESPONSE_TO_WOUNDING 178 04479 13821 0.0080 02264 1.0000 6311 tags=41%, list=29%, signal=57%
RECEPTOR_SIGNALING PROTEIN_SERINE_THREONINE

| KINASE_ACTIVITY 34 04972 1.3887 0.0150 02267 1.0000 5214 tags=41%, list=24%, signal=54%
ACTIN_CYTOSKELETON_ORGANIZATION_AND_BIOGE

NESIS 101 04543 13869 0.0010 02268 1.0000 3500 tags=30%, list=16%, signal=35%
POSITIVE_REGULATION_OF_JNK_ACTIVITY 18 05382 13834 0.0455 02271 1.0000 4705 tags=44%, list=22%, signal=57%
POSITIVE_REGULATION_OF_TRANSCRIPTION 120 04520 13875 0.0010 02273 1.0000 6739 tags=43%, list=31%, signal=62%
TUBE_MORPHOGENESIS 15 05559 13856 0.0462 02278 1.0000 1962 tags=33%, list=9%, signal=37%
REGULATION_OF TRANSCRIPTION_FACTOR_ACTIVITY 36 04904 13838 0.0200 02278 1.0000 4951 tags=39%, list=23%, signal=50%
CELL_PROJECTION 98 04512 13749 0.0040 02311 1.0000 2978 tags=27%, list=14%, signal=31%
GTPASE_ACTIVATOR_ACTIVITY 56 04723 13791 0.0100 02311 1.0000 6484 tags=45%, list=30%, signal=63%
DNA_DEPENDENT_ATPASE_ACTIVITY 19 05307 1.3755 0.0676 02316 1.0000 4923 tags=47%, list=23%, signal=61%
EXTRACELLULAR_SPACE 233 04436 13766 0.0000 02326 1.0000 3568 tags=28%, list=16%, signal=33%
NEGATIVE REGULATION_OF MULTICELLULAR_ORGA

NISMAL_PROCESS 30 05084 13773 0.0311 02329 1.0000 4878 tags=40%, list=22%, signal=51%
REGULATION_OF_ANGIOGENESIS 25 05071 1.3756 0.0302 02330 1.0000 5625 tags=44%, list=26%, signal=59%
NEGATIVE REGULATION_OF CELL DIFFERENTIATION = 27 05095 1.3679 0.0340 02434 1.0000 1501 tags=26%, list=7%, signal=28%
REGULATION_OF _NEUROTRANSMITTER LEVELS 22 05257 13657 0.0493 02463 1.0000 4964 tags=45%, list=23%, signal=59%
TRANSCRIPTION_INITIATION_FROM_RNA_POLYMERAS

E Il PROMOTER 18 05264 1.3646 0.0487 02470 1.0000 5685 tags=56%, list=26%, signal=75%




%508=IBUBIS 0/ €=ISI] 0/ C=STE) €0TL 07660 88KT0 08000  PLLPT TISSO 8T LAOdSNVIL AldIT
%T9=IBUBIS “94TT=ISI] “%8p=55e1 L18Y 07860 65€2°0 €1€00  100ST 88ES0 6T SISENEDOIE ANV NOILVZINYOUO HANLOMILS AVINTIIOVILXH
YEp=IRUBIS “04€ [=ISI] ‘04 8€=5Te) SE6T 01860 8TET0 02000  0bOST 8LISO €S DNITVEH ANNOM
Yo 9=TRUBIS “046T=1S1] “%9p=sTe) €779 01860 182T°0 0€000  980S°T  9SLY'O  TTE LVd NOIDHY AVINTIEOVILXH
Y%Op=TBUBIS “04€ [=ISI] ‘%% | p=s5e) 09LT 0£56°0 W 0v00'0  TSEST €SSO TE FTISAN 40 INFNLILSNOD TYHNLONYLS
%698=IBUBIS ‘04 £€=S1] ‘0% S=55e) L8TL 02960 S0TT0 01000  9LTS'T 8EESO  L¥ AVMHLYd DNITVNDIS dSVNIY ANINOHYHL HNIYES NILO¥d YOLdHOHY ANVIGNINSNVIL
%L8=IBUBIS “04g¢=1ST] ‘%(8G=SBE1 L8TL 08L6'0 98170 09000 ISISTT 60¥S0  9€¢ AVMHLYd ONITYNOIS ¥OLJID9Y VI 401DV HLMOED DNINIOASNVIL
%09=IBUBIS 04y T=1S1] ‘%p9p=SsBE1 431 0€56°0 SLITO 0£00°0 ISES'T 9€LS0 T ALIALLOV JOLIEIHNI dSVYNIY NIHLO¥d
YoLE=IRUBIS ‘040 [=ISI] ‘Yo e=SBE1 3414 0956°0 89170 01000 €2€S'T 16150 98 STHAAT AINTd AQOd 40 NOILVINOHY,
Y5 S=IRUBIS ‘4TSI ‘%7 h=s3e) 158 07960 95120 08000 ILIS'T LL6VO 66 LNINJOTIATA TV.LATINS
%8S=IBUBIS ‘041 T=1SI] “V%pp=sTe) 81s 0060 PEITO 02000 LTTST 8¥9S0 ST ALIALLOV MOLIFIHNI dSVNIY
%8E=IBUBIS “04T [=ISI] ‘Y% =581 S79T 07960 0170 01000 0LZS'T 66050  T6 NOLLVYDIN 114D
%Th=IBUBIS ‘04 [=ISI] ‘0% 8¢=sTe) 6THT 00L6°0 #8070 1L000  +TTST 90LS0  +T ALIALLOV ESVNI NIHLO¥d 4O NOILVAILDV
%609=TBUBIS “0/4CT=1SI] ‘%S p=sTe) 01S 09760 89020 07000 P6PST 88€S0  SS NOLATINSOLAD 40 INHNLILSNOD TVYNLONYULS
%0p=TBUBIS ‘4G [=ISI] “%%pe=sTe) €L1€ 01€6'0 65020 02000 L9PST #PTSO 6L INFWDOTIAIA WYHAOLOH
Yo6E=TRUBIS ‘040 1=IS1] “0%9€=55e) €21T 05680 $T61°0 01000 999§ TS0  Th NOILVINOYOD do0T1d
Y66E=TBUBIS ‘040 [=IS1] ‘%G E=55e) (344 0568°0 LS81°0 01000 999S°1 LSYSO  €F NOILVINOVOD
%609=1BUBIS ‘0| Z=ISI] ‘0L p=s3e) 9y 0698°0 9781°0 00000 OSLS'T 98TS°0 68 INHWdOTIATA ITOSNIN
%8=IBUBIS ‘04G [=ISI] ‘Y| p=SsBE1 oLz 0L68°0 86L1°0 1900°0 P99S' T LYI90 LI ONIANIE 40 NOILVINOHY FAILVOEN
%0S=IBUBIS ‘04G [=ISI] ‘%, 7h=SsBE1 (7299 0€78°0 LSLI0 16000 $06S' T €1190 61 AAVISYD AV 40 NOILVINOAY
YoLy=IRUBIS ‘04G [=ISI] ‘%40p=SBe1 85€€ 0508°0 SELIO 07000 LS6S'T L8YSO  €F ALIAILDV ASYNIM ANISOMAL NIHLOYd YOLJHDHY ANVIGNHNSNYIL
%8p=IBUBIS ‘04T [=ISI] ‘% =581 LTSt 0LT80 11L1°0 0£000  L88S'T 90090 61 NOILOArOd NOUNEAN
Yobrp=IBUBIS “0%9[=ISI] “%%LE=5Te) $95€ 00€8°0 9991°0 01000 €851 €TvS0 0L LNINJOTIATA SINYAAIT
%TS=IRUBIS “04p [ =ISI] “Ofpp=sTe) TL0E 00990 9091°0 00000  €TE9T L8LSO  9€ NOISTHAY XILVIN 114D,
%0b=TBUBIS ‘040 [=1S1] “%9¢=sTe) €T1T 085L°0 T851°0 00000 €809 LESSO  L¥ SISVISOWHH
Y%0p=TBUBIS ‘04 [=ISI] “0%GE=55e) 950€ 0£61°0 S9S1°0 00000 IPL9T €S8S0  €F ALIALLOV dSVAILdAd ddAL ANIYAS
Y6TS=IBUBIS ‘048 =ISI] ‘g p=5Te) 8L8E 0TEL0 1751°0 01000  €SI9T STSSO  ¥S ONIANIE XA TdNOD NIFLO¥d
%0p=IBUBIS ‘0%t [ =ISI] “Vpe=sTe) 950¢ 001L°0 1#51°0 00000 €0T9T 0S9S0 ¥ ALIALLDY dSVIOMAAH ANIYES
%6E=IRUBIS 048=1ST] ‘0pGg=sTE) P81 0999°0 €10 00000 LOEY'T L88S0 1€ ANVIEWNEN VINSVTd TVYELYIOSVE
% S=IRUBIS ‘04G [=ISI] ‘Yppp=sBEl oLze 0€89°0 €0S1°0 1€00°0 PLTYT  TSYY0 91 ONIANIE YNA 40 NOILYINDHY FAILVOEN
%TL=IBUBIS ‘04GTISI] ‘0% =53 6LES 06610 8SK1°0 09000 $TLY'T 08850 SE ANVIENAN LNIWASYE
%Th=IBUBIS ‘4t [<ISI] “049¢=sTe) 950€ 0£95°0 £6€1°0 00000 €SS9'T  LT8SO  6€ ALIAILDV dSVAILJHdOANH ddAL ANIIES
%0S=IBUBIS ‘0T [=ISI] “Vpp=sTe) 865T 07850 16€1°0 02000 S0S9'T 65990 91 SISVLSOHNOH dldI'T
%€ S=IRUBIS ‘0451 [=ISI] “049p=sTe) TLog 09150 €8€1°0 00000 S699'T 11650  LE NOISHHAV dLVILSENS 114D
%88=IBUBIS “0497=1S1] “%99=53¢e) S19¢ 0€25°0 60€1°0 01000 SL99'T 60090  TE ONIANIE YOLOVA HLMOUD
VoL L=TRUBIS “04,GT=1SI] ‘0 8G=55e) 6LES 02TT0 S921°0 0E100  969LT 69650  SS 1¥Vd XRILYIN IVINTIEOVILXH
%68S=TRUBIS “0/ [ =ISI] “0405=55e) 7667 086€°0 PSTI0 1S000  8TOL'T  SLIYO 9T INHNLILSNOD TVYNLONYLS XTYLYIN ¥V INTIHOVILXA
Y6 ES=TRUBIS “04G [=ISI] ‘04 Gp=sTe) 8SEE 0SST°0 £5T1°0 01000  TESL'T $T6S0 IS ALIALLDV ASVNIY NIHLO¥d YOLdI0dY ANVIGNINSNY YL
%680 1=[BUBIS “048T=1s1] ‘%4 8L=55e) 1109 0€9€°0 £/T1°0 ¥8E00  6TILT TREY0 €T NIDOYTI0D
%TS=IRUBIS ‘041 [=ISI] ‘04 Gp=s3e) 9I¢ 0897°0 S601°0 05000 €6vL'1 96950 96 XIILYIN ¥V INTTHOVILXA
% EL=1RUBIS ‘04GT=1SI] ‘040G G=s3e) 6LES 0TLT0 $S60°0 05000 I8VL1 $69S0 6 XIILYIN IV INTTHOVILXT SNOZDVYNIALOYd
%TS=IRUBIS ‘0481S1] ‘0 8p=s3e) P18l 0€01°0 0290°0 00000 8IS8'T  6L690 1T NOILLONN{ SNHIIHAV
%19=[eUSIS ‘048-1S1] “049¢=s3e) PI81 0900 09€0°0 00000 00€6'1  1TSL'O 91 NOLLONNI XIILYIW 114D
%L9=IRUBIS ‘05 [=ISI] “0409=s3e) 61€T 01100 01100 00000 18€0°C 19€L°0  0€ ONIANIE NIIDELNI
DA ONIAVAT XVIN LV INVY  [eA-dyamd  [ea-byad  [ea-d NON SAN EEEAS HAVN]

“ZOIN PIM patedwiod sem [N 19ISN[O JI[OQRIDIA “$13S U3 (OD) A0[0IUQ dUID) 10§ [NSAI (YHSD) SISA[EUL JUIWIYOLIUS 135 JUID) 1§ AqEL PPV




% [ Z=1BUSIS “0p/=SI] 9%07=S3%} L6¥] 06£9°0 11120 00000 STPY'l  0¥8S0  OF ALIALLDY AOLIGIHNI ASVALOUd
%EP=[euBISs ‘T [=Is1] ‘%8¢=sTe1 S69T 0€25°0 LL8T0 01000 0PLYT  €965°0 LE NOISHHAV ALVILSANS TTID
%ph=IBUSIS “%Z1=I81] ‘%6E=STe) 69T 0r€S°0 8IL1°0 00000 0TL9T  LL6SO  9€ NOISHHAV XIALVYIN 114D

%EE=IUBIS ‘04 ¢=ISI] ‘%,7e=sTe) €0, 00S€°0 TETI0 0000°0 SSTLT 69990 61 VNIAVT TVSVE

%TE=IuBIS ‘04c=181] ‘%] £=s3e) €0 0LIT0 SPE0'0 00000 STH'T 86590  SE ANVIGWAN LNFNASVE

%6S=IUBIS “%6=1S1] “5S=STe) L661 0FF0°0 €110°0 0000°0 00¥6'T  89TL0 9T INANLILSNOD TVINLONILS XRILYIN IV INTTIDVILXA
%LS=IeusISs ‘047 [=I81] ‘%05=s8e) 7697 0££0°0 86000 0000°0 L8S6'T  891L0  0F DNIANIE NRRIDHLNI

%69p=IuBIs ‘%8=1SI| ‘Y, cp=s3e1 7891 0910°0 £900°0 0000°0 €550°T  9€89°0  ¥6 XRILVA IVINTIEOVILXA SNOADVNIALOYU

%9p=[eusls ‘0,8=1S1] ‘%pcy=s3e) 7891 0L10°0 $500°0 0000°0 8THO'T  L8LY0 96 XRILYIN IV INTTHOVILXA

%S L=IUBIS ‘% 8=1SI] ‘%;0L=S5€) 7891 0700°0 0700°0 0000°0 S9ITT LIPS0 €T NADVTIOD

%1 S=[euBIs ‘0,8=181] ‘%L p=s3e) 7891 0700°0 0200°0 0000°0 PS8I'T  SISLO S LAVd XLV AVINTIEOVILXH

ADAd ONIAVAT XVINLVINVY  [eA-dyamd  ea-byad a-d WON - SAN EEVS AAVN

“ZOIN PUB [O]A Yim paredwiod sem ¢OJA] J9ISN[O JI[OQRIDIA '$19S 2udT (OD) A30[0JuU() AUAN) 10] JNSAI (YHSD) SISA[BUR JUIWIYDLIUD 3 dUAL) 6 IqEL PPV




CIINTVO ‘TIINTVD ‘TTVOELS 6LYEVD0 € 8816L°0 43 SISAYIUASOIq UBDA[D-O 2dA) urony

CONWA “IdLSD DIHAY qIHAY VIHAY ‘SVIHATY ‘IXOV 9165€0°0 L LYST'E LTl 0Std OWOIYD0IAD - wWsI[oqeIdw Fni(]
SVIHATY ‘€D0V QUISOIAL-T SSLEEO0 € 9€0TL0 6T WSI[0qeIOW QUIUB[R[AUSY

STO dreweIn ¢S610°0 [4 9$€TTO 6 wisToqejou deweIn(3-(] Pue dUIIEIND-(]

ASIN IdIWVN IWNN ‘IXOV 698Y100 ¥ 9L896°0 6€ WIST[0qEIAUW IPIUBUNOIIU PUB SIRUNOIIN

EDIYNV ‘SIDL ‘TSOI ‘SLOD ‘€XdD ‘SXOTV ‘INTdXD 6680100 L 87T 001 wSToqeloul pIge SMuopIyoery|
#IVIDV ‘1ATd ‘gedVdd ‘Vidvdd ‘TLVOdT I¥OT aurjoyooydsoyg ‘aurjoyooydsoydoradkn L1678000 8 96T 611 wstjoqejow prdrjoydsoydoszokin
gedvdd ‘Vedvdd ‘1ATd ‘TddNT ‘TLVOdT ¥P88L000 ¢ 899T°1 s wisijoqesow pidiy 1oyyg

SVIHATY ‘THATY DIHAV ‘qIHAV ‘VIHAV QIe120Y “2S0oM[F-(I-ERY LTLSI000 L 09T 16 SIS9U0F00U0N[D) / SISA[00A[D)

CHATY DIHAV ‘qIHAV VIHAV TYVYOV ‘I'ISOV ‘tISOV P6£00°0 L L190°T €8 wisioqelow pioe Ane|
EdUdIINd ‘gedVdd ‘VIdVdd ‘tLIVdDY THATY 019143V 19143V Y9ELI000 L S88L'L L wsijoqelow pidijo1s0k[D
LWNd OV VOV DIHAY ‘IXOV €VIHATY ‘€D0V QuISOIAL-T $2199000°0 8 TLB6'L 08 WSI[0QEIaW QUISOIA ],
S)Y QU9 SIY SNOQERIN_ IN[eA'd popadxy  [eo] Temyeg

O 01 paredwiod [9JA SI9ISN[D JI[0qEIoU A1) JO uostiediiod woiy 1[nsal sisA[eue Kemyjed pojeisoi] 0 AqEL PPV




EASHD TITAX 09€0°0 [ 1950€°0 [ )BJ[NS UNIOIPUOY - SISAYIUSO1q UBSK[SOUIIES0IK[D)

S0 aewein[n £510°0 z 9¥961°0 6 ws{oqejow Ajewen|S-(J pue duruenD-(

CIVOdT 1A1d ‘$OTV1d ‘dedVdd ‘Vedvdd $700°0 S €EITT s wstjoqeiow prdif 1

PIVIDV ‘1ATd ‘GcdVdd ‘VedVdd ‘TIVIdT ‘sOTVTd ‘LVOT aurjoyooydsoyq ‘aurjoyooydsoydosadkin 60000 6 LL6ST 611 wstjoqeiow prdijoydsoydoradkin,
SHY 2UID) SHUONIOQEIN___ ON[EA'd  SHH P92dxg __ [0I0L Semyyed

€Ol 0} parediiod [IJA] SIOISN[O JI[OQEIOW oY} JO UOSLIEdWOd woly [nsar sisK[eue Aemyied pojeIsou] 1 o[qE], ‘PPV




Paper 111



Is not included due to copyright



176



	78629_Haukaas, Tonje H._omslag
	78629_Haukaas, Tonje H._83
	TK.pdf
	78629_Innmat_02_1_PhDTittelTitleTitelTitre.greyscaled
	78629_Innmat_03_1_PhDTittelTitleTitelTitre.greyscaled





